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Schizophrenia has been conceived as a disorder of brain connec-
tivity but it is unclear how this network phenotype is related to the
underlying genetics. We used morphometric similarity analysis of
magnetic resonance imaging (MRI) data as a marker of inter-areal
cortical connectivity in three prior case-control studies of psychosis:
in total, N=185 cases and N=227 controls. Psychosis was associated
with globally reduced morphometric similarity (MS) in all 3 studies.
There was also a replicable pattern of case-control differences in
regional MS which was significantly reduced in patients in frontal
and temporal cortical areas, but increased in parietal cortex. Using
prior brain-wide gene expression data, we found that the cortical
map of case-control differences in MS was spatially correlated with
cortical expression of a weighted combination of genes enriched
for neurobiologically relevant ontology terms and pathways. In
addition, genes that were normally over-expressed in cortical areas
with reduced MS were significantly up-regulated in three prior post
mortem studies of schizophrenia. We propose that this combined
analysis of neuroimaging and transcriptional data provides new
insight into how previously implicated genes and proteins, as well
as a number of unreported genes in their topological vicinity on
the protein interaction network, may drive structural brain network
changes mediating the genetic risk of schizophrenia.
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Psychotic disorders have a lifetime prevalence of 1-3% and1

can be extremely debilitating. However, despite signif-2

icant efforts, the brain architectural changes and biological3

mechanisms causing psychotic disorders are not yet well un-4

derstood and there has been correspondingly limited progress5

in the development of new therapeutics.6

Magnetic resonance imaging (MRI) studies of schizophrenia7

have robustly demonstrated local structural differences in mul-8

tiple cortical areas, subcortical nuclei and white matter tracts9

(1). The most parsimonious explanation of this distributed,10

multicentric pattern of structural change is that it reflects11

disruption or dysconnectivity of large-scale brain networks12

comprising anatomically connected brain areas. However, test-13

ing this dysconnectivity hypothesis of psychotic disorder has14

been constrained by the fundamental challenges in measuring15

anatomical connectivity and brain anatomical networks in16

humans. The principal imaging methods available for this 17

purpose are tractographic analysis of diffusion weighted imag- 18

ing (DWI) and structural covariance analysis of conventional 19

MRI. DWI-based tractography generally under-estimates the 20

strength of long distance anatomical connections, for example 21

between bilateral homologous areas of cortex. Structural co- 22

variance analysis is not applicable to single subject analysis 23

and its biological interpretation is controversial (2). 24

We recently proposed a technique known as “morphome- 25

tric similarity mapping” (3), which quantifies the similarity 26

between cortical areas in terms of multiple MRI parameters 27

measured at each area and can be used to construct whole 28

brain anatomical networks for individual subjects. In keeping 29

with histological results indicating that cytoarchitectonically 30

similar areas of cortex are more likely to be anatomically 31

connected (4), morphometric similarity (MS) in the macaque 32

cortex was correlated with tract-tracing measurements of ax- 33

onal connectivity. Compared to both tractographic DWI-based 34
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networks and structural covariance networks, MS networks35

included a greater proportion of connections between human36

cortical areas of the same cytoarchitectonic class. Individual37

differences in regional mean MS, or “hubness” of cortical nodes38

in MS networks, accounted for about 40% of the individual dif-39

ferences in IQ in a sample of 300 healthy young people. These40

results suggest that MS mapping could provide a useful new41

tool to analyse psychologically relevant biological differences42

in brain structure.43

Here we used MS mapping to test the dysconnectivity hy-44

pothesis of psychosis in three independent case-control MRI45

datasets: the Maastricht GROUP study (83 cases, 68 controls)46

and the Dublin study (33 cases and 82 controls), both made47

available as legacy datasets for the PSYSCAN project, and the48

publicly available Cobre dataset (69 cases and 77 controls); see49

Methods. We mapped case-control MS differences at global50

and nodal levels of resolution individually in each dataset to51

assess replicability and we tested for significant differences52

in network organization that were consistent across studies.53

We used partial least squares (PLS) regression to test the54

hypothesis that this MRI network phenotype of psychosis was55

correlated with anatomically patterned gene expression using56

data from the Allen Human Brain Atlas (AHBA). This analyt-57

ical approach to combine imaging and genomic data has been58

methodologically established (5, 6) and applied in the context59

of neuropsychiatric disorders (7, 8). We used it to test the60

pathogenic hypothesis that the genes most strongly associated61

with case-control differences in MS were enriched: (i) for genes62

that have been ontologically linked to relevant neurobiological63

processes; and (ii) for genes that are abnormally expressed in64

post-mortem studies of schizophrenia.65

Results66

Samples. Socio-demographic and clinical data available on the67

sample are in Table S1. There was considerable heterogeneity68

in clinical measures between studies, e.g., the Maastricht pa-69

tients had relatively low mean scores on psychotic symptoms70

scales.71

Case-control differences in global morphometric similarity.72

Globally, MS was reduced in cases compared to controls in73

all 3 datasets (Fig. S2). Regional MS had an approximately74

Normal distribution over all 308 regions (after regressing age,75

sex and age × sex) and in all 3 datasets there was a signif-76

icant case-control difference in this distribution (P < 0.001,77

Kolmogorov-Smirnoff test). Modal values of regional MS were78

more frequent, and extreme values less frequent, in cases com-79

pared to controls (Figs. 1a and S2).80

Case-control differences in regional morphometric similarity.81

The cortical map of regional MS in Fig. 1 c) summarises82

the anatomical distribution of areas of positive and negative83

similarity on average over controls from all 3 datasets. The84

results are similar to those reported in an independent sample85

(3), with high positive MS in frontal and temporal cortical86

areas and high negative MS in occipital, somatosensory and87

motor cortex. This confirms the replicability of this pattern88

of regional MS in healthy individuals and is consistent with89

prior knowledge that primary cortex is more histologically90

differentiated than association cortex.91

We mapped the t-statistics and corresponding Hedge’s g92

effect sizes for the case-control differences in regional MS at93

each cortical area (Fig. 1 d). A positive t-statistic means 94

MS increased in patients whereas a negative t-statistic means 95

MS decreased. We found somewhat similar patterns of case- 96

control difference across all 3 datasets, with increased regional 97

MS in occipital and parietal areas in patients, and decreased 98

regional MS in frontal and temporal cortex. The case-control 99

t-map for the Dublin study was significantly correlated with 100

both the Maastricht and the Cobre t-maps (r = 0.42, P < 101

0.001 and r = 0.47, P < 0.001, respectively), although the 102

Maastricht and Cobre t-maps were not significantly correlated 103

(r = 0.058, P = 0.31), see Fig. S4. However, a large number 104

of patients in the Maastricht dataset had very low symptom 105

scores (below the threshold for “borderline mentally ill” (9)). If 106

those non-psychotic patients were excluded from the analysis, 107

the Maastricht case-control t-map was correlated significantly 108

with the Cobre map (r=0.22, P < 0.001, see section S6.2). 109

Combining the P -values for case-control differences across 110

all 3 datasets, we identified 18 cortical regions where MS was 111

robustly and significantly different between groups (Fig. 1 e). 112

MS decreased in patients in 15 regions located in the superior 113

frontal, caudal middle frontal, pre-central, pars triangularis 114

and superior temporal areas and increased in 3 regions located 115

in superior parietal and post-central areas (Table S2). 116

To contextualise the regional MS case-control differences, 117

we referred them to two prior classifications of cortical areas: 118

the von Economo atlas of cortex classified by cytoarchitectonic 119

criteria (5); and the Yeo atlas of cortex classified according 120

to resting state networks derived from functional MRI (10, 121

11). MS was significantly reduced in von Economo class 2 122

(association cortex) and in the ventral attention, frontoparietal 123

and default mode Yeo networks (all PF DR < 0.05; Tables S12 124

and S13). 125

There was a strong negative correlation between regional 126

MS in the control subjects and the case-control differences in 127

regional MS (both averaged over all 3 datasets; Pperm = 0.002) 128

(Fig. 1 f). Hence areas with highest positive MS in controls 129

tended to show the greatest decrease of MS in patients; and, 130

conversely, areas with highest negative MS in healthy controls 131

had the greatest increase of MS in psychosis. This result 132

is analogous to the observation that highly connected ‘hub’ 133

regions are the most likely to show reduced connectivity in 134

disease in fMRI and DTI brain networks (12). 135

We tested for correlations between mean MS and a range 136

of clinical measures, including symptom scores, anti-psychotic 137

medication use and cannabis use, see section S6.3. The only sig- 138

nificant associations after FDR correction were with cannabis 139

use, which was positively correlated with mean global MS in 140

the Maastricht study (PF DR = 5×10−4), as well as with mean 141

MS averaged across the 15 regions with significantly decreased 142

MS in Fig. 1e (PF DR=0.0017). 143

Gene expression related to morphometric similarity. We used 144

PLS regression to identify patterns of gene expression that 145

were correlated with the anatomical distribution of case-control 146

MS differences. The first PLS component explained 13% of the 147

variance in the case-control MS differences, combining data 148

from all 3 studies, significantly more than expected by chance 149

(permutation test, P < 0.001). PLS1 gene expression weights 150

were positively correlated with case-control MS differences in 151

the Dublin study (r = 0.49, P < 0.001) and the Cobre study 152

(r = 0.37, P < 0.001) (Fig. 2a); but not in the Maastricht 153

study (r = 0.006, P = 0.94). These positive correlations mean 154
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Fig. 1. Case-control differences in regional MS. a) Distributions of regional MS strength, i.e. the average similarity of each region to all other regions, for cases and controls
from all datasets. b) Distributions of MS strength for a region with significantly reduced MS in cases, namely left hemisphere caudal middle frontal part 1. c) Regional MS
averaged over controls from all 3 datasets. d) t-statistics and Hedge’s g effect sizes for the case-control differences in regional MS in each dataset. e) t-statistics for regional
case-control differences averaged across datasets in all regions and in the 18 cortical areas where the difference was statistically significant across datasets (FDR = 0.05). f)
Scatterplot of mean control regional MS (x-axis) versus case-control t-statistic (y-axis). Control MS (from panel c) is strongly negatively correlated with case-control MS
differences (from panel d) (Pearson’s r=-0.76, P < 0.001). Most cortical regions have positive MS in controls which decreases in patients (47% of regions) or negative MS in
controls which increases in patients (36% of regions). Statistically significant regions are circled in red/blue according to whether their mean t-statistic increases/decreases in
patients.
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Fig. 2. Gene expression profiles re-
lated to case-control differences in mor-
phometric similarity a) Scatterplot of re-
gional PLS1 scores (weighted sum of
20,647 gene expression scores) versus
case-control differences in regional MS
(Cobre dataset). b) Cortical map of re-
gional PLS1 scores. c) Cortical map of
mean case-control MS differences, aver-
aged across all datasets. Here we in-
clude intra-hemispheric left hemisphere
edges only (see Methods). d) Genes
that are strongly positively weighted on
PLS1 (e.g., LYSMD4) correlate positively
with case-control differences in regional
MS (r = 0.44, P < 0.001); whereas
genes that are strongly negatively weighted
on PLS1 (e.g., C1orf95) correlate nega-
tively with case-control differences in MS
(r = −0.37, P < 0.001).
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a) b)

Fig. 3. Enrichment analysis of
genes transcriptionally related
to morphometric similarity a)
protein-protein interaction (PPI) net-
work for PLS- genes (Z < −3),
highlighted with some of the sig-
nificantly GO enriched biological
processes: “nervous system de-
velopment” in red and “adenylate
cyclase-modulating G-protein cou-
pled receptor signaling pathway”
in blue. The most interconnected
set of proteins were coded by sev-
eral genes previously implicated in
schizophrenia, highlighted in part
b). See the text and section S8.8
for details.

that genes positively weighted on PLS1 are over-expressed155

in regions where MS was increased in patients, whilst nega-156

tively weighted genes are over-expressed in regions where MS157

was decreased in patients (Fig. 2d). Hence genes which are158

positively (or negatively) weighted on PLS1 were related to159

increased (or decreased) MS in cases compared to controls.160

Enrichment analysis of genes transcriptionally related to mor-161

phometric similarity. We found 1110 genes with normalised162

PLS1 weights Z < −3, which we denote the PLS- gene set,163

and 1979 genes with Z > 3, which we denote the PLS+ gene164

set. We first consider PLS- genes (the equivalent results for165

PLS+ genes are also given below).166

We mapped the network of known interactions between pro-167

teins coded by the PLS- gene set (13) (Fig. 3). The resulting168

protein-protein interaction (PPI) network had 341 connected169

proteins and 1022 edges, significantly more than the 802 edges170

expected by chance (permutation test, P < 1−13). We also171

tested the PLS- gene set for significant GO enrichment of172

biological processes and enrichment of KEGG pathways. En-173

riched biological processes included “nervous system develop-174

ment”, “synaptic signaling” and “adenylate cyclase-modulating175

G-protein coupled receptor signaling pathway” (see Dataset176

S1). There were two significantly enriched KEGG pathways:177

“neuroactive ligand-receptor interaction” and “retrograde en-178

docannabinoid signaling” (Fig. S13). The proteins coded by179

genes enriched for “adenylate cyclase-modulating G-protein180

coupled receptor signaling pathway” and the two KEGG path-181

ways formed the most strongly inter-connected cluster of nodes182

in the PPI network, see Fig. 3, compatible with them sharing183

a specialised functional role for GPCR signaling.184

Genes recently reported as over-expressed in post mortem185

brain tissue from patients with schizophrenia (14) were highly186

enriched among genes that were negatively weighted on PLS1187

(permutation test, P < 0.001, after FDR correction). The188

relationship between the sign of PLS1 weights of gene expres-189

sion related to the MRI case-control phenotype and the sign190

of case-control differences in the histological measures of brain191

gene expression was highly non-random (Wilcoxon rank sum192

test, P< 10−26).193

In other words, genes that were up-regulated in post mortem194

brain tissue from patients with schizophrenia are normally over-195

expressed in association cortical areas that have reduced MS in196

psychosis. This association between gene expression in regions 197

with reduced MS and genes up-regulated in schizophrenia was 198

replicated by analysis of two alternative datasets provided by 199

the PsychENCODE consortium (15) and by (16), see section 200

S8.5. We also observed enrichment by genes up-regulated in 201

other psychiatric disorders, e.g., autistic spectrum disorders, 202

which is compatible with the substantial overlap between 203

genes which are up (or down) regulated in common between 204

schizophrenia and other neurodevelopmental disorders (15). 205

The PLS+ genes coded proteins that formed a PPI network 206

with significantly more edges than expected by chance (P< 207

10−6), which was enriched for the biological process “nucleic 208

acid metabolic process” but no KEGG pathways, see Fig. S14. 209

Genes which are down-regulated post mortem in schizophrenia 210

(14) were highly enriched among genes that were positively 211

weighted on PLS1 (permutation test, P < 0.001 after FDR 212

correction). This result was reproduced with genes reported 213

as down-regulated in schizophrenia by (16), although not by 214

the PsychENCODE consortium (15), see section S8.5. 215

There was no significant enrichment of PLS- or PLS+ genes 216

for common sequence variants associated with schizophrenia, 217

derived from a recent genome-wide association study (GWAS) 218

of PGC and CLOZUK samples (17) (P > 0.05). 219

Discussion. 220

Morphometric similarity network phenotypes. Morphometric simi- 221

larity mapping disclosed a robust and replicable cortical pat- 222

tern of differences in psychosis patients. MS was significantly 223

reduced in frontal and temporal cortical areas, and significantly 224

increased in parietal cortical areas. This pattern was consis- 225

tent across 3 independent datasets, with different samples, 226

locations, scanners and scanning parameters. 227

What does this novel MRI phenotype of psychosis represent? 228

Morphometric similarity quantifies the correspondence or kin- 229

ship of two cortical areas in terms of multiple macro-structural 230

features, e.g., cortical thickness, and micro-structural features, 231

e.g., fractional anisotropy (FA), that are measurable by MRI. 232

We assume that high MS between a pair of cortical regions in- 233

dicates that there is a high degree of correspondence between 234

them in terms of cytoarchitectonic and myeloarchitectonic 235

features that we cannot directly observe, given the limited 236

spatial resolution and cellular specificity of MRI. Prior work 237

also showed that morphometrically similar cortical regions are 238
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more likely to be axonally connected to each other, i.e., MS is239

a proxy marker for anatomical connectivity (3). We therefore240

interpret the reduced MS we observe in frontal and temporal241

brain regions in psychosis as indicating that there is reduced242

architectonic similarity, or greater architectonic differentiation,243

between these areas and the rest of the cortex, which is proba-244

bly indicative of reduced anatomical connectivity to and from245

the less similar, more differentiated cortical areas.246

There is a well-evidenced and articulated prior theory of247

schizophrenia as a dysconnectivity syndrome, specifically func-248

tional dysconnectivity of frontal and temporal cortical areas249

has been recognised as a marker of brain network disorganiza-250

tion in schizophrenia (18). Our results of reduced MS in frontal251

and temporal cortex - implying increased architectonic differ-252

entiation and decreased axonal connectivity - are descriptively253

consistent with this theory. Our complementary finding of ab-254

normally increased MS in parietal cortex - implying increased255

architectonic similarity and axonal connectivity - is plausible256

but not so clearly precedented, given the relatively limited257

prior data on the parietal cortex in studies of schizophrenia258

as a dysconnectivity syndrome (19, 20).259

Encouragingly, this novel MRI network marker of psychosis260

was highly reliable across three independent and method-261

ologically various case-control studies. This implies that the262

measurement is robust enough to be plausible as a candi-263

date imaging biomarker of cortical network organization in264

large-scale, multi-centre studies of psychosis.265

Transcriptional profiling of MS network phenotypes. In an effort to266

connect these novel MRI phenotypes to the emerging genetics267

and functional genomics of schizophrenia, we first used partial268

least squares to identify the weighted combination of genes269

in the whole genome that has a cortical expression map most270

similar to the cortical map of case-control MS differences.271

Then we tested the mechanistic hypothesis that the genes272

with greatest (positive or negative) weight on PLS1 were273

enriched for genes previously implicated in the pathogenesis274

of schizophrenia.275

We found that the genes that are normally over-expressed276

in frontal and temporal areas of reduced MS in psychosis,277

were significantly enriched for genes that are up-regulated in278

post mortem brain tissue from patients with schizophrenia279

(14). Conversely, the genes that are normally over-expressed280

in parietal and other areas of increased MS in psychosis were281

significantly enriched for genes that are down-regulated in post-282

mortem data (14). This tight coupling between MRI-derived283

transcriptional weights and gene transcription measured his-284

tologically was highly significant and replicated across three285

prior post-mortem datasets.286

Further investigation showed that the proteins coded by287

the PLS- genes formed a dense, topologically clustered inter-288

action network that was significantly enriched for a number of289

relevant GO biological processes and KEGG pathways. The290

cluster of interactive proteins related to GPCR signaling in-291

cluded multiple proteins coded by genes previously linked to292

anti-psychotic mechanisms of action, including DRD4 (21),293

HTR1 (22), NTSR1 (23) and ADRA2C (24); reported in294

transcriptional studies of post-mortem brain tissue, e.g., PT-295

GER3, S1PR1, ITPR2 and EDNRB (14, 25); or associated296

with risk SNPs for schizophrenia, e.g. DRD5, OPRM1 and297

CNR1 (26–28). The remarkable density of therapeutically rel-298

evant genes in the GPCR-related cluster suggests that other,299

topologically neighboring genes may deserve further attention 300

as novel targets for anti-psychotic interventions. 301

Risk genes identified by the largest extant GWAS studies of 302

schizophrenia were not significantly enriched among PLS- or 303

PLS+ genes. Nevertheless, the involvement of PLS- genes fur- 304

ther down the causal pathway is still mechanistically revealing 305

and potentially useful. 306

Methodological considerations. Some limitations of this study 307

should be highlighted. The whole brain data on “normal” brain 308

tissue expression of the genome were measured post mortem in 309

6 adult brains (mean age = 43 years) and not in age-matched 310

subjects or patients with schizophrenia (such data are not 311

currently available to our knowledge). Also, the transcriptional 312

experiments we use to label genes as up- or down-regulated 313

in schizophrenia were performed in regions of the parietal or 314

prefrontal cortex (14), whereas the neuroimaging results are for 315

the whole brain. We have used MRI data from 3 independent 316

studies to measure MS networks but the studies used different 317

scanning protocols, leading to estimation of morphometric 318

similarity between regions on the basis of 7 MRI parameters 319

that were measurable in all studies. Future work could usefully 320

explore the opportunity to further improve sensitivity and 321

reliability of the MS network biomarker of schizophrenia by 322

optimising and standardising the MRI procedures to measure 323

the most informative set of morphometric features. Finally, 324

the datasets have varied, limited clinical information available, 325

making it difficult to assess the clinical significance of the MS 326

phenotype. 327

Materials and Methods 328

329

Samples. We used MRI data from 3 prior case-control studies: the 330

Maastricht GROUP study (29) from the Netherlands; the Dublin 331

dataset which was acquired and scanned at the Trinity College Insti- 332

tute of Neuroscience as part of a Science Foundation Ireland-funded 333

neuroimaging genetics study (“A structural and functional MRI 334

investigation of genetics, cognition and emotion in schizophrenia”); 335

and the publicly available Cobre dataset (30). The Maastricht 336

and Dublin datasets were PSYSCAN legacy datasets. All patients 337

satisfied DSM-IV diagnostic criteria for schizophrenia or other non- 338

affective psychotic disorders. MRI data were quality controlled for 339

motion artifacts (section S1). The Euler number, which quantifies 340

image quality (31), was not significantly different between groups 341

in any of the studies but it was different between studies, indicating 342

that the studies were ranked Dublin > Cobre > Maastricht in terms 343

of image quality (Table S1). 344

Morphometric similarity mapping. The T1-weighted MRI data 345

(MPRAGE sequence) and the diffusion-weighted imaging (DWI) 346

data from all participants were pre-processed using a previously 347

defined computational pipeline (5). Briefly, we used the recon-all 348

(32) and trac-all (33) commands from FreeSurfer (version 6.0). Fol- 349

lowing (3), the surfaces were then parcellated using an atlas with 350

308 cortical regions, derived from the Desikan-Killiany atlas (5, 34). 351

For each region, we estimated 7 parameters from the MRI and DWI 352

data: grey matter volume, surface area, cortical thickness, Gaussian 353

curvature, mean curvature, fractional anisotropy (FA) and mean 354

diffusivity (MD). Each parameter was normalised for sample mean 355

and standard deviation before estimation of Pearson’s correlation 356

for each pair of Z-scored morphometric feature vectors, which were 357

compiled to form a 308× 308 morphometric similarity matrixMi 358

for each participant, i = 1, . . . N (3). 359

Case-control analysis of MS networks. The global mean MS for each 360

participant is the average ofMi. The regional mean MSi,j , for the 361

ith participant at each region, j = 1, . . . , 308, is the average of the 362
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jth row (or column) ofMi. For global and regional MS statistics363

alike, we fit linear models to estimate case-control difference, with364

age, sex, and age×sex as covariates. Our main results also replicated365

in subsets of the data balanced for age and sex, see section S5.6.366

P-values for case-control differences in regional MS were combined367

across all 3 studies, using Fisher’s method. The resulting P-value368

for each region which was thresholded for significance using the false369

discovery rate, F DR < 0.05, to control type 1 error over multiple370

(308) tests.371

Transcriptomic analysis. We used the AHBA transcriptomic dataset,372

with gene expression measurements in 6 post-mortem adult brains373

(35) (http://human.brain-map.org), aged 24-57. Each tissue sample374

was assigned to an anatomical structure using the AHBA MRI375

data for each donor (36). Samples were pooled between bilaterally376

homologous cortical areas. Regional expression levels for each gene377

were compiled to form a 308× 20, 647 regional transcription matrix378

(36). Since the AHBA only includes data for the right hemisphere379

for two subjects, in our analyses relating gene expression to MRI380

data we only consider intra-hemispheric left hemisphere edges (37).381

We used PLS to relate the regional MS case-control differences382

(t-statistics from the 152 cortical regions in the left hemisphere, cal-383

culated from intra-left hemispheric edges only) to the post mortem384

gene expression measurements for all 20, 647 genes. PLS uses the385

gene expression measurements (the predictor variables) to predict386

the intra left hemisphere regional MS patient/control t-statistics387

from all 3 datasets (the response variables). The first PLS com-388

ponent (PLS1) is the linear combination of the weighted gene389

expression scores that has a cortical expression map that is most390

strongly correlated with the map of case-control MS differences.391

The statistical significance of the variance explained by PLS1 was392

tested by permuting the response variables 1,000 times. The error in393

estimating each gene’s PLS1 weight was assessed by bootstrapping394

(resampling with replacement of the 308 cortical regions), and the395

ratio of the weight of each gene to its bootstrap standard error was396

used to calculate the Z-scores and hence rank the genes according397

to their contribution to PLS1 (5).398

We constructed PPI networks from the genes with PLS1 weights399

Z > 3 and Z < −3 (all PF DR < 0.05) using STRING version 10.5400

(13). Our key results were robust to changing these thresholds to401

Z > 4 and Z < −4 (all PF DR < 0.01), see section S8.3. We used402

DAVID (38, 39) to calculate enrichments of KEGG pathways and403

GO enrichments of biological processes for genes with Z > 3 or404

Z < −3, using a background gene list of 15,745 brain-expressed405

genes, again see section S8.3 (37).406

We used a resampling procedure to test for enrichment of PLS-407

derived gene sets by genes previously associated with schizophrenia408

by transcriptional data (14). The median rank of each risk gene set409

in the PLS gene list was compared to the median rank of 10,000410

randomly selected brain-expressed gene sets (3).411

Data and code availability. All code and processed data used for the412

analyses will be made available on GitHub on publication.413
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