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List of Abbreviations 

BMI  Body mass index 

CE   Cholesterol ester 

CER   Ceramide 

CHO  Carbohydrates 

CID  Clinical investigation day 

Chol  Cholesterol 

DAG   Diacylglycerol 

EN%  Energy percent 

FA   Fatty acid 

FFA  Free fatty acid 

HC/HF Isocaloric carbohydrate-rich diet until 13:30 and fat-rich diet between 16:30 

and 22:00 

HF/HC Isocaloric fat-rich diet until 13:30 and carbohydrate-rich diet between 16:30 

and 22:00 

iAUC incremental area under the curve 

IFG  Impaired fasting glucose 

IGT  Impaired glucose tolerance 

IR  Insulin resistance 

Kcal  Kilo calories 

LPC (O-) Lysophosphatidylcholine (-ether) 

LPE  Lysophosphatidylethanolamines  

MDA  Malondialdehyde 

MS   Mass spectrometry 

MSMS  Tandem mass spectrometry 

MTT-HC Carbohydrate-rich meal tolerance test 

MTT-HF Fat-rich meal tolerance test 

NGT  Normal glucose tolerance 
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PC (O-) Phosphatidylcholine (-ether) 

PE (O-)  Phosphatidylethanolamine (-ether) 

PI   Phosphatidylinositol 

SFA  Saturated fatty acids 

SM   Sphingomyelin 

TAG   Triacylglycerol 
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Abstract 

Context: Meal timing affects metabolic homeostasis and body weight, but how composition 

and timing of meals affect plasma lipidomics in humans is not well studied.  

Objective: We used high throughput shotgun plasma lipidomics to investigate effects of 

timing of carbohydrate and fat intake on lipid metabolism and its relation to glycaemic control. 

Design: 29 non-diabetic men consumed (i) a high-carb test meal (MTT-HC) at 09:00 and a 

high-fat meal (MTT-HF) at 15:40; or (ii) MTT-HF at 09:00 and MTT-HC at 15:40. Blood was 

sampled before and 180 min after completion of each MTT. Subcutaneous adipose tissue 

(SAT) was collected after overnight fast and both MTTs. Prior to each investigation day, 

participants consumed a 4-week isocaloric diet of the same composition: (1) high-carb meals 

until 13:30 and high-fat meals between 16:30 and 22:00 or (2) the inverse order.  

Results: 12h-daily lipid patterns showed a complex regulation by both the time of day 

(67.8%) and meal composition (55.4%). A third of lipids showed a diurnal variation in 

postprandial responses to the same meal with mostly higher responses in the morning than 

in the afternoon. Triacylglycerols containing shorter and more saturated fatty acids were 

enriched in the morning. SAT transcripts involved in fatty acid synthesis and desaturation 

showed no diurnal variation. Diurnal changes of seven lipid classes were negatively 

associated with insulin sensitivity, but not with glucose and insulin response or insulin 

secretion. 

Conclusions: This study identified postprandial plasma lipid profiles as being strongly 

affected by meal timing and associated with insulin sensitivity.  

 

Précis 

We studied effects of timing of carbohydrate and fat intake in a cross-over trial using plasma 

lipidomics. Postprandial lipid responses showed diurnal variation associated with insulin 

sensitivity. 
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Introduction 

A dysfunctional lipid metabolism it is a hallmark for insulin resistance and a risk factor for 

many metabolic diseases. Circadian clocks - self-sustained ~24 h rhythms in behaviour, 

physiology and metabolism - play an important role in lipid homeostasis (1-3).  In particular, 

24 h rhythms in lipid metabolism are suggested to optimize energy storage and utilization (1-

3). In constant conditions, a large part of the lipidome shows circadian rhythmicity in human 

plasma (4) and skeletal muscle (5).  

Circadian misalignment and eating at the usual rest time (e.g. during shift work) lead 

to dysregulation of circadian rhythmicity and is associated with obesity, metabolic syndrome 

and dyslipidemia (2,6). A range of experimental studies confirm that timing of food intake 

plays an important role for metabolic homeostasis and body weight regulation (7,8) and 

affects the diurnal regulation of lipids. In simulated shift work, consumption of meals during 

the biological night induces higher postprandial triacylglycerides (TAG) levels in comparison 

with their consumption at daytime (9). Similarly, mice fed a high-fat diet during the inactive 

phase gain weight faster compared with mice fed during the active phase (10). In contrast, 

restricting a high fat diet to the active phase is protective against obesity and glucose 

intolerance (11,12) and decreases hepatic TAG levels (13). 

In addition, the time at which the main meal is consumed influences the risk of obesity and 

the success of weight loss therapy. In 2013, a weight loss trial based on a Mediterranean diet 

conducted in an obese Spanish population showed that food timing was a predictive factor of 

weight loss success: late lunch eaters, who ate their lunch after 15.00, lost less weight on a 

hypocaloric diet than early eaters, who ate their lunch before 15.00 (14). A similar weight loss 

study with a 12-week follow-up showed that overweight and obese individuals consuming 

higher energy for dinner, compared to breakfast, lost less weight and had higher overall daily 

glucose, insulin, ghrelin, and hunger scores (15). These studies in people with overweight 

and obesity indicate that loading calories at the beginning of the day may be beneficial for 

weight management and metabolism (16).  A range of studies in normal weight individuals 

have also suggested that late and delayed eating is associated reduced energy expenditure / 
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substrate oxidation and a general deterioration in metabolic function, whilst showing no clear 

results regarding weight gain (16). In addition, epidemiological studies propose a beneficial 

effect of a carbohydrate-rich diet at the beginning of the day, which was shown to be 

protective against the development of diabetes and metabolic syndrome (17,18). We recently 

showed that a diet in which fat is mainly eaten in the morning and carbohydrates mainly in 

the evening (compared with the reverse order) worsens glycaemic control in people with 

prediabetes (19) and alters substrate oxidation and adipokine secretion (20). Few studies 

have explored the effect of meal timing on triglyceride and cholesterol levels in plasma (21). 

Developing lipidomic techniques provides a powerful and comprehensive tool for the detailed 

assessment of lipid metabolism and its circadian regulation. In the present study, we used a 

high throughput shotgun lipidomic analysis (22) to investigate the effects of timing of 

carbohydrate and fat intake on lipid metabolism (daily patterns of plasma lipids and gene 

expression in subcutaneous adipose tissue) and its relation to glycaemic control (glucose 

and insulin response and insulin secretion and sensitivity).    
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Materials and Methods 

Study design and sample collection 

29 non-obese men without diabetes and without shift work completed a randomized 

controlled, cross-over trial. Women were excluded from participating due to the interplay 

between circadian rhythms and the menstrual cycle (23). Details of the study design, the 

recruitment of participants, inclusion and exclusion criteria, clinical characteristics of study 

subjects and dietary interventions were published recently (19,20). The study protocol and 

informed consent document were approved by the Medical Ethics Committee of Charité 

University Medicine, Berlin, Germany (EA2/074/12), and were in accordance with the 

Helsinki Declaration of 1975. All subjects gave written informed consent. The study was 

registered at clinicaltrials.gov as NCT02487576. 

Two 4-week isocaloric dietary interventions were applied in the cross-over trial: (1) a high-

carb diet (breakfast and lunch) until 13:30 and a high-fat diet (snack and dinner) between 

16:30 and 22:00 (HC/HF) versus (2) a high-fat diet until 13:30 and a high-carb diet between 

16:30 and 22.00 (HF/HC), separated by a 4-week washout phase (Figure 1A). The high-carb 

diet consisted of 65 energy percent (EN%) carbohydrates (CHO), 20 EN% fat and 15 EN% 

protein; the high-fat diet was composed of 35 EN% CHO, 50 EN% fat and 15 EN% protein. 

The calories were evenly distributed between the morning (until 13:30) and evening (16:30 to 

2:00) block; as a result, the daily macronutrient composition was 50 EN% CHO, 35 EN% fat 

(14 EN% saturated fatty acids) and 15 EN% protein in both diets.  

Before and after each intervention period, participants reported to the outpatient study center 

at the German Institute of Human Nutrition (Potsdam, Germany) for the anthropometrical and 

metabolic examination. Body fat mass and fat-free mass were measured via BOD POD-Air 

displacement plethysmograph (CosMed, Fridolfing, Germany). Munich Chronotype 

Questionnaire (MCTQ) was used to determine the participants’ chronotypes and sleeping 

habits.  

After each intervention period (V2 and V4, Figure 1A), two meal tolerance tests (MTT) were 

performed, at 09:00 and 15:40, as per previous intervention (Figure 1B). Test meals were 
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either high in carbohydrates (MTT-HC), 835 kcal (64.8 EN% CHO, 14.8 EN% protein, 20.3 

EN% fat, SFA 59.5% of total fat), or high in fat (MTT-HF), 849 kcal (35.3 EN% CHO, 15.1 

EN% protein, 49.6 EN% fat, SFA 63.3% of total fat) (Table S1, (24)). Glycaemic indices of 

meals (GI), which was calculated as described previously (25), were similar between both 

test meals. Participants ingested the test meals within 15 min. For lipidomics analysis, blood 

samples were drawn at 8.35, 12.15, 15.35 and 18.55, i.e. before and 180 min after 

completion of each test meal, using EDTA monovettes (Sarstedt, Germany). For 

determination of glycemic measures (glucose and insulin), blood samples were taken before 

and 30, 60, 90, 120 and 180 minutes after completion of each meal. Subcutaneous adipose 

tissue (SAT) samples were collected periumbilically (in the region of the belly button) by 

needle aspiration at three time points during the investigation day (at 8.40, 12.20 and 19.00). 

With the aim to contain the inflammation biopsy procedures may cause locally, areas for 

biopsy were carefully selected to allow maximal distance between them: this usually meant 

the area left (‘9 o’clock’) of the belly button was selected for the first biopsy, the opposite area 

(‘3 o’clock’) for the second and the area in between (’12 o’clock’) for the third. For all 

biopsies, a skin area of approximately 2x2 cm was anesthetized with lidocaine. Next, a fine-

needle (2.1 mm), connected to a vacuum syringe with sterile NaCl solution, was inserted in a 

3 mm cut in the skin. The vacuum enabled the suction of small tissue pieces (approx. 2 g), 

which were immediately washed with NaCl solution and finally flash-frozen in liquid nitrogen 

and stored at -80°C until analysis. 

 

Biochemical analyses of plasma samples 

Routine laboratory markers were measured using standard methods (ABX Pentra 400; 

HORIBA, ABX SAS, France). Commercial ELISA was used for measurement of insulin 

(Mercodia, Sweden) in serum. Plasma levels of 19 free fatty acids (FFA) were determined by 

gas chromatography as described (26). Malondialdehyde (MDA) was measured as a marker 

of lipid peroxidation in plasma samples after derivatization with thiobarbituric acid (TBA) by 

reverse-phase HPLC coupled with fluorescence detection as described (27) (28). 
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Lipidomics analysis of plasma samples 

Lipid extraction of plasma samples was performed at Lipotype GmbH using high throughput 

Shotgun Lipidomics (Dresden, Germany) technology as described (22). Briefly, samples 

were diluted 1:50 and an equivalent of 1 μl of undiluted sample was used for the extraction 

with methyl tert-butyl ether and methanol with Hamilton Robotisc STARlet liquid handling 

station. Shotgun mass spectrometry (MS) analysis was conducted on a Q-Exactive mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA) coupled to a TriVersa NanoMate 

robotic nanoflow ion source (Advion BioSciences, Ithaca, NY). Lipids were identified and 

quantified using the proprietary LipotypeXplorer software. Lipid intensities were normalized to 

lipid class–specific internal standards and data reported as molar amounts. Analytical quality 

was assessed by the inclusion of reference and blank samples. Data were corrected for 

batch effects and drift based on reference samples. Median coefficient of variation across all 

lipid molecules was 11%. Lipid species present in <70% of all samples were excluded.  

Lipid species are annotated according to their molecular composition as sum of the carbon 

atoms in the hydrocarbon moiety: sum of the double bonds; sum of hydroxyl groups. For 

example, PI 34:1;0 denotes phosphatidylinositol with a total length of its fatty acids equal to 

34 carbon atoms, total number of double bonds in its fatty acids equal to 1 and 0 

hydroxylations.  

Lipid subspecies annotation contains additional information on the exact identity of their acyl 

moieties and their sn-position (if available). For example PI 18:1;0_16:0;0 denotes 

phosphatidylinositol octadecenoic (18:1;0) and hexadecanoic (16:0;0) fatty acids, for which 

the exact position (sn-1 or sn-2) in relation to the glycerol backbone cannot be discriminated 

(underline “_” separating the acyl chains). On contrary, PC O-18:1;0/16:0;0 denotes an ether-

phosphatidylcholine, where an alkyl chain with 18 carbon atoms and 1 double bond (O-

18:1;0) is ether-bound to sn-1 position of the glycerol and a  hexadecanoic  acid (16:0;0) is 

connect via an ester bond to the sn-2 position of the glycerol (slash “/” separating the chains 
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signifies that the sn-position on the glycerol can be resolved). Lipid identifiers of the 

SwissLipids database (29) (http://www.swisslipids.org) are provided (30). 

 

Gene expression analysis of adipose tissue 

Total RNA was purified from SAT samples using the miRNeasy Lipid Tissue Mini Kit (Qiagen, 

Germany). RNA concentration was measured using an ND-1000 spectrophotometer 

(Nanodrop, PeqLab). Single-stranded cDNA was synthesized with miScript II RT Kit (Qiagen, 

Germany). QPCR was performed by ViiA 7 sequence detection system using Power SYBR 

Green PCR Master Mix (Applied Biosystems, USA) and specific primers. Gene expression 

was assessed by the standard curve method and normalized to the reference gene beta-

glucuronidase (GUSB). Primer sequences are stated in repository (31). 

 

Statistical analysis 

Statistical analyses were performed with SPSS v.20 (SPSS, Chicago, IL) and R (version 

3.4.2). Repeated-measures ANOVA (RM-ANOVA) was used to assess the effects of the 

diets, time of the day, and the diet × time interaction using the aov() in R.  

To compare whether lipids show similar or different daily profiles upon both diets, a 

correlation approach was established. In detail, average concentrations for each lipid and 

diet over all subjects were calculated and correlation analysis between the diets performed. 

To avoid a bias caused by producing flatter curves, we established a variable (called diff) that 

is indicative of the magnitude of coherence within the cohort and calculated as follows: 

diff = (max - min)HC/HF + (max - min)HF/HC 

Diff indicates how much a curve is the sum of similar curves. If diff-level is low, individual 

samples can be very different. Only lipid species with high coherence within the cohort 

(diff>1.5) were included in the correlation analysis.  

To assess postprandial responses to test meals, the ratio of postprandial to preprandial 

concentrations was calculated. For the analysis of a diurnal variation, postprandial responses 
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to the same meal (MTT-HC or MTT-HF) in the afternoon and in the morning were compared 

with a paired Mann–Whitney U test and RM-ANOVA as indicated. 

For glucose and insulin levels, incremental AUC (iAUC) were determined by trapezoidal 

method after subtraction of the baseline area. Early and overall indices of insulin secretion 

were calculated as the ratio of iAUC for insulin to iAUC for glucose (iAUCins/glu 0-30 and 

iAUCins/glu 0-180, respectively). Insulin sensitivity in MTT was determined by the Gutt index (ISI 

Gutt0-120) (32). HOMA-IR was calculated according to following equation. HOMA-IR 

[mmol*mU*L²] = glucose [mmol/L] x insulin [mU/L] /22.5, using fasting values. To analyse 

associations between lipid classes and parameters of glucose metabolism, univariable linear 

regression models with adjustment for age and BMI were used. For this analysis, diurnal 

variation of postprandial response was defined as Δ = afternoon value – morning value. 

P values < 0.05 were considered significant in all analyses. For the multiple testing 

correction, the Benjamini-Hochberg (BH) method was used. All data are presented as means 

± SEMs.  
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Results 

Study population and adherence to dietary interventions 

29 non-obese men (age 45.9 ± 2.5 years, BMI 27.1 ± 0.8 kg/m2, 18 subjects with normal 

glucose tolerance and 11 subjects with impaired fasting glucose/glucose tolerance) 

participated in the randomized controlled, cross-over trial (Table 1). The participants’ 

chronotype distribution and habitual sleeping habits on free and work days are shown in 

Figure S1 (33). Adherence to dietary plans was good, with similar compliances for both diets 

(19). There was no difference in energy intake, macronutrient composition, amount of 

saturated fatty acids, fiber and starch as well as GI between the two diets (19). Body weight 

was nearly stable with no differences between the two diets (19).   

 

Detected lipids 

Plasma lipid profiles were measured in the entire cohort (i.e. in 29 men). Lipidomics analysis 

of plasma samples yielded on average about 10200 pmol of lipids per μl of sample. For each 

diet, the highest lipid concentration was detected in the postprandial samples taken 180 min 

after completion of the MTT-HF (Figure S2, (33)).  

A total of 672 lipid species belonging to 14 lipid classes (cholesterol (Chol), cholesterol 

esters (CE), TAG, diacylglycerols (DAG), phosphatidylcholines (PC),  phosphatidylcholine 

ethers (PC O-), phosphatidylethanolamines (PE),  phosphatidylethanolamine ethers (PE O-), 

phosphatidylinositols (PI), lysophosphatidylcholines (LPC), lysophosphatidylcholine ethers  

(LPC O-), lysophosphatidylethanolamines (LPE), sphingomyelins (SM) and ceramides 

(CER)) were identified and quantified. Lipid species present in <70% of all samples were 

excluded, leaving 233 lipid species for further analysis (30). The procedure covered 98% of 

the total lipid amount. We also tested different cut-offs for data inclusion (50% and 90%) and 

found that this did not alter our conclusions.  

Additionally, plasma concentrations of 19 free fatty acids (FFA) were determined in a 

subcohort of 10 subjects (age 44.2 ± 4.3 years, BMI 26.0 ± 1.0 kg/m2, all with normal glucose 

tolerance) 
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 (Figure S3A, (33)).  

 

Daily plasma lipid profiles in response to the diets  

We first investigated how the two diets affected daily profiles of circulating lipids in the course 

of the investigation day. Using a correlation approach, we found that LPC and PC O- lipid 

classes showed similar daily profiles for both diets (Figure 2A,B), whereas DAG, Cer, and 

PE O- lipid classes demonstrated highly different daily profiles between the two diets (Figure 

2C). In a repeated measure ANOVA analysis, 158 (67.8 %) lipid species showed a time 

effect, 3 (1.3 %) showed a diet effect, and 129 (55.4 %) showed a time*diet interactions (all 

data corrected for multiple testing), suggesting that a large part of the plasma lipidome shows 

a complex regulation by both the MTT composition and time of day (Table S2, (24)).  

Comparison of fasting concentrations showed no difference between the diets for any lipid 

species after correction for multiple testing (data not shown). Analysis of postprandial 

concentrations showed higher levels for 11 out of the 14 lipid classes after the MTT-HF in 

comparison with MTT-HC after the morning test meal (at 12.15 hr) and higher levels for only 

four lipid classes (i.e. LPE, TAG, DAG and PE) after the afternoon test meal (at 18.55 hr) 

(Table S3, (24)). Similarly, postprandial levels for 14 plasma FFA were higher after the MTT-

HF in comparison with the MTT-HC after the morning meal, while none showed different 

concentrations after the afternoon meal (Figure S3A, (33)).  

Daily MDA profiles, which we used as a marker of lipid peroxidation, were similar for both 

diets and showed slightly decreased levels in the afternoon but no marked postprandial 

changes (Figure S3B, (33)).  

Based on lipid classes and FFA data, we hypothesized that plasma lipids showed a 

pronounced diurnal variation in their response to meal intake.  

 

Diurnal variation of plasma lipids in response to MTT-HC  

To test this hypothesis, we compared postprandial responses to the same meal in the 

morning and in the afternoon. Postprandial responses were calculated as ratios of 
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postprandial to preprandial concentrations. For MTT-HC, 79 lipid species showed different 

postprandial responses in the morning vs. afternoon in the analysis by Mann–Whitney U test, 

and for 68 lipids these differences remained significant after correction for multiple testing 

(Figure 3A, Table S4, (24)), i.e. 29.2 % of all lipid species included in the analysis. Analysis 

of lipid classes revealed that postprandial LPE, PE, TAG and DAG responses were more 

pronounced in the morning than in the afternoon (Figure 3B), and TAG demonstrated 

maximal amplitude of diurnal changes. Removal of the outlier in DAG does not change 

statistical significance (with outlier: q =1.93x10-05; without outlier: q = 2.65 x10-05). Additional 

analysis of TAG chain length revealed that postprandial responses of TAGs containing 

shorter fatty acids (42-49 carbon atoms) were markedly higher in the morning than in the 

afternoon (Figure 3C). In agreement with this, postprandial levels of TAG-bound short chain 

FAs were increased after the morning meal but did not change after the afternoon meal 

(Figure S4, (33)). No diurnal variation was found in postprandial responses of plasma FFAs 

after correction for multiple testing (data not shown). Analysis of TAG saturation (i.e. number 

of double bonds (DB)) revealed that TAGs containing more saturated (no or low number of 

DBs) fatty acids showed higher postprandial responses in the morning (Figure 3D). Very 

similar results were obtained if RM-ANOVA was used for the analysis (Figure S5, (33)). 

These data indicate that the lipid metabolism differently responses to the MTT-HC in the 

morning and in the afternoon. 

 

Diurnal variation of plasma lipids in response to MTT-HF 

We further investigated if postprandial responses to MTT-HF also exhibited a diurnal 

variation. For MTT-HF, 100 lipid species showed different postprandial responses in the 

morning vs. afternoon, and for 71 lipids these differences remained significant after 

correction for multiple testing (Figure 4A, Table S5, (24)), i.e. 30.5 % of all analysed lipid 

species. Similar to MTT-HC, MTT-HF led to more pronounced responses of LPE, Chol, TAG, 

PE and DAG in the morning in relation to the afternoon, although the diurnal pattern showed 

a high variability across subjects (Figure 4B). Removal of the two outliers in DAG does not 
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change statistical significance (with outliers: q =0.011; without outliers: q = 0.029). Again, 

TAGs containing shorter fatty acids (42-49 carbon atoms) showed higher postprandial 

responses in the morning (Figure 4C). Postprandial levels of TAG-bound short chain FAs 

were increased both after the morning meal and after the afternoon meal, and this increase 

was more pronounced in the morning (Figure S4, (33)). Postprandial responses of plasma 

FFAs showed no diurnal variation (data not shown). Similar to MTT-HC, TAGs with no or one 

DB in fatty acids showed higher postprandial responses to MTT-HF in the morning (Figure 

4D). Again, similar results were obtained by using RM-ANOVA (Figure S6, (33)). In line with 

the results for MTT-HC, these data indicate that the response to MTT-HF depends on the 

time of day.  

 

Diurnal patterns of transcript levels of key enzymes in fatty acid metabolism 

The diurnal variation in the chain length and DB number of TAG-bound fatty acids may be 

explained by circadian rhythms in enzymes, which are involved in fatty acid synthesis and 

desaturation and which were previously described in human muscle and in mice (5,34). We 

therefore assessed diurnal patterns of gene expression in SAT samples using quantitative 

PCR. Core clock genes showed a strong diurnal variation in SAT, with ARNTL (BMAL1) 

expression being higher and PER1 and NR1D1 levels being lower in the afternoon (Figure 

5A), which is in line with our previous observations (35). Transcripts involved in fatty acid 

synthesis (fatty acid synthase (FASN), acetyl-CoA carboxylase (ACACA), long chain fatty 

acyl-CoA synthetase 1 (ACSL1)), elongation (ELOVL5) and desaturation (stearoyl-CoA 

desaturase (SCD), fatty acid desaturases (FADS1, FADS2)) generally showed increased 

levels after the MTT-HC in comparison with MTT-HF (Figure 5B). However, their 

postprandial expression did not differ depending on whether the same meal was consumed 

in the morning or in the afternoon. Hence, diurnal variation in the chain length and DB 

number of the TAG-bound fatty acids is unlikely to be explained, at least on the mRNA 

expression level, by circadian rhythms in these enzymes.   
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Associations between diurnal variation of plasma lipids and parameters of glucose 

metabolism 

A range of studies demonstrated an association of specific plasma lipids with diabetes risk 

and parameters of the glucose metabolism (36-39), and insulin is a main regulators of 

various aspects of the lipid metabolism, including synthesis of fatty acids in the liver and 

triglyceride storage in adipose tissue (40). We therefore investigated if diurnal changes of 

postprandial lipid response are associated with diurnal variation of glucose metabolism, i.e. 

of glucose (iAUCglu 0-180) and insulin (iAUCins 0-180) response, of early and overall insulin 

secretion indices (iAUCins/glu 0-30 and iAUCins/glu 0-180, respectively) and of Gutt’s insulin 

sensitivity index (ISI Gutt0-120).  

For both MTT-HC and MTT-HF, postprandial glucose and insulin response were markedly 

higher in the afternoon, and insulin secretion and sensitivity decreased as the day 

progressed (Figure 6A). Diurnal variation of postprandial response was defined as Δ = 

afternoon value – morning value. We observed a negative association between the diurnal 

change of Gutt’s insulin sensitivity index and 7 out of the 14 lipid classes (i.e. PC, PI, LPC, 

PC O-, SM, CE, DAG) in the context of MTT-HF (Figure 6B). No correlations with other 

parameters of glucose metabolism for MTT-HF or for MTT-HC were found.   
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Discussion 

In this study, we used a high throughput shotgun lipidomic analysis to investigate how the 

intake of carbohydrate and fat at different times of the day affect plasma lipid patterns in 

humans. Our study provided a unique possibility to investigate dynamic changes of the lipid 

profile throughout the day and its response to meals of different composition.  

Our study revealed four major findings. Firstly, daily patterns of circulating lipids show 

a complex regulation by both the meal composition and the time of day. Notably, most lipids 

showed higher postprandial concentrations after the MTT-HF in comparison with MTT-HC, 

but the differences between the meals were less pronounced in the afternoon. Our data 

characterised the human plasma lipidome as a highly flexible system which rapidly 

responses to food intake. Similarly, recently published studies showed that the postprandial 

plasma lipidome is influenced by the composition of the consumed meal, e.g. by the source 

of dietary fat (41), and other factors such as physical activity and overall fitness (42).  

Secondly and this is the main finding of our study, a third of all lipid species showed a 

marked diurnal variation in their postprandial responses for both high-carb and high-fat 

meals, which to our knowledge has not been described before. Indeed, for both meal 

compositions, postprandial TAG, PE, LPE and DAG responses were more pronounced in the 

morning than in the afternoon. For MTT-HF, the meal-induced change of Chol was also larger 

in the morning. Circadian regulation of different categories of lipids, including fatty acids, 

glycerolipids, glycerophospholipids, sphingolipids and sterol lipids was previously described 

in constant routine experiments (by sustained wakefulness in bed and hourly equicaloric 

snacks) (2). Targeted lipidomic approach showed that 13 % of lipid species analysed were 

rhythmic in constant routine but rhythms showed marked variation across subjects (4). 

Circadian rhythmicity was also shown for 17 % of all lipids in the mouse liver (13) and in its 

intracellular organelles (nucleus and mitochondria) (43) as well as in human skeletal muscle 

(5). In constant routine, TAG and DAG compose the majority of the oscillating lipids which 

increase in humans during the night and show the highest level near the wake time (4,13). In 

contrast, some PCs oscillate in antiphase with highest levels in the afternoon and evening 
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(2,4). The lipid peroxidation marker MDA also shows diurnal variation (44) which is in line 

with our observations. 

In contrast, our study showed, for the first time, diurnal variation in postprandial 

responses of plasma lipids. Multiple circadian processes could contribute to this 

phenomenon. Plasma lipids assessed in our study could represent products of both the 

dietary fat catabolism and lipid synthesis in different tissues which underwent circadian 

regulation. Lipid hydrolysis, absorption, secretion from enterocytes and transport from the 

gut, lipid biosynthesis in the intestine and in the liver, lipolysis and fatty acid oxidation are all 

under the circadian control. In particular, diurnal regulation of postprandial lipoprotein levels 

(e.g. shown for low density lipoprotein) (20) could be involved in diurnal variation in lipid 

postprandial responses.  

On the molecular level, circadian control of lipid metabolism is performed by core 

clock genes which induce circadian rhythms of transcription factors and key metabolic 

enzymes (2,45). Remarkably, clock-driven transcription factors such as RORs, PPARs, PGC-

1α, REV-ERBs and SREBP also function as lipid sensors providing a molecular link between 

the circadian clock and lipid metabolism (1-3). Moreover, meal intake and composition can 

also directly affect rhythms of clock genes (35,46) via metabolites and meal-induced 

hormones(47). Future studies combining lipidomic analysis and gene expression arrays are 

needed to understand the molecular mechanisms underlying diurnal variation of the 

postprandial lipidome in humans.  

Thirdly, the diurnal variation of TAG chain length and saturation, which we observed, 

is a novel finding. We revealed that TAGs containing shorter and more saturated fatty acids 

showed higher postprandial changes in the morning for both meal compositions. We 

hypothesized that these changes could, at least in part, be explained by circadian rhythms of 

enzymes involved in fatty acid synthesis, elongation and desaturation driven by the 

molecular clock machinery. Circadian regulation of ELOVL and ACSL transcripts were 

previously shown in human skeletal muscle (5). As expected, in SAT samples, we found 

strong diurnal variation of core clock genes. However, postprandial expression of fatty acid 
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metabolism genes showed no difference when the same meal was consumed in the morning 

or in the afternoon. Therefore, mechanisms of diurnal variation of TAG chain length and 

saturation in plasma require further investigation. For example, little is known about the 

circadian rhythms of lipid metabolism enzymes in human liver, which strongly contribute to 

the regulation of circulating lipids.  

Fourthly, we provided novel evidence that diurnal variation of plasma lipids and 

glucose metabolism are associated. Similar to lipid metabolism, glucose metabolism in 

humans underwent circadian control (48). Our study showed that, in response to the same 

meal, postprandial glucose levels in the afternoon were markedly higher that in the morning 

(despite of the simultaneous increase of the insulin levels) suggesting a decrease in glucose 

tolerance as the day progresses. Similarly, indices of insulin secretion and insulin sensitivity 

decreased in the afternoon which is in line with previous observations (19,49,50).  

Importantly, we found that diurnal variation of insulin sensitivity is associated with 

seven lipid classes (PC, PI, LPC, PC O-, SM, CE, DAG) in context of MTT-HF, which allows 

to speculate about underlying mechanisms. On one side, diurnal variation of plasma lipids 

might contribute to the diurnal variation of insulin sensitivity on the whole-body and cellular 

level (51). Ectopic accumulation of specific lipid metabolites can disrupt the normal 

functioning of cellular cascades and has been suggested as one hypothesis, often referred to 

as the lipotoxicity theory, to explain molecular mechanisms by which obesity leads to insulin 

resistance (IR) (52). Among these lipid metabolites are ceramides. There is good evidence 

linking intracellular ceramide accumulation to IR, particularly in skeletal muscle (53), and 

some groups have implicated plasma ceramides in the pathogenesis of IR (54,55). In 

addition, skeletal muscle DAG content has long been suggested to induce insulin resistance 

(56), but the inconclusive results from both observational and mechanistic studies have 

recently raised the question of how much prominence should DAGs receive in the aetiology 

of insulin resistance (52). Unlike ceramides, the PC class seems to be positively associated 

with type 2 diabetes and prediabetes (38) and, in line with our findings, might also contribute 

to the regulation of insulin sensitivity.  
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On the other side, diurnal variation of insulin action (resulting from variation of insulin 

secretion and insulin sensitivity) could affect various processes of lipid metabolism 

(lipogenesis, lipolysis, fatty acid oxidation etc.) and this way contribute to the diurnal variation 

of plasma lipids. Both hypotheses are presented in Figure 6C. The question about exact 

mechanisms of interaction between circadian clock, lipid metabolism and insulin sensitivity 

remains to be answered and requires further investigation.  

Interestingly, in our study, we found no difference in fasting levels of plasma lipids 

between HC/HF and HF/HC diets. This finding is in agreement with our previously published 

data showing that the different diurnal distribution of carbohydrate and fat intake does not 

affect fasting triglyceride, total, HDL and LDL cholesterol as well as total FFA levels (19,20). 

The diets used in our study were isocaloric, and although timing of carbohydrate and fat 

consumption was different, the overall food composition was the same in both diets (19), 

which could explain the absence of dietary effects on fasting lipid levels. Nevertheless, in our 

study, both meal composition and meal timing strongly affected postprandial lipid level which 

was recently established as an important risk factor for the obesity-associated diseases such 

as cardiovascular disease (CVD)(57). Moreover, nonfasting lipid measurements are included 

in clinical guidelines in some countries for a more functional assessment of postprandial 

lipemia and CVD risk (58,59). This confirms the important role of meal timing in the 

regulation of blood lipids. 

In conclusion, using a lipidomic approach, our study revealed effects of meal timing 

across the day on the lipid metabolism in non-diabetic humans and elucidated its association 

with diurnal regulation of glucose metabolism. Our results contribute to a better 

understanding of the interaction between diet, meal timing and the circadian clock in the 

regulation of lipid metabolism.   
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Figure legends 

Figure 1. Study design and clinical investigation day. 

(A) Study design. HC/HF diet, isocaloric high-carb meals until 13.30 hr and isocaloric high-fat 

meals between 16.30 and 22.00 hr; HF/HC diet, reverse order of meal sequence; V, visit. 

(B) Clinical investigation day. At 09.00 hr and 15.40 hr a standardized test meal – high-fat or 

high-carb – was provided according to participant´s previous intervention. Arrows indicate the 

collection of blood samples for lipidomic analysis (black) and SAT samples (grey, dashed).  

 

Figure 2. Comparison of daily lipid profiles upon HC/HF versus HF/HC diet. 

(A) Correlation of daily lipid profiles across lipid classes. Lipid class enrichment is shown as 

histogram with overlayed density plot. The distance of the peak from the dotted grey line 

(correlation coefficient r=0.0) indicate how similar (r>0.0) or different (r<0.0) the daily lipid 

profiles in each lipid class are between the two diets. Only lipid species with high coherence 

within the cohort (diff>1.5) were included in the analysis as described in Methods. (B) Top 10 

lipid species with the highest correlation coefficients of daily profiles between HC/HF (black 

line) and HF/HC (grey line) diets. (C) Top 10 lipid species with the lowest correlation 

coefficients of daily profiles. Only lipid species with high coherence within the cohort 

(diff>1.5) were included in the analysis. (B-C) Mean z-scores with SEM are displayed. 

 

Figure 3. Lipids with a different postprandial response in the morning versus 

afternoon for MTT-HC.  

(A) Diurnal differences of lipid species. Postprandial responses of lipid species were 

calculated as ratios of their postprandial to preprandial concentrations. The differences 

between morning and afternoon values were compared with a paired Mann–Whitney U test. 

In the volcano plot, P-values without correction are shown on the y-axis, fold changes of 

means on the x-axis (morning towards the left, afternoon towards the right). Points with 

additional outlines show lipids significant after BH correction for multiple testing.  
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(B) Diurnal differences of lipid classes. Postprandial responses of lipid classes were 

calculated as ratios of postprandial class sums of individual species to their preprandial 

counterparts. The differences between morning and afternoon values were compared with a 

paired Mann–Whitney U test. Only differences significant after adjustment for multiple testing 

(q < 0.05) are shown. Values for individual subjects are displayed as points and connected 

by lines, the overall shape of the distribution is shown as a boxplot. 

(C) Diurnal differences of TAG postprandial responses dependent on total TAG chain length 

(total number of carbon atoms in a TAG molecule). Postprandial responses of each chain 

length were calculated as ratios of postprandial total chain length sums of individual species 

to their preprandial counterparts. 

(D) Diurnal differences of TAG postprandial responses dependent on total TAG saturation 

(total number of double bonds in a TAG molecule). Postprandial responses of each chain 

saturation were calculated as ratios of postprandial total saturation sums of individual 

species to their preprandial counterparts. 

(C-D) Error bars show standard error of the mean (n=29). (B-D) Significances are encoded 

as follows: * for q < 0.05, ** for q < 0.01,  *** for q < 0.01,**** for q < 0.0001. 

  

Figure 4. Lipids with a different postprandial response in the morning versus 

afternoon for MTT-HF.  

(A) Diurnal differences of lipid species. Postprandial responses of lipid species were 

calculated as ratios of their postprandial to preprandial concentrations. The differences 

between morning and afternoon values were compared with a paired Mann–Whitney U test. 

In the volcano plot, P-values without correction are shown on the y-axis, fold changes of 

means on the x-axis (morning towards the left, afternoon towards the right). Points with 

additional outlines show lipids significant after BH correction for multiple testing.  

(B) Diurnal differences of lipid classes. Postprandial responses of lipid classes were 

calculated as ratios of postprandial class sums of individual species to their preprandial 

counterparts. The differences between morning and afternoon values were compared with a 
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paired Mann–Whitney U test. Only differences significant after adjustment for multiple testing 

(q < 0.05) are shown. Values for individual subjects are displayed as points and connected 

by lines, the overall shape of the distribution is shown as a boxplot. 

(C) Diurnal differences of TAG postprandial responses dependent on total TAG chain length 

(total number of carbon atoms in a TAG molecule). Postprandial responses of each chain 

length were calculated as ratios of postprandial total chain length sums of individual species 

to their preprandial counterparts. 

(D) Diurnal differences of TAG postprandial responses dependent on total TAG saturation 

(total number of double bonds in a TAG molecule). Postprandial responses of each chain 

saturation were calculated as ratios of postprandial total saturation sums of individual 

species to their preprandial counterparts. 

(C-D) Error bars show standard error of the mean (n=29). (B-D) Significances are encoded 

as follows: * for q < 0.05, ** for q < 0.01,  *** for q < 0.01,**** for q < 0.0001.    

 

Figure 5. Gene expression levels in SAT upon HC/HF vs. HF/HC diet. 

(A) Expression of core clock genes ARNTL, PER1 and NR1D1. 

(B) Expression of genes involved in fatty acid synthesis (ACACA, FASN, ACSL1), elongation 

(ELOVL5) and desaturation (FADS1, FADS2, SCD). Levels of the mRNA expression were 

measured in SAT samples in fasting state and 185 min after each test meal (HC/HF diet - 

black lines, HF/HC diet – grey lines, n=29). p<0.05, ** p<0.01 - HC/HF diet vs. HF/HC diet at 

the same time of the day (comparisons with paired Student’s t test or Wilcoxon test). Data 

are means ± SEMs. 

 

Figure 6. Associations between plasma lipids and parameters of glucose metabolism. 

(A) Diurnal variation of postprandial responses of glucose (iAUCglu 0-180) and insulin 

(iAUCins 0-180), indices of early (iAUCins/glu 0-30) and overall (iAUCins/glu 0-180) insulin 

secretion and Gutt’s index of insulin sensitivity (ISI Gutt0-120) for morning (grey bars) and 

afternoon (black bars) meals. * p<0.05, ** p<0.01 for afternoon vs. morning meal.  
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(B) Associations between diurnal variations of plasma lipid classes and index of insulin 

sensitivity in MTT-HF.  

Analysis was performed using linear regression models with adjustment for age and BMI. 

Only associations significant after adjustment for multiple testing (q < 0.05) are shown.  

(C) Proposed pathways of the interaction between the circadian clock, plasma lipids and 
insulin sensitivity. The molecular clock machinery regulates circadian rhythms of key 
transcription factors and enzymes in peripheral organs involved in lipogenesis, 
lipolysis, fatty acid oxidation and other processes of lipid metabolism which leads to 
the diurnal variation of plasma lipids (DAG, CE, PC etc.) involved in the regulation of 
cellular insulin sensitivity (black arrows). Alternatively, diurnal variation of insulin 
action (insulin secretion and insulin sensitivity induced by the local internal clock) 
could affect various processes of the lipid metabolism (grey arrows) and this way 
contribute to the diurnal variation of plasma lipids. 
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Table 1. Clinical characteristics of study subjects 

Parameters  

N (% male) 29 (100)  

Age [years] 45.9 ± 2.5 

BMI [kg/m²] 27.1 ± 0.8 

Waist circumference [cm] 93.55 ± 2.09 

Waist-to-hip ratio 0.91 ± 0.01 

Total body fat [%] 25.13 ± 1.55 

Fat mass (kg) 22.78 ± 1.99 

Fat-free mass (kg) 74.76 ± 1.54 

Total cholesterol [mmol/l] 5.24 ± 0.18 

HDL cholesterol [mmol/l] 1.20 ± 0.04 

LDL cholesterol [mmol/l] 3.48 ± 0.17 

Triglycerides [mmol/l] 1.25 ± 0.14 

FFA [mmol/l] 0.49 ± 0.03 

Fasting glucose [mmol/l] 5.83 ± 0.12 

Fasting insulin [pmol/l] 34.3 ± 5.2 

HOMA-IR [mmol· mU· l-2](1) 1.55 ± 0.26 

2-hour glucose in OGTT [mmol/l](1) 115.85 ± 21.51 

NGT/IFG/IGT [n](2) 18/8/4 

Data were collected at visit 1 (start of first intervention period). (1)Data were collected at screening, 

prior to visit 1.  (2)11 subjects with impaired fasting glucose/glucose tolerance (discrepancy in numbers 

is owed to one participants showing both an impaired fasting glucose and an impaired glucose 

tolerance). Data are shown as mean ± SEM. FFA, free fatty acids,  IFG, impaired fasting glucose, IGT, 

impaired glucose tolerance, NGT, normal glucose tolerance, OGTT, oral glucose tolerance test. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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