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Synopsis 

Why only 20% of smokers develop clinically relevant COPD was a puzzle for 

many years.  Now, epidemiological studies point clearly towards a large heritable 

component.  The combination of genome wide association studies and candidate 

gene analysis is helping to identify those genetic variants responsible for an 

individual’s susceptibility to developing COPD.  In this review, we will examine the 

current data implicating specific loci and genes in the pathogenesis of COPD. 
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Introduction 

Although most smokers will die of a smoking-related disorder, only 20% suffer 

from significant COPD.  Familial clustering suggests that heritable factors play an 

important role in the development of this disease 1,2.  In one large series, 18.6% of 

population-attributable risk for COPD could be accounted for by family history; 

patients with an affected parent having more severe disease, more frequent 

exacerbations and a worse quality of life 3.  Similarly, in twin pairs the risk of 

developing COPD is higher for monozygotic than for dizygotic twins, with 60% of the 

individual susceptibility explained by genetic factors 4.  Both the airway and 

emphysema components cluster independently suggesting that different genetic 

factors play a role in the development of these two components of the disease 5.  

Unsurprisingly, for a disorder with a substantial heritable component, race and 

ethnicity appear to impact upon the development of COPD.  For example, in the 

COPDGene Study, 42% of affected African Americans were found to suffer severe 

early onset COPD (age < 55 years, FEV1 < 50% predicted) compared with 14% of 

non-Hispanic whites 6.  In contrast, self-reported Hispanic ethnicity or Native 

American genetic ancestry have both been reported to be associated with 

significantly lower risks of developing COPD 7.  

Efforts to identify the genetic determinants of COPD have evolved as the 

available technologies have changed.  The analysis of candidate genes yielded 

some successes that will be discussed later, but that approach also led to numerous 

blind alleys, with initial excitement followed by disappointment as associations 

proved impossible to reproduce.  The analysis of large cohorts of patients in 

genome-wide association studies (GWAS) using microarray technology to assay up 
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to a million single nucleotide polymorphisms (SNPs) in each case led to the 

unbiased identification of novel disease associated loci.  This approach is 

hypothesis-free and so has the potential to open novel avenues of research.   

Unbiased approaches 

Until recently, only mutations of the SERPINA1 gene that are responsible for 

α1-antitrypsin deficiency were unambiguously linked with the development of COPD.  

However, this disorder accounts for only 1-2% of cases of COPD and so other 

disease-associated alleles must exist.  Recent large multinational GWAS have shed 

much light on this.  In addition to validating the involvement of some candidate 

genes previously suspected of playing a role in the pathogenesis of COPD, these 

landmark studies have identified novel pathways that might plausibly lead to novel 

therapies for COPD.   

SNPs in chromosome 15 at the α-nicotinic acetylcholine receptor CHRNA3/5 

locus (15q25.1; rs8034191 and rs1051730) were found to reach genome-wide 

significance and have subsequently been replicated in several independent studies 

8-13.  This locus is significantly associated with pack-years of smoking, emphysema 

(by CT), and airflow obstruction 9,14.  Notably, the C allele of the rs8034191 SNP was 

estimated to have a population attributable risk for COPD of 12.2% and has 

previously been identified in genome–wide association studies of lung cancer, being 

thought to be important in nicotine addiction 15.  Individuals who carry this SNP may 

require more cigarettes to satisfy nicotine addiction, may inhale more deeply and 

may find it more difficult to withdraw from cigarette smoking.  Indeed, it has been 

reported that the association of the CHRNA3/5 locus is substantially mediated by 
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smoking phenotype 12, although this finding has been disputed 14.  However, IREB2 

is a gene in tight linkage disequilibrium with CHRNA3/5 and has also been identified 

as a potential determinant of COPD 9,16,17.  This gene encodes an iron regulatory 

protein localised in epithelia that may plausibly affect oxidative stress responses in 

smoked-exposed lungs.  These candidate genes are not mutually exclusive and it 

remains possible that both genes within the haplotype contribute to the disease 

phenotype 12.   

GWAS have also identified a locus at 4q22.1 containing the gene FAM13A to 

be significantly associated with COPD and lung function in multiple cohorts 9,18.  

While the function of FAM13A is unclear, another gene at 4q31 newly identified and 

replicated by GWAS as being associated with both COPD and lung function, 

encodes hedgehog interacting protein (HHIP), which appears to play a role in 

signalling that modulates lung development or remodelling 15,19-21.  HHIP is 

expressed in pulmonary tissues but at lower levels in COPD-affected lungs, and 

disease-associated SNPs have been identified within the gene’s promoter 

(rs6537296A and rs1542725C) that appear to reduce its transcription 22.  Other loci 

that have been identified using similar techniques include 2q35, 4q24, 5q33, 6p21, 

15q23 and 19q13, although these require validation 20,23.  Other COPD-related 

phenotypes have also been linked with specific loci, for example low body mass 

index in COPD is significantly association with SNP rs8050136 within the first intron 

of the fat mass and obesity-associated (FTO) gene 24, while a SNP in BICD1 

(rs10844154 in 12p11.2) is associated with the presence and severity of 

emphysema on CT scan 25. 
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Candidate gene approaches 

The extra-cellular matrix 

Alveolar tissue consists of epithelial cells, capillaries and extra-cellular matrix 

(ECM), the latter comprising a complex network of scaffolding proteins, principally 

elastin and collagen (Figure 1).  The elastin filaments form from tropoelastin 

monomers that self assemble into aggregates and then fuse with microfilaments.  

Multiple covalent cross-links between the lysines in neighbouring filaments provide 

stability.  Cutis laxa is a family of autosomal dominant (OMIM #123700), X-linked 

(OMIM #304150) and recessive (OMIM #219100, 219200) human diseases 

characterized by excessively slack connective tissues.  Several families with the 

milder autosomal dominant form show early onset pulmonary pathology including 

emphysema 26, particularly if inherited with the Z allele of α1-antitrypsin 27.  Two 

groups independently identified separate mutations within the ELN (elastin) gene 

that cause mild cutis laxa and early onset COPD 28,29.  The ELN gene maps to 

7q11.23 in man, but as chromosome 7 has not been identified in linkage analysis as 

a site associated with COPD, it is likely that ELN mutations are a rare cause of this 

disease. 

Elastin fibres bind other proteins including fibulins, which in turn bind multiple 

ECM components and the basement membrane.  The fibulins are a family of 6 

proteins, at least 2 of which are mutated in severe autosomal recessive forms of 

cutis laxa and whose phenotype often includes early onset emphysema 30,31.  A 

novel mutation in the fibulin-4 gene (FBLN4; 11q13) was recently identified in 

autosomal recessive cutis laxa with developmental emphysema 30.  The mutation 
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caused an amino acid substitution in an epidermal growth factor (EGF) like domain 

of fibulin-4, leading to very low levels of extra-cellular protein.  In a consanguineous 

Turkish family, a homozygous mutation in the related fibulin-5 gene (FBLN5; 

14q32.1) was also found to cause cutis laxa and emphysema complicated by 

recurrent pulmonary infections 31.  Once again, the mutation was located within an 

EGF-like domain, suggesting these are critical for fibulins to maintain the integrity of 

the ECM within the lung.  Interestingly, analogous mutations in fibrillin, which bares 

homology to the fibulins, cause Marfan’s syndrome.  Moreover, mutations of fibrillin 

(FBN1; 15q21.1) have been described in neonatal Marfan’s with very early onset 

emphysema 32-34.   

Menkes disease (OMIM #309400) characterized by abnormal hair and 

dysmorphic features, is caused by mutations in an intracellular copper transporter 

(ATP7A; Xq13.3).  The clinical features are due to defective connective tissue 

synthesis believed to be the result of dysfunction of lysyl oxidase.  This copper-

dependent enzyme is required for proper cross-linking of both collagen and elastin 

fibres.  A recent case report described a child with Menkes disease and severe 

bilateral pan-lobular emphysema who died aged only 14 months 35.  Gene 

sequencing revealed a splice-site mutation in ATP7A, suggesting that proper ECM 

cross-linking is vital for stability of the lung parenchyma. 

In contrast to animal models of COPD, mutations in collagen have not been 

identified in humans.  This does not appear to be due to an incompatibility of 

mutated collagen with survival, as numerous collagen mutations have been 

described that cause other human diseases.  Instead, it may reflect a more important 

role for elastin integrity in emphysema in humans than in mice.  However, aberrant 
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collagen synthesis has been implicated in COPD.  The signaling molecule TGFβ1 

enhances collagen synthesis in vivo, and polymorphisms in its gene (TGFB1; 

19q13.1) have been associated with COPD 36-40, although a recent, large study 

found no association between TGFB1 polymorphisms and the rate of lung function 

decline in smokers 41.  Intriguingly, the TGFβ1 gene maps to a locus on 

chromosome 19, which has high linkage (LOD 3.3) with FEV1 in smokers 37,42.  

However, as is frequently the case with polymorphism studies, the literature is 

unclear. For example, two TGFB1 single nucleotide polymorphisms (SNPs), 

rs1800469 and rs1982073, were found to be independently associated with COPD in 

two studies 36,39, but in another, they were only significant when analysed as part of 

a haplotype (combination of alleles), while yet another SNP, rs6957, was significant 

in its own right 40.  Detailed analysis of the Boston Early-Onset COPD Study data 

revealed further complexity 37.  While some alleles of TGFB1 were associated with 

FEV1 (rs2241712, rs2241718, rs6957), there was a separate but partially overlapping 

set of alleles associated with airflow obstruction (rs2241712, rs1800469, rs1982073).  

TGFβ1 protein is inactive when first secreted owing to the presence of an inhibitory 

N-terminal pro-peptide.  It is secreted associated with latent TGFβ1 binding proteins 

(LTBP), which share structural features with fibrillins, and are assembled into the 

ECM.  Mice with mutations in LTBP4 develop severe emphysema 43.  Intriguingly, 

the sole study that has addressed LTBP4 (19q13.1-q13.2) polymorphisms found an 

association with COPD in man 39.   More recently, genome-wide linkage analysis of 

pedigrees stratified by emphysema status (on CT scan) identified a region on 

chromosome 1p (LOD score = 2.99) 44.  An intronic SNP in TGFB-recepor-3 at this 

locus was found to be associated with COPD status, FEV1 and CT emphysema. 
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Taken together, these studies provide strong evidence in support of a crucial 

role for the loss of ECM integrity, in particular the elastic components, in the 

development of COPD.  It is therefore important to consider the enzymes implicated 

in degradation of the ECM. 

Protease-antiprotease balance 

The protease anti-protease theory has its roots in the observation that 

individuals with α1-antitrypsin are particularly susceptible to COPD and in 

experimental models of emphysema from the 1960s.  This theory suggests that the 

pathogenesis of COPD and emphysema is the result of an imbalance between 

enzymes that degrade the ECM within the lung and proteins that oppose this 

proteolytic activity.  Many proteases play important roles in remodeling or 

inflammation within the lung.  It is essential that they be controlled by antiproteases 

to protect against uncontrolled degradation of the ECM (Figure 2).  

The best-understood example of genetically induced emphysema results from 

mutations in the α1-antitrypsin gene (SERPINA1; 14q32.1).  These increase the 

protein’s propensity to form ordered polymers, which are incapable of inhibiting its 

target enzyme, neutrophil elastase.  This abnormal behaviour leads to retention of 

the protein within hepatocytes as Periodic Acid Schiff positive inclusions and results 

in plasma deficiency of an important protease inhibitor (OMIM #107400).  It is now 

increasingly recognised that mutant α1-antitrypsin can also form polymers within the 

interstitium and alveolar spaces of the lung.  These polymers are chemotactic for 

neutrophils and so combine with the deficiency of α1-antitrypsin to focus and amplify 

the inflammatory response within the lung 45.  In most Northern European 
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populations the frequency of the most severe Z allele is about 1/2000.  Classically, Z 

α1-antitrypsin homozygotes carry the Glu342Lys mutation and suffer from early 

onset emphysema when compared to normal MM α1-antitrypsin individuals.  The 

onset and progression of emphysema is markedly accelerated by cigarette smoking.  

Moreover, it appears that even a single allele of Z α1-antitrypsin may increase the 

risk of COPD.  In the longitudinal Copenhagen City Heart Study, the MZ α1-

antitrypsin genotype increased the rate of decline of FEV1 by 19% compared with 

those who were MM homozygotes, causing a 30% increased risk of obstructive lung 

function and a 50% increased risk of physician diagnosed COPD 46.  The authors 

found that the frequency of the MZ genotype in their Danish population was as high 

as 5% and so calculated that it would account for 2.4% of cases of COPD.  This is in 

contrast to the ZZ genotype, which was causal in only 0.8% of cases.  In meta-

analysis, heterozygosity for the Z allele carried an odds ratio for COPD of 2.31 47.  In 

one study, the MZ (but not MS; the S allele has the Glu264Val mutation) α1-

antitrypsin genotype was associated with a rapid decline in FEV1, which was even 

more marked if there was also a family history of COPD, suggesting an interaction 

with additional genetic factors 48.  A further meta-analysis combining 17 studies 

found a 3-fold increase in COPD in SZ α1-antitrypsin heterozygotes and a small 

increase in MS α1-antitrypsin heterozygotes.  Other polymorphisms of the 

SERPINA1 gene do not appear to be associated with increased risk of developing 

COPD 49.  

Other pulmonary serine protease inhibitors may also be involved in the 

pathogenesis of COPD.  Following earlier linkage studies demonstrating an 

association between chromosome 2q and COPD, expression profiling of genes 
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within that locus identified SERPINE2 (2q33-q35) as being up regulated during 

murine lung development and in the lungs of individuals with COPD 50.  The authors 

went on to demonstrate an association between SNPs in SERPINE2 and COPD.  

SERPINE2 SNPs were found to segregate with COPD in a large multi-centre family-

based study and to be associated with COPD in a case-control analysis 51.  However 

another large study failed to replicate the association with COPD despite having 

adequate power 52.  The latter study included individuals with COPD with and 

without emphysema, while the studies by DeMeo and colleagues 50 included a 

preponderance of patients with emphysema assessed for lung volume reduction 

surgery.  Nevertheless, while these differences may reflect different COPD 

phenotypes, they illustrate the need to replicate the findings of genetic association 

studies in multiple populations before drawing firm conclusions.  A recent study of 

Finish construction workers found that three SNPs within SERPINE2 (rs729631, 

rs975278, and rs6748795) were in tight linkage disequilibrium and so focused solely 

on one (rs729631) 53.  This showed a significant association with panlobular 

emphysema, as seen with mutants of SERPINA1.  

Since mutations of α1-antitrypsin so clearly lead to emphysema, one might 

infer that its target, neutrophil elastase, is central to the pathogenesis of disease.  

However, mutations in this protease have not been shown to be important, despite 

being studied extensively in other conditions.  Instead, most evidence implicates 

matrix metalloptroteases (MMPs) in the pathogenesis of COPD.  These are zinc-

dependent endopeptidases involved in the degradation of many ECM components.  

A SNP of MMP9 (20q11) was associated with COPD in Japanese 54 and Chinese 55 

populations, however a further Japanese study found an association with 
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emphysema distribution rather than COPD per se 56.  Another large study failed to 

show MMP9 association with COPD, but instead MMP1 (11q22) and MMP12 

(11q22) polymorphisms were identified 57.  Further support for a role for MMP9, but 

not MMP1 polymorphisms, has also been published 58.  Tissue Inhibitors of 

Metaloproteinases (TIMPs) inhibit the MMPs, but thus far, only one polymorpism in 

TIMP2 (17q25) has been associated with COPD 59.  When more than 8000 

individuals were analysed, the minor allele of the promoter of MMP12 (rs2276109 [-

82A-->G]) showed clear association with FEV1 in a combined analysis of adult ever-

smokers and children with asthma and with a reduced risk of the COPD 60.  In a 

separate study, a haplotype containing this SNP in MMP-12 (rs652438 and 

rs2276109) was found to be associated with severe COPD (GOLD Stages III and IV) 

(20078883).  When expressed in cells in vitro, the COPD-associated A allele of 

rs652438 was 3-fold more proteolytically active than the G allele suggesting that it 

might mediate enhanced ECM degradation 61.   

Reactive oxygen species 

Cigarette smoke contains vast numbers of free radicals that impose an 

oxidative stress on the lung.  Such stress is believed to induce damage through 

multiple mechanisms, including direct oxidation of cellular lipids and DNA, and 

through inactivation of key proteins such as α1-antitrypsin.  For this reason, much 

work has gone in to assessing the role of endogenous antioxidant enzymes in 

protecting against smoke-induced lung damage. 

Many toxins in cigarette smoke are subject to first pass metabolism in the 

liver.  Amongst the many enzymes involved, microsomal epoxide hydrolase (EPHX1; 
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1q42.1) has been intensely studied in the context of COPD.  Several EPHX1 SNPs 

have been described that affect its activity.  One of these leads to a 40% loss of in 

vitro activity (rs1051740 Tyr113His, the “slow” allele), while another increases 

activity by 25% (rs2234922 His139Arg, the “fast” allele).  In 1997, the “slow” variant 

of EPHX1 was found to increase the risk of emphysema by a staggering odds ratio 

of 5.0 and of COPD by an odds ratio of 4.1 62.  Since then, numerous studies have 

attempted to reproduce this effect with varying success 39,63-74.  Recently, analysis of 

randomly selected white Danish individuals participating in the Copenhagen City 

Heart Study (n = 10,038) and the Copenhagen General Population Study (n = 

37,022) for the rs1051740 and rs2234922 variants in the EPHX1 gene combined 

with a meta-analysis of 19 previous studies indicate that genetically reduced EPHX1 

activity is not a major risk factor for COPD or asthma in the Danish population. 75 

Glutathione S-transferase (GST) comprises a large family of enzymes 

capable of catalyzing the conjugation of reduced glutathione to endogenous and 

xenobiotic electrophilic compounds.  The GSTs are important in the detoxification of 

many compounds and are highly polymorphic.  These polymorphisms have been 

linked to susceptibility to toxins and carcinogens.  SNPs in GSTP1 have been 

associated with COPD 76, the distribution of emphysema 77 and more rapid decline in 

lung function 78.  However, the data should be interpreted with caution as the third of 

the cohorts 78 has been used in multiple analyses 69 and there was a lack of Hardy-

Weinberg equilibrium for GSTP1 in their population suggesting either a systematic 

defect in genotyping or an unidentified bias in the selection of subjects.  Moreover, 

no convincing association was found in other studies 71,79.  The null mutation of 
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GSTM1 (1p13.1) has also been associated with COPD 64, but others have failed to 

reproduce this finding 72. 

Heme oxygenase catalyses the first step in heme degradation.  Heme 

oxygenase 1 (HMOX1; 22q13.1) is the inducible isoform that can be upregulated by 

a wide range of stresses.  Bile pigments generated by heme cleavage are believed 

to have antioxidant properties, thus HMOX1 induction is protective during cellular 

oxidant injury and over-expression of HMOX1 in lung tissue protects against 

hyperoxia.  The HMOX1 gene 5’-flanking region contains stretches of GC repeats 

that are highly polymorphic in length.  An early report found a higher proportion of 

long repeats in patients with COPD and also demonstrated that long repeats were 

associated with impaired promoter activity 80.  Attempts to reproduce this effect have 

had varied success 65,78,81,82.  While HMOX1 GC-repeat length has not convincingly 

been shown to be associated with developing COPD, there are some data to support 

an association between the long allele and increased severity of disease 82,83, 

although a recent study of smokers in the NHLBI Lung Health Study found no 

association between five HMOX1 SNPs and the decline of lung function 84.  

Moreover, that study failed to detect evidence that the promoter polymorphisms 

affected regulation of the HMOX1 gene. 

Superoxde dismutase (SOD) is an important antioxidant enzyme that 

catalyses the conversion of superoxide to oxygen and hydrogen peroxide.  The 

extra-cellular isoform (SOD3; 4p15) is abundant in lung parenchyma.  In the cross-

sectional Copenhagen Heart Study, the R213G allele that results in higher plasma 

levels was associated with significantly less COPD in smokers 85.  A second study 

found similar results for the SOD3 isoenzyme, but not for other forms of SOD 86. 
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Whilst biologically very plausible, current genetic evidence fails to provide 

clear support for the involvement of detoxifying enzymes in the pathogenesis of 

COPD.  Since the potential list of candidates to detoxify cigarette smoke remains 

long, it would be preferable if future studies were to take an unbiased approach to 

target identification rather than studying small numbers of candidate genes. 

Inflammation 

Tumour necrosis factor-α (TNF; 6p21) is a multifunctional cytokine whose 

levels are elevated in bronchoalveolar lavage, induced sputa and biopsies from 

patients with COPD.  It is a plausible candidate gene for susceptibility to 

inflammatory disease, especially as well-studied promoter polymorphisms clearly 

alter expression levels.  Consequently, considerable effort has been invested into 

determining whether the promoter polymorphism in TNFα  also predisposes smokers 

to COPD.  Much interest was generated when an early study revealed an 

association (with a staggering odds ratio of over 10) between allele 2 and ‘bronchitis’ 

in Taiwanese men 87.  This study is difficult to interpret as a third of the men were 

‘never smokers’.  Despite some supportive evidence 88, many subsequent studies 

appeared to find little evidence that TNF polymorphisms are associated with, or 

modify the progression of COPD 69,74,89-98.   

Group specific component (GC; 4q12), also known as vitamin D binding 

globulin, is a multifunctional protein that enhances the neutrophil and monocyte 

chemotactic activity of complement component 5a.  It is a highly polymorphic protein 

with more than 124 forms, although three, Gc*1F, Gc*1S and Gc2, make up the 

majority.  Kueppers and colleagues found Gc2 homozygotes to be protected from 
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COPD 99.  Others have seen this protective effect 100,101, while Gc*1F homozygosity 

has been found to be associated with COPD 102,103.  However, a much larger recent 

study has failed to reproduce these associations 104. 

Conclusion 

While environmental exposure to smoke remains the preeminent risk factor 

for developing COPD, the evidence that heredity plays a major role in an individual’s 

risk is clear.  The combination of GWAS and carefully conducted candidate gene 

approaches is helping to tease out those genetic variants responsible for the familial 

clustering of this disease, offering both the personalisation of individual risk 

stratification and, more excitingly, the hope for rational therapeutic interventions 

based on a better understanding of the underlying molecular pathology.  The 

confusion surrounding many of the early (and some current studies) lies almost 

entirely with study power.  Apart from the notable exception of SERPINA1, the 

contribution of individual genetic variants to risk of disease will prove to be small, for 

this reason large stratified cohorts of well-phenotyped individuals are likely to prove 

invaluable.  A recent large systematic review of all case control candidate genetic 

studies in COPD prior to 2008 concluded that although the majority of such studies 

were underpowered to detect small genetic effects (OR 1.2-1.5), four genetic 

variants (or the 27 for which adequate data were available) remained significantly 

associated with COPD: the GSTM1 null variant (OR 1.45), rs1800470 in TGFB1 

(0.73), rs1800629 in TNFα (OR 1.19) and rs1799896 in SOD3 (OR 1.97) 105.  Such 

findings, combined with the hypothesis generating observations from GWAS will 

direct COPD research for the next decade. 
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Figure 1.  Extracellular matrix.  The extracellular matrix is comprised primarily of 

collagen and elastin fibrils.  When mutated, many of the components of these fibrils 

and enzymes involved in their assembly leads to true connective tissue disorders 

that are associated with premature emphysema.  Human disorders linked to 

mutation of specific components are labelled in bold; those for which murine models 

exist are then given in non-bold text. 

 

Figure 2.  Candidate COPD genes at the alveolus.  Toxic compounds in smoke 

are inhaled to the alveolus where some are detoxified.  Many candidate modifier 

genes of COPD encode enzymes mediating this detoxification.  According to the 

current protease – anti-protease model of smoke-induced lung damage, toxins that 

escape these protective mechanisms inactivate anti-proteases enabling the 

degradation of extracellular matrix.  Variants of genes encoding anti-proteases, 

proteases, components of the extra-cellular matrix and signalling pathways that 

regulate regeneration have all been implicated in COPD. 

 

 


