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1. Introduction

Computers have become an integral part of the modern world.
Technologies from instant messaging to searches on the Internet
to smart assistants are enabled by devices that perform logical
operations and store information over time. With such an

explosion of uses, it is not surprising
that energy costs have been increasing
too—some estimate that information and
communications technology could consti-
tute from 8% to 21% of the global electricity
demand by the end of the decade.[1] Of
course, some applications may contribute
to this more than others.

Most notably, artificial intelligence (AI)
and machine learning (ML) have become
indispensable in a wide range of rapidly
growing data-centric technologies, includ-
ing the Internet of things (IoT), transport,
medicine, security, and entertainment. It is
now recognized that AI might have a hard-
ware problem[2] associated with huge
computational demands, which are directly
reflected in the energy consumption. This
is not sustainable and is rapidly becoming a

critical societal challenge. The soaring demand for computing
power in ML vastly outpaces improvements made through
Moore’s scaling or innovative architectural solutions. From
2012 to 2020, hardware performance of state-of-the-art AI has
improved by a factor of 317;[3] this is not enough to meet the
growing computing demands of AI applications. The size of
state-of-the-art AI models has been increasing exponentially,
as have their training costs—from a few dollars in 2012 to
millions of dollars in 2020.[4] A pressing need to develop novel
technologies to address this issue at the fundamental level and
build efficient AI systems has recently become acute. More
fundamentally, there is a great need for low-energy computing
elements, including those based on different physical principles
than complementary metal–oxide–semiconductor (CMOS)
transistors implementing Boolean logic.

This perspective article will discuss memristors, spintronics,
and two-dimensional (2D) materials and devices, explaining how
they can both improve current computing hardware and enable
new computing paradigms. We will present the main physical
principles and the promise of these technologies, as well as some
materials and engineering challenges that must be addressed
before full adoption. The role of these emerging technologies will
be discussed in the context of both conventional computing,
which is based on digital electronics and Boolean algebra, and
promising new approaches like neuromorphic computing.
This is by no means an exhaustive review and does not imply
that other technologies and approaches are not going to play
an important role; many alternatives will likely complement
the systems we discuss here. Furthermore, the three approaches
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In a data-driven economy, virtually all industries benefit from advances in
information technology—powerful computing systems are critically important for
rapid technological progress. However, this progress might be at risk of slowing
down if the discrepancy between the current computing power demands and
what the existing technologies can offer is not addressed. Key limitations to
improving energy efficiency are the excessive growth of data transfer costs
associated with the von Neumann architecture and the fundamental limits of
complementary metal–oxide–semiconductor (CMOS) technologies, such as
transistors. Herein, three approaches that will likely play an essential role in
future computing systems are discussed: memristive electronics, spintronics,
and electronics based on 2D materials. The authors present how these tech-
nologies may transform conventional digital computers and contribute to the
adoption of new paradigms, like neuromorphic computing.
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we present often overlap—at the extreme, we might even have
spintronic memristors partially based on 2D materials.[5]

1.1. Basic Principles

1.1.1. Memristors

Memristor was formalized as a circuit element in 1971[6]—an
electrical property, called memristance, relating electric charge
and magnetic flux was introduced. Memristor’s existence was
motivated by the fact that this relation filled a gap in fundamental
symmetries observed in circuit theory. Since late 2000s, there has
been a rebirth of interest in memristors, followed by various
physical implementations. The landscape of memristive technol-
ogies and the underpinning physical mechanisms is vast and still
rapidly expanding.[7]

Memristors, in most cases, are based on the concept of resis-
tance switching. Resistance switching is a reversible process
where a memristor changes its resistance with externally applied
electrical stimuli. In most cases, resistance switching results in
nonvolatile states with long retention times even after the stimuli
are removed—the memristive device “memorizes” the resistance
state. However, resistance switching can also be achieved by
other types of stimuli (e.g. optical) and could lead to volatile
switching, which benefits particular applications (e.g. neuronal
spiking).

There exist many memristive technologies, but most rely
on similar physical principles. Three examples of such
technologies—redox-based resistive random-access memory
(ReRAM), phase-change memory (PCM), and magnetoresistive
random-access memory (MRAM)—are shown in Figure 1a–c.
Memristors are typically implemented as simple two-terminal
capacitor-like structures, where a switching layer is sandwiched

(a) (b) (c)

(d) (e) (f)

Figure 1. Overview of memristive devices and their potentials uses in computing. There exist multiple memristive technologies, including a) ReRAM,
b) PCM, and c) MRAM. Common applications of memristive devices include d) embedded nonvolatile memory, e) analog deep learning accelerators
based on programmable crossbars, and f ) bioinspired systems implemented by memristors that emulate synapses and neurons.
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between two electrodes. The resistance of the switching layer can
be programmed to various resistance states with the application
of voltage pulses.

Resistance switching manifests itself slightly differently in
ReRAMs, PCMs, and MRAMs. In ReRAM technologies, resis-
tance switching is based on the creation/dissolution of conduc-
tive filaments (intrinsic to the oxide layer or a result of metallic
diffusion from electrodes); local nanoionic redox phenomena
drive resistance switching in ReRAMs. There are different flavors
of ReRAM devices, but they can be broadly divided by the type of
switching: 1) intrinsic switching, which manifests itself as an
intrinsic property of the switching material and 2) extrinsic
switching, which is controlled by indiffusion (typically from
metal electrodes) and drift of metal ions extrinsic to the fabri-
cated switching layer.[8] Alternatively, the devices may be classi-
fied by the dominant driving forces of the switching process; this
would result in electrochemical metallization cells, valence
change ReRAMs, and thermochemical ReRAMs.[7] In PCMs,
the switching is governed by the reversible process of crystalliza-
tion and amorphization of phase-change materials. Finally, the
programmable relative spin orientation of two ferromagnetic
layers is the basis of MRAM operation.

It is important to note that novel devices based on different
resistance switching mechanisms are still being developed.
Notable examples include nanometallic memristors,[9] which rely
purely on electronic effects, and Ti/ZnO/Pt structures that rely
on carrier trapping/detrapping of the trap sites.[10] Such devices
could provide further improvements in terms of speed,
uniformity, and low-power operation.

As shown in Figure 1 d–f, a wide range of memristor
applications have been suggested, including embedded digital
nonvolatile memory, analog deep learning accelerators, and neu-
romorphic spiking systems.[11] We discuss these and other
potential applications in more detail later in the text. We suggest
consulting rich literature for details and descriptions of different
physical mechanisms and many more types of memristive
devices and technologies.[7,12,13]

1.1.2. Spintronics

Conventional electronic systems rely on electron charges—these
systems use voltage levels and currents to process information.
However, the electron has another intrinsic property, called
“spin,” making it analogous to a tiny magnet. The core concept
of spintronics is to use this degree of freedom to create functional
electronic devices that cannot be realized using conventional
semiconductor technologies. Magnets can store digital informa-
tion cheaply and reliably due to their excellent nonvolatile prop-
erty; combining this with spin-dependent transport for efficient
writing and read-out is a viable approach to making disruptive
innovations in the electronic device market.

The quantum mechanical Pauli exclusion principle and the
Coulomb interaction generate the so-called exchange coupling
between spins, creating the magnetic orders of spin ensembles,
with the order parameter of magnetization M. The central con-
cept of spintronics is to store information bits in localM that can
be electrically written and read in an energy-efficient manner for
data storage and processing.[14–16] The magnetic field H is a

conventional way to control M via the Zeeman interaction
(�M �H), for example, when the two vectors are aligned in
parallel, the free energy of the system becomes lower and hence
stabilized. Magnetic moments are nonvolatile in general,
meaning that when we switch off magnetic fields, the size
and direction of the moments are unchanged. This is possible
due to the presence of the aforementioned exchange interaction
and magnetic anisotropies.

In a ferromagnet, where the exchange interaction aligns
individual moments along the same direction, flipping one of
the magnetic moments against this direction requires large
energy cost, thus maintaining the total moments along the
favored direction(There is an excitation state of this magnetically
ordered system (called magnons) that can be realized by tilting
the moments; however, this results in a slight change of the total
moments). The equilibrium direction of M is determined by the
magnetic free energy where—with zero external magnetic
field—the magnetic anisotropy creates local minima as a func-
tion of angle, as shown in Figure 2a. The energy barrier between
the minima characterizes the thermal stability of the moment
orientation, directly relevant to the reliability for storing data
in a magnetic cell. If the barrier height ΔE is too small, an
accidental reversal of the magnetic moment can take place,
resulting in data loss, whereas data retention of ten years is
generally guaranteed when ΔE=ðkBTÞ > 60 in typical magnets.
This mechanism is the origin of nonvolatality in magnetic
materials, and optimizing parameters such as ΔE (the size of
magnetic anisotropy) is one of the major topics in spintronic
applications.

Another key ingredient for spintronic devices is that transport
parameters (e.g., resistivity) can be controlled byM. In ferromag-
nets, the density of states at the Fermi level for up and down spin
electrons is different due to energy splitting by the exchange cou-
pling (see Figure 2b). Magnetic tunnel junctions (MTJs) exploit
this property as tunnel magnetoresistance (TMR) by having two
magnetic layers with a tunnel barrier (Figure 2b), in which the
tunneling probability depends on the spin polarization of elec-
trons at the Fermi level for each electrode.[17,18] TMR devices
exhibit larger resistance changes than giant magnetoresistance
(GMR),[19–21] in particular TMR devices with MgO barrier.[22,23]

A high TMR value is critical for reliability of read-out of spin-
tronic devices using MTJs as well as for reducing the read-out
time since it realizes a faster rate of voltage changes during
reading.

Normally we switch M by applying H greater than magnet’s
anisotropy field, as shown in Figure 2a. However, this writing
method is not scalable with downsizing since H produced by
an electric current is proportional to the absolute value of the
electric current, not current density. As a scalable magnetization
switching mechanism, the concept of spin transfer torque (STT)
was independently proposed by Slonczewski[24] and Berger.[25] In
this scheme (Figure 2c), spin-polarized currents injected into a
magnetic layer can exert torques via angular momentum transfer
between the conduction and localized electrons.[26] An electric
current through an MTJ can switch magnetization of one layer
when the current size is sufficiently large. The size of this switch-
ing current density is directly relevant to the power consumption
of spintronic memories, like MRAM, which stores and processes
digital information by flipping M in an array of MTJs.
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Furthermore, it is also an important parameter for footprint
(density) of spintronic arrays as each MRAM cell is powered
by a CMOS transistor underneath, and this element is so far
the limiting factor of downsizing of MRAM. As high current
requires a large CMOS transistor, a high-density MRAM can
be achieved when the writing current is small. Other emerging
magnetization control mechanisms include spin–orbit torques
(SOTs) and voltage-controlled magnetic anisotropy (VCMA),
for which readers are invited to read other studies[27–30] for more
details.

1.1.3. 2D Materials

Adopting different computation variables (such as spin) and
architectures (such as neuromorphic) leads to a demand for
novel materials capable of supporting such technologies. In this
perspective, we also explore 2D layered materials, often simply
referred to as 2D materials. We believe that these materials
are among the most promising candidates for future computing
due to a large variety of properties they offer, the possibility of

being easily combined into functional structures, and the ease
of integration with existing semiconductors and fabrication lines.
2D materials are a large class of materials consisting of stacks of
individual layers held together by, typically, van der Waals forces.
Each layer is formed by covalently bonded atoms and exhibits
fully saturated surface bonds, resulting in crystals that are stable
even in the form of a single layer and hence the name “2D”
materials.

Figure 3a shows a list of the most common 2D materials
grouped according to their structure. X-enes are materials con-
sisting of a single element such as graphene and silicene,
whereas X-anes and fluoro-X-enes are their chemical derivatives,
for example, graphane refers to hydrogenated graphene and
fluorographene—to fluorinated graphene. Transition metal
dichalcogenides (TMDs) are a class of compounds formed by
a transition metal element (M) mainly from IV, V, or VI group
and a chalcogen (X), with a generalized formula MX2.

[31] These
materials form layered structures of the form XMX, with the
chalcogen atoms in two hexagonal planes separated by a plane
of metal atoms.[31] Semimetal chalcogenides (SMCs) are similar
to TMDs; they are formed by a semimetal and a chalcogen,
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Figure 2. Basic principles of spintronics. a) Magnetic switching in a magnet with uniaxial anisotropy. When we apply magnetic fields along the easy axis of
the uniaxial anisotropy, the magnetic free energy as a function of angle θ changes. At the point where the energy barrier is removed by the Zeeman energy,
the magnetization switching occurs as a jump ofM. b) Schematic of tunnel magnetoresistance with the density of statesDðEÞ for twomagnetic electrodes
for MTJ. For the parallel configuration (left image), the large DðEÞ of the up-spin electrons at the Fermi level can produce large tunneling probability
proportional to D2

1. For the antiparallel case, the tunneling probability is smaller due to the size of D1 · D2. c) Schematic of the STT mechanism.
A spin-polarized electron is generated in FM1 and enters into FM2. The polarization angle of the conduction electron is tilted in FM2 as a result
of angular momentum transfer into S2. This produces a magnetic torque on S2.
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usually occurring in M2X2 stoichiometry. MX-enes are ternary
layered materials having occurred in the formula Mnþ1AXn,
where M is an early transition metal, A is an element from group
13 or 14, X is either carbon or nitrogen, and n is an integer
between 1 and 3. Finally, the 2D “library” also includes insula-
tors, such as hexagonal boron nitride (hBN), an isomorph of gra-
phene consisting of boron and nitrogen atoms.

Despite sharing a similar structure, the properties of 2D
materials are incredibly diverse—the “family” of 2D materials
includes semimetals, direct- and indirect-bandgap semiconduc-
tors, insulators, metals, superconductors, topological, and
ferromagnetic insulators, as illustrated in Figure 3b. The lack
of dangling bonds on the surface enables deterministic stacking
of different 2D materials to form heterostructures without lattice
matching constrains, usually referred to as van der Waals (vdW)
heterostructures.[32] Such structures have atomically precise
control of the thicknesses of the different layers with abrupt
interfaces, leading to unprecedented flexibility in terms of
materials and properties available. Moreover, by controlling
the angle between the layers, it is possible to define a Moiré
superlattice which provides a further degree of freedom, leading
to new phenomena (such as superconductivity in twisted bilayer
graphene [BLG][33]) and enabling a novel approach to electronics
referred to as “twistronics”.[34]

With tens of materials experimentally available and over 2000
theoretically predicted,[35] 2D materials represent one of the most
promising material systems for future computing. From a
manufacturing point of view, 2D materials also have significant
advantages. Indeed, these materials are (sub)nanoscopic only in

terms of thickness, whereas their lateral dimensions can be mac-
roscopic, leading to a significant technological advantage over
other nanomaterials because they can be processed using
“conventional” semiconductor planar technology.[36] Combined
with the ease of transferring them from one substrate to another,
2D materials can be easily integrated with existing technologies,
particularly at the back-end of line in CMOS production lines.[37]

2D materials are strong candidates for present and future
computing paradigms, including logic and neuromorphic
computing, as shown in Figure 3c. Despite being beyond the
scope of this perspective, it is worth noting that 2D materials,
including BLG quantum dot (QD),[38] Josephson junctions,[39]

and hBN single-photon emitters (SPEs),[40–42] have also been
used in the field of quantum computing. Nevertheless, applica-
tions of 2D materials in the field of electronic devices goes
beyond what is shown in Figure 3c. Here, we will provide a pro-
spective overview on how 2D materials can be used as an
enabling platform for the technologies discussed. The reader
is invited to read other studies[43–46] for in-depth reviews on
the recent progress in the field of 2D electronics.

2. Conventional Computing Hardware

Digital computers are the basis of our information and commu-
nication technologies. Logic gates, such as NAND or NOR,
implement Boolean algebra, which is used for all digital informa-
tion processing. Field-effect transistors (FETs), fundamental
building blocks of digital circuits, have followed Moore’s scaling
law for more than 50 years. We are still managing to scale

(a)

(b)

(c)

Figure 3. Overview of 2D materials and their applications. a) List of the most common 2D materials. b) The range of 2D materials’ electrical properties
from zero-bandgap semimetals, such as graphene, to wide-bandgap insulators, such as hexagonal boron nitride. c) Devices based on 2D materials for
applications in logic, neuromorphic, and quantum computing.
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transistors; however, the scaling rate has slowed down over the
last years.[47] There is a tremendous motivation to investigate
post-CMOS technologies, starting from innovations in and
understanding of materials and basic nanoscale devices.
ReRAM, spintronic, and 2D-based devices could all potentially
offer better scaling prospects, as well as improved energy
efficiency and speed. These emerging technologies could serve
as improved realizations of digital memory and logic, which
are used in all conventional, general-purpose computers.

2.1. Memory

ReRAM, PCM, and MRAM devices can all be operated as binary
memory with two well-defined nonvolatile memory states. Both
ReRAM and MRAM devices compare favorably against currently
used Flash technology, beating it in most performance met-
rics.[48,49] Microcontroller units (MCUs) are the first and most
attractive applications for these emerging nonvolatile memory
technologies. Today’s MCUs use embedded NOR Flash, which
cannot be easily scaled beyond 28 nm node size; this represents a
critical bottleneck, especially considering that more applications
are becoming data intensive (e.g., automotive MCU needs to
operate on a significant amount of data collected by numerous
sensors found in modern cars). Both ReRAM and MRAM pres-
ent an attractive opportunity to replace NOR Flash in embedded
memory applications offering better scaling (down to most
aggressive nodes, <10 nm) and faster programming/reading
speeds (<5 ns). Beyond embedded memory, ReRAM and
MRAM are also considered as data storage and thus as a replace-
ment for NAND Flash. NAND Flash is scalable to most aggres-
sive nodes; however, ReRAM and MRAM offer better reading
speed and lower energy. Another attractive potential application
could replace or augment static random-access memory (SRAM)
in edge AI applications,[50,51] where ReRAM/MRAM offers simi-
lar reading speeds but better scalability and energy efficiency.

In general, ReRAM—when used as nonvolatile digital
memory—offers 1) excellent scalability (e.g., 10� 10 nm[52]

and likely below[53]), which is highly competitive with current
memory technologies, like SRAM and Flash; 2) large resistance
ratio (>10 and much more) critical for fast sensing and reading

speeds; 3) fast programming (typically <100 ns, although there
are reports of 100 ps programming[54]); 4) excellent endurance
(1012 switching cycles have been reported[55]); and 5) small
operational energy (e.g., sub-pJ bit�1[56]).

In terms of commercialization of ReRAM, in 2013, Panasonic
released the first MCU with embedded ReRAM.[57] Many other
companies are currently developing ReRAM technologies,
including Rambus, 4DS, Dialog Semiconductor, Crossbar,
Intrinsic Semiconductor Technologies, Weebit Nano, eMemory,
and global foundries such as Taiwan Semiconductor
Manufacturing Company (TSMC).

MRAM consists of an array of MTJs connected with read and
write lines for its memory operation. Figure 4 displays three
different types of individual MRAM cells with different writing
mechanisms. In particular, the STT writing method has become
ripe for industrial applications, and two magnetic layers are
magnetized along the perpendicular to the junction plane to
minimize footprint. Nonvolatility offers significant advantages
in energy saving against volatile memories, such as dynamic
random-access memory (DRAM), which requires constant power
to maintain their stored information as energy loss.

Major electronics companies have been focusing on MRAM
development. Samsung and the partnership between Everspin
and Global Foundaries announced their release of a 1 GB-
embedded MRAM on their 28/22 nm technology nodes.[58,59]

The write speed of their technology is orders of magnitude faster
than eFlash (200 ns vs tens of μs), with comparable read speeds,
providing a power advantage over eFlash in many applications.
Intel announced that they are embedding STT-MRAM into
devices using its 22 nm FinFET process, with a bit yield rate
of greater than 99.9%.[60]

STT-MRAMs are believed to be more suitable to embedded
memory applications for industrial-grade MCUs, autonomous
vehicles, and various IoT devices.[61] Using its high-speed nature,
STT-MRAM has been considered as an alternative to SRAM
applications[62] as well as L3/L4 cache replacement, which
requires high performance in terms of density, write efficiency,
bandwidth, and endurance.[63] We point curious readers to more
detailed review papers[64,65] as there is an excellent summary
table of STT-MRAM specs against other memory applications.

Magnetic field

Ibit

Fixed layer
Tunnel barrier

Free layer
MTJ

Toggle-MRAM

Bit line

STT-MRAM

Read

Write

SOT-MRAM

Read

(a) (b) (c)

Figure 4. Schematics of different MRAM architectures. a) Toggle-MRAM uses magnetic fields to switch magnetization in an MTJ. b) STT-MRAM directly
passes an electric current through an MTJ to write their cells. c) In SOT-MRAM, an electric current flows through the write line, which generates magnetic
torques on the layer above.
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Emerging writing mechanisms of MRAM cells, such as SOT
and VCMA, have been extensively studied for the next generation
of MRAM.[28,58,64,65] Wafer-scale SOT-MRAMs compatible with
CMOS technologies have been demonstrated,[66] together with
fast switching demonstration (less than 400 ps) in a perpendicu-
larly magnetized SOT-MRAM cell,[67] that show high-speed
switching, as well as improved endurance for both standalone-
memory and processing-in-memory (PIM) applications.[68]

PIM refers to performing computational tasks within the mem-
ory units where the memory units within these applications need
to have high endurance and fast writing/reading since data are
more rapidly accessed inside.[69] Combining SOT and STT
writing mechanisms is expected to reduce the writing current
down to a range of 10–100 fJ bit�1[58,70,71]

2.2. Logic

2.2.1. Field-Effect transistors

Since the groundbreaking work of Geim and Novoselov that
experimentally unveiled the electronic properties of graphene
in 2004,[72] significant attention has been put into its use for tran-
sistors. That is due to graphene’s atomic thickness, extremely
high room-temperature mobility, saturation velocity and thermal
conductivity, and the ambipolarity of its field effect. Because of
the lack of bandgap, however, graphene field-effect transistors
(GFETs) cannot be switched off. As a result, GFETs exhibit only
a modest ON/OFF ratio of �10, which is not suitable for tran-
sistor logic applications, where current ratios in excess of 104 are
required.[73] Nevertheless, GFETs have been used in analog RF
electronics, where switching off is not essential, achieving cutoff
frequencies in excess of 400 GHz,[74] and in applications directly
benefiting of the ambipolarity of the field effect, such as high-fre-
quency mixers.[75]

The possibility of isolating individual atomically thin crystals
demonstrated by graphene paved the way to the exploration of
other 2D materials, in particular TMDs. Molybdenum- and
tungsten-based TMDs, such as MoS2 WS2 and WS2, are of
particular interest for future transistor logic applications as they
are atomically thin semiconductors, which can enable reduction
of the characteristic length of FETs beyond the limit faced by
silicon.[76] Scaling of body thickness by adopting ultrathin-body
on insulator and fin field-effect transistor (FinFET) structures has
indeed been key to reduce short-channel effects and extend
Moore’s law.[77] However, the reduction of body thickness in bulk
semiconductor below 5 nm is accompanied by a rapid decrease of
charge carrier mobility due to thickness variation, dangling
bonds, and roughness, resulting in a limit to further
scaling.[78] Conversely, 2D semiconductors have thickness
<1 nm (e.g., single-layer MoS2� 0.65 nm) and mobility in excess
of 100cm2 Vs�1, significantly higher than sub-5 nm silicon.[76]

Moreover, in 3D semiconductors, there is usually a tradeoff
between bandgap and effective mass and therefore mobility.
Materials with higher bandgap normally show larger effective
mass and lower mobility, imposing a compromise between per-
formance and power consumption. This is not the case in 2D
semiconductors, where mobility is determined by phonon scat-
tering,[79] thus enabling materials combining large bandgap and

high mobility. Saturation velocity also plays a very important role
in ultrascale devices, where the in-plane field can easily exceed
1 kV cm�1; however, the data available for TMDs are scattered
and would require a more thorough investigation. TMDs are
extremely interesting candidates for future multichannel
field-effect transistor (MCFET) to reduce the scaling length of
FETs beyond the limits imposed by silicon.

2.2.2. Tunneling FETs

One of the main figures of merit when assessing CMOS efficiency
is the energy-delay product of its metal–oxide–semiconductor
field-effect transistors (MOSFETs). One of the main factors gov-
erning the EDP is the SS, which is a measurement of the gate
voltage required to change the drain current by a factor of ten.
SS in MOSFETs, regardless of the channel material, is thermody-
namically limited by the Boltzmann limit. In MOSFETs

SS ¼ kBT lnð10Þ 1þ Cs

Cox

� �
(1)

where Cs and Cox are the semiconductor capacitance (or depletion
layer capacitance) and the gate dielectric capacitance, respectively.
It is clear that even if Cox≫⃒ Cs, SS will never drop below
kBT lnð10Þ (� 60mVdec�1 at room temperature).

An alternative to thermionic injections over an energy barrier
is tunneling field-effect transistors (TFETs). They rely on band-to-
band tunneling (BTBT), resulting in SS not limited to 60mV/
dec. However, to achieve steep SS beyond the thermal limit,
the energy window for tunneling needs to be sharp, which
can only be attained with very abrupt interface. This has proven
to be challenging in conventional planar homojunction TFETs
because controlling the doping profile to the atomic level is
extremely difficult. Bulk heterojunction TFETs, on the other
hand, have been demonstrated to outperform their homojunc-
tion counterpart. Nevertheless, the fabrication of such sharp
interfaces is still challenging.

2D materials, owing to their inherently atomically flat surfa-
ces, are well suited for such applications, as they can form a sharp
interface ideal for tunneling. Different material combinations
have been explored, such as graphene/boron nitride/
graphene,[80] graphene/WS2/graphene,

[81] MoS2/WSe2,
[82] black

phosphorus/SnS22,
[83] and SnS2/WSe2.

[84] More interestingly,
heterostructures between 2D materials and a 3D conventional
one can bring the best of both worlds. In particular, MoS2/
germanium TFETs have been reported to achieve “record” SS
of 3.9mV dec�1 at room temperature, combined with higher cur-
rent density compared with other subthermionic transistors.[85]

2.2.3. Negative Capacitance Field-Effect Transistors

Steep SS can also be attained by modifying the gating mecha-
nism in MOSFETs. In these devices, the gate controls the chan-
nel through direct capacitive approach. Negative capacitance
field-effect transistor (NCFET) utilizes ferroelectric (FE) materi-
als, which exhibit metastable spontaneous polarization, which
can be triggered through an external field from a low state to high
state. NCFETs employ this abrupt change to switch the device
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from low (OFF) state to high (ON) state. However, it is important
to note that an appropriate dielectric material (DE) needs to be
connected in series with the FE layer to stabilize the negative
capacitance state and reduce hysteresis.[86,87] The aforemen-
tioned SS formula needs be changed to include the FE layer
effect. Hence

SS ¼ kBT lnð10Þ 1þ Cs

CFE þ Cox

� �

¼ kBT lnð10Þ 1� Cs

jCFEj � Cox

� � (2)

where CFE is the capacitance of the FE layer.[88]

It is clear that to achieve sub-60mV/dec SS, Cox must be larger
than jCFEj, which adds another criterion for choosing the suitable
dielectric. As in MOSFETs, NCFETs benefits from improved gate
control that 2Dmaterials exhibit due to their thinness. Hence, SS
as low as 25mV dec�1 has been achieved in MoS2 NCFET with
Hf 0:5Zr0:5O2 FE with low hysteresis (�28mV).[89] In addition,
based on the industrial direction for MOSFETs, we expect that
an all-2D-stacked negative-capacitance gate-all-around field-effect
transistor (GAAFET) that can combine steep SS and high ON
current would be one of the most promising structures for future
logic devices.

2.2.4. Memristor-Based Logic

There are several ways of using memristors for digital logic. For
instance, memristors have been considered as programmable
switches for field-programmable gate arrays (FPGAs) in the
past.[90,91] Although, currently, these switches are implemented
using SRAM, memristor-based switches could lead to significantly
improved energy efficiency, for example, reducing cell area by
40% and energy-delay-product, by 28%.[92] Alternatively, memris-
tors could be used to implement IMPLY (implication p ⇒ q is false
only when p is true and q is false) logic gates.[93] The interest comes
from the fact that an IMPLY gate with the FALSE operation
(FALSE operation always yields a logical zero) comprises a

complete logic structure. Memristive implementation of this
fundamental logic element could lead to memristor-based logic
circuits. More details and performance comparisons involving this
approach can be found in the study by Kvatinsky et al.[94]

3. Future Computing Hardware

While existing compute infrastructure based on Boolean algebra
offersmany advantages, new hardware paradigms can 1) improve
the efficiency of existing computing tasks and 2) implement
functionality that would be infeasible to realize using conven-
tional computers.

One example is neuromorphic computing, which mimics the
structure and/or operation of the brain.[95] Neuromorphic com-
puting can encompass efficient implementations of both well-
established concepts, like artificial neural networks (ANNs),
and exotic approaches to information processing, like spiking
neural networks (SNNs) and reservoir computing. This paradigm
aims to perform complex tasks, including recognition and
classification, with little energy.[96–98] Multiple emerging technol-
ogies hold promise of making these new approaches to comput-
ing hardware a reality.

3.1. Artificial Neural Networks on Crossbar Arrays

ANNs are implemented on digital computers, but they are very
resource-intensive because of 1) large amounts of data being
processed and 2) the nature of conventional computer architec-
tures. Modern neural networks can often have billions of param-
eters,[99] and von Neumann architecture, which most computers
are built around, is not well suited to handle such large models.
Time and energy is mostly spent not on performing computa-
tions, but on repeatedly moving data between memory and
computing units.[100]

Resistive crossbars—one of the simplest examples of neuro-
morphic hardware—may offer a solution to this problem. In
these structures, resistive elements are arranged in an array,
as shown in Figure 5a. Ohm’s law achieves multiplication of

(a) (b)

Figure 5. The computing principles behind crossbar-array-based dot-product engines and fully connected synaptic layers. a) Using resistive devices in
each of the vertical (bit) lines, crossbar arrays can compute dot products of voltages and conductances. When multiple of these bit lines are combined,
one can compute products of voltage vectors V and conductance matricesG. b) Synapses in neural networks scale the incoming signals. Before nonlinear
transformations, these scaled signals are added together by the postsynaptic neurons.
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voltages and conductances, while Kirchhoff ’s current law
achieves addition of currents. With the crossbar structure, these
are combined, producing multiply-accumulate operations or
multiplication of voltage vectors and conductance matrices.
Using pairs of devices,[101] the principle can be easily extended
to handle negative numbers, thus achieving in-memory multipli-
cation of arbitrary vectors andmatrices. Such crossbar are usually
referred to as dot-product engines (DPEs).

Hardware acceleration of linear algebra operations is easily
applicable to ML and ANNs in specific. Fully connected neural
networks heavily rely on vector-matrix multiplication to compute
outputs of the synaptic layers; this is demonstrated in Figure 5b.
During training, optimal weights W are determined; this is typi-
cally done using gradient descent.[102] After that, during a process
called inference, only the inputs x change—with each new exam-
ple, outputs y are either used for prediction directly or are passed
along to the next synaptic layer. The fact that weights do not
change during inference is one of the primary reasons as to
why crossbars are an appealing candidate for their physical
implementation. Inference can be accelerated by encoding
weights into conductances and inputs—into voltages. The ability
of DPEs to compute vector–matrix products means that, this way,
the synaptic layers of ANNs can be implemented in memory, that
is, there is no need to transfer the weights during computation,
only the inputs have to be applied in the form of voltage vectors.

Easily programmable resistive devices are perfect candidates
for DPE implementations. Memristors are one example of such
devices—one may encode matrix values into the conductances of
memristors embedded in the crossbar array. Such programming
can be done using voltage pulses, which require very
little energy.[103] Examples of such devices include
Ta/HfO2

[101,104] and SiOx memristors. Spintronic devices can
also be used to emulate synaptic behavior—MTJs can act as a
local nonvolatile digital memory or as a continuously varying
resistance.[105–107] For example, the conductance of a three-
terminal MTJ device can be encoded by controlling the
magnitude and the direction of the current flowing through
the underlying heavy-metal layer.[106]

Several neuromorphic proof-of-concept devices have also been
realized using 2D materials. That includes atomically thin MoS2
memristors having switching ratio> 104 and stable operation up
to 50 GHz,[108] memristors consisting of multilayer MoS2 encap-
sulated between graphene layers capable of high-temperature
(> 300∘C) operation,[109] lithium-ion intercalated few-layer
metal dichalcogenides, and phosphorus trichalcogenides.[110]

Different switching mechanisms have been identified in 2D
materials, including formation of conductive filaments,[111] grain
boundary migration,[112] phase transition,[113] oxygen migra-
tion,[109] and graphene which have been showed to improve
the ION=IOFF ratio in tetrahedral amorphous carbon-resistive
metal–insulator–metal (MIM) devices.[114] In addition, three-
terminal memristors based on 2D materials have shown great
promise due to the additional tunability and functionality
provided though the additional gate terminal. An example of
three-terminal memristors is synaptic transistors, which utilize
wide range of mechanisms, such as floating gate flash mem-
ory[115] and gate-controlled charge trapping in gate dielectric.[116]

On the other hand, ferroelectric field-effect transistors (FeFETs)

utilize a FE layer in place of the gate dielectric. As a result, non-
volatile states can be written to the device with gate control.[117]

Finally, memtransistors operate similarly to its two-terminal
counterparts (memristors) with the exception that the resistance
of the device is gate controlled. In fact, several mechanisms
governing resistive switching in memtransistors have been
demonstrated, such as grain boundary migration,[112] FE
switching,[118] and gate-controlled vdW heterojunctions.[119]

Of course, with any of these technologies, due to the analog
nature of computations, the idealized vector-matrix computation
in Figure 5a is often difficult to achieve. First, it may be challeng-
ing to set devices to the desired values of conductancesGi,j. As an
example, devices like memristors may get stuck in a certain con-
ductance state[120] or even fail to electroform (i.e., become con-
ductive),[121] experience random telegraph noise (RTN)[122,123] or
programming variability,[124] or have their conductance state drift
over time.[125] Even more difficult to tackle are nonidealities that
result in deviations from the linear (with respect to conductance
and/or voltage) behavior, which DPEs rely on; such nonidealities
include I–V nonlinearity[126,127] and line resistance.[128–130]

There are multiple ways of utilizing DPEs for the implemen-
tation of ANNs. The most obvious one has been alluded to
earlier—neural network weights may be mapped onto crossbar
conductances after they have been trained on digital computers.
However, it may also be possible to train ANNs directly on
crossbar arrays thus saving time, energy, and even preventing
unnecessary greenhouse gas emissions. That is attractive
because training a large ANN on a conventional digital
architecture may emit as much CO2 as five cars throughout their
lifetimes.[131]

Ex situ training is the most straightforward way of learning the
weights of neural networks that are later implemented physically.
Such ANNs can utilize a training process that is no different
from the one used to train conventional networks. Training
on a digital computer is the simplest approach, but it obviously
has disadvantages due to the mismatch between well-behaved
conventional electronic systems and crossbar arrays consisting
of analog devices.

If one does not take nonidealities into account, networks
trained ex situ may perform considerably worse on crossbar
arrays, compared to their digital counterparts. For example, small
number of achievable states, limited dynamic range,
device-to-device (D2D) variability, and I–V nonlinearities may
all contribute to higher error rate.[132] In addition, system-level
issues, including the aforementioned line resistance,[101,133]

may disturb the distribution of currents and increase the error
further.

This may be partly addressed by modifying ex situ training so
that the nonidealities are considered before deploying ANNs onto
DPEs. It is possible to model the behavior of analog devices, like
memristors, and adjust the expected outputs of the hardware
neural network accordingly. Even for stochastic nonidealities,
the nature of the stochasticity may inform the training process
and make ANNs more robust. That is not unique to crossbar-
based neural networks as noise can make even conventional
ANNs more robust.[134]

There are multiple ways of taking nonidealities into account
during training. For example, the cost function (which quantifies
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how close ANN outputs are to the expected ones) may be
modified to incorporate the randomness associated with device
behavior.[135] Alternatively, network weights can be disturbed to
represent nonidealities, like read and write noise.[136] Where the
effects of nonidealities cannot be represented by injecting noise
into the weights, their behavior can be redefined to reflect, for
example, I–V nonlinearities.[127]

Although ex situ training can significantly improve the perfor-
mance, it is important to consider that it relies on a number of
assumptions. If the modeling of nonidealities is inaccurate, that
will be reflected in the training on a digital computer and may
result in deviations from intended behavior when ANNs are
implemented physically. However, this may be partly hedged
against by including randomness in the modeling.
Randomness may represent the uncertainty in not only the
device behavior, but also the designers’ understanding of how
the devices behave. Therefore, it can improve the performance
when the modeling is not perfectly accurate or even when differ-
ent nonidealities manifest themselves.[127]

Finally, one may employ in situ training, which can refer to
either full or partial training directly on crossbar arrays.
Performing ANN training on real devices can help networks
adapt to specific instantiations of nonideal behavior—no two ana-
log devices are the same, but in situ, unlike ex situ, training can
take individual variations into account without the need to model
the behavior. In situ approach makes networks more robust to
nonidealities, like faulty devices and D2D variability.[137] One
may even combine the two paradigms—conventional ex situ
training can be used to produce ANN weights, after which
in situ retraining is used to recover from defects, like stuck
devices.[138]

Unfortunately, training networks in situ is challenging.
Because conventional ML methods rely on incremental adjust-
ments of synaptic weights, analog devices may often be too
unreliable for the task. For example, the training process can
be negatively affected by the asymmetry and nonlinearity of
conductance changes,[137] both of which are common in, for
example, memristive devices. Approaches for dealing with this
include adjusting the fabrication process[139,140] and using digital
electronic devices in conjunction with the analog ones.[141]

3.2. Spiking Neural Networks

Although ANNs are loosely inspired by the brain, they are highly
inefficient compared to biological systems. This is due to the fact
that there are fundamental differences between the two systems.
The adopted models of brain learning involve dynamic adjust-
ment of synaptic strengths by the neuronal spiking activity. In
comparison, learning in ANNs is based on gradient descent
methods, which adjust weights in order to optimize an objective
function.

There is significant research interest in developing SNNs as it
is believed they could yield much better energy efficiency. The
fundamental difference is that in SNNs, time is used directly
to encode and process information—it is encoded in the time
of arrival of binary events (“spikes”). Two main functional units
needed for the implementation of SNNs are neurons and
synapses. Neurons are typically implemented as simple leaky

integrate-and-fire neurons, which are capable of integrating
signals over time and producing spikes when a certain threshold
is reached. In terms of the synaptic functionalities, apart from
adjustable strength, it is necessary to implement different local
learning rules, such as spike-time-dependent plasticity,
spike-rate-dependent plasticity, short-term plasticity, long-term
potentiation, and long-term depression.

The energy efficiency argument relies on hopes of developing
dedicated hardware platforms[142] because current von Neumann
architectures are not best suited for the implementation of SNN
algorithms. Although there exist many CMOS-based implemen-
tations of SNN hardware accelerators,[143–152] these systems are
still lacking in terms of the energy efficiency of biological coun-
terparts. It is believed that emergent technologies will be able to
directly implement critical functionalities using voltages and
currents much lower than CMOS equivalents.[153]

Memristive technology has been used to implement multiple
elements of the SNN paradigm. Synaptic functionalities were
implemented by incorporating temporal plasticity as well as par-
ticular local learning rules.[154–156] PCM memristors,[157]

ReRAMs,[158,159] and Mott-based memristors[160,161] have all been
used for emulating neuronal activity. For more details and a
much more comprehensive overview of using memristors for
SNNs, we refer readers to another study.[153]

Spintronic devices, too, may be used for physical implemen-
tations of SNNs. The oscillatory behavior of biological neurons
can be emulated using spin-torque nano-oscillators
(STNOs);[164,165] the required power may be achieved when
assisted by a microwatt nanosecond laser pulse.[166] When the
system is configured toward the limit of superparamagnetism,
the random spiking of biological neurons can be emulated to per-
form population coding and probabilistic computing.[163,167]

Figure 6a shows a schematic of probabilistic computing with
probabilistic-bits (p-bits), where the structural design of the
MTJs benefits from the low-energy barrier of the superparamag-
netic tunnel junctions. The analog input voltage, I, to some junc-
tion can cause a nonlinear response to the digital output voltage,
m, (Figure 6b) and form random fluctuations analogous to 0’s
and 1’s of a stochastic neuron at room temperature.
Nevertheless, other systems such as memristors or nanoarrays or
exploiting nonlinear dynamics in variant forms of magnetic
spin textures like domain walls or skyrmions can also be
engineered to facilitate such properties,[168–172] demonstrating
the potential of spintronic devices as artificial neuromorphic
components.

Photonic circuits represent another possible approach to neu-
romorphic computing and SNNs in particular.[173] For example,
black phosphorus has been used to emulate excitatory and inhib-
itory action potentials using oxidation-related defects.[174] Also,
WSe2/hBN heterostructures have been used as 7-bit nonvolatile
optoelectronic memories[175] and for colored and mixed-color
pattern recognition.[176] Further, the developments in the field
of optoelectronic memristive devices[177] could provide further
flexibility and extended functionality, such as in-sensory comput-
ing.[178] In many cases, the operation of these devices requires
both electronic and optical stimulation;[179] however, fully
optically operable memristors can be realized[180] with favorable
properties for neuromorphic computing.
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3.3. Reservoir Computing

In addition to the aforementioned fully connected ANNs, there
also exist recurrent neural networks (RNNs). These networks
contain recurrent connections and can be incredibly useful when
dealing with time series data.[181] However, RNNs can suffer
from vanishing and exploding gradients, which makes their
training especially difficult.[182]

Given the challenges of RNNs, reservoir computing has been
suggested as an alternative.[183] It relies on systems that exhibit
rich dynamic behaviors to do the computations “for free.” Like
activation functions in conventional ANNs may introduce non-
linearities, physical “reservoirs,” which are complex, nonlinear,
and have short-term memory properties, are able to map inputs
to the nonlinear dynamics of a high-dimensional system. This

enables to perform training only on the last synaptic—and
usually linear—layer. The principles behind reservoir computing
are visualized in Figure 7a.

Many kinds of memristors hold promise as potential
mediums of reservoir computing. One of the factors enabling
this is the fact that many memristors exhibit short-term memory
properties. In the case of some memristors, repeatedly applying
voltage pulses may gradually increase the response, while the
absence of the pulses will make the devices decay toward their
original resting state.[186] In addition, nonlinear I–V characteris-
tics of memristive devices can be incredibly useful for reservoir
computing applications.[184]

One may also use spintronic devices in reservoir computing
applications. Figure 7b shows an experimental demonstration of
using a single STNO facilitated with an MTJ as a reservoir. It

(a) (b)

Figure 6. Spintronic approaches to spiking neural networks. a) Schematic representation of p-bit computing scheme. Superparamagnetic tunnel junc-
tions offer extremely low-energy barriers, which can be exploited to solve complex problems. The analog input voltage to some junction, I, can cause a
nonlinear response to the digital output voltages as shown in (b) and form random fluctuations analogous to 0’s and 1’s of a stochastic neuron at room
temperature. Adapted with permission.[162] 2020, Springer Nature. b) The control of bias voltages changes the relative energies of two states. Adapted
with permission.[163] 2019, AIP Publishing.

(a) (b)

(c)

Figure 7. Operating principles and example implementations of reservoir computing. a) Inputs and the interconnected nonlinear units of the reservoir
are connected through a set of weights,W in. Those reservoir nodes and the outputs are connected through another set of weights,Wout; during training,
only Wout need to be learned. Adapted under the terms of the CC-BY license.[184] Copyright 2021, The Authors. Published by Springer Nature.
b) Experimental implementation of physical reservoir computing using spin–torque nano-oscillator for spoken digit recognition. Adapted with permis-
sion.[162] 2020, Springer Nature. c) Numerical demonstration of the physical reservoir computing scheme using skyrmion positions for classification of
handwritten digits. Adapted with permission.[185] 2019, AIP Publishing.
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exploited time multiplexing to emulate up to 400 neurons by tun-
ing the state of each neuron at periodic intervals. The relation-
ships between the input current and the oscillation frequency can
bring a nonlinear response, and the motion of spins in the free
layer showed history dependence as a response to the amplitudes
of analog audio signals. Another example has been demonstrated
by exploiting spinwaves in 3D space using small-sized metal elec-
trodes to apply and detect the input and output voltages (cur-
rents).[187] The system was configured as a stacked device
consisting of a thin yttrium iron garnet layer between the con-
ductive substrate and magnetoelectric coupling layer. The non-
linear effects and the history-dependent motion of the
spinwaves were achieved by controlling the stability of the pre-
cession of the spins by reducing the applied bias DC magnetic
field, allowing the device to satisfy the reservoir computation cri-
teria. Yet another proposed medium for reservoir computing has
been magnetic skyrmions due to their stability and controllable
history-dependent nonlinear effects. In an example design in the
study by Jiang[185] (shown in Figure 7c), handwritten digits were
converted into an input sequence of current pulses, which was
fed into a magnetic skyrmion memristor. The nonlinear relation-
ship between the positions of the magnetic skyrmions allowed
the system to be configured as a physical reservoir. In addition
to this approach, a wide range of different systems have been
proposed and investigated, including the manipulation of sky-
rmion fabrics, skyrmion position, and interaction of multiple
skyrmions.[188–190]

4. Outlook and Conclusion

Here we discuss the basics of three emerging nanoscale technol-
ogies with great potential to improve and extend the infrastruc-
ture of compute hardware. One plausible scenario that addresses
the growing diversity and complexity of computational problems
includes a synergy between more conventional, digital systems,
and new paradigms of computing hardware. General-purpose
computing will likely remain best implemented on digital sys-
tems, which use Boolean logic and higher-precision computing.
However, some applications, like ANNs, which are currently real-
ized on these digital systems, could benefit from speed and
power efficiency that neuromorphic hardware accelerators offer.
Further, computing approaches like SNNs, which are even less
fit for conventional computers, could be implemented using
devices that exhibit more exotic behaviors, such as synaptic
plasticity or neuronal spiking. Finally, there are paradigms of
computing that are feasible or possible only with devices that
exhibit certain physical behavior; an example of this is reservoir
computing. Memristive, spintronic, and 2D-materials-based
devices will likely play a role in both the improvement of digital
hardware and the adoption of more novel approaches.

Many systems would benefit from fast low-power memristive
hardware, but, at the same time, some are constrained by addi-
tional requirements. For example, memristive ANNs could in
theory be used by autonomous driving companies; however,
these companies often utilize driving data to improve their
ML models and deploy the updated models continuously.[191,192]

Even if ANNs are trained ex situ and identical versions are
deployed onto memristive systems, each physical instantiation

will be at least slightly different. This could affect not only the
behavior of individual vehicles, but also the ML pipeline, that
is, data that are collected and then used to improve the mod-
els[193] that are deployed to all cars. In general, we can identify
multiple challenges of memristive systems that need to be
addressed before widescale deployment in the real world: 1) non-
identical behavior of identically designed systems[194] 2) stochas-
ticity, including possibly changing behavior over time[195,196]

3) difficulty of reprogramming once deployed in the real world
4) difficulty of identifying hardware faults.[197,198]

Where safety and behavior reproducibility are key, special
attention currently needs to be paid to the treatment of device
stochasticity, variability, and reliability. This is especially true
when memristors are used unconventionally (i.e., not for digital
nonvolatile memory, but as analog memory and neuromorphic
computational primitives). Similarly, applications where hard-
ware needs to be constantly reconfigured (e.g., updating ML
models in autonomous vehicles) would be challenging—
even in controlled environments, programming memristive
devices remains difficult.[124,199] In addition, cycling endurance
might need to be improved to match the endurance of volatile
memory (e.g., 1016 cycles in SRAM).

We believe that memristors can be the most useful where
computing needs to be fast, low power and/or local (i.e., not
in the cloud). The last possibility flows from the first two—
data-intensive applications like ANNs consume a lot of power,
thus the computing often takes place remotely; however, mem-
ristive technologies—due to their speed and power efficiency—
can enable to perform the computations locally.[200,201] We there-
fore believe that these devices are very well suited for applications
like the IoT where potential violations of privacy remain a signif-
icant issue.[202] Memristive implementations of data-intensive
tasks would not only eliminate the need to send data to the server,
but also ensure low-power operation and high speed.

Spintronics is another promising approach that can advance
the state of the art in multiple paradigms of computing.
Spintronic memory and logic circuits are expected to open a
novel route to manipulate information more efficiently and their
prototypes have been actively proposed.[28,58,64,65] In the coming
decade, we predict an increased dominance of hybrid CMOS-
spintronic computing architectures based on MRAM techniques
such as STT, SOT, and VCMA. Moreover, the desired progress in
speed, energy, and scaling will also require the use of advanced
materials such as antiferromagnets,[203] 2D materials,[204,205] and
topological insulators.[206] Spintronic devices are also being
employed in a new class of computer architecture such as all spin
logic (ASL)[207] and logic-in-memory (LIM).[208] LIM structures
are hybrid in nature, combining contemporary spintronics
components, such as MTJs, with current CMOS devices.
Advancement in fabrication technology (e.g., 3D back-end
process) enabled the growth of MTJs on the silicon layer without
compromising the functionality of the circuit.[209] Circuits devel-
oped using LIM hold advantages over the conventional CMOS
technologies due to their lower power dissipation, nonvolatility,
high density, fast reading capability, infinite endurance, and 3D
fabrication adaptability.[210]

The properties of spintronic devices (e.g., high-speed
dynamics from GHz to potentially THz ranges, nonvolatality,
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plasticity and nonlinearity) offer ample room for accessing
numerous building blocks that can mimic the key features
of biological synapses and neurons.[105,107,168–172,211] In
spintronic devices, the processing/transfer of information can
be achieved via spin currents, spin waves, microwave signals,
or magnetic spin textures such as domain walls and skyrmions.
Such properties can potentially find their unique positions in the
electronics market by offering more compact and energy-effi-
cient approaches, exploiting the spin degree of freedom.

While proof-of-concept spintronics-based neuromorphic com-
puting implementations have been demonstrated,[105,162,211,212]

there remain a number of key challenges. Although many
creative and exciting ideas have been proposed, it is important
to consider the viability of mass production and scalability when
it comes to spintronics-based neuromorphic computing.
Likewise, traditional algorithms used on CMOS technology
require enhanced tuning to harness the maximum potential
of such spintronic neuromorphic chips. Similar to von
Neumann architecture for conventional computing, a dedicated
architecture is a prerequisite for wide-scale implementation of
neuromorphic computing.[213] Furthermore, additional research
is required to increase the capability of the proposed devices for
example, enhancing the coupling efficiency between the MTJ
layers and the relatively low ratio of maximum-to-minimum
resistance of the existing devices.[162]

2D materials are yet another key enabler for future computing
technologies. Taken individually, or in combination to form
heterostructures with tailored properties, they offer an unprece-
dented playground for both conventional and emerging forms of
computing. However, there are a number of challenges to
overcome before their full potential is realized.

The first is doping because the ion implantation processes
commonly used in semiconductor industry are not applicable
to 2D materials due to their atomic thickness.[214] Instead of
replacing atoms in the crystal lattice (as in substitutional doping
used for 3D semiconductors), doping in 2Dmaterials is normally
achieved either by physisorption, covalent bonding of impurities
(chemical doping), or proximity with compounds, which
modifies the dielectric environment and leads to local gating
effect (sometimes referred to as solid-state doping).[215]

Unfortunately, to date, none of these methods fully satisfy the
stringent requirement of ultrascaled devices and more research
effort should be devoted to identifying an industry-compatible,
precise, stable, and reproducible doping method.

The second challenge to overcome is related to the deposition
of high-κ dielectrics. Indeed, the lack of dangling bonds in 2D
materials’ surfaces complicates the growth of thin, uniform
insulating layers by atomic layer deposition and, often, “seed”
layers are required to facilitate the growth. Dielectrics are not
only important for the functionality of devices (e.g., as gate
dielectric in MOSFETs) but also to encapsulate 2D materials,
as their properties are often significantly degraded by substrate,
contamination, roughness, and charged impurities. A promising
alternative is represented by 2D dielectrics, which form atom-
ically sharp interfaces with other 2D materials. HbN is by far
the most explored 2D dielectric, which enabled experimental
investigation of transport phenomena and proof-of-concept
devices.[216,217] However, low dielectric constant (�3) and diffi-
culty in scalable production of multilayer hBN limit its

applicability in high-performance computing. A more promising
option is represented by the possibility of oxidizing hafnium and
zirconium-based multilayer TMDs to form high-κ dielectrics
HfO2 and ZrO2.

[218,219] This approach is of particular interest
as it is the equivalent to the oxidation of silicon and results in
almost-perfect interfaces between the pristine semiconducting
part and the oxidized surface.

The third challenge is represented by contacts. Contact resis-
tance is usually high and cannot be reduced by ion implantation
as in 3D semiconductors. Moreover, due to the Schottky junction
formed when depositing metals on 2D semiconductor, contact
resistance is also modified by applied gate voltage, introducing
additional delays, and complicating the analysis of devices.[214]

Theoretical and experimental effort should be devoted toward
this essential but often disregarded aspect of computing.
Finally, scalable production of 2Dmaterials should be optimized,
in particular for what concerns reproducibility and control over
defects and contaminations. Chemical vapor deposition (CVD)
growth has made impressive progress in the last ten years; how-
ever, some fundamental challenges remain, such as the lack of
an industrially scalable, clean transfer of graphene. Our view is
that 2D materials do not represent a replacement, but rather a
complement to current bulk semiconductor technology. The
relative ease of integrability of such materials into established
semiconductor production lines will indeed be key for a
synergy between the two technologies and enable new, high-per-
formance computing.

Memristors, spintronics, and 2D materials are rapidly devel-
oping and changing fields. New developments span materials,
devices, circuit/system design, and algorithmic approaches.
This perspective article provides a basic introduction to central
ideas, explores potential advantages over conventional CMOS
technologies, and lists some pressing challenges that still need
to be addressed. Memristors, spintronics, and 2D-based electron-
ics are among the most promising candidates for supporting
future computing systems. There is a strong possibility that they
will coexist and complement other emerging technologies and
approaches, as well as conventional electronics systems.
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