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Abstract

Interpretable Deep Learning

Botty Todorov Dimanov

Deep Neural Network (DNN) models are challenging to interpret because of their

highly complex and non-linear nature. This lack of interpretability (1) inhibits adoption

within safety critical applications, (2) makes it challenging to debug existing models,

and (3) prevents us from extracting valuable knowledge. Explainable AI (XAI) research

aims to increase the transparency of DNN model behaviour to improve interpretability.

Feature importance explanations are the most popular interpretability approaches. They

show the importance of each input feature (e.g., pixel, patch, word vector) to the model’s

prediction. However, we hypothesise that feature importance explanations have two main

shortcomings concerning their inability to describe the complexity of a DNN behaviour

with sufficient (1) fidelity and (2) richness. Fidelity and richness are essential because

different tasks, users, and data types require specific levels of trust and understanding.

The goal of this thesis is to showcase the shortcomings of feature importance expla-

nations and to develop explanation techniques that describe the DNN behaviour with

greater richness. We design an adversarial explanation attack to highlight the infidelity

and inadequacy of feature importance explanations. Our attack modifies the parameters of

a pre-trained model. It uses fairness as a proxy measure for the fidelity of an explanation

method to demonstrate that the apparent importance of a feature does not reveal anything

reliable about the fairness of a model. Hence, regulators or auditors should not rely on

feature importance explanations to measure or enforce standards of fairness.

As one solution, we formulate five different levels of the semantic richness of explanations

to evaluate explanations and propose two function decomposition frameworks (DGINN

and CME) to extract explanations from DNNs at a semantically higher level than feature

importance explanations. Concept-based approaches provide explanations in terms of

atomic human-understandable units (e.g., wheel or door) rather than individual raw features

(e.g., pixels or characters). Our function decomposition frameworks can extract specific

class representations from 5% of the network parameters and concept representations with

an average-per-concept F1 score of 86%. Finally, the CME framework makes it possible to

compare concept-based explanations, contributing to the scientific rigour of evaluating

interpretability methods.
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Notation

This section provides a concise reference describing notation used throughout this document,

which is consistent with Goodfellow, Bengio, and Courville (2016a). If you are unfamiliar

with any of the corresponding mathematical concepts, Goodfellow, Bengio, and Courville

(2016a) describe most of these ideas in chapters 2–4.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by

context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with

a 1 at position i

diag(a) A square, diagonal matrix with diagonal entries

given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable
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Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the

elements of A that are not in B

G A graph

PaG(xi) The parents of xi in G

Indexing

ai Element i of vector a, with indexing starting

at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

Linear Algebra Operations

A> Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A

A�B Element-wise (Hadamard) product of A and

B

det(A) Determinant of A

xx



Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect

to X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫

f(x)dx Definite integral over the entire domain of x∫
S
f(x)dx Definite integral with respect to x over the set

S

Probability and Information Theory

a⊥b The random variables a and b are independent

a⊥b | c They are conditionally independent given c

P (a) A probability distribution over a discrete vari-

able

p(a) A probability distribution over a continuous

variable, or over a variable whose type has not

been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P‖Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and

covariance Σ

xxi



Functions

f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Sometimes

we write f(x) and omit the argument θ to

lighten notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

ζ(x) Softplus, log(1 + exp(x))

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a vector,

matrix, or tensor: f(x), f(X), or f(X). This denotes the application of f to the array

element-wise. For example, if C = σ(X), then Ci,j,k = σ(Xi,j,k) for all valid values of i, j

and k.

Datasets and Distributions

pdata The data generating distribution

p̂data The empirical distribution defined by the train-

ing set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised

learning

X The m× n matrix with input example x(i) in

row Xi,:
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CHAPTER 1

Introduction

You can do it if you believe you can!

Napoleon Hill

Deep learning models are difficult to interpret because of their highly complex and non-

linear nature. A model is interpretable when there is a human-understandable explanation

about the model predictions. The lack of interpretability is a threefold problem:

1. It inhibits adoption of deep learning models, especially in industries under heavy

regulation and with a high cost of errors.

2. It makes it difficult to debug existing models, which hampers development progress.

3. It prevents us from utilising the insights learned from the models for knowledge

discovery and advancing scientific progress.

Deep Learning In the context of interpretability it has been argued that instead of

using Deep Neural Networks (DNNs) we can rely exclusively on simpler models (e.g.,

logistic regression, decision trees, or decision lists) (Letham et al., 2015). In contrast

to these simpler models, DNNs represent information using distributed representations,

which can encode exponentially more regions than non-distributed representations1. Dis-

tributed representations encode implicit generic regularisation strategies that yield better

generalisation and statistical efficiency properties for a particular family of AI-hard task in

complex real-world domains, such as images, video, audio, and natural language (Bengio,

Courville, and Vincent, 2013). The superiority of distributed representations is uncontested

across domains such as end-to-end natural speech synthesis (Sotelo et al., 2017), image

1Section 2.5 defines and discusses distributed representations in more depth and demonstrates their
superiority in terms of expressive power.
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recognition (Szegedy et al., 2017; Szegedy et al., 2015), machine translation (Sutskever,

Vinyals, and Le, 2014), and speech recognition (Graves and Jaitly, 2014).

Interpretability However, the generalisation and statistical efficiency come at the price

of unexpected and challenging to interpret behaviour. The terms of interpretability,

explanation, and transparency are still loosely defined. Interpretability and explain-

ability are often used interchangeably (Lipton, 2016; Adadi and Berrada, 2018; Carvalho,

Pereira, and Cardoso, 2019; Hall, 2019) to characterise the property of a model “to explain

or to present in understandable terms to humans” (Doshi-Velez and Kim, 2017). In

this thesis we use Adel, Ghahramani, and Weller (2018)’s definition – an explanation

is “a simple relationship to something that [humans] can understand”. While sometimes

transparency and interpretability are also used interchangeably (GB, 2017), here we use

the term transparency more specifically to denote the ability to understand the internal

operations and confidence of the model (Lipton, 2016; Zhou and Chen, 2018a).

A recent surge in Explainable AI (XAI) research aims to increase the DNN transparency

to improve interpretability. Transparency of algorithmic systems has also been discussed

as a way for end-users and regulators to develop appropriate trust in machine learning

models (Adadi and Berrada, 2018; Carvalho, Pereira, and Cardoso, 2019; Guidotti et al.,

2018; Murdoch et al., 2019). Interpretability approaches can be generally divided into (1)

extrinsic, or post-hoc, and (2) intrinsic, or interpretable-by-design. The latter approaches

build models that inherently have high transparency, whereas the former analyse the

behaviour of pre-built models. The most popular family of extrinsic interpretability

approaches that increase DNN transparency are importance-based explanations (Bhatt

et al., 2020). Importance-based explanations may be divided into three main categories:

feature importance, sample importance, or hybrids of the two (case-based reasoning) (Adadi

and Berrada, 2018; Carvalho, Pereira, and Cardoso, 2019; Guidotti et al., 2018; Murdoch

et al., 2019).

Feature importance or saliency methods provide scores for a given input that shows how

important each feature (e.g., pixel, patch, word vector) of the input was to the algorithm’s

decision. Sample importance methods indicate the most relevant samples for a particular

decision. Case-based reasoning describes the most important features of the most relevant

samples.

Hypothesis 1: Inadequacy of importance-based explanations In this thesis, we

focus on extrinsic interpretability of DNNs. We hypothesise that importance-based

explanations can describe neither the behaviour of deep learning models with sufficient

fidelity, nor the richness and complexity of the learned behaviour. The term fidelity is used

here to refer to the ability of an explanation method to describe accurately the behaviour

of the underlying model. The term richness refers to the ability of an explanation method
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to describe as many different aspects and complexities of the underlying model’s behaviour

in order to increase a user’s semantic understanding of the model. There are three reasons

for this inadequacy. First, these methods could be fragile to input (Ghorbani, Abid, and

Zou, 2019; Kindermans et al., 2019) or model parameter (Adebayo et al., 2018; Dimanov

et al., 2020) perturbations (see Chapter 4). Human experiments demonstrate that feature

importance explanations do not necessarily increase human understanding, trust, or ability

to correct mistakes in a model (Poursabzi-Sangdeh et al., 2018; Kim et al., 2018). Finally,

importance-based explanations are designed to provide explanations for a wide range

of models (e.g., random forests, DNNs, ensemble models), which limits their ability to

describe behaviours idiosyncratic to a particular model family, such as DNNs. In Chapter 3,

we define five different levels of interpretability to measure and benchmark the semantic

richness of various explanation methods. We argue that importance-based explanation

provide only level 1 explainability.

Fidelity and Comprehensiveness In Chapter 4, we assess the fidelity of feature

importance explanations. We use fairness as a proxy measure for the fidelity of an

explanation method, and we show that the apparent importance of a feature does not

reveal anything reliable about the fairness of a model in connection to that feature. We

explain how this can happen with an instructive example demonstrating that a model

could have arbitrarily high levels of unfairness across a range of popular fairness metrics,

even while appearing to have zero dependence on the relevant sensitive feature. Next,

we design an adversarial explanation attack to modify the parameters of a pre-trained

model that demonstrates that in practice, as well as in theory, the apparent importance of

a feature does not reveal anything reliable about the fairness of a model. To modify the

model parameters, our approach retrains an existing model with a modified loss objective

function. Within the modified loss function, we add an ‘explanation loss’ term to the

original loss in the form of the gradient of the original loss with respect to a chosen target

feature. The resulting models obtain low local sensitivity to the chosen feature with little

loss of accuracy. The low sensitivity generalises to unseen test points for ten features

across four datasets according to seven feature importance explanation methods. Our work

raises concerns for regulators or auditors hoping to rely on feature importance explanation

methods to measure or enforce standards of fairness.

Hypothesis 2: Concept-based Model Extraction for Semantically Higher Level

Explanations The second hypothesis of this thesis is that specialised explanation

methods can be developed to explain in a semantically higher level the information captured

in distributed representation than feature importance explanations. To assess the semantic

level of the captured information, we proposed five different levels of interpretability

in Chapter 3: (1) feature importance, (2) feature interactions, (3) interpretable factor
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descriptions, (4) functional descriptions, (5) causal graphs. As an explanation progresses

along the semantic levels, it takes into consideration feature interactions, groups different

configurations of features and feature values into single factors and assigns meaning to

each factor, describes the mathematical functions that map these factors to the model’s

output, and elicits the causal directions between different factors.

Two independent strands of research have emerged to build on the requirement of

enhancing the semantic level of explanations – model extraction and concept-based

explanations. Model extraction, or model translation, approaches approximate black-

box complex models with simpler models to increase the model transparency. Provided

the approximation quality (referred to as fidelity) is high enough, the extracted models

could preserve many statistical properties of the complex model, while remaining open to

interpretation. On the other hand, concept-based approaches aim to provide explanations

of a DNN model in terms of human-understandable units, rather than individual features,

pixels, or characters. For example, the concepts of a wheel and a door are important for

the detection of cars.

Therefore, we propose two novel function decomposition frameworks for interpreting

neural networks with richer semantics using model extraction, bridging the fields of

model extraction and concept-based explanations. Both frameworks use model functional

decomposition, which is a form of model extraction, to provide different forms of concept-

based explanations

Concept-based Function Decomposition Frameworks for Model Extraction

Specifically, we consider two different types of model functional decomposition: (1)

(D)ependency (G)raphs for (I)nterpreting (N)eural (N)etworks (DGINN) and (2) (C)oncept-

Based (M)odel (E)xtraction (CME). While DGINN extracts class-specific representation

using a series of function decompositions, CME extracts more fine-grained concept-based

representations using functional decomposition of two functions.

One the one hand, the DGINN framework produces two types of class-specific depen-

dency graphs: (1) layer-wise and (2) neuron-specific. The layer-wise dependency graph

indicates the relevant neurons to the specific class in each layer, while the neuron-specific

dependency graph indicates the pertinent neurons between a pair of layers given the

target class. On the other hand, the CME framework produces a new interpretable model

consisting of two functions: (1) input-to-concept function; and (2) concept-to-output

function. The extracted model can be used instead of the original model or just to mimic

the behaviour of the original model to enhance interpretability.

The design of our frameworks relies on the sparsity of hidden representations model

property and other general assumptions about the internal operation of DNNs such

as manifolds, natural clustering, and shared factors assumptions (Section 2.2 describes
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these assumptions in more detail). Given these assumptions, we hypothesise that there

are very few neurons that describe well-defined variations within the data that can be

encoded within particular concepts or concept values. Our findings suggest that very

sparse (5% of the total neurons) representations define two types of low-dimensional

manifolds. The first type describes the general variance within a class or concept on a

single manifold. The second type of manifolds spatially separates distinct concept values

on disjoint manifolds. The benefits of our frameworks are that they can provide both global

(describing overall model behaviour) and local (describing model behaviour for a particular

instance) explanations with richer semantics and a higher level of interpretability because

these low-dimension manifolds can be associated with a human-understandable meaning.

Moreover, the CME framework can be used to compare concept-based explanations, thus

paving the way towards quantifying, axiomatising, and benchmarking future concept-based

explanation approaches.

1.1 Contributions

In summary, the contributions of this thesis are:

1. a rational reconstruction of the Explainable AI field presenting a high-level guideline

for measuring the semantic richness of explanations (see Section 3.3.2) and a novel

taxonomy of interpretability methods (see Section 3.4);

2. an adversarial approach demonstrating the infidelity of feature importance regarding

the fairness of the explained models (Chapter 4);

3. DGINN - a novel framework for interpreting DNNs classification decisions using

class-specific representations (Chapter 5);

4. CME - a concept-based model extraction framework, which generates both local and

global explanations of DNN models, by approximating DNNs with models grounded

in human-understandable concepts and their interactions (Chapter 6).

1.2 Overview

The remainder of this thesis is organised as follows: Chapter 2 describes the foundations

of representation learning – the superset of deep learning models and the assumptions we

implicitly make about deep learning models. It goes on to make a case for distributed

representations. We argue that to explain, we first need to understand the assumptions,

behaviour, properties, and conditions that govern the entity which we are explaining.

Chapter 3 defines and motivates the terms of interpretability, explanation, and transparency.
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It then outlines the characteristics of “good” explanations and presents a novel taxonomy

of explanation methods. Chapter 4 portrays an adversarial explanation attack method

for modifying a pre-trained model to manipulate the output of many popular feature

importance explanation methods with little change in accuracy, thus demonstrating the

danger of trusting such explanation methods. We show how this explanation attack can

mask a model’s discriminatory use of a sensitive feature, raising substantial concerns about

using such explanation methods to check model fairness.

Next, we take a step towards concept-based model extraction, demonstrating that

specific class (Chapter 5) and concept representation (Chapter 6) can be successfully

extracted from DNNs using function decomposition using the DGINN and CME frameworks,

respectively. Chapter 7 concludes the thesis and puts forward a position about the future of

interpretability research, in which we propose to seriously rethink the evaluation procedures

of the field. Doshi-Velez and Kim (2017) and Lipton (2016) argue for human-participant

experiments to determine whether a type of explanation effectively communicates the

model behaviour to the user. Until the psychological suitability of an explanation is

confirmed, we want to start from the fundamentals of the scientific method and define

control variables. For example, we want to isolate the effects of the learning process and

we want to incorporate ways of evaluating the relationships between features.

1.3 List of publications

The material presented in this thesis has in parts been published in the following publica-

tions:

1. You shouldn’t trust me: Learning models which conceal unfairness from multiple

explanation methods (Dimanov et al., 2020) (Chapter 4).

2. Step-wise Sensitivity Analysis: Identifying Partially Distributed Representations for

Interpretable Deep Learning (Dimanov and Jamnik, 2019) (Chapter 5).

3. Now You See Me (CME): Concept-based Explanations via Model Extraction (Kazh-

dan et al., 2020)2 (Chapter 6).

The following publications formed part of this PhD research project and present results

that are supplementary to this work or build upon it. The work within these publications

has been lead by collaborators, and they are not covered in this thesis:

1. MEME: Generating RNN Model Explanations via Model Extraction (Dmitry et al.,

2020).

2Equal contribution with Dmitry Kazhdan.
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2. REM: An Integrative Rule Extraction Methodology for Explainable and Interpretable

Data Analysis in Healthcare (Shams et al., 2021).

3. Is Disentanglement all you need? Comparing Concept-based & Disentanglement

Approaches (Kazhdan et al., 2021).

4. Failing Conceptually: Concept-Based Explanations of Dataset Shift (Wijaya et al.,

2021).
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CHAPTER 2

Representation Learning

What I do not understand, I cannot

explain.

Chatbot child of Richard Feynman

and Albert Einstein

In this chapter, we argue that a deep understanding of how DNNs work is necessary to

explain their predictions. For this purpose, we review the core notions in representation

learning that are pivotal to the design of interpretable models and demonstrate their value

in describing our expectations about the real-world. These expectations impose eleven

implicit assumptions about the data distribution of real-world problems (Section 2.2),

which mandate six key requirements of an ideal representation (Section 2.3). The ideal

data representation should be (i) expressive, (ii) abstract, (iii) disentangling, (iv) easy to

model, (v) compact, and (vi) robust. We highlight partially-distributed representations

(Section 2.4) as the best instantiation of these requirements from both a statistical and

computational point of view. Nevertheless, partially-distributed representations have

three main limitations in terms of their ability to (1) provide interpretable to humans

information (interpretability); (2) resist minor corruptions or data distribution shifts

(robustness); and (3) generalise to unseen distributions or represent relationships between

multiple entities (generalisation) (Section 2.5). In this thesis, we address the interpretability

limitation of distributed representations and argue that it can be enhanced when the

assumptions encoded in representation learning models are considered more carefully (see

Chapters 5 & 6).
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2.1 Purpose of Representations

The performance of information processing systems depends on the way of representing

information. Defining the best way to represent information begs the question: What

makes a good representation? The choice of representation depends on the subsequent

information processing task and the agent performing the task. For example, the operation

of finding an element in a list has a computational complexity of O(n) when the list is

represented as a linked list, but O(log n) when the list is represented as a binary tree.

On the other hand, representing a number in Arabic or Roman numeral form could

affect significantly the time required for a human to perform the simple multiplication of

7×14 rather than V II×XIV . Most people would need to convert the Roman numeral into

decimal representation, perform the calculation, and convert back to the original format.

While humans prefer the decimal domain, computers thrive in binary representations.

However, if the relevant information for a particular task is well-separated, we could design

ways to translate between different forms of representations. This is why the point of

representation learning algorithms, such as linear factor models, autoencoders, Boltzmann

machines, neural networks, and probabilistic models with latent variables, is to build a

representation that can untangle the underlying factors of variation, which are relevant to

the subsequent task. Next we explore the assumptions about the real world that facilitate

the disentangling of these factors of variation.

2.2 Prior Assumptions

Currently, there are two main strategies to discover the underlying factors of variation.

Depending on the availability of additional signal in the form of labels, the strategies can

be divided into supervised and an unsupervised. In the supervised learning case, the labels

contain a powerful signal about the importance of various features. However, in the more

general case of unsupervised learning, where there are no labels available, we can only rely

on more indirect clues in the form of prior beliefs, or assumptions, that a developer can

impose on the algorithm. Unfortunately, according to the no free lunch theorem there

is no universally better machine learning model or regularisation technique averaged over

all data distributions (Wolpert, 1996).

Representation learning imposes a set of assumptions, which encode prior beliefs that

make it more manageable to learn and represent real-world data-generating distributions

rather than any data-generating distribution, thus tackling the no free lunch theorem

(Bengio, Courville, and Vincent, 2013; Goodfellow, Bengio, and Courville, 2016a). There

is a family of challenging AI-related tasks, such as computer vision, natural language

processing, robotics, or information retrieval that involve complex behaviours that can be
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described through highly non-linear mathematical functions. These functions have a large

number of variations (ups and downs) across their input space, but simple underlying

structure (Yao, 1985; Hastad, 1986; H̊astad and Goldmann, 1991; Bengio, Delalleau, and

Roux, 2006; Bengio, LeCun, et al., 2007; Delalleau and Bengio, 2011; Braverman, 2011).

For instance, the knowledge of the underlying data aspects such as the position, lighting,

and orientation of 3D objects, can be enough to describe all pixel intensities within an

image. These aspects, called factors of variation, describe the changes in the behaviour

of the data separately from each other and are often independent. Separate is to say that

each factor encodes an individual variation in the data disentangling it from the others.

Independent implies that changing one factor does not affect the other factors since their

interactions are limited.

Next, we discuss eight1 of eleven implicit assumptions encoded within representation

learning algorithms to disentangle the factors of variation (Bengio, Courville, and Vincent,

2013; Goodfellow, Bengio, and Courville, 2016a). An enhanced understanding of the

implicit assumptions of representation learning algorithms can help us leverage, or even

manipulate2, particular model properties to enhance the interpretability, generalisation,

and robustness of representation learning algorithms. For example, Chapter 5 demonstrates

that leveraging the sparsity, manifolds, natural clustering, and hierarchical organisation

assumptions leads to the extraction of class-specific representations, which describe how

each output is represented within a DNN. Chapter 6 builds on these findings and leverages

the multiple factors and shared factors assumptions to produce explanations in the form

of high-level semantic units, termed concepts (Kim et al., 2018; Ghorbani et al., 2019),

which are more readily interpretable from a cognitive perspective (Poursabzi-Sangdeh

et al., 2018; Kim et al., 2018; Ghorbani et al., 2019).

1A more extensive list of implicit assumptions can be found in Appendix B.1.
2See Appendix C.
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Remark 2.2.1

Before we proceed, let us make the distinction between features and factors. Although

sometimes used interchangeably, the two terms differ depending on the setting they

are used. In a deterministic setting a feature, or attribute, describes a distinctive

characteristic of the input that differentiates different types of data (e.g., clusters,

classes or labels) (Murphy, 2012). In a probabilistic setting, a factor, or clique

potential, is a fundamental building block for representing high-dimensional probability

distributions. A mathematical way to represent a factor is through a table or a function

that takes a set of random variables (the scope) as the argument and produces a real

number, affinity, as the output. The affinity describes the probability of occurrence

for all different configurations of the random variables. Hence, factors describe the

data generating process to obtain the observed data, while a feature describes a

characteristic of the observed data. Sometimes, a characteristic could be a factor, as is

the case in the causal factor assumptiona (Goodfellow, Bengio, and Courville, 2016a).

aSee Appendix A.

• Multiple factors assumption: Assumes that there are more than one factors of

variation that explain the observed data. For example, if we take the 3D objects

example, the lighting factor on its own would not be enough to explain the pixel

intensities. This assumption allows us to easily solve any task provided we can

capture and disentangle its key explanatory factors. Section 2.5 describes how this

assumption motivates distributed representations with separate control over directions

in representation space, such that each entry represents a factor of variation.

• Causal factors assumption: Assumes that the generative process is such that the

observed data is an effect of the underlying factors of variation, and not vice versa.

In this case, if the learned representation truly captures the factors of variation,

then its elements represent the causes of the observed data (Schölkopf et al., 2012;

Erhan et al., 2010). Hence, the 3D object lighting causes the pixel intensity increase

rather than the pixel intensities causing the object to appear brighter. When

this assumption holds, the learned model is more robust to changes in the input

distribution because these changes are driven by shifts in the distribution of the

underlying causal factors. For example, if we assume that p(x) and p(y|x) are

independent (i.e., the exogeneity assumption3), then changes in p(x) do not interfere

with our model of p(y|x) (Lasserre, Bishop, and Minka, 2006).

• Shared factors assumption: Assumes that different tasks share factors across a

common pool of reusable latent factors of variation. Therefore, using one task to

3See Appendix A.
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extract underlying factors of variation should be beneficial to discover factors relevant

to other tasks. Transferring statistical strength of reusable features across tasks and

domains motivates the successful application of representation learning algorithms to

multi-task learning (Collobert et al., 2011), transfer learning (Goodfellow, Courville,

and Bengio, 2012), and domain adaptation (Glorot, Bordes, and Bengio, 2011). As we

will see in the next two assumptions and through this chapter, the ability to represent

many examples with reusable features projects the input into a rich similarity space,

where multiple examples are not constrained to be only local neighbours in input

space. Therefore, this assumption results in exponential gain in the expressivity of

the representation4.

• Hierarchical organisation assumption: Assumes that the world is described by

highly complex functions with a considerable degree of variation (ups and downs), but

with an underlying simple structure, which is hierarchical. The rationale behind this

assumption is that humans often describe concepts hierarchically with multiple levels

of abstraction. For example, a software engineer prefers to represent information

with a hierarchy of reusable components such as functions and modules rather than

with one flat main program.

While the shared factors assumption supposes the existence of reusable components,

the hierarchical organisation assumption incorporates the belief that a hierarchy of

reusable components can describe abstract ideas more easily. For example, we can

describe the concept of cars through relationships about objects such as its parts (e.g.,

tires, windshields and doors). We can represent each of these objects with simpler

shapes, such as rectangles, circles, and squares. The shapes can be represented

through relationships between straight and curved lines. Naturally, concepts become

more abstract as they become increasingly invariant to local input transformations,

which are uninformative to the subsequent task.

Assuming a hierarchical structure has a threefold benefit: (1) contributes to disentan-

gling of factors of variation; (2) leads to exponential gains in representation power

because it promotes the reuse of features; (3) induces a prior of building invariant

features5.

• Manifolds assumption: Assumes that the probability density of real-world high-

dimensional data is highly concentrated along (often non-linear) connected regions

of tiny volume (of much smaller dimensionality that the original space), called

manifolds (Cayton, 2005; Narayanan and Mitter, 2010; Schölkopf, Smola, and Müller,

1998; Saul and Roweis, 2003; Tenenbaum, De Silva, and Langford, 2000; Brand,

4See Section 2.5.
5In Appendix B.4.3, we discuss these benefits in more detail.
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Figure 2.1: Illustration of the manifold assumption in a visual perception problem, with three
examples of factors of variation (degrees of freedom): (1) left-right poses; (2) up-down poses;
and (3) lighting. A manifold learning algorithm (Isomap (Tenenbaum, De Silva, and Langford,
2000)) learns a three dimensional embedding, the separate dimensions of which correlate highly
with the degrees of freedom observed in the data, suggesting the algorithm has learned the
intrinsic geometric factors of variation. All data points (blue) are represented in two-dimensional
space, with particular samples visualised (red circles). The horizontal sliders represent the
third dimension corresponding to lighting. Image reproduced from (Tenenbaum, De Silva, and
Langford, 2000).

2003; Belkin and Niyogi, 2003; Donoho and Grimes, 2003; Weinberger, Sha, and Saul,

2004). A manifold is a region consisting of connected data points, such that one point

is similar to its surrounding points. Movements along the manifold correspond to

specific allowable transformations in input space, which describe the local variations

of the input. For example, Figure 2.1 demonstrates how transitions along the y-

axis of the learned manifold 6 correspond to up-down pose changes in the original

space. The highest variance is observed along directions tangent to the manifold,

while directions orthogonal to the manifold have minimal variance. In addition,

interpolating between points along the tangent directions can yield new valid points,

6
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which were not part of the original dataset. However, most of the input space

consists of invalid datapoints because there are very few directions tangent to a

low-dimensional manifold.

There are five important factors related to learning the structure of a manifold (Bengio

and Monperrus, 2005; Rifai et al., 2011b; Verma et al., 2019): (1) noise (i.e.,

datapoints might lie slightly outside the manifold); (2) curvature (i.e., the degree

to which the geometry of the manifold deviates from being a straight line), (3)

dimensionality, (4) density (i.e., how sparsely populated is the manifold), (5) number

of the manifolds, and (6) curvature of the high-entropy regions between the manifolds

(i.e., transitions). In Chapters 5 & 6, we show that we can associate these manifold

structures within DNNs to concepts or particular outputs; therefore, enhancing our

ability to understand these algorithms.

• Natural clustering assumption: Assumes that the points of different classes,

or with distinct characteristics, are likely to concentrate along separate manifolds,

whereas similar points concentrate along connected manifolds, such that local varia-

tions within a manifold do not change the class identity (Rifai et al., 2011b).

Low-density regions in input space separate the manifolds in a way that the distances

between manifolds carry information regarding the difference between the points.

Due to this fact, this assumption is sometimes referred to as the “disconnected

manifolds assumption” because small input perturbations should not be able to

transition between manifolds (Rifai et al., 2011b; Bengio and Delalleau, 2011; Bengio,

Courville, and Vincent, 2013).

This manifold geometry induces a rich similarity space, in which objects distant

apart in input space, come together to form clusters. The rich similarity space

yields potent generalisation properties because we can now transfer the knowledge

about one point to exponentially many more points on the corresponding manifold7.

Although originally it is assumed that a manifold corresponds to a single class (Bengio

and Delalleau, 2011; Verma et al., 2019), meaning class manifolds do not overlap

much, results in Chapters 5 & 6 suggest the presence of overlapping manifolds.

• Simple factor relationships assumption: Assumes that simple dependencies de-

scribe the relations between factors. For example, the simplest form of relationship is

marginal independence. When the explanatory factors are independent of each other,

the knowledge of the distribution of one factor generalises to various configurations

of the others. We make this assumption when we use a linear classifier such as the

softmax final layer in neural networks on top of a linear combination of a learned

7See Appendix B.4.
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representation (Goodfellow, Bengio, and Courville, 2016a). Hence, we expect that

the deeper layers of the networks have learned more abstract and linearly separable

features. More sophisticated forms of dependence (e.g., polynomials of low order

such as linear, quadratic, cubic, or even quartic) are also reasonable assumptions.

Although the degree of the polynomials that usually describes physical properties

ranges between two and four (Lin and Tegmark, 2016), currently these high order

dependencies are rarely used in practice because of the computational and statistical

challenges they introduce8.

• Sparsity assumption: Assumes that the learned features have a high correlation

with very few explanatory factors and are invariant to others; consequently, most

of the time a feature will not be used to describe an input. For instance, a feature

describing a steering wheel, will not be active for an image of a bird. That is to

say, if the features describe a binary state – ”present” or ”absent”, we assume that

most of the features are absent most of the time. This assumption motivates sparse

representations, the intuition for which is that the degree of sparsity controls the

insensitivity of a model to small input changes9.

2.3 The Ideal Data Representation Properties

The ideal data representation would describe the world in view of our beliefs of how

the observed data would behave. In contrast to supervised or reinforcement learning,

representation learning does not necessarily have clear objectives for training. Therefore,

Bengio, Courville, and Vincent (2013) propose that the goal of representation learning is

to: “disentangle as many factors as possible, [while] discarding as little information about

the data as is practical”. A key challenge is how to determine what is possible and how

much is practical. One way to determine at least the practicality is to set the purpose

of representations as making subsequent processing tasks easier, more efficient and more

robust to noise or changes in the data (Goodfellow, Bengio, and Courville, 2016a).

Based on the ability to facilitate subsequent tasks, there are six primary requirements

of an ideal representation10 (Hinton, McClelland, and Rumelhart, 1986; Elman, 1991;

Plate, 2006; Goodfellow, Bengio, and Courville, 2016a):

1. expressive: the representation can distinguish between the greatest number of

possible input configurations based on the underlying factors of variation that are

salient to the subsequent task;

8In fact, modern DNNs have been shown to exhibit a strong bias towards simple functions (Pérez,
Camargo, and Louis, 2019).

9In Appendix C we develop the relationship between sparsity and invariance further.
10Appendix B.2 describes each of these requirements in more details.
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2. abstract: the representation builds different levels of abstraction to facilitate the

control of sensitivity and invariance to the underlying factors of variation, depending

on their relevance to the subsequent task;

3. disentangling: separates the underlying factors of variation;

4. easy to model: represents sparse and independent factors, or simple factor rela-

tionships;

5. compact: smaller representations are more efficient both from a computational

standpoint (smaller vectors to multiply) and statistical standpoint (fewer parameters

to learn, many of which can be reused over many different inputs);

6. robust: the representation is (1) not vulnerable to noise, missing data, local pertur-

bations, transformations, and corruptions; and (2) can facilitate out-of-distribution

generalisation.

This expressivity of a representation also known as representational power or repre-

sentational capacity. There is a noteworthy distinction between representational capacity

and effective capacity. While the former refers to the theoretical maximum number of

encodable regions, the latter refers to the practically resulting capacity after training a

model. Notice that these requirements may not necessarily be satisfied simultaneously.

A representation that is easy to model (e.g., mutually independent features) might not

cleanly separate the underlying causal factors or preserve as much information as possible.

Alternatively, an extremely compact representation might not be completely expressive

(in Appendix C.1.2 we demonstrate that compactness and robustness are at odds).

Now that we have introduced the prior assumptions about the real-world data distri-

butions and the ideal criteria to represent these distributions, let us turn our attention to

the characteristics of representations capable of meeting our criteria.

2.4 Representation Characteristics

The goal of representation learning is to build representations that disentangle the under-

lying factors of variation, which are relevant to our subsequent task. A natural question

that follows is: How do we design representations that disentangle the factors

of variation? Here we describe the characteristics of representations that can disentangle

the maximum number of factors in the most practical way possible.

Local or Distributed There has been a long-standing debate whether neural networks

represent information in “local”, or “distributed” fashion. In a local, or symbolic, setting

the activation of one neuron encodes one concept (Feldman and Ballard, 1982). In
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contrast, in a distributed setting, a particular activation pattern over a larger group of

units represents a concept. In the latter case various concepts are represented by different

patterns of activity across the same units (Hinton and Anderson, 1981; Hinton, Sejnowski,

and Ackley, 1984; Hinton, McClelland, and Rumelhart, 1986).

Remark 2.4.1

Sometimes the distinction between local and distributed representation is not entirely

clear. For example, Van Gelder (2013) illustrate that an 8-bit number can be interpreted

as a distributed representation of the numbers 0-255 since this piece of information

is contained in the pattern activity across multiple units. However, the number also

forms a local representation of the powers of 2, since each bit represents a different

power: 20, 21...27. Therefore, the interpretation of representations depends mainly on

our perception.

Density The density spectrum of distributed representations refers to the total activity

level within an activation pattern. At one extreme we have dense distributed representa-

tions, while at the other extreme we have purely local representations. In the middle of

the spectrum, we have sparse distributed representations, or partially-distributed repre-

sentation11. A simple way to describe partially-distributed representation is that only a

few units are active at any given time, while the inactive units are equal or close to 0. If

a dense distributed representation contains N not mutually exclusive, elements, then a

sparse representation will have at most k : k < N units active at any one time. At the

same time, a local representation has k = 1.

Naturally, a smaller number of active neurons decreases the representational power of

sparse representations. Nevertheless, even with very low values of k, partially-distributed

representations still have an exponentially higher representational capacity (order of
(
N
k

)
)

than local representation measured as the number of regions that can be carved out in input

space (Bengio, 2009). Sparse representations are also biologically plausible since biological

neurons form representations that are distributed and sparse (Olshausen and Field, 1997),

with 1-4% active neurons at any one time (Attwell and Laughlin, 2001; Lennie, 2003).

Furthermore, we will see in our discussion on Superposition that sparse representations

also lead to the desirable property of increased robustness of the representation.

11In this dissertation, the term “partially-distributed representation” to refer to “sparse distributed
representations” and “sparse representations”.
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Remark 2.4.2

Sparse representations are different from sparse parameterisation. Sparse parameter-

isation entails that the model parameters, or weights, are mostly zeros, while the

representations entails that the activations of the units are close to zero. Sparse

parameterisation does not imply sparse activations, as the non-sparse parameters affect

the values of most of the units. In fact, sparse representations impose a complicated

implicit prior over the model parameters.

Multifaceted neurons Recent findings (Li et al., 2016; Fong and Vedaldi, 2018; Bau

et al., 2017b; Bau et al., 2019) suggest that the interactions between a mixture of local and

partially-distributed representations (PDRs) govern the DNN decision process. Nguyen,

Yosinski, and Clune (2016) provide evidence in support of the claim that alternative neuron

activity patterns represent different concepts. These activity patterns make high-level

neurons multifaceted. That is, the neurons respond to different types of stimulus (facets)

related to the same concept. For example, a high-level neuron responds to both human

and lion faces (Yosinski et al., 2015), or an outside and inside view of a movie theatre

during different times of the day (see Figure 2.2) (Nguyen, Yosinski, and Clune, 2016).

Figure 2.2: High-level neuron responding to different facets of a movie theatre encoding two
correlated factors of variation – environment (day / night / cloudy) and location (inside / outside).
The figure illustrates the multifaceted nature of neurons (i.e., the same neurons recognise the
concept of a “movie theater”, regardless of different factors of variation). Image reproduced
from Nguyen, Yosinski, and Clune (2016).

Biological neurons are similarly multifaceted (Quiroga et al., 2005). The same neuron

can respond to different representations of the same concept: the name of a famous actress

(“Halle Berry”), a picture of the actress, and a picture of the actress in movie costume

(cat-woman in Batman)12. What is noteworthy from a biological standpoint is that visual

12In biology, such neuron cells are called grandmother cells since a grandmother cell responds to any
signal that sensibly discriminates the entity, just as someone would recognise their grandmother in various
situations. A grandmother is a common ancestor between many grandchildren cells. In that sense,
grandmother cells become invariant to various transformations like changing the position, lighting, or
orientation of a visual object (Quiroga et al., 2005).
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neurons in the inferotemporal cortex13 of monkeys fire selectively for the general concepts

of hands and faces (Quiroga et al., 2005). That is, different neurons fire for hands than for

faces. Interestingly, the same neurons fire for different faces, but the activation patterns for

each face are different (Freiwald, Tsao, and Livingstone, 2009). This finding hints that the

function of the biological representation is to distinguish between different objects of the

same kind. Different cells detect constellations of diverse facial parts. In Chapter 6.3.3.1,

we demonstrate that CNNs exhibit similar behaviour. Critically, the biological activation

is interlinked with the presence of an entire face14.

Superposition Another term to describe the multifaceted nature of neurons is super-

position (Plate, 2006). Superposition describes the ability of distributed representations

to represent multiple concepts by putting different activation patterns on top of the

same neurons (“superimposing”) at the same time. Hence, the same set of neurons is

representing multiple distinct entities. A challenge to the interpretation of neural networks

is that the existence of superimposed patterns makes it difficult to ascertain whether a

particular pattern is the result of superposition or not.

A naive way to determine whether superposition is taking place is to compare the

similarity between a known pattern a and the current pattern b. If the two patterns are

similar, we “conjecture” that a was superimposed with other patterns to form b.

As the number of superimposed patterns increases, the robustness of a representation

decreases because the additive effect of multiple different patterns can (1) obscure the orig-

inal patterns – a phenomenon known as interference; or (2) cause the invalid appearance

of a known pattern – a phenomenon known as ghosting (Plate, 2006).

The interference and ghosting phenomena illustrate that the main representational

power of distributed representations, their multifacetedness, is also one of their main

weaknesses. Naturally, a denser representation fills up faster and has a higher likelihood

of unwanted superposition. Generally, the likelihood of ghosting and interference is

proportional to the density and number of distinct patterns and the degree of noise

tolerance allowed within the representation, but inversely proportional to the size of

the representation (Plate, 2006). Therefore, the emergence of this phenomenon denotes

the limit of the effective representational capacity: “the number of symbols it can store

simultaneously and reliably” (Rosenfeld and Touretzky, 1987; Plate, 2006).

These rough guidelines give us two important intuitions. First, sparse representations

have a higher likelihood of being more robust because there is “more room” to store

patterns without as much interference, so a larger number of patterns can be superimposed.

13The part of the visual system that plays a role most similar to present-day CNNs.
14The lack of the ability to fire only in response to the presence of the whole is another form of spurious

correlations. It is another one of the main shortcomings of current deep learning visual systems (Arjovsky
et al., 2019; Sabour, Frosst, and Hinton, 2017).
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Second, sparse, large and non-robust representations are easier to interpret because there

is a smaller likelihood of multiple superimposed patterns. We develop these intuitions

further in Appendix C.

2.5 Partially-Distributed Representations

Partially-distributed representations are a sparse form of distributed representations, which

have been the key building block of deep learning approaches. The purpose of distributed

representations is to learn to encode a “complicated” target function with a high degree of

variation. This is of paramount importance in the domains of visual and times series data

(text, audio, forecasting). The special ingredient of this types of representations is that

they are composed of numerous elements that can be controlled separately, (i.e., they are

not mutually exclusive). Models with distributed representations, such as neural networks

with hidden units or probabilistic models with latent variables, leverage these numerous

elements to capture the underlying factors of variation that explain the observed data.

Theoretically, the power of distributed representations arises from the assumption that if

each element represents a different factor of variation (feature), then n features with k

values can represent kn difference concepts (Goodfellow, Bengio, and Courville, 2016a)15.

Distributed representation have been designed to incorporate multiple of the assump-

tions described in Section 2.2 using the characteristics described in Section 2.4 to fulfil the

requirements set out in Section 2.3. In particular, distributed representations are designed

to: (1) disentangle independent, invariant and linearly separable factors (disentangling);

(2) form a natural clustering in a rich similarity space of reusable factors connected in a

hierarchical structure of simple relationships (abstract). These two design considerations

give distributed representations (3) exponential gains in representation power over non-

distributed representations (expressive & compact) (Bengio, Courville, and Vincent, 2013;

Goodfellow, Bengio, and Courville, 2016a).

Unfortunately, these benefits come at a price. Some of the main shortcomings of

distributed representations are the lack of:

• interpretability: the ability to be understandable to a human (Doshi-Velez and

Kim, 2017);

• robustness: the ability to resist minor corruptions and distribution shifts (Hendrycks

and Dietterich, 2019);

• generalisation: the ability to generalise to unseen distributions or to handle

the binding problem (i.e., the ability to maintain associations between multiple

concepts (Plate, 2006)).

15See Appendix B.4 for more details.
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These challenges are exasperated by the lack of well-established benchmarks and

methodologies for comparison and evaluation (Andreas, 2019; Do and Tran, 2020; Kornblith

et al., 2019). Appendix B.3 describes these shortcomings in more detail.

2.6 Conclusions

In this chapter, we introduced the primary assumptions behind representation learning,

which presume that the world can be described by a family of functions that exhibit a

well-structured behaviour. These assumptions drive the design of modern representation

learning algorithms. We argue that since these assumptions play a pivotal role in designing

DNNs, they should also play an equally critical role in explaining modern learning

algorithms. We discussed that the ideal representation should be expressive and should

build different levels of abstraction to capture and disentangle the highly salient variations

in data. DNNs learn partially-distributed representations that superimpose activation

patterns to represent an exponential number of concepts, requiring fewer parameters

and less training data than non-distributed representation algorithms. These partially-

distributed representations define a hierarchical structure of rich similarity spaces, in

which meaningful similarities can more easily disentangle and cluster concepts together.

However, the expressive power of distributed representations comes at the cost of their

interpretability. Appendix B expands on the ideas presented here.

In this thesis, we demonstrate that designing interpretability methods for distributed

representations in light of the sparsity, manifolds, and hierarchical organisation assumptions,

yields techniques that can describe more aspects of the model behaviour at a semantically

higher level that existing approaches. In the next chapter, we introduce a high-level

guideline to measure the semantic level of explanations and introduce a taxonomy of the

existing approaches. We hypothesise that a deep understanding of the connected manifolds,

the separating regions between them, and the mapping between manifolds and human-

understandable concepts will lead to more accurate explanations that are more widely

accessible (i.e., more intuitive for a broader range of stakeholders). In Chapters 5 & 6, we

take two steps towards developing this understanding.
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CHAPTER 3

Explainable AI

Success is neither magical nor

mysterious. Success is the natural

consequence of consistently applying

the basic fundamentals.

Jim Rohn

The goal of the Explainable AI (XAI) research field is to “produce more explainable

models, while maintaining a high level of learning performance (prediction accuracy);

and enable human users to understand, appropriately trust, and effectively manage the

emerging generation of artificially intelligent partners” (Gunning, 2018). Interpretable,

or explainable machine learning (ex-ML) is a subset of the field of XAI that is

dedicated to developing a suite of methods and models that make the behaviour and

predictions of machine learning systems understandable to humans while achieving high

predictive accuracy (Adadi and Berrada, 2018; Molnar, 2019). Interpretable ML, inter-

active ML and human-in-the-loop ML are interrelated. Interactive ML is the field

of machine learning systems created to work side-by-side with human users. Having a

person using interpretable ML to interact with a machine learning model is referred to as

a human-in-the-loop learning model.

The contribution of this chapter is a rational reconstruction of the Explainable AI

field presenting a high-level guideline for measuring semantic richness of the explanations

in order to benchmark the state-of-the-art (see Section 3.3.2) and a novel taxonomy of

interpretability methods (see Section 3.4). Using our taxonomy we identify four main

limitations of current interpretability methods, which we address in Chapters 5 & 6.

The outline of this chapter is as follows: we begin with a survey of the definitions

and aims of interpretability, explanation, and transparency (Section 3.1). We then

go on to motivate the need for interpretability (Section 3.2). Section 3.3 outlines the
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characteristics of “good” explanations. Section 3.4 proposes a taxonomy of explanation

methods. Sections 3.5 & 3.6 illuminate the limitations of importance-based explanations

and representation analysis techniques, respectively, to position the work in the remainder

of this thesis.

3.1 Definitions

Interpretability Despite the pressing need, the community still lacks a consensus around

the precise definition and objectives of interpretability and explainability (Lipton,

2016; Adadi and Berrada, 2018; Carvalho, Pereira, and Cardoso, 2019; Hall, 2019). The

terms are often used interchangeably to characterise a property of the model (Abdollahi

and Nasraoui, 2018). Doshi-Velez and Kim (2017) define interpretability as “the ability

to explain or to present in understandable terms to humans”. The ability to explain

can be described as the model’s property of predictability (Kim, Khanna, and Koyejo,

2016b), or “simultability” (Lipton, 2016): “a method is interpretable if a user can correctly

and efficiently predict the method’s results” (Kim, Khanna, and Koyejo, 2016b). Miller

(2019) and Zhou and Chen (2018a) emphasise the importance of the context (i.e., target

audience) and define interpretability, or explainability, as how well a human can understand

a proposed decision from an AI system in a given context.

Aims & Objectives Lei (2017) defines the goals of interpretability as the dual ability

to explain the model’s design and decisions. Ribeiro, Singh, and Guestrin (2016) see value

in “understanding the reasons behind predictions” and propose that a technique can gain

such understanding if it explains the predictions. Zhou and Chen (2018a) highlight the

goal of an explanation is to facilitate trustworthy decision making.

Aamodt (1991) suggests that an explanation in the context of an AI system has two

purposes: (1) to increase the system’s transparency to the user, and (2) to serve as a

method for inference and reasoning. As a method for inference, an explanation is a natural

way to reason about the world and refers to the internal inference process of an agent. For

instance, humans generate a hypothesis and verify its validity internally to interpret an

observation. Consequently, Aamodt (1991) advocates that an AI system must be able to

explain to itself to conduct higher-level cognitive tasks1 (Aamodt, 1991). Consequently,

the advancement of the XAI field will result not only in an increased interpretability, but

also potentially in increased capabilities of modern deep learning systems.

1According to Schank (1986), a requirement for understanding and intelligent behaviour is the ability to
internally rationalise a decision and the process that was used to derive the result. For example, explaining
an expectation failure (i.e., a situation in which an expected result did not occur), is of paramount
importance to understanding and learning (Schank, 1986).
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Explanation The aim of interpretability to explain the model’s design and decisions begs

another question, which philosophers have grappled with for centuries: What is an explana-

tion? One proposition is that an explanation is the answer to the question “Why?” (Miller,

2019; Weller, 2019). Weller (2019) makes the distinction that this could be about the

future (“to what purpose”) or about the past (“to what cause”). Another possible defini-

tion is that an explanation is an explicit description of the reasons behind a decision to

human (Miller, 2019). Yet another more descriptive definition is: “A collection of visual

and/or interactive artifacts that provide a user with sufficient description of the model

behaviour to accurately perform tasks like evaluation, trusting, predicting, or improving

the model” (Hall, Gill, and Schmidt, 2019).

Here, we adopt Adel, Ghahramani, and Weller (2018)’s definition of explanation – “a

simple relationship to something that [humans] can understand”. Let us now look into

the purpose of transparency.

Transparency There is a degree of uncertainty around the terminology in the term of

transparency (Weller, 2019). The definitions range from the nebulous “the opposite of

opacity or blackbox-ness [of a model]” (Lipton, 2016) to the more specific “the process of

illuminating how a certain result was produced” (Aamodt, 1991).

Some authors use the terms “interpretable” and “transparent” interchangeably. The

Royal Society defines interpretable, or transparent machine learning to be “systems whose

workings, or outputs, can be understood or interrogated by human users, so that a human-

friendly explanation of a result can be produced” (GB, 2017). On the other hand, Lipton

(2016) and Zhou and Chen (2018a) contrast interpretability, which is concerned with the

ability to provide explanations about the generated decisions, and transparency, which is

a more specific term that describes the ability to understand the internal operations and

confidence of the model.

Transparency is not a binary property, and some models are inherently more transparent

than others (Weller, 2019; Lipton, 2016; Hall, 2019)2. Transparency might not always be

desirable since there are various types and levels of transparency that depend on the target

audience (Weller, 2019; Lipton, 2016). For example, making the decision making process

of a loan application system completely transparent makes it vulnerable to malicious

applicants, who aim to game the system.

We can “look” at the model’s mechanism from four different perspectives (Lipton,

2016): simultability, decomposability, algorithmic and data transparency. Simultability

refers to the transparency of the reasoning process (i.e., can a human replicate the reasoning

of the system). Decomposability describes the ability to split the model parameters

such that each of its parts corresponds to a description in natural language (this is the

2We discuss inherently, or intrinsically transparent models in Section 3.4.2.1.
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approach we adopt in Chapters 5 & 6). Algorithmic transparency is associated with the

understanding of the training process and the trade-offs that the resulting model is making

in comparison to similar models in parameter space. This set of models, referred to as the

Rashomon set, contains models with similar accuracy, but different properties such as

interpretability, or robustness (Semenova and Rudin, 2019)3. Finally, data transparency

refers to the knowledge and understanding of the data collection process (Weller, 2019).

3.2 Motivation

The lack of interpretability could have potential risks in three general areas (Goodfellow,

Shlens, and Szegedy, 2015; Amodei et al., 2016): (1) mismatch between an AI system’s

intended and actually learned goals; (2) (a) unawareness of undesirable behaviours such as

an AI system’s inability to detect context change and generalise to unseen data distributions,

and (b) inability to prevent undesirable behaviours even if the awareness was available; (3)

inability to extract actionable insights. The mitigation of these risks can be translated

into three main benefits of interpretability: value alignment, model improvement, and

increased model utility.

Value alignment As ML systems continue to penetrate ubiquitous complex applications

and automate human action, they need to adhere to the same principles that govern

ethical and legal social functions. That is, ML systems need to be safe (Varshney and

Alemzadeh, 2016), predicatable (Bostrom and Yudkowsky, 2014), auditable (Bostrom

and Yudkowsky, 2014), and fair (Goodman and Flaxman, 2016; Weller, 2017). For example,

a robotic arm conducting a brain surgery must aim to minimise all possible harmful effects,

not just the cost of morbidity (safe) (Varshney and Alemzadeh, 2016). A loan-approval

system must be transparent to inspection (auditable) (Bostrom and Yudkowsky, 2014)

so that we can establish whether it is predictable (Bostrom and Yudkowsky, 2014) (i.e.,

renders similar decisions in similar circumstances) and fair (Goodman and Flaxman,

2016).

In Recommender Systems, explanations increase the user’s trust, ability to improve

the system, and the overall utility and satisfaction (Abdollahi and Nasraoui, 2016; Zanker,

2012). A user’s trust in an ML system is crucial when deciding whether to maintain human

supervision or hand over complete control to the system.

Model improvement, maintenance, and security Interpretability is the key to

improving model performance both through debugging and hyper-parameter optimisa-

tion (Freitas, 2014; Liu et al., 2017; Ribeiro, Singh, and Guestrin, 2016; Dimanov and

3We discuss potential properties that could influence trade-offs among members of the Rashomon set
in Appendix C.
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Jamnik, 2019). The world is constantly changing, which means we need to continually

monitor and maintain the behaviour of deployed models (maintainable) (Sculley et al.,

2015). An increase in transparency will enable the more accurate extrapolation of the

algorithm’s behaviour to unseen situations, thereby increasing our confidence in and ability

to maintain the system. Model transparency can increase the robustness of the model

against manipulation from external (hackers) and internal (unethical or lazy developers)

agents (Bostrom and Yudkowsky, 2014).

Utility Interpretability should be as an important a criterion as predictive accuracy

when considering the utility of a model (Freitas, 2014). As the volume of data increases,

so does the need for its more sophisticated understanding. An increased understanding of

the model leads to valuable insights or the discovery of new knowledge (Quinlan, 1999).

Additionally, industry experts have a strong need for actionable insights because they need

to know the underlying reasons for a prediction in order to take corrective action.

3.3 What is a “good” explanation?

Now that we have defined and motivated explanations, let us turn our attention to

evaluating them. A precise definition of good explanations remains elusive. Multiple

efforts have been made to describe the properties of explanation from different angles.

Gilpin et al. (2018) define a good explanation as the situation “when you can no

longer keep asking why”. This is vague and difficult to measure. Slightly more concrete

requirements could be that an explanation needs to be faithful (Fong and Vedaldi, 2019),

interpretable (Fong and Vedaldi, 2019), and expressive (Robnik-Šikonja and Bohanec,

2018).

To quantify the faithfulness, interpretability, and expressivity of an explanation, we

can rely on model extraction evaluation criteria (Andrews, Diederich, and Tickle, 1995;

Jacobsson, 2005; Lughofer et al., 2017; Robnik-Šikonja and Bohanec, 2018) (Štrumbelj,

Kononenko, and Šikonja, 2009; Guidotti et al., 2018; Fong and Vedaldi, 2019; Murdoch

et al., 2019; Robnik-Šikonja and Bohanec, 2018):

1. comprehensibility: the extent to which the model and the predictions are intuitive

and informative to humans.

2. predictive accuracy: to what extent can we solve the original task using the

explanations (maybe in the form of an extracted interpretable model).

3. fidelity (or descriptive accuracy): the extent to which we can extract a model to

mimic the behaviour of another model under interpretation.
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4. computational complexity: the time and space complexity of the explanation

model.

5. stability (or robustness): the degree to which explanation methods provide

similar explanations for similar data points.

6. consistency: the degree to which the explanation is the same for similar models.

In Section 3.3.2 we propose a high-level guideline to measure comprehensibility, which

we use to assess state-of-the-art approaches, in Chapter 4 we measure the consistency of

importance-based explanations, and in Chapters 5 & 6 we measure the predictive accuracy,

fidelity, and computational complexity of our explanations.

From a user perspective in the context of recommender systems, the aim of an expla-

nation is to help us make better decisions. Hence, we can measure the utility of a “good”

explanation, which needs to facilitate the decision-making process in seven ways (Tintarev

and Masthoff, 2011):

1. effectiveness (better user decisions),

2. efficiency (faster user decisions),

3. transparency (reasoning behind decisions),

4. scrutability (ability to provide feedback to the system),

5. persuasiveness (convinces the user to make the recommended decision),

6. trust (confidence in recommendations),

7. satisfaction (ease of usability or enjoyment).

From a philosophical, social, and cognitive perspective, we can deduce that humans

prefer explanations that are (Grice, 1975; Miller, 2019):

1. simple, but informative (Harman, 1965; Read and Marcus-Newhall, 1993) (c.f.

Occam’s razor4 (Thorburn, 1918)),

2. containing the appropriate amount of detail (Keil, 2006)5;

3. contrastive/counterfactual explanations: the explanation describes why an event P

happened instead of another event Q (Q is termed “foil”),

4The principle of parsimony, widely known as Occam’s razor (c.1287-1347), states that among competing
hypothesis of varying complexity that fit the data equally well, we should choose the simplest one because
it is more likely to generalise.

5This could lead to confirmation bias – the selection of a small, biased subset of reasons for an event
rather than the complete set of causes.
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4. describing certainty over probability: “The most likely explanation is not always

the best explanation for a person”. This is know as the Certainty effect in Prospect

theory (Kahneman and Tversky, 2013),

5. the result of an interaction, or exchange of knowledge.

Using the utility of explanations in the context of recommender systems and the

philosophical, social, and cognitive preferences of users, we can now examine ways of

evaluating the comprehensibility of explanations.

3.3.1 Comprehensibility

In Section 3.3, we defined the comprehensibility of explanations as the extent to which the

model and the predictions are intuitive and informative. What is not clear yet is what

each of these terms entails. The former measures psychological preferences, including the

amount and complexity of the information, while the latter describes “the appropriate

amount of detail” for a particular person. In this section we present ways to measure

intuitiveness and demonstrate that the amount of detail of informativeness depends on the

target audience (expert vs layman), the task, and the dataset. Consequently, we propose

a high-level guideline to help us measure the semantic informativeness of explanations.

Intuitive A number of studies have examined the comprehensibility of explanation from

the intuitive side (Miller, 1956; Doshi-Velez and Kim, 2017; Freitas, 2014). Three main

factors influence the intuitiveness of explanations as measured in cognitive chunks (Doshi-

Velez and Kim, 2017):

1. form of cognitive chunks – the basic unit of the explanation (e.g., raw features,

semantically meaningful concepts, datapoints);

2. cognitive load of chunks:

(a) number of cognitive chunks: our cognitive load is limited to a maximum of 7

items at a time (Miller, 1956);

(b) level of compositionality: the cognitive load can be managed through organising

the chunks in a structured way;

(c) interactions between cognitive chunks: capture relationships and combinations

of chunks6;

3. uncertainty: how much does the “certainty effect” tax cognitive processing ability.

6Doshi-Velez and Kim (2017) proposes this attribute as a separate factor. In Section 3.3.2, we argue
that these three aspects jointly determine the cognitive load.
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Cognitive load Freitas (2014) proposes measuring the cognitive load of an explanation

using the complexity of the structured relationship, or the model, that describes the

explanation in terms of three metrics: (1) model size (number of parameters), (2) complexity

of the function in terms of (a) degrees of the polynomial (e.g., linear, quadratic, cubic)

or (b) feature interactions (Lou, Caruana, and Gehrke, 2012), and monotonicity (i.e., a

montonic function always varies in the same direction (increasing or decreasing) with any

single input variable) (Freitas, 2014).

Task The complexity of an explanation depends both on the user and the context of the

decision-making process. For example, if a disaster is imminent, and a prompt decision is

needed, a simpler explanation is preferred. However, when time is not a factor, and there

could be ethical considerations (e.g., loan application), then a more exhaustive explanation

might be preferable (Guidotti et al., 2018).

Target Audience Weller (2019) and Tomsett et al. (2018) make the distinction that

there are different stakeholders involved in the explanation of machine learning models.

Depending on the target audience, we want to balance the level of detail or information

content: (scientific realism vs simplification) (Forster, 1986; Forster and Sober, 1994; “The

promise and peril of human evaluation for model interpretability”):

1. scientific realism (descriptive explanations): the most exhaustive possible

description of the model behaviour. This level of detail fulfils the goal of trans-

parency and is useful for detailed evaluation in the cases of debugging, auditing, and

verification.

2. simplification (persuasive explanations): the goal is to communicate effectively to

non-technical or general audience users, to influence their decisions.

We unify the stakeholders identified in Weller (2019) and Tomsett et al. (2018) to

reach 8 distinct stakeholders:

• developer: the agent creating the system (i.e., designing, training, and testing) (Weller,

2019; Tomsett et al., 2018)

• operator: the agent using the system to produce outputs (Tomsett et al., 2018)

• decision maker: the agent using the outputs of the system to draw conclusions (Tom-

sett et al., 2018)

• owner: the agent owning the system (Tomsett et al., 2018; Weller, 2019)

• decision subject: the agent about whom a decision has been made (e.g., a loan

applicant) (Tomsett et al., 2018; Weller, 2019)
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• data subject: the agent whose data was used to train the model (Tomsett et al.,

2018)

• examiner: the agent who is validating and verifying the operation of the system (e.g.,

auditor) (Tomsett et al., 2018; Weller, 2019)

• society: the general public that needs to become comfortable with the strengths and

limitations of the system (Weller, 2019)

Data Type We can broadly classify data types into four categories: tabular (e.g., credit

scoring), sequential (e.g., text, audio or time series), visual (image data), or spatio-temporal

(e.g., video, brain scans). Different data types have varying degrees of comprehensibility,

depending on the type of explanation. For example, Huysmans et al. (2011) demonstrate

that when presenting rules, the most comprehensible form of presentation is a table rather

than a list. Here we focus on tabular and visual data.

Next, we propose that a different level of explainability in terms of cognitive load,

or semantic richness, might be required depending on the task, target audience, and data

type.

3.3.2 Levels of Explainability

We conjecture that to extract powerful knowledge from neural networks, we want to increase

our level of understanding towards more descriptive and scientifically realistic explanations.

In order to measure our degree of understanding and the expressive complexity of the

provided explanations, we propose five distinct levels of interpretability:

• Level 1: feature importance – the knowledge about the contribution of each

feature. Think of this as if we are extracting the simplest possible model linear

regression to approximate our black-box predictor.

• Level 2: feature interactions (combinations) – a more advanced form of explana-

tions to elicit the interactions between features. Level 1 interpretability assumes

marginal independence (i.e., the joint distribution over the input data factorises

into independent components). Level 2 interpretability introduces linear factor

dependencies between the features. Think of this as if we have included extra feature

terms of the form x1x2 to our linear regression model approximation.

• Level 3: interpretable factor descriptions (e.g., concepts) – this stage uses atomic

human-understandable units to describe interactions between the raw variables or

the underlying factors of variation. We give an example of Level 3 interpretability in

Section 3.4.4.1.
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• Level 4: functional descriptions (relationships) – the next stage is the ability

to describe the functions that govern the factor dependencies from Level 3. This

means that instead of saying the contribution of x1 is some arbitrary value v, we

are able to describe the functional family that governs the contribution of factor

x1 or combination of factors x1x2 (e.g., y ∝ sin(x1) , y ∝ x2
1 , y ∝ x

√
x2

1 ). Think of

this as if we are able to extract both the factor interactions and the functions that

describes the behaviour of the output w.r.t. these interaction. Essentially, we would

be able to approximate our black box predictor through a Generalised Additive

Model (McCullagh et al., 1986). The difference between Level 2 and Level 4 ex-ML

is that Level 2 checks for the existence of a dependence, whereas Level 4 describes

the relationship between the dependence and the output.

• Level 5: causal graphs – an even higher form of understanding would be to describe

the causal relationships that the model learned about the data. This stage involves

the use of explanations in multiple scenarios: (1) associating the functions and

feature interactions between all inputs to domain knowledge (e.g., ontologies or

knowledge bases), (2) planning to achieve future goals, and (3) reasoning about what

would have happened in hypothetical situations (Pearl, 2009; Pearl and Mackenzie,

2018). We conjecture that reaching this level of explainability will require close

interactions with domain experts.

A natural question that follows is whether these levels should follow a linear progression.

To illustrate the consecutive progression of the levels let us take an example. Let’s consider

the equation for distance travelled given velocity, time and acceleration: s = vit+ 1
2
at2. To

begin with, the design matrix consists of 3 unknown columns x1, x2, x3. Level 1 feature

importance can signify that all three features are important, x3 is the most important and

x1 is the least important. Level 2 feature interaction description signifies the importance

of x1x3, x2x3, and x2
3. Level 3 would assign human understandable meaning to these

variables as initial velocity (vi), time (t), and acceleration (a). While Levels 1-3 only

indicate the importance of each entity (e.g. features, interactions, concepts) to the model’s

output, Level 4 describes the functional relationship which defines how the model’s output

varies with the entity. Hence, Level 4 would explicitly produce the underlying equation

s = vit + 1
2
at2. Finally, Level 5 would describe the intuition that it is the time and

acceleration that determine the travelled distance, and not vice versa.

Some might argue that Level 4 might be achieved without reaching Level 3, as in s =

x1x3 + 1
2
x2x

2
3. However, we argue that for Level 4 to bring the necessary comprehensibility

sufficient for a diverse set of target audience stakeholders, Level 4 requires both the high

scientific realism of Level 2’s functional descriptions, and the cognitive simplification of

Level 3’s intuitively interpretable factors.
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Section 3.4 illustrates that the vast majority of explanation methods currently fall

under Levels 1 & 2, whereas in Chapters 5 & 6 we propose explanation methods that fall

under Levels 3 & 4, respectively.

3.3.3 Evaluation

One of the key challenges for XAI research is the lack of well-established evaluation

methodologies. Doshi-Velez and Kim (2017) propose three types of evaluation depending

on human engagement and end task complexity – application-grounded, human-grounded,

and functionally-grounded evaluation:

Application-grounded (real task) Application-grounded evaluation involves conduct-

ing domain expert experiments to measure the quality of the system on a a real-world end

task. For instance, if an application is designed to facilitate medical diagnosis, it should be

evaluated on results such as correctly diagnosed patients, identification of new important

facts, and time to correct diagnosis. There are two difficulties with this approach: (1) time

and cost of recruiting a sufficiently large pool of domain experts, requesting approvals and

conducting the experiments; (2) lack of a baselines, although a starting point could be

the performance of the domain expert on the task with and without explanations, or the

explanation of a human vs. the generated explanation.

Human-grounded (simple task) Human-grounded evaluation also involves human

experiments, but they are conducted on synthetic tasks with laypeople. The benefit of this

evaluation is twofold. First, the subject pool increases due to lower expertise requirements.

Second, the general quality of an explanation can be measured through controlled tasks.

Functionally-grounded (proxy tasks) Functionally-grounded evaluation does not

involve human participation. Hence, this evaluation is much cheaper to conduct because it

relies on predefined and measurable notions of interpretability on proxy tasks. Functional

evaluation can reliably measure the predictive accuracy, fidelity, computational complexity,

stability and consistency of the explanations; however, the evaluation of comprehensibility

and utility is less reliable and requires human-based evaluation. Another options is to

define axioms that interpretability methods need to abide to across the entire dataset and

all possible models of a given model class (e.g., neural networks) (Lundberg and Lee, 2017).

We describe the currently used axioms for a particular family of explanation methods in

Section 3.5.2.2.

Chapters 5 & 6 rely on functionally-grounded evaluation. Since functionally-grounded

evaluation is the most prominent form of assessing the quality of interpretability methods,

in Chapter 6 we propose a framework that can be used to benchmark a particular family
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of explanations, concept-based explanations (see Section 3.4.4.1), on functionally-grounded

tasks.

Guidelines Finally, Tintarev and Masthoff (2011) propose four design guidelines for

developing and evaluating explanations:

1. Design with target user benefits in mind and develop evaluation metrics to measure

the extent to which they are accomplished.

2. Presentation of the explanations is critical – it could either strongly enforce a point or

obscure it in confusion.

3. “Be aware that the evaluation of explanations is related to, and may be confounded

with, the functioning of the [underlying model behaviour]”.

4. Consider whether the relationship between the algorithm and the presentation of the

explanation faithfully reflect the underlying behaviour.

In Chapter 4, we highlight that Guidelines 3) & 4) are violated for feature-importance

explanation because they do not reliably reflect the underlying model behaviour and that

to some extent this might be the result of confounding factors. Therefore, we propose that

one way to fulfill these requirements is to evaluate explanation methods in well-controlled

experimental settings – fixed controlled datasets and fixed controlled models. In

Chapter 6, we introduce one fixed controlled dataset evaluation. A fruitful area for further

work would be to define deep learning models, whose behaviour is manually crafted, in

order to evaluate explanations.

3.4 Taxonomy

This thesis focuses on interpretable ML and particularly on interpretability methods for

feed-forward and convolutional neural networks. There are some techniques to enhance

the transparency of naive-Bayes (Kulesza et al., 2011; Becker, Kohavi, and Sommerfield,

2001), decision trees (Ankerst et al., 1999), support vector machines (Fung, Sandilya,

and Rao, 2005), and hidden Markov models (Baum and Petrie, 1966) that we do not

discuss here. Although we briefly mention some techniques particular to recurrent neural

networks (RNNs), this is by far a non-exhaustive list. Research on reinforcement learning

interpretability (e.g., (Kazhdan, Shams, and Liò, 2020)) is also outside the scope of this

survey. For further information on these subjects, we refer the reader to some excellent

surveys (Guidotti et al., 2018; Carvalho, Pereira, and Cardoso, 2019; Adadi and Berrada,

2018; Murdoch et al., 2019) and books (Zhou and Chen, 2018b; Samek et al., 2019; Hall,

2019; Molnar, 2019).
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Several taxonomies for interpretable ML have been developed in parallel with ours (Samek

et al., 2017; Murdoch et al., 2019; Hall, 2019; Adadi and Berrada, 2018; Carvalho, Pereira,

and Cardoso, 2019; Mojsilovic and Mojsilovic, 2020; Guidotti et al., 2018). Here we

unify, expand and reorganise disparate terms from these taxonomies. We are the first to

propose that existing classifications describe the extremes of particular spectra, overlooking

important ideas such as semi-local and network-agnostic explanations. Further, we are the

first to propose that explanations can be seen as functions, and as such they have different

functional domains and ranges.

Our taxonomy describes interpretability approaches in terms of:

• The focus of the explanation: data vs model (Section 3.4.1).

– The stage of development of model-based explanations: intrinsic vs extrinsic

(Section 3.4.2.1).

– The families of algorithms model-based explanations can be applied to: model-

agnostic, model-specific, network-agnostic, network-specific (Section 3.4.2.2).

– The entity of interpretation of the internal workings for network-specific ap-

proaches: neuron, neuron-interactions, layer (Section 3.4.2.3).

• The scope of the information: local, semi-local, global (Section 3.4.3).

• The domain and range of the explanation function: input space, output space, hidden

space, and concept space (Section 3.4.4).

• The presentation of the explanation: importance, mathematical, visual (Section 3.4.5).

Outline In this section we introduce the different categories of explanations, whereas

Sections 3.5 & 3.6 focus on particular families of interpretability approaches relevant to

the remainder of this thesis. Specifically, Chapter 4 expands on the limitations of feature

importance explanations (introduced in Section 3.5). Chapters 5 & 6 rely on the framework

of model extraction (introduced in Section 3.4.5.2) to develop semantically-higher-level

forms of representation analysis explanations (introduced in Section 3.6). In contrast to

existing representation analysis approaches, our CME framework (Chapter 6) highlights

the relationship between hidden representations and concepts rather than the relationship

between hidden representations and inputs or outputs.

3.4.1 Data-based vs Model-based Explanations

Interpretability methods can be broadly divided into two categories depending on whether

we want to understand the variation in the data, in isolation of the model (1) data-

based; or understand the behaviour of a model (2) model-based. In this thesis we focus
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on model-based explanations; therefore, we briefly survey two examples of data-based

explanations – (1) case-base reasoning and (2) disentangling interpretable representations,

before focusing on model-based explanations in more depth.

3.4.1.1 Data-based explanations

Case-based reasoning Case-based reasoning, or exemplar-based reasoning, is an in-

tuitive part of the human decision making process (Aamodt and Plaza, 1994; Cohen,

Freeman, and Wolf, 1996; Newell, Simon, et al., 1972; Cunningham, Doyle, and Loughrey,

2003). The idea is to elicit representative examples, or prototypes, that describe a group

(cluster) of samples that share a certain characteristic (e.g., class label). For example,

k-Nearest Neighbours (KNN) (Fix and Hodges Jr, 1951), K-Means clustering, other types

of Mixture models (Everitt, 1985) can all be seen as forms of case-based reasoning data

explanations. We can also explain the data in terms of the most important features, as

in the case of Latent Direchlet Allocation (LDA) (Blei, Ng, and Jordan, 2003), or sparse

principal components analysis (sprase PCA) (Zou, Hastie, and Tibshirani, 2006). Subject

experiments suggest that humans find case-based reasoning more intuitive than feature

importance, even though both methods convey similar information (Cunningham, Doyle,

and Loughrey, 2003).

There are four broad types of case-based reasoning: (1) samples, (2) features, (3) impor-

tant samples and features (prototypes), and (4) contrastive prototypes (criticisms) (Blei,

Ng, and Jordan, 2003; Kim, Rudin, and Shah, 2014; Kim, Shah, and Doshi-Velez, 2015;

Kim, Khanna, and Koyejo, 2016a).

Figure 3.1 demonstrates the difference between samples, features, and prototypes.

While prototypes boost the intra-group interpretability (i.e., the commonalities between

particular instances that have been classified similarly), criticisms elicit differentiating

factors between prototypes to boost inter -group interpretability (i.e., the aspects of the

data that distinguish one decision from another). For example, the Bayesian Case Model

(BCM) (Kim, Rudin, and Shah, 2014) extracts a set of the most important prototype

features alongside important samples. On the other hand, Mind the Gap (MGM) (Kim,

Shah, and Doshi-Velez, 2015) and MMD-critique framework (Kim, Khanna, and Koyejo,

2016a) describe the separation between groups and the intra-group variation with separating

features and outliers (termed criticisms), respectively.

Remark 3.4.1

User studies (Kim, Shah, and Doshi-Velez, 2015), as well as, philosophy discourses (Miller,

2019), suggest that humans find separation rather than variation more informative.

This type of explanation is termed, contrastive, or counterfactual.
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Figure 3.1: Comparison between Feature Importance explanations computed using Latent
Dirichlet Allocation (LDA) and Prototype explanations computed with a Bayesian Case Model
(BCM). Reproduced from (Kim, Rudin, and Shah, 2014).

Interpretable Representations Autoencoders (Hinton and Salakhutdinov, 2006) and

generative adversarial networks (GANs) present ways to learn the underlying data distribu-

tion and to disentangle the factors of variation that describe the generative process. Two

prominent examples of this are Info-Gan (Chen et al., 2016) and variational autoencoders

VAEs (Kingma and Welling, 2014; Rezende, Mohamed, and Wierstra, 2014; Higgins et al.,

2017). Info-GANs maximise the variational (lower-bounded) mutual information between a

small subset of latent variables and the input data in a min-max game framework. On the

other hand, VAEs use gradient-based optimisation to learn an approximate distribution q,

which maximises the evidence lower bound (i.e., lower bound of the log-likelihood of the

observed data). This technique is called learned approximate inference. Both approaches

extract latent representations that encode independent factors of variation. Each factor

describes the generative process of the observed data in a human-interpretable way. For

example, a factor can be the angle or thickness in digit classification or hairstyle in facial

recognition.

Interpretable representation approaches are powerful tools for gaining information

about the data distribution. However, there might be a potentially infinite number of

factors of variation, such that only distinct subsets are relevant for particular tasks 7.

GANs and VAEs essentially encode an implicit prior over the possible tasks that might

concern us. This prior might introduce blind spots and biases that could be difficult to

7For more details, see Appendix B.2.2.
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detect, or might not be applicable for certain tasks. For example, there maybe be three

factors of variation in a dataset of 2D objects – shape, rotation, and scale. Without

supervision, there is no guarantee that a GAN or a VAE would learn all three factors.

Even if shape and rotation are correctly discovered, there is no way of telling whether

there is a third factor (Locatello et al., 2020). In Chapter 6, we illustrate that the same

scenario can be observed for feed-forward DNNs.

3.4.2 Model-based explanations

Model-based explanations focus on explaining the behaviour of the model explicitly, in the

context of the data. In the remainder of this section, we will describe different types of

model-based interpretability.

3.4.2.1 Intrinsic vs Extrinsic Explanations

Linear sparse models, rule lists (Clancey, 1983; Steels, 1985; Van Melle, 1980; Lakkaraju,

Bach, and Leskovec, 2016), decision trees (Quinlan, 1986), and case-based reasoning

approaches (e.g., KNN) (Fix and Hodges Jr, 1951) have higher comprehensibility (i.e.,

they are more readily interpretable) (Freitas, 2014; Huysmans et al., 2011; Ribeiro, Singh,

and Guestrin, 2016; Kim, Rudin, and Shah, 2014; Hall, 2019). The explanation of

such models is part of their internal operation. As such, these explanations cannot be

immediately transferred to different types of models. Hence, we call methods that provide

explanations on the basis of their inherent design intrinsic, intrinsically transparent,

white-box (Abdollahi and Nasraoui, 2018), glass-box (Zahavy, Ben-Zrihem, and Mannor,

2016), or transparent (Hall, 2019) models. On the other hand, neural networks involve

complex behaviours with billions of parameters, which makes them difficult to interpret

intrinsically. Therefore, we need to develop post-hoc methods that explain the behaviour

of such models after they have been trained. We refer to such explainability methods as

extrinsic. In this thesis, we focus on extrinsic interpretability, thus, we briefly list the

recent developments of intrinsic methods.

Recent intrinsic methods Intrinsically transparent models trade off model complexity

(consequently performance) for increased interpretability. Recently, more complex models

that maintain a higher level of performance while remaining relatively interprertable have

been proposed. Examples include Supersparse Linear Integer Models (SLIM) (Ustun

and Rudin, 2016), Explainable Neural Networks (XNNs) (Vaughan et al., 2018), Gener-

alised Additive Models with interactions (GA2Ms) (Lou et al., 2013), and Bayesian Rule

Lists (Letham et al., 2015; Wang et al., 2016).

On the other hand, neural networks have a very low intrinsic comprehensibility; hence,
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to increase their transparency, we usually require extrinsic, or post hoc, methods, which

are developed separately from the model.

Attention Intrinsic techniques have been developed to increase the transparency of

neural networks. For instance, recently it has been proposed that attention mecha-

nisms (Bahdanau, Cho, and Bengio, 2015; Xu et al., 2015; Paulus, Xiong, and Socher,

2017; Lei, 2017) can be used to provide explanations in the context of RNNs on NLP tasks

and CNNs on vision tasks (Zhou et al., 2016; Rocktäschel et al., 2016; Walker, Ji, and

Stent, 2018; Thorne et al., 2019). However, it is still unclear whether attention mechanism

can be faithfully used to explain RNN models (Jain and Wallace, 2019; Wiegreffe and

Pinter, 2019).

Another example of more intrinsically explainable architectures are RNNs with adaptive

computation time (Graves, 2016) and Differential Neural Computers (DNCs) (Graves

et al., 2016). These models encode internal states that give their developer an intuition

about the information that the network is using and the current beliefs of the system.

Let us now turn our attention to extrinsic approaches.

3.4.2.2 Model-agnostic vs Model-specific Extrinsic Explanations

Extrinsic methods range from model-agnostic to model-specific. Model-agnostic approaches

are applicable across a wide range of ML models, albeit at the cost of explanations

which have lower complexity. On the other hand, model-specific approaches increase the

transparency of the examined model, but are only applicable to specific model families.

In this thesis, we focus on neural-network specific approaches, which fall in-between

model-agnostic and model-specific. Neural-network specific approaches can be broadly

categorised into two groups: network, or architecture, agnostic; and network, or

architecture,-specific. For example, Deconvolution (Zeiler and Fergus, 2014) only works

for CNNs with ReLU activations, while Layer-wise Relevance Propagation (LRP) (Bach

et al., 2015) can be applied to any network with monotonous activations. In contrast,

model-agnostic approaches have access only to the inputs and outputs of the model, so

they usually train a surrogate model to approximate the behaviour of the original

model (Baehrens et al., 2010; Wang et al., 2012; Ribeiro, Singh, and Guestrin, 2016). As

such, the model-agnostic approaches fall under the category of functional approaches

because they consider the model as a black-box and assume access only to the input-output

relationship. On the other hand, topological approaches are a type of neural-network

specific approaches, which assume access to and use the topology of the network to produce

explanations with higher fidelity.
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3.4.2.3 Unit-wise vs Layer-wise

Topological approaches can be further separated into unit-, or neuron-wise, and layer-

wise. Unit-wise approaches examine individual neurons (Erhan et al., 2009; Girshick

et al., 2014; Goodfellow et al., 2009), whereas layer-wise methods investigate the behaviour

of the entire representation within a layer (i.e., treat all neurons as a group) (Girshick

et al., 2014; Yosinski et al., 2014; Williams, 1986; Mahendran and Vedaldi, 2015; Alain

and Bengio, 2017).

If unit-wise methods sit at one extreme of the spectrum, and layer-wise ones sit at

the other, we argue that there is a lack of methods that sit in between, which we term

neuron-interaction approaches. In Section 2.4, we described the hypothesis that information

in a DNN is represented in the form of partially-distributed representations, such that

groups of inter-neuron interactions encode the relevant information. We argue that very

few network-specific approaches consider neuron-interactions. In contrast, in Chapter 5,

we propose a method to analyse neural networks leveraging precisely these interactions.

3.4.3 Granularity/Scope of information

The task and stakeholder determine the granularity (coarseness), or the scope of the

information for an explanation (Weller, 2017; Tomsett et al., 2018). The spectrum of

explanation granularity ranges from local, or instance-specific, to global, or model-centric

explanations. The terms local and global refer to the size of the neighbourhood that

the explanation is describing. As such, the scope of information can be seen as the

region within which an explanation is valid (also known as coverage) (Ribeiro, Singh, and

Guestrin, 2018). For instance, local explanations describe the behaviour of the model

or the characteristics of the data for a particular sample, or instance; hence, the term

instance-specific (e.g., feature importance) (Simonyan, Vedaldi, and Zisserman, 2013;

Zeiler and Fergus, 2014; Zintgraf et al., 2017; Shrikumar, Greenside, and Kundaje, 2017;

Landecker et al., 2013; Bach et al., 2015; Montavon et al., 2017).

On the other hand, global explanations give an overall description of model behaviour

across the entire dataset (e.g., activation maximisation (Erhan et al., 2009) and model

extraction (Zilke, Menćıa, and Janssen, 2016; Chen et al., 2017; Krishnan, Sivakumar,

and Bhattacharya, 1999; Sato and Tsukimoto, 2001; Kazhdan, Shams, and Liò, 2020)).

Once again, we argue that local and global explanations are the extremes of a spectrum,

such that in between there exist semi-local explanations. We understand semi-local

explanations to mean descriptions of groups of points, or sub-populations. In Chapter 5,

we propose one type of semi-local explanations – class-specific explanations. That is,

explanations of the model’s behaviour in relation to all datapoints of the same class label.

The benefit of instance-based explanations is that they provide information about a
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specific point of interest, which is obscured in the global view. Local explanations are

useful for the decision subjects, who receive valuable feedback about the decision for their

case. In contrast, global explanations are useful for developers and examiners, who can

verify that the system is operating as intended, identify biases, and alleviate potential

problems. However, global explanations could give too high level of an understanding.

Therefore, we propose semi-local explanations, as a means to increase the granularity of

our understanding. Additionally, in Chapter 6, we propose a framework that can provide

both local and global explanations, thus getting the best of both worlds.

3.4.4 Domain space of explanations

An alternative way to look at explanations is as mappings between different spaces. In

particular, explanations can map between any combination of the following spaces: a)

input space; b) output space; c) hidden space; d) concept space.

For example, case-based reasoning gives explanations in terms of the input space.

Importance-based explanations describe the input-output mapping of a model (i.e., what

kind of inputs are important for specific outputs). Here we describe two additional spaces

that can be used to enhance our interpretation of DNNs: the concept space and the hidden

space.

3.4.4.1 Concept-based Explanations

A concept is a human-understandable unit, rather than a raw variable, single feature,

pixel, or character. For example, the concepts of a wheel and a door are important for the

detection of cars. Concept-based approaches aim to provide explanations of a DNN model

in terms of these human-understandable units. Figure 3.2 illustrates an example of using

concept explanations for bird recognition.

Figure 3.2: Concept-based model extraction describes the decision making process of a bird
classifier in terms of human-understandable units such as head and wing colour. Image reproduced
from (Kazhdan et al., 2020).
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Remark 3.4.2

The understanding of the term “feature” has evolved. The term “variable” used to

describe the raw input, whereas the term “feature” represented more general or useful

information that is extracted from raw input variables (Guyon and Elisseeff, 2003).

More recently, the idea of “concepts” emerged to describe the previous meaning of a

feature, while the term “feature” is now usually used to describe a “variable”.

Concept-based explanations have been used in a wide range of different ways, including:

inspecting what a model has learned (Ghorbani et al., 2019; Yeh et al., 2019), providing

class-specific explanations (Kim et al., 2017), and discovering causal relations of con-

cepts (Goyal, Shalit, and Kim, 2019). For example, Testing with Concept Activation

Vectors (TCAV) (Kim et al., 2018) examines the behaviour of a hidden representations

within a particular model layer in directions of manually pre-defined concepts. Automatic

Concept Extraction (ACE) (Ghorbani et al., 2019) is a way to extract such concept direc-

tions automatically using superpixel image patches. Interpretable basis functions (Zhou

et al., 2018) use only the penultimate layer of a neural network to define a context-specific

concept space as a linear combination of basis input space vectors. Network Dissection (Bau

et al., 2017a) and Net2Vec (Fong and Vedaldi, 2018) use the convolutional layers to perform

concept-based segmentation using concept bounding box annotations.

Similarly to Concept-based Model Extraction (CME – described in Chapter 6), Net2Vec

proposes to classify rather than segment concepts. In parallel with our work several

approaches have been proposed that also fall under Levels 3 & 4 explainability categories.

Concept Bottleneck Models (CBMs) (Koh et al., 2020) and Concept Whitening (Chen, Bei,

and Rudin, 2020) also produce an intermediate set of human-specified concepts given a

particular input. ProtoPNet introduces an intrinsic concept-based explanation method that

uses case-based reasoning to compare image patches to prototypes in training set (Chen

et al., 2019a). As such, the image patches can be seen as another form of concepts that

provide local explanations. CBMs and Concept Whitening methods regularise a CNN to

output a concept representation within one of their layers, whereas ProtoPNet introduces

a new architecture. Hence, these methods can be classified as intrinsic, while CME is

an extrinsic approach since it does not require any model alterations. In addition, these

methods provide only local explanations. On the other hand, CME provides both local

and global explanations because it can describe the relationships between concepts and

the model outputs in general, as well as for individual predictions.

There are three main limitations to current concept-based explanation approaches:

First, existing concept-based explanation approaches are capable of handling binary-valued

concepts only, which means that multi-valued concepts have to be binarised first. For

instance, given a concept such as “shape”, with possible values ‘square’ and ‘circle’, these
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approaches have to convert “shape” into two binary concepts ‘is square’, and ‘is circle’.

Therefore, the concept space of these approaches encodes the presence or absence of every

possible concept value in a separate dimension, using negative sampling. This definition has

three important implications: (1) these approaches are computationally expensive because

the concept space has an extremely high cardinality; (2) mutually exclusive concepts can

be assigned to a single datapoint; (3) mappings from concept space to output space are

highly error-prone because negative sampling is only capable of describing directions rather

than regions in hidden space. In contrast, the concept space we define in Chapter 6 is

axis-aligned with concept variation, decreasing the cardinality, accounting for mutually

exclusive concepts, and resulting in better mapping quality.

Second, extracting concepts from a single layer imposes an unnecessary trade-off

between low- and high-level concepts. Chapter 6 demonstrates that different layers of

the network have varying sensitivity concerning different concepts. Hence, we can extract

concepts with higher accuracy by focusing on multiple layers.

Third, these methods can only describe concept importance for particular outputs,

whereas our method, CME, can describe the functional relationship between concepts

and outputs. Consequently, our approach provides Level 4 explainability and makes a

substantial increase in the level of semantic information provided in comparison to input-

output explanation methods such as importance-based explanations (See Section 3.5).

3.4.5 Presentation

Explanation methods may be classified depending on the medium through which they

communicate the learned information to the user as importance-based, mathematical, or

visual.

3.4.5.1 Importance-based

Importance-based explanation describe the contribution of a particular entity (e.g., sam-

ple or feature) to a specific outcome. Importance-based explanations are usually local

explanations, although in Chapters 5 & 6 we demonstrate that it is possible to aggregate

importance-based explanations to provide global explainability. We introduce importance-

based explanations in Section 3.5.

3.4.5.2 Mathematical

Mathematical explanations are typically global explanations that describe the functional

properties of the model using rules, decision tress, or polynomials. A prominent example

of mathematical explanations is the model extraction vein of work.
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Model Extraction We can view concept-based explanation methods as a way of com-

municating the transformation that a DNN applies between the input space and concept

space. On the other hand, model extraction techniques extract rules (Andrews, Diederich,

and Tickle, 1995; Jacobsson, 2005; Zilke, Menćıa, and Janssen, 2016; Chen et al., 2017),

decision trees (Krishnan, Sivakumar, and Bhattacharya, 1999; Sato and Tsukimoto, 2001),

or other more readily interpretable models (Kazhdan, Shams, and Liò, 2020) to describe

how the model’s output varies w.r.t. or across the entire domain of the input fea-

tures (Tan et al., 2019). Provided the approximation quality (referred to as fidelity) is

high enough, an extracted model can preserve many statistical properties of the original

model, while remaining open to interpretation.

Similarly, CME (the method we propose in Chapter 6) approximates complex models

with simpler, more interpretable ones. However, our extracted models present the variation

of model output w.r.t. human-interpretable concepts, not input features.

Model extraction approaches are useful because they provide global explanations about

the model behaviour, so that a wide range of stakeholders, such as developers, operators,

decision makers, examiners, and owners, can make sure the decision making process is

aligned with their expectations. Additionally, the complex black-box model can be replaced

with the extracted model to provide higher predictability or the decision maker can adopt

their choice based on the learned information and not use any model all together. For

example, in the healthcare and criminal justice systems simple checkbox-style scoring

systems can be extracted to standardise decision making (Rudin and Ustun, 2018).

3.4.5.3 Visual

Visualisation approaches can be split on the basis of the context domain they are portraying

into: synthetic input generation (e.g., Activation Maximisation (Erhan et al., 2009) ,

Inversion (Williams, 1986; Mahendran and Vedaldi, 2015)), dimensonality reduction (e.g.,

PCA (Hotelling, 1933), t-SNE (Maaten and Hinton, 2008)), functional description (e.g.,

Partial dependence plots (PDP) (Friedman, 2001), Accumulated local effects (ALE)) (Apley

and Zhu, 2016), importance heatmaps, and architecture visualisation.

Synthetic input generation methods interpret the hidden-to-input relationship.

These methods solve an optimisation problem to produce inputs that describe the stimulus,

which maximally activates a neuron or group of neurons. Dimensonality reduction

techniques project the hidden space into lower dimensions to investigate the properties

of the internal representations. Functional description visualisations describe the

behaviour of the model or its internal workings across a range of inputs. They depict

the relationship between a specific feature and the output of the model by marginalising

the effect of the remaining features. As such, the functional description explanations

give global explanations of the model behaviour in terms of a particular feature. An
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Figure 3.3: An example of heatmap explanation using Guided-backpropagation (Springenberg
et al., 2015). Left: superimposed importance heatmap over an input image to a DNN. The
different colours indicate whether a particular pixel provides evidence in favour of, or against
a particular decision. Right: the absolute values of the heatmap pixels, demonstrating the
magnitude of the importance of each pixel. Image reproduced from (Grün et al., 2016).

importance heatmap, also called class-saliency heatmap, sensitivity map, saliency map,

or pixel attribution map (Smilkov et al., 2017), is a popular technique for communicating

the contribution of each pixel to a model’s final decision (Samek et al., 2017; Grün et al.,

2016; Simonyan, Vedaldi, and Zisserman, 2013; Zeiler and Fergus, 2014; Bach et al.,

2015; Li et al., 2015). Figure 3.3 shows an example of an importance heatmap. Finally,

architecture visualisation techniques depict the information flow from the input to the

output in terms of relevant neurons and the properties of these neurons. As such these

techniques are part of the network-specific category.

We argue that a high level of comprehensibility about the model’s behaviour requires

the use of all three forms of explanation presentation. Existing approaches predominantly

rely on only one presentation medium at a time, as we will demonstrate in the following

sections. However, we argue that explanations may be enhanced when multiple mediums

are combined. Hence, Chapter 4 elucidates the limitations of importance-based explana-

tions using dimensionality reduction and functional description explanations. Additionally,

in Chapter 5 we combine importance-based explanations, heatmap visualisations, and

architecture visualisations to illustrate the limitations of relying on a single presenta-

tion medium to provide explanations. Finally, in Chapter 6, we combine mathematical

explanations with architecture visualisations to describe the model behaviour.

Next, we look at importance-based explanations in more details, whereas in Section 3.6

we look at some of the visual explanations in the context of hidden representation analysis.
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3.5 Importance- / Contribution-based Explanations

The most popular family of approaches for interpretability in practise are importance-based

explanations (Bhatt et al., 2020). Importance-based explanations may be divided into

three main categories: feature importance (Landecker et al., 2013), sample importance, and

hybrids (e.g., case-based reasoning, which we discussed in Section 3.4.1). In Chapter 4, we

illustrate that despite their ubiquitous application (Bhatt et al., 2020), feature importance

explanations should not be used to assess the fairness of a model. Hence, for brevity we

mention sample importance in Section 3.5.1. Then Section 3.5.2 describes the different

families of feature importance explanations methods that we evaluate in Chapter 4.

3.5.1 Sample Importance

Sample importance explanations are type of importance based explanations that indicate

the influence of different training points to the final decision. The best example of this

type of explanation is the k-Nearest Neighbours algorithm (KNN) (Fix and Hodges Jr,

1951). Post-hoc model-based version of sample importance methods include influence

functions (Koh and Liang, 2017), influential samples (Anirudh et al., 2017), representer

points (Yeh et al., 2018). These methods provide rankings of examples that most positively

and negatively influenced the decisions.

Sample importance explanations are useful for machine learning engineers to fine-tune

and debug the system and guide future data acquisition efforts. However, depending on

the privacy context, it might not be appropriate to share sample importance explanations

with the end-users.

Remark 3.5.1

Importance can only be an absolute value. For example, a feature is important or

not. On the other hand, the contribution, or attribution, describes how much the

feature is contributing positively or negatively towards the output. Positive implies

that increasing the feature will increase the likelihood of the outcome, while negative

contribution implies the opposite (Samek et al., 2019).

3.5.2 Feature Importance / Contribution

Feature importance methods provide scores for a given data point that show the contribu-

tion of each feature (e.g., pixel, patch, word vector) of the input to the algorithm’s decision.

Several taxonomies for feature importance explanations have been developed (Ancona

et al., 2019; Fong and Vedaldi, 2019; Samek et al., 2017; Grün et al., 2016; Adadi and

Berrada, 2018). Although numerous terms have been used to describe the category of
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feature-importance explanations, such as sensitivity analysis, saliency-based, attribution

methods, backpropagation-based, deconvolutional, or gradient-based (Samek et al., 2017;

Grün et al., 2016; Adadi and Berrada, 2018), the majority of feature importance explana-

tions can be described with a single equation)8 (Ancona et al., 2018; Lundberg and Lee,

2017). Hence, we propose to categorise these taxonomies in terms of the properties they

describe: (1) mathematical properties; (2) produced information properties.

On the basis of the mathematical formulation, feature importance explanations may be

divided into two groups (Fong and Vedaldi, 2019): (1) gradient-based, (2) perturbation-

based. Perturbation-based approaches apply discrete alterations to the feature values

to estimate the contribution of each feature. In contrast, gradient-based approaches rely

on gradient information, so they can be seen as the local infinitesimally small version of

perturbation-based approaches. Due to this subtle difference Ancona et al. (2019) proposes

another system of classification, which distinguishes between the type of information that

feature importance methods produce: (1) sensitivity analysis, (2) salience.

Sensitivity analysis describes how the output changes due to infinitesimally small

perturbations in one or more input variables. Since these methods approximate the first-

order Taylor expansion, they are only accurate within infinitesimal small neighbourhoods

around a target point. In contrast, the salience measures the marginal effect of each

feature to the output with respect to a particular reference point. That is, the explanation

describes the change in the outcome that follows from removing or changing one particular

feature to a different value (Ancona et al., 2019). Since salience measures the marginal

effect, the sum of the contributions of each feature need to sum to one. In other words,

sensitivity analysis describes the magnitude and direction of the change in the prediction

within very local neighbourhoods, whereas salience methods describe the contribution of a

significant feature change to the output.

Essentially, gradient-based methods provide sensitivity analysis, while perturbation-

based approaches measure the salience. In Chapter 4, we propose a method that can mask

the underlying importance of a feature from both gradient-based and perturbation-based

methods.

3.5.2.1 Gradient-based methods

Gradient-based methods evaluate the gradient of the DNN output with respect to the

features at a particular point (Samek et al., 2017; Grün et al., 2016; Simonyan, Vedaldi, and

Zisserman, 2013; Zeiler and Fergus, 2014; Bach et al., 2015; Li et al., 2015). Gradient-based

methods may be categorised into two groups (1.1) functional and (1.2) topological.

8In Chapter 5.2, equation 5.1 presents this unifying equation in more detail.
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Functional Functional methods treat the model as a black-box function. Hence, they

explain the relationship the model has learned between inputs and outputs in the form of

individual or group of samples or features (Zeiler and Fergus, 2014; Simonyan, Vedaldi, and

Zisserman, 2013; Zintgraf et al., 2017; Ribeiro, Singh, and Guestrin, 2016). Examples of

functional methods include Sensitivity Analysis (Simonyan, Vedaldi, and Zisserman, 2013;

Zurada, Malinowski, and Cloete, 1994), SmoothGrad (Smilkov et al., 2017)9, Gradients ×
Input (Shrikumar et al., 2016), and Integrated Gradients (Sundararajan, Taly, and Yan,

2017).

Topological On the other hand, topological, or contribution propagation, methods are

network-specific approaches that treat the model as a graph and redistribute the effect of

the lower layers on the output in a layer-by-layer fashion (Landecker et al., 2013; Bach et al.,

2015; Montavon et al., 2017). The basic idea is to traverse the network in a layer-by-layer

fashion and compute a relevance, or importance, score of each neuron (Landecker et al.,

2013; Bach et al., 2015; Montavon et al., 2017; Ancona et al., 2019). Examples of this

approach include contribution propagation (Landecker et al., 2013), Layer-wise-relevance

propagation (LRP) (Bach et al., 2015), Deep Taylor Decomposition (Montavon et al., 2017),

Excitation Propagation (Zhang et al., 2016), Guided-Backpropagation (Springenberg et al.,

2015), Grad-CAM (Selvaraju et al., 2016), DeepLift (Shrikumar, Greenside, and Kundaje,

2017), PatternNet (Kindermans et al., 2017), and Pattern Atttribution (Kindermans et al.,

2017). Since a weight of zero can be used to represent missing or blocked connection, the

contribution propagation approach is usually (with the exception of Excitation Propagation

and Guided-backpropagation, which are defined explicitly for ReLU activations) applicable

to any architecture (e.g., fully-connected, convolutional, recurrent).

Contribution propagation is comparable to the DGINN approach, which we propose

in Chapter 5, in that we also propagate the contributions. Contrary to the majority of

propagation contribution methods, we do not impose the constraint that each neuron has to

have a contribution. Approaches that do not distribute contribution to every neuron, such

as our approach, Excitation Propagation (Zhang et al., 2016), and PatternNet (Kindermans

et al., 2017) fall under the sub-category of topological approaches called constrained

redistribution.

The premises behind constrained redistribution approaches are the sparsity and manifold

assumptions, which mandate that very few neurons participate in the representation of each

factor of variation. While Excitation Backpropagation uses a probabilistic winner-take-all

sampling across the neurons that is limited to ReLU activations and positive weight

connections between adjacent layers, we use outlier analysis to select multiple relevant

neurons that allows for various activation functions and parameter settings. PatternNet

9Some authors consider SmoothGrad both a gradient-based and perturbation-based approach because
it samples points in the neighbourhood of the target point to approximate the gradient.
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extracts a denoised signal from the data based on the covariance for each neuron called

pattern, and exchanges the neuron weights for the pattern weights.

3.5.2.2 Perturbation-based methods

Perturbation-based techniques apply discrete modifications to each feature to measure its

contribution. We propose that these methods may be divided into two sub-groups: (2.1)

surrogate models and (2.2) ablation-based. Surrogate models approximate the output of a

black-box model with a linear (or higher comprehensibility) classifier on datapoints sampled

in the local neighbourhood of the target point. Ablation-based approaches remove or mask

a feature at a particular point to measure the feature’s contribution. A certain subset of

surrogate models can be categorised under contrastive and counterfactual explanations.

These types of explanations answer the question of why “x” and not “y” and describe the

minimum changes of the features that would have lead to this different outcome. Finally,

perturbation-based methods must follow well-prescribed axioms since they describe the

marginal contribution of each feature.

Surrogate models The best example of surrogate models is the Local Interpretable

Model-agnostic Explanations (LIME) (Ribeiro, Singh, and Guestrin, 2016) approach. LIME

samples points within the neighbourhood of the target point and trains a linear model

to approximate the original model’s output. The challenge with linear approximations is

that they only provide relative feature importance. Hence, the set of sufficiently important

features is not clear (Kim et al., 2018). For this reason, Anchors (Ribeiro, Singh, and

Guestrin, 2018) and Local foil trees (Waa et al., 2018) approximate the model with if-then

rule lists and one-versus-all decision trees respectively, which describe more fully all the

sufficiently important features.

The main benefit of surrogate model approaches is that they are model-agnostic and

do not require access to the model. The major drawback of surrogate models is their

exceedingly high computational cost to explain just a single point10.

Remark 3.5.2

It is noteworthy that the contribution of a variable sometimes depends on interactions

with other variables. For instance, in the AND problem, we would need to perturb

both features (e.g., x1 = 0, x2 = 0) to observe their influence (Robnik-Šikonja and

Kononenko, 2008). Still, this does not provide a higher level of explainability (level

2) since it only measure the importance rather than communicating the dependence

between the features.

10The computation takes several minutes per datapoint for a GoogleNet model (Lapuschkin, 2019).
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Figure 3.4: Illustration of the occlusion principle in prediction difference analysis. For an input
image x, a patch xw of size k is masked, where the mask is conditioned on the neighbourhood of
the patch x̂w with size l > k. Image reproduced from (Zintgraf et al., 2017).

Contrastive and Counterfactual Explanations The outputs of Anchors and Local

foil trees (Ribeiro, Singh, and Guestrin, 2018) are a type of counterfactual explanations

because they describe all the minimum changes that would have lead to a different

outcome (Wachter, Mittelstadt, and Russell, 2017; Adadi and Berrada, 2018; Lipton,

1990; Hendricks et al., 2018). This set of minimum changes is known as contrastive

perturbations (Dhurandhar et al., 2018). Counterfactual explanations answer the question:

“Why this output (the fact) instead of another (the foil)” (Waa et al., 2018; Miller, 2019).

Feature importance explanations answer this question with an answer to another question:

Which feature and by how much do we need to change to affect the outcome?

On the other hand, contrastive explanations describe not only the minimal and

sufficient features that need to be present, but also the minimal and necessarily absent

features (Dhurandhar et al., 2018). Examples of contrastive approaches include (Wachter,

Mittelstadt, and Russell, 2017), Contrastive Explanation Method (CEM) (Dhurandhar

et al., 2018), and Model Agnostic Contrastive Explanations (MACEM) (Dhurandhar et al.,

2020), which uses an optimisation procedure to adversarial samples that describe the set

of contrastive perturbations.

Ablation-based Ablation-based methods rely on the principle of occlusion, which

removes inputs (or patches of pixels in the case of images) to measure the change in

the prediction. The idea is that irrelevant parts results in relatively smaller prediction

differences (Robnik-Šikonja and Kononenko, 2008; Zeiler and Fergus, 2014; Goyal et al.,

2016; Grün et al., 2016).

One of the most theoretically sound approaches in this vein of work are Shapley values,
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which fulfil all feature importance axioms that we describe later (Shapley, 1953; Strumbelj

and Kononenko, 2010). Shapley values are a game-theory approach that computes the

contribution of every possible feature combination, which gives a theoretical guarantee

that all feature interactions have been accounted for (Shapley, 1953). IME (Štrumbelj,

Kononenko, and Šikonja, 2009; Strumbelj and Kononenko, 2010) is an approach that

uses Shapley values to compute all possible feature combination sets. Unfortunately, this

approach is not feasible for high-dimensional data such as images.

For this reasons, different approximations have been developed that approximate

Shapley values directly (e.g., SHAP (Lundberg and Lee, 2017)) or that approximate the

possible feature combinations with various sampling techniques. The most challenging part

is determining the masking procedure. For example, Occlusion masks image patches with

constant pixel values (Zeiler and Fergus, 2014) or randomised pixel values (Zhou et al.,

2014), whereas prediction difference analysis (Zintgraf et al., 2017) masks image patches

with conditional multivariate sampling (see Figure 3.4). Other examples of perturbation

methods change one-variable-at-a-time (e.g., EXPLAIN (Robnik-Šikonja and Kononenko,

2008), leave-one-covariate-out (LOCO) (Lei et al., 2018), and Feedback (Cao et al., 2015)).

One variable at a time approaches are simple and computationally cheap, however,

these benefits come at the price of missing feature interactions.

Remark 3.5.3

SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017) assumes feature

independence and model linearity, which are the main benefits that stem from the full

Shapley computation. In Chapter 4 we demonstrate that due to these assumptions,

SHAP is equally fragile as other gradient-based methods to model perturbations.

Axioms Since salience methods measure the marginal contribution of each feature with

respect to a reference point, they must abide by specific requirements:

A salience explanation approach needs to fulfil the following properties:

• sensitive: a feature is assigned importance if there exists a perturbation of this

feature, which affects the output (Sundararajan, Taly, and Yan, 2017),

• additive: the feature importance values should sum to the total change in prediction

(also referred to as conservation axiom, or summation to delta) (Lundberg and Lee,

2017; Shrikumar, Greenside, and Kundaje, 2017),

• locally faithful: the explanation accurately describes changes in the output within

the neighbourhood of the target point (also referred to as continuity)11 (Lundberg

11We can think of this property as the analogy of adversarial examples for explanation methods.
Assuming an explainer g, then g(x) ≈ g(x+ ε).
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and Lee, 2017; Montavon, Samek, and Müller, 2018),

• symmetry: features containing identical information are assigned equal contribu-

tion (Lundberg and Lee, 2017),

• null: features that do not contain information are not attributed any value (also

known as the dummy axiom) (Strumbelj and Kononenko, 2010; Lundberg and Lee,

2017),

• consistency: the explanation does not vary between different models (also referred

to as implementation invariance) (Sundararajan, Taly, and Yan, 2017).

The benefit of the axiomatic approach is that we can theoretically study the properties

of explanation techniques. For example, it can be demonstrated theoretically Gradient ×
input is not locally faithful, while LRP is (Montavon, 2019). In Chapter 4, we demonstrate

that both gradient-based and perturbation-based approaches do not fulfil the consistency

requirement.

3.5.2.3 Limitations

Despite their ubiquitous application and significant contribution to the field, feature

importance explanations remain lacking in three main aspects: methodological, adversarial,

and cognitive.

Methodological fragility It has been demonstrated that many gradient-based expla-

nations do not change when the predictions change (Adebayo et al., 2018). One possible

explanation for this finding comes from the fact that Guided backpropagation and De-

convolution conduct partial image recovery, which is independent of the output. In fact,

gradient-based methods are exponentially less sensitive or even independent of the param-

eters of later layers (Adebayo et al., 2018; “When Explanations Lie: Why Many Modified

BP Attributions Fail”).

One reasons for the decreased sensitivity of higher layers might be that lower layers

seem to play a more important role in the decision making process (Raghu et al., 2017).

Another possibility might be that DNNs with ReLUs have highly fluctuating partial

derivatives (Smilkov et al., 2017). These violent oscillations are due to the fact that

techniques that rely on functional gradient or simple Taylor decomposition are sensitive to

noise in the derivatives and gradient shattering (i.e., the exponential increase of regions

with network depth leads to highly varying and discontinuous gradient values) (Montavon,

Samek, and Müller, 2018). This is one of the reasons why heatmaps produced with

sensitivity analysis are noisy. Yet another possible reason could be that feature importance

explanations predominantly describe only very local model behaviour (Jiang et al., 2018).
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This scenario makes any conclusions about the generalisation of the decision or the

explanation potentially useless.

Adversarial fragility Adversarial examples have been show to fool classification accu-

racy by perturbing data points (Szegedy et al., 2014). Later it was observed that many

explanation methods are fragile with respect to small changes in the raw features of a

data point, even if the classification is unaffected (Adebayo et al., 2018; Alvarez-Melis

and Jaakkola, 2018; Kindermans et al., 2019; Alvarez-Melis and Jaakkola, 2018). Tiny

adversarial perturbations to data inputs can be generated so that the classification remains

unchanged, but the explanation returned is very different (Ghorbani, Abid, and Zou, 2019).

The reason for this phenomenon seems to be an excessively large curvature (Dombrowski

et al., 2019) 12.

In contrast, in Chapter 4 we do not perturb the data. Instead, we modify the model

in order to manipulate the explanations of conventional saliency methods. In particular,

we aim to modify the model so that for any given data point, multiple explanation

methods will not show the sensitive feature as important - even if in fact it is. Very

recently, some works explored similar ideas. Pruthi et al. (2019) examined how attention-

based methods could be fooled. Jain and Wallace (2019) showed that “attention is not

explanation”’, demonstrating that attention maps could be manipulated after training

without altering predictions. Heo, Joo, and Moon (2019) considered modifying vision

models to control explanations. Slack et al. (2019) employed a ‘scaffolding’ construction

specifically to fool a small subset of the methods we investigatted – Local Interpretable

Model-Agnostic Explanations ‘LIME’ (Ribeiro, Singh, and Guestrin, 2016) and Shapley

Values ‘SHAP’ (Lundberg and Lee, 2017) explanation methods.

Cognitive fragility Human experiments also demonstrate that feature importance

explanations do not necessarily increase human understanding, trust, or ability to correct

mistakes in a model (Poursabzi-Sangdeh et al., 2018; Kim et al., 2018). This is because

humans are subject to different biases (Adebayo et al., 2018; Abdollahi and Nasraoui,

2018; Pohl and Pohl, 2004):

1. selection bias: select or exclude certain sample when collecting data due to the

remaining biases,

2. confirmation bias: search for reasons that validate initial believes and conclusions,

3. implicit bias: unconscious tendency to favour a particular sub-population,

4. over-generalisation bias: making general conclusions from small and overly spe-

cific sample sizes,

12See Appendix C.2.2 for more details.
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5. automation bias: tendency to favour decisions from automated systems,

6. reporting bias: disclose only positive rather than negative results.

Because of the automation, selection, and confirmation bias people would accept

“sensible” explanation for models producing random outputs (Adebayo et al., 2018). Ad-

ditionally, feature importance explanations provide only relative importance of features,

which does not communicate any information about feature interactions. This limitation

prevents them from describing model behaviour at levels of explainability higher than level

1. Feature importance explanations often lead to over-generalisation bias of extrapolating

overall model behaviour based on explanations about a single instance. In order to resolve

this issue, in Chapter 5 we propose semi-local explanations that report model behaviour

across a wider range of samples. Furthermore, Chapter 6 introduces a framework for both

local and global explanations.

3.6 Representation Analysis

Representation analysis, or hidden space analysis, aims to increase the transparency

of the latent representations in DNNs. A variety of techniques has been developed to

analyse and visualise the hidden representations of DNN models in relation to their inputs

or output labels (Alain and Bengio, 2017; Montavon, Braun, and Müller, 2011; Duch, 2003;

Tenenbaum, De Silva, and Langford, 2000; Tenenbaum and Freeman, 1997). In contrast, in

Chapter 6 we study the relationship between hidden representations and concepts, showing

that representations gradually build sensitivity to relevant concepts and invariance to

irrelevant concepts (see Section 6). Similarly, an invertible generative model can be trained

to learn an intermediate representation that could translate between the latent space and

a more human-interpretable space (Adel, Ghahramani, and Weller, 2018). The rest of this

section describes techniques for interpreting the hidden space using the input or output

space.

3.6.1 Dimensionality Reduction (output space)

Projections of the hidden space in 2D (dimensionality reduction) (Duch, 2003; Tenenbaum,

De Silva, and Langford, 2000; Tenenbaum and Freeman, 1997) or visualisations of data

point perturbation trajectories (Cantareira, Paulovich, and Etemad, 2020) have been

applied to study the learning process, layer transformations, and regularisation effects in

relation to the output. For instance, word embeddings project hidden representations of

an RNN language model to demonstrate that these representations define rich semantic

relationships (Mikolov, Yih, and Zweig, 2013a). Word embeddings are one of the most

widely used methods for model validation and hidden layer semantic exploration in NLP (Li
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et al., 2015; Rauber et al., 2017; Donahue et al., 2014; Mnih et al., 2015). The same

approach can be used in reinforcement learning to map states to sub-manifolds of the

hidden space (Zahavy, Ben-Zrihem, and Mannor, 2016). This analysis can be taken further,

as in Alain and Bengio (2017) and Montavon, Braun, and Müller (2011), to train linear

classifiers that predict the output labels from each hidden layer or from a kernel PCA

projection of the layer, respectively. This is useful when it is important to understand

which parts of the hidden representation are pertinent to the decision making process. In

contrast, CME (presented in Chapter 6) trains classifiers to extract concepts from the

hidden representations before mapping these concepts to the output. In this way, CME

adds an additional layer of interpretation that is more natural to comprehend.

3.6.2 Component Visualisation (input space)

Component visualisation is a popular approach for DNN interpretability, which provides

some intuition about the decision making process. The drawback is that the input space

needs to be intuitively comprehensible, as in the case of images, which is not always the

case for complicated domains such as drug discovery.

Activation maximisation Activation maximisation (Erhan et al., 2009) treats the

explainability of DNNs as an optimisation problem and synthesises the optimal input

(usually image) that maximally excites (i.e., activates) a hidden unit. The technique is

to start from random noise and use the derivative of the neuron activation with respect

to every raw feature (in the case of images, these are pixel values) to find the optimal

synthetic image. This synthesised image is the preferred input stimulus for the target unit,

and it therefore may be the case that the image describes what the hidden unit represents.

A variety of methods have been proposed to improve the quality of the synthesised image

using different regularisation schemes such as adversarial examples (Szegedy et al., 2014),

total variation (Mahendran and Vedaldi, 2015), blurring (Nguyen, Yosinski, and Clune,

2015), jitter and scaling Mordvintsev, Olah, and Tyka, 2015, bilateral filters (Tyka, 2016),

GANs (Nguyen et al., 2016) or denosing autoencoders (Nguyen et al., 2017). Other

techniques reveal different aspects about the multifaceted nature of neurons s (Nguyen,

Yosinski, and Clune, 2016; Mahendran and Vedaldi, 2015).

Inversion Naturally, a single neuron within the hidden layers might not contain all the

relevant information. Hence, we can gain additional insight by looking at the entire layer.

Maximising all neurons within a layer would not produce anything sensible, therefore,

representation inversion, or code inversion (Williams, 1986; Mahendran and Vedaldi, 2015),

finds an image which sets the neuron activations at particular values, corresponding to a

target input. In that sense, activation maximisation is a global method, while inversion
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Figure 3.5: Illustration of unit-wise visualisation for InceptionV1’s (Szegedy et al., 2015)
layer mixed 4a, unit 492. Figure reproduced from (Olah, Mordvintsev, and Schubert, 2017).
In addition to using activation maximisation to interpret a neural network, we can search for
input samples, to which the activation of the neuron is highest or lowest (i.e., the images, or
words (Hermans and Schrauwen, 2013; Karpathy, Johnson, and Li, 2015), which maximally
“activate” or “deactive” a neuron (Olah, Mordvintsev, and Schubert, 2017). The “activation
examples” panels demonstrate the idea.

is a local method. On the other hand, activation maximisation is a unit-wise approach,

whereas inversion is a layer-wise one. In contrast, DGINN and CME (which we introduce

in Chapters 5 & 6) are both unit interactions approaches and offer semi-local explanations

or both local and global explanations, respectively.

Advantages and Disadvantages The benefit of the component visualisation approach

is that a developer can gain an intuition behind the types of features that a DNN is

picking up. For example, we can learn about local units (i.e., a unit that is sufficient to

describe a factor of variation), dataset deficiencies, and the robustness of representations

across the layers (Yosinski et al., 2015; Karpathy, Johnson, and Li, 2015). A drawback

is that many non-technical users do find these explanations subjective or not completely

informative. Another limitation is that the approach is more suitable for domains which

are readily interpretable, such as images. The approach is hardly applicable to domains

involving multi-dimensional inputs such as DNA sequencing or drug discovery, in which

even expert users do not have a highly-developed intuition. In contrast, concept-based

model extraction provides more formal explanations in the form of rules that describe

explicitly the model behaviour across a wide range of inputs.

Neuron Importance The vast number of neurons makes component visualisation

approaches infeasible for manual human inspection. For this reason, it is sometimes useful

to identify only the relevant for inspection neurons using ablation experiments (Girshick

et al., 2014), transfer learning (Yosinski et al., 2014), or attribution flow through each

neuron, termed conductance (Dhamdhere, Sundararajan, and Yan, 2018). Similarly, in

Chapter 5 we propose the DGINN framework for measuring the importance of neurons.

Our results are complementary with a phenomenon discovered in parallel – the lottery
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ticket hypothesis (LT) (Frankle and Carbin, 2018), which determines the importance of

a neuron by setting all weights with negligible contribution to zero and retraining the

network. Both DGINN and LT suggest the existence of specialised sub-networks within a

larger DNN. The lottery ticket hypothesis suggests that DNNs contain subnetworks, which

when trained in isolation achieve comparable accuracy to the entire network. In contrast,

DGINN demonstrates that there are different sub-networks, which without retraining are

biased towards particular classes.

3.6.3 Architecture Visualisation

Architecture visualisation approaches visualise the network’s topology and augment it with

additional techniques from component visualisations to increase model transparency. For

example, several works have been developed in parallel with DGINN (which we introduce

in Chapter 5) such as trees of relevant neurons (Zhang and Zhu, 2018) or directed acyclic

graphs (DAGs) (Liu et al., 2017). While the former use contribution propagation to

determine the relevant neurons, the latter rely on activation clustering (Liu et al., 2017).

DGINN combines the benefits of both approaches. First, it leverages the multi-clustering

assumption from representation learning. That is a neuron can participate in more than

one partially distributed representation. Hence, we use a graph rather than a tree. Second,

it applies statistical outlier analysis only to the activations of the relevant neurons to select

only the most pertinent paths for investigation.

3.7 Conclusion

In this chapter, we proposed to categories existing work on interpretability based on seven

not-mutually exclusive groups. Namely, each of the groups describes a spectrum on the

basis of: (1) the focus of the explanation (data-based vs model-based), (2) the stage of

development (intrinsic vs extrinsic), (3) the families of algorithms model-based explanations

can be applied to (model-agnostic, model-specific, network-agnostic, network-specific),

(4) the entity of interpretation of the internal workings for network-specific approaches

(neuron, layer), (5) the scope of the information (local, semi-local, global), (6) the domain

and range of the explanation function (input space, output space, hidden space, and

concept space), (7) the presentation of the explanation (importance, mathematical, visual).

We argue that the majority of the existing effort dedicated to interpretability focuses

exclusively on the extremes of the spectra proposed in our taxonomy. That is, current

methods look at explanation techniques primarily as an either-or instances of our categories,

which leads to four main limitations. First, there are numerous methods for local (e.g.,

feature importance) (Simonyan, Vedaldi, and Zisserman, 2013; Zeiler and Fergus, 2014;

Zintgraf et al., 2017; Shrikumar, Greenside, and Kundaje, 2017; Landecker et al., 2013;
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Bach et al., 2015; Montavon et al., 2017) or global (e.g., activation maximisation (Erhan

et al., 2009) explainability, but there is little published data on semi-local (e.g., class-

specific, or concept) explanations. Second, far too little attention has been paid to the fact

that DNNs use sparse, or partially distributed representations. Consequently, network-

specific methods have been primarily unit-wise (Erhan et al., 2009; Girshick et al., 2014;

Goodfellow et al., 2009) or layer-wise (Girshick et al., 2014; Yosinski et al., 2014; Williams,

1986; Mahendran and Vedaldi, 2015; Alain and Bengio, 2017). However, recent studies

suggest that all neurons are not equal, neither are all layers (Raghu et al., 2017; Frankle

and Carbin, 2018; Andreas, 2019; Do and Tran, 2020; Kornblith et al., 2019; Zhang,

Bengio, and Singer, 2019). Hence, future approaches should focus on partially-distributed

representations at key layers. In Chapters 5 & 6, we illustrate that this strategy leads

to considerable improvements to the semantic level of explanations. Third, the majority

of explainability methods describe the input-output relationship (e.g., importance-based

explanations, component visualisation, model extraction, and representation analysis). At

the same time very little attention has been paid to the role of the high-level semantic

units such as concept explanations. Fourth, due to the unreliability of feature importance

methods, and the low comprehensibility of activation maximisation approaches, there has

been a deluge of methods that focus on improving the quality of these methods rather

than increasing the level of explainability (see Section 3.3.2).

We demonstrate additional limitations of feature importance methods in Chapter 4.

Therefore, we propose class-specific and mathematical concept-based explanations that are

extracted from groups of neurons within relevant layers in Chapters 5 & 6. Concept-based

explanations move us to level 4 explainability, in which the role of feature interactions and

their relationship to the outcome are more readily understandable.
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CHAPTER 4

Adversarial model perturbations

to manipulate explanations

What gets us into trouble is not what

we don’t know. It’s what we know for

sure that just ain’t so.

Mark Twain

In Chapter 3, we introduced some of the limitations of feature importance explanations.

Here, we expand this discussion and focus on the first research question of this thesis, namely

evaluating the fidelity of feature importance explanations. Specifically, we investigate the

ability of feature importance methods to provide reliable information about the fairness of

a model. Fairness is part of a larger research agenda of building models that are ‘Fair,

Accountable, and Transparent’ (Diakopoulos et al., 2017; Weller, 2019). Fairness is a key

concern in many application areas including selecting candidates for hire, approving loans

in banking, and selecting recipients of organ donations.

Transparency has emerged as a way to aid our understanding of the inner workings of

a machine learning model and ensure model fairness. In practice, the most popular family

of approaches for transparency are feature importance1, or saliency, methods (Bhatt et al.,

2020). It has been common to suggest that such saliency methods can be used to inspect

a model for fairness as follows. We observe if a model’s outputs depend significantly on a

protected feature such as gender or race, which are termed sensitive. When there is a high

dependence on a sensitive attribute then the model appears to be unfair.

In this chapter, we show that the apparent importance of a sensitive feature does not

reliably reveal anything about the fairness of a model. We explain how this can happen with

an instructive example demonstrating that a model could have arbitrarily high levels of

1See Section 3.5.2.
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unfairness across a range of popular metrics, even while appearing to have zero dependence

on the relevant sensitive feature. We introduce a practical approach to modify an existing

model in order to downgrade the apparent importance of a sensitive feature according to

explanation methods.

Specifically, we answer the following questions:

1. How badly can we fool fairness measures, as perceived by various importance-based

explanation methods?

2. Are all fairness measures equally prone to fooling?

3. Can multiple importance-based methods be fooled simultaneously?

4. Are all explanation methods equally vulnerable?

While previous work has focused on a model’s vulnerability to adversarially perturbed

input data (Ghorbani, Abid, and Zou, 2019), and considered robust training with respect

to the input to mitigate this susceptibility, here we show that the model parameters can

be modified so as to lead to a desirable misleading explanation. Consequently, the insight

that feature-importance is not useful for fairness would not be limited only to input

perturbations, but to parameter modifications as well.

To the best of our knowledge, we are the first to focus on the fairness of a model

concerning popular explanation methods. We published this work in collaboration with

Umang Bhatt and Adrian Weller in Dimanov et al. (2020)(as the main contributor).

Section 4.1 introduces the subject of fairness and it shows how unfairness can be arbitrarily

high, despite no dependence on a sensitive feature. We describe our approach to modifying

a model in order to hide unfairness in Section 4.2. Section 4.3 presents our evaluation

methodology. Finally, in Section 4.4 we show empirically that our approach has little

impact on a model’s accuracy while being able to fool simultaneously seven popular

feature-importance approaches to explanation (See Section 3.5.2).

Our observations raise serious concerns for organisations or regulators who hope to

rely on feature importance interpretability methods to validate the fairness of models. For

example, a malicious agent (e.g., bank) might conceal the unfairness of their models from

regulators relying on feature importance explanation for their auditing. We focus here on

deep learning models, but our ideas extend naturally to other model classes.

4.1 Fairness

A key question when examining whether an explanation method reliably reveals information

about fairness of a model is whether or not in fact the model is fair. We assess the fairness
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using standard definitions from the literature (Beutel et al., 2017; Hardt, Price, and Srebro,

2016), used within the IBM AI Fairness 360 Toolkit (Bellamy et al., 2018):

1. Demographic Parity (DP): the predicted positive rates for both groups should be

the same.

2. Equal Opportunity (EQ): the true positive rates (TPR) for both groups should the

same.

3. Equal Accuracy (EA): the classifier accuracy for both groups should be the same.

4. Equal Odds (EO): the true positive rates (TPR) and the true negative rates (TNR)

for both groups should the same.

5. Disparate Impact (DI): the ratio between the positive rates for the unprivileged and

privileged groups.

6. Theil Index (TI): between-group unfairness based on generalised entropy indices (Spe-

icher et al., 2018).

Note that it is typically not possible to satisfy many fairness notions simultane-

ously (Kleinberg, 2018).

How extreme could unfairness be, yet still be hidden? Let us first consider the

limits of how unfair a model might be, yet still appear to be fair according to explanation

methods. Worryingly, and perhaps surprisingly, we show that in fact a model can be

arbitrarily unfair with respect to a feature, yet appear to have no sensitivity at all to the

feature (i.e., low to no gradients in the direction of the feature).

Consider an arbitrary classification problem, shown in Figure 4.1. Each data point has

two features: a continuous x1 and a binary x2. Let x2 be a sensitive feature, such as age,

given by the shape of the point: assume young and mature people. The true label y for

each point is indicated by its colour: blue for positive and orange for negative.

The black curve indicates the model’s softmax predicted label value ŷ as a function

of the features (x1, x2). If the function value is above 0.5, then the output is 1, else the

output is 0; this is shown by the pale blue/orange boundary in the background colour.

Further, assume the model does not vary in the direction of x2 (hence it has 0 gradient).

Five data points are shown. The model makes only one classification mistake (the

blue young person receives ŷ = 0 yet has y = 1). However, this model is highly unfair

with respect to the sensitive feature for three metrics described in Section 4.1. Equal

Opportunity is maximally violated: for young people, 0/1 = 0% deserving points get the

good (blue) outcome; for mature people, 2/2 = 100% deserving points get the good (blue)
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Figure 4.1: This example illustrates a function with no dependence on target feature yet
extreme unfairness, showing the softmax predicted label ŷ versus an input feature x1, which is
not the target feature. Each shape shown is a data point. The colour indicates the true label,
i.e., blue means y = 1 and orange means y = 0. The shape shows the value of the target feature:
young and mature people. The black curve shows a function mapping from features to estimated
output label ŷ. Assume the function is constant across age. The blue young person is in the
orange zone, whereas it should be in the blue zone (see Section 4.1). Best viewed in colour.

outcome. Equal Accuracy is also maximally violated: for young people, 0/1 = 0% points

are accurate (blue young person should be placed in the blue zone); for mature people,

4/4 = 100% points are accurate (correctly, blue mature people are in the blue zone, orange

mature people are in the orange zone).

Finally, consider demographic parity (DP): for young people, 0/1 = 0% get the good

outcome; for mature people, 2/4 = 50% get the good outcome. Observe that if we keep

adding more blue mature people data points near the ones already shown then the young

people ratio stays unchanged while the mature people ratio tends to 1. Thus, we can

obtain any arbitrarily high level of DP unfairness. Similar results can be derived for the

other metrics. This demonstrates the extreme unfairness that could occur in a model. But

how could this be achieved?

4.2 Method: Learning a Modified Model with Con-

cealed Unfairness

The aim of our approach is to modify an existing model so that multiple explanation

methods will not show a particular target feature as important without considerably

affecting the accuracy of the model. Our approach retrains an existing model with a

modified loss objective function: we add an “explanation loss” term to the original loss in

the form of the gradient of the original loss with respect to a chosen target feature. Our

attack method achieves three objectives:
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1. We obtain a model with low local sensitivity to the chosen feature, yet with little

loss of accuracy;

2. the low sensitivity generalises to unseen test points; and

3. low feature sensitivity leads to low attribution for the target feature across all seven

feature importance explanation methods that we experimented with (see Section 4.4).

Let us now describe the method formally.

Notation We consider differentiable functions f : Rm 7→ Rd; and a dataset of an input

matrix in X ⊆ Rn×m with n samples and m features (attributes) and an output matrix

Y ⊆ Rn×d, where each row is a 1-hot encoded vector of d output classes. While our

approach applies to arbitrary d, here we focus on the binary classification case of d = 2

corresponding to ‘positive’ and ‘negative’ output classes (e.g., receive a loan or not).

Concretely, we focus on neural network functions y = f(x;θ) parameterised by θ, which

we shorthand to fθ. We write x(i) for the input vector row i with m feature columns, and

X:,j for an entire feature j column vector.

We write g for a local feature explanation function which takes as input a model f

and an input x, and returns feature importance scores g(f,x) ∈ Rm, where g(f,x)j is the

importance of (or attribution for) feature xj for the model’s prediction f(x). We encode

categorical features (e.g., male or female) as discrete values and normalise continuous

variables in the range [0, 1].

Formal Objectives Suppose we have trained a model fθ with acceptable performance

but with undesirably high target feature attribution. We would like to find a modified

classifier fθ+δ, with the following properties:

1. Performance similarity: e.g., the new model has similar accuracy

∀i, fθ+δ(x
(i)) ≈ fθ(x

(i)).

2. Low target feature attribution: the importance of the target feature j (e.g., gender

or race), as given by a chosen explanation method g, decreases significantly

∀i, |g(fθ+δ,x
(i))j| � |g(fθ,x

(i))j|.

Learning a Modified Model with Concealed Unfairness To manipulate the feature

importance explanations, we begin with a pre-trained model and then modify it by
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optimising with an extra penalty term, explanation loss, weighted by a hyperparameter α,

which is normalised over all n training points (full batch):

L′ = L+
α

n

∣∣∣∣∇X:,j
L
∣∣∣∣
p
, (4.1)

where j is the index of the target feature that we want to appear as the model is avoiding

to use, and ∇X:,j
L is the gradient vector of the original cross-entropy loss L with respect

to the entire feature column vector X:,j. We apply the Lp norm.2 We define a new

objective that regularises for low derivative with respect to the target feature across the

training points, and results in the modified classifier, fθ+δ. We outline the procedure in

Algorithm 1, where we used τ = 100 iterations consistently since this was sufficient for

convergence across runs. We ran hyper-parameter search (discussed in Section 4.3.1) to

set α = 3 for all experiments.

Algorithm 1 Adversarial Explanation Attack

Input: Original classifier fθ, target feature’s index i, input matrix X ∈ Rn×m with
corresponding targets y ∈ Rd, and number of iterations τ .

Initialise δ = 0
for t ∈ [0, τ ] iterations do

Calculate the cross entropy loss L with respect to fθ+δ
Calculate the explanation loss

ζ =
1

n
× Lp

([∣∣∣∣ ∂LX1,i

∣∣∣∣ , ∣∣∣∣ ∂LX2,i

∣∣∣∣ , . . . , ∣∣∣∣ ∂LXn,i

∣∣∣∣])

Calculate the total loss L′ = L+ α× ζ (equation 4.1)
Update model parameters with ∇θL′ using Adam

end for

Output: Modified classifier fθ+δ

Remark 4.2.1

In Appendix C.2.2, we clarify the difference between our approach for explanation loss

and the recent method of Heo, Joo, and Moon (2019). While their approach takes the

gradient of the one correct label element from the logits layer just before the softmax

output, we take the gradient of the cross-entropy loss.

Taking the gradient of the loss, rather than only the correct label element, contains

extra information about the other classes, with the potential to improve generalisation

across explanation methods and test points.

2We use p = 1 since it led to rapid convergence and good results.
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4.3 Evaluation

In this Section we describe the experimental set-up of our evaluation and define measurable

evaluation criteria to assesses the objectives postulated in Section 4.2.

4.3.1 Experimental Set-up

Datasets Unless stated otherwise, we conduct experiments on four datasets with sensitive

features – three from the UCI machine learning repository (Dua and Graff, 2017) adult

(Adult) – gender, race; German credit (German) – age, gender; bank market (Bank) – age,

marital; and the dataset for Correctional Offender Management Profiling for Alternative

Sanctions (Larson et al., 2019) (COMPAS ) – gender, race, age.

Models For each dataset we train 0-9 hidden layer multilayer perceptrons (MLPs) with

100 units in each layer, regularised with a layer-wise L2-norm penalty weighted by 0.03

for up to 1,000 epochs with early stopping and patience of 100 epochs with 10 random

initialisations. We use L2-norm regularisation because we want to have as many parameters

active as possible so that there would be more directions to manipulate. The penalty 0.03

was empirically validated to give the best validation accuracy. We use Tensorflow (Abadi

et al., 2016) to conduct the original optimisation with Adam (Kingma and Ba, 2014), a

global learning rate of 0.01 and 0.005 learning rate decay over each update and with full

batch gradient descent. We conducted hyper-parameter optimisation to determine that

optimisation with L1-norm and α = 3 converges slightly faster and to better configurations

in terms of performance similarity and low feature attribution.

Feature Attribution Methods We evaluate seven popular feature attribution methods

described in detail in Section 3.5.2:

1. Gradients: Sensitivity analysis gradients (Simonyan, Vedaldi, and Zisserman, 2013),

2. Gradients × input (Shrikumar et al., 2016),

3. Integrated Gradients (Sundararajan, Taly, and Yan, 2017),

4. SHAP: approximation of Shapley values (Lundberg and Lee, 2017) – Expected

Gradients (Erion et al., 2019),

5. LIME: Local Interpretable Model-Agnostic Explanations (Ribeiro, Singh, and

Guestrin, 2016),

6. GB: Guided-backpropagation (Springenberg et al., 2015), and
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7. Dependency Graphs (Chapter 5).

A Dependency Graph resulting from the DGINN framework ran with the gradients

relevance functions (introduced in Chapter 5) corresponds to a sub-graph of the DNN

that contains only the relevant neurons for each decision. Since we can propagate the

relevance of every neuron through the sub-graph, we can compute relevance scores for

each of the input neurons. These relevance scores can be treated as attribution values, as

explained in Chapter 5. We use the authors’ repositories of SHAP and LIME and Ancona

et al. (2018)’s implementation for the remaining methods. We conceal unfairness using

the training data and report evaluations both on the training data, and on a test set that

was not used neither for training the original model, nor for the modified model.

Fairness For the fairness evaluation, we use the implementation of IBM AI360 Toolkit (Bel-

lamy et al., 2018). We consider model predictions for two primary sub-groups based on a

sensitive feature, designating the sub-groups as privileged or unprivileged following (Bel-

lamy et al., 2018), and binarise each sensitive features in the following fashion: Gender:

Male - privileged, Female - unprivileged; Age: 25 > x privileged, 25 < x unprivileged;

Race: White - privileged, Non-white - unprivileged; Martial status: Single - privileged, Not

single - unprivileged. We evaluate across the six fairness metrics described in Section 4.1.

Hyper-parameter Investigation In all experiments, we use L1-norm for equation 4.1,

we minimise using Adam (Tieleman and Hinton, 2012), and α = 3. These are careful

design choices that we made after an empirical investigation, which we discuss next.

Explanation Loss Norm We observe that the L1-norm converged slightly faster and

to slightly better configurations both in terms of performance similarity and low target

feature attribution metrics across different settings in comparison to both the L2 and L∞

norms.

We can develop some intuition about these results if we interpret the Lp as a regulariser

of the explanations3. The backpropagated gradient of the L1-norm is constant regardless

of the norm’s parameter value; hence, the feature importance explanations of the target

feature (| ∂L
∂Xi,j
|) with magnitudes both much greater than and closer to 0 are equally

penalised, resulting in “sparse explanations” (i.e., most of the explanations are 0 or close

to 0). On the other hand, the backpropagated gradient of the L2-norm is linear with the

norm’s parameter and penalises explanations with large magnitudes, but does not affect

as much explanations with relatively small values.

The effect on explanations with relatively small values is even more pronounced for the

L∞-norm, where the backpropagated gradient is non-zero only for the highest explanation

3We look at more similarities to regularisation in Section D.
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Figure 4.2: Illustration of the effects of α ∈ 10[−5,5] (x-axis) on the performance similarity and
low target feature attribution metrics (y-axis): (top) average explanation loss per sample (Expl.
loss); (middle) the mean of the sensitive property importance ranking distribution (Mean diff.);
and (bottom) the percentage difference between the two models’ predictions (Mismatch). Notice
that optimal α values lie in the range [10−1, 101].

value. Hence, training with L∞ norm resembles a single sample gradient descent and

results in significantly slower convergence. Further, we observed that the choice of the

explanation loss norm is strongly coupled with the value of the explanation penalty term

α. All three norms converge to very similar configurations with the appropriate α. Since

the L2-norm over emphasises explanations with an extremely high value, it requires a

lower α. In contrast, the L∞-norm reflects the loss of a single example and requires an α

of orders of magnitude higher than the L1-norm. Taken together, these results suggest

that L1-norm is the optimum norm.

Explanation Penalty Term (α) Figure 4.2 demonstrates that the learning dynamics

of the adversarial explanation attack vary with the explanation penalty term (α.) At one

extreme, the penalty term α corresponds to unnoticeable changes in the explanation loss

(see Figure 4.2(top)), while at the other extreme α corresponds to a catastrophic change

that leads to a constant model which ignores all features and drastically changes the

model predictions (see Figure 4.2 (bottom)). Within the optimum range (α ∈ [10−1, 101]),

we can minimise the explanation loss significantly while keeping the model prediction

dissimilarity relatively low. For these reasons, we recommend a value of α = 3 and set it

for all experiments.
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Learning Rate We observed that parameter learning approaches could make a significant

difference in the stability of the optimisation process. Similarly to regular training, adaptive

learning rate algorithms achieve significantly better results. A vanilla-SGD optimisation

is much more likely to converge to constant classifiers that predict the label distribution

and requires bespoke learning rate scheduling routines similar to Smith (2018), where the

learning rate is adopted dynamically based on the explanation loss. Specifically, every time

the explanation loss (ζ) at epoch t goes above the previous explanation loss (ζt > ζt−1),

we decay the learning rate based on the following step decay formula: ηt = η0 × 0.91+t.

4.3.2 Evaluation Criteria

Performance Similarity We consider the concealing procedure successful when both

properties from Section 4.2 are satisfied. We measure performance similarity between

the modified model and the original model through three metrics:

• Loss diff.: Difference between the categorical cross entropy losses (L) of both models

averaged over all test points.

• Accuracy Change (Acc ∆): Difference in the accuracy of both models.

• Mismatch (%): Difference in the output of the two models, as measured by the

percentage of datapoints, where the predictions of the two models differ. This

metric is a proxy for the fidelity with which the modified model approximates the

performance of the original model.

Low Target Feature Attribution Measuring the effect of the concealing procedure

on feature importance is more complex. We want to avoid the pathological case of the

attack shrinking the importance of all features and inducing a random classifier. Therefore,

we introduce four metrics based on relative feature importance on the ranking histograms4,

which describes the probability mass distribution of the target feature importance in

comparison to the remaining features. We show a case where the initial model had a low

target feature gradient, demonstrating that even in this case, the attack was successful.

An effective attack shifts the distribution from left to right. We use five metrics to measure

this distribution shift and assess the low target feature attribution:

• Top k: the number of datapoints where the sensitive feature received rank k or

above.

• Mode shift: (Avg. #shifts) the difference between the modes of the distribution.

• Mean shift: the difference between the means.

4See Figure 4.3 for an example of a relative feature importance ranking histogram.
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• Highest rank: the highest rank that the sensitive feature received across all

datapoints.

• Highest ranking datapoints (HRD): the number of datapoints where the

sensitive feature received the highest rank. This is the same as Top k, where

k = highest rank.

4.4 Results

This Section measures the degree to which the adversarial model explanation attack

objectives (set out in Section 4.2) can be achieved across 4 datasets, 10 sensitive features,

and 10 model architectures across 10 different initilisations.

4.4.1 Attack Evaluation

Figure 4.3 illustrates three important points. First, our method significantly decreases the

relative importance of the target feature, effectively making it the least important of all

features with little change in accuracy5. Second, the attack transfers across seven different

explanation methods. Third, the attack generalises for unseen, held-out test datapoints.

Transferability Tables 4.1 and 4.2 illustrate that the explanation attack transfers across

explanation methods. That is, the explanation loss is designed to decrease the gradient,

which is essentially a targeted attack against the Gradients explanation method.

However, the attack transfers to both gradient-based and perturbation-based explana-

tion methods and significantly decreases the importance for all investigated explanation

methods. This finding suggests that we can simultaneously conceal the unfairness of a

model from multiple explanation techniques.

Notice in Table 4.1 that in the case of the Adult dataset and gender target feature for

all explanation methods, the attack has moved down the target feature importance out of

the highest ranking features for thousands of data points, demonstrating that the attack

works even when the target feature has high relative importance.

Generalisation The generalisation of the attack to test points is noteworthy since we

might expect that the decision boundary would be perturbed locally around the training

points, affecting only training point explanations, without significant change for test

points, especially if far away in feature space. We investigate the hypothesis of strictly

local changes to decision boundaries and other possible explanations for this result in

Section 4.4.3.1.

5We explore different reasons why the accuracy does not drop in Appendix C.
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Figure 4.3: Importance ranking histograms for gender as the sensitive feature on the adult test
set of the original (left) and modified (right) models. Each histogram represents the ranking
across the test set assigned by the designated feature importance method. A higher ranking
number (further to the right) indicates smaller feature importance. Observe that the modified
model has successfully shifted the ranking for all explanation methods. At the same time
the test accuracy between the two types of models has remained almost unchanged (differing at
most between 2%-6%).
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Gradients 5 13 8 6.03 12.59 6.56 3 8 821 0 1599 0 0 0
Gradient*Input 4 13 9 4.64 11.39 6.75 0 5 29 0 3141 0 29 0
Integrated Gradients 4 13 9 4.08 11.39 7.31 0 5 38 0 2956 0 38 0
SHAP 3 13 10 4.23 12.40 8.17 0 7 119 0 3178 0 119 0
LIME 4 13 9 4.21 10.63 6.42 0 3 1 0 3162 17 1 0
Guided-Backprop 7 13 6 5.69 12.58 6.89 2 8 67 0 2202 0 0 0
Dependency Graphs 7 13 6 6.39 12.99 6.60 4 12 1241 0 1241 0 0 0

Table 4.1: Evaluation of performance similarity and low feature attribution after an adversarial
explanation attack for seven explanation methods on Adult Gender Train (‘O’ is original model,
‘M’ is modified model). Notice that after our attack the mode and mean ranking of the sensitive
feature have shifted significantly (“# shifts”). For nearly all datapoints, the sensitive feature
moves out of the top five most important features (“Top-5 (M)”). The results are averaged over
10 random initialisation of a 5 hidden-layer model.

Train ζ (10−2) Test ζ (10−2) Train Acc ∆ Test Acc ∆ Tr. Mis (%) Ts. Mis (%)
Dataset Feature

adult age 9.79±3.61 9.82±3.59 -2.76±1.03 -3.07±1.16 10.88±1.67 10.72±1.66
gender 11.03±3.36 11.11±3.38 -2.43±0.86 -2.71±0.94 10.37±2.44 10.29±2.49
race 10.1±2.75 10.18±2.76 -2.47±0.85 -2.78±0.9 10.24±1.31 10.37±1.35

bank age 12.79±4.12 13.39±4.17 -1.81±0.35 -2.23±0.4 7.35±0.73 7.5±0.75
marital 12.5±5.26 12.96±5.46 -1.73±0.34 -2.27±0.4 7.25±0.71 7.43±0.7

compas age 4.0±1.69 4.34±1.82 -2.23±0.66 -3.2±0.91 19.83±1.68 18.96±1.6
race 3.4±1.9 3.62±1.97 -1.54±0.75 -2.7±0.87 18.85±2.48 18.38±2.82
sex 3.01±1.53 3.2±1.59 -1.9±0.83 -2.78±0.99 19.46±2.85 18.39±3.02

german age 1.77±1.34 1.82±1.43 -7.38±6.38 -5.83±6.6 18.59±10.33 17.72±10.25
gender 2.21±1.31 2.24±1.38 -6.07±3.27 -4.21±4.01 17.14±4.84 15.88±4.87

Table 4.2: Summary of performance similarity and low target feature attribution metrics over
four train and test datasets and six features averaged over 10 different complexities. We find
that the explanation loss (ζ) for both the train and test sets is low. Also the change in accuracy
(Acc ∆) and the percentage of mismatch points (Mis (%)) between the original and modified
model over both datasets are similar – min and max values in bold. These results suggest that
our attack successfully generalises to unseen test points.
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Further, Table 4.2 confirms that the attack generalises across datasets and features

since it is capable of shifting the importance ranking distribution considerably for a total

of 10 features over 4 datasets. The table indicates that the test values for both the

performance similarity and low target feature attribution are either similar or lower to

their training counterparts, meaning that the attack generalises to unseen test points.
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4.4.2 Fairness Evaluation

Remark

Signed and Absolute Unfairness For the purposes of this Section, we measure the

unfairness of a model by observing the bias of a model between two groups (privileged

or unprivileged). A perfectly fair model has a bias of 0. The sign of bias, or the

signed unfairness, signifies for which of the two groups, the model has a preference.

Discarding the sign and taking the absolute unfairness helps us to get a different

understanding of the unfairness when comparing two models.

Let us assume two groups A & B, a modified model with a 0.4 bias (i.e., bias

towards group A), and an original model with a −0.6 bias (i.e., bias towards group

B). Then the signed fairness difference (0.4 − (−0.6) = 1) evaluates the size of the

unfairness amplitude between the two models, whereas the unsigned, or absolute

unfairness, (|0.4| − | − 0.6| = −0.2) measures whether the modified model has become

more or less unfair overall. A positive value indicates that the modified model has

gained fairness, whereas a negative means it has become more unfair. Hence, the

signed fairness measures the difference between the two models. On the other hand,

the absolute fairness evaluates the degree of unfairness in light of the fact that the

model has no “apparent” reliance on the sensitive feature.

Unfair models appear fair Figure 4.4 illustrates one example of model complexity

and initialisation. It depicts that our approach can hide a sensitive feature in such a way

that the modified model would appear fair using local-sensitivity explanation techniques,

yet actually it could become more or less unfair according to multiple fairness measures.

The low local-sensitivity can result in a decision boundary that varies irrespective of the

sensitive feature values, such as the one illustrated in Figure 4.1. We investigate the effects

of the adversarial explanation attack on the decision boundary in Section 4.4.3.1.

Unpredictable impact on fairness We run experiments across model complexities

and different initialisations. Figure 4.5 shows that the adversarial explanation attack does

not have a consistent impact on the fairness metrics, even though the apparent importance

of the feature is negligible. The attack causes the resulting model to have unpredictable

unfairness behaviour, becoming more unfair for some features, less unfair for others or

maintaining relatively similar fairness levels to the original model. The unpredictability

of the unfairness argues strongly against relying solely on transparency to verify model

fairness.

Nevertheless, in most cases, the fairness metrics are affected similarly in the sense that
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Figure 4.4: Unfairness across 3 metrics: Equal Opportunity, Demographic Parity and Equal
accuracy. Each plot depicts how each of the fairness metrics is affected after an attack across 4
datasets and their sensitive features for a 5-hidden layer MLP. The y-axis illustrates whether
the model is more biased towards the privileged or unprivileged group. Blue lines indicate that
the modified model has become less biased, while the red lines indicate that the modified model
has become more biased. We find no consistent pattern of bias towards a particular group. The
crosses indicate the bias according to fairness via unawareness (see Section 4.4.3.2). We find no
consistent pattern. To some extent, we see that the unfairness with respect to Equal Opportunity
is higher for the original model and behaves similarly to removing the feature. Similarly for
demographic parity, we find that the modified model is less biased than the original model with
respect to the sensitive feature. Equal accuracy (of subgroups between both models) was least
affected by our attack.

if one of the models becomes more unfair according to one metric, most of the remaining

metrics vary accordingly. One possible explanation for the inconsistent behaviour of the

fairness metrics after the attack could be the presence of confounding factors. Although

the “explained” importance of a feature could be low, the model might have learned to

rely on other features, which could be used to infer the target feature (e.g., someone’s

gender can be inferred from their marital status of a husband or wife). We investigate this

possibility in Appendix C.2.1.

Another possibility is that the adversarial explanation attack results in a model that: a)

effectively keeps the same model, but flattens the derivatives to make it locally insensitive

to a feature; or b) ignores the feature altogether. We discuss evidence in favour of a) over

b) in Section 4.4.3.2 and give further details in Appendix C.2.2.

Fairness and Representational Capacity Figure 4.5 demonstrates that the signed

unfairness magnitude between the modified and the original models varies across fairness

metrics; however, the direction of unfairness change is consistent across fairness metrics

(i.e., the majority of the fairness metrics indicate the same direction).

Most importantly, the signed unfairness difference varies arbitrarily across datasets

and features, showing an unpredictable pattern. In contrast, Figures 4.6a and 4.6b

demonstrate that the absolute unfairness difference is highly dependent on the model

complexity. That is, for models of lower complexities the attack makes the modified model

less unfair for the majority of datasets, features and fairness metrics. However, for models

of higher complexities, the attack leads to a model that is more unfair according to some
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Figure 4.5: Evaluation of the impact our explanation attack has on unfairness (signed unfairness
of modified model minus signed unfairness of original). We show all fairness metrics used by IBM
AI Fairness 360 (Bellamy et al., 2018) across four datasets and their sensitive features, averaged
over 10 model complexities (number of hidden layers) and 10 random initialisations. We find no
consistent pattern of impact, though Disparate Impact (DI) appears to vary the most.

fairness measure, but less unfair according to others.

There are two crucial implications of this finding. First, the attack causes significant

alternations to the fairness profile of the model despite its “apparent” insensitivity to

the feature. Second, the fact that model complexity can clearly distinguish the effect

the adversarial explanation attack on the change in fairness strengthens the conjecture

about the critical role of representational capacity and decision boundary curvature in

understanding the behaviour of neural networks. In Appendix C we demonstrate further

results, which support this conjecture.

4.4.3 Model Comparison

We now investigate the similarity between the original and modified models beyond

accuracy and fidelity in order to assess whether our manipulation is easy to detect. In

particular, we investigate the degree to which the modified model has changed in three

ways. First, we visualise the decision boundaries in 2D PCA projected space of both the

original and the modified models. Second, we visualise how the output varies with respect

to the target feature through partial dependence plots. Third, we compare the accuracy

between three models (a) the original model, (b) the modified model, and (c) a model

that ignores the feature. The aim of this study is to investigate the possibility that the

modified model is completely ignoring the target feature.
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(a) Evaluation of the impact our explanation attack has on unfairness (absolute unfairness of modified
model minus absolute unfairness of original). We show six fairness metrics across 4 datasets and their
sensitive features, averaged over model complexities 0-5 number of hidden layers and 10 random
initialisations. We find that different fairness metrics are affected differently, however, in a fashion that
makes the resulting model less unfair overall.

(b) Evaluation of the impact our explanation attack has on unfairness (absolute unfairness of modified
model minus absolute unfairness of original). We show six fairness metrics across 4 datasets and their
sensitive features, averaged over model complexities 6-9 number of hidden layers and 10 random
initialisations. We find that different fairness metrics are affected differently, but consistently. That is a
particular metric generally assigns higher or lower unfairness.

Figure 4.6: Comparison of the effect of model capacity on fairness. There are important
differences to Figure 4.5. Namely, the change in unfairness seems to be much more predictable
because each fairness metric is affected similarly across different features. That is, the “line of
the metric never crosses the red “no change” line; consequently, according to a particular metric
the model consistently appears more fair, or consistently more unfair.

4.4.3.1 Decision Boundary: How much does the model really change?

We visualise global geometry changes in the decision boundary with a 2D PCA projected

space of both the original and the modified models (see Figure 4.7). Moreover, we
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Figure 4.7: Comparison of the decision boundary between the original (left) and modified (right)
classifier after an attack on Adult capital gains (most important feature) in 2D reduced input
space (scikit-learn Pedregosa et al., 2011’s PCA implementation). Red and green backgrounds
indicate negative and positive predictions, respectively. Notice the slightly modified boundary in
the lower end region with few datapoints. The circles represent the 2D projections of each point
in the training and the test set, while their colour indicates the true label.

Figure 4.8: Partial dependence plots showing how the predicted output varies according to the
sensitive feature shown for the original (green), modified (blue), and constant (orange) models.
Results shown are for 5 hidden layers. Best viewed in digital.

measure the effect of the sensitive feature on different models through a partial dependence

plot (Friedman, 2001), which plots f(xi) vs xi, where f(xi) is the response to xi with

the other attributes averaged out6.

The small number of mismatches shown in Table 4.2 (Mis %), coupled with the small

change to the decision boundary, as illustrated in Figure 4.7 suggest that overall the model

has not changed significantly, despite the significant changes in explanation. However,

Figure 4.8 suggests that the model can change significantly with respect to the target

attribute. For example, a rather disappointing result is that the decision boundaries of the

modified models seem excessively flat. This finding seems to refute the hypothesis that

the boundary of the modified model becomes flat only in the vicinity of training points,

while maintaining curvature outside of this range. One possible explanation for this result

could be that partial dependence plots do not actually depict the boundary at the training

6We refer the reader to Chapter 3 Section 3.4.5.3 for further information.
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points, but at unrealistically averaged points.

Interestingly, we observe the greatest curvature in the age feature, which has the highest

mutual information with the remaining features7. High curvature for highly confounded

features could suggest that confounders make it more difficult for our attack to flatten the

decision boundary around training points w.r.t. the target feature.

It may be the case therefore that the overall geometry of the modified model does not

change significantly. However, it exhibits considerable alterations in ways that suggest

that the feature is completely ignored or inferred from other variables.

4.4.3.2 Fairness via unawareness

Another way to view the example in Section 4.1 is that we have a model which by

construction ignores the sensitive feature x2. This is sometimes considered a form of

process fairness via unawareness (Chen et al., 2019b; Grgić-Hlača et al., 2018). It is known

that even if a model cannot access a sensitive feature, it may still be unfair with respect

to it. For example, the model might be able to reconstruct the sensitive feature with high

accuracy from other features. This may lead one to wonder how our approach differs from

simply removing the target feature.

The difference is that our approach attempts to learn a function which has very low

derivative with respect to the sensitive feature at training points – hence, we might learn

a function which varies significantly between the two possible sensitive feature settings. If

we consider the example from Section 4.1, the function would be very flat just within the

young person region, but excessively curved outside of this region, still yielding different

outputs for young versus mature people.

We explore how our approach differs from simply removing the target feature in two

ways. First, Figure 4.4 supports the argument that our method is different to fairness via

unawareness. It shows that the unfairness of our modified model does not match that of

a model which simply ignores the target feature (i.e., the crosses and the arrows do not

occur in the same location). Second, we compared the performance between our method

and simply ignoring the feature to demonstrate that the resulting models exhibit different

behaviours. We describe the results of these observations next.

4.4.3.3 Does the model ignore the feature?

We explored whether the modified model ignores the feature by comparing modified

models learned with our approach against models where the sensitive feature was held

constant (we did this, rather than simply remove the feature, in order to maintain model

complexity). Figure 4.9 suggests that the modified models do not rely solely on

7See Appendix C.
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Figure 4.9: A comparison of accuracies of the modified model, a model trained with the target
feature held at constant x2, and the original model. Observe that across datasets and target
features, our method achieves an accuracy comparable to the one of the original model and
significantly higher than that of the constant model, demonstrating that the modified model is
not merely ignoring the target feature. Results are averaged across 10 initialisations for a model
with 5 hidden layers. Best viewed in colour.

correlated features. It seems they are using information from the target feature because

the modified models perform better than models where the target feature is held constant.

Indeed, as shown, modified models can achieve accuracy close to the original model

accuracy.

Closer inspection of Figure 4.10 reveals further performance differences across model

complexities, suggesting that the representational capacity might play a role in determining

the success of our attack. Models of lower representational capacity are performing worse

than the models, which ignore the feature altogether.

The attack seems to boost performance for higher capacity, suggesting the attack can

have a regularising effect. Heo, Joo, and Moon (2019) showed a similar trend for CNNs.

One possible explanation for this phenomenon could be that more complex models are

better capable of extracting useful information from the target feature (while they still

appear not to use the target feature according to the explanation methods we considered).

We investigate the regularising effect of the adversarial explanation attack in more depth

in Appendix D.
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4.5 Conclusions

In this chapter, we demonstrated a limitation of many popular explanation methods –

their inability to reliably indicate whether or not a model is fair. We make two arguments

to support our claim. First, Section 4.1 provided an intuitive explanation to show how

explainability methods might fail to describe the unfairness of a model. Second, Section 4.2

introduced a method to modify an existing model and downgrade the feature importance

of key sensitive features across seven explanation methods and unseen test points across

four datasets, while having little effect on model accuracy (as shown in Section 4.4). The

implications of our results are twofold. First, regulators and auditors of machine learning

systems should consider different methods for verifying the fairness of models. Second, our

results show the inadequacy of feature-importance explanations to describe with enough

fidelity and richness the behaviour of DNNs. Let us now turn our attention to developing

explainability techniques that can describes DNN model behaviour with greater richness.
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CHAPTER 5

Dependency Graphs for

Interpreting Neural Networks

Knowledge is power only if you can

act on it!

A wise man

So far we have discussed that feature importance explanations, or saliency methods,

are fragile from a statistical (Ghorbani, Abid, and Zou, 2019; Kindermans et al., 2019) and

adversarial (Adebayo et al., 2018; Dimanov et al., 2020) perspectives, and unsatisfactory

from a cognitive (Poursabzi-Sangdeh et al., 2018; Kim et al., 2018) perspective (See

Section 3.5.2.3 and Chapter 4). In Chapter 2, we saw that DNNs represent information

based on particular assumptions about the world (see Section 2.2) and in a particular

form using a combination of local representations and sparse, or partially-distributed

representation (PDR) (Li et al., 2016; Fong and Vedaldi, 2018). At the same time,

recent studies suggest that the human cognition prefers and operates more readily with

explanations in the form of high-level semantic units, termed concepts (Kim et al., 2018;

Ghorbani et al., 2019).

As a consequence, two strands of research have emerged to build on saliency methods –

model extraction and concept-based explanations. Model extraction, or model translation,

approaches approximate black-box complex models with simpler models (such as decision

trees, lists, or linear models) to increase the model transparency. Provided the approxi-

mation quality (referred to as fidelity) is high enough, extracted models could preserve

many statistical properties of the original black-box model, while remaining open to

interpretation. On the other hand, concept-based approaches aim to provide explanations

of a DNN model in terms of human-understandable units, rather than individual features,

pixels, or characters. For example, the concepts of a wheel and a door are important for
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the detection of cars.

Aims & Hypothesis The purpose of the investigation in the next two chapters is to

explore the possibility of gaining additional insights into the neural network’s internal

operation in terms of human interpretable concepts. Recently, it has been suggested that

the identification and interpretation of partially-distributed representation will enhance

our understanding of this internal operation (Olah et al., 2018). We hypothesise that

the “interface for communication” between DNNs and humans will happen on the level of

partially-distributed representations and concept-based explanations. We propose that

model extraction of the DNN’s functional decomposition is one way to achieve the goal of

building this “interface”.

Methodology: Model approximation using functional decomposition We con-

sider two different types of model functional decomposition: (1) decomposing the model

into a series of functions, which identifies relevant neuron to extract high-level concept

representations in the form of class-specific representations; (2) decomposing the model into

two functions, such that the extracted model operates on an interpretable representation

in concept space. In this chapter, we introduce the former approach, whereas in Chapter 6

we introduce the latter.

(D)ependency (G)raphs for (I)nterpreting (N)eural (N)etworks (DGINN), which

we present in this chapter, is a novel framework for interpreting DNN classification

decisions through identifying class-specific representations. Our framework can distil

the quintessential part of the network related to a particular class, demonstrating that

class-specific representations emerge in the form of sub-networks, or sub-graphs, which we

term class-specific dependency graphs.

Contributions To the best of our knowledge, we are the first to propose generating

semi-local explanations to increase the level of explainability by aggregating results from

importance-based explanations, thus paving the way towards concept-based explanations.

Our findings contest the claim that feature importance of individual neurons are a reliable

way to debug and analyse the behaviour of neural networks, as recently proposed (Zintgraf

et al., 2017). We caution against interpretations of single neurons in isolation and make a

case for labelled datasets that allow for controlled qualitative evaluation of explainability

techniques.

We provide additional insights about the shared factors, natural clustering, and sparsity

assumptions, described in Chapter 2.2, and demonstrate that class-specific dependency

graphs identify parts of the internal representation, sub-graphs, that are shared across dif-

ferent classes and cluster into semantically meaningful groups. A class-specific dependency

graph can extract a binary classifier for the corresponding class, from a fraction of the
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original DNN parameters. Surprisingly, we find the existence of static class representations,

which are input invariant for hard-pruned networks (> 80% of parameters removed). These

findings suggest that class-specific dependency graphs identify the partially-distributed

representations that encode the low-dimensional manifolds, along which the internal repre-

sentation represents the underlying factors of variation related to a particular class. Our

method can be used to extract interpretable models that are capable of translating black-

box DNN decision into human-understandable concept explanations. We demonstrate one

example of extracting concept-based models in Chapter 6.

Our framework can be used for research, auditability, and model enhancement. For

example, we demonstrate that the framework can be used to compare the quality of the

extracted dependency graphs to evaluate neuron importance methods, thus contributing

to the enhancement of evaluation of importance-based techniques. Our framework has

implications for those developing monitoring techniques for measuring the reliability of

DNN decisions, as well as DNN developers conducting data augmentation, who could

examine the features captured by a DNN.

5.1 Framework

DGINN is a DNN interpretability framework that decomposes the model into a series

of functions to extract class-specific representations. Figure 5.1 illustrates the high-level

idea. In summary, DGINN can produce two types of dependency graphs: (1) class-specific

layer-wise dependency graphs; and (2) neuron-specific dependency graph. The layer-

wise dependency graph indicates the neurons relevant to the specific class in each layer,

while the neuron-specific dependency graph indicates the pertinent neurons between a

pair of layers given the target class. A layer-wise dependency graph contains a set of

relevant neurons in each layer, while a neuron-specific dependency graph includes a set of

neurons pertinent to an upper-layer target neuron. Next we describe the precise process

of extracting dependency graphs.

5.2 Mathematical Formulation

Before we introduce DGINN formally, let us first define the mathematical formulation

used throughout this chapter. We consider a pre-trained DNN classifier, f : X → Y,

(X ⊂ RH×W×C ⊂ Rm, Y ⊂ Rd◦), where H, W , K are respectively the height, width, and

channels of an image, m is the cardinality of the input space, equal to H ×W ×C, and d◦

is the cardinality of the output space, equal to the number of classes. Hence, f(x;θ) = y

is a θ-parameterised function, mapping from an input x ∈ X ⊂ X to an output y ∈ Y,

where yi corresponds to a particular class. For every DNN layer l ∈ {1..L} of an L layers
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Figure 5.1: Schematic Representation: A sketch of how our framework Dependency Graphs
for Interpreting Neural Networks (DGINN) can be used to provide interpretation for a shark
prediction (for actual output examples, see Fig. 5.8). Each step identifies partially distributed
representations (PDRs) of relevant neurons, and the algorithm recursively traverses the lower
layers for each PDR.

deep network, we denote the function f l : X → Hl, (Hl ⊂ Rd) as the mapping from the

input space X to the hidden representation space Hl, where d denotes the number of

hidden units and can be different for each layer. Finally, the function hl : Hl−1 → Hl

maps between the hidden representations between two layers, such that h0 = x.

Here we define the two equations that describe the majority of feature importance

methods. Given an image, we approximate the output y of the DNN model f in the

neighbourhood of x with a linear function using a first-order Taylor approximation:

yi = fi(x) ≈ ωTx + b, (5.1)

where ω is the gradient of fi(x) with respect to an image x, evaluated at x:

ω =
∂fi(x)

∂x

∣∣∣
x
. (5.2)

We can interpret the magnitude of the values of ω as an importance metric of each

pixel. Each value indicates which pixels of x need to be changed the least to cause the
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greatest increase in yi. This process is known as sensitivity analysis (Simonyan, Vedaldi,

and Zisserman, 2013) (see Section 3.5.2). Most feature importance metrics can be derived

using Equation 5.1 and a slight modifications to the formulation of Equation 5.2 (Ancona

et al., 2018).

We propose a much more fine-grained analysis based on the hypothesis that sensitivity

analysis can be used in an analogous way to determine the relevance between adjacent

layers. Instead of trying to approximate yi directly, we consider f to be defined as the

successive composition of simpler functions that represent the transformations of data

between layers:

f(x) = hl(f l−1(x))

= hl ◦ hl−1 ◦ hl−2... ◦ h1(x)
(5.3)

Hence, we can evaluate the Taylor approximation at image x(i) between a higher and

lower layer, respectively l and j:

ωln,i,: =
∂hln

(
f j(x)

)
∂x

∣∣∣∣∣
x(i)

(5.4)

Further, given the sparsity assumption from Section 2.2, we hypothesise that there are

very few neurons that encode particular concepts or concept values. We conjecture that

the relevance values of these vital neurons are significantly higher than the relevance values

of other neurons. We demonstrate results that support this conjecture in Section 5.5.

Hence, we propose an outlier detection technique to discover the neurons that have the

highest likelihood of encoding concepts (described in Section 5.3.2). We conjecture that

this small set of relevant neurons defines the low-dimensional manifolds, which describe

the data variations that are idiosyncratic to specific classes. Section 5.5 provides evidence

that support this conjecture.

5.3 DGINN Framework Details (Algorithm 2)

Given a DNN classifier f , a set of datapoints X, and a set of target labels in the form

of relevant neurons in the output (top) layer S 3 n.n ∈ hl, start from the top layer and

follow the four steps in Algorithm 2 to produce a set of b relevant neurons Sl−1 in the

lower layer. Then set S := Sl−1 and repeat until the input layer.

Algorithm 2 consists of the following steps. Step I. computes the relevance between

all neurons between two adjacent layers. Step II. aggregates across datapoints to weight

the neuron relevance w.r.t the datapoints under investigation. Step III. aggregates across

upper-layer neurons to weigh the layer-wise importance of a neuron to compute a proxy
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Algorithm 2 DGINN framework – Identifying partially-distributed representations

INPUT: DNN classifier f , a layer l (hl ∈ Rd) from f , a set of relevant neurons S 3 n.n ∈ hl,
and a set of images x(i) ∈ X.

STEP I: Compute Ωl ∈ R|S|×|X|×d′ relevance of neurons in layer hl−1 ∈ Rd′ to each n and
x(i) using Equation 5.4 so that if f l−1 is a:

• Fully-connected layer: stack results into a relevance tensor Ωl ∈ R|S|×|X|×d′ ;
• Convolutional layer: spatially average the omega tensor elements ωln,i,h,w into a

relevance tensor ωl ∈ R|S|×|X|×d′ ;
• Pooling-layers: directly compute for l − 2: ωl = ∇f l−2hl ◦ f l−2|x(i)

STEP II: Aggregate a relevance tensor Ωl across data points to produce a relevance matrix
Ωl ∈ R|S|×d′ that indicates the relevance between the neurons in layers l and l − 1.
Aggregation can be either 1) an averaging aggregation function that yields a continuous
output; or 2) an outlier aggregation function (Tukey, 1977) that yields a binary output.

STEP III: Aggregate a relevance matrix Ωl across upper layer neurons to produce relevance
vector ωl ∈ Rd′ . The output is the overall importance ranking of all neurons in a layer
in the form of a relevance vector ωl (layer-wise mode). Alternatively, we can skip
this step to preserve the relevance with respect to a particular neuron in the form of
neuron-specific relevance vector ωln,:.

STEP IV: Threshold b relevant neurons. For layer-wise output, perform statistical threshold-
ing of all neurons above a certain percentile such that the resulting number of neurons
equals b. For neuron-specific output, select top b neuron values ωln,: for each n in S .

OUTPUT: Sl−1 with b relevant neurons.

for a neuron’s “reusability” across upper-layer neurons. Hence, this estimate is a proxy

for the likelihood of a neuron to be part of a PDR. Step IV. thresholds relevant neurons

based on statistical analysis to get a total of predefined number of b relevant neurons.

We can skip Step III. to preserve the mapping between an upper-layer neuron and its

relevant neurons and separate the relevant neurons into distinct PDRs. This flexibility

enables us to investigate the distribution of relevant neurons across the entire layer with

respect to upper-layer neurons. Therefore, DGINN is capable of producing dependency

graphs both across layers of the entire network (layer-wise) and between pairs of layers,

indicating the neurons pertinent to the activation of an upper layer neuron (neuron-specific).

The result of the layer-wise execution is a set of relevant neurons in each layer, while the

result of the neuron-specific execution is a set of neurons pertinent to an upper-layer target

neuron.

Since DGINN is a framework, different equations in each of the steps could achieve

various goals. For example, the first step can apply any method that computes relevance

scores, including gradient- (Ancona et al., 2018), statistical- (Zintgraf et al., 2017), or

game-theory- (Chen et al., 2019c) based approaches. Here we demonstrate a simple

method for computing the relevance importance, sensitivity analysis (Baehrens et al., 2010;

Simonyan, Vedaldi, and Zisserman, 2013), yields high-quality results. In Chapter 6, we

88



show that even the most straightforward way of using the activations is enough to extract

concepts from hidden representations.

The rest of this Section formally presents the four steps of the DGINN framework,

illustrated in Figure 5.2.

Figure 5.2: Visual Abstract of the Methodology: Visual Representation of DGINN’s two
novelties. First, the outliers of the ω value distribution(ω ∼), represented with a boxplot,
determine the relevant neurons across the layers. Second, the analysis is aggregated across
instance-specific computations (on datapoints x0...xi) to gain model-centric results.

5.3.1 STEP I: Compute Relevance Tensor

Input: This step requires a network (f), a layer l, a set of relevant neurons S 3 n.n ∈ hl,
and a set of images x(i) ∈ X..

Output: Ωl ∈ R|S|×|X|×d′ relevance scores of neurons in layer l − 1 (f l−1 ∈ Rd′) with

respect to a neuron n in layer l (hl) as a gradient at x(i) using Equation 5.4. Essentially,

this produces the relevance of all neurons in layer f l−1 to the activation of neuron n.

Method: The relevance for DCNN is computed differently depending on the type of layer

hl.

If hl is fully-connected, the result is a relevance vector ωln,i,: ∈ Rd
′
. Repeating this

process for all images and neurons in S yields a relevance tensor Ωl ∈ R|S|×|X|×d′ .
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If hl is a convolutional layer, the result of Equation 5.4 is a 3D relevance tensor

Ωl
n,i,... ∈ RH×W×K , where H, W , K are respectively the height, width, and number of

activation maps in l − 1. Since every activation map k (hl:,:,k ∈ RH
′×W ′) is produced

by convolving identical weights onto a lower layer activation map p (hl−1
:,:,p ∈ RH×W ), k

represents an identical feature across the activation map p. Hence, the vector ωln,i,h,w,: ∈ RK

represents the relevance of all lower level activation maps (features) at a location (h,w) to

the activation of unit n.

We apply spatial-averaging over all locations (h,w) to obtain the relative importance

of a feature. That is, we convert ωln,i,h,w,: into a relevance vector ωln,i,: ∈ RK , where each

element ωln,i,k indicates the relative importance of an activation map k across all locations.

We can repeat the process for all images and relevant neurons to obtain a 3D relevance

tensor Ωl ∈ R|S|×|X|×K .

The pooling layers can be seen as a filter of their predecessors since df l

dx(i) = c× df l−1

dx(i) ,

where c ∈ {0, 1}d′ . Hence, if f l−1 is a pooling layer, we compute the relevance tensor

directly w.r.t l − 2:

ωl = ∇f l−2(x)h
l(f l−2(x))|x(i)

.

We can change Equation 5.4 and experiment with different ways to compute relevance

values. For example, instead of gradients, Equation 5.4 can use the weights (similar to

the lottery ticket hypothesis (Frankle and Carbin, 2018)), the activations (f j(x)) or the

element-wise product between the weights and the activations1. In the case of using the

weights as relevant values, the next step is redundant since they do not vary with the

input samples. Section 5.5 presents a comparison between these alternatives.

5.3.2 STEP II: Aggregate Across Datapoints

Input: This steps requires a relevance tensor Ωl ∈ R|S|×|X|×d′ .
Output: The result is a relevance matrix Ωl ∈ R|S|×d′ that indicates the relevance

between the neurons in layers l and l − 1.

Method: This step aggregates across the dataset dimension (i) of the relevance tensor Ωl
:,i,:.

We find that each row ωln,i,: ∈ Rd
′

follows a normal distribution, and consistently exhibits

a small number of outliers across the data dimension i (see Section 5.5). Assuming

the sparsity assumption holds, we hypothesise that these outliers are the only relevant

neurons since they describe the low-dimensional manifolds, which capture the class- or

concept-specific variation. Consequently, we use the Tukey’s fences (1.5× Inter-Quartile

Range) outlier detection method (Tukey, 1977) to select relevant neurons from each row

1Alternatively, one can learn an additional signal on top of the weights and activations, as in Pattern
Attribution (Kindermans et al., 2017) (see Section 3.5.2).
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ωln,i,:. Section 5.5 provides evidence supporting this hypothesis.

Alternatives to the outliers aggregation exist and could be investigated in future work.

One example is an averaging strategy, which takes the mean over the datapoints dimension

to produce a relevance matrix Ωl ∈ R|S|×d′ . This matrix indicates the average relevance

across datapoints between neurons in layers l and l − 1. Observe that in the case of

the averaging strategy, the relevance matrix Ωl contains continuous values, while in the

outliers case, it contains binary values.

Note that the aggregation functions estimate the empirical relative relevance of neurons.

That is, they operate across data points, and as such, they yield relative, not absolute

results. Since scaling the weights in the model results in an absolute change in all ω values

(without affecting the relative values), this step is invariant to weight scaling.

5.3.3 STEP III: Aggregating across upper layer neurons

Input: Relevance matrix Ωl ∈ R|S|×d′ .
Output: Relevance vector ωl ∈ Rd′ .
Method: Here we aggregate across the dimension of upper layer neurons (n.Ωl

n,: ) to

produce a global layer ranking in the form of a relevance vector ωl ∈ Rd′ . We use mean

averaging aggregation for our experiments; however, many different alternatives exist and

could be investigated in future work (e.g., median, mode). Notice that it is possible to

preserve the local relevance of the neurons in this step. When we skip this step, the local

relevance is preserved and the result is a neuron-specific relevance vector ωln,:. These

vectors can be used to explore PDRs as we demonstrate in Section 5.6.

5.3.4 STEP IV: Threshold

Input: Branching factor b, and a relevance vector ωl or relevance matrix Ωl ∈ R|S|×d′ .
Output: Set Sl−1 3 n′.n′ ∈ hl−1 of all relevant neurons for the lower layer.

Method: For the layer-wise relevance case, we perform statistical thresholding of all

neuron relevance values ωl above a certain percentile t such that we get a set Sl−1 of b

relevant neurons for the lower layer. In Section 5.5, we investigate the effect of t on the

quality of dependency graphs.

For the neuron-specific relevance case, we follow the sparsity assumption to select

the top b relevant neurons Bn for each n ∈ Sl using the outlier statistical thresholding

(mentioned in STEP II.) on Ωl
n,:. Then we count the number of occurrences of lower layer

relevant neurons n′ across all sets of upper layer relevant neurons Bn and return a set Sl−1

of the most frequently relevant n′ neurons.
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Time complexity The time complexity of our approach in the worst-case is O(c∗d∗n),

where c is the time to perform the relevance computation, d is the depth, and n is the

maximum number of neurons in any layer.

The approach is still practical since it is not supposed to be executed every time that an

explanation is necessary, just as a network is not retrained every time before a prediction.

On Tesla P100 it takes 6.5 seconds to generate a dependency graph for a Conv-Net model

on 5000 CIFAR images2.

5.4 Experimental Set-up

Here we conduct a quantitative and qualitative evaluation of the DGINN framework. We

carry out a quantitative evaluation on two datasets: (1) Circles dataset - a toy non-linear

binary classification problem of two circles, one smaller circle inside a bigger one; and (2)

CIFAR-10 (Krizhevsky, Hinton, et al., 2009). We use the following models: 2 hidden-layer

Multi-Layer Perceptron (MLP) (with 8 and 16 neurons respectively) for circles3; and a

convolutional network (Conv-Net) that achieves 88.19% and 83.85% accuracy on the

CIFAR-10 training and test sets respectively with the following layers: conv 3x3x64,

max-pool, conv 3x3x64, fully-connected 328 units, fully-connected 194 units, soft-max 10

units with RELU (Nair and Hinton, 2010) activations).

For the qualitative evaluation, we present results from Conv-Net on CIFAR and

VGG16 (Simonyan and Zisserman, 2014)4 on ImageNet (Russakovsky et al., 2015). We in-

vestigate the following threshold values – t ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}.

5.5 Quantitative Evaluation

This section presents four quantitative results. First, it presents pieces of evidence that

support the sparsity assumption5 and justify the choice of outlier detection as a technique

for relevant neuron selection. Second, it presents a comparison between four alternative

techniques for Equation 5.4, which we call relevance functions. Third, we use ablation

studies to evaluate the ability of class-specific dependency graphs (with various relevance

functions) to extract class-relevant information across threshold values. Specifically, we

compare the accuracy of the original network to that of a “pruned network”, where all

weights that are not part of the dependency graph are masked to zero as irrelevant. Fourth,

2Section 5.4 describes the model and dataset.
3An MLP with a single hidden layer of 3 neurons can solve the problem. Since we want to evaluate

whether DGINN can distinguish relevant from irrelevant neurons, we intentionally train a more complex 2
hidden-layer MLP.

4The publicly available pre-trained model implemented in keras (Chollet et al., 2015).
5See Section 2.2.
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we highlight that the performance of the input-variant class-specific dependency graphs

generalises to unseen datapoints. Finally, we demonstrate the presence of input invariant

class-specific dependency graphs, which suggest that the class-specific dependency graph

has isolated the manifold representing the corresponding class. Further, we discuss the

relation of this finding to the lottery ticket hypothesis.

We compare across the following relevance functions:

• weights abs: the absolute value of the weights;

• activations abs: the absolute average activation of a neuron over a target dataset;

• weight act abs: the absolute average activation of a neuron over a target data

multiplied by the absolute value of the weight;

• gradients abs: the absolute gradient values of a neuron w.r.t to the activation of an

upper-layer neuron averaged across the target data.

We ran a hyperparameter investigation on the Circles dataset to determine whether or

not to use absolute values for the relevance functions. We demonstrate that the ReLU

activations make the absolute values redundant for activations and gradients since their

values are always non-negative. However, absolute values make a significant difference

when the weights are used since they could contain negative numbers. Therefore, we

use the absolute values for all functions. Additionally, unless stated otherwise, we use a

threshold value of 50% of the network parameters.

Figure 5.3: Barplot representing the frequency of occurrence of outliers in layer ffc2 for the
Hammerhead shark class. The y-axis represents the number of images, in which a neuron was an
outlier. There are 189 unique outliers (4.6% of the total 4096 neurons). Notice that the first 3
outliers occur in almost all images and that the relevance follows a power-law distribution.

Sparsity Assumption Investigation Here we conduct a statistical analysis of ω

computed for a VGG16 model trained on ImageNet and evaluated on the Hammerhead

shark class. We make three important findings: (1) outlier ω values emerge consistently
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Figure 5.4: A heatmap of amplified (cubed) Ωfc2
0:4,n,0:200 values for 4 Hammerhead shark images.

The x-,y-,z-axes represent ωfc2i,n,k, which is the relevance (z-axis) of neuron k (x-axis) to an
arbitrary neuron n for an image i (y-axis). Observe that the images share exactly the same small
number of positive and negative outliers with varying degrees of intensity. Notice this is different
to a Hinton diagram (Hinton, McClelland, and Rumelhart, 1986), which visualises the weights
and biases.

across inputs; (2) the relevance of a neuron always has the same sign across datapoints

of the same class; (3) the frequency with which a neuron has an outlier-high relevance

follows a power-law distribution.

Our analysis reveals the consistent presence of a small number of outlier ω values (less

than 6%) across layers. Figure 5.3 depicts that a small number of neurons have considerably

higher relevance values that the rest of the neurons for a large number of semantically

similar images, which is in accord with the sparsity and manifold assumptions6.

Figure 5.4 shows that when the extreme ω values are amplified, similar patterns appear

with varying degrees of strength across a small number of images. The figure demonstrates

that not only do the same neurons share outlier-high relevance values, but also that these

relevance values have the same sign across different input stimulus of the same class. This

finding suggests that the outlier values could correspond to neurons, which are relevant

to the representation of a particular class (i.e., that define the dimensions of the class

manifold). It may be the case therefore that Figure 5.4 is a visualisation of part of the PDR

for a Hammerhead shark in layer f fc2. We investigate this hypothesis in Paragraph “Input

Invariance”.

At the same time, Figure 5.4 portrays that the absolute values of the outlier ω values are

not identical across the inputs. This finding indicates that our approach is not equivalent

to merely selecting the neurons with the highest weights, which would yield the same

neurons across images. On the contrary, Figure 5.3 shows the frequency of relevance

6See Section 2.2.
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follows a power-law distribution. There are several possible explanations for this result.

One explanation might be that a few concepts, or particular concept values, frequently

appear because they are highly characteristic of the particular image class. Hence, they

are common for most images of the same class. Another explanation could be that a long

tail of concept values distinguishes various instances of the same class.

Another possible explanation might be that the information in a neural network is

represented in two different ways: a) as pockets or blobs of manifolds that separate different

concept values (e.g., value red and value blue of the concept colour); and b) continuous

manifolds describe the general variance within a class, or concept. We investigate this

hypothesis further in Section 6.3.3.1. Either case suggests the existence of a long tail of

infrequently used concept values that could be represented with a sparse representation.

Relevance Functions The purpose of the following set of experiments is to benchmark

the performance of our proposed technique for neuron importance estimation (gradients)

against other alternatives.

A well-established metric for examining the importance of pixels (Dabkowski and Gal,

2017) or concepts (Ghorbani et al., 2019) is the smallest sufficient units (SSU) metric which

looks for the smallest set of units (pixels, concepts, neurons) that are enough for predicting

the target class. Here we propose to follow the same methodology to approximate the

overall importance of a neuron through ablation experiments, in which we disconnect

relevant neurons from the network according to their importance. In this respect, our

methodology is similar to Bau et al. (2019), who mask the activation of a neuron to

measure its importance. Similarly, Hinton, Osindero, and Teh (2006) and Bengio et al.

(2007) evaluate the quality and utility of representations by training a linear classifier on

top of them. In contrast, we do not retrain the classifier since we are interested in the

information it has already learned.

Tables 5.1 & 5.2 demonstrate that even though the absolute weights strategy (c.f.

lottery ticket hypothesis) exhibits the highest performance across all points (train and

test), it is unable to extract class-specific information (Class 2 Table 5.1 & Ts Class*

Table 5.2). This inability is because the static nature of weights does not carry information

relevant to individual datapoints or distinct sets of datapoints (e.g., classes).

In contrast, on both the Circles (Table 5.1) and the CIFAR (Table 5.2) datasets, the

class-specific performance of the gradients, activations, and absolute weights activations

relevance functions at threshold t = 50% is significantly higher than that of the weight

function. These three functions are much more dynamic and input-dependent strategies

that capture more class-specific information. While activations are faster to compute,

gradients provide additional information in the form of interdependence between neurons

of different layers.
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Train Test Class 1 Class 2

weight 82.72±12.58 82.23±13.0 96.17±12.17 69.37±26.41
weight abs 87.12±10.08 86.47±10.59 97.21±5.63 76.57±22.2
activations 71.36±15.58 72.27±15.91 100.0±0.0 71.23±27.84
activations abs 71.36±15.58 72.27±15.91 100.0±0.0 71.23±27.84
grads 74.14±13.63 73.82±13.94 100.0±0.0 71.81±26.0
grads abs 74.14±13.63 73.82±13.94 100.0±0.0 71.81±26.0
weight act 81.41±13.35 80.88±13.29 95.05±13.56 69.38±26.28
weight act abs 75.36±10.39 75.92±10.91 100.0±0.0 79.88±16.82

Table 5.1: Circles Dataset. The table demonstrates the mean±standard deviation performance
of the dependency graphs at threshold t = 50% over 100 different model initialisations. The
columns indicate the dataset used for evaluation. The class columns indicate which of the two
classes is considered.

Train Tr Class* Test Ts Class*

weight abs 51.60 51.6±23.53 46.86 46.86±23.07
weight act abs 51.26 91.54±13.25 45.79 83.22±19.81
gradients abs 45.28 93.12±8.76 41.54 85.53±17.02
activations abs 45.79 93.75±8.46 42.14 86.3±16.67

Table 5.2: CIFAR-10 Dataset. The table demonstrates the mean±standard deviation accuracy
of the dependency graphs at threshold t = 50% over 100 different model initialisations. The
columns indicate the training dataset for the relevance functions and the evaluation. The Class*
columns indicate the average true positive rate (TPR) of class-specific dependency graphs across
the 10 classes, while Tr and Ts indicate training and test sets respectively. Compare this to the
original accuracy of 88.19% and 83.85% training and test respectively, reported in Section 5.4.

Generalisation Tables 5.1 & 5.2 demonstrate that the performance of the extracted

sub-networks generalises to unseen datapoints. Activations, gradients, and absolute

weight activations have comparable performances reaching 86% accuracy for unseen data

averaged across class-specific sub-networks that contain less than 80% of the total network

parameters. This finding suggests that the DGINN framework can successfully identify

the class relevant manifolds within the network.

On the Circles dataset, the activations, gradients, and weight act strategies extract the

class 1 ideally over 100 models, while for class 2 weight act outperforms gradients with

79.88% to 71.81% A possible explanation for this result might be that DNNs solve binary

problems by learning more about one of the two classes. This type of shortcut learning

is a well-documented problem (Geirhos et al., 2020), and our results demonstrate that

dependency graphs can be used to identify such occurrences.
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Threshold Next, we compare the different relevance functions across threshold values.

The objective of these experiments is threefold: (1) select the highest performing relevance

functions; (2) select the highest performing threshold value; (3) investigate the class

information captured within the class-specific dependency graphs. Figure 5.5 demonstrates

that all four relevance functions perform consistently above random and have a comparable

performance for both the training and test sets. The most striking result is that the class

predictability (column 2 in Figure 5.5) improves as we decrease the number of neurons

while keeping only the relevant neurons. Figure 5.5 demonstrates the sharp difference

between the static nature of weights (left & right) and the dynamic nature of the other

three relevance functions (center). Across all classes the weights function performs best;

however, it is not capable of detecting class-specific information. Specifically, Figure 5.5

(center) shows that at 50% ablation, the performance of the weights drastically begins to

drop, while the remaining relevance functions increase to a staggering 100% true positive

rate (TPR). Figure 5.6 demonstrates that this behaviour occurs consistently across classes

for both the training and the test sets. We perform additional experiments with L1-,and

L2- regularisation on all layers (norm penalty parameter α = 0.001), which yield the same

results7. Since the 50% mark denotes a major inflexion point, we select a threshold value

of 50% for the rest of the experiments.

These findings have three implications. First, the fact that class predictability increases

as we remove irrelevant neurons supports the hypothesis that the DGINN framework is

capable of identifying class-specific representations because it determines the neurons,

pertinent to a particular class, despite the decrease in representation size. Second, the

results support the low-dimensional manifolds and natural clustering assumptions since

they demonstrate that very few neurons are responsible for the representation of each class.

Third, these findings help us understand the degree of sparsity within PDRs, suggesting

that 10% of the total layer capacity is enough to represent different classes.

Input Invariance Figures 5.6 & 5.7 present the surprising result that without retraining

the class-specific dependency graphs enter a “biased mode” of operation as the number of

parameters decreases. In this biased mode, the dependency graphs progressively predict the

same output for which they have been specialised, thereby turning into constant classifiers.

Figures 5.6 shows that at 20% of the network parameters, 9 of the specialised dependency

graphs become invariant to any input (see Appendix E Figure E.1 for a visualisation of

the dependency graphs across all classes). These results illustrate that the dependency

graphs are learning input-invariant representations, which corroborate the idea that the

DGINN framework is capable of extracting class-specific representations.

Figure 5.7 demonstrates that the only exception to the specialised dependency graphs

7Further details can be found in Appendix E.
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Figure 5.5: A comparison between 4 relevance functions and an additional random function
(determining the relevance of neurons arbitrarily) across decreasing thresholds at 10% of all
neurons apart. The lines indicate the accuracy of the network after masking all neurons outside
the dependency graph. Each column indicates the dataset for which the dependency graph has
been specialised and evaluated. For the last column, the dependency graph is specialised for the
training set and evaluated on the test set. Notice that across all classes (left & right) the weights
function slightly outperforms the rest. However, when the performance is related to a particular
class (center), as in the case of airplane, the static nature of the weights function does not allow
it to determine the class-specific information.

is the cat class, which exhibits a bimodal prediction distribution. 99% of cat predictions

are invariant to input, while the remaining less than 1% were dog predictions. Out of this

1%, 32% of the images were correctly classified (i.e., the input was indeed a dog image).

One possible explanation for the bimodal prediction distribution might be that the

dependency graphs share sub-structures with semantically similar classes. This explanation

is in line with the shared factors assumptions, We present further evidence that supports

this hypothesis in Section 5.6. Another possible cause for this discrepancy could be the

fact that the cat class has the most substantial generalisation error, which could mean that

the dependency graph is indicating the fragility of this classification decision. There is

ample room for further progress in determining how the properties of dependency graphs

relate to the robustness of predictions for particular classes.

A natural question following these results could be: “Isn’t it natural that if we mask

all neurons related to a class, the network will know only about this class?”. The point

here is that this would be very natural as long as we have identified precisely the neurons

relevant to the class. Hence, since the class is recognised, this is evidence that we have

correctly identified the neurons pertinent to that class.

On the flip side, it could be argued that learning a class-conditional input-invariant

representations (i.e., constant classifier predicting the same class) will increase the class

predictability without learning anything meaningful. We dispute this claim since a class-

conditional input-invariant representation is a very natural result of the manifold and
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Figure 5.6: A comparison of the true positive rates (TPRs) between 5 class-specific dependency
graphs extracted with the gradients relevance function. The lines indicate the accuracy of network
once all neurons outside the dependency graph have been masked. Each column indicates the
dataset, for which the dependency graph has been specialised. The row indicates whether the
datasets belong the training (row 1) or test set (row 2).

Figure 5.7: The distribution of a cat class-specific dependency graph predictions extracted
with gradients at threshold t = 20%. Each column indicates the predictions of a class-specific
dependency graph, while the y-axis indicates number of samples and x-axis indicates the predicted
class id given the following array: [’airplane’, ’automobile’, ’bird’, ’cat’, ’deer’, ’dog’, ’frog’, ’horse’,
’ship’, ’truck’]. Notice that all, but the cat class produce the same output for every single data-
point.

natural clustering assumptions. An input-invariant representation might correspond to

a different class-specific manifold such that any movement along this manifold does not

change the output of the network. The class identity would only be changed when we

transition across manifolds. We present further evidence that the geometry of the hidden

space contains input-invariant representation in Section 6.3.3.1.

Relation to the Lottery Ticket Hypothesis Our results are complementary to the

lottery ticket hypothesis study, which proposes that stochastic gradient descent (SGD)

seeks out and trains a subset of well-initialised weights (Frankle and Carbin, 2018). We

take this conjecture one step further by demonstrating that SGD results in class-specific

sub-networks, which, without retraining, maintain their performance for the corresponding

class, and gradually become more biased towards this class, irrespective of the input.

The limitation of our study is that it cannot be directly compared to the lottery ticket

phenomenon experiments (published in parallel with our research) since the model is not

retrained and also because we measure the TPR rather than the accuracy.
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5.6 Qualitative Evaluation

In this evaluation, we compare class-specific dependency graphs to investigate the shared

factors assumption8. Our findings contest the claim that feature importance of individual

neurons as proposed by Zintgraf et al. (2017) are a reliable way to debug and analyse

the behaviour of neural networks. Concretely, the identification of shared neurons for

classes that are not naturally considered similar, portrays the fact that feature importance

visualisations of a specific neuron activate equally for distinct input types. Hence, these

visualisations cannot be used to make general conclusions about the behaviour of an

individual neuron.

(a) Class 4: ’Hammerhead shark’

(b) Class 285: ’Egyptian cat’

Figure 5.8: Dependency graphs at threshold t = 5% computed with the gradients relevance
function for Hammerhead shark and Egyptian cat classes (penultimate 4 layers of VGG16,
excluding the pooling layer) expose a surprising degree of similarity.

Shared sub-graphs We visualise two examples of class-specific dependency graphs

in Figure 5.8 to illustrate that classes that are typically considered different may share

significant similarities. Specifically, the dependency graphs share 6 out of the 8 most

relevant activation maps and relevance connections in block_5_conv3 (blue rectangle).

This finding is in line with the shared factors assumption, demonstrating that there are

shared factors in the most critical dimensions of their class-specific representations even

between classes of arbitrary semantic similarity. One possible way that the information

is represented in latent space could be that some variations in the data lie on shared

low-dimensional manifolds in latent space. In contrast, other more class-specific variations

could reside on distinct unimodal manifolds (i.e., manifolds that encode only data variations

that describe the same class).

8See Section 2.2.
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Single Shared Neuron Additionally, both dependency graphs share multiple incoming

relevance connections to the same neuron f b5c3155 (red circle). This neuron is equally

important for both classes and forms a part of a shared sub-structure. It might therefore

be the case that the neuron encodes a more abstract concept shared between both classes,

as expected in the shared factors assumption. What is surprising is that neuron f b5c3155 is

among the top 3 most important neurons for multiple upper layer neurons and it is the

only such neuron. This pattern also occurs exclusively in one out of four portrayed layers

(the last convolutional layer). One possible explanation could be that the hard-pruning

regime of t = 5% is eliminating many more, but slightly less relevant patterns of this

kind. Another possibility is that dense layers learn more sparser and more specialised

representations. In Section 6.3.3.1, we demonstrate that CNNs encode concept values in

well-separable regions in the hidden space of their dense layers.

While the investigation in Section 6.3.3.1 leverages concept labels, further work needs

to be undertaken to identify concepts in an unsupervised fashion. One way to accomplish

this goal could be to identify shared PDRs class-specific dependency graphs using network

motifs (Milo et al., 2002). Next

(a) Class 4: ’Hammerhead shark’ (b) Class 285: ’Egyptian cat’

Figure 5.9: Pixel importance heatmaps of activation map f b5c3155 , computed using guided-
backpropagation. Figures (a) & (b) indicate the importance heatmaps for an image from the
corresponding class. Red and blue correspond to respectively positive or negative contribution
to the activation of the activation map f b5c3155 .

Unreliability of Feature Importance Recently, it has been suggested that one way

to debug and understand the behaviour of neural networks is to compute pixel importance

heatmaps for particular neurons (Zintgraf et al., 2017). We caution against relying on this
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approach to gain trustworthy and informative information.

To illustrate, consider the pixel importance heatmaps of neuron f b5c3155 in Figure 5.8.

According to Figure 5.8, neuron f b5c3155 (red circle) plays a vital role in the decisions related

to both sharks and cats. This is because the neuron is part of the very few most important

elements of both class-specific representations and because it is a shared component for

multiple upper-layer neurons.

Figures 5.9a & 5.9b display the pixel importance heatmaps (generated using Springen-

berg et al. (2015)’s guided backpropagation) of neuron f b5c3155 . Had we relied on a single

visualisation, we would have erroneously presumed that the neuron perfectly encodes

either the concept of a shark or a cat. However, pixel importance heatmaps seem to be

equally active for both classes. One possible explanation for this result could be that

these heatmaps capture primarily information about edges and contours irrespective of

the input (Adebayo et al., 2018). Further results (Raghu et al., 2017) corroborate this

hypothesis since they advocate that the lower layers, in which edge-related information is

represented, play a much more critical role in the pixel importance computations. One

of the issues that emerge from these findings is that neuron investigation in isolation is

overly simplistic because it is quite likely that a single neuron is part of a much more

complex interaction between multiple units as part of a PDR. Consequently, we propose

that investigation of neuron behaviour should be conducted on different input types and

in conjunction with other related neurons. DGINN helps identify the sub-sets of neurons

that should be studied together.

Semantic Similarity To investigate the semantic similarity between multiple class-

specific dependency graphs, we perform clustering analysis. We construct a distance

matrix, where the distance is inversely proportional to the number of shared nodes between

class-specific dependency graphs computed at threshold t = 0.5. Hence, a higher number

of shared nodes leads to a smaller distance, so that dependency graphs of two classes with

multiple shared nodes are closer together.

We use the UPGMA (unweighted pair group method with arithmetic mean) agglomer-

ative hierarchical clustering method (Sokal, 1958) with Euclidean distance. Figure 5.10

depicts two noteworthy results in the form of a cluster heatmap. First, the objects seem

to cluster based on the semantically interpretable dimension animals vs vehicles. Second,

it demonstrates the likelihood that semantically meaningful pairs are grouped together

– ship & truck (cargo vehicles), cats & dogs (pets), birds & frogs (wild animals). These

findings support the hypothesis that the dependency graphs extract semantically relevant

information. One way to build on these qualitative results could be to use labelled datasets

that explicitly encode the semantic similarity to generate quantitative evaluations. We

demonstrate the benefits of having a labelled set of concepts in the next chapter.
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Figure 5.10: A cluster-heatmap between class-specific dependency graphs computed at threshold
t = 50%. The tree-like structures adjacent to the heat map indicates the hierarchical relationships
between classes, while the colour patches indicate the similarity between each pair of classes.
Notice that semantically similar classes are grouped together (e.g., cat and dog, ship and truck).

5.7 Conclusions

In this chapter, we introduce a novel framework for interpreting Deep Neural Net-

works (DNNs) classification decisions. (D)ependency (G)raphs for (I)nterpreting (N)eural

(N)etworks (DGINN) identifies class-specific representations using model decomposition

into a series of functions.

We find that class-specific representations appear within a fraction of the latent space.

These class-specific representations seem to capture information about their corresponding

class since they can act as binary classifiers for that class. Surprisingly, a subspace

of these class-specific representations corresponds to tiny latent space manifolds that

are input invariant. These findings give tangible evidence to the sparsity, manifolds,

natural clustering, and shared factors assumptions from Section 2.2 and support the

conjecture that partially-distributed representations (1) can be identified and (2) contain

information pertinent to the decision making process. In the next chapter, we build on

these findings and demonstrate that we can extract human-interpretable concepts from

103



partially-distributed representations.

Future work can investigate ways to exploit the approach in areas such as error

explanation, adversarial examples detection, or out-of-distribution sample detection by

detecting subtle deviations outside the expected class-specific dependency graphs. For

example, we could monitor for deviations anomalies from the dependency graph at inference

time to detect potential susceptibility to adversarial attacks, when the network is making

decisions for the wrong reasons, or to detect out of distribution samples. For instance,

an indication that the wrong partially distributed representation is activated (i.e., wrong

concept detected) might inform a human operator that a prediction is not trustworthy.

The same analysis could be performed at train time to conduct error explanation for

misclassified examples or study whether the network has captured robust or brittle features.

This analysis can inform a machine learning engineer on how to augment their dataset to

mitigate any issues.
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CHAPTER 6

Now You See Me (CME):

Concept-based Model Extraction

Ask, and it shall be given you;

seek, and ye shall find;

knock, and it shall be opened unto you.

Mathew 7:7 KJV

In this chapter, we continue our investigation of gaining additional insights into the

DNN’s internal operation in terms of human interpretable concepts using DNN functional

decomposition and mappings between PDRs and concepts. Concept-based explanations

are superior to feature importance explanations for three main reasons. First, concepts

provide explanations at a level of abstraction that is more readily understandable by

a human (Kim et al., 2018). They describe meaningful interactions between low-level

features, thus achieving a higher level of explanation. Second, concepts can be used to

provide both global and local explainability. Since concepts provide explanations for groups

of data-points that share common atomic and human understandable characteristics they

are an example of semi-local explanations. Since concepts can be used for local, semi-local,

and global explainability they can be used more effectively within interactive machine

learning applications.

For example, an expert can observe the model behaviour and change concept predictions

to influence the model’s output effectively. Imagine a doctor, who is including the presence

of a particular clinical artefact, which the model did not detect. Another example of the

enhanced interactivity enabled by concepts is the development of effective what-if-tools,

which could allow an expert to ask questions like “what would the output be if a clinical

artefact was positioned differently”.

In the previous chapter, we demonstrated only the possibility of discovering PDRs
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Figure 6.1: Visual summary of CME: (C)oncept-based (M)odel (E)xtraction framework. Given
inputs x, a model y = f(x), and outputs y, we construct a series of functions gl that take a
hidden representation and produce concept labels. The output of these functions is aggregated
within a input-to-concept function p(x), which produces concept labels for a given input. These
concept labels are consumed by a concept-to-output function q that generates interpretable
reasoning behind the model’s output. Combining functions p and q results in a new model that
approximates the original DNN in a human-understandable way.

that are associated with concepts. In this chapter, we introduce CME1: a (C)oncept-based

(M)odel (E)xtraction framework. CME generates global explanations of DNN models by

approximating DNNs with models grounded in human-understandable concepts and their

interactions. Figure 6.1 summarises our approach. Instead of relying on a decomposition

of a series of functions, we hypothesise that a DNN can be decomposed into two key

functions: one function mapping inputs to concepts, and another function mapping

concepts to outputs. This function decomposition extracts a model that approximates

the original DNN, while enhancing the richness of interpretations and enabling interactive

machine learning applications.

CME takes a step towards quantifying and axiomatising concept-based explanation

approaches and might have implications for researchers investigating the psychology of

human concept learning. This chapter is the result of joint work with Dmitry Kazhdan,

which concluded with a publication (Kazhdan et al., 2020). In particular, we make the

following contributions:

1Pronounced “See Me.”
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• We present a novel model extraction framework CME, capable of approximating

DNN models with interpretable models that represent their decision-making process

using human-understandable concepts.

• We demonstrate, using two use cases, that it is possible to approximate a DNN

with a decomposition of two functions. The interpretability and fidelity of these

functions can be measured more efficiently, allowing us to compare existing concept-

based explanation methods with our novel semi-supervised concept-based extraction

technique.

• We demonstrate, using two case-studies, how CME can analyse (both quantitatively

and qualitatively) the concept information a DNN model has learned, how this

information is represented across the DNN layers, and how a DNN uses concept

information when predicting output labels

• Our framework can be used to: (1) provide both global (i.e., explaining overall

model behaviour) and local explanations (i.e., explaining individual predictions)

of DNN models through concepts; and (2) investigate the link between the geometry

of the hidden space and the information flow in concept space (rather than output

space).

6.1 Methodology

In this section, we present our CME approach, describing how it can be used to extract

interpretable concept-based models from DNNs. We consider DNN approximation as a

function composition of two simpler functions. The first function “translates” from input

space to concept space (concept-based explanation), while the second one “translates”

from concept space to prediction space (model extraction).

6.1.1 Formulation

We consider a pre-trained DNN classifier f : X → Y , (X ⊂ Rn, Y ⊂ Ro), where f(x) = y

is mapping an input x ∈ X to an output class y ∈ Y. For every DNN layer l, we denote

the function f l : X → Hl, (Hl ⊂ Rm) as the mapping from the input space X to the

hidden representation space Hl, where m denotes the number of hidden units, and can be

different for each layer.

We assume the existence of a concept representation C ⊂ Rk, defining k distinct

concepts associated with the input data. C is defined such that every basis vector in C
spans the space of possible values for one particular concept. We further assume the

existence of a function p? : X → C, where p?(x) = c is mapping an input x to its concept
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representation c. Thus, p? defines the ground-truth concepts and their values for every

input point.

6.1.2 Hypothesis

We hypothesise that any DNN model f can be decomposed into functions p and q, such

that f(x) = q(p(x)). In this definition, the function p : X → C is an input-to-concept

function, mapping data-points from their input representation x ∈ X to their concept

representation c ∈ C. The function q : C → Y is a concept-to-output function, mapping

data-points in their concept representation C to output space Y . Thus, when processing

an input x, a DNN f can be seen as converting this input into an interpretable concept

representation using p, and then using q to predict the output from this representation.

The aim of CME is to approximate the behaviour of f with an extracted model

f̂ : X → Y , by approximating p and q with p̂ and q̂, so that f̂ is defined as f̂(x) = q̂(p̂(x)).

Next, we describe our approach for extracting p̂ and q̂ from a pre-trained DNN.

6.1.3 Input-to-Concept (p̂)

When extracting p̂, we assume we have access to the DNN training data and labels

{(x(0), y(0)), ..., (x(d), y(d))}. Furthermore, we assume partial access to p?2, such that a

small set3 of i training points {x(0), ...,x(i−1)} have concept labels {c(0), ..., c(i−1)} associated

with them, while the remaining u points {x(i), ...,x(i+u)} do not (in this case u = d− i).
We refer to these subsets respectively as the concept labelled dataset and concept unlabelled

dataset. Using these datasets, we generate p̂ by aggregating concept label predictions

across multiple layers of the given DNN model, as described below.

Given a DNN layer l with m hidden units, we compute the layer’s representa-

tion of the input data h = f l(x), obtaining (h(0), ...,h(i+u)). Using this data and

the concept labels, we construct a semi-supervised dataset, consisting of labelled data

{(h(0), c(0)), ..., (h(i−1), c(i−1))}, and unlabelled data {h(i), ...,h(i+u)}.
Next, we rely on Semi-Supervised Multi-Task Learning (SSMTL) (Liu, Liao, and Carin,

2008), in order to extract a function gl : Hl → C, which predicts concept labels from layer

l’s hidden space. We treat each concept as a separate, independent task. Hence, gl(h) is

decomposed into k separate tasks, and is defined as gl(h) = (gl1(h), ..., glk(h)) where each

gli(h) (i ∈ {1..k}) predicts the value of concept i from h.

Repeating this process for all model layers L, we obtain a set of functions G = {gli | l ∈
{1..L} ∧ i ∈ {1..k}}. For every concept i, we define the “best” layer li for predicting that

2It is reasonable to expect that a domain expert could label a small number of points (approximately
50 - 100 per concept) that would provide the partial signal for p?.

3In Section 6.3, we show that 100 samples suffice to learn p̂ at a satisfactory level.
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concept as shown in equation 6.1:

li = arg min
l∈L

`(gli, i) (6.1)

where ` is a loss function (in this case the error rate), computing the predictive loss of

function gli wrt to a concept i. Finally, we define p̂ as shown in equation 6.2:

p̂(x) = (gl
1

1 ◦ f l
1

(x), ..., gl
k

k ◦ f l
k

(x)) (6.2)

Thus, for every concept i ∈ {1..k}, given an input x, the value computed by p̂(x) is

equal to the value computed by gl
i

i from that input’s hidden representation in layer li.

Overall, p̂ encapsulates concept information contained in a given DNN model, and can be

used to analyse how this information is represented, as well as to predict concept values

for new inputs.

6.1.4 Concept-to-Label (q̂)

We set extraction of q̂ as a classification problem, in which we train q̂ to predict output labels

y from concept labels c. We use p̂ to generate concept labels for all training data points, ob-

taining a set of concept labels {c(0), ..., c(i+u)}. Next, we produce a labelled dataset, consist-

ing of concept labels and corresponding DNN output labels {(c(0), y(0)), ..., (c(i+u), y(i+u))},
and use it to train q̂ in a supervised manner. We experimented with using Decision Trees

(DTs), and Logistic Regression (LR) models for representing q̂, as discussed in Section 6.3.

Overall, q̂ can be used to analyse how a DNN uses concept information when making

predictions.

6.2 Experimental Set-up

We use two case studies – dSprites (Matthey et al., 2017), and Caltech-UCSD birds (Wah

et al., 2011), which have slightly different set-ups in terms of classification tasks, models,

and concept labels. Next, we discuss each use case separately. Afterwards, we describe the

benchmarks, against which we compare our concept-based model extraction technique.

6.2.1 dSprites Dataset

The dSprites dataset (Matthey et al., 2017) is a well-established dataset for unsupervised

latent factor disentanglement. dSprites is a dataset of 2D shapes, procedurally generated

from 6 ground truth independent concepts. Table 6.1 lists the concepts, and corresponding

values. Figure 6.2 presents some examples. dSprites consists of 64× 64 pixel black-and-

white images, generated from all possible combinations of these concepts, for a total of
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Figure 6.2: Example images from the dSprites dataset.

1× 3× 6× 40× 32× 32 = 737280 total images.

Table 6.1: dSprites concepts and values

Name Values
Color white
Shape square, ellipse, heart
Scale 6 values linearly spaced in [0.5, 1]

Rotation 40 values in [0, 2π]
Position X 32 values in [0, 1]
Position Y 32 values in [0, 1]

For computational reasons, we down-sample the dataset to 36864, while preserving its

statistical properties, such as concept value ranges and diversity. We retain only 16 of the

32 values for Position X and Position Y (keeping every other value only), and retain only

8 of the 40 values for Rotation (retaining every 5th value).

Classification Tasks We define 2 classification tasks, used to evaluate our framework:

• Task 1: This task consists of determining the shape concept value from an input

image. For every image sample, we define its task label as the shape concept label

of that sample.

• Task 2: This task consists of discriminating between all possible shape and scale

concept value combinations. We assign a distinct identifier to each possible combina-

tion of the shape and scale concept labels, resulting in 6× 3 = 18 classes. For every

image sample, we define its task label as the identifier corresponding to this sample’s

shape and scale concept values.
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These tasks permit us to explore the quality of models extracted by CME when used

in progressively more complex scenarios. Task 1 explores a scenario in which a DNN has

to learn to recognise a specific concept. Task 2 explores a more complex scenario, in which

a DNN has to learn to recognise combinations of concepts.

Model We trained a Convolutional Neural Network (CNN) model (LeCun et al., 1990)

for each task. Both models had the same architecture, consisting of 3 convolutional

layers, 2 dense layers with ReLUs, 50% dropout (Srivastava et al., 2014) and a softmax

output layer. The models were trained using categorical cross-entropy loss, and achieved

100.0± 0.0% classification accuracies on their respective held-out test sets. We refer to

these models as the Task 1 model and the Task 2 model in the rest of this work.

Ground-truth Concept Information Importantly, the task and dataset definitions

described in this section imply that we know precisely which concepts the models had to

learn, in order to achieve 100.0± 0.0% task performances (shape for Task 1, and shape

and scale for Task 2). We refer to this as the ground truth concept information learned by

these models.

6.2.2 Caltech-UCSD Birds (CUB)

For our second dataset, we used Caltech-UCSD Birds 200 2011 (CUB) (Wah et al., 2011).

This dataset consists of 11,788 images of 200 bird species with every image annotated

using 312 binary concept labels (e.g., beak and wing colour, shape, and pattern). We

relied on concept pre-processing steps defined in (Koh et al., 2020) (used for de-noising

concept annotations, and filtering out outlier concepts), which produces a refined set of

k = 112 binary concept labels for every image sample.

Classification Task We relied on the standard CUB classification task, which consists

of predicting the bird species from an input image.

Model We used the Inception-v3 architecture (Szegedy et al., 2016), pretrained on

ImageNet (Krizhevsky, Sutskever, and Hinton, 2012) (except for the fully-connected layers)

and fine-tuned end-to-end on the CUB dataset, following the preprocessing practices

described in (Cui et al., 2018). The model achieved 82.7± 0.4% classification accuracy on

a held-out test set. We refer to this model as the CUB model in the rest of this work.

Ground-truth Concept Information Unlike dSprites, the CUB dataset does not

explicitly define how the available concepts relate to the output task. Thus, we do not

have access to the ground truth concept information learned by the CUB model. Instead,
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we use human concept-annotations such as wing colour and tail shape, which are provided

as part of the dataset. The annotations describe the inputs, but do not necessarily describe

the relationship between the concepts and the classification task.

Additionally, in contrast, to the dSprites concept labels, the concept annotations for

CUB are binary. We use this dataset to benchmark directly against the Concept Bottleneck

Model (CBM) and to illustrate that CME can handle both multi-valued and binary concept

labels, contrary to other approaches.

6.2.3 Benchmarks

Net2Vec We benchmark the p̂ functions for the three tasks against Net2Vec (Fong

and Vedaldi, 2018). As discussed in Section 3.4.4.1, Net2Vec attempts to predict pres-

ence/absence of concepts from spatially-averaged hidden layer activations of convolutional

layers of a CNN model. Given a binary concept c, this approach trains a logistic regressor,

predicting the presence/absence of this concept in an input image from the latent repre-

sentation of a given CNN layer. In case of multi-valued concepts, the concept space has to

be binarised. For instance, given a concept such as “shape”, with possible values ‘square’

and ‘circle’, these approaches have to convert “shape” into two binary concepts ‘is square’,

and ‘is circle’. For a fair comparison with Net2Vec, for each concept value, we split the

labelled training points set into a positive set, containing instances of a particular concept

value, and a negative set containing all other examples. In this case, the binarised concept

value with the highest likelihood is returned.

Unlike CME, Net2Vec does not provide a way of selecting the convolutional layer to use

for concept extraction. We consider the best-case scenario by selecting the convolutional

layers yielding the best concept extraction performance. For all tasks, these layers were

convolutional layers closest to the output (the 3rd conv. layer in case of dSprites tasks,

and the final inception block output layer in case of the CUB task).

Concept Bottleneck Model (CBM) As discussed in Section 6.2.2, we do not have

access to ground truth concept information between the concepts and outputs for the

CUB model. Instead, we define an upper bound on the amount of concept information

available using a pre-trained sequential bottleneck model defined in Koh et al. (2020)

(referred to as CBM in the rest of this work). CBM is a bottleneck model, obtained by

resizing one of the layers of the CUB model to match the number of concepts provided

(we refer to this as the bottleneck layer), and training the model in two steps. First,

the input-to-concept sub-model, consisting of the layers between the input layer and the

bottleneck layer (inclusive), is trained to predict concept values from input data. Next,

the concept-to-output sub-model, consisting of the layers between the layer following

the bottleneck layer and the output layer, is trained to predict task labels from the
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concept values predicted by the input-to-concept sub-model. Since this bottleneck model

is explicitly trained to rely on concept information when making task label predictions,

it serves as an upper bound for the concept information learnable from the dataset, and

for the task performance achievable using this information. A key difference between

CME and CBM, is that CBM does not attempt to approximate, or analyse, the CUB

model behaviour, but instead attempts to solve the same classification task using concept

information only.

We use the input-to-concept CBM submodel as a p̂ benchmark, representing the upper

bound of concept information learnable from the data. We use the output-to-concept

submodel as a q̂ benchmark, representing the upper bound of task performance achievable

from only predicted concept information. Finally, we use the entire model as an f̂

benchmark. We make use of the saved trained model from Koh et al. (2020), available in

the official repository4.

6.3 Results

This section presents the results obtained by evaluating our approach using the two case

studies described above. Section 6.3.1 measures the concept prediction performance of

p̂. Section 6.3.2 measures the end-to-end task performance of f̂ . Section 6.3.3 performs

inspection of our extracted models and their constituent parts to provide insights into the

behaviour of the original model.

We obtain the concept labelled dataset by returning the ground-truth concept values

for a random set of samples in the model training data. For dSprites, we found that

a concept labelled dataset of a 100 samples or more worked well in practice for both

tasks. Thus, we fix the size of the concept labelled dataset to 100 in all of the dSprites

experiments. For CUB, we found that a concept labelled dataset containing 15 or more

samples per concept class worked well in practice. Thus, we fix the size of the concept

labelled dataset to 15 samples per concept class in all of the CUB experiments.

6.3.1 Concept Prediction Performance – Input-to-Concept (p̂)

First, we evaluate the quality of p̂ functions produced by CME, Net2Vec, and CBM by

measuring their predictive performance on concept labels using a held-out sample test

set. For both dSprites tasks, we relied on the Label Spreading semi-supervised model

(Zhou et al., 2004), provided in scikit-learn (Pedregosa et al., 2011), when learning the gli

functions for CME. For CUB, we used logistic regression functions instead, as they gave

better performance.

4https://github.com/yewsiang/ConceptBottleneck
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(a) Task 1 (b) Task 2

Figure 6.3: Evaluation of p̂. We show the predictive accuracy of p̂, computed using our approach
and Net2Vec, for every concept and task averaged over 5 runs.

dSprites Figure 6.3 shows predictive performance of the p̂ functions on all concepts for

the two dSprites tasks (averaged over 5 runs). As discussed in Section 6.2.1, we have access

to the ground-truth task relevant concept information (i.e., shape concept information for

Task 1, and shape and scale concept information for Task 2).

For both tasks, p̂ functions extracted by CME successfully achieved high predictive

accuracy on concepts relevant to the tasks, whilst achieving a lower performance on

concepts irrelevant to the tasks. Thus, CME was able to successfully extract the concept

information contained in the task models. This finding also illustrates the selective salience

property of the internal representations5, demonstrating that the information, which is

not relevant to the task, is not learned by the original model. Additionally, for both tasks,

Net2Vec achieved a much lower performance on the relevant concepts, depicting that

the superiority of CME’s ability to dynamically determine the layers most pertinent to

particular concepts. Notice that we do not report CBM performance because CBMs are

not defined for multi-valued concepts.

CUB As discussed in Section 6.2.2, the CUB dataset does not explicitly define how the

concepts relate to the output task labels. Thus, we do not know how relevant different

concepts are to the task label prediction. In this section, we make the conservative

assumption that all concepts are relevant, when evaluating p̂ functions.

We rely on the “average-per-concept” metrics introduced in Koh et al. (2020) when

evaluating the p̂ function performances. That is, we compute the F1 predictive scores for

each concept, and then average over all concepts. We obtained F1 scores of 92 ± 0.5%,

86.3 ± 2.0%, and 85.9 ± 2.3% for CBM, CME, and Net2Vec p̂ functions, respectively

(averaged over 5 runs). We observe that CME performs slightly, but not significantly better

than Net2Vec. Interestingly, both approaches achieve performance that is substantially

lower than the upper bound of CBM. There could be two possible explanations for this

5For more information see Appendix B.2.
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result: (1) not all concepts are relevant to the task; hence, the original models are not

learning anything about these concepts because the models are not explicitly trained to

recognise concepts, so these concepts cannot be extracted; (2) the relationship between

hidden representations and concepts is non-linear, which means that the gl
i

i functions are

too simple to capture this behaviour. Therefore, we argue that for fair comparison of

concept-based explanations it is crucial to measure the concept prediction performance on

relevant concepts only.

Moreover, we argue that in case of a large number of concepts, it is crucial to measure

how concept mis-predictions are distributed across the test samples. For instance, consider

a dSprites Task 2 p̂ function that achieves 90% predictive accuracy on both shape and

scale concepts. The average predictive accuracy on relevant concepts achieved by this p̂

will therefore be 90%. However, if the two concepts are mis-predicted for strictly different

samples (i.e., none of the samples have both shape and scale predicted incorrectly at

the same time), this means that 20% of the test samples will have one relevant concept

predicted incorrectly. Given that both concepts need to be predicted correctly when using

them for task label prediction, this implies that consequent task label prediction will not

be able to achieve over 80% task label accuracy. This effect becomes even more pronounced

in case of a larger number of relevant concepts. Consequently, we suggest that future work

in concept-based explanations should develop specific metrics that take into account the

number of correctly classified relevant concepts.

6.3.2 Task Performance – End-to-End (f̂)

In this section, we evaluate the fidelity and performance of the extracted f̂ models. For

all CME and Net2Vec p̂ functions evaluated in the previous section, we trained output-to-

concept functions q̂, predicting class labels from the p̂ concept predictions. Next, for every

p̂, we defined its corresponding f̂ as discussed in Section 6.1, via a composition of p̂ and

its associated q̂. For every f̂ , we evaluated its fidelity and its task performance, using a

held-out sample test set. Table 6.2 shows the fidelity of extracted models, and Table 6.3

shows the task performance for these models (averaged over 5 runs). The original Task 1,

Task 2, and CUB models achieved task performances of 100±0%, 100±0%, and 82.7±0.4%,

respectively, as described in Section 6.2.

For both dSprites tasks, CME f̂ models achieved high (99%+) fidelity and task

performance scores, indicating that CME successfully approximated the original dSprites

models. Furthermore, these scores were considerably higher than those produced by the

Net2Vec f̂ models.

For the CUB task, both CME and Net2Vec f̂ models achieved relatively lower fidelity

and task performance scores (in this case, performance of CME was very similar to that

of Net2Vec). Crucially, the upper bound of CBM also achieved relatively low fidelity
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Table 6.2: Fidelity of extracted f̂ models. Note that CME has been weakly-supervised (100
concept labels for dSprites & 225 concept labels for CUB), whereas CBM has been fully-supervised.

CME CBM Net2Vec
dSprites Task 1 100.0±0.0% – 24.5±3.6%
dSprites Task 2 99.3±0.5% – 38.3±4.0%

CUB 74.42±3.1% 77.5±0.2% 73.8±2.8%

Table 6.3: Task performance of extracted f̂ models. Note that CME has been weakly-supervised
(100 concept labels for dSprites & 225 concept labels for CUB), whereas CBM has been fully-
supervised.

CME CBM Net2Vec
dSprites Task 1 100.0±0% – 24.5±3.6%
dSprites Task 2 99.3±0.5% – 38.3±4.0%

CUB 70.8±1.8% 75.7±0.6% 69.8±1.5%

and accuracy scores. This implies that concept information learnable from the data is

insufficient for achieving high task accuracy. These findings imply that the relatively high

CUB model accuracy has to be caused by the CUB model relying on other non-concept

information. Consequently, the low fidelity of CME and Net2Vec is a consequence of

the CUB model being not completely concept-decomposable given the available concepts,

indicating that it’s behaviour cannot be explained by the desired concepts.

6.3.3 Explainability

We present several ways to analyse p̂ and q̂ to characterise the behaviour of the orig-

inal model f . Since the two functions can be studied separately, we gain additional

insights about what concept information the original model learned and how this concept

information is used to make predictions.

Overall, inspection of p̂ and q̂ can increase our understanding of the global behaviour

and decision-making process of a model. Furthermore, by observing the outputs of both p̂

and q̂ on a single new data-point x, we can also obtain local explanations for specific model

predictions. Here we present a case study on dSprites because of the more manageable

number of concepts, classes, and model size, whereas Appendix F gives more details on

CUB.

116



Figure 6.4: Concept labels across the layers of the dSprites Task 2 model in t-SNE 2D projected
hidden space. Each row corresponds to a different concept, each column corresponds to a different
layer, and colour represents different concept labels. For every concept row, the subplot with a
green border indicates the layer p̂ uses for predicting the value of that concept. Notice that the
concepts get progressively easier to separate with layers closer to the output.

6.3.3.1 Input-to-Concept (p̂)

Here we inspect p̂ and the layers p̂ utilises for concept prediction to explore the relationship

between the concept space (C) and the hidden space of the DNN layers.

Figure 6.4 shows a t-SNE (Maaten and Hinton, 2008) 2D projected plot of every layer’s

hidden space of the Task 2 model, highlighting different concept values. This analysis is

complementary to existing approaches for hidden space analysis (see Section 3.6). Three

important findings stand out in Figure 6.4: (1) there are different types of manifolds; (2)

higher layers disentangle concept values; (3) the highest separability of concept values
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occurs at different layers. We discuss each of these next.

Types of Manifolds Not surprisingly latent space manifolds come in different shapes

and sizes, but a rather surprising result is that manifolds come in different types, which

we term “blobs” and “paths”. A blob manifolds contain a distinct concept value (see row

shape, columns dense, dense_1, dense_2 ), while path manifolds represent the variation

of the entire concept along the manifold structure (see row scale, column conv2d_2). For

example, the results for scale concept (row 2, columns 4 & 5) demonstrate a limitation

of linear and clustering-based concept extraction approaches, since the scale variation is

well-represented across the manifold structure, but in a curved, non-linear way.

Smooth, Spread-out, and Unimodal Manifolds In accordance with previous stud-

ies (Kim et al., 2018; Bengio and Delalleau, 2011; Bengio et al., 2013), Figure 6.4 (rows

shape,scale) illustrates that the manifolds of higher layers become smoother (less curved),

more spread-out (taking more continuous space), and more unimodal (correspond to

a single concept value). Smoother, spread-out and unimodal manifolds facilitate the

interpolation between high-probability samples, making classification of unseen samples

possible. These findings confirm the supposition that DNNs are capable of disentangling

highly curved input manifolds into flat hidden space manifolds (Poole et al., 2016).

Additionally, our results suggest that multiclustering properties (overlapping clusters

and partial membership) are more likely at the layers closest to the input, since the

hierarchical organisation has not yet built features that are invariant to all uninformative

variations in the data, as theoretically predicted (Kim et al., 2018; Bengio and Delalleau,

2011; Bengio et al., 2013). Hence, single class membership with well-separated concept

values emerges closer to the output layers.

Concept separability and invariance vary across the layers The concept repre-

sentation varies significantly across layers and that highest separability (see Figure 6.5)

across all concepts is not necessarily achieved in a single layer.

Similarly to TCAV (Kim et al., 2018), we find that the separability of relevant concepts

(e.g., shape, and scale) increases in higher layers of the network. In contrast, and in line

with Bengio (2009), we find that the network gradually develops an invariance towards

irrelevant concepts (e.g., position) as depth increases in the absence of skip connections.

These findings imply that it is beneficial to consider multiple layers simultaneously, when

performing concept extraction, instead of focusing on a single layer, as is done in existing

work.
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Figure 6.5: Visualisation of gl for every layer (l) and concept of the dSprites Task 2 model.
Each cell represents the accuracy of gl for a particular concept (rows) at a specific layer (columns).
Notice that some concepts are more predictable than others.

6.3.3.2 Concept-to-Output (q̂)

An analysis of p̂ and q̂ can be used to inspect the global behaviour of a DNN model,

building an understanding of not only which concepts the DNN learns to extract, but also

how the DNN uses these concepts for classification.

The concept-to-output functions (q̂) are classifiers trained to predict output labels

from concept labels. As discussed in Section 6.1, we can choose the q̂ functions to be

more easily interpretable (e.g., linear models, decision trees, or decision list). Hence, these

functions can more easily communicate how a DNN uses concept information when making

predictions to build an understanding of model behaviour. We can analyse or plot the

behaviour of q̂ (e.g., inspect the coefficients of the linear model or plotting the decision

tree rules). Figure 6.6 presents one example of this analysis, which can provide insights

into how f̂ uses the concepts during it decision-making process. Specifically, Figure 6.6
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portrays that the q̂ function used by CME for Task 1 in the form of a decision tree. The

decision tree provides a global interpretation of the model behaviour.

Figure 6.6: Visualisation of a decision tree q̂ extracted for Task 1 on dSprites. Notice that the
leaves have correctly learned to differentiate between the classes based on the concept of shape.

In addition to global interpretability, we can use our approach to achieve local inter-

pretability of DNN models, allowing us to inspect their instance-specific prediction. After

we approximate a DNN by f̂ , any prediction produced by f̂ can be directly traced back to

concepts recognised by its corresponding p̂, and to functional relation between concepts

and the output class label, represented by q̂. Finally, concept explanations describe the

expected model behaviour across well-specified groups of data points. This allows us

to make more fine-grained inferences about the expected output for sub-populations of

instances with greater trust and comprehensibility. The semi-local explanation is more

trustworthy than a local explanation because it is more likely to hold for a wider range

of circumstances. Additionally, it is more informative than a global explanation because

it can elucidate edge cases or clusters of points, for which the model behaviour deviates

from the typical case.

Overall, the inspection of q̂ functions can be used for (i) verifying that a DNN uses

concept information correctly during decision-making, and that its high-level behaviour

is consistent with user expectations using simple observations of the extracted model

or conducting what-if-analysis (model verification), (ii) identifying specific concepts or

concept interactions (if any) causing incorrect behaviour (model debugging), (iii) extracting

new knowledge about how concept information can be used for solving a particular
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task (knowledge extraction), (iv) modifying the behaviour of the model in run-time by

interactively changing the values of incorrectly predicted concepts (intervening).

6.4 Conclusions

In this chapter, we proposed a novel framework for interpreting neural networks in the

medium of concept-based explanations: (C)oncept-based (M)odel (E)xtraction framework

(CME). In contrast to DGINN, CME extracts concept-based representations using model

extraction through functional decomposition of two functions rather than a series of

multiple functions. Both CME and DGINN move the field of interpretability one step

forward on the levels of explainability beyond importance into the realm of functional

relationship description. We argue that to continue to evolve, the field of XAI has

to continue to move up the ladder of levels of explanation sophistication described in

Section 3.3.2. Concept-based explanations are the first form of semi-local explanations,

and as such they form an essential part of future interactive machine learning systems.

The findings presented here will also be of interest to researchers aiming to quantify

and axiomatise concept-based explanation approaches because we cast the field into a well-

defined mathematical formulation and propose a way to compare alternative techniques.

Finally, our study raises questions regarding the psychology of human concept learning.

In Section 3.4.4.1, we discussed the computational, statistical, and cognitive advantages

of mathematically representing the concept space as a set of dimensions encoding the

variation for a single concept type rather than as a one-hot encoding of all possible concept

values. More research using controlled human experiments is needed to investigate which

of the two, if any, is the more realistic and user-friendly definition.

Limitations Two limitations of this study are that (1) we assume the availability of a

fixed set of k concept labels before model extraction begins, and (2) we assume we know

the concept space. In Section 6.3.3.1, we demonstrated that CNNs encode concept values

in well-separable regions in the hidden space of their dense layers. This result suggests

that unsupervised or active learning approaches could be a fruitful area for further work

in alleviating these challenges.

Future Work A natural progression of this work is to explore techniques to reduce

the costs of extracting and labelling concepts. Active-learning approaches can be used

to obtain maximally-informative concept labels from the user in an interactive fashion.

On the other hand, when the number of concepts is unknown p̂ has to be extracted in an

unsupervised fashion. One way to identify concepts in an unsupervised fashion could be to

identify shared PDRs across class-specific dependency graphs using network motifs (Milo
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et al., 2002) or other pattern matching techniques. We hypothesise that there is a high

likelihood a shared PDR corresponds to a concept or particular concept value.
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CHAPTER 7

Conclusions & Future Work

Good artists copy. Great artists steal.

Real artists ship.

Steve Jobs

7.1 Conclusions

This thesis set out to investigate two hypotheses: (1) the inadequacy of importance-based

explanations to describe the behaviour of deep learning models with sufficient fidelity and

semantic richness; and (2) the development of specialised explanation methods that can

explain in a cognitively better way the information captured in distributed representation

of DNNs.

In Chapter 3, we introduced a new taxonomy of explainability methods that takes into

account the level of semantic information provided from a particular interpretability method,

so that we can assess the semantic richness of explanation methods (see Section 3.3.2). Our

taxonomy identifies four main limitations of existing approaches: (1) the lack of semi-local

explainability; (2) excessive focus on unit-wise and layer-wise techniques, despite evidence

suggesting partially distributed representations; (3) interpretation limited to the input-

output relationships to the exclusion of intermediate pieces of information, such as concepts;

and (4) we introduce guidelines to measure the sophistication of explanation to show

that existing methods focus exclusively on level 1 explainability (i.e., feature importance).

We emphasise the statistical Ghorbani, Abid, and Zou, 2019; Kindermans et al., 2019,

adversarial Adebayo et al., 2018; Dimanov et al., 2020 and cognitive Poursabzi-Sangdeh

et al., 2018; Kim et al., 2018 limitations of feature importance explanations.

We demonstrated additional limitations of feature importance methods in Chapter 4.
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Consequently, we proposed class-specific and mathematical concept-based explanations

that are extracted from groups of neurons within relevant layers in Chapters 5 (DGINN)

and 6 (CME). While DGINN identifies the parts of the network associated with different

concepts to provide semi-local level 3 explainability, CME extracts both concepts and the

functional relationship between concepts and outputs to provide local and global level 4

explainability. Hence, concept-based explanations provide local, semi-local, and global

explanations to move the level of explainability to level 4, in which the role of feature

interactions and their relationship to the outcome are more readily understandable. Next,

we summarise each contribution.

Adversarial model perturbations to manipulate explanations More concretely,

Chapter 4 examined the fidelity of explanation methods to demonstrate that many feature

importance explanation methods used in real-world settings are not able to indicate reliably

whether or not a model is fair. We provided both theoretical intuition why this is possible

and a practical method to modify an existing model to downgrade the feature importance

of key sensitive features across seven explanation methods with little effect on model

accuracy.

Concept-based explanations As an alternative to feature importance explanation, we

propose that concept-based model extraction techniques based on function decomposition

and layer-wise model extraction (rather than input-output analysis) yield model interpre-

tations of higher fidelity that are semantically more meaningful. Therefore, we introduced

two novel frameworks for interpreting neural networks using model extraction through the

medium of concept-based explanations: (D)ependency (G)raphs for (I)nterpreting (N)eural

(N)etworks (DGINN) in Chapter 5 and (C)oncept-based (M)odel (E)xtraction framework

(CME) in Chapter 6. While DGINN takes an intermediate step in extracting class-specific

representation using a series of function decompositions, CME extracts concept-based

representations using a compositions of two functions. Our techniques move the field

of interpretability on step higher on the levels of explainability sophistication beyond

importance into the realm of functional relationship description.

Our DGINN and CME frameworks confirm two conjectures. First, class-specific repre-

sentations appear within a fraction of the latent space. These class-specific representations

seem to capture information about their corresponding class since they can act as binary

classifiers for that class, and surprisingly, a subspace of these class-specific representations

corresponds to tiny latent space manifolds that are input invariant. These findings give

tangible evidence to the sparsity, manifolds, natural clustering, and shared factors assump-

tions. Second, we confirm the conjecture that PDRs describe fine-grained variation in the

data, which can be associated with human-understandable concepts. The results shed new

light on how information is represented in the DNN hidden space. Moreover, it might
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be the case that there are at least two distinct types of hidden space manifolds: blobs

and paths. Blob manifolds encode the variation concerning a distinct concept value, while

path manifolds represent the variation of the entire concept along the manifold structure.

These results caution against interpretations of single neurons in isolation using feature

importance methods and make a case for well-controlled datasets that allow for rigorous

quantitative evaluation. We give recommendation for the future of XAI evaluation in

Section 7.2.3.

Implications Our work raises concerns for those hoping to rely on feature importance

explanation methods to measure or enforce standards of fairness. For example, a trained

loan scoring system might be unfair with respect to a sensitive feature such as gender. The

model’s parameters might be modified in such a way that a feature importance explanation

could falsely suggest that the output does not depend on this sensitive feature.

Additionally, the findings presented here will be of interest to researchers aiming to

quantify and axiomatise concept-based explanation approaches because we cast the field

into a well-defined mathematical formulation and propose a way to compare alternative

techniques. Finally, our study raises questions regarding the psychology of human concept

learning. For example, do people think of concepts as continuous spectra of variation (e.g.,

small-medium-large), or as binary categories (e.g., large vs not-large)? How do people

make decisions based on concepts, if at all?

7.2 Future Work

Here we describe four different strands of research that naturally follow from our work:

(1) investigating the conditions that lead to the success of the adversarial explanation

attack; (2) alleviating the limitations of concept-based explanations; (3) developing more

rigorous forms for evaluating explanation methods; and (4) future research of explainability

methods.

7.2.1 Adversarial Explanation Attack

There are many interesting questions to explore in future work. How is the attack

succeeding, how can it be refined (e.g., by better understanding the learning dynamics, or

by exploring how well it might be used against multiple target variables), and how might

it be well defended against? We discuss them next.

Representational Capacity and Dataset Complexity One could further explore

how the attack relates to the dataset complexity, model capacity, and explanation method

(e.g., the ratio between the model’s capacity and the dataset’s complexity, or the degree of
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confounding information). For example, one could investigate formal metrics of dataset

complexity (c.f. Semenova and Rudin, 2019) and investigate the correlation between

the smoothness of convergence and dataset complexity. Another exciting area of further

exploration would be to understand the relation between local/global curvature and

robust/adversarial explanation training. Appendix C provides more details as to how

these concepts could be investigated further.

Virtual Adversarial Training A fruitful area for further work is to improve the model

similarity in terms of output similarity rather than performance similarity. We conjecture

that the attack will be more successful when the modified model is trained to match the

prediction’s of the original model rather than to fit the training data. A convenient way to

achieve this goal is to minimise the KL-divergence between the output distributions of the

modified and original models, instead of minimising the divergence between the modified

model output distribution and the empirical training distribution.

7.2.2 Concept-based Explanations

Two limitations of concept-based explanations are that (1) we assume the availability of a

fixed set of k concept labels before model extraction begins, and (2) we assume we know

the concept space. In Section 6.3.3.1, we demonstrate that CNNs encode concept values

in well-separable regions in the hidden space of their dense layers. This result suggests

that unsupervised or active learning approaches could be a fruitful area for further work

in alleviating these challenges.

Concept Labelling A natural progression of this work is to explore active-learning

based approaches to obtain maximally-informative concept labels from the user in an

interactive fashion. These approaches may be used to reduce manual concept labelling

effort significantly and improve extracted model fidelity. An active-learning approach for

concept labelling is one step towards the vision of interactive machine learning. However,

a further study would need to assess the minimum number of concept labels required for

the task and dataset at hand.

Concept Extraction Another way to decrease the cost of acquiring concept annotations

is to improve the concept extraction process. We compute p̂ by extracting and combining

concept information from individual layers, using semi-supervised methods. Exploring

other approaches to extracting p̂, such as considering combinations of multiple layers as

an ensemble of concept predictors, or weakly-supervised methods, are exciting avenues for

further exploration. Furthermore, it might be the case that concepts have a non-linear
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mapping with outputs. Hence, investigating techniques to capture such relationships in an

interpretable fashion would be a fruitful area of exploration.

Automatic Concept Extraction Concept extraction seems to work reliably when

the concept space is well-understood, and the different concepts are known in advance.

However, it is not realistic to expect that this knowledge would be available for a wide

variety of tasks. In the cases when we have no information about the concepts, p̂ has to

be extracted in an unsupervised fashion. Automatic Concept Extraction Ghorbani et al.,

2019 are limited to super-pixels. Another possibility could be to identify shared PDRs

across class-specific dependency graphs using network motifs Milo et al., 2002 or other

pattern matching techniques. We conjecture that there is a high likelihood a shared PDR

corresponds to a concept or particular concept value.

Encoding Sensitivity and Invariance Knowledge of concepts can be used to improve

model performance or encode domain information. Tangent propagation Simard et al., 1992

is a regularisation technique that forces the model to become invariant to variations outside

of the class manifold1. The main limitation of tangent propagation is that it requires the

user to define vectors that are tangent to the class manifold manually. Similarly to Rifai

et al., 2011b, we conjecture that DGINN and CME can be used to elucidate information

about the class and concept manifolds automatically. These pieces of information can

contribute to the regularisation of more accurate and robust models. For example, DNN

developers could control the salient factors, which a DNN needs to develop sensitivity to,

while managing the invariance to noise and spurious correlations.

Verification and Robustness We mentioned that the end task or auxiliary tasks

across the layers could be an effective way to control the salience of the network to

particular factors. A greater focus on the end task design could give further insights into

the information that the network is learning or discarding that are relevant for model

robustness, and model verification.

For example, DGINN and CME could be used in conjunction with novel loss functions

or auxiliary task to inspect the learned concepts and ensure the model relies on desired

concepts for its decision-making. Another example application of DGINN and CME might

be the detection of adversarial explanation attacks (discussed in Chapter 4) and adversarial

examples, or unintended model behavioural, such as model bias. In this case, we can

monitor a DNN for “unexpected” concept associated with a sample or a decision. That

is, we can use q̂ to directly compare a user’s mental model of a task (i.e., how concepts

should be used during decision making) with the model learned by a DNN.

1See Appendix D.
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7.2.3 XAI Evaluation

One of the most significant challenges for the field of XAI is the lack of well-established

and rigorous methods to evaluate and compare explainability methods. Doshi-Velez and

Kim Doshi-Velez and Kim, 2017 proposes to include user participation as part of the

evaluation protocol. We argue future studies need to establish controlled datasets and

controlled models for two reasons. On the one hand, when the provided explanations do

not make sense, it is not always clear whether the explanation is wrong, or whether the

model has learned the wrong signal. On the other hand, when explanations are meaningful,

it cannot definitively be determined whether they faithfully represent model behaviour.

Controlled Datasets The common concept of “garbage in, garbage out” means that

spurious correlations or noise are likely to be learned; however, a human observer would

question even the most trustworthy explanation method when the explanation presents

contradicting or noisy data. The challenge now is to develop and design datasets using

complex, but controlled generative processes. We suggest starting by focusing on exploring

the effects of feature interactions. In this way, we can isolate the effects of confounding

factors and accurately measure the capabilities of our explanation techniques, given

particular variations and dependencies in the data2. We can also begin to move up

the ladder of the levels of explainability understanding. Controlled datasets help us

disambiguate whether the problem is with the explanation technique or the human

interpreter.

Controlled Models In contrast to controlled datasets, well-controlled models help

us discern whether the problem is with the explanation or with the model. Model

parameters could have a considerable influence on the extracted explanations, and it is

very misleading to develop explanation techniques on poor-performing models. Worryingly,

due to confirmation bias3 humans would accept explanations, which intuitively make sense,

but do not reflect the model’s behaviour faithfully Adebayo et al., 2018; Miller, 2019. In

Chapter 4, we demonstrated one example of masking the relative importance of a set of

sensitive features, although the model behaviour indicated that information regarding

these features was still used.

Fixed controlled models can be designed such that the internal representations and

the interactions between them are well-understood. For example, the first representation

learning algorithms were manually designed to encode family free relationships Hinton

and Anderson, 1981. Equipped with a gold standard to compare with, researchers will

be able to distinguish between an inadequately trained model and a faulty explanation

2For more information see Appendix C.2.1.
3See Section 3.5.2.3, “Cognitive fragility”.
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method more clearly.

Future of Explainability Finally, the main limitation of the majority of explainability

methods is the ability to describe only very local model behaviour Jiang et al., 2018. This

is one of the reasons why we can alter the decision boundary to affect the interpretability

and the apparent fairness of a model, with little change in accuracy. However, both the

local and global curvature of the decision boundary play an important part in defining the

model performance and interpretability. As we mentioned, the model performance directly

affects interpretability. Hence, accuracy is not a variable to trade-off with trustworthiness.

On the contrary, it contributes to the increased trust in the model. Therefore, future

interpretability research should focus not on finding a compromise between accurate and

interpretable models, but on describing both the local and global curvature of models.
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APPENDIX A

Machine Learning Fundamentals

Success is neither magical nor

mysterious. Success is the natural

consequence of consistently applying

the basic fundamentals.

Jim Rohn

Causal vs Anticausal To see the difference between causal and anticausal predictions,

let’s consider the causal structure of two random variables – a cause c and effect e. The

causal mechanism p(e|c) describes the transformation from cause c into effect e, while

we denote variables x and y as the input and output. Notice that the cause and effect

variables can each be an either an input or output of a prediction model.

The situation of a causal prediction occurs when the input x causes the output y as

an effect. Anticausal predictions consider the opposite direction, in which the input is

the effect of the cause that we are trying to predict. Although this might seem unnatural

at first glance, it a frequently occurring phenomenon. Consider the popular handwritten

digit recognition task MNIST (Deng, 2012). A human decides to write the digit 1, and

this intention causes a particular pattern and in that way the output class label 1 (y1)

caused the input image (x).

The exogeneity assumption states that the causal mechanism p(e|c) and cause c

are independent, i.e, p(e|c) contains no information about p(c) and vice versa (Pearl, 2009).

For example, let’s look at the posterior

p(y|x) =
p(x|y)p(y)

p(x)
.

In the causal case, if p(x) changes than p(y|x) changes, but p(y|x) does not change. In
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what we can interpret this as the “laws of the universe” do not change, although the

distribution of the cause changes.

Spurious correlations Spurious correlations are co-occurrence of frequently appearing

artefacts that obscure the true cause and effect relationship (Pearson, 1897). These

artefacts are present in the data; however, in reality, they do not correspond to meaningful

information, making the signal unstable. That is, we would not expect the correlation to

hold in the same way in the future, as it did in the past (Woodward, 2005). For example,

if our dataset contained only images of phones, which are used by people, there is a

spurious correlation that for something to be a phone, there has to be a human. Spurious

correlation can cause extremely unreliable predictions such as a prediction that a person

is speaking on the phone just a phone and a person are present in an image (Lopez-Paz,

2016; Woodward, 2005; Lake et al., 2017). Arjovsky et al. (2019) demonstrate that subtle

changes to the background (landscapes and contexts), colouring or texture of images break

powerful image classifiers. For example, a cow on a beach is classified as a camel, whereas

a camel on a grassy meadow is classified as a cow.

Confounding factors A confounding factor is a causal concept, which influences two

conditionally independent variables. The variables are independent if the confounding

factor is observed; however, there is a spurious correlation between the two variables when

the factor is unobserved or hidden.

In particular, confounding factors have a special causal relationship. For example, a

job occupation “retired” is the effect of the causal feature age. If we see education feature

“primary” we would not expect to see job occupation “retired” because the education gives

us information about the age, which in turn gives us information about the job occupation.

On the other hand, if the age is known (e.g., “above 65”), then the two variables become

independent. The challenge of confounders is that they lead to spurious correlations.

Data distribution changes Data distribution changes can occur either at the stage

of deployment, when the cause is the difference between the training and prediction

distributions, or gradually over time because the world is dynamic and evolves. For

example, the street numbers font, size and colour could change over the years, but it does

not change instantaneously for all houses. This situation requires out-of-distribution (o.o.d)

generalisation, which is the ability of a representation to generalise to unseen samples,

samples of different nature or differently distributed samples.

Covariate shift is the situation in which the distributions of the training and test data

differ in the sense that the distribution of the inputs p(x) change, however, the conditional

distribution (p(y|x)) remains the same (Sugiyama and Kawanabe, 2012; Shimodaira,

2000).
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Label shift or prior probability shift is a particular case of covariate shift, in

which only the distribution of the outputs changes (Storkey, 2009; Schölkopf et al., 2012;

Zhang et al., 2013; Lipton, Wang, and Smola, 2018). This should not be confused with

heteroscedastic models, for which the variance of the labels changes depending on the

inputs. This settings is the opposite of homoskedastic models, in which the variance of

the labels is constant.

Concept drift is a related situation, in which contrary to the covaraite shift case, the

prediction distribution does not change, but the causal mechanism changes, such that

factor function that describes the transformation of the cause c into effect e changes (e.g.

φ(c,Ne), where Ne is some random noise on the effect). That is to say concept drift is not

related to the input or output distributions, but to the relationship between them (Storkey,

2009; Schölkopf et al., 2012; Zhang et al., 2013; Lipton, Wang, and Smola, 2018).

Domain adaptation is the goal of designing machine learning algorithms that gener-

alise across more significant changes in the input data distributions that change the nature

of the input. For example, we can train a sentiment analysis classifier to assign positive

or negative sentiment to news articles. We would perform domain adaptation when we

attempt to perform sentiment analysis on movie reviews (Gretton et al., 2009; Shimodaira,

2000).

Transfer learning There have been some debates in the research community, whether

transfer learning is a related or a general case of domain adaption. Recent surveys (Pan

and Yang, 2010; Kouw, 2018) suggest that transfer learning is a related case to domain

adaptation, in which the input is the same, but the target output might be of a different

kind. That is the task of learning an input-output mapping changes. For example, we

can build a vision classifier to recognise images of animals. We may than want to learn

about a new setting, in which we still recognise images, but this time of vehicles. This

is a particularly powerful technique when there is a significantly larger amount of data

available for the first setting, which would help the algorithm generalise faster with fewer

samples to the second setting. Transfer learning assumes that the two settings share a

vast number of low-level features such as edges, shapes, positions, etc.

Multi-task learning can be see as an extension of concept drift and transfer learn-

ing due to the fact that the input remains the same across tasks, while the output

changes (Caruana, 1993). In contrast to the two previous approaches, here we aim to

perform two or more different tasks at the same time. The rational behind this approach

is that the factors that explain the variation in the observed data could be useful both

for task A and another task B. That is to say that when we apply multi-task learning,

we are relying on the underlying belief of shared factors (described in Section 2.2). For

example, a representation that is useful to translate sentences from English to German,

could learn useful factors of variations about English, so that it can be reused to translate
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Figure A.1: Overview of different types of transfer learning. Image reproduced from (Pan and
Yang, 2010).

from English to French. Hence, we can build a representation learning algorithm that can

translate from English to many other languages.

Domain generalisation Domain generalisation (Muandet, Balduzzi, and Schölkopf,

2013) is an extension of domain adaptation and transfer learning, in which there are no

available samples from the target distribution during training. This situation occurs because

datasets often contain data from very heterogeneous sources, collected using different

practises (Wang et al., 2017). Another example of this situation is doing predictive

analytics on biological cells, in which each patient has a different distribution of cells.

Independently identically distributed and out-of-distribution Out-of-distribution

predictions is a special case of distribution shift, in which selection, implicit, and over-

generalisation bias 1 have lead to the situation in which our dataset does not contain all

possible variations within the observations. Intuitively, imagine that the observed data

is generated by a mixture model with n components. However, we have observed only

k � n components. That means there are regions of the input space, which do not behave

as any of the regions that we have observed. Nevertheless, these regions are the result of

a well-defined generative process. Despite that the structure of the unobserved regions

1See Section 3.5.2.3 for definitions of different types of cognitive bias.
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is different from from all others, it can still be inferred using shared factors from the

known regions. Let us imagine a European driver coming to the UK. He/She can infer

that driving on the left side of the road requires the mirror actions of driving on the right

side of the road without ever experiencing left road driving. For example, overtaking now

necessitates moving from the left to the right line rather than vice versa. In that respect

out-of-distribution predictions can include many different forms of distribution shift such

as covariate shift, label shift or concept drift simultaneously.
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APPENDIX B

Representation Learning

B.1 Representation Learning Assumptions

• Multiple factors assumption: Assumes that there are more than one factors of

variation that explain the observed data. For example, if we take the 3D objects

example, the lighting factor on its own would not be enough to explain the pixel

intensities. This assumption allows us to easily solve any task provided we can

capture and disentangle its key explanatory factors. Section 2.5 describes how this

assumption motivates distributed representations with separate control over directions

in representation space, such that each entry represents a factor of variation.

• Causal factors assumption: Assumes that the generative process is such that the

observed data is an effect of the underlying factors of variation, and not vice versa.

In this case, if the learned representation truly captures the factors of variation,

then its elements represent the causes of the observed data (Schölkopf et al., 2012;

Erhan et al., 2010). Hence, the 3D object lighting causes the pixel intensity increase

rather than the pixel intensities causing the object to appear brighter. When

this assumption holds, the learned model is more robust to changes in the input

distribution because these changes are driven by shifts in the distribution of the

underlying causal factors. For example, if we assume that p(x) and p(y|x) are

independent (i.e., the exogeneity assumption1), then changes in p(x) do not interfere

with our model of p(y|x) (Lasserre, Bishop, and Minka, 2006).

• Shared factors assumption: Assumes that different tasks share factors across a

common pool of reusable latent factors of variation. Therefore, using one task to

extract underlying factors of variation should be beneficial to discover factors relevant

to other tasks. Transferring statistical strength of reusable features across tasks and

1See Appendix A.
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domains motivates the successful application of representation learning algorithms to

multi-task learning (Collobert et al., 2011), transfer learning (Goodfellow, Courville,

and Bengio, 2012), and domain adaptation (Glorot, Bordes, and Bengio, 2011). As we

will see in the next two assumptions and through this chapter, the ability to represent

many examples with reusable features projects the input into a rich similarity space,

where multiple examples are not constrained to be only local neighbours in input

space. Therefore, this assumption results in exponential gain in the expressivity of

the representation2.

• Hierarchical organisation assumption: Assumes that the world is described by

highly complex functions with a considerable degree of variation (ups and downs), but

with an underlying simple structure, which is hierarchical. The rationale behind this

assumption is that humans often describe concepts hierarchically with multiple levels

of abstraction. For example, a software engineer prefers to represent information

with a hierarchy of reusable components such as functions and modules rather than

with one flat main program.

While the shared factors assumption supposes the existence of reusable components,

the hierarchical organisation assumption incorporates the belief that a hierarchy of

reusable components can describe abstract ideas more easily. For example, we can

describe the concept of cars through relationships about objects such as its parts (e.g.,

tires, windshields and doors). We can represent each of these objects with simpler

shapes, such as rectangles, circles, and squares. The shapes can be represented

through relationships between straight and curved lines. Naturally, concepts become

more abstract as they become increasingly invariant to local input transformations,

which are uninformative to the subsequent task.

Assuming a hierarchical structure has a threefold benefit: (1) contributes to disentan-

gling of factors of variation; (2) leads to exponential gains in representation power

because it promotes the reuse of features; (3) induces a prior of building invariant

features3.

• Manifolds assumption: Assumes that the probability density of real-world high-

dimensional data is highly concentrated along (often non-linear) connected regions

of tiny volume (of much smaller dimensionality that the original space), called

manifolds (Cayton, 2005; Narayanan and Mitter, 2010; Schölkopf, Smola, and

Müller, 1998; Saul and Roweis, 2003; Tenenbaum, De Silva, and Langford, 2000;

Brand, 2003; Belkin and Niyogi, 2003; Donoho and Grimes, 2003; Weinberger,

Sha, and Saul, 2004). A manifold is a region consisting of connected data points,

2See Section 2.5.
3In Appendix B.4.3, we discuss these benefits in more detail.
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such that one point is similar to its surrounding points. Movements along the

manifold correspond to specific allowable transformations in input space. For

example, Figure 2.1 demonstrates how transitions along the y-axis of the learned

manifold correspond to up-down pose changes in the original space.

Low-dimensional manifolds, with dimensionality much smaller than that of the origi-

nal space, can be learned to approximate the input space. The learned representation

forms an intrinsic coordinate system such that each dimension of the low-dimensional

manifold captures local variations of the input. The highest variance is observed

along directions tangent to the manifold, while directions orthogonal to the manifold

have minimal variance. Since infinitesimal perturbations along the tangent planes

of the manifold define allowed data transformations in input space, interpolating

between points along the tangent directions can yield new valid points, which were

not part of the original dataset. However, most of the input space consists of in-

valid datapoints because there are very few directions tangent to a low-dimensional

manifold. There are five important factors related to learning the structure of a

manifold (Bengio and Monperrus, 2005; Rifai et al., 2011b; Verma et al., 2019): (1)

noise (i.e., datapoints might lie slightly outside the manifold); (2) curvature (i.e.,

the degree to which the geometry of the manifold deviates from being a straight

line), (3) dimensionality, (4) density (i.e., how sparsely populated is the manifold),

(5) number of the manifolds, and (6) curvature of the high-entropy regions between

the manifolds (i.e., transitions). In Chapters 5 & 6, we show that we can associate

these manifold structures within DNNs to concepts or particular outputs; therefore,

enhancing our ability to understand these algorithms.

• Natural clustering assumption: Assumes that the points of different classes,

or with distinct characteristics, are likely to concentrate along separate manifolds,

whereas similar points concentrate along connected manifolds, such that local varia-

tions within a manifold do not change the class identity (Rifai et al., 2011b).

Low-density regions in input space separate the manifolds in a way that the distances

between manifolds carry information regarding the difference between the points.

Due to this fact, this assumption is sometimes referred to as the “disconnected

manifolds assumption” because small input perturbations should not be able to

transition between manifolds (Rifai et al., 2011b; Bengio and Delalleau, 2011; Bengio,

Courville, and Vincent, 2013).

This manifold geometry induces a rich similarity space, in which objects distant

apart in input space, come together to form clusters. The rich similarity space

yields potent generalisation properties because we can now transfer the knowledge
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about one point to exponentially many more points on the corresponding manifold4.

Although originally it is assumed that a manifold corresponds to a single class (Bengio

and Delalleau, 2011; Verma et al., 2019), meaning class manifolds do not overlap

much, results in Chapters 5 & 6 suggest the presence of overlapping manifolds.

• Simple factor relationships assumption: Assumes that simple dependencies de-

scribe the relations between factors. For example, the simplest form of relationship is

marginal independence. When the explanatory factors are independent of each other,

the knowledge of the distribution of one factor generalises to various configurations

of the others. We make this assumption when we use a linear classifier such as the

softmax final layer in neural networks on top of a linear combination of a learned

representation (Goodfellow, Bengio, and Courville, 2016a). Hence, we expect that

the deeper layers of the networks have learned more abstract and linearly separable

features. More sophisticated forms of dependence (e.g., polynomials of low order

such as linear, quadratic, cubic, or even quartic) are also reasonable assumptions.

Although the degree of the polynomials that usually describes physical properties

ranges between two and four (Lin and Tegmark, 2016), currently these high order

dependencies are rarely used in practice because of the computational and statistical

challenges they introduce5.

• Sparsity assumption: Assumes that the learned features have a high correlation

with very few explanatory factors and are invariant to others; consequently, most

of the time a feature will not be used to describe an input. For instance, a feature

describing a steering wheel, will not be active for an image of a bird. That is to

say, if the features describe a binary state – ”present” or ”absent”, we assume that

most of the features are absent most of the time. This assumption motivates sparse

representations, the intuition for which is that the degree of sparsity controls the

insensitivity of a model to small input changes6.

• Smoothness (local constancy) assumption: Assumes that the function we learn

(target function) should remain relatively constant within the neighbourhoods of its

inputs (i.e., if u ≈ v, then f(u) ≈ f(v)). This assumption implies implicitly that the

function should change slowly and rarely (Barron, 1993), which allows estimators to

generalise to nearby input points, also known as local generalisation (Goodfellow,

Bengio, and Courville, 2016a). Although this is one of the most generic and powerful

machine learning assumptions, it makes it difficult to generalise to complicated

high-dimensional functions with numerous peaks and troughs that span multiple

4See Appendix B.4.
5In fact, modern DNNs have been shown to exhibit a strong bias towards simple functions (Pérez,

Camargo, and Louis, 2019).
6In Appendix C we develop the relationship between sparsity and invariance further.
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regions. As we will see in Section 2.5, when a learner relies exclusively on the

“smoothness prior” to generalise, it requires at least the same number of example

as the number of distinct regions in input space, the number of which can grow

exponentially.

• Linearity assumption: Assumes predominantly linear relationships between input,

factor and output variables. This assumption is a subset of the simple factor

relationships assumption. It allows the estimator to generalise to very far unobserved

input points. For gradient-based methods, it also makes the computation of derivatives

significantly easier, leading to faster optimisation. Notice there are two differences

with the smoothness assumption – generalisation to distant data points rather than

local neighbourhoods, and the lack of constancy within a region. The two assumptions

together encode the belief that the learned function should be locally constant and

globally linear. The limitation of the linearity assumption is that high-dimensional

linear functions are vulnerable to the accumulation of small imperceptible change

across multiple dimensions. This can lead to highly confident incorrect predictions,

known as adversarial examples (Goodfellow, Shlens, and Szegedy, 2015).

• Temporal and spatial coherence or invariance assumption: Assumes that

the most salient factors of variation change slowly, or remain invariant (Heinze-Deml,

Peters, and Meinshausen, 2018), and are easier to predict (Becker and Hinton, 1992)

over time, space or modality (vision, sound, and touch). The assumption is inspired

by the slowness principle (Hinton, 1990; Földiák and Fdilr, 1989), which states

that the critical aspects of a scene change more slowly than the individual scene

measurements. For example, the movement of a horse in successive video frames will

lead to a rapid shift in individual pixel values. However, the characteristic describing

the horse or the position of its limbs will change more slowly. In its original form,

the slowness principle imposes a strong prior that features should remain constant

(invariant) across scenes, which leads to sub-optimal performance. For this reason,

temporal and spatial coherence assumes that attributes should be easy to predict

across scenes. More generally, we assume that different factors could change at

different temporal or spatial scales, which is the current explanation of how V1

simple and complex brain cells behave (Hurri and Hyvärinen, 2003), motivating the

Slow Feature Analysis algorithm (Wiskott and Sejnowski, 2002) and the pooling

operations in CNNs (Zhou and Chellappa, 1988). There are three benefits to this

assumption:

1. consecutive moves in time or space can be contracted to represent minimal

moves along manifolds, which makes generalisation easier;

2. if we additionally assume that factors change at different scales (both time
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and space), knowledge of the scale at which the factor varies can facilitate its

disentangling from other factors;

3. explanatory factors can be disentangled into sub-components, which could vary

together (e.g., representing position or colour as a 3D or RGB rather than a

dictionary of all possible combinations).

B.2 The Ideal Data Representation Properties

B.2.1 Expressive

One simple way to measure the expressivity of a representation is to count the number of

input regions (also known as configurations of the inputs) that the number of parameters

available to the representation can encode. Alternatively, a neural network is essentially

computing a linear function once we fix the activation pattern; thus, counting the number

of possible activation patterns provides a concrete way of measuring the complexity and

expressivity of a representation (Raghu et al., 2017).

This expressivity of a representation also known as representational power or represen-

tational capacity.

One of the main challenges for representation learning approaches is that often there

is an extremely large number of underlying causal factors. Let us assume an ideal

representation h ∈ Rd such that encodes all causal factors and a subsequent classification

task y ∈ Rm such that m � d. We known that there exists a function f , which maps

the underlying cause hi to an outcome yk – f(h) = y. An unsupervised representation

learning approach will not know which hi are relevant. Therefore, a brute force approach

entails that the learner captures and disentangles all relevant factors hi. Unfortunately,

it is challenging and often not feasible to capture all or most of the relevant factors that

influence an observation. Should we always encode all small background objects in a scene?

Or, should we encode all the features that do not change slowly over time in a video frame

such as the background? We address this challenge next.

B.2.2 Abstract

As mentioned previously, when building representations, we are often forced to make a

choice about which factors to keep (salience) and which factors to ignore (invariance).

While building in layers of abstraction helps manage this trade-off by representing more

specific factors in the lower layers and combining these into more general categories, it

does not address the challenge of deciding which factors to keep.
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Salience Currently, there are three strategies to address the “salience challenge”. First,

we can use supervised learning in conjunction with the unsupervised criterion to include

an additional learning signal that will help capture the most salient factors of variation for

a particular task. Second, we can use a huge representation with the hope that increased

representational capacity will capture most of the relevant factors. Third, an emerging

strategy is to modify the definition of salience. Usually, representation learning algorithms

such as autoencoders or generative models optimise a fixed-criterion, which to a large

degree determines the relevance of different causes. For example, autoencoders trained

on images with mean squared error criterion have the implicit assumption that a cause is

salient only when it is related to significant changes in the brightness of a considerable

number of pixels. This assumption poses substantial problems in situations, which involve

operations with small objects (e.g., generating ears or picking ping-pong balls in robotic

tasks).

Another definition for salience is that any highly recognisable pattern should be

considered salient. Generative adversarial networks (GANs) (Goodfellow et al., 2014b)

have emerged as a popular technique to implement this strategy. The idea is to train a

generative model to fool a discriminative model. The discriminator is trained to differentiate

between samples from the training distribution and sample from the generative model.

Lotter, Kreiman, and Cox (2015) demonstrates that mean squared error trained models

often fail to generate ears in images of human heads, but GANs can successfully generate

this highly recognisable pattern.

Invariance The goal of invariance is to reduce or remove the sensitivity of features to

variations that are uninformative to the subsequent task. In fact, Heinze-Deml, Peters,

and Meinshausen (2018) propose that there is an inherent link between invariance and

causality. We saw that both the hierarchical organisation and the sparsity assumptions

have the same aim of introducing invariance to local changes. Abstraction provides a simple

framework to improve generalisation through invariant features. First, we build ”low-level

features that account for the observed variation. Second, combinations of low-level features

are aggregated (e.g., pooled) to build more invariant higher-level features. Invariance

inadvertently makes the target function highly non-linear in the input space because it

ignores most local changes in the input. The high non-linearity facilitates the capture of

more general categories that described more varied phenomenon (e.g., a plane can be on

the ground, in the air, at a hanger, or could be a toy). The corresponding manifolds in

input space of such general categories are larger and more wrinkled (more ups and downs)

than the learned manifold, which makes generalisation easier because we can better model

the observed variation (Bengio, Courville, and Vincent, 2013; Bengio et al., 2013).
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B.2.3 Disentangling: Separate Directions

The explanatory factors of real-world inputs tend to change independently of each other,

and only very few at a time. Consequently, the resulting features should be sparse or

independent from each other, such that each feature or direction in representation space

corresponds to a different explanatory cause and is insensitive to minor variations. We

would expect that these factors group together to represent various forms of variation

combinations. Such a construction implies that the distributions over the latent variables

within the representation become factorised. That is, the latent variables contain multiple

independencies, which makes them easier to model, especially for density estimation

tasks. A factorised distribution over the latent variables generally results in more efficient

computations and representations that are more comprehensible to humans. For example,

Zhou et al. (2014) demonstrates that the hidden units within the top layers of deep

convolutional neural networks (DCNNs) trained on ImageNet and Places datasets have

interpretable features. That is, the features represent concepts which could be assigned

naturally by a human. Further, Radford, Metz, and Chintala (2016) demonstrates that

generative models can learn separate directions in representation space, which encode

different underlying factors of variation. The factors can be subjected to mathematical

operations to produce a new combination of semantically valid factors.

For instance, Figure B.1 illustrates that we can subtract from a vector representing a

man with glasses, a vector that represents a man without glasses. Then we can add another

vector representing a woman without glasses. The surprising result is a woman with glasses.

Similar results can be seen in natural language processing, where different directions encode

for gender and singularity vs plurality such that we can perform computations of the

sort king - man + woman = queen and queen + plural = queens (Mikolov et al., 2013b;

Mikolov et al., 2013a; Mikolov, Yih, and Zweig, 2013b).

Texture-bias In practise, interpretable features do not always emerge and in fact

DCNNs have an unnatural bias towards textures rather than shapes (Geirhos et al., 2019).

For example, an image can be constructed such that the shape of the image is one of a

cat; however, the filling of the shape (colour, texture) is that of an elephant skin (see

Figure B.2). Subject experiments demonstrate that the variety of humans classify the

image based on the shape characteristic in stark contrast to DNNs. It is fascinating that

both interpretable features, capturing the underlying variations, and texture-bias occur

naturally without including particular regularisation terms. These findings suggest that

interpretable features and texture-bias are somehow relevant to the optimisation task.
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Figure B.1: The concepts of gender and wearing glasses can be manipulating separately,
suggesting that the generative model has learned a distributed representation that disentangles
the two concepts. Image reproduced from (Goodfellow, Bengio, and Courville, 2016b).

B.2.4 Easy to model

As we discussed above, the disentangling property requires that representations encode

sparse and independent factors. A central theme of this thesis is the ability to interpret the

representations learned by DNNs. When the distributions encoded within a representation

do not involve all factors (i.e., they are sparse) and each factor can be observed without

affecting the other factors, it is much easier for a human to comprehend the captured

information (Miller, 1956). Next, we will look at compactness and robustness, which are less

theoretical requirements, more concerned with the ability to use the learnt representation.

B.2.5 Compact

Two key considerations in any software are the space and time complexity of the algo-

rithm. The naive way to build a representation of the world is just to have a table that

encodes every possible value. According to the curse of dimensionality, this approach is

bound to fail since it becomes exponentially more challenging to encounter every possible

configuration as the dimensionality of the data increases. A much more practical approach,

both computationally (fewer computations and less storage) and statistically (better

generalisation), is to represent only the salient variations. Sometimes for computational

reasons, we might even need to decrease the dimensionality of our data. In these cases, it

is paramount that we prune out the directions with the least amount of variation. It is

worth mentioning that there are two different schemes to measure the variation. The local
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Figure B.2: Classification accuracy of ResNet-50 on a) texture centric image (elephant skin);
b) normal image (both cat shape and texture); c) image with texture-shape conflict. Observe
that when the DNN is force to chose it relies on texture rather than shape. Image reproduced
from (Geirhos et al., 2019).

strategy measures the variation in local directions on the manifold around each sample,

whereas the global strategy measure the variation across the entire dataset (e.g., PCA).

B.2.6 Robust

When we deploy machine learning applications to real-world problems, we want to make

sure that our algorithms operate reliably in a wide variety of circumstances. This concern

is particularly important in safety and security-focused applications. When we talk about

robustness of a representation, we usually refer to the ability of a representation to resist

changes in the data distribution, so that it generalises to worst-case or unseen inputs. To

achieve generalisation, we want to make sure that a representation is robust against (not

vulnerable to) two main types of changes:

1. corruptions or infinitesimally small perturbations to the inputs (e.g., adversarial

examples, noise or missing inputs);

2. input, output, or conditional distribution shift7 (out-of-distribution generalisation):

(a) changes to the input distribution (e.g., domain adaptation and covariate shift);

(b) changes to the output distribution (e.g., label shift, transfer learning and multi-

task learning);

(c) changes to the causal mechanism (e.g., concepts drift).

7See Appendix A.
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Coarse Coding A curious paradox of neural representations is that we can learn

a target function more accurately when a set of neurons has a coarse-grained rather

than fine-grained response function of the input (Plate, 2006). That is, the accuracy of

the representation will increase when the precision of the individual neurons decreases.

Decreasing the precision of a neuron implies that we increase its “receptive field”, which

is the range of inputs it responds to. To illustrate, let’s imagine a continuous function

describing a particle’s position in 2-D or higher-dimensional space. If we represent this

space with a set of neurons such that each neuron responds to a circular region with

radius r (receptive field) within a k-dimensional input space, then the inaccuracy of the

representation is proportional to 1
rk−1 (Hinton, McClelland, and Rumelhart, 1986). Hence,

in a 3-dimensional space, doubling the radius to make the neuron more coarse, yields a 4

times better representation.

The reason for this strange phenomenon is related to information theory. A neuron

with a small radius activates for a tiny fraction of the total inputs, resembling a nearly

deterministic probability distribution over the data, thus carrying a negligible amount

of information. On the other hand, a neuron with a larger radius activates for a greater

fraction of inputs, which means it has a higher uncertainty over the input and a much

higher amount of information. Since a representation of an entity is formed by intersecting

all active neurons and coarse coding leads to an increased number of active neurons, coarse

coding improves the accuracy of the representation. Hence, we can conclude that the

resolution of a representation depends on the density and the overlap between the unit

receptive fields (Sullins, 1985).

Notice that the receptive field of units within a local representation is constrained

to specific concepts. In contrast, the field of distributed units is the set of all patterns

a neuron participates in (Rosenfeld and Touretzky, 1987). Intuitively, we can think of

coarse coding as implicitly encoding the slowness prior since we need to change the values

of the neuron stimulus drastically to produce a change in activation. For example, a

representation encoding the size of an animal can respond to discretised values of small,

medium or large sizes rather than to the exact height, width and length of an animal.

This concludes the discussion on representation characteristics that describe the form

of representations that meets the ideal data representation requirements the most –

partially-distributed representations. Let us now look at the source of partially-distributed

representations’ representational power.

Conclusions

An ideal representation is expressive and captures all the salient underlying causes of

the observed data. It uses multiple levels of abstraction to balance the trade-off between

sensitivity to informative and invariance towards non-informative directions (abstract). The
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representation disentangles the salient causes in a way that a separate feature or direction

in feature space represents each of the causes in a maximally easy to model and compact

way so that it is easier to interpret the representation and perform subsequent tasks.

Finally, we require the representation to be robust to minor corruptions or perturbations

and to have powerful generalisation properties to unseen or differently distributed samples.

B.3 Limitations

Here we expand the three shortcomings of distributed representations:

• interpretability: the ability to be understandable to a human (Doshi-Velez and

Kim, 2017).

• robustness: the ability to resist minor corruptions and generalise to unseen data

distributions.

• generalisation: in particular the binding problem, which is the inability to

maintain associations between multiple concepts (Plate, 2006).

B.3.1 Interpretability

Distributed representations have not been designed with interpretability in mind. On the

contrary, they were designed to make subsequent processing tasks easier, more efficient

and more robust to noise. Plate (2006) proposed two ways to address this challenge: (1)

elicit the concepts that are represented through the superposition of activation patterns,

provided the concepts of the basic patterns are known; and (2) elicit an intuitive space

of learned features that describe a concept in a human-understandable way. The first

approach maps probability distribution over the activation patterns and probability

distributions over the concepts (Zemel, Dayan, and Pouget, 1998), while the second

approach leverages clustering and dimensionality reduction techniques to cast the hidden

space into a more intuitively understandable format (Elman, 1990; Elman, 1991). In

Chapter 5, we propose two frameworks that take a step forward in both of these directions.

Notice that there is a subtle difference between interpreting a complete DNN model and its

internal representations. The latter can contribute to the former. A comprehensive review

of both model and representation interpretation approaches can be found in Chapter 3.

B.3.2 Robustness

In Section B.2.6 we described the two desiderata for building robust representation: (a)

robust against infinitesimally small perturbations or corruptions; and (b) robust against
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distribution shifts. We can think of the robustness property as a type of invariance.

Essentially, we want the representation to remain the same for various non-informative

changes that affect the input distributions. In that respect, we can cast the two types of

robustness as explicitly reducing the difference between representations of datapoints in

the vicinity of each other – intra-domain differences; and reducing the differences between

representations from different domains or distributions – inter -domain differences.

One of the main challenges for building robust representations seems to be the long-

standing framework for learning Empirical Risk Minimisation (ERM). ERM optimises and

evaluates the performance of a learning algorithm on the empirical distribution due to lack of

knowledge of the true distribution. ERM has been extremely successful in finding classifier

with low population risk, that is with small error on the corresponding task. However,

distribution shifts (Geirhos et al., 2019; Hendrycks and Dietterich, 2019) violate the

independent identically distributed (i.i.d.) assumption breaking the foundation of existing

generalisation theory (Bartlett and Mendelson, 2002; McAllester, 1999). Empirically, this

means that ERM learning results in models with non-robust representations (Szegedy

et al., 2014; Biggio et al., 2013; Arjovsky et al., 2019).

We can think of intra-domain robustness as violating the i.i.d. assumption at the micro

level. The sampling granularity of the training data is different to the sampling granularity

of the perturbed data. Fortunately, in the intra-domain robustness case, we can rely on

the local constancy prior to generalise since perturbed points in the vicinity of a training

point should have the same output or share characteristics.

On the other hand, inter-domain robustness explicitly breaks the i.i.d. assumption on

a macro level because it requires the representation to generalise to unseen or different

distributions. The robustness goal to ensure o.o.d. generalisation aims to relax the pivotal

assumption of independently identically distributed to independently non-identically

distributed (i.n.d).

Here we list the main directions of modifying ERM to increase the robustness of

representations:

1. reducing the intra-domain differences of representations (c.f. interpolation)

(a) robust training: explicitly enforcing resistance to infinitesimally small per-

turbations or corruptions (Madry et al., 2018; Tsipras et al., 2019; Wang, He,

and Xing, 2019; Wong and Kolter, 2018; Sinha, Namkoong, and Duchi, 2018;

Xiao et al., 2019)

2. reducing the inter-domain differences of representations (c.f. extrapolation)

(a) transfer learning: captures anticausal factors that disentangle the represen-

tation of p(x) and p(y|x), which would enable inter-domain re-usability of

representations
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(b) domain generalisation: looks for stable representations of anticausal factors

that are optimal across all (including unseen) domains (Arjovsky et al., 2019;

Arpit, Xiong, and Socher, 2019; Muandet, Balduzzi, and Schölkopf, 2013).

The most important aspect of the model that determines robustness is the distance of

the closes point to the decision boundary (Madry et al., 2018; Tsipras et al., 2019). Points

further away will resist a wider array of perturbations before representing a crossing across

the decision boundary. See Figure B.3 for an example.

Figure B.3: A hypothetical illustration of the difference between a robust (right) and non-robust
decisions (middle)boundaries for a set of linearly separable points (left). Middle: Observe that
the simple decision boundary cannot separate the Lp-bounded perturbations around datapoints
(here squares). This leads to adversarial example (red stars). Right: A more complex decision
boundary is required to separate the point neighbourhoods; hence, a model with a higher capacity
is more likely to attain better robustness. Image reproduced from (Madry et al., 2018).

Small curvature in the vicinity of datapoints Interestingly Moosavi-Dezfooli et al.

(2019) confirms the hypothesis that robust training induces increased distance between

datapoints and the decision boundary. The result is a locally-linear boundary in the

vicinity of the datapoints. Additionally, Moosavi-Dezfooli et al. (2019) challenge the

hypothesis of the highly non-linear decision boundary. The eigenvalue spectral analysis of

the Hessian8 of the loss function with respect to the inputs9 suggests that the decision

boundary becomes significantly flatter in all directions. The implication of this result

is a strong relationship between high robustness and small local curvature. We further

confirm this phenomenon in Appendix C.2.3. Notice that this does not contradict, but

supports Madry’s conjecture (Madry et al., 2018; Tsipras et al., 2019), which says nothing

about the global shape of the decision boundary. The boundary can still be a piece-wise

8Note that the maximum / minimum eigenvalues determine the maximum / minimum second derivatives,
thereby determining the maximum curvature / flatness respectively.

9Note that the authors compute an approximation of the Hessian, which measures large variations
in the gradient in the neighbourhood of datapoints. The approximation makes it difficult to draw any
inferences about the global curvature of the decision boundary. Further, notice that the authors measure
the Hessian of the loss landscape and use it as a proxy for the curvature of the decision boundary.
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linear function: highly-rugged (non-smooth) and locally linear, which implies small local

curvature.

Flat decision boundaries, separated by broader high entropy regions Under

classical regularisation techniques (e.g., weight decay, dropout, batch-norm) the decision

boundary is often sharp (rather than smooth) and close to datapoints. Hence, we end up

with configurations that project the datapoints into congested regions in hidden space.

Narrow representation space regions cause highly confident, but not necessarily accurate,

prediction because there is not enough room to encode uncertainty. In other words, the

representation is sharply jumping from one region of low entropy (high confidence) to

another (Verma et al., 2019).

On the contrary, flatter decision boundaries, separated by broader high entropy regions,

in both input and hidden space, give rise to two phenomena. First, the change in any

one single direction must be much more significant to change the prediction into a highly

confident region. Second, the representation is much sparser, so a change across many

more directions and mostly highly contributing directions is necessary to cause a significant

variation in the output (Verma et al., 2019). These results confirm the hypothesis that

smoothness and margin (distance between the closest datapoint and the decision boundary

is paramount for generalisation to noisy environments (robustness) (Bartlett and Shawe-

Taylor, 1999; Lee, Bartlett, and Williamson, 1995).

Drawbacks Although adversarial robustness is a useful property, it comes at a cost.

The most obvious drawback of robust training is increased training time since we

are computing new worst-case perturbations at each update step. Additional statistical

costs accompany these computational costs. Schmidt et al. (2018) and Alayrac et al.

(2019) demonstrate that robust training requires significantly more data and that the

increased data requirement is irrespective of the training algorithm or the model family.

Alayrac et al. (2019) show that unlabelled data can be leveraged effectively to increase the

robustness, at least partially mitigating the cost of expensive labelling.

Additionally, there could be an inherent trade-off between robustness and accuracy

if no assumptions about the data distributions are made (Tsipras et al., 2019; Zhang

et al., 2019). The features learned by optimal standard and optimal robust classifier

can be substantially different, which suggests the need for specialised techniques tailored

for finding robust representations. Interestingly, robust training can be beneficial to the

classification performance in the regime of limited training data (Tsipras et al., 2019).
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(i) The binding problem: representing multiple
objects using independent representations over
their features loses the information about the
association between the feature and the object.
Image reproduced from (Plate, 2006).

(ii) Paraphrasing a question complete changes
the prediction of a Question Answering system.
Notice that the first 3 corrections are very nat-
ural, yet still completely confuse the system.
Image reproduced from (Ebrahimi et al., 2018).

Figure B.4: Examples of the binding problem.

B.3.3 Generalisation: The Binding Problem

One of the main remaining representational challenges is the binding problem (Plate, 2006).

The binding problem describes the difficulty of representing the associations between

multiple variables. The challenge is that information is inevitably lost when the features

of multiple objects are encoded within the same distributed representation. Let’s imagine

the task of representing different figures, with two features (colour and shape), represented

independently as shown in Figure B.4.i. In the case of a single object, Figure B.4.i(a), the

association between the colour and shape is preserved, whereas, in the case of multiple

objects, Figure B.4.i(b), the association is not maintained. The representation for a red

circle and a blue triangle is identical as the representation for blue circle and red triangle;

hence, the association (binding) between different features is lost without an additional

data structures that could describe the association explicitly.

This challenge emerges in both NLP and vision tasks. For example, let us consider the

following sentence: “John watched Sam cook the eggs”. There are two types of binding

problems. The first one is the difficulty of associating the correct entities within the

different representations – representing that John is watching and Sam is cooking and

not vice versa. The second one is the subject-object dependence within the relationship –

“Sam cooks the eggs”; “John watched Sam”. Observe the recursive nature of the latter

association, which demonstrates the hierarchy assumption in action. We first need to

represent the relation “Sam cooks the eggs” and then we want to bind that as the object

of the association “John watched”. The recursive nature is one of the reasons for the

hierarchical structure. The binding problem, together with the linearity assumption, could

be one possible explanation behind the recently discovered fragility of Image Question

Answering System (Ebrahimi et al., 2018). As illustrated in Figure B.4.ii, a natural

rephrasing of a question regarding an image leads to entirely different answers.

The challenges emerge in vision problems as well. A nonsensical reordering of semantic

components such as eyes, mouth, and nose, does not lead to significant changes in the
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model’s predictions. One possible solution could be Capsule Networks (Sabour, Frosst,

and Hinton, 2017), which contain additional data structures to learn the associations.

B.4 The Case for Distributed Representations

Disentangle Independent, Invariant, and Linearly-separable factors Here we

demonstrate that distributed representation have been designed to incorporate multiple of

the assumptions described in Section 2.2 and the heuristics described in Section 2.4 to

fulfil the requirements set out in Section 2.3. In particular, distributed representations

are designed to: (1) disentangle independent, invariant and linearly separable factors

(disentangling); (2) form a natural clustering in a rich similarity space of reusable factors

connected in a hierarchical structure of simple relationships (abstract). These two design

considerations give distributed representations (3) exponential gains in representation

power over non-distributed representations (expressive & compact).

The disentangling characteristics of distributed representations result in separate control

over the underlying factors of variation. Better disentangling between the factors leads to

features with strong mutual information with one or very few of the underlying factors

of variation and high invariance to all other factors or non-informative variations. That

means that each of the features would become specialised and highly predictive of its

corresponding factor or small set of factors independently of other variations.

Expressivity To illustrate the power of distributed representations, let us compare them

to a type of non-distributed representations – symbolic representations. Symbolic

representations associate the input with a single element or category of the representation.

For example, the one-hot encoding representation is a binary basis vector with n bits,

which means that the bits are all mutually exclusive. Only one vector element can be

active at a time (e.g., a vocabulary of n words, in which a basis vector e(i) represents each

word i).

Non-distributed Representations K-nearest neighbours, decision trees, kernel ma-

chines with local kernels, clustering methods, such as k-means or Gaussian mixture models,

all rely on non-distributed representations. The challenge with these approaches is that

although multiple parameters or template examples produce the output, these parameters

cannot be controlled separately. That is, although changing one template or support vector

modifies the carved out region in input space, it does not define a new region. The

parameters cannot be combined in new ways to shatter the input space additionally. For

example, a point cannot be assigned to two clusters simultaneously by creating a new

region between two clusters (see Figure B.5b).
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(a) Distributed representation with binary features
splitting the input space. Each feature splits the
space into two half-planes with different configura-
tion at every intersection of the half-planes. Notice
that not all configurations are possible such as h = 0.
Nevertheless, the number of unique regions in Rd

space that n binary features can distinguish is equal
to
∑d

i=0

(
n
j

)
= O(nd) (Pascanu, Montúfar, and Ben-

gio, 2014; Zaslavsky, 1975). Hence, the growth of
distinguishable regions is exponential in the input
dimension, but polynomial in the representation size.

(b) Non-distributed representation such as k-nearest
neighbours splitting the input space. Each region is
defined by a different set of parameters in this case
template examples (represented by circles). Each
parameter defines the boundaries of the region (rep-
resented by lines) and the output of the algorithm.
Therefore, we need n examples to distinguish at
most n regions.

Figure B.5: Comparison between the ability of distributed and non-distributed representations
to break up the input space. Observe that distributed representations can separate exponentially
large number of regions. Images reproduced from Goodfellow, Bengio, and Courville, 2016a.

Similarly, decision-trees associate a given input with a one-hot representation over

the leaves because they partition the input space in sub-regions, where each region has

separate parameters. The path of a leaf’s ancestors to the root defines the parameters of

each leaf and a decision tree with n leaves requires 2n−1 parameters (Bengio, 2009; Bengio,

Delalleau, and Simard, 2010).

This discussion illustrates a main point: for all non-distributed representations, the

number of different regions that the representation can partition scales linearly with

the number of parameters or the size of the representations. Hence, good generalisation

requires the same number of examples as the number of distinct input space regions.

Non-distributed Generalisation Not only do decisions trees need the same number

of examples as different variations in the target function, but also they capture only

the variation in the training data, without any sophisticated mechanism to generalise

to unseen variations (Bengio, Delalleau, and Simard, 2010). For some of these “non-

distributed” algorithms, the output is not constant for each region, but interpolates

between neighbouring regions. Still, they generalise only locally due to the smoothness
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prior. Local constancy or interpolation within regions and between regions fails to describe

functions with many variations, even if these functions have short functional descriptions

(i.e., low Kologmorov complexity10) (Bengio, Delalleau, and Roux, 2006)11.

In other cases, more fine-grained control is possible. For example, in mixture models,

each mixture component can be controlled by different parameters giving rise to non-discrete

membership. We will now explore that the representational capacity difference is still

exponential since the parameters between mixture components cannot be shared (Bengio,

2009; Bengio and Delalleau, 2011).

Distributed Generalisation On the contrary, distributed representations can control

each parameter separately and combine parameters to achieve multi-clustering properties.

A binary distributed representation with n features can have 2n configurations and carve

out 2n number of regions in input space because each combination of directions (features)

can correspond to a different configuration value (Pascanu, Montúfar, and Bengio, 2014).

To illustrate, consider the examples in Figure B.5. Figure B.5a depicts how a distributed

representation can split the input space into exponentially more regions with the same

representation size as a non-distributed representation (Figure B.5b).

Generally, the argument in favour of distributed representations is that a dis-

tributed learning algorithm can represent O(r) regions with O(log r) parameters

compared to O(r) parameters in the non-distributed setting. Therefore, the distributed

algorithm has fewer parameters to learn and thus requires much less training data

to generalise well (Goodfellow, Bengio, and Courville, 2016a; Bengio, 2009).

B.4.1 Linearly Separable

Although distributed representations can encode an exponential number of regions, the

capacity of deep learning models is constrained because we cannot use the entire code

space. This observation comes from an interesting result from complexity theory. The

VC dimension of binary output neural networks with linear threshold activation functions

is only O(w logw), where w is the number of hidden units in the layer (Sontag, 1998)12.

Consequently, we can interpret any two layers of the network as a linear predictor on top

of a distributed representation. The combination of distributed representations with linear

predictor induces a prior belief that learned concepts should be linearly separable as a

function of the features (i.e., bias against XOR logic). For example, the model will be

10The length of the shortest computer program that can describe the function.
11A more detailed discussion on the local nature of these and other algorithms can be found in Section

3 of Bengio (2009).
12Similar results can be derived for networks with binary outputs and piece-wise linear activation

functions (Bartlett and Maass, 2003)
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biased towards learning concepts such as all pink objects or all elephants rather than pink

elephants and green giraffes. Recent results (Pérez, Camargo, and Louis, 2019) support

this hypothesis, suggesting that DNNs are inherently exponentially biased towards simple

functions.

B.4.2 Natural Clustering in a Rich Similarity Space

When a distinct set of parameters can be controlled separately, as in distributed represen-

tations, different concepts can share the attributes of the representation. For example,

there are many similarities between cars and trucks, which common features could describe:

”number of wheels”, ”has door”, ”has windshield”. These features generalise across con-

cepts, which means information about one concept can supplement information about

another and thus decrease the amount of data necessary to learn both concepts.

Rich similarity space Due to the fact that semantically similar objects share reusable

features through similar activation patterns, distributed representations induce a rich

similarity space (Elman, 1990). This is one of the most powerful properties of distributed

representations because it allows for complex operations in representation space.

The simplest possible operation is interpolating between datapoints in hidden space. It

contributes to the generalisation power of distributed representations because unknown

points can be easily labelled. More complex operation are also possible, such as non-

exact matching for information retrieval tasks or vector addition and subtraction in word

embeddings (Mikolov et al., 2013a).

Word Embeddings Word embeddings are the most notable illustration of the rich

similarity space. A one-hot encoding of a word does not say anything about the relationship

with other words. In fact, in a basis-vector space, any word is at an equal distance to

all other words. On the other hand, neural language models, based on distributed repre-

sentations, learn representations that share attributes between words13, which frequently

appear in the similar contexts. A sharing of attributes often gives rise to a natural

clustering, where semantically similar words tend to be neighbours in the representation

space (Mikolov, Yih, and Zweig, 2013a). This clustering is a particularly powerful way to

counteract the curse of dimensionality. A large number of shared factors leads to

the transfer of information from one setting to another (e.g., from one training sentence to

an exponential number of semantically similar sentences) (Bengio, Ducharme, and Vincent,

2000).

13Notice that the rich similarity space property is closely related to one of shared reusable features.
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B.4.3 Hierarchical compositional structure

Distributed representations can be stacked together to form deep distributed representations

(deep learning). As we noted previously, a fundamental assumption of deep learning is

that the algorithm should learn a hierarchical representation such that high-level concepts

are defined using simpler ones.

Deep distributed representations assume a hierarchy is more likely to disentangle

independent high-level factors. The abstract concept these factors represent are related to

the input in complex extremely non-linear ways, but simpler (lower degree polynomial)

ways. Therefore, we make the general assumption that the function describing these factors

is composed of multiple simpler non-linear functions of reusable low-level features. The

simpler functions recursively describe the different ways, in which the high-level concepts

relate to the input.

The hierarchy assumption has three main benefits: (1) contributes to disentangling

of factors of variation; (2) induces a prior of building invariant features; and (3) leads

to exponential gains in representation power because it promotes the reuse of features.

Together these benefits form one of the main motivations behind distributed representations

since a deep hierarchy requires powerful intermediate representations of concepts to perform

a series of processing stages.

Disentanglement First, we can think of feature composition as the generative equivalent

of feature representation’s goal of disentangling factors of variations. In that sense, the

hierarchical organisation is the inverse function of factor disentanglement. Empirical results

support the hypothesis that deep representations help to disentangle the factors of variation.

For example, Bengio and Delalleau (2011) demonstrate that empirically the marginal

distributions of the deeper layers representations lead to better and more interpretable

separation of inputs in deeper layers. More concretely, the marginal distributions of

the hidden units deeper layers become smoother, more spread out, and more unimodal.

Such distributions lead to the unfolding and expanding of high-dimensional manifolds

representation compared to their corresponding manifolds in input space. Smoother and

more spread-out manifolds make interpolation between high-probability samples easier,

thus improving the generalisation. Intuitively, this means that DNNs are capable of

disentangling highly curved input manifolds into flat hidden space manifolds (Poole et al.,

2016). At the same time, the unimodal property separates the factors on different

manifolds.

Invariance Second, empirical results suggest that deeper layers of representations

learn features that are more invariant to the less informative variations in the observed

data (Yosinski et al., 2015; Bengio, 2009; Bengio and Delalleau, 2011). Convolutional
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deep belief networks learn features that are significantly invariant to input transforma-

tions. Deeper stacks of autoencoders learn moderately invariant features as the depth

increases (Goodfellow et al., 2009).

Invariance is increasingly becoming a more important characteristic. Some researchers

(Heinze-Deml, Peters, and Meinshausen, 2018; Arjovsky et al., 2019; Ahuja et al., 2020) see

invariance as the path to causality because strong invariance to non-informative variations

could entail high specificity to causal factors.

Expressivity Third, the hierarchy assumption leads to exponential gains in representa-

tion power because a neural network of depth l can represent exponentially more regions

than a network of depth l− 1. Theoretically, the number of regions that a piece-wise linear

network (e.g., DNN with a ReLU activation function) is bounded by:

O

((
n

d

)d(l−1)

nd
)
,

where the network’s parameters are d inputs, l depth, n hidden units per layer. Empirically,

larger depth does seem to be correlated with better performance Montufar et al. (2014),

Pascanu, Montufar, and Bengio (2013), and Goodfellow et al. (2014a)14.

The number of ways we can reuse a feature grows exponentially with depth. Therefore,

the power of building a hierarchy over reusable features through the composition of non-

linearities can give an exponential increase in representation capacity in addition to the

exponential growth resulting from representing these features in a distributed fashion.

Not all layers are created equal If the representational power grows exponentially

with depth, then small changes to parameters in the lower layers have larger effects on the

output than changes in higher layers. For this reason, optimising the weights in lower layers

is especially important, although depth increases the representation power (Raghu et al.,

2017). The importance of lower layers has substantial implications for interpretability.

In Section 3.5.2 we discuss that lower layers have been completely overlooked, although

recent results (Adebayo et al., 2018) seem to suggest that they play a crucial role in the

fidelity of explanations.

14These results generalise to representing joint probability distributions with more variables than hidden
units. For example, shallow binary neural networks cannot differentiate between r-independent distributions
and r-independent uniform distributions (i.e., independent random noise). Order r-polynomials over the
real numbers cannot capture r-independent distributions (Braverman, 2011; Bengio and Delalleau, 2011).
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APPENDIX C

Model and Data Properties that

Affect Interpretability

C.1 Relationship between Data & Model Properties

and Model Characteristics

We define a set of dataset and model properties that determine the representational

capacity and the dataset complexity (i.e., the complexity of the classification problem),

and we look into a subset of their relationships with the model characteristics of accuracy,

interpretability, and robustness. The following properties should be considered when

conducting model explanation:

1. Model and representation properties:

(a) curvature of the decision boundary:

i. local curvature around a training point or for a particular feature;

ii. global curvature of hidden representation manifolds and the regions of

low probability separating these manifolds, which describe the relationships

between features;

(b) sparsity of hidden representations (proxy for dimensionality of global manifolds,

thus, global curvature);

(c) invariance, or robustness, of hidden representations to noise and unstable

signals (proxy for curvature and generalisation due to causal relationships).

2. Dataset complexity:

(a) size:
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i. number of datapoints

ii. number of features

(b) intra-feature properties (properties related to the marginal distribution of

a feature):

i. location (e.g., mean, mode, median)

ii. variability (e.g., range, standard deviation, variance)

iii. lack of symmetry (skewness)

iv. heavy-tailed or light-tailed (kurtosis)

(c) inter-feature properties (properties related to the join distribution of fea-

tures):

i. confounding factors

ii. individual feature contributions

Figure C.1 summarises the implicit relationships between these proprieties and the

model characteristics. Here, we present the theoretical reasons for the importance of

these properties and relationships, while Section C.2 gives empirical results supporting

our claims. Let us now examine each of these properties in more detail.

Figure C.1: The interplay between properties influencing interpretability and model character-
istics. The shaded boxes indicate subjects that we investigate empirically in this appendix.
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C.1.1 Dataset Properties

The complexity of the dataset describes the difficulty of the task at hand. More difficult

tasks can be solved using models with higher capacity, which makes the models more

difficult to interpret. This difficulty is the result not only of more sophisticated behaviours

to be explained, but also of the fact that current ways to explain models overlook important

properties of the dataset. The most common descriptors of dataset complexity are related

to the size and feature-based properties of the data (Lorena et al., 2019). The size of

the dataset is usually determined by the ratio between the number of datapoints and

features. On the other hand, we propose to divide feature-based properties on the basis of

whether they are concerned with a single feature, intra-feature properties, or multiple

features, inter-feature properties. The inter-feature properties look at the relationship

of multiple feature with the output. We propose that two such properties are confounding

factors and the ranking of the individual feature contributions to the output.

The effects of dataset complexity in terms of size and intra-feature have been widely

studied in statistics literature (Heckert et al., 2002; Ho and Basu, 2002). Here we focus on

the inter-feature properties. To the best of our knowledge we are the first to explicitly

study the effect of inter-feature properties on interpretability. Molnar et al. (2020) have

recently investigated similar ideas in parallel with us; however, they study global functional

description explanation, such as partial dependence plots, accumulated local effects, and

individual conditional expectations1, whereas we focus on feature importance explanations.

We make two important observations that highlight the significance of explicitly

incorporating inter-feature information when interpreting models. First, Section C.2.1

illustrates that the i.i.d assumption2 does not hold even for commonly used dataset,

leading to misleading conclusions that the algorithm does not depend on a particular

feature, when the information about that feature is easily inferable from confounding

factors. Second, Section C.2.3.1 investigates the effect of dataset size on model robustness.

portrays that small and large dataset can have radically different effects to the training

accuracy, robustness, and interpretability because of their effect on the decision boundary.

C.1.2 Model Properties

Figures C.1 & C.2 depict that the curvature of the decision boundary is tightly linked with

the sparsity and invariance of hidden representations. At the same time, Figure C.2 portrays

how these three properties influence each other to yield specific model characteristics across

the spectra of possible values. Manipulating any of these properties inadvertently affects

the others, so they jointly determine the model characteristics. For example, increasing

1See Section 3.4.5.3 for more details.
2See Appendix A.
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Figure C.2: The relation between the model properties of sparsity, invariance and curvature.
The representation sparsity and invariance affect the curvature of the decision boundary. Minimum
levels of sparsity and invariance lead to overfitting, while maximum levels lead to underfitting.
Hence, we need to balance the level of sparsity and invariance to encode different assumptions,
such as Occam’s razor.

the sparsity, leads to more invariant representations, which could result in a flat decision

boundary and underfitting models. Let us now explore these interactions in more details.

Curvature The curvature of the decision boundary possibly contains the most exhaustive

information regarding the behaviour of the model (Ho and Basu, 2002). It is also the most

important property that determines the training accuracy of a model. Figures C.1 & C.2

illustrate that high curvature leads to more accurate models because more complex

relationships can be described; however, an extremely high curvature leads to overfitting

due to overparameterised models. Figure C.2 depicts that this overparameterisation can be

controlled using the sparsity and invariance of the internal representations to balance the

model’s representational capacity, thus decreasing the probability of overly high-curvature.

The sparsity and invariance of the representations influence the curvature in distinct

ways. As we shall see in the following paragraphs, the invariance increases the smoothness

of the decision boundary, whereas sparsity increases the margin between learned concepts

(e.g., class identities or manifolds in hidden space). Smoothness and margin have long

been established as factors of generalisations and high-performing models (Bartlett and

Shawe-Taylor, 1999; Lee, Bartlett, and Williamson, 1995). These ideas can be extended to
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describe more fine-grained properties of the curvature. The smoothness of the boundary

around a particular training point or feature (one dimension of the input space) determines

the local curvature. On the other hand, the global curvature elucidates how the

internal representation manifolds and the regions of low-probability between them (i.e.,

the margins) describe the relationships between multiple features and outputs.

The global curvature describes the overall complexity of the decision boundary. It

characterises how the decision boundary folds to produce a number of peaks and troughs,

or critical points (points for which the gradient is zero). On the other hand, the local

curvature specifies the shape of the boundary in the neighbourhood of a critical point

(i.e., how curved the peak or through is). Ideally, we want locally flat boundaries, which

are insensitive to minor perturbations, and globally smooth boundaries, such that the

transition between manifolds is gradual, but pronounced, so that it reflects the decrease in

confidence of the prediction.

A globally smooth and locally flat decision boundary is also preferable for feature

importance techniques. The smoothness would make it easier to detect meaningful

contributions of the features because there would exist regions where the gradient will

be defined and non-zero. On the other hand, the local constancy would mean that an

explanation would not attribute unnecessary importance to minor fluctuations in the

decision boundary.

Two challenges for feature importance explanations remain: (i) incorporating informa-

tion that describes the global curvature; (ii) establishing the optimal perturbation size,

such that a perturbation is significant to describe variations along the global curvature,

but not excessively large to marginalise out a wide range of the model behaviour.

Sparsity The sparsity of hidden representations determines the dimensionality of the

manifolds in hidden space. Increasing the sparsity decreases the representational capacity

(and by proxy the effective capacity) because the representation can encode a smaller

number of concepts (“representational real estate”). The presence of fewer concepts

increases the invariance because there is just enough space to learn only the most salient

concepts, while discarding the rest (as portrayed in Figure C.2)3.

As long as the representational capacity is high enough 4, sparsity directly increases

robustness because there is more representational real-estate to encode information, which

shrinks the probability of overriding (ghosting) or overlapping (interference) 5 concepts

representations. In Section B.3.2, we noted that the most important property for robustness

3Notice that this statement does not imply that the representation becomes explicitly invariant
to confounded concepts. That is, if the concepts of a cow and grass are confounded, the decreased
representational capacity might make it more likely that the two concepts remain confounded rather than
encoding an explicit invariance towards the spurious signal of grass.

4Remember that sufficiently high model capacity is crucial for robustness (Madry et al., 2018).
5See Section 2.4 for definitions of ghosting and interference.
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is the distance of the nearest point to the decision boundary (Madry et al., 2018; Tsipras

et al., 2019). In a sparse representation a more significant change would be required to

shift between representations. It might be the case therefore that sparsity is a way to

control the differences between representations. The effect of sparsity is that a different

low-dimensional manifold (in hidden space) represents each concept, so the distance

between manifolds is larger and smoother (i.e., the manifolds are separated by wider and

less sharp regions of high-entropy).

We can interpret sparsity as the opposite of compactness. Figure C.2 depicts that a

maximally sparse representation encodes each variation in the data in a separate one-hot

encoding. This encoding is useful because it is more robust and easier to interpret due to

the lower number of superimposed activity patterns of interference or ghosting. However,

maximally sparse representation became infeasible to represent since every variation

requires additional dimensions to be added to the representation.. Hence, there is a direct

trade-off between compact (efficient) and robust representations. A compactly compressed

encoding of the same amount of information has less redundancy, which gives more room

for error and decreases robustness.

Invariance While sparsity decreases the compression of hidden space, it induces lossless

and lossy compression of the input space information in the form of invariance. As a form

of lossless compression, the invariance eliminates any statistical redundancy or noise

signals without affecting the training accuracy. As a lossy compression, the invariance

eliminates signals that are less relevant or discriminative for the task at hand. However,

Figure C.2 illustrates that excessively high invariance could lead to constant classifiers that

completely ignore the input. On the other hand, the optimal level of invariance flattens

the local curvature around non-discriminative features, thereby improving the model

generalisation and robustness (Verma et al., 2019). In fact, the adversarial explanation

attack (described in Chapter 4) explicitly induces invariance to particular features to

manipulate explanations. The fact that six explanation methods indicate a decrease in

feature importance, but we register little change in accuracy also suggests that current

explanation methods are over-reliant on local curvature.

Another important benefit of invariance to statistically unstable signals (e.g., image

background), is that it increases the likelihood of capturing causal features (Heinze-Deml,

Peters, and Meinshausen, 2018)6.

The identification of features with stable relationships has the potential to move the

field of interpretability, and possibly representation learning, higher on the ladder of causal

6In Appendices A & B.3.2 we discuss the link between invariance, causality, and generalisation.
Specifically, causal factors are invariant to unstable signals across domains; hence, the property of invariance
is useful for out-of-distribution generalisation because it reduces the difference between representations of
different domains.
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queries. That is, moving the field from the level of association (detecting correlations

between variables) to a higher form of reasoning – intervention (acting with the world

to establish causal relationships) (Pearl, 2009). In Section 3.3.2, we argued that causal

explanations are the highest form of interpretability, hence increasing the invariance to

spurious correlations will make models more comprehensible and trustworthy.

C.1.3 Model Characteristics

Accuracy & Interpretability Chapter 4 provided additional evidence in support of

the Rashomon set hypothesis, demonstrating that we could alter the decision boundary of

a pre-trained model and affect the interpretability and the apparent fairness of a model,

with little change in accuracy. In Chapter 3, we presented one of the reasons for this

phenomenon – the limitation of the majority of explainability methods to describe only very

local model behaviour (Jiang et al., 2018). However, both the local and global curvature of

the decision boundary play an important part in defining the model characteristics since

they determine the effective capacity7 of a model (Ho and Basu, 2002). An extremely

high curvature, coupled with a low dataset complexity, increases the likelihood of low

quality models that are overfitting because of small invariance and little robustness to

redundant or spurious signals. The model quality directly affects interpretability because

explanations of low-quality models are difficult to validate. One reason for this is that

humans are subject to confirmation bias8 and will accept an explanation as long as it

makes sense to them (Adebayo et al., 2018). Hence, accuracy is not a variable to trade-off

with trustworthiness. On the contrary, it contributes to the increased trust in the model.

Therefore, future interpretability research should focus not on finding a compromise

between accurate and interpretable models, but on describing both the local and global

curvature of models.

Robustness & Interpretability In Section B.3.2, we discussed that robustness can be

controlled with two properties: (1) closeness of similar concepts; and (2) distance between

different concepts; and that the majority of current robustness approaches focus primarily

on the former technique.

While invariance of representations is used to control the concept similarity using the

local constancy prior9, the sparsity controls concept dissimilarity by elongating the paths

between manifolds, which describe the different concepts. Hence, the optimal conditions

7While the representational capacity defines the maximum complexity of the model behaviour, the
effective capacity describes the actual capacity of the model after training. Due to limitations of the
learning algorithm or idiosyncrasies of the dataset, the effective capacity might be, and often is, smaller
than the representational capacity.

8See Section 3.5.2.3, “Cognitive fragility”.
9See Section 2.2 for more details.
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for robust representations are locally flat curvature in input space, and globally distant

manifolds in hidden space. A robust representation makes the decision boundary much

smoother, and a smoother decision boundary yields significantly better explanations (Dom-

browski et al., 2019). It may be the case therefore that explainability and robustness are

“two sides of the same coin”. For example, a gradient-based explanation is only locally

faithful (i.e., within an infinitesimally small region around the decision boundary) (Jiang

et al., 2018). However, if the decision boundary has many peaks and valleys in close

proximity, minor perturbations have a significant impact on the explanation.

An exciting avenue of future research would be to develop fine-tuned control of the

trade-off between maintaining the representational compactness constant in order to

improve memory requirements, while modifying the distance and flatness (i.e., the opposite

of curvature) between manifolds to achieve robustness and improve explanation quality.

C.2 Supplementary Experimental Results

Here we conduct three different investigations using the experimental set-up defined in

Section 4.3.1 (unless stated otherwise) to support the hypothesis that the dataset properties,

the curvature, and invariance affect interpretability.

C.2.1 Dataset Features

Here we propose that the analysis of interpretability techniques needs to be grounded in a

thorough understanding of the dataset. We support this argument with a study of the

datasets properties that influence the effect of our attack. In particular, we investigate

the effects of interrelated features (confounding factors) and the individual importance of

separate features on the adversarial explanation attack. The aims of this study are to:

1. explore the possibility that the model is using confounding factors to infer the signal

of the target feature;

2. investigate whether the attack is a property of the dataset. That is, features that

are non-essential to the task are easy to conceal or ignore, in contrast to highly

important features.

Confounding Factors A straightforward way to decrease the target feature importance

without a significant detriment to the accuracy of the model is to infer the value of the

target feature from the set of remaining features. Inferring the feature could be possible if

there are confounding factors10.

10See Appendix A.
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There are two simple ways to measure the dependence between features: decision-

independent and decision-dependent (Qu, Hariri, and Yousif, 2005a; Qu, Hariri, and Yousif,

2005b). The difference between these dependence measures is that the later evaluates

the feature-class correlations, while the former evaluates feature-feature (inter-feature)

correlations. In that respect, the decision-dependent analysis assumes that the decision is

the confounding factor. On the other hand, the decision-independent analysis measures

the upper bound (maximum) degree of dependence between features.

While we investigated decision dependent correlation in Section 4.4.3.2, here we analyse

the decision-independent impact of the intrinsic signal that is contained in the features.

A simple well-established metric for measuring both the decision dependent and decision

independent (Al-Ani and Deriche, 2002; Qu, Hariri, and Yousif, 2005a) correlation is the

mutual information (MI) between the features (Al-Ani and Deriche, 2002), that is, the

similarity between the joint p(x, y) and factored marginal p(x)p(y) distributions. In other

words, this is the reduction in uncertainty in one random variable x after observing another

y: H(p(x))−H(p(x|y)), where H(x) = Ek∼p(x)[log 1
k
] is the uncertainty, or entropy. The

MI is zero iff the variables are independent p(x|y) = p(x) (MacKay and Mac Kay, 2003).

The decision independent correlation between features is defined as:

I(x; y) , KL(p(x,y), p(x)p(y)) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(C.1)

where KL is the Kullback-Leibler divergence or relative entropy.

We use scikit-learn’s implementation (Pedregosa et al., 2011) of mutual info classif and

mutual info regression to estimate the mutual information (I) for discrete or continuous

target variables respectively.

Tables C.1, C.2, C.3 demonstrate the risks of confounding-factor interference to our

evaluation. The explicitly confounded features can be found in Table C.1. Table C.3

summarises the results from Table C.2 to illustrate that on average there is a considerable

number of confounders for each feature across the datasets. In fact, Table C.3 depicts

that across all datasets there is on average at least 1 confounded feature and a significant

amount of information about the feature can be extracted from other signals. Closer

inspection of Table C.2 shows that for three out of the four datasets, the age feature can

be almost if not completely inferred from other features. Table C.1 is quite revealing in

this way, portraying that some datasets (e.g., COMPAS) are even defined with redundant

features (e.g., age and categorical age).

Taken together, the results demonstrate that the i.i.d. assumption does not hold even

for many popularly used datasets. Only two out of the ten examined features (compas-

gender,compas-race) do not have significantly confounded variables, demonstrating that

the majority of the sensitive features are not independent. Even in the case of the features
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Confounders (X:,j)
Dataset Feature (X:,i)

german gender response, duration
age other-debtor, present-emp

adult age workclass, occupation, education,
education-num, hours-per-week,
relationship, marital-status

race native-country
gender occupation, marital-status, relationship

bank age education, emp.var.rate, nr.employed,
cons.price.idx, cons.conf.idx, marital,
euribor3m, job

marital job, age
compas gender

age priors-count, age-cat=Greater than 45,
age-cat=Less than 25, age-cat=25 - 45

race

Table C.1: The weak (I(X:,j , X:,i) > 0.05), medium (I(X:,j , X:,i) > 0.1), and
strong (I(X:,j , X:,i) > 0.2) confounding factors (xj) for each target feature (xi) and dataset in
the training data. The mutual information between all the features and the target feature is used
to ascertain the confounding factors, while the threshold values were determined after manual
observations of the mutual information distribution across non-target features. Colour signifies:
weak, medium, and strong confounders.

compas-gender and compas-race the full set of non-target features still contains some

information about these target features. The mutual information between the target

feature and the full-set of the remaining features is 0.09 and 0.14, for compas-gender and

compas-race respectively11.

The fact that the i.i.d. assumptions does not hold implies that a reasonable explanation

technique needs to ground its insights both in the model’s operations and the data. At

this point, it is not clear whether the fragility of interpretation follows from the unreliable

nature of the models or the unreliability of the interpretation techniques. The lack of

well-develop techniques to isolate the effects of confounding factors makes both the learning

algorithm and the explanation methods extremely susceptible to latent data variations

and dependencies. For this reason, we argue that the future of explainability research

necessitates well-controlled experimental settings.

Effect of Feature Importance Ranking Another naive way to “fool” all explanation

methods is to take an already non-informative feature and decrease its importance. Here

11Section 4.4.3.2 presents strong evidence against the possibility that the modified model is ignoring the
target feature, while maintaining performance using only information from confounding factors. However,
we cannot completely rule out the possibility that our attack somehow forces the model to pay more
attention to the information from the confounding factors.
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∑
j 6=i I(X:,j, X;,i) # Weak # Medium # Strong

Dataset Feature (X;,i)

german gender 0.50 2 2 0
age 0.19 2 0 0

adult age 0.95 7 3 1
race 0.21 1 0 0
gender 0.61 3 3 1

bank age 0.90 8 4 0
marital 0.26 2 1 0

compas gender 0.09 0 0 0
age 2.74 4 4 3
race 0.14 0 0 0

Table C.2: Summary of Table C.1. The number of weak, medium, and strong confounding
factors and the average total information contained in all non-target features (X:,−i) per target
feature (X:,i) across the 4 datasets. Notice that there are only two features (compas, gender
and race) that do not have significant single confounding factors. Nevertheless, the full set of
non-target features still contains some information about the target feature.∑

j 6=i I(X:,j, X;,i) # Weak # Medium # Strong

Feature (X;,i)

age 1.2 5.2 2.8 1.0
gender 0.4 1.7 1.7 0.3
marital 0.3 2.0 1.0 0.0
race 0.2 0.5 0.0 0.0

Table C.3: The mean values of the number of weak, medium, and strong confounding factors
and the average total information contained in all features for the target feature across the 4
datasets. Notice that across all datasets there is on average at least 1 strong confounder and the
information about the feature can be extracted from other signals.

we present a case study that investigates how the importance of a feature correlates with

the susceptibility of the feature to the attack. Lower values of the explanation loss indicate

that the attack was more successful because it induced lower target feature attribution

and the particular feature was more susceptible to the attack. The importance of a feature

is determined based on ablation experiments, which measure the drop in accuracy when

the feature is kept constant. This is a common way to estimate the individual feature

importance, sometimes referred to as permutation feature importance (PFI) (Breiman,

2001; Fisher, Rudin, and Dominici, 2019).

Figure C.3 demonstrates that most of the features cluster together given their relative

importance and the resulting target feature attribution (i.e., the ability of the attack to

affect the curvature of the model w.r.t. each target feature). This observation implies

that our attack performs consistently for most features and the German, Adult and Bank
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datasets12. However, the attack susceptibility is lowest (the explanation loss is high) for

the most important features. This finding suggests that unless we are attacking the most

critical features, features importance does not play a significant role, which means that

a variety of minor ethical nuances can be hidden away. The slightly greater difficulty of

Figure C.3: A scatter plot across all features between the inverse importance of a feature
(y-axis) (measured with an ablation study, i.e., the drop of accuracy when the feature is kept
constant) and the attack susceptibility (x-axis) (measured as the explanation loss of the modified
model after an explanation attack with respect to that feature). Lower accuracy means greater
drop due to the feature; hence, the more important a feature is, the lower it is on the y-axis. The
clustering effect of the points is on purpose since scale of the y-axis is shared across the three
subplots to demonstrate the differences of feature importance across each of the datasets. The
colours represent the train (blue) and test (orange) datasets, depicting the the features maintain
their relative importance for both datasets. What is important in this plot is that most of the
features cluster together, suggesting that for the majority of features importance does not play a
significant role.

concealing the most important features is an expected result since the curvature or the

slope of the model with respect to the most important features should be the highest.

Hence, unsurprisingly, for Adult and Bank, the feature importance is negatively correlated

with attack susceptibility (-0.83 and -0.49 Pearson correlation coefficients, respectively).

One unanticipated result is that for German, the two metrics seem to be slightly positively

correlated 0.34. These differences can be explained in part by a few outlier features that

influence the trend strongly or for which in some of the random initialisations the modified

model turns into a constant deterministic classifier. There are, however, other possible

explanations. One possibility could be related to the ratio between representational

capacity and dataset complexity. When a model’s capacity is much higher than the

12We do not investigate COMPAS due to the computational implications of conducting the experiments
across 400 features.
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dataset complexity (as is the case for German), there is more “room” to wiggle, and it

is easier to conceal a feature. Another possibility is that the attack has a regularisation

effect in the regime of limited training data, yielding smoother decision boundaries and

better performance. We discuss further evidence and the implications of each of the two

hypotheses in Appendix C.2.3.1.

C.2.2 Curvature

The aim of this section is to support the hypothesis that the adversarial explanation attack

can be used as a preference articulation technique because it affects the curvature of the

decision boundary. As such it influences feature importance explanation techniques and

hence the explainability model characteristics.

∇X:,j
L vs ∇X:,j

f(x) Both the adversarial explanations attack (described in Chapter 4)

and the method in Heo, Joo, and Moon (2019) penalise the gradient with respect to the

loss function(∇X:,j
L) rather than the gradient with respect to the element of the output

vector corresponding to the correct label (∇X:,j
f(x)). Here we study the implications of

using either approach to the success of the attack and the resulting curvature of the model

in a similar fashion to the eigenvalue spectral analysis of the Hessian in Moosavi-Dezfooli

et al. (2019).

Remark C.2.1

Here we briefly review the idea of eigenvalue spectrum. The eigenvalue spectrum of a

matrix is the set of all eigenvalues. A key element of this spectrum is the absolute

maximum eigenvalue, which is known as the spectral radius, or spectral norm, of a

matrix. The spectral radius helps us gain some perspective about the local curvature

of the decision boundary in the neighbourhood of training points. In Section B.3.2

Paragraph “Small curvature in the vicinity of datapoints” we briefly mentioned that

the maximum / minimum eigenvalues of the Hessian determine the maximum /

minimum second derivatives, thereby determining the degree of curvature. Since

the second derivative is a measure of curvature, when the second derivative is positive,

the function curves upwards, whereas when second derivative is negative, the function

curves downwards. When the second derivative is zero, the function is flat. Notice

that flat does not imply constant. Only when the first derivative is also zero, then

there is no slope and the function is locally constant.

Theoretically, the gradient w.r.t the loss is:

∇X:,j
L = ∇X:,j

− Ep̂data

[
zi − log

∑
k

exp(zk)

]
, (C.2)
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whereas the gradient w.r.t the element of the function output corresponding to the correct

label is:

∇X:,j
f(x) = ∇X:,j

exp(zi)−
∑
k

exp(zk), (C.3)

where j is the target feature, zi is the pre-softmax logit f(x)i = softmax(z)i = exp(zi)∑
j exp(zj)

,

and i is the element of one-hot encoding output vector corresponding to the correct class

yi = 1.yi ∈ y.

Equations C.2 & C.3 taken together suggest that theoretically, the main difference

between the approaches is whether we undo the exponent term with the log function or

not. Both Equations C.2 & C.3 include the contributions of each neuron within the entire

output vector due to the denominator of the softmax function. We observed that taking

the activation of the pre-softmax logit made the training process extremely unstable,

causing violent oscillations of the loss function. The reasons for this strange finding can

be explored in future work.

Experimental Set-up Next we conduct two eigenvalue spectrum analysis experiments

on the 5-hidden layer model architectures to explore how the curvature of the model is

affected by (1) the different loss functions stemming from Equations C.2 & C.3; and (2) the

adversarial explanation attack regularisation in comparison to the original and constant

models defined Chapter 4.

In the first experiment, we compare the distribution of the maximum eigenvalue of

the Hessian (H) with respect to the different loss functions: (a) L and (b) f(x) evaluated

across every training sample. This experiment gives us an understanding of the overall

curvature of the decision boundary. On the other hand, in the second experiment, we look

at the second partial derivatives w.r.t a feature and dataset for the modified, constant, and

original 5-hidden layer models. This experiment gives an intuition about the curvature

around the particular feature. Therefore, the former experiment examines global curvature,

whereas the latter examines local curvature.

Spectral analysis across loss functions Figure C.4 demonstrates that there is a sig-

nificant difference in the eigenvalue spectrum between ∇X:,j
L(y, f(x;θ)) and ∇X:,j

f(x;θ).

A comparison between Figures C.4a & C.4b suggests that models attacked directly on the

logits seem to have much flatter models (with most eigenvalues being zero or less than

10−7, which is close to numerical error). Higher flatness increases the likelihood of ignoring

rather than concealing the target feature, making the use of ∇X:,j
f(x;θ) less suitable.

Figure C.4 illustrates that there is a large number of zero maximum eigenvalues of the

Hessian (H) for both L and f(x). However, the zero maximum eigenvalues for f(x) are at

least three times more than those for L (> 10, 000 vs 3,500) and the highest values are no

202



(a) Hessian with respect to L. (b) Hessian with respect to f(x).

Figure C.4: Distribution of the maximum eigenvalue of the Hessian (H) with respect to (a) L
and (b) f(x) evaluated across every training sample for Adult-gender. Notice that the distribution
in the case of L is much more multimodal and spread out, whereas the distribution w.r.t f(x)
is Laplace distributed with 0 mean. Further, observe the different scales of the distribution.
While (a) is on the scale of [0, 2.5], (b) is on an exponentially smaller scale – [0, 10−7], which is
approximately zero. When most of the maximum eigenvalues are 0, the decision boundary is flat
in the vicinity of the training points.

larger than 2.5−7, which is approximately zero. The fact that most maximum eigenvalues

for f(x) tend to zero implies that most of the decision boundary geometry consists of

degenerate locations of wide, flat regions of constant value, where both the gradient and the

Hessian could be zero. Therefore, the exponentiation of softmax (as in Equation C.3) leads

to a model that is completely ignoring its input data. Additionally, the exponentiation

makes it more likely for the optimisation algorithm to encounter computational instability

due to the extremely tiny values of the gradient. This insight is one example of using an

understanding of the curvature property to guide the development process, helping us to

design a better adversarial explanation attack. Specifically, we choose to differentiate with

respect to the loss to increase the likelihood of concealing rather than ignoring the feature,

and to maintain a numerically stable computation.

Spectral analysis across models Figure C.5 illustrates the effect of the adversarial

explanation attack on the curvature of the modified, constant, and original models (defined

in Chapter 4). The most interesting aspect of this figure is that the modified model

has second partial derivatives with respect to the target feature that are: (1) orders of

magnitude smaller than those of the original model, but (2) consistently larger than those

of the constant model.

These findings have two implications. First, the adversarial explanation attack signifi-

cantly affects the curvature of the model. At the same time, in Chapter 4 we demonstrated

that the attack influences the results of multiple explanation techniques. These observations

may support the hypothesis that current explanation methods are highly dependent on the
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Figure C.5: Log-scale plot of the average second partial derivatives w.r.t the corresponding
feature and dataset on the x-axis averaged over all training points for the modified, constant, and
original 5-hidden layer models across 10 initialisations. Notice that although the modified model
on average has exponentially smaller eigenvalues than the original model, it has exponentially
larger values than the constant model. Hence, the degree of curvature of the model is somewhere
in between the original and constant models, which is a strong indication that the signal from the
feature is preserved globally. Additionally, the curvature of the modified models for German
(the smaller dataset) is a degree lower than the other datasets suggesting the presence of overly
flat models in the regime of limited training data.

local curvature, which can be manipulated with the adversarial explanation attack. Second,

the comparison of partial derivatives between the three types of models depicts that it is

less likely for the modified model to be ignoring the feature. Instead, the particular form of

the resulting decision boundary conceals the signal from current explanation methods. For

example, the decision boundary has a particular shape, which is flat in the infinitesimally

small neighbourhoods around training points, but curves outside these neighbourhoods.

That is, the decision boundary is locally flat, but globally curved.
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C.2.3 Invariance and Robustness

Recently it has been demonstrated that robust training13 leads to interesting properties,

including smoother and more semantically meaningful classification boundaries (Tsipras

et al., 2019). Here we investigate the relationship between robustness and the quality of

explanations through the shape of the decision boundary. In particular, we investigate the

relationship of the explanation attack to robustness. We demonstrate that robust training

converges to significantly different parameters, which affect both the model curvature and

fidelity of explanations.

We conduct experiments on three datasets – German, Adult, Bank. We do not include

COMPAS in the investigation since it contains 400 one-hot encoded features, which makes

robust training awkward because a value of one feature can be moved simultaneously in

multiple mutually exclusive directions (e.g., both male and female).

We examine the effect of robust training on the model accuracy and attack susceptibility

(which is a proxy for the curvature of the model with respect to the target feature, measured

as the explanation loss convergence) in three different settings: (1) vanilla training with

vanilla attack (vanilla); (2) vanilla training with robust attack (robust attack); (3) robust

training with robust attack (robust init & attack).

In the setting of robust attack we continue the robust training, while conducting the

attack (i.e., preserve the robust training term in the loss function). Therefore, the training

objective is now as in Equation 4.1 where L uses the loss term from Tsipras et al. (2019):

L = max
δ∈∆

`(x+ δ,y; Θ) (C.4)

where ` is the categorical cross entropy, Θ is the vector of model parameters f(x; Θ), and

∆ = {δ ∈ Rd
∣∣ ||δ||p < ε} is the set of allowed perturbations (Madry et al., 2018; Tsipras

et al., 2019).

These data must be interpreted with caution because the experiments are performed

for a particular model complexity of 5 hidden-layer MLP due to substantial computational

requirements.

C.2.3.1 Findings

Figure C.6 summarises the results for the most important feature of each of the three

datasets. It reveals that both robust training and robust attacking influence differently the

attack susceptibility (measured as the explanation loss) and model performance (measured

as accuracy). We find seven notable results:

1. The parameter setting prior to the attack (initialisation) converge to considerably

13See Section B.3.2 for definitions and details.
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different optima, which can have serious implications for the accuracy and fidelity of

explanations.

2. One unanticipated finding is that robust training might be a useful defence mecha-

nism.

3. The adversarial explanation attack and robust training might be affecting the

curvature at different scales.

4. The discrepancy of the effect on curvature between robust training and our attack

could be due to feature interactions, the effective capacity, or the dataset complexity.

5. In the setting of our attack, the relationship between robustness and accuracy

conditioned on the size of the dataset inverses. That is robust training is detrimental

to the accuracy for smaller datasets, but it is beneficial for larger datasets.

6. High uncertainty over the model parameters (suggested by violent performance

oscillations) might be one possible explanation for the inconsistent results on scarce

data.

7. The instability of convergence for smaller datasets might raise intriguing questions

regarding the role of datasets in understanding the model performance.

Figure C.6: Illustration of the effect of robust training on the susceptibility across different values
of alpha for the most important feature, “checking account”,“education-num”,and “duration”,
of respectively German (left), Adult (center), Bank (right). The solid line indicates indicates
vanilla explanation attack, the dashed line indicates vanilla training and robust attack, and the
dotted lines indicates robust training with robust attack. Orange lines show explanation loss,
while blue lines show accuracy.
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Conclusions

The aforementioned findings demonstrate that regularisation techniques such as the

adversarial explanation attack and robust training could help us transition along the

Rashomon curve of models. However, the adversarial explanation attack and robust

training could be controlling different aspects of the decision boundary curvature in terms

of local and global effects. Additionally, our findings illustrate that the resulting shape of

the decision boundary, and by proxy, the accuracy and fidelity of explanations of models,

is highly dependent on the model parameters (i.e., the representation properties) and the

dataset properties. Our findings give arguments in favour of the hypothesis postulated that

robustness and interpretability are very likely related through the curvature of the decision

boundary and the stability of the solution in parameter space. Given that such subtle

differences in the parameter configurations have substantial implications for the results

of explainability method, we propose that future interpretability research should rely on

well-understood and possibly manually defined models. This configuration would ensure

that the model becomes a controlled variable when conducting scientific experiments

with explainability techniques.
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APPENDIX D

Regularisation for Preference

Articulation

Regularisation is a standard way to control model characteristics. Here we argue that

the adversarial explanation attack is a subset of regularisation methods, which can be

used to control the model characteristics with more precision. A surprising result in

Chapter 41 is that as we increase the representational capacity, the modified models

achieve higher performance than both the original and the constant models. As expected,

deeper models trained for the same number of epochs as more shallow models converge

to optima of lower accuracy. Training deeper models for the same number of epochs

and same hyper-parameters of early stopping imposes a strong prior that the weights do

not change significantly from their initial values. Naturally, it is more difficult to fit an

over-parameterised model (Goodfellow, Bengio, and Courville, 2016a). These data must be

interpreted with caution because we train all models for the same number of 1000 epochs

with early stopping and patience of 100 epochs. However, it seems possible that these

results are due to a regularising effect of the explanation loss term. Hence, the adversarial

explanation attack is an instance of such model fine-tuning approaches. Here, we explore

this conjecture in more depth.

The adversarial explanation attack is indeed similar to two regularisation techniques:

(1) tangent propagation (Simard et al., 1992) and (2) double backpropagation (Drucker

and Le Cun, 1992). Similarly to our attack, tangent propagation includes an additional

penalty term, which makes the output of the black-box classifier invariant to pre-defined

factors of variation. The class of methods that append a term containing the derivatives

of the output with respect to the input to their loss can be unified under the family of

double backpropagation methods (Etmann, 2019).

Double backpropagation forces the Jacobian of the output function with respect to the

1See Figure 4.10.
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input to be small. A quintessential example is the Contractive autoencoder (CAE) (Rifai

et al., 2011a). The CAE introduces an explicit regulariser to the reconstruction loss in the

form of double backpropagation term: ∥∥∥∥∥∂f(x)

∂x

∥∥∥∥∥
2

F

. (D.1)

Double backpropagation is comparable in principle to adversarial training, which

synthesises new input points in the vicinity of each training point and optimises the

model to assign them the same output as the original point. Both approaches use a

contractive mapping to encode the local constancy and sparsity priors2 (Rifai et al., 2011b).

A contractive mapping warps the space to associate neighbourhoods in input space to

smaller neighbourhoods in output space (i.e., the model exhibits smooth output within

local neighbourhoods). As a result the model becomes invariant to changes in all directions

in input space, as long as these changes are small, and highly sensitive to very few salient

directions. In contrast, our attack and tangent propagation require the model to become

invariant to particular user-specified directions. Hence, our attack can be seen as a special

case of tangent propagation.

Local smoothness, global curvature Naturally, the invariance constraints of CAEs

induce the ideal robust representation characteristics of locally similar representations,

which are invariant to noise, and globally different representations, which are sensitive to

changes in salient directions. Rifai et al. (2011a) demonstrate that this type of invariance

results in sparser representations and lower-dimensional manifolds when compared to other

autoencoders.

The model becomes locally invariant, but globally two different points xi and xj may

or may not have similar output values – f(xi) � f(xj). We conjecture that the adversarial

explanation attack has a similar regularising effect as autoencoders. Therefore, the attack

might not lead to learning features that are constant with the input, but might instead

learn features that are locally constant and globally varying. If this hypothesis holds, we

would expect to see local smoothness, but global curvature in the predictor function with

respect to the target feature. We already observed some evidence of this hypothesis in

Section 4.4.3.1, and we investigated this conjecture further in Section C.2.2.

Infinitesimal vs fixed-sized perturbations Tangent propagation is comparable to

another regularisation concept – dataset augmentation. In both cases, the user includes

prior knowledge by encoding the types of transformations, to which the model should

become invariant. However, tangent propagation regularises the model to resist infinitesi-

2See Section 2.2.
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mally small perturbations to the input. On the other hand, dataset augmentation makes

the model resist larger fixed-sized transformations. Consequently, we can think of tangent

backprop as the infinitesimal version of dataset augmentation. Just as tangent propagation

is the infinitesimal version of dataset augmentation, adversarial (robust) training is the

infinitesimal version of double backpropagation (Alain and Bengio, 2014).

The contractive and denoising autoencoders are related in a similar fashion. Essen-

tially, the difference is that contractive autoencoders encourage the encoder function to

resist infinitesimally small changes in the input. In contrast, the denoising autoencoders

encourage the encoder function to resist slightly larger finite-sized perturbations of the

input (Alain and Bengio, 2014).

So far we have seen that tangent propagation, double backpropagation, CAEs are all the

infinitesimal version of their fixed-size perturbation counterparts – dataset augmentation,

adversarial training, and denoising autoencoders. Notice that the key difference is whether

the technique enforces infinitesimal or fixed-sized changes. While in the former case we

modify the parameters directly through optimisation, in the latter we modify the parameters

indirectly through introducing changes in the input. The adversarial explanation attack

bears a resemblance to tangent propagation and double backpropagation. By extension,

our attack is similar to contractive autoencoders because of its method of modifying

parameters.

The three correspondences between building invariance to infinitesimal changes or

fixed-sized perturbations suggest that we might be able to downgrade a target feature

without modifying the model. Indeed, we could introduce small fixed-size perturbation

in the input to modifying the network parameters indirectly and downgrade a target

feature (Ghorbani, Abid, and Zou, 2019). This leads us to a theory unifying all these

approaches. Our method and the method proposed in Ghorbani, Abid, and Zou (2019) are

related in the same fashion as contractive to denoising autoencoders, tangent propagation

to dataset augmentation, and double backpropagation to adversarial training, and the

relation is the former is the infinitesimal version of the latter.
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APPENDIX E

Depeendency Graphs Additional

Results

Here we provide supplementary figures to the arguments made in Chapter 5. Figure E.1

illustrates the performance of all 10 class-specific dependency graphs across 10 thresholds.

Figure E.2 & E.3 demonstrate that DGINN is not affected by sparse-parameter (L1)

or weight decay (L2) regularisation. Figures E.4 & E.5 demonstrate the heatmap pixel

contribution visualisation of each of the most relevant neurons for both the Hammerhead

shark and Egyptian cat classes, respectively.
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Figure E.4: Heatmaps of all activation maps at layer f b5c3, relevant to neuron ffc21820 for Class
4: ‘Hammerhead shark’. The red heatmaps indicate absence of relevant pixels to a particular
activation map (best viewed in digital).
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Figure E.5: Heatmaps of all activation maps at layer f b5c3, relevant to neuron ffc21820 for Class
285: ’Egyptian cat’. The red heatmaps indicate absence of relevant pixels to a particular
activation map (best viewed in digital).
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APPENDIX F

CME Additional Results

The CUB model has a considerably larger number of layers, and a considerably larger

number of task concepts. Hence, for the sake of space, we demonstrate an example here

using only 6 different model layers of the CUB model, and showing only the top 5 important

concepts identified using the magnitude of the parameters of a linear regressor trained to

predict the outputs given concept labels. In Figure F.1, the concepts are named using

their indices, and the layers are named following the naming convention used in Koh et al.

(2020). Further details regarding layer naming and/or concept naming can be found in the

official repository1. For all concepts, concept values become significantly better-separated

after the Mixed_7c layer. However, the figure shows that concept values are still quite

mixed together for some of the points, even for later layers. This low separability indicates

that concept values will still be mis-predicted for some of the points, and that concept

extraction for the CUB task will likely perform suboptimally.

1https://github.com/yewsiang/ConceptBottleneck/tree/master/CUB
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Figure F.1: t-SNE plots for the top 5 CUB concepts. Each column corresponds to a different
layer of the CUB model. Each plot is coloured with respect to the concept’s values.
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Index

activation maximisation, 55

adversarial examples, 171

AI risks, 26

algorithmic transparency, 25

architecture-agnostic, 39

architecture-specific, 39

cognitive chunks, 29

cognitive load, 30

comprehensibility, 24, 28, 29

concept, 41

concept-based explanations, 41

concepts, 83

Conditional independence, xxi

consistency, 28

Covariance, xxi

data transparency, 25

data type, 31

decomposability, 25

Derivative, xxi

Determinant, xx

domain generalisation, 26

effectiveness, 28

efficiency, 28

Element-wise product, see Hadamard prod-

uct

Explainability, 24

Explainable AI, 23

explanation, 24, 25

explanations, 27

extrinsic, 38

factors of variation, 10

feature importance, 46

fidelity, 28

functional, 39, 47

gradient-based, 47

Graph, xx

Hadamard product, xx

Hessian matrix, xxi

Independence, xxi

Integral, xxi

interactive ML, 23

Interpretability, 24

interpretable ML, 23

intrinsic, 38

Jacobian matrix, xxi

Kullback-Leibler divergence, xxi

layer-wise, 40

lottery ticket hypothesis, 56

manifold, 13, 168

Matrix, xix, xx

model extraction, 44

model-agnostic, 39

model-specific, 39

monotonicity, 29

network-specific, 39
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neuron-wise, 40

Norm, xxii

o.o.d, 26

persuasiveness, 28

polynomial, 29

predictability, 24, 27

predictive accuracy, 28

Rashomon set, 25

representation analysis, 54

salience, 47

sample importance, 46

satisfaction, 28

Scalar, xix, xx

scrutability, 28

sensitivity, 47

Set, xx

Shannon entropy, xxi

Shapley values, 50

Sigmoid, xxii

simultability, 24, 25

smallest sufficient units, 95

Softplus, xxii

stability (or robustness), 28

stakeholders, 30

surrogate model, 39

target audience, 30

task, 30

Tensor, xix, xx

topological, 39, 47

transparency, 24, 25, 28

Transpose, xx

trust, 28

unit interaction approaches, 40

unit-wise, 40

Variance, xxi

Vector, xix, xx

XAI, 23
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