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The mapping between biological genotypes and phenotypes plays an important role in evolution,
and understanding the properties of this mapping is crucial to determine the outcome of evolutionary
processes. One of the most striking properties observed in several genotype-phenotype (GP) maps
is the positive correlation between the robustness and evolvability of phenotypes. This implies
that a phenotype can be strongly robust against mutations and at the same time evolvable to a
diverse range of alternative phenotypes. Here, we examine the causes for this positive correlation by
introducing two analytically tractable GP map models that follow the principles of real biological
GP maps. The first model is based on gene-like GP maps, reflecting the way in which genetic
sequences are organised into protein-coding genes, and the second one is based on the GP map of
RNA secondary structure. For both models, we find that a positive correlation between phenotype
robustness and evolvability only emerges if mutations at one sequence position can have non-local
effects on the sequence constraints at another position. This highlights that non-local effects of
mutations are closely related to the coexistence of robustness and evolvability in phenotypes, and
are likely to be an important feature of many biological GP maps.

I. INTRODUCTION

Biological examples of genotype-phenotype (GP) maps
are extremely wide-ranging. For example, a GP map
can refer to the mapping between DNA sequences and
their encoded proteins or between RNA sequences and
their folded spatial structures. Even GP maps of net-
works have been considered, like that of gene regulatory
[1] or metabolic networks [2]. The properties of GP maps
have been shown to strongly influence evolutionary out-
comes [3, 4], particularly in systems without direct inter-
actions between genotypes, or epigenetic effects. In gen-
eral, studying the properties of real biological GP maps
is a challenging task due to the extraordinary complex-
ity and size of these maps, which means that only small
parts can be captured experimentally. Progress has been
made by focusing on abstract or computational models
of GP maps, which can be studied exhaustively. One of
them is the map between RNA sequences and their sec-
ondary structure, a tractable abstraction of the final spa-
tial structure. There exist computational models [5, 6]
that can predict the secondary structure of small RNA
sequences, thereby allowing a full coverage of the GP
map. Another example is the map between amino acid
sequences and their folded tertiary structure predicted
by the HP model [7, 8], a lattice model that approxi-
mates amino acids as being either hydrophobic (h) or
polar (p). An even more abstract model is the so-called
Polyomino model [9, 10], for which the map between dif-
ferent tile sets and the resulting assembled structures has
been studied [11] as a representative of the formation of
protein complexes (quaternary structure) by individual
proteins.
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The analysis of these GP maps [11–13] has shown that
they share several properties which are likely to be uni-
versal for all GP maps. All maps show redundancy,
meaning that there are much more genotypes than pheno-
types and that different genotypes can map to the same
phenotype. In addition, the maps show a skewed dis-
tribution for the number of genotypes per phenotype,
also referred to as phenotype bias, meaning that a few
phenotypes are mapped by a large number of genotypes,
while many of the phenotypes are mapped by just a few
genotypes. A further property shared by the maps is so-
called shape space covering, which means that from any
genotype of the GP map, a large fraction of all pheno-
types can be accessed through just a few mutation steps.
This property has been first described for RNA secondary
structures by Fontana et al. [14].

A number of studies have discussed the concepts of ro-
bustness and evolvability in the context of GP maps. For
the RNA secondary structure [11, 15] and Polyomino [11]
GP maps, it has been found that robustness and evolv-
ability are negatively correlated for genotypes, whereas
they are positively correlated for phenotypes. This posi-
tive correlation has also been found recently for the GP
map of transcription factor binding sites [16], which can
be both robust and evolvable. In addition, several studies
[11, 13, 17] have shown that the robustness of a pheno-
type scales logarithmically with the number of genotypes
mapping to that phenotype.

Quantitative definitions of robustness and evolvabil-
ity have been put forward by Wagner in the context of
the RNA secondary structure GP map [15]. For a geno-
type, the robustness is defined as the fraction of muta-
tions that do not change the phenotype of that genotype,
and the evolvability as the number of distinct alternative
phenotypes that are accessible through a single mutation
from that genotype. For a phenotype, the robustness is



2

defined as the average over the robustness values of all
genotypes mapping to that phenotype, and the evolv-
ability as the number of distinct alternative phenotypes
that are accessible through a single mutation from any of
the genotypes mapping to that phenotype. The negative
correlation found for genotypes is intuitive as a genotype
cannot be both robust and evolvable. The positive corre-
lation found for phenotypes is less intuitive, but crucial
for evolution as it is an advantage if a phenotype on the
one hand is robust against mutations but on the other
hand also open to a large number of alternative pheno-
types.

The space of all genotypes can be represented as a net-
work in which each node corresponds to a genotype and
each link to a single mutation step such that genotypes
differing by a single mutation are connected. Since May-
nard Smith and Eigen, this representation is referred to
as the protein space [18] or sequence space [19]. The sub-
set of genotypes mapping to a same phenotype is often
referred to as a neutral network since mutations between
genotypes in this network do not change the phenotype.
Wagner [15] states two causes for a phenotype to have
a high robustness and evolvability. Firstly, a large con-
nected neutral network as this implies a high connectivity
among genotypes with same phenotype and thus a high
robustness. Secondly, the fact that different genotypes
sampled from a neutral network have different alterna-
tive phenotypes in their neighbourhood as this implies
a high evolvability if a large neutral network spans the
space of genotypes.

Recently, an analytically tractable GP map model has
been introduced that exhibits all the introduced proper-
ties found for GP maps [20]. This so-called Fibonacci
model defines the set of genotypes as all possible binary
sequences of fixed length. The phenotype of a genotype
is defined as the part of the genotype sequence up to and
including the first stop codon, which is a pre-defined se-
quence - in this case two consecutive ones, i.e. ‘11’. This
divides a genotype sequence into a constrained and un-
constrained part as mutations of the sequence positions
preceding the stop codon change the phenotype, whereas
mutations of the sequence positions following the stop
codon have no effect on the phenotype. The authors
state that it is this organisation into constrained and un-
constrained parts that gives rise to the observed prop-
erties. In particular, the authors show that the positive
correlation between phenotype robustness and evolvabil-
ity results from the mutability of the stop codon as this
can shift the boundary between the constrained and un-
constrained part.

In this article, we further examine the possible causes
for the positive correlation between phenotype robust-
ness and evolvability. We do this by introducing two
analytically tractable models. The first model follows
the principles of gene-like GP maps and can be seen as a
generalisation of the Fibonacci model. The second model
follows the principles of sequence-to-structure GP maps
like that of RNA secondary structure. By using reference

models in both cases we show that the positive correla-
tion between phenotype robustness and evolvability de-
pends on the possibility that a mutation in one sequence
position changes the sequence constraints at another po-
sition - or more concisely, that mutations have non-local
effects on sequence constraints.

II. GENE-LIKE GP MAP MODEL

The gene-like GP map model is based on the organisa-
tion of genetic sequences into protein-coding genes (geno-
types) that are transcribed and translated into proteins
(a form of phenotype).

The model works with an alphabet consisting of k > 2
letters, of which we choose one to be the stop codon,
leaving k−1 neutral letters. As the genotypes, we define
all possible sequences of length L built from the letters
of the alphabet, giving kL genotypes in total. In analogy
to the Fibonacci model [20], we define the phenotype of
a genotype as the part of the genotype sequence up to
and including the first stop codon (reading from left to
right). We also refer to this part of the genotype sequence
as the coding sequence. All genotypes that do not include
a stop codon are assigned to a single so-called ‘undefined’
phenotype.

Within the genotype sequences, all letters are muta-
ble, allowing changes between phenotypes. In order to
determine the effect of a mutable stop codon, we con-
sider a gene-like reference model that is identical to the
gene-like model but that considers the first stop codon in
a genotype sequence as rigid and allows no mutations of
it. Both models are summarised in Figure 1.

In the following, we will analyse and compare key prop-
erties of the GP maps of both models. Figure 2 shows
plots of these properties determined by an exhaustive
enumeration of the GP maps.

A. Genotype robustness and evolvability

Using the definitions introduced by Wagner, genotype
robustness and evolvability slightly differ for the gene-like
model and its reference model.

For the gene-like model, consider a genotype with cod-
ing sequence length l, its robustness rg(l) is given by:

rg(l) =
(k − 1)(L− l)

(k − 1)L
= 1− l

L
(1)

as there are (k − 1)L total possible one-point mutations
of which the (k−1)(L−l) ones of the letters following the
first stop codon do not change the phenotype. The gene-
like reference model allows no mutations of the first stop
codon. Thus, there are only (k − 1)(L− 1) possible one-
point mutations in total and the robustness of a genotype
is given by:

rrefg (l) =
(k − 1)(L− l)
(k − 1)(L− 1)

=
L

L− 1
− l

L− 1
(2)
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Genotype PhenotypeModel

Gene-like model

y: stop codon,
{x1, . . . , xk−1}: neutral

Gene-like reference model

no mutable first stop codon

x1 x2 x1 x2 y x2 x2 x1 x1 x2 y x1

x1 x2 x1 x2 x1 x2 x2 x1 x1 x2 y x1

x1 x2 x1 x2 y x2 x2 x1 x1 x2 y x1

x1 x2 x1 x2 x1 x2 x2 x1 x1 x2 y x1

x1 x2 x1 x2 y

x1 x2 x1 x2 x1 x2 x2 x1 x1 x2 y

x1 x2 x1 x2 y

x1 x2 x1 x2 x1 x2 x2 x1 x1 x2 y

FIG. 1. Summary of the gene-like GP map model and its reference model together with examples of genotypes and their
phenotypes. For both models, the same genotypes are shown. These two genotypes differ by the letter of the fifth site, which
is a stop codon in the first genotype. The phenotype of a genotype is defined as the genotype sequence up to and including the
first stop codon. In the gene-like model, this stop codon is mutable, allowing a transition from the first to the second genotype.
In contrast, in the reference model, the first stop codon is not mutable.
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FIG. 2. Properties of the gene-like GP map model (TOP) and the gene-like reference model (BOTTOM), determined by
an exhaustive enumeration of the GP maps. In all cases, an alphabet size of k = 3 and a genotype sequence length of
L = 12 is chosen. Lines show analytical solutions. Both models qualitatively agree for all properties except for the correlation
between phenotype evolvability and robustness (B), which is positive for the gene-like model (B, TOP), and negative for the
reference model (B, BOTTOM). This highlights the importance of the mutable stop codon (and the resulting non-local effects
of mutations) for the coexistence of robustness and evolvability in phenotypes. Note: The plots do not show the properties of
the undefined phenotype (B-D) and the properties of its corresponding genotypes (A).

The robustness of genotypes with an undefined pheno-
type is not covered by these equations. Their robust-
ness is in both cases given by rg,undef = rrefg,undef =

(k − 2)/(k − 1).

For both models, all (k−1)(l−1) one-point mutations
of the letters preceding the first stop codon lead to dis-
tinct alternative phenotypes. In addition, only for the
gene-like model, all k−1 one-point mutations of the stop
codon either also lead to distinct alternative phenotypes
if there is a second stop codon in the genotype sequence

or they all lead to the single undefined phenotype if there
is no second stop codon. Hence, for the gene-like model,
the evolvability eg(l) of a genotype with coding sequence
length l is given by:

eg(l) = (k − 1)(l − 1) +

{
(k − 1) if 2nd stop

1 if no 2nd stop
(3)

In contrast, for the gene-like reference model:

erefg (l) = (k − 1)(l − 1) (4)
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Genotypes with undefined phenotype have in both mod-
els an evolvability of eg,undef = erefg,undef = L.

Expressing the genotype evolvability as a function of
the robustness gives for the gene-like model:

eg(rg) = (k− 1)(L−Lrg− 1) +

{
(k − 1) if 2nd stop

1 if no 2nd stop

(5)
The distinction between the cases of a second or no sec-
ond stop codon in the genotype sequence explains the
two separate lines found in Figure 2(A,TOP). The cor-
responding expression for the gene-like reference model
is:

erefg (rg) = (k − 1)(L− (L− 1)rg − 1) (6)

For both models, there is a negative correlation be-
tween the genotype evolvability and robustness in agree-
ment with the results found for the Fibonacci model [20]
and other GP maps [11, 15].

B. Phenotype robustness and evolvability

Consider a phenotype with coding sequence length l.
For both models, all genotypes mapping to that pheno-
type have the same robustness. Hence, by definition, the
robustness rp(l) of that phenotype is identical to the cor-
responding genotype robustness:

rp(l) = rg(l) = 1− l

L
(7)

rrefp (l) = rrefg (l) =
L

L− 1
− l

L− 1
(8)

The same holds for the undefined phenotype, its robust-
ness is given by rp,undef = rg,undef = rrefp,undef = rrefg,undef =

(k − 2)/(k − 1).
In contrast, there is a fundamental difference in the

phenotype evolvability for both models. For the gene-
like reference model, from each genotype mapping to a
particular phenotype, the same set of distinct alternative
phenotypes is accessible through one-point mutations of
the letters preceding the first stop codon. For this rea-
son, the evolvability erefp (l) of a phenotype with coding
sequence length l is identical to the corresponding geno-
type evolvability:

erefp (l) = erefg (l) = (k − 1)(l − 1) (9)

This also holds for the gene-like model. However, due to
the mutable first stop codon, the undefined phenotype
or another k − 1 alternative phenotypes can be accessed
from any genotype through one-point mutations of the
first stop codon, depending on whether there is a second
stop codon. Since the genotypes mapping to a phenotype
differ in the non-coding sequences following the first stop
codon, this adds an additional set of distinct alterna-
tive phenotypes that are accessible from that phenotype.

Their number is given by one (undefined phenotype) plus
k− 1 times the number of different letter sequences end-
ing with a stop codon of length up to L − l, i.e. the
number of distinct coding sequences placed in the cur-
rent non-coding parts of the genotypes mapping to the
phenotype. Thus, for the gene-like model, the evolvabil-
ity of a phenotype with coding sequence l is given by:

ep(l) = (k − 1)(l − 1) + 1 + (k − 1)

L−l∑
x=1

(k − 1)x−1

= 1 + (k − 1)

(
l − 1 +

(k − 1)L−l − 1

k − 2

)
(10)

For both models, the evolvability of the undefined pheno-

type is given by ep,undef = erefp,undef =
∑L
x=1(k − 1)x−1 =

((k − 1)L − 1)/(k − 2).
Expressed as a function of the phenotype robustness,

the phenotype evolvability for the gene-like model reads:

ep(rp) = 1 + (k − 1)

(
L− Lrp − 1 +

(k − 1)Lrp − 1

k − 2

)
(11)

Its derivative with respect to the robustness is:

dep(rp)

drp
= (k − 1)L

(
−1 +

ln(k − 1)(k − 1)Lrp

k − 2

)
(12)

This expression is larger than zero, i.e. there is a posi-
tive correlation between the phenotype evolvability and
robustness, if rp > rcp with:

rcp =
1

L
logk−1

(
k − 2

ln(k − 1)

)
(13)

As it is rcp < 1
L , the positive correlation holds for all

robustness values except those corresponding to pheno-
types with coding sequence length l = L as rp(l = L) = 0.
In contrast, for the gene-like reference model, expressing
the phenotype evolvability as a function of the robustness
gives:

erefp (rp) = (k − 1)(L− (L− 1)rp − 1) (14)

This expression is identical to the corresponding one de-
rived for the genotype quantities and so there is also a
negative correlation between the phenotype evolvability
and robustness for all robustness values.

The positive correlation found for the gene-like model
agrees with the results found for the Fibonacci model [20]
and qualitatively with those found for other GP maps
[11, 15]. The fundamental difference between the re-
sults for the gene-like model and its reference model con-
firms what has been found for the Fibonacci model [20],
namely the importance of a mutable stop codon, which
contributes the term in the expression for the evolvabil-
ity that leads to the positive correlation. A mutable stop
codon allows a part of the genotype sequence to become
coding that was not coding before. As genotypes map-
ping to the same phenotype have different non-coding se-
quences following the first stop codon, this can cause that
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the sets of accessible alternative phenotypes from these
genotypes differ, which is not the case for the gene-like
reference model. In consequence, the smaller the coding
sequence of a phenotype and thus the higher its robust-
ness, the larger the number of genotypes with different
non-coding sequences that map to it and thus the more
significant the increase in evolvability.

C. Phenotype frequency, rank and robustness

Despite the stark difference in the correlation between
phenotype robustness and evolvability, both gene-like
models agree in several other properties mentioned in
the introduction.

One of them is the skewed distribution of the number of
genotypes per phenotype, which is commonly displayed
as a phenotype frequency-rank plot. By the frequency of
a phenotype, we simply refer to the number of genotypes
mapping to it. As both models are based on the same
assignment of genotypes to phenotypes, the frequency
f(l) of a phenotype with coding sequence l is in both
cases identically given by:

f(l) = f ref(l) = kL−l (15)

where we use the fact that all genotypes that map to a
particular phenotype comprise the same coding sequence
of length l but differ in the L− l sites following the first
stop codon, which can be occupied by any letter of the
alphabet. Phenotypes with same coding sequence length
have the same frequency. Thus, the number of pheno-
types C(l) with a given frequency f(l) is for both models
identical to the number of phenotypes (coding sequences)
of length l:

C(l) = Cref(l) = (k − 1)l−1 (16)

where we use the fact that the l − 1 sites preceding the
stop codon in a coding sequence of length l can be occu-
pied by any of the k − 1 neutral letters. By the rank of
a phenotype, we refer to a ranking of the phenotypes ac-
cording to their frequency such that the phenotype with
highest frequency has rank one. As the frequency de-
creases with the coding sequence length, it follows for the
rank r(l) of a phenotype with coding sequence length l:

r(l) = rref(l) =

l−1∑
x=1

C(x) + 1 =
(k − 1)l−1 − 1

k − 2
+ 1 (17)

For simplicity, we neglect the undefined phenotype which
has a frequency of fundef = (k − 1)L. Expressed as a
function of the rank, the frequency reads:

f(r) = f ref(r) = kL−1−logk−1(1+(r−1)(k−2)) (18)

For large rank values, i.e. r � 1, this function behaves
as a power law:

f(r) = f ref(r) ≈ kL−1−logk−1(r(k−2)) = ar−α (19)

with a = kL−1−logk−1(k−2) and exponent α = logk−1(k).
This highly skewed distribution is in accordance to what
has been found for other GP maps [11, 15]. In particular,
the power law behaviour agrees with the results found for
the Fibonacci model [20] and for model 1 in [21].

Both gene-like models also agree in the logarithmic
scaling of the phenotype robustness with the frequency:

rp(f) = 1− L− logk(f)

L
=

logk(f)

L
(20)

rrefp (f) =
L

L− 1
− L− logk(f)

L− 1
=

logk(f)

L− 1
(21)

The minor difference results from the different expres-
sions for the phenotype robustness due to the considera-
tion of a mutable first stop codon or not. Again, this loga-
rithmic scaling is in agreement to what has been found for
the Fibonacci model [20] and other GP maps [11, 13, 17].

III. RNA-LIKE GP MAP MODEL

In contrast to the gene-like GP map model, which
considers concrete letter sequences as the phenotypes,
the RNA-like model defines phenotypes as the structures
formed by bonds between sequence positions of the geno-
types, similar to the RNA secondary structure GP map.

For the model, we again consider an alphabet consist-
ing of k > 2 letters and allocate a special role to one of
the letters. Here, we choose one letter to be the ‘cod-
ing’ letter, while the other k − 1 letters are labelled as
‘non-coding’. As for the gene-like model, we define the
genotypes as all possible sequences of length L built from
the letters of this alphabet. However, as the phenotype
of a genotype, we now define the structure that results by
linking pairs of furthest-separated coding letters within
the genotype sequence, proceeding from the outside to
the inside to ensure a planar structure, i.e. such that
there are no overlaps between links. Note that the po-
sitions of the linked coding letters suffice as a unique
representation of the phenotype. Genotypes that do not
form any links are again assigned to a single undefined
phenotype.

In order to analyse the effect of the links, we again
consider a reference model. It works with the same geno-
types as the RNA-like model, but defines the phenotypes
simply by the position of the coding letters within the
genotype sequences. Both models are summarised in Fig-
ure 3.

As before, we will analyse and compare key properties
of the GP maps of both models in the following. Fig-
ure 4 shows plots of these properties determined by an
exhaustive enumeration of the GP maps.

A. Genotype robustness and evolvability

For the RNA-like model, the robustness of a genotype
depends on the number of coding letters within the geno-
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Genotype PhenotypeModel

RNA-like model

y: coding,
{x1, . . . , xk−1}: non-coding

phenotype:
position of linked coding letters

RNA-like reference model

phenotype:
position of coding letters

x1 y x1 x2 y x1 y x2 y x1 y x2

x1 y x1 x2 x1 x1 y x2 y x1 y x2

x1 y x1 x2 y x1 y x2 y x1 y x2

x1 y x1 x2 x1 x1 y x2 y x1 y x2

× × × ×

× × × ×

× × × × ×

× × × ×

FIG. 3. Summary of the RNA-like GP map model and its reference model together with examples of genotypes and their
phenotypes. For both models, the same genotypes are shown, which differ by the letter of the fifth site. For the RNA-like
model, the phenotype of a genotype is defined as the structure that results by linking pairs of furthest-separated coding letters
within the genotype sequence, proceeding from the outside to the inside. This is equivalent to defining the phenotype by the
position of the linked coding letters. For the reference model, the phenotype of a genotype is simply defined by the position of
the coding letters.
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FIG. 4. Properties of the RNA-like GP map model (TOP) and the RNA-like reference model (BOTTOM), determined by an
exhaustive enumeration of the GP maps. In all cases, an alphabet size of k = 3 and a genotype sequence length of L = 12
is chosen. Lines show analytical solutions. While both models qualitatively agree in the phenotype frequency-rank plot (C)
and phenotype robustness-frequency plot (D), the robustness and evolvability for both genotypes and phenotypes exhibit very
different relationships in the two models (A and B). For the reference model, genotype as well as phenotype robustness and
evolvability are uncorrelated, whereas for the RNA-like model, negative correlations emerge for the genotype quantities (A,
TOP) and positive ones for the phenotype quantities (B, TOP). This highlights the importance of non-local effects of mutations
for the coexistence of robustness and evolvability in phenotypes. Note: The plots do not show the properties of the undefined
phenotype (B-D) and the properties of its corresponding genotypes (A).

type sequence, which we denote by i. Consider a geno-
type with i coding letters. Each of the L− i non-coding
letters within the sequence can be mutated to any of
the other non-coding letters without changing the phe-
notype, giving (k−2)(L−i) neutral one-point mutations.

If i is odd, the innermost coding letter will stay unlinked
in the phenotype. This letter can be mutated to any of
the non-coding letters without changing the phenotype,
giving further k − 1 neutral one-point-mutations. If i is
even, the robustness of the genotype also depends on the
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number of non-coding letters between the innermost pair
of coding letters, which we denote by j. Each of these
j non-coding letters can also be mutated to the coding
letter without changing the phenotype, because this addi-
tional coding letter will stay unlinked. This gives further
j neutral one-point mutations. Thus, it follows for the
genotype robustness:

rg(i, j) =

{
(k−2)(L−i)+(k−1)

(k−1)L if i odd
(k−2)(L−i)+j

(k−1)L if i even

=

{
k−2
k−1 −

(k−2)i
(k−1)L + 1

L if i odd
k−2
k−1 −

(k−2)i
(k−1)L + j

(k−1)L if i even
(22)

Genotypes with no or one coding letter lead to the unde-
fined phenotype, their robustness is given by rg,undef = 1
and rg,undef = ((k − 2)(L− 1) + (k − 1))/((k − 1)L), re-
spectively.

For the RNA-like reference model, the robustness of a
genotype solely depends on the number of coding letters
i and no distinction between cases is necessary. As for
the RNA-like model, the phenotype does not change if
one of the non-coding letters within the sequence is mu-
tated to any of the other non-coding letters. However, all
mutations from a non-coding letter to the coding one or
vice versa change the phenotype. Hence, the robustness
of a genotype with i coding letters is given by:

rrefg (i) =
(k − 2)(L− i)

(k − 1)L
=
k − 2

k − 1
− (k − 2)i

(k − 1)L
(23)

The robustness of genotypes mapping to the undefined
phenotype, i.e. those with no coding letter, is given by
rrefg,undef = (k − 2)/(k − 1).

For the RNA-like model, we also need to consider
even and odd i separately when calculating the geno-
type evolvability. If i is odd, mutating any of the coding
letters within the sequence to a non-coding one or vice
versa changes the link structure and so the phenotype.
The only exception is the one currently unlinked coding
letter, as mutating this letter to a non-coding one has no
effect on the phenotype. Thus, in total, L − 1 distinct
alternative phenotypes are accessible through one-point
mutations. If i is even, again all mutations from a cod-
ing letter to a non-coding one or vice versa change the
phenotype, but now apart from the j non-coding letters
between the innermost pair of coding letters because mu-
tating one of them to the coding letter has no effect on
the phenotype. In addition, mutating one of the two
innermost coding letters to a non-coding letter has the
same effect, it will lead to a removal of the innermost link.
Hence, in total, L− j− 1 distinct alternative phenotypes
are accessible through one-point mutations. Bringing ev-
erything together, the genotype evolvability is given by:

eg(i, j) =

{
L− 1 if i odd

L− j − 1 if i even
(24)

Genotypes with undefined phenotype, i.e. those with no
or one coding letter, have an evolvability of eg,undef = 0

and eg,undef = L − 1, respectively. In general, as both
the genotype robustness and evolvability depend on i
and j, it is not possible to express the evolvability as
a function solely of the robustness. Nevertheless, a re-
lationship between both quantities can be determined.
As can be seen from (24), for all odd values of i, the
evolvability is constant and uncorrelated from the robust-
ness. In Figure 4(A,TOP), this is marked by a horizon-
tal line, on which every second data point corresponds
to an odd value of i. By contrast, for each fixed even
value of i, there is a negative correlation between evolv-
ability and robustness as the robustness increases with
j (see (22)), while the evolvability decreases with j (see
(24)), i.e. the larger the gap between the innermost pair
of coding letters, the more robust and less evolvable a
genotype. These negative correlations are marked by the
lines with negative slope in Figure 4(A,TOP). Each of
these lines of data points corresponds to a fixed even
value of i ∈ {2, 4, . . . , 2bL/2c} and the respective values
of j ∈ {0, 1, . . . , L− i}. As the robustness increases with
decreasing i, the lines correspond to decreasing values
of i from left to right. In addition, since the number
of allowed values of j increases with decreasing i, lower
evolvability values are reached from left to right, i.e. with
increasing robustness. In the limit of large alphabet sizes,
k →∞, the genotype robustness loses its dependence on
j (see (22)) and the lines of data points with negative
slope would converge to vertical lines. In consequence,
the negative correlation for each fixed even value of i
vanishes. But it still holds that lower evolvability values
are reached with increasing robustness.

In contrast, for the RNA-like reference model, all geno-
types have the same evolvability independent of the num-
ber of coding letters i:

erefg (i) = L (25)

as all mutations from a coding letter to a non-coding one
or vice versa change the position of the coding sites and
so the phenotype, giving L distinct alternative pheno-
types accessible through one-point mutations. This also
holds for the genotypes belonging to the undefined phe-
notype, which have an evolvability of erefg,undef = L. There
is no correlation between the genotype evolvability and
robustness in the RNA-like reference model.

This significant difference between the RNA-like model
and its reference model shows that for the RNA-like GP
map model the consideration of links between sequence
positions of the genotypes seems to be crucial for the
emergence of negative correlations between the genotype
robustness and evolvability as it gives genotypes the pos-
sibility to be both more robust and less evolvable. The
reason why we do not find a negative correlation for the
RNA-like reference model but for the gene-like reference
model is that for the RNA-like reference model only the
position of the coding letters matters, whereas for the
gene-like reference model the concrete letters in a cod-
ing sequence matter for the phenotype definition. This
means that both the robustness and evolvability of geno-
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types depend on the length of the coding sequence, re-
sulting in a negative correlation between the two.

B. Phenotype robustness and evolvability

For the RNA-like model, the robustness of a phenotype
depends on two variables, namely the number of linked
sites and the number of unlinked sites between the inner-
most pair of linked sites, which we denote by i and j, in
analogy to the characterisation of genotypes. A pheno-
type with i linked sites (even number) and j sites between
the innermost linked pair either results from genotypes
with i coding letters (even number) that are placed at
the same positions as the linked sites, there are in to-
tal (k− 1)L−i of such genotypes, or from genotypes with
i + 1 coding letters (odd number) that are also placed
at the same positions as the linked sites except for the
innermost coding letter that can be placed at any of the
j sites between the two second-innermost coding letters,
there are in total j(k − 1)L−i−1 of such genotypes. For
this reason, the phenotype robustness is given by aver-
aging over the genotype robustness values of these two
genotype kinds, weighted by the actual number of the
genotypes:

rp(i, j) =
(k − 1)L−irg(i, j) + j(k − 1)L−i−1rg(i+ 1, j)

(k − 1)L−i + j(k − 1)L−i−1

=
k − 2

k − 1
− (k − 2)i

(k − 1)L
+

1

(k − 1)L
· kj

k − 1 + j
(26)

In a similar way, the robustness of the undefined pheno-
type, originating from genotypes with no or one coding
letter, is given by:

rp,undef =
(k − 1)L(1) + L(k − 1)L−1

(
(k−2)(L−1)+(k−1)

(k−1)L

)
(k − 1)L + L(k − 1)L−1

=
k − 1 + L

(
(k−2)(L−1)+(k−1)

(k−1)L

)
k − 1 + L

(27)

For the RNA-like reference model, all genotypes be-
longing to a phenotype with i coding sites have the same
robustness and so the phenotype robustness is identical
to the corresponding genotype robustness:

rrefp (i) = rrefg (i) =
k − 2

k − 1
− (k − 2)i

(k − 1)L
(28)

The same holds for the robustness of the undefined phe-
notype, i.e. rrefp,undef = rrefg,undef = (k − 2)/(k − 1).

For the RNA-like model, the evolvability of a pheno-
type with i linked sites and j sites between the innermost
pair of linked sites is given by:

ep(i, j) = eg(i, j) + jeg(i+ 1, j)−
j−1∑
x=0

x (29)

= (L− 1) +

(
L− 3

2

)
j − 1

2
j2 (30)

From all genotypes with i coding letters (even number)
mapping to that phenotype, the sets of accessible alter-
native phenotypes are the same. Hence, they just con-
tribute one time their genotype evolvability to the phe-
notype evolvability (first term in (29)). From all geno-
types with i+ 1 coding letters (odd number) mapping to
that phenotype, the sets of accessible alternative pheno-
types vary across the genotypes, but they are the same
for genotypes which have the innermost coding letter po-
sitioned at the same site. As there are j allowed sites
for the innermost coding letter, these genotypes, in prin-
ciple, could contribute j times their genotype evolvabil-
ity to the phenotype evolvability (second term in (29)).
The sets of accessible alternative phenotypes from geno-
types with i and those with i + 1 coding letters are dis-
tinct. However, not yet all considered accessible alter-
native phenotypes from genotypes with i+ 1 coding let-
ters are distinct and the second term needs to be cor-
rected by the number of multiple counted phenotypes
(third term in (29)). The form of this correction term
can be explained in the following way. First, consider
the set of distinct alternative phenotypes accessible from
the genotypes for which the innermost coding letter is po-
sitioned at the ‘first’ site between the second-innermost
pair of coding letters. Then, consider the genotypes for
which this innermost coding letter is positioned at the
‘second’ site. Through a mutation of the non-coding let-
ter at the ‘first’ site, an alternative phenotype occurs by
linking the new pair of coding letters at the ‘first’ and
‘second’ site. However, this particular phenotype has
already been accounted for by the genotypes for which
the innermost coding letter is at the ‘first’ site (there
accessible through a mutation of the non-coding letter
at the ‘second’ site). In a similar way, for genotypes, for
which the unlinked coding letter is at the ‘third’ site, two
accessible alternative phenotypes have already been ac-
counted for, and so on. Summing up gives the third term.
The evolvability of the undefined phenotype is given by
ep,undef = 0 + L(L − 1) − 1

2 (L − 1)L = 1
2L(L − 1). The

phenotype evolvability only depends on j. But since the
phenotype robustness depends on i and j, the pheno-
type evolvability cannot be expressed as a function of
the robustness alone. However, a correlation between
both quantities can be determined for fixed values of
i ∈ {2, 4, . . . , 2bL/2c}. As can be derived from (26), the
phenotype robustness increases with j for each fixed value
of i. Also the phenotype evolvability increases with j for
each fixed value of i since it holds:

dep(i, j)

dj
= L− 3

2
− j > 0 (31)

as j ∈ {0, 1, . . . , L − i} and so max(j) = L − 2. In
consequence, for each fixed value of i, there is a posi-
tive correlation between the phenotype evolvability and
robustness. In Figure 4(B,TOP), these positive correla-
tions are marked by the lines with positive slope. Each
of these lines of data points corresponds to a fixed value
of i ∈ {2, 4, . . . , 2bL/2c} and the respective values of
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j ∈ {0, 1, . . . , L − i}. Similar to what has been found
for the genotype quantities, the phenotype robustness in-
creases with decreasing i and so the lines correspond to
decreasing values of i from left to right. As a smaller i im-
plies a larger value range of j, higher evolvability values
are reached from left to right, i.e. with increasing robust-
ness. In the limit of large alphabet sizes, k →∞, the phe-
notype robustness looses its dependence on j (see (26))
and the lines of data points with positive slope would
converge to vertical lines. In consequence, the positive
correlation for each fixed value of i vanishes. But it still
holds that higher evolvability values are reached with in-
creasing robustness.

In contrast, for the RNA-like reference model, from
each genotype belonging to a particular phenotype with
i coding sites, the same set of distinct alternative phe-
notypes is accessible and the phenotype evolvability is
identical to the genotype evolvability:

erefp (i) = erefg (i) = L (32)

The same holds for the undefined phenotype, its evolv-
ability is given by erefp,undef = erefg,undef = L. Hence, there
is no correlation between the phenotype evolvability and
robustness in the RNA-like reference model.

This significant difference between the RNA-like model
and its reference model shows that the positive correla-
tions between the phenotype robustness and evolvabil-
ity depend on relationships between sequence positions
of the genotypes. If a mutation occurs at one site of the
genotype sequence it can affect the role of a letter at a dif-
ferent site. This becomes important when the innermost
coding letter is unlinked in the case of an odd number of
coding letters. Mutating another letter from non-coding
to coding or vice versa can ‘switch on’ this innermost
coding letter and link it such that it has an effect on the
phenotype. As this innermost coding letter can be po-
sitioned at different sites within the genotype sequences
of genotypes mapping to the same phenotype, this can
cause that the sets of accessible alternative phenotypes
from genotypes with same phenotype differ. The larger
the gap between the innermost linked pair in a phenotype
and thus the higher its robustness, the more significant
this effect and the higher the increase in evolvability.

C. Phenotype frequency, rank and robustness

Similar to what has been found for the gene-like model
and its reference, the RNA-like model and its reference
qualitatively agree in other properties of the GP maps
like the shape of the phenotype frequency-rank plot and
the logarithmic scaling of the phenotype robustness with
the frequency. Here we leave it with a qualitative de-
scription of these results shown in Figures 4(C) and (D),
a detailed analytical description can be found in the ap-
pendix A.

Instead of a pure power law behaviour, the phenotype
frequency-rank plots for both RNA-like models show a

strong cut-off for large rank values (see Figures 4(C)).
This shape agrees with the one found for the frequency-
rank plot of RNA secondary structure of same length
[11], thereby highlighting the agreement of our simple
model with real sequence-to-structure GP maps. The
reason for this shape can be explained in the following
way. For the RNA-like reference model, the phenotype
frequency only depends on the number of coding sites
within the phenotype sequence, and decreases exponen-
tially with it. Thus, the number of phenotypes with a
given frequency is identical to the number of phenotypes
with the corresponding number of coding sites, which,
in turn, is identical to the number of different ways to
place these coding sites across the phenotype sequence of
fixed length (mathematically described by a binominal
coefficient). For a large number of coding sites, corre-
sponding to a low phenotype frequency, the number of
different ways to place the coding sites is highly limited
and so the number of phenotypes with low frequency,
thereby explaining the observed cut-off in the frequency-
rank plot. For the RNA-like model, the frequency of
a phenotype not only depends on the number of linked
sites, but also on the size of the gap between the inner-
most linked pair. For this reason, a much higher num-
ber of data points appears in the frequency-rank plot
(see Figure 4(C,TOP)). Both frequency-rank plots show
a similar overall shape because for the RNA-like model,
the phenotype frequency as well as the phenotype rank
depend in a quite similar way on the number of linked
sites as both quantities depend on the number of coding
sites in the RNA-like reference model.

The exponential scaling of the phenotype frequency
with the number of linked sites (RNA-like model) or the
number of coding sites (RNA-like reference model) also
causes the logarithmic scaling of the phenotype robust-
ness with the frequency observed for both models (see
Figures 4(D)).

IV. DISCUSSION AND CONCLUSION

We introduced two simple and analytically tractable
GP map models, a gene-like model that follows the prin-
ciples of gene expression and a RNA-like model in anal-
ogy to sequence-to-structure GP maps like that of RNA
secondary structure. Both models reproduce several of
the properties found for other GP maps, like a skewed
distribution of the number of genotypes per phenotype,
a negative correlation between genotype robustness and
evolvability, a positive correlation between phenotype ro-
bustness and evolvability and a logarithmic scaling of the
phenotype robustness with the frequency. By introducing
a reference model for each of the models we were able to
isolate the characteristics of the models that are respon-
sible for the positive correlation between phenotype ro-
bustness and evolvability. For the gene-like model, this
is the mutable first stop codon, and for the RNA-like
model, this is the existence of links between sites. At
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first sight, both of these characteristics may seem very
different, but they have a similar effect. Both mean that
the mutation of a letter at one site of the sequence can
affect the role of another letter elsewhere in the sequence,
possibly a great distance away. In the gene-like model, a
mutation of the first stop codon in a sequence can ‘switch
on’ another stop codon in the sequence, and in the RNA-
like model, a mutation from a non-coding to the coding
letter or vice versa can ‘switch on’ (‘switch off’) another
coding letter that is currently unlinked (linked). In gen-
eral, these characteristics can allow genotypes that map
to the same phenotype to access different sets of alterna-
tive phenotypes through mutations. This is compatible
with Wagner’s findings [15] that the sets of accessible al-
ternative phenotypes from genotypes sampled from the
same neutral network mostly differ, and his suggestion
that this is one of the causes for the positive correlation
between phenotype robustness and evolvability. For the
RNA-like model, the dependence between sequence posi-
tions also leads to the negative correlations between geno-
type robustness and evolvability, which are not found in
the RNA-like reference model.

The identified non-local mutation effects resemble the
widely-studied phenomenon of epistasis, but also differ
from the conventional notion of epistasis in that a mu-
tation in one location is not necessarily linked to a mu-
tation in another specific sequence position, but instead
can change sequence constraints at a range of different
sequence positions elsewhere. The mutation of a stop
codon for instance would normally not be regarded as an
epistatic effect.

For the Fibonacci GP map model [20], it has been pro-
posed that it is the organisation of the sequences into con-
strained and unconstrained parts that determines funda-
mental properties of GP maps. This can be further sup-
ported by our introduced models. For both the gene-like
and RNA-like model, we have found that the respective
main and reference models agree in properties like the
shape of the frequency-rank plot and the logarithmic scal-
ing of the phenotype robustness with the frequency. This
shows that for these properties, the additional features of
a mutable stop codon or links are not relevant and they
are likely to be solely determined by the organisation of
the sequences into constrained and unconstrained parts.
For the gene-like and gene-like reference model, it is the
first stop codon that divides a genotype sequence into a
constrained and an unconstrained part. For the RNA-like
model, the linked sites can be seen as constrained and the
unlinked sites as largely unconstrained. This is because
we restrict ourselves to an alphabet with only one coding
letter but at least two non-coding letters such that the
letter of an unlinked site can be mutated without chang-
ing the phenotype, while it always changes if the letter
of a linked site is mutated. In a similar way, this holds
for the RNA-like reference model, for which the coding
sites can be seen as constrained and the non-coding sites
as largely unconstrained.

In [21], it has been investigated how the organisation

of sequences into constrained and unconstrained parts
affects the form of the neutral network size distribution.
This distribution ranges from a pure power law distri-
bution if the constrained and unconstrained sites occupy
fixed positions at each end of the sequence, respectively,
to a log-normal distribution if the constrained sites can
occupy any position in the sequence. We did not ex-
plicitly consider the distribution of the neutral network
sizes, but the phenotype frequency-rank function, which
is related to it. Here we find a pure power law behaviour
for the gene-like model, for which the sequences are just
split into one constrained and unconstrained part, and
a strong deviation from a power law behaviour for the
RNA-like model, for which the constrained (linked) sites
can occupy any position in the sequence. Both is in ac-
cordance to the findings in [21].

To summarise, we introduce two GP map models that
exhibit the same properties observed in previous analyt-
ical and computational GP map models, but that allow
us to examine the specific requirements for a positive cor-
relation between phenotype robustness and evolvability,
one of the most striking properties of GP maps. One
might argue that these models are very abstract, and far
removed from real biological GP maps. We have consid-
ered a number of more advanced models, such as, in the
gene-like case, models that include a start codon or even
multiple start and stop codons. For the RNA-like case,
we also considered models that only allow links between
specific letter pairs. Apart from losing the analytically
tractability, these alternative, more complex models did
not give any significant new insights as all of the ob-
served GP map properties can be observed in the simpler
models we have introduced here. It therefore seems that
non-local effects of mutations on sequence constraints are
indeed likely to be an important feature in biological GP
maps.
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Appendix A: Further analytical description of the
RNA-like model and its reference model

1. Phenotype frequency

For the RNA-like model, the frequency of a phenotype
depends on the number of linked sites, denoted by i, and
the number of unlinked sites between the innermost pair
of linked sites, denoted by j. As mentioned in the arti-
cle, a phenotype with i linked sites (even number) and
j sites between the innermost linked pair either results
from genotypes with i coding letters (even number) that
are placed at the same positions as the linked sites, there
are in total (k − 1)L−i of such genotypes, or from geno-
types with i+1 coding letters (odd number) that are also
placed at the same positions as the linked sites except for
the innermost coding letter that can be placed at any of
the j sites between the two second-innermost coding let-
ters, there are in total j(k − 1)L−i−1 of such genotypes.
Thus, the phenotype frequency is given by:

f(i, j) = (k − 1)L−i + j(k − 1)L−i−1 (A1)

The frequency of the undefined phenotype, which results
from genotypes with no or only one coding letter, is given
by fundef = (k − 1)L + L(k − 1)L−1.

For the RNA-like reference model, the frequency of a
phenotype solely depends on the number of coding sites,
denoted by i. A phenotype with i coding sites simply
results from all genotypes with i coding letters placed at
these sites and so its frequency is given by:

f ref(i) = (k − 1)L−i (A2)

The frequency of the undefined phenotype is given by
f refundef = (k − 1)L.

2. Phenotype frequency versus rank

For the RNA-like model, in general, the total number
of phenotypes with a given frequency f(i, j) is not simply
identical to the number of phenotypes with i linked sites
and j sites between the innermost pair of linked sites
as there might be phenotypes characterised by different
values (i′, j′) 6= (i, j) that also have the same frequency
f(i′, j′) = f(i, j). In consequence, it is not possible to
find a simple analytical expression for the total number
of phenotypes with a given frequency f(i, j), which would
be useful to calculate the phenotype rank. However, it is
at least possible to find an analytical expression for the
number of phenotypes characterised by the same values of
i and j, which definitely have the same frequency f(i, j).

We denote this number by C̃(i, j):

C̃(i, j) =

L−i−j∏
x=1

((i+ j + 1)− (j + 1) + (x− 1))

× 1

(L− i− j)!

=

L−i−j∏
x=1

i− 1 + x

x
=

(
i− 1 + (L− i− j)

L− i− j

)
=

(
L− 1− j
L− i− j

)
=

(
L− 1− j
i− 1

)
(A3)

It is identical to the number of ways to arrange i linked
sites across a sequence of length L under the constraint
that the innermost linked pair is separated by j sites. In
order to derive this expression (first equality), we make
use of an analogy. Imagine a ‘test sequence’ consisting
of i linked sites and j unlinked sites representing the in-
nermost gap, i.e. i + j sites in total. Now, by analogy,
the number of ways to arrange i linked sites across a
sequence of length L under the constraint that the in-
nermost linked pair is separated by j sites is given by
the number of ways to fill up the ‘test sequence’ with
L − (i + j) further unlinked sites such that a sequence
of length L results while i and j remain unchanged. For
the first additional site, there are (i+ j + 1)− (j + 1) al-
lowed slots available at the sequence. In total, there are
(i+j+1) slots available, but adding to the (j+1) slots in
the innermost gap would change j. For the second addi-
tional site, there are (i+ j+1)− (j+1)+1 allowed slots,
and so on. Thus, the total number of ways is given by
the product of these factors over the L− (i+ j) unlinked
sites that have to be added, divided by (L− (i+ j))! as
the concrete order of these added sites does not matter.

Now, the rank of a particular phenotype is given by the
sum of C̃(i, j) over all values of i and j that correspond
to phenotype frequencies that are higher than the one
of this considered phenotype. However, in general, there
exist no simple analytical expression for the phenotype
rank since the phenotype frequency does not decrease in
a simple sortable order with the values of i and j and
since there may be phenotypes characterised by different
values of i and j but same frequency, as mentioned before.

For the RNA-like reference model, the phenotype fre-
quency solely depends on the number of coding sites i.
Thus, the number of phenotypes with a given frequency
f(i) is identical to the number of phenotypes with i cod-
ing sites, which is given by a binominal coefficient:

Cref(i) =

(
L

i

)
(A4)

As the frequency decreases with increasing i, it follows
for the rank of a phenotype with i coding sites:

rref(i) =

i−1∑
x=1

Cref(x) + 1 =

i−1∑
x=1

(
L

x

)
+ 1 (A5)
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For simplicity, we neglect the undefined phenotype. Due
to the sum over binominal coefficients, there exists no
simplified expression for this equation and so no ana-
lytical expression for the frequency as a function of the
rank. However, it is possible to determine the value pairs
(r(i), f(i)) for all values of i ∈ {1, 2, . . . , L}, which agree
with the data points shown in Figure 4(C,BOTTOM).
As mentioned in the article, the observed cut-off in the
frequency-rank plot for large rank values results from the
fact that the frequency decreases exponentially with i for
all values of i, while the rank only marginally increases
with i for large values of i.

For the RNA-like model, as can be seen from the for-
mulas, the phenotype frequency as well as the number
of phenotypes characterised by the same values of i and
j depend in a quite similar way on i as the correspond-
ing quantities do for the RNA-like reference model. In
addition, for the phenotype frequency, this dependence
on i dominates over the additional dependence on j.
Thus, the frequency-rank plot (see Figure 4(C,TOP))
shows a similar overall shape as for the RNA-like refer-
ence model. Because of the additional dependence on j,
the data points appear in a group-like pattern, whereby
each group roughly corresponds to one fixed value of i
and the respective values of j.

3. Phenotype robustness versus frequency

For the RNA-like model, it is not possible to express
the phenotype robustness as a function solely of the phe-
notype frequency because both the robustness and fre-
quency depend on i and j. However, it is possible to
determine a dependence between the robustness and fre-
quency by assuming either i or j to be fixed. Solving the
phenotype frequency (A1) for j:

j(f, i) =
f

(k − 1)L−i−1
− (k − 1) (A6)

and inserting it into the expression for the phenotype
robustness (26), gives the robustness as a function of the
frequency and i:

rp(f, i) =
k − 2

k − 1
− (k − 2)i

(k − 1)L
+

k

(k − 1)L

−k(k − 1)L−i−1

L
· 1

f
(A7)

In consequence, for fixed i, the robustness scales with
the frequency according to rp(f) = α − β/f with α =
constant and β = constant. In contrast, solving the phe-
notype frequency (A1) for i:

i(f, j) = − logk−1 (f) + logk−1 (k − 1 + j) + (L− 1)
(A8)

and inserting it into (26), gives the robustness as a func-
tion of the frequency and j:

rp(f, j) =
(k − 2) logk−1(f)

(k − 1)L
− (k − 2) logk−1(k − 1 + j)

(k − 1)L

+
k − 2

(k − 1)L
+

1

(k − 1)L
· kj

k − 1 + j
(A9)

Hence, for fixed j, the robustness scales with the
logarithm of the frequency according to rp(f) =
α′ logk−1(f) + β′ with α′ = constant and β′ = constant.

For the phenotype robustness as well as the pheno-
type frequency, the dependence on i dominates over the
dependence on j (see original expressions for both quan-
tities: (26) and (A1)). Thus, when expressed as a func-
tion of each other, overall, the second derived scaling of
the phenotype robustness with the logarithm of the fre-
quency will dominate. This is reflected by the plot in
Figure 4(D,TOP), which shows a group-like pattern of
data points. Each group of data points roughly corre-
sponds to a fixed value of i ∈ {2, 4, . . . , 2bL/2c} and the
respective values of j ∈ {0, 1, . . . , L − i}. Overall, the
groups of data points lie on a line in the semi-log plot,
i.e. behave according to (A9) for fixed j, while the single
points within each group behave according to (A7) for
fixed i.

For the RNA-like reference model, it is possible to ex-
press the robustness as a function solely of the frequency:

rrefp (f) =
(k − 2) logk−1 (f)

(k − 1)L
(A10)

The robustness scales linearly with the logarithm of the
frequency, the same overall behaviour as found for the
RNA-like model.
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