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Abstract

Protein phosphorylation represents one of the most important post-translational modifica-
tions (PTMs) for cell signalling, and is is catalysed by a group of enzymes called protein
kinases. Through this activity they serve as key regulators of almost all cellular processes.
This is achieved at any time by a network of different kinases that are transiently active. The
fidelity of cell systems control therefore requires that each kinase targets only a restricted set
of substrates. This specificity is achieved partly by contextual factors that separate kinases
spatially and temporally, but also by sequence features that are encoded in the kinase domain
itself.

For this thesis I focus on elements of kinase specificity that are encoded in the the active
site of the enzyme. During these investigations I have tried to address three main questions:
1) How is specificity for residues surrounding the phosphorylation site determined in the
kinase? 2) How did these specificities evolve? and 3) To what extent does kinase evolution
correlate with the evolution of its substrates?

First, I developed a sequence-based method for the automated detection of kinase speci-
ficity determining residues (SDRs). The putative determinants were then rationalised using
available structural data, and in two specific cases were validated experimentally. I also used
mutation data from The Cancer Genome Atlas (TCGA) to demonstrate that kinase SDRs are
often targeted during cancer.

Second, a global analysis of SDR evolution was performed for kinases following gene
duplication and speciation, revealing that SDRs often diverge between paralogues but not
between orthologues. This global analysis is followed by a detailed case study of G-protein
coupled receptor kinase (GRKSs) evolution using ancestral sequence reconstructions.

Third, I inferred global substrate preferences in a taxonomically broad range of species
using phosphoproteome data. I then related the evolution of substrate motif sequences to
that of their cognate effector kinases where possible. The results strongly suggest that many
of the motifs emerged in a universal eukaryotic ancestor.

I finish by summarising the major findings of this doctoral research, which to my knowl-
edge represents the most comprehensive analysis to date of protein kinase specificity and its

evolution.
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Chapter 1

Introduction

1.1 The protein kinase superfamily

1.1.1 Protein kinase function

Protein kinases are enzymes that catalyse the phosphorylation of other proteins (Figure 1.1).

Protein phosphorylation was discovered in the early 20th century and later realised (in
the 1950s) to play a role in the activation of enzymes such as glycogen phopsphorylase (Co-
hen, 2002; Fischer and Krebs, 1955; Krebs, 1983; Krebs and Fischer, 1956; Levene and
Alsberg, 1906; Lipmann and Levene, 1932). Now it is known to modulate protein function
in many other ways. Specifically, it can stabilise or destabilise the target, promote or inhibit
protein-protein interactions, and also direct the target towards specific subcellular localisa-
tions (Beltrao et al., 2013; Holt, 2012; Pawson and Scott, 2005).

Phosphorylase kinase and cAMP-dependent protein kinase of the glycogenolytic path-
way were the first to be characterised biochemically (Fischer and Krebs, 1955; Krebs and
Fischer, 1956; Taylor and Kornev, 2011; Walsh et al., 1968). Subsequent research demon-
strated the role of kinases in many other metabolic pathways and cellular processes. The
discovery in particular of kinases sensitive to second messengers such as Ca’* and diacyl-
glycerol (DAG) implied a pivotal role for kinases in cellular signal transduction (Cohen,
2002; Kishimoto et al., 1980; Pawson and Scott, 2005). This role is perhaps best represented
by MAPK (mitogen-activated protein kinase) pathways — tri-partite kinase cascades in which
the upstream kinase (MAPKKK) activates a target (MAPKK) that in turn activates another
downstream kinase (MAPK). The discovery of MAPK cascades in the 1990s therefore high-
lighted the ability of kinases to serve as both catalysts and substrates for phosphorylation,
thus enabling the formation of kinase-substrate networks capable of signal amplification (Co-
hen, 2002; Pearson et al., 2001; Roskoski, 2015).



2 Introduction

It is now clear that protein kinases are required for almost all cellular pathways, includ-
ing fundamental processes such as apoptosis and cell cycle control. Their ubiquity is best
explained by the properties of the POi_ group itself, in that it is charged, reactive, and la-
bile (Hunter, 2012). Its addition to proteins can also be catalytically reversed by comple-
mentary phosphatase enzymes. Phosphate modification is therefore a highly effective label
for the regulation of dynamic processes.

The central importance of protein kinases to cell biology is underlined by the fact that
their dysregulation is responsible for several different diseases. Such ‘kinasopathies’ include
achondroplasia, Parkinson’s disease, and many different cancers (Izarzugaza et al., 2012;
Lahiry et al., 2010; Stenberg et al., 1999). This is one of the reasons why kinases have long
been the subject of intensive research efforts. In 2005 for example it was reported that they
account for around 30 percent of all spending on drug development (Knight and Shokat,
2005).

pSer/pThr/pTyr ADP

Kinase-substrate

Fig. 1.1 Protein kinases catalyse the transfer of the ATP y-phosphate to the phosphoacceptor
serine, threonine, or tyrosine

1.1.2 Protein kinase sequence and structure

Note: protein kinase residues in this thesis are numbered according to their position in the
Pfam protein kinase domain (PF00069). This is discussed further in the subsection below
(‘Numbering of protein kinase residues’).

Most eukaryotic protein kinases contain at least one catalytic kinase domain approxi-
mately 260 amino acids in length (Figure 1.2). Many also contain additional protein domains
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that are important for their function. In some cases these functions are linked directly to that
of the kinase catalytic domain. Kinases of the Polo/PLK Family for example feature a ‘Polo
box’ domain that will bind phospho-serine/threonines and thus recruit the whole molecule
to previously phosphorylated substrates (Archambault and Glover, 2009; Park et al., 2010).

The kinase domain itself was first sequenced in 1981 by Edman degradation (Shoji et al.,
1981). The subsequent sequencing of other kinase domains enabled the identification of
highly conserved residues with presumed importance for kinase function. By 1995 there
were sufficient sequences (~400) for the detailed analysis of kinase sequence variation by
Hanks and Hunter (Hanks and Hunter, 1995), who divided the domain into 12 smaller sub-
domains (I-XII). At this time a kinase-peptide structural model had been generated for the
protein kinase A catalytic subunit in complex with a pseudosubstrate inhibitor (Knighton
et al., 1991). Examination of these structures therefore allowed putative roles to be assigned
to the 12 subdomains and associated residues.

Kinase subdomains I, II, III, and IV comprise the smaller N-terminal lobe, which is
involved primarily in the binding and orientation of adenosine triphosphate (ATP) (Hanks
and Hunter, 1995; Roskoski, 2007). This lobe is composed mainly of f sheets but also
contains the aC helix. The aC helix is partially exposed at the side of the substrate-binding
cleft and is reorientated upon kinase activation to promote substrate binding (Beenstock et al.,
2016; McSkimming et al., 2017). The C helix also features an invariant E (position 48) that
interacts with the invariant K (position 30) of subdomain II. Both residues contribute to the
stabilisation of the ATP a- and f- phosphates (Endicott et al., 2012; Kornev and Taylor,
2015). The two other invariant positions (8 and 10) of the N-terminal lobe form the glycine-
rich repeat (G-x-G-x-x-G) that is important for ATP binding and catalysis (Hemmer et al.,
1997).

The larger C-terminal lobe is mainly a helical and comprises subdomains VI to XII (Hanks
and Hunter, 1995). The catalytic loop extends from the a E helix and contains the xRDxKxxN
motif (Taylor and Kornev, 2011). The invariant D at position 123 aligns structurally with the
substrate phosphoacceptor and serves as a proton acceptor from the substrate -OH group (Bosse-
meyer, 1995). This function is assisted by the K at position 125 that forms ionic interactions
with the y-phosphate of ATP (Knighton et al., 1991). The invariant N at position 128 also
contributes to catalysis by stabilising D123 and chelating the secondary Mngr ion found in
the nucleotide binding site (Hanks and Hunter, 1995; Johnson et al., 1996).

The invariant D of the ‘DFG’ motif is present on a contiguous loop. This residue chelates
the Mgt ion between the ATP - and y- phosphates. Active and inactive kinase structures
can be distinguished by ‘in” and ‘out’ conformations of the DFG maotif, respectively, which

describes whether or not the motif phenylalanine is buried in a hydrophobic pocket between
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Fig. 1.2 The protein kinase domain is ~260 residues in length and consists of an N-terminal
lobe (top) and a larger C-terminal lobe (bottom). The ATP molecule binds in the N-terminal
lobe whereas the substrate (yellow) binds in the active site between the two lobes. Important
structural features are labelled here and discussed further in the main text. PDB: IATP
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the two kinase lobes (Xu et al., 2011). The highly conserved APE motif is C-terminal to
the DFG motif, and both motifs together delimit an intervening sequence referred to as the
‘activation segment’. In inactive kinases, a looped sequence (‘activation loop’) of the ac-
tivation segment obstructs the kinase active site and thus prevents substrate phosphoryla-
tion (Nolen et al., 2004). Upon phosphorylation of the activation loop — either by autophos-
phorylation or an upstream kinase — the loop becomes bound to the catalytic core via ionic
bonds to the arginine side chain of the HRD motif and the active site becomes accessible to
substrates (Johnson et al., 1996). The activation segment is therefore highly important for
the regulation of kinase activity, but also for substrate specificity as some activation loop
residues contact the substrate C-terminal to the phosphoacceptor. The activation segment
P+1 loop (approximately positions 159 to 164) for example is an important determinant of
kinase ‘P+1’ specificity (Nolen et al., 2004).

The increased availability of data on kinase sequence and structure has proven these fea-
tures to be largely universal across the protein kinase superfamily. Most research efforts are
therefore now directed towards an improved understanding of Family- or Subfamily-specific
modes of kinase regulation and substrate specificity (for peptides and nucleoside analogues).
There have however been some advances in the global understanding of the kinase domain
since the Hanks and Hunter review of 1995. The structural alignment of many kinase models
for example enabled the identification of core catalytic and regulatory ‘spine’ residues that
are spatially conserved and anchor functionally related residues (Kornev et al., 2008). An
alignment-based analysis of thousands of kinase domain sequences has also suggested the
existence of distinct ‘catalytic’, ‘specificity’, and ‘regulatory’ sectors, which are defined as

networks of co-evolving residues within the kinase domain (Creixell et al., 2017).

Numbering of protein kinase residues

The kinase residues in this thesis are numbered according to domain positions in the protein
kinase Pfam domain (PF00069), which represents a profile hidden Markov model (HMM)
constructed from a sequence alignment of protein kinases (EI-Gebali et al., 2019). This
allows residues from several different family members to be mapped to a common reference,
which is an important consideration for most comparative structural analyses. An alternative
approach is to map the residues to a single reference protein that is considered representative
or prototypical of the family in some way. In the kinases for example, kinase residues are
often mapped to the first solved kinase structure (PKA catalytic subunit in mouse, PDB:
latp) (Knighton et al., 1991), with in-text references to both the native residue numbering
and the PKA mapping (Mok et al., 2010). Other studies have made use of secondary structure

elements of the family domain for residue mapping. This involves numbering the secondary
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structure elements first (i.e. the a helices and f sheets), and then numbering the residues
according to their position within the helix or sheet, as was done for comparative structural
analyses of the Ga and arrestin families (Flock et al., 2015; Sente et al., 2018).

1.1.3 Protein kinase classification and evolution
Early evolution of the superfamily

Eukaryotic protein kinases are structurally distinct from many of the protein kinases found
in prokaryotes. Unlike in eukaryotes, phosphate-based signal transduction can be mediated
by different molecular systems in prokaryotes. The most well-characterised of these is the
bacterial two-component system in which the sensor kinase first autophosphorylates on a
histidine residue and then transfers the phosphate group to an aspartate residue on the re-
sponse regulator (Stock et al., 2000). Prokaryotic Ser/Thr kinases also exist in which the
kinase and phosphatase activity is encoded in the same molecule, such as for the bacterial
isocitrate dehydrogenase kinase/phosphatase enzyme (Laporte et al., 1989). Some prokary-
otic kinases also function in distinct phosphotransferase systems such as is the case for the
phosphoenolpyruvate-protein transferase enzyme involved in sugar uptake (Kotrba et al.,
2001). Notably, in all three cases the protein kinase lacks clear sequence homology to the
eukaryotic protein kinase domain (ePK) domain (Cozzone, 1993; Pereira et al., 2011).
Eukaryotic PK-like protein kinases do however exist in some prokaryotes, as was first
demonstrated with the sequencing of the pknl gene in Myxococcus xanthus in 1991 (Muioz-
Dorado et al., 1991; Pereira et al., 2011). Advances in sequencing technology later revealed
the existence of such ePK-like kinases (ELKs) in many different prokaryotic species, in-
cluding in the Archaea. Their sequence similarity to the ePK domain is typically low (7%—
17%), although comparisons between crystal structures reveals a higher degree of conserva-
tion (Kannan et al., 2007b). Notably, a metagenomics sequencing project of marine prokary-
otes in 2007 suggested that ELKs may be as prevalent as the histidine kinases in prokary-
otes (Kannan et al., 2007b). This prevalence suggests either that the origin of the kinase
superfamily predates the emergence of the eukaryotes, or that the horizontal gene transfer
(HGT) of kinases from eukaryotes to prokaryotes occurred early after the separation of the
archaea, bacteria, and eukaryotes (Kennelly, 2002; Scheeff and Bourne, 2005). A more re-
cent analysis however argues strongly against the possibility of HGT, thus placing the origin
of Ser/Thr kinases in the last universal common ancestor of life (Stancik et al., 2018).
Confusingly, so-called ePK-like kinases (ELKSs) also exist in eukaryotes in the form of
small molecule kinases (choline kinase, aminoglycoside phosphotransferase, etc.) without

sequence homology to the ePK domain but with a shared bilobal fold (Scheeff and Bourne,
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2005). The atypical kinases (APKs) also are more divergent than both ePKs and ELKs
(Figure 1.3) and are thought to represent an intermediate fold between kinases and other
ATPases (Kornev and Taylor, 2015; Oruganty and Kannan, 2012; Oruganty et al., 2016).
An integrative analysis of ePK and ELK sequence and structure suggests that the ePKs di-
verged from the eLKs early during evolution, contrary to previous suggestions of ELKs as a
polyphyletic clade that diverged intermittently (Oruganty et al., 2016; Scheeff and Bourne,
2005). Remarkably, this analysis also implies that some protein kinases exist — such as as the
channel kinases — that are more closely related to small molecule kinases than other protein
kinases (Scheeff and Bourne, 2005).

The word ‘kinase’ from this point on should be taken to mean ‘proteins with a catalyti-
cally active ePK domain’, unless otherwise stated, as the research component of this thesis

concerns ePKs exclusively.

—< ELK*
« ELK*
-

ePK

——<| APK

Fig. 1.3 Atypical protein kinases (APKSs) are currently believed to serve as an outgroup to the
ePKs (kinases with a eukaryotic protein kinase domain) and the ELKs (ePK-like kinases).
The ePKs are also believed to have emerged from within the ELKs. This is a simplified
representation of the results given in Oruganty et al., 2016

Classification of protein kinases

The protein kinase superfamily is unusually large, with around 500 canonical protein kinases
in human alone (Manning et al., 2002b). This necessitated the development of a bespoke
classification system for the kinases. The most striking partition within the kinase super-
family is between serine/threonine-phosphorylating kinases and tyrosine-phosphorylating
kinases. Tyrosine kinases however constitute less than 20% of all human kinases and so

account for a small fraction of the total sequence diversity within the superfamily.
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The first systematic classification of the protein kinases in 1995 was based upon a global
kinase phylogeny generated from a kinase domain alignment (Hanks and Hunter, 1995). The
first tier of classification organised the kinases into five different Groups: AGC, CAMK,
CMGC, tyrosine kinases, and ‘Other’ kinases that could not easily be categorised. Each
Group in turn is then defined by the set of related kinase Families that constitute the particular
clade in the phylogeny. Kinases of a particular Family (e.g. the cyclin-dependent kinases)
by definition diverged from each other later in evolution, and in many cases also share a
common function, specificity, and mode of regulation (Hanks and Hunter, 1995). The third
tier of classification refers to kinase Subfamilies, which are similar in principle to kinase
Families but in which the functional and sequence similarity is defined more finely (Hanks
and Hunter, 1995). Not all kinase Families can be divided into Subfamilies.

The near-complete sequencing of the human genome over five years later enabled for the
first time an attempted annotation of the human ‘kinome’ — the total set of protein kinases
encoded in the genome. This could be achieved largely by querying genomic sequences with
a hidden Markov model (HMM) of the ePK domain. Such queries revealed that kinases
account for around 2% of all protein-coding human genes and thus constitute one of the
largest protein superfamilies. The original classification of 5 Groups, 44 Families and 51
Subfamilies was thereby extended to 8 Groups, 134 Families, and 196 Subfamilies primarily
on the basis of kinase domain sequences. The kinase protein sequence, domain architecture
and known functions were also taken into account for the classifications (Manning et al.,
2002b).

A brief summary of the 8 major kinase Groups is given below:

e AGC group (PKA, PKG, PKC): consists mainly of signalling kinases, including cyclic
nucleotide-dependent kinases. They are generally basophilic (i.e. R/K-favouring),
with the exception of the GRK and PDK1 Families.

e CMGC group (CDK, MAPK, GSK3 and Casein Kinase II): associated with a diversity
of functions, including cell cycle control, stress signalling, and metabolic regulation.
Many have a strong preference for proline at the +1 position (i.e. the position directly

C-terminal to the phosphoacceptor serine/threonine).

o CAMK group (CAMKI1, CAMK?2): characterised by calcium- and calmodulin-regulated
kinases, although non-calcium regulated kinases are also present. Many have a strong
preference for arginine at the -3 position (i.e. three positions N-terminal to the phos-

phoacceptor serine/threonine)

e STE group (STE7, STE11, STE20): Generally consists of those kinases that exist up-
stream of MAPK (i.e. MAPKK, MAPKKK, and MAPKKKK) in canonical MAPK
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signalling cascades. Some STE kinases however have no reported role in MAPK cas-

cades.

e RGC group: receptor guanylate cyclases — there are only five RGC proteins in human
and each is catalytically inactive (i.e. is a pseudokinase). The term ‘RGC’ refers to

the fact that they are receptors and have a ‘guanylate cyclase’ domain.

e CKI group (CK1la,CK16, CKl1e): The CK1 group is highly divergent from most other
protein kinases, and they function in a diverse set of cellular processes (cell cycle,
transcription, cytoskeleton, etc). There are only 12 CK1 kinases in human

e TK group (Abl, EGFR, Src): Tyrosine kinase group (EDGFR, PDGFR) — kinases with
exclusive specificity for tyrosine residues; includes receptor tyrosine kinases (RTKs)

and cytoplasmic tyrosine kinases.

e TKL (BRAF, IRAK, LRRK): tyrosine kinase-like group — they exhibit sequence sim-

ilarity to the tyrosine kinases but are generally specific for Ser/Thr.

e Other kinases (Wee, PLK, Aurora kinase): all kinases with an ePK domain that do not
fit into any of the above Groups.

Non-human kinomes

The increased availability of genome-wide sequence data since 2002 has enabled similar
characterisations for model organisms across the Tree of Life. The kinome of Saccharomyces
cerevisiae for example was elucidated before the human kinome and revealed the existence
of yeast-specific kinase Subfamilies, as well as a histidine kinase unrelated to the ePK do-
main (Hunter and Plowman, 1997). In line with expectation, it is generally the case that
model organisms closely related to human have similar kinomes whereas more distantly re-
lated species have more divergent kinomes. Mus musculus for example was reported to have
orthologues for 510 of 518 human kinases (Caenepeel et al., 2004). The more distantly re-
lated echinoderm Stonglyocentrotus purpuratus however, while having 183 out of the 187
Subfamilies found in human, features multiple unique Families including the ‘Urch’ Fam-
ily with 29 members (Bradham et al., 2006). For Caenorhabditis elegans and Drosophila
melanogaster, there are likewise significant overlaps with the human kinome but also id-
iosyncrasies at the Family- and Subfamily-level (Manning et al., 2002a; Plowman et al.,
1999).

The analysis of more distant species helps to clarify the relationship between kinome

evolution and the emergence of the metazoa. The basal metazoan Amphimedon queens-
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landica and the choanoflagellate Monosiga brevicollis for example both feature tyrosine ki-
nases to the exclusion of species outside the filozoa (choanoflagellates and metazoa), and so
implicate tyrosine kinases in the evolution of animal multi-cellularity (King et al., 2008; Sri-
vastava et al., 2010). This finding accords well with the known functions of tyrosine kinases
in cell signalling, cell migration, and differentiation. Both species however contain more
tyrosine kinases than human despite their apparent biological simplicity. In the case of M.
brevicollis, most TKs have no clear homologue in human, suggesting that tyrosine kinase
proliferation occurred independently in the choanoflagellate and metazoan lineages (Man-
ning et al., 2008).

The functional annotation of kinomes for species outside the metazoa and fungi is more
difficult because a large proportion of kinases have no homology to experimentally charac-
terised kinases in human or budding yeast. The ciliate Tetrahymena thermophila for example
contains over 1000 kinases but less than 40% can be placed into a canonical Group, Family
or Subfamily (Eisen et al., 2006)(KinBase). Most therefore are of unknown function. To a
lesser extent this is true also for species with smaller kinomes. Plasmodium for example has
91 kinases and around 21% of them belong to a Group (FIKK) that is thought to be unique
to the genus (Talevich et al., 2012). Some species are marked also by large-scale expan-
sions of particular kinase Groups relative to what is observed in human or S. cerevisiae. For
Dictyostelium and the plants, this is the case for the TKL Group (Goldberg et al., 2006; Lehti-
Shiu and Shiu, 2012). Since some TKL kinases have demonstrated tyrosine kinase activity
in both Dictyostelium and plants (Goldberg et al., 2006; Jaillais et al., 2011), it is tempting
to speculate that these TKL expansions were at least partially analogous to the emergence
and proliferation of the TKs in the filozoa (Goldberg et al., 2006).

Methods for the automated annotation of kinomes

Many of the kinome studies referred to above required significant levels of manual curation.
Since then, efforts have been made to develop tools for the automated annotation of a kinome.
This requires first that all kinases in a proteome are identified, and second that each identified
kinase is correctly classified. The identification of the kinases themselves is usually achieved
using profile-based HMMs, which in the context of proteins are statistical models of se-
quence variation derived from multiple sequence alignments (MSAs) (Eddy, 1996). Profile-
based HMMs generally identify sequence homologues with a greater degree of sensitivity
and specificity than BLAST does (Park et al., 1998). They are also used for the classifica-
tion of kinases via the generation of Group-based HMMs (AGC, CAMK, CMGC, etc.) from
carefully constructed seed alignments. An unclassified kinase for example would be assigned

to the Group corresponding to the HMM with the strongest similarity to the kinase domain
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sequence. Many such profile-based HMMs constructed at the Group, Family, and Subfamily
level are provided in the kinase database KinBase (http.//kinase.com/web/current/). Their
use can obviate the need for time-consuming manual kinome curation provided that the un-
derlying genome has been fully sequenced and that the HMMs can be assumed to be accurate.
This is less likely to be the case if the examined species is distantly related to the species
from which HMM seed alignment was generated.

The Kinomer tool developed in 2007 advances this concept by making use of multi-
level HMM libraries so that each kinase Group is represented by multiple HMMs (Miranda-
Saavedra and Barton, 2007). Its development was motivated by the finding that protein
homologues can be detected more reliably by using multiple subfamily HMMs rather than
a single HMM to represent a given protein family (Brown et al., 2005). The benchmark-
ing of Kinomer revealed this to be the case for the protein kinases also as the multilevel
HMMs were found to classify protein kinases with a higher degree of sensitivity than was
found for BLAST or single-level HMMs. This is likely achieved by the ability of multilevel
HMMs to more accurately represent the distinguishing features of each constituent subfam-
ily (Miranda-Saavedra and Barton, 2007).

The Kinannote tool developed in 2013 for the same purpose is a more sophisticated
method that incorporates BLAST and HMM-based homology searches (Goldberg et al.,
2013). Kinannote differs from Kinomer also in the sense that it attempts kinase classifica-
tions at the Family and Subfamily level also whereas Kinomer does not attempt classification
beyond the Group level. The algorithm can be divided into three phases. In the first phase,
the proteome is queried with a single-level kinase HMM using lenient cut-off values; the
putative kinases are then scored with a kinase-domain PSSM and also used for a BLAST-
based query of the KinBase reference database. In the second stage, low-scoring kinase
domains and aPKs are identified on the basis of their sequence homology (via BLAST) to
reference kinases in KinBases. Any remaining sequences below the PSSM threshold are
then discarded, and kinases above the PSSM threshold but below the HMM threshold are
identified as ‘twilight hits’ but not further classified. Finally, the remaining sequences with
the ePK domain are then classified at the Group/Family/Subfamily level on the basis of their
homology (via BLAST) to kinases in KinBase with known classifications. The benchmark-
ing of Kinannote suggests that it performs similarly to Kinomer in the identification protein
kinases, but outperforms Kinomer when classifying kinases at the Group level, in spite of
Kinannote’s use of single-level HMMs (Goldberg et al., 2013).

Such automated tools for kinome annotation are advantageous in the sense that they en-
able the comparison of kinomes between previously uncharacterised species. The applica-

tion of Kinomer to eukaryotic species across the Tree of Life for example demonstrated that
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the kinase Groups AGC, CAMK, CK1, CMGC, and STE are universal across the eukary-
otes and therefore were likely present in the ancestor of all eukaryotes (Miranda-Saavedra
and Barton, 2007). Within the metazoa, the results of Kinomer queries have also been used
to demonstrate a strong correlation between the frequency of tyrosine kinases and of pro-
teins with an SH2 domain (Liu et al., 2011). Similarly, Kinomer has also been used to
test for associations between particular kinase Groups and phosphomotif usage in 18 fungal
species (Studer et al., 2016). However, in the majority of cases these tools have been used
simply for the study of a single species kinome at a time. A few other publications notwith-
standing (Miranda-Saavedra et al., 2012; Talevich et al., 2012), there are surprisingly few
studies that attempt to correlate kinome differences with phenotypic differences across sev-

eral species.

1.2 Protein kinase specificity

1.2.1 Spatial and temporal factors

The ‘specificity’ of a protein kinase refers to the set of substrates that can be phosphory-
lated by the kinase under physiological conditions. There are multiple factors that constrain
kinase specificity. At a cellular level, the kinase and substrate must be co-expressed and
co-localised for them to interact in vivo. Most kinases also are not constitutively active, and
so the activation period of the kinase must overlap with the expression interval of any pu-
tative substrate. More subtle contextual factors could also prevent any meaningful substrate
phosphorylation in vivo. For example, if a kinase is expressed at low levels and in the pres-
ence of a preferred substrate, then the high-affinity substrate is likely to competitively inhibit
phosphorylation of low-affinity substrates (Ubersax and Ferrell, 2007). In multicellular or-
ganisms, all of the aforementioned requisites must be satisfied for kinases and substrates in
the same cell or tissue type.

There are multiple examples of kinases with similar sequences but different specificities
owing to differential expression patterns. Protein kinase Cy for example is similar in se-
quence and peptide specificity to the other conventional PKCs but is expressed exclusively
in the brain and spinal cord (Saito and Shirai, 2002). At the subcellular level, proteins with
identical primary sequences can differ in specificity because of spatial segregation. For
example, cyclin BI-CDK1 complexes are localised primarily in the cytoplasm or nucleus
whereas cyclin B2-CDK1 complexes are targeted towards the Golgi apparatus (Ubersax and
Ferrell, 2007). Such subcellular targeting will have additional quantitative effects in the

sense that the effective concentration of the kinase and substrate is increased due to com-
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partmentalisation, and that there are fewer potential substrates to compete for the active site
of the kinase.

The cellular gene regulatory network (GRN) also impacts upon kinase specificity in the
sense that the kinase and substrate must be expressed during the same phase of the cell cycle
and/or in response to the same stimuli. Notably, a global network analysis of kinase-substrate
relations in human suggested a strong enrichment relative to the null expectation of kinase-
substrate pairs in which both proteins are expressed by the same transcription factor (Hu
et al., 2014; Newman et al., 2013). Kinases and substrates therefore seem to be significantly
co-regulated at the transcriptional level. Sequence changes outside the kinase protein-coding

sequence therefore also seem to be important for the evolution of specificity.

1.2.2 Adaptor and scaffold proteins

Kinase specificity is also influenced by adaptor and scaffold proteins that bind to the kinase
but have no catalytic activity (Figure 1.4). These proteins can modulate the specificity of
kinases either by directing their subcellular localisation or by promoting their physical inter-
action with potential substrates (Schechtman and Mochly-Rosen, 2001). Both mechanisms
serve to increase the local effective concentration of the kinase with respect to a particular
substrate, and also to reduce the probability of kinase ‘inhibition’ by other substrates. The
RACK (receptor for activated protein kinase C) proteins for example differentially localise
different PKC isozymes (Mochly-Rosen et al., 1991), whereas scaffold proteins of the MAPK
cascade (e.g. Ste5in S. cerevisiae) serve to physically link the MAP3K, MAP2K, and MAPK
enzymes (Dhanasekaran et al., 2007). Both mechanisms can be combined in a single class
of adaptors, as is the case for the cyclin proteins, which can promote substrate interaction
and also determine the kinase localisation (Jackman et al., 1995; Schulman et al., 1998). In
co-crystal structures of the CDK2-cyclin complex, a backbone carbonyl of the cyclin sub-
unit interacts with the preferred lysine residue at position +3, suggesting that adaptors can
in some cases also influence kinase specificity directly at the active site (Alexander et al.,
2011; Brown et al., 1999).

1.2.3 Substrate docking

Substrate ‘docking’ sites refer to sequence motifs on the substrate that bind to allosteric sites
on the kinase (Figure 1.5). This mechanism is similar in principle to adaptor and scaffold
binding except that interaction occurs with the kinase directly rather than through an in-
termediate protein (Miller and Turk, 2018). The substrate interaction with the kinase can

occur either through the kinase domain or an external one, but by definition cannot com-
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Fig. 1.4 Adaptor proteins (cyclin A2) often bind to short linear motifs (SLiMs) in the sub-
strate (CDC®6), thereby recruiting the kinase (CDK?2) to its target. PDB: 2CCH

pete with the phosphorylation interface (Biondi and Nebreda, 2003). Docking for Ser/Thr
kinases occurs more commonly via the kinase domain itself whereas Tyr kinases tend to rely
upon accessory domains for substrate docking (Ubersax and Ferrell, 2007). In the Ser/Thr
kinase PKCi, for example, a short linear motif located in the C-terminal lobe of the ki-
nase domain can be used to recruit substrates (Linch et al., 2013). For tyrosine kinases, the
SH2 domain is often used as a docking module for the binding of phosphorylated tyrosine
residues (Roskoski, 2004).

Docking interactions can in some cases also be integral to the activation of the kinase.
PDKI1 kinases for example are responsible for the activation of many other AGC kinases,
but employ allosteric sites to interact with the substrate prior to active site binding (Biondi
and Nebreda, 2003). The docking site on the substrate however must be phosphorylated
on a hydrophobic motif before the binding of PDK1, which then activates the substrate via
activation loop phosphorylation (Pearce et al., 2010). Such ‘phospho-primed’ docking also
occurs for kinases of the GSK (glycogen synthase kinase) Family. However, for these kinases
the primed phosphorylation occurs close to the substrate PO site and so is more important for
defining GSK specificity than substrate activation. Specifically, the priming phosphorylation
is only four residues C-terminal to the phosphorylatable Ser/Thr and so is considered part of
the GSK peptide motif (S/T-x-x-x-pS/T), which is traditionally defined for substrate sites 5
residues N- and C-terminal to the phosphoacceptor (Biondi and Nebreda, 2003).
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Fig. 1.5 Docking interactions between the kinase domain (MAPKS) and substrate (NFAT4)
are also often an important determinant of kinase specificity. Many different binding pockets
on the kinase can be used for this purpose (Biondi and Nebreda, 2003). PDB:2XRW
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1.2.4 Phosphoacceptor specificity

The most discriminating feature of target sites is usually the phosphoacceptor itself — ser-
ine, threonine, or tyrosine. Of these, tyrosine phosphorylation is likely the most derived
trait as it accounts for < ~1% of all phosphorylations in human and similar levels in other
non-metazoan species (Pease et al., 2013; Sharma et al., 2014; Stark et al., 2010). Tyrosine
phosphorylation in the metazoa, choanoflagellates, and the filastaerea can be accounted for
by the proliferation of dedicated kinases in the TK group that phosphorylate tyrosine ex-
clusively (Pincus et al., 2008). These kinases are characterised by a deep catalytic cleft to
accommodate the bulk tyrosine side chain (Ubersax and Ferrell, 2007).

Dual-specificity kinases also exist that can phosphorylate any one of serine, threonine,
or tyrosine. This trait likely evolved multiple times independently among the Ser/Thr ki-
nases as the DSKs do no constitute a single monophyletic group like the tyrosine kinases
do. DSKs for example are found among disparate Families such as the MAP2Ks (STE), the
DYRKSs (CMGC), and the Wee kinases (‘Other’) (McGowan and Russell, 1993; Roskoski,
2012; Walte et al., 2013). In the majority of cases the tyrosine phosphorylation takes place on
an activation loop via a transactivation or autoactivation mechanism. However, for kinases
in general target sites within the activation loop are not representative of the kinase peptide
specificity (Miller et al., 2008; Pike et al., 2008), and so it is not clear if dual-specificity is de-
termined by sequence changes in the kinase active site. Notably, a search in 1992 to identify
sequence-based determinants of dual-specificity failed to return any positive results (Lind-
berg et al., 1992)

Many Ser/Thr kinases are marked by a strong preference for either serine or threonine.
For example the STE kinase PAK4 strongly prefers serine phosphorylation at the active
site whereas a different STE kinase, MST4, strongly prefers threonine phosphorylation. An
analysis of aligned kinase domain sequences reveals that such preferences co-vary with the
residue directly C-terminal to the DFG motif (‘DFG+1"), which is proximal both to the phos-
phoacceptor residue and the ATP y-phosphate and thus likely to modulate the rate of catalytic
transfer (Chen et al., 2014a). Notably, multiple other studies have implicated ‘DFG+1" as
a determinant for substrate preference at the +1 position (Brinkworth et al., 2003; Howard
et al., 2014; Kannan and Neuwald, 2004), suggesting that a single kinase SDR can in some
cases determine substrate preference at more than one site (Figure 1.6).
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P+1

X

Fig. 1.6 The ‘DFG+1’ residue refers to the site directly C-terminal to the DFG motif. DFG+1
is proximal both to the 0 and +1 substrate positions and may influence specificity at both
sites. PDB:3COW

1.2.5 Peptide specificity

Kinase specificity at the active site is often referred to as ‘peptide specificity’, as it is tradi-
tionally defined by the phosphoacceptor residue and the five residues N- and C-terminal to
it. It is often represented in the form of a sequence motif that describes the residues in the
target site that are present significantly more often than would be expected by chance. The
sequence motif of AKT1 for example is (R-x-R-x-x-S/T-x-x-x-x-x) as the arginine at posi-
tions -5 and -3 (relative to the phosphoacceptor) exhibit a significant enrichment in frequency
in target sites relative to their background frequency in the proteome.

A protein kinase substrate motif can be derived either from the analysis of known target
sites or from in vitro biochemical analyses of the kinase in the presence of phosphorylatable
synthetic peptides. For most kinases the two orthogonal approaches are mutually validating
in the sense that the most conserved substrate sites will also be the most important for the
efficient phosphorylation of the peptide. This was indeed the case for the first discovered
motif (PKA: R-R-x-S), in which the mutation of either arginine in a synthetic peptide led
to the severe reduction in the phosphorylation levels of the peptide (Cohen, 2002; Kemp
et al., 1976; Zetterqvist et al., 1976). Protein kinase specificity could therefore be defined
very gradually from the in vitro identification of new target sites or from the analysis of

synthetic peptides (Clarke and Hardie, 1990). Such reductionists approaches however were
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slow to yield insights; for example, 15 years after the identification of the first motif, only

10 additional motifs were revealed (Pearson and Kemp, 1991).

1.3 Identification and prediction of new kinase substrates

1.3.1 Experimental detection of new substrates

More high throughput methods have since been developed for the rapid identification of ki-
nase substrates (Xue and Tao, 2013). One approach is to knockdown or inhibit a kinase
of interest and then to perform phosphoproteomic profiling on the mutant cell (de Oliveira
et al., 2016). However, technical challenges notwithstanding, any phosphorylation changes
measured only confirm a kinase-substrate association at best and do not provide evidence
for a direct kinase interaction. Putative substrates can also be mutated in a genetic screen
and then assayed to determine whether they suppress or phenocopy a kinase knockdown of
interest (Xue and Tao, 2013). Again, such tests reveal kinase-substrate associations only and
usually require follow-up validation experiments to demonstrate a direct relationship (Ket-
tenbach et al., 2011).

Protein arrays can alternatively be used to infer kinase-substrate relationships. Here the
kinase of interest is incubated with an array of whole-length putative substrates in the pres-
ence of radiolabelled ATP, and reactions are detected using autoradiography (Mok et al.,
2009; Newman et al., 2013). Such arrays however are imperfect in vitro models for inter-
actions that may occur in vivo, resulting in a number of false positive and false negative
predictions. The ‘phage display’ display method may be used in a similar manner for whole
proteins (Fukunaga and Hunter, 1997), with the advantage that multiple selection rounds can
be used to amplify weak signals. Improper substrate folding in the bacterial system however
may result in false negative predictions (Pillay, 2004; Xue and Tao, 2013). Some related
methods (yeast two-hybrid, tandem affinity purification, etc.) seek to identify kinase-protein
interactions rather than kinase-substrate interactions per se, though transient kinase-substrate
interactions cannot reliably be detected by such methods, and any detected interaction will
not necessarily be a kinase-substrate relationship (de Oliveira et al., 2016).

MS/MS-linked in vitro methods on the other hand are becoming increasingly popular.
These involve the incubation of the kinase of interest with a peptide or cell extract, followed
by shotgun proteomics to identify target phosphorylations. In many cases the extract will
be pre-treated with a phosphatase to remove endogenous phosphorylations in the proteome.
Following incubation with the kinase, the resulting phosphopeptides will then be enriched
(T'iO,, IMAC, etc) and analysed using mass spectrometry (Douglass et al., 2012; Imamura
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et al., 2014). An alternative approach is to generate by mutation a kinase allele sensitive to
nucelotide analogues; substrates of the mutant kinase can then be detected by immunopuri-
fying proteins with a synthetic chemical tag that results from the covalent modification of
the substrate (Allen et al., 2005).

1.3.2 Experimental determination of kinase specificity

Other methods exist that characterise the kinase peptide specificity without identifying any
physiological substrates. The phage display method mentioned previously for example can
be adapted so that the phage present randomised S/T/Y-containing peptides rather than full-
length proteins (Dente et al., 1997; Schmitz et al., 1996).

The use of synthetic peptide arrays however is generally more popular. Orientated pep-
tide libraries for example are large mixtures of synthetic peptides containing a central serine,
threonine, or tyrosine residue flanked by degenerate amino acids (Songyang et al., 1994).
After incubation with a kinase, kinase substrate preferences are revealed during MS/MS
analysis by an over-representation of one of the degenerate flanking residues among the
phosphopeptides. Positional scanning peptide libraries (PSPLs) are similar but makes use
of several different mixtures in which one of the flanking positions is fixed for a particu-
lar amino acid. Substrate preferences are then revealed after exposing the 9x20 different
mixtures to a phosphor screen and quantifying the signal intensity for each spot, which cor-
respond to a kinase preference for a given amino acid at a given position (e.g. arginine at
position -3). This method is more sensitive than the use of OPLs and is better able to identify
negatively-selected residues (Hutti et al., 2004).

More recently, heterologous systems have been used to determine the peptide specificity
of a kinase of interest (Corwin et al., 2017; Lubner et al., 2016, 2017). In these systems,
the kinase (usually human) is expressed transgenically in a model organism where the back-
ground phosphorylation of interest is likely to be low (e.g. S/T phosphorylation in prokary-
otes or Y phosphorylation in S. cerevisiae). The phosphoproteome that results from the
induced kinase expression is therefore likely to reflect the peptide specificity of that kinase.
In 2017 such an approach was implemented in S. cerevisiae to define the peptide specifici-
ties of 16 human non-receptor tyrosine kinases (Corwin et al., 2017). In 2018, an extensive
pool (the SERIOHL peptides) of serine-phosphorylated peptides (>100,000) was expressed
heterologously in E. coli to generate a serine proteome library (Barber et al., 2018b). This
pool of peptides can be incubated with protein kinases in vitro for the MS-based determina-
tion of substrate specificity, as has been recently demonstrated using the ‘SERIOHL-KILR’
approach (serine-oriented human library—kinase library reactions) (Barber et al., 2018a).



20 Introduction

1.3.3 Computational prediction of kinase substrates and specificity

Despite recent advances, the experimental determination of kinase substrates and kinase
specificity remains time-consuming and expensive (Kobe et al., 2005; Trost and Kusalik,
2011). A number of in vivo phosphoproteins are also though to remain ‘hidden’ from current
methods due to their low abundance (de Oliveira et al., 2016). For these reasons, a large
amount of research effort has been invested in developing computational models of kinase

specificity capable of target prediction.

Phosphosite sequence -based predictors

The earliest predictive methods tended to be entirely sequence-based. Such methods use
known in vivo targets to construct a computational model of kinase specificity that can then
be used to query a list of candidate substrates for potential target sites. In the case of the tool
Prosite, the ‘model’ is simply a string of letters representing the consensus motif, which can
be used to query candidate substrates using pattern matching (Sigrist et al., 2002). Matrix-
based methods (Scansite, PHOSITE, PhoScan) are similar in principle but assign weights to
all 20 amino acids rather than representing only the most frequent amino acids (Koenig and
Grabe, 2004; Li et al., 2008; Obenauer et al., 2003). Both methods are apparently limited
in the sense that neither represents any inter-positional dependencies that may exist between
the substrate positions. A popular tool developed in 2008 named NetPhorest did use artifical
neural networks (ANNs) for some kinases to model inter-positional effects (Miller et al.,
2008). However, in a later study the incorporation of such inter-positional dependencies
into complex models did not improve predictive performance relative to regular PWMs for
the 3 kinases (ATM/ATR, CDK1, and CK?2) tested (Joughin et al., 2012). This suggests that
inter-positional effects in kinase substrates either do not exist or are too weak to be detected

given the low sample size for most kinase substrates.

Phosphosite structure -based predictors

Other tools make use of complex machine learning methods (neural networks and support
vector machines) to model kinase specificity (Trost and Kusalik, 2011). The relevance of
these approaches is that they can incorporate many different features for the prediction of
new kinase targets. This is especially important considering the degeneracy of most sub-
strates motifs, which alone would result in many false positive predictions. Some tools use
the three-dimensional structure around the phosphorylation site additionally to guide predic-
tions of potential substrates. NetPhos for example uses artificial neural networks for predic-
tions (Blom et al., 1999), while Phos3D and PhosK3D uses a support vector machine (Durek
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et al., 2009; Su and Lee, 2013). In the latter two cases, kinase specificity is represented by
the radial pattern of amino acids biases in the vicinity of the phosphosite (3-12 A away),
rather than the sequence logo conventionally used for sequence-based approaches. While
the incorporation of structural data does seem to add modest predictive value to some kinase
models, it is thought that the lack of phosphosite structures currently present in the PDB
may for now preclude the training of models significantly better than sequence-dependent
predictors (Durek et al., 2009; Plewczynski et al., 2005; Trost and Kusalik, 2011).

Network-based predictors

So far the use of network-based data has been more successful than the use of structural data
to inform substrate predictions. The popular NetworKIN tool for example makes use of the
STRING functional association network in the sense that putative kinases ‘closer’ (separated
by fewer edges) to the phosphorylation site in the network are prioritised over more ‘distant’
kinases when making predictions, everything else being equal (Linding et al., 2008). During
benchmarking, the combined use of substrate motifs and cellular context (i.e. STRING net-
work) was found to generate more accurate predictions than the use of substrate motifs alone.
A more recent study by Wagih and colleagues is similar in principle except that the STRING
functional association network was used to predict the kinase specificity logo directly rather
than the kinase target sites (Wagih et al., 2015). Their analysis assumes that target sites are
more likely than not to be proximal to their effector kinase in the STRING network, and so
an approximate specificity model could be constructed by sampling phosphomotifs (using
general MS data) from proteins that neighbour the kinase of interest. Finally, the CEASAR
method represents a more holistic approach as it predicts both kinase specificity models and
kinase-phosphosite relations (Newman et al., 2013). In this case, the protein association net-
work was generated in vitro from protein microarray data rather than from STRING, but the
approaches used to generate the logos and the kinase-phosphosite relations are analogous to
the methods used in Wagih et al and NetworKIN, respectively. These approaches are ex-
pected to become more accurate in the future as in vivo phosphorylation data and protein
association data becomes more readily available.

Kinase sequence-based predictors

The final class of predictor to be discussed uses the kinase primary sequence as an input
to predict the kinase peptide specificity. None of the existing methods in this class pre-
dict kinase specificity completely de novo but instead rely upon homology of the query ki-

nase to a set of reference kinases for which specificity has been experimentally determined.
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The Predikin method was established first and predicts specificity independently for posi-
tions -3, -2, -1, +1, +2, and +3. For each substrate position, a small set of kinase domain
specificity determining residue (SDR) is thought to confer substrate preference at that posi-
tion (Brinkworth et al., 2003). It was therefore reasoned that the specificity of novel kinases
at a given substrate position could be predicted by sampling target sites from reference ki-
nases homologous to the query kinase at the relevant SDRs (Saunders et al., 2008). In this
case, the SDRs for each position were selected on the basis of their observed proximity to
the substrate peptide from available kinase-substrate crystal structures at the time. Predikin
is therefore still a sequence-based method primarily although its development (i.e. SDR
selection) was guided by a detailed structural analysis of kinase-substrate complexes.

The KINspect approach is similar in some ways to Predikin although its implementation
is more sophisticated (Creixell et al., 2015a). Like Predikin, the specificity of the query ki-
nase is predicted on the basis of its homology to characterised reference kinases. However,
all positions within the kinase domain are first assigned weights randomly between 0 and
1 that represent the importance of a given residue as a specificity determinant. Many itera-
tions of a machine-learning based optimisation algorithm are then implemented to generate
a combination of ~250 weights (the ‘specificity mask’) that is optimal for the prediction
of specificity within the cross-validation set. Kinase specificity is modelled using PWMs,
where each query PWM is generated from the weighted average of all PWMs belonging
to homologous kinases, and where reference kinases more similar to the query kinases are
assigned a higher weight than more distant kinases. Importantly, when assessing homol-
ogy between kinase domains, each kinase domain position is not considered equally but is
weighted between 0 and 1 (as described above), so that positions with a score of 0 are essen-
tially ignored when calculating homology. Therefore, Predikin represents a binarised form
of the KINspect algorithm in which select positions within the domain (SDRs) are assigned
a value of 1 but every other position is 0, and in which a different specificity mask (i.e. set
of SDRs) is used to calculate matrix values for each substrate position.

The method developed by Safaei and colleagues is also similar to Predikin in some re-
spects (Safaei et al., 2011). For example, a set of SDRs is assigned to each substrate position
in this study instead of to the whole kinase domain. Unlike Predikin, however, SDRs for this
analysis were selected based on their correlation (mutual-information based) with particular
substrate preferences rather than by the inspection of kinase-substrate complexes. In this
case a training set of 224 kinases of known specificity was used, and the mutual information
values were weighted by the probability that the observed amino acid pairs would interact
in vivo (e.g. acid-acid pairs were down-weighted but acid-base pairs were up-weighted).

The SDRs selected for each position represented the 7 kinase positions that correlated the
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most strongly with the observed substrate preferences. A PWM for any given query kinase
could then be predicted by finding, for each substrate position, the average conditional prob-
ability of the amino acids given the amino acid identity of the 7 SDRs, where the 7 mutual
information values were used to generate a weighted average of the conditional probabilities.

Computational methods that predict specificity from the kinase primary sequence could
be employed for the evolutionary analysis of kinase specificity. Such analysis is not cur-
rently feasible for network- and structure-based methods — or even standard phosphosite-
based methods — where the requisite data is limited to a few model organisms. It is therefore
surprising that none of the three methods described above have been leveraged towards an
evolutionary analysis so far. There may be concerns however about the accuracy of these
methods and/or their applicability to species distantly related to the model organisms (hu-
man and baker’s yeast) from which these methods are based. It should also be noted that
even for the two model organisms mentioned, no more than 50% of the kinome has been ex-
perimentally profiled, thus imposing a limit on the coverage of models that could be trained

with current data.

1.4 Identification of protein kinase specificity determinants

Multiple experimental methods exist for the identification of kinase specificity determining
residues. Perhaps the most simple approach is to perform a detailed structural analysis of a
kinase-substrate complex so that the chemical basis for specificity can be rationalised. How-
ever, such rationalisations can only contribute qualitatively to the understanding of speci-
ficity, and still ultimately constitute a set of hypotheses that need to be verified experimen-
tally. Validation of a predicted SDR typically requires that the kinase of interest be mutated
at the relevant SDR position, followed by independent experimental characterisations of the
wild-type and mutant kinases. This approach can yield good quantitative insights into speci-
ficity determination, but is limited in the sense that the results apply only to the kinase as-
sayed. For a broader overview of specificity determination it is necessary to cross-reference
the experimental and/or structural analyses with a multiple sequence alignment of kinases of
known specificity. This would allow the researcher to then determine whether the identified
SDR is particular to the kinase analysed or is more broadly relevant for specificity. Finally,
it is also possible to investigate kinase specificity by manually generating kinase-substrate
models given that the structure and specificity of the unbound kinase is known. These ap-
proaches take advantage of the fact that the number of non-redundant kinase structures in
the PDB far outnumbers those structures with peptide substrate bound, although any models
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constructed will be associated with a high level of uncertainty. Examples for each approach
are described below.

1.4.1 Structures

Note: when referrring to kinase specificities in this thesis, the name of the preferred amino
acid is used in addition to its position relative to the phosphoacceptor e.g. R-3 kinases are
kinases that prefer substrates with an arginine (R) residue 3 positions N-terminal to the phos-

phorylated serine, threonine, or tyrosine.

Surprisingly few non-redundant examples exist of crystal structures with the kinase bound
to the peptide substrate. It has been suggested previously that the low affinity of kinases for
substrates — a physiologically necessary feature for most signalling complexes — in particu-
lar poses a problem for kinase-substrate co-crystallisation (de Oliveira et al., 2016; Endicott
et al., 2012; Goldsmith et al., 2007). The relatively few complex structures that do exist how-
ever cover some of the most common substrate preferences. Three (R-3, P+1, and R-2/R-5)

are discussed below as examples:

R-3

Protein kinase A (PKA) was the first kinase to have its structure revealed, which occurred
in 1991 and happened to include the kinase in complex with a peptide substrate (Knighton
et al., 1991). The structure revealed the binding mode of the kinase with respect to the R-3
determinant, which is a substrate preference often found in kinases belonging to the AGC and
CAMK Groups. This structure in particular implicated the glutamate at kinase position 84,
which contacts the positively charged arginine side chain. Contacts are also made however
with the ATP molecule and a backbone carbonyl group of the N-terminal lobe. In 2012 a
structure of Protein kinase Cr in complex with its substrate revealed a very similar binding
mode for R at the -7 position in the linear sequence (Wang et al., 2012a); in this case the
classical ‘R-3" motif had been reconstituted from the the three-dimensional folding of the

substrate (Figure 1.7).
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R-3
subsite

Fig. 1.7 An example of a kinase binding to the substrate in which the substrate peptide is
not found in the canonical extended-linear conformation. Here, binding of the arginine at
position -7 is structurally analogous to R-3 binding for linear substrates. The PO position is
represented in yellow. PDB: 4DC2

P+1

Most CMGC kinases feature a strong preference for proline at position +1. Proline is not a
charged amino acid and so cannot be easily rationalised on the basis of opposite-charge in-
teractions between the kinase and substrate. The release of the first CMGC kinase-substrate
structure in 1999 suggested that its selectivity arises from its unique side-chain structure (Brown
etal., 1999). In particular, it appears that for proline +1 there is no amide group to form a hy-
drogen bond with the backbone carbonyl group of the activation segment residue at position
159 (as is observed in PKA). Unlike for other kinase Groups, the 159 position in CMGC
kinases is not represented by glycine; this allows the backbone carbonyl group to instead
be stabilised by the arginine at position 164 rather than substrate amino acid at +1 (Figure
1.8). This explains why proline at +1 is highly disfavoured in most non-CMGC kinases i.e.
because there would be no arginine at 164 or backbone amide at +1 to stabilise the glycine
carbonyl at position 159 (Zhu et al., 2005a).
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Phe+1

Proline+1 exclusion Proline+1 specificity

Fig. 1.8 The negative selectivity (disfavour) of non-CMGC kinases for proline at the +1
position can be explained by the inability of the proline side group to stabilise the backbone
carbonyl of the residue at domain position 159. PDB: 3CQW (left), PDB: 2WO6 (right)

R-2

The substrate peptide bound to the 1991 structure of PKA also features an arginine at the
-2 position. This is a fairly common substrate preference although not quite as strong or as
prevalent as the R-3 preference. From the PKA structure, it is apparent that the arginine at
position -2 forms specific contacts with glutamates at positions 127 and 189 (Figure 1.9).
The release of the AKT1-peptide structure in 2008 later demonstrated that the R-5 subsite
in AKT overlaps closely with the R-2 subsite of PKA (Lippa et al., 2008). Ben-Shimon
and colleagues in 2011 conducted a more holistic study by analysing several different kinase
structures (unbound) with either an R-2 or R-5 preference (Ben-Shimon and Niv, 2011).
This was achievable using the novel ‘AnchorsMAP’ method that scans an arginine probe
along the surface of the kinase, and identifies putative binding sites from computed Gibbs
free-energy dG calculations. The importance of particular residues for binding could then be
investigated by coupling the ‘AnchorsMAP’ approach with targeted in Silico mutagenesis.
This approach yielded many insights that would not have been possible using the narrow
set of kinase-substrate complexes with arginine present at -2. For example, a number of
secondary SDRs were predicted, and it was shown that the 127/189 pair is important for R-2
binding but much less so for R-5 binding.
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Fig. 1.9 Opposite charge-interactions help to determine selectivity for arginine residues at
positions -2 and -3 in the substrate. This is generally determined by SDRs at positions 127
and 189 for R-2 selectivity, and an SDR at position 84 for R-3 selectivity

1.4.2 Homology models

Kinase-substrate models can also be created for a kinase of interest where the relevant struc-
ture is not publicly available. Such models are typically constructed by superposing an un-
bound structure of the kinase of interest against a homologous kinase-substrate complex.
The homologous kinase can then be removed and the substrate peptide mutated in Silico to
match a known target site of the kinase of interest. The kinase-substrate model is then gener-
ated by a structural energy minimisation (EM) step, followed by an optional short molecular
dynamics (MD) step.

Kinase-substrate models have historically been used to rationalise more obscure motifs
associated with only a single kinase Family. The CK2 Family (CMGC) for example prefers
to bind acidic residues at positions +1 and +3. Two different kinase-substrate models pre-
viously generated both suggest that the +1 binding pocket overlaps with that of the proline-
directed CMGC kinases, but that lysine/arginine substitutions at positions 164, 161, and 157
now confers the D/E preference (Niefind et al., 2007; Sarno et al., 1997). However, models
generated by different research groups can be radically different from each other. For hu-
man SRPK1 (CMGC), which prefers arginine at +1, Nolen also places the +1 residue in the
canonical +1 binding pocket for the yeast orthologue (Nolen et al., 2001), but Kannan and
Neuwald place the +1 residue outside the canonical +1 binding pocket and instead proximal
to the SRPK-specific asparagine at position 144 for the human kinase, and place the serine at
position +2 in the canonical +1 binding pocket (Kannan and Neuwald, 2004). This example
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is an important reminder that kinase-substrate models, although useful, should be treated
with caution.

Most of the models constructed assume that the peptide binds to the kinase in an extended-
linear conformation. At least one published model however suggests that the substrate pep-
tide may assume a ‘hairpin’ conformation when binding to the kinase. Specifically, a model
generated for the MPSK (NAK Family; ‘Other’) kinase suggests that the presence of an a-
helix at the C-terminal end of the activation segment (ASCH) would preclude the binding
of the peptide in an extended-linear conformation. Instead, the peptide is speculated to form
a half-turn about the +1 position so that more C-terminal positions (+2, +3, +4, etc.) bind
between the ASCH and the a-G helix at the C-terminal lobe (Eswaran et al., 2008). This is a
bold prediction but not completely without precedent, as the kinase-substrate crystal struc-
ture of haspin kinase published in 2014 shows that the peptide forms a U-shaped hairpin
structure at the active site, with only the PO Thr residue present in the expected substrate
position (Maiolica et al., 2014). Both haspin kinase and MPSK belong to the ‘Other’ kinase
Group. However, a kinase closely related to MPSK (GAK, NAK Family) was predicted to
have the substrate bind in the extended linear conformation, with the C-terminal side rest-
ing ‘above’ the ASCH in the groove between the two kinase lobes (Chaikuad et al., 2014).
This highlights once again the high level of variation that can exist even between models of

closely related kinases.

1.4.3 Kinase sequence alignments

Alignment-based approaches are more appropriate for the global analysis of kinase speci-
ficity. The relevant tools for this approach use an alignment of protein kinase sequences as
an input and for each alignment position give a probabilistic indication as to whether or not
that position is a specificity determinant. The output however is unlikely to be completely
accurate, and a number of false positive and false negative predictions are expected. For this
reason, alignment-based approaches are often coupled with experimental and/or structural
analyses to identify the likely true-positive predictions.

All alignment-based approaches to some extent test for statistical associations between a
particular kinase sequence position and a particular substrate preference. In most cases this
will involve first grouping the kinase alignment sequences on the basis of their specificity;
putative SDRs are then marked as positions with maximal similarity within groups but min-
imum similarity between groups. Two of the most relevant previous studies that adopt this
approach however do not group the kinases directly on the basis of specificity. Li et al., 2003
for example collects kinases sequences into Families (PKA, PKC, RAC, GRK, S6PK, and
PDPK1) and compares sequences between them under the assumption that specificity will
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be conserved within kinase Families (Li et al., 2003). For a different study (Kannan and
Neuwald, 2004), the objective was to identify the residues responsible for the functional di-
vergence of the CMGC Group and for the divergence of different Families within the CMGC
(CDK, DYRK, GSK, etc). Many of the results were relevant to kinase specificity however
as CMGC membership correlates strongly with the proline+1 preference and the CK2 and
SRPK Families both have distinct specificities, as discussed previously.

Many of the results reinforce the structural predictions discussed previously. The 164
position (R) discussed above with respect to the proline+1 preference for example emerges
as a strongly predicted CMGC determinant from an alignment-based approach (Kannan and
Neuwald, 2004). The same study also strongly implicates lysine at the 164 position discussed
above (with respect to CK2 homology models) as a residue responsible for the functional
divergence of CK2 kinases. For the Li et al., 2003 study, 7 of the 16 SDRs identified for
the 6 different AGC Families map to residues in close proximity to the peptide inhibitor
(PKA, PDB: 1ATP). One of these (position 86) is a likely determinant of R-3 specificity.
The earliest studies therefore confirmed the value of using alignment-based approaches to
infer SDRs.

Where kinase PWMs can be constructed it is not strictly necessary to divide the kinases
into discrete groups. Instead a covariance analysis can be performed between the kinase
sequence and the numerical representation of kinase specificity (i.e. the PWM). This was
the approach used for the Mok et al., 2009 study of 61 Saccharomyces cerevisiae kinases
that had been characterised using a peptide screening approach (Mok et al., 2010). Again,
many of the predictions accorded with results from previous structural analyses. The R-3
determinant at position 84 discussed previously for example was predicted using this ap-
proach. The R-2 determinant at position 127 was predicted also in this study. Two of the
previous methods (Creixell et al., 2015a; Safaei et al., 2011) used for the prediction of kinase
specificity in effect also make use of this covariation approach, and involve the prediction
of SDRs as an intermediate step. For the KINspect algorithm, all kinase domain positions
with a predictive weight equal to 0.9 or above were designated as SDRs by the authors, with

some being verified experimentally (discussed below).

1.4.4 Mutational analysis

Experimental methods for the identification of kinase SDRs have become more advanced
with time. In the earliest studies, a putative SDR would be mutated to alanine and then the
activity of the mutant would be assayed against an optimal substrate using autoradiography.
This approach confirmed in 3 independent studies that a glutamate/aspartate at position 84
could indeed serve as an R-3 determinant (Batkin and Shaltiel, 1999; Gibbs and Zoller, 1991;
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Huang et al., 1995), as is also suggested by structural analyses. Specific positions in the
substrate will usually also be mutated so that the SDR can be assigned to its cognate substrate
position. In this case, SDR-substrate interactions are indicated by non-additive effects of the
kinase-substrate double mutant (Moore et al., 2003; Sarno et al., 1997; Scott et al., 2002). A
more direct approach may be to ‘rescue’ a deleterious kinase mutation with a complementary
mutation in the substrate. For example, in the human kinase AMPK1, it was found that the
effect of mutating the preferred M at position -5 to the negatively charged aspartate could be
suppressed by mutating leucine at position 195 to arginine, thereby implicating position 195
as an L/M-5 determinant (Scott et al., 2002).

More effective approaches are now in use, as any existing method for the experimental
characterisation of wild type kinases may also be directed towards mutant kinases. In the
Mok et al., 2009 study for example, peptide library screens were used to demonstrate that
mutation of the Kssl kinase (CMGC) at position 189 from serine to glutamate confers a
preference for R at position -3 (Mok et al., 2010). Similarly, an approach coupling kinase
mutagenesis with PSPL was used in 2014 to provide weak evidence for the role of domain
position 42 and 44 in conferring the R/K+2 preference found in the protein kinase C Fam-
ily (Creixell et al., 2015a). The big advantage of such methods is that they will generate
a specificity profile for the mutant kinase; this allows the researcher to identify changes in
specificity arising from mutation that may not have been predicted computationally. This
should be contrasted with the approach described above, which can usually (i.e. without an
extensive amount of experimentation) only validate an interaction between an SDR and sub-
strate position that is already suspected. The profile will also represent kinase preferences
for all 20 amino acids and not just the two amino acids involved in the substitution. Finally,
more recent MS-based approaches have been developed that will profile a mutant kinase’s
specificity on the basis of its activity in vivo against a proteome substrate (i.e. cell lysate).
In one specific example a mutant human kinase (PKA) was expressed in E. coli so that its
specificity could be inferred from the resultant phosphoproteome signatures present in the E.
coli proteome. This approach was used to demonstrate that mutation of PKA at position 164
would diminish the preference of the kinase for hydrophobic residues at position +1 (Lubner
et al., 2017). A very similar protocol from the same group was later used generate a double
mutant in DYRK1a (at positions 159 and 164) to convert the wild-type proline+1 specificity
into the D/E specificity usually found in CK2, thus generating a synthetic substrate motif
(R-x-x-S/T-D/E) not previously observed in nature (Lubner et al., 2016).
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1.5 Identification of functionally divergent residues

Alignment-based approaches for the detection of kinase SDRs belong to a broader set of
methods for the general identification of protein subfamily SDRs. These methods can be
divided roughly into those that make use of a sequence-based phylogeny and those that rely
just on the MSA of the protein family of interest (Chagoyen et al., 2016; Chakraborty and
Chakrabarti, 2015; Studer et al., 2013). The MSA-exclusive approaches tend to incorpo-
rate concepts from information theory and machine learning whereas the phylogenetic ap-
proaches are based on explicit evolutionary models. The latter generally partitions identified
SDRs into ‘Type I’ and ‘Type II’ sites. Type II sites, as described previously, represent
alignment positions with high conservation within functional groups but low conservation
between them; Type I sites on the other hand refer to positions marked by rate asymmetry
between groups, with one group being conserved and the other being non-conserved (Gu,
2000).

In the literature, phylogenetic approaches tend to be viewed favourably in comparison
to purely sequence-based approaches (Chakraborty and Chakrabarti, 2015; Soyer and Gold-
stein, 2004; Studer et al., 2013). Here the assumption is made that the number of spurious
predictions generated could be reduced by accounting for the phylogenetic non-independence
between sequences. For example, MSA-exclusive approaches do not account for evolution-
ary distance when calculating per-site conservation, and so would not be able to distinguish
cases in which a site is fully conserved within an ancient subfamily or a newly-emerged one.
There is also the added advantage that phylogenetic approaches incorporate multiple fea-
tures of evolution — distance between sequences (branch lengths), rate heterogeneity (alpha
parameter), and amino acid composition (equilibrium frequency vector) — into a robust sta-
tistical framework that is well-established. Such approaches usually compare homogeneous
models — where parameters are held constant across the phylogeny — to inhomogeneous
models where the parameters are allowed to vary between Subfamilies (Gaston et al., 2011;
Tamuri et al., 2009). Bayesian- or ML-based model selection approaches can then be used
to identify sites where the inhomogeneous model is significantly more likely given the data,
as represented by p-values. These statistical methods stand in contrast to MSA-exclusive ap-
proaches, where the sites in alignment are normally ranked on the basis of a custom scoring
function that has no general interpretation.

Phylogenetic approaches however suffer from multiple disadvantages. One of them is
that the input phylogeny is unlikely to be completely accurate, and so a layer of uncertainty
is added when making SDR predictions. A second problem is that these approaches assume
that the function of interest is exclusive to a monophyletic clade, and has not evolved para-
phyletically or polyphyletically (i.e. convergently). The R-3 preference for example repre-
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sents a paraphyletic trait as it was likely present in the ancestor of AGC and CAMK Groups,
but is not found in all of its descendants. A more practical problem with these methods is
that their relative difficulty of implementation makes them less amenable to an automated
analysis of multiple different functions or protein families. This may be one of the rea-
sons why, to the author’s knowledge, phylogenetic methods have not yet been systematically
benchmarked but alignment-based methods have.

Across these two groups, SDR-prediction tools can also be divided into the ‘supervised’
and ‘unsupervised’ methods (Chagoyen et al., 2016). Supervised methods rely upon se-
quence classifications provided by the user whereas unsupervised methods will try to infer
functional sequence groups from the input data provided (using PCA, SOM, etc.). Other
methods exist that will also explore systematically many possible sequence partitions. The
‘evolutionary trace’ method for example take a phylogenetic tree as an input and successively
generates partitions of increasing specialisation, so that the functional sites identified may
be fully conserved or just conserved within subfamilies (Lichtarge et al., 1996). The use of
unsupervised methods however is thought to be largely unnecessary if the protein family can
already be clustered on the basis of experimental data or previous characterisations.

In 2014, many of the MSA-based methods discussed above were benchmarked by gen-
erating predictions for 20 different MSAs where the SDRs had been identified experimen-
tally (Chakraborty and Chakrabarti, 2015). A surprising result of this investigation was that
many of the highest-score methods were based on relatively simple algorithms. A previous
benchmarking had also shown that combining predictions from the three top-performing
methods can achieve a higher specificity than the use of a single method alone, highlighting

the importance of ensemble-based approaches (Chakrabarti and Panchenko, 2009).

1.6 Ancestral sequence reconstructions

Ancestral sequence reconstruction (ASR) methods predict the most likely sequence for ev-
ery ancestral node in a phylogeny. Posterior probabilities are also assigned to every amino
acid at every site so that the uncertainty in ancestral sequence predictions can be quanti-
fied. Currently, the PAML/CodeML and FastML programmes represent two popular tools
for this purpose (Ashkenazy et al., 2012; Yang, 1997). Both methods reconstruct ancestral
sequences within an ML (maximum likelihood)-based framework. Alternatively, Bayesian
approaches can be used to account for the uncertainty in the phylogenies underlying ASR,
although a simulation-based benchmark suggests that Bayesian approaches do not improve
the accuracy of ASR (Hanson-Smith et al., 2010). Comparison between ML-based methods

however has so far been limited. To the author’s knowledge there has been only one bench-
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marking study, which involved the experimental evolution of red fluorescent protein (RFP).
This study concluded that ML-based approaches generally perform to a similar high degree
of accuracy (Randall et al., 2016).

For most ASR studies, the computational and experimental analyses are closely inte-
grated. The general objective is to study the evolutionary trajectory of a phenotype of interest
by first ‘resurrecting’ ancestral proteins and then characterising them experimentally (Thorn-
ton, 2004). Such studies have yielded important insights into evolutionary cell biology. One
study for example examined the evolution of a molecular scaffold protein (GKpid) needed
for the orientation of the mitotic spindle, and revealed that a single historical substitution
was responsible for an important innovation (binding of a cortical protein) (Anderson et al.,
2016). A different study probed the divergence of steroid hormone receptor (SR) specificity
following gene duplication, and revealed that the new specificity was largely determined by
negative substitutions preventing binding to the ancestral DNA element (McKeown et al.,
2014). More recently, ASR has been combined with deep mutational scanning to suggest
that the reconstructed historical trajectory was one of many possible paths that could have
yielded a similar outcome, with the actual trajectory depending strongly on the starting (an-
cestral) genotype (Starr et al., 2018).

The application of these methods to the protein kinase superfamily has so far been limited
to one study (Siddiq et al., 2017). In 2014, Howard et al performed an ancestral sequence
reconstruction on the CMGC Group of kinases. Most members of this Group strongly prefer
target sites with a proline at the +1 position, but fungal kinases of the Ime2/RCK/LF4 Family
prefer arginine at this position. Experimental analysis of the Ime2/RCK/LF4 ancestor sug-
gests that this kinase was intermediate in specificity between the extant fungal (arginine+1)
and metazoan (proline+1) kinases of this Family (Figure 1.10). This analysis therefore sug-
gests a general model of kinase specificity in which specificities diverge proceeding from an
ancestor of intermediate specificity. It remains to be seen whether this form of subfunction-
alisation will apply to kinases of other families and specificities.

Ancestral sequence reconstruction approaches exist as part of a broader set of methods
for the reconstruction of ancestral states (Joy et al., 2016). A broad range of phenotypes
could be classified as a ’state’ in this context. If the phenotype is discrete — the type of
diet of Galapagos finches, for example — then a simple maximum parsimony (MP) approach
can be employed (Schluter et al., 1997). A similar approach can be applied to predict the
minimal sequence of structural alterations (inversions, deletions, and transpositions) required
to produce multiple extant genomes (Bourque and Pevzner, 2002). In 2016, ancestral state
reconstruction was applied in the context of signalling when used to predict across 18 fungal

species whether or not an ancestral site would have been phosphorylated (Studer et al., 2016).
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Fungal Ime2
R+1
R/P+1
—0
P+1

Mammalian RCK

Fig. 1.10 The most recent common ancestor of the fungal Ime 2 kinases and the mammalian
RCK kinases was likely intermediate in specificity between the two kinase clades at the +1
substrate position

1.7 Phosphoproteome analysis

Broad knowledge of kinase specificity is currently limited to only a few model organisms (hu-
man and budding yeast). While sequence-based predictors of specificity do exist (discussed
above), they are not completely accurate and rely upon homology of the query sequence to
reference sequences of known specificity. Such tools cannot therefore predict kinase speci-
ficities different from those already characterised. This would be especially problematic for
species distantly related from human and budding yeast, many of which feature clade-specific
kinase Groups and Families.

The analysis of phosphoproteomes is an alternative option, as they reflect an ensem-
ble of kinase activities (and therefore specificities) present in the cell. This is achievable
by coupling phosphopeptide enrichment methods (TiO,, IMAC, Phos-Tag, immuno-based,
covalent modification-based, etc) with tandem mass spectrometry (MS/MS) (Fila and Ho-
nys, 2012). Phosphomotifs can then be identified as those sequence patterns that are over-
represented among phosphorylation sites relative to randomly sampled S/T-centred sites in
the proteome. The motif-x tool is commonly used for this purpose (Schwartz and Gygi,
2005). motif-x works by finding statistically significant residue-position pairs in a foreground
set of phosphorylation sites using a binomial distribution. For each round of the algorithm,
the tool iteratively searches for all such pairs until no more significant ones can be found.
For CDK phosphorylation sites, for example, three such pairs (proline/-2, proline/+1, and
lysine/+3) may be found until a motif is called (P-x-S/T-P-x-K). This is repeated many times
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— each time with sites matching the motif iteratively removed from the foreground and back-
ground set — until no further motifs are identified .

Phosphoproteome data now exists for a broad range of eukaryotic species. For most
species, motif enrichment analysis reveals motifs that can be broadly placed into one of
three categories: acidic, basic, and proline-based/hydrophobic (Figure 1.11) (Amanchy et al.,
2011; Lin et al., 2015a; Resjo et al., 2014; Studer et al., 2016). These are representative of
known specificities for casein kinase Il (D/E+1 and D/E+3), AGC/CAMK Groups (R-3), and
the CMGC Group (P+1), respectively. This is the consistent with the observation that these
kinase Groups are universal in the eukaryotes. More generally however, the relationship
between the kinome and phosphoproteome has not been explored intensively, with a few
exceptions. It has been noted for example that the depletion of the basic R-R-x-S/T and
R-x-R-x-x-S/T motifs in Arabidopsis coincides with the depletion of their cognate effector
kinases (PKA and AKT, respectively) (Resjo et al., 2014). In Tetrahymena also, the strong
enrichment of the L-x-x-S/T motif correlates with the expansion of cognate Nek kinases
in the genome (Tian et al., 2014). Also, as mentioned previously, in Studer et al., 2018,
the enrichment of S/T-P in 18 fungal species was correlated with the number of predicted
proline-directed kinases in each species.

Phosphoproteomic analyses have also been conducted for prokaryotic species (Lin et al.,
2015b; Pan et al., 2015; Potel et al., 2018; Reimann et al., 2013; Wu et al., 2016). In most
cases, however, the number of identified S/T phosphorylation is typically low, owing to the
difficulty of phosphosite extraction in these species. At the time of writing, only the bacteria
E. coli and the archaeon Sulfolobus have more than 1,000 known phosphosites. In the case
of E. coli, neither of the classic S/T-P or R-x-x-S/T motifs were found to be enriched in this
species, and the motifs identified in E. coli do not correspond to any known motifs in the
eukaryotes (Lin et al., 2015b).
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Fig. 1.11 Many phosphorylation motifs extracted from phosphoproteome data contain either
basic residues (R or K), proline (P), or acidic residues (D or E)
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1.8 Mutation of kinases in disease

Mutations to the ePK domain are often pathological. Diseases caused by the germline mu-
tation of protein kinases are referred to as kinasopathies. Kinasopathies can have a range
of physiological effects, but overlap particularly strongly with developmental and metabolic
disorders (Lahiry et al., 2010). Mutations to AKT?2 for example can lead to Type 2 dia-
betes (George et al., 2004). Moreover, mutation to the phosphorylase kinase y chain can
lead to glycogen storage disease type 9c (Maichele et al., 1996). In at least some of these
cases, the structure-function relationship of the kinase domain can be used to infer the likely
mechanism of disease. Cushing’s syndrome for example is caused by a mutation to a protein
kinase A SDR that prevents its binding to a pseudosubstrate inhibitor, resulting in over-
activation of the enzyme (Cao et al., 2014; Cheung et al., 2015). When many diseases are
considered together, hotspots of mutation become evident. For pathogenic germline mu-
tations, it was found that regions involved in substrate-binding and regulation are mutated
especially often (Lahiry et al., 2010; Torkamani et al., 2008).

A similar analysis for cancer-associated mutations revealed hotspots localising to the
activation loop, catalytic regions, and the ATP-binding loop (Dixit et al., 2009). Molecular
modelling analyses suggest that some of these mutations mediate their effect by destabilising
the autoinhibited kinase structure (Dixit et al., 2009). The mutational hotspot represented by
the BRAF V600E mutation is one example of this. Sites in the kinase employed for substrate
binding may also be mutated frequently in cancers, as has been demonstrated for a dibasic
motif in the PKCi enzyme (Linch et al., 2013). A more recent analysis has adopted a network-
based approach to classify kinase mutations into those likely to alter network dynamics (i.e.
kinase activity), and those likely to rewire the network (i.e. change kinase specificity). When
considered alongside direct mutations to target sites, it was found that signalling networks
were rewired in cancer cells to an extent greater than previously expected. Mutations altering

kinase specificity were also identified and validated (Creixell et al., 2015b).

1.9 Aims of the thesis

The primary aim of this thesis is to explore the evolution of protein kinase specificity at the
active site. In this Introduction chapter, I have given a broad overview of previous research
that is relevant to this subject. In the next three chapters (Chapter 2, Chapter 3, and Chapter
4), I describe in detail research performed by me that addresses the question of the thesis
directly. At the end of these three chapters, the results are discussed in the context of previ-

ous literature that relates to the thesis topic. In Chapter 5, an overview of the results from
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the thesis is given, and potential future directions for the field are discussed. Finally, the
methodology underlying Chapters 2, 3, and 4 are described in Chapter 6.

Each of the three Results chapters has its own objectives. For Chapter 2, the objective
was to predict new specificity determining residues (SDRs) for protein kinases by leveraging
availabe data on kinase sequence, kinase structure, and kinase specificity. A strong emphasis
is placed on giving structural rationalisations for the SDRs detected, and on using the results
for the sequence-based prediction of kinase specificity. The aim was then to use these results
to interpret the effect of genomic variants on kinase specificity, using data from The Cancer
Genome Atlas as an example.

The aim of Chapter 3 was to explore the evolution of kinase specificity primarily from
the analysis of kinase domain sequences. This research would follow directly from the ad-
vances made in Chapter 2. One objective was to use the sequence-based predictor developed
in Chapter 2 to examine the extent to which kinase specificities are conserved between or-
thologues. Another aim was to globally predict changes in kinase specificity following gene
duplication. Finally, the SDRs identified from Chapter 2 would be used for a detailed evo-
lutionary analysis of a single kinase Family by way of ancestral sequence reconstructions.

Finally, in Chapter 4 the objective was to explore the evolution of kinase specificity by
analysing phosphorylation data from several eukaryotic species. This could be achieved by
extracting sequence motifs from phoshorylation data and calculating their enrichment across
several species. The likely origin of the phosphorylation motif could then be predicted.
Many motifs correspond to kinase specificities, and so I sought to explore the co-evolution

between phosphomotifs and their upstream kinases where this was possible.






Chapter 2

Global analysis of kinase specificity
determinants

In this chapter, specificity determining residues (SDRs) for protein kinases were identified
and then rationalised using available structural data. I performed all of the computational
analysis under the supervision of Pedro Beltrao. For the validation experiments, the muta-
tions and kinase activity assays were performed by Cristina Viéitez at the EMBL research
campus in Heidelberg, and the mass spectrometery experiments were performed by Vinothini
Rajeeve under the supervision of Pedro Cutillas at the Barts Cancer Institute, Queen Mary
University of London. Some of the work presented in this chapter was included in a preprint

manuscript:

David Bradley, Cristina Viéitez, Vinothini Rajeeve, Pedro Cutillas, and Pedro Beltrao (2018):
Global analysis of specificity determinants in eukaryotic protein kinases. bioRxiv

2.1 Introduction

The specificity of protein kinases has long been the subject of intensive research efforts.
This is for the simple reason that knowledge of kinase specificity allows one to rationalise
and predict the kinase-substrate interactions that are fundamental to most cellular processes.
This can be exploited for clinical purposes as it enables the likely effect of kinase inhibition
(by drugs) to be predicted (Cheng et al., 2014; Colinge et al., 2014).

Research into protein kinase structure and substrate targeting has therefore been exten-
sive. However, most of the research conducted so far has concerned only a single kinase or
kinase subfamily at a time (Eswaran et al., 2008; Onorato et al., 1991; Sarno et al., 1997;
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Scott et al., 2002; Wang et al., 1998), and little attempt is usually made to cross-reference
the results generated with those of kinases from other subfamilies. Such studies will provide
their own insights to specialists but are of limited utility by themselves for the training of
predictive methods or for the understanding of kinase evolution. Part of the motivation for
this study was therefore to offer a global analysis of kinase specificity using the full extent
of data currently available for kinase target sites and kinase structure.

To some extent holistic analyses have been attempted before but each has been limited
in some way. The first publication underlying the Predikin tool for example was primarily
a structural analysis but was based on only three different kinase-substrate structure avail-
able at the time (Brinkworth et al., 2003). It is for this reason that descriptions are given
only for substrate positions -3 to +3 but not for more distal substrate positions. Also, kinase
SDRs were assigned to substrate positions and not to substrate preferences per se, which is
a likely simplification of the actual kinase structure-specificity relationship as specificities
at the same position (e.g. R-2 and P-2) may be determined by different SDRs (see Results
section). Finally, the study relied upon a structural analysis without recourse to kinase mul-
tiple sequence alignments (MSAs), and so the extent to which the inferences made apply to
kinases without structural representation in the original study is not clear.

MSA-based analyses were generally performed more recently. In the (Mok et al., 2010)
study, a covariation analysis between S. cerevisiae kinase sequence and specificity was used
to predict SDRs for several preferences. However, there was only limited structural analysis
to distinguish likely true positive and false positive predictions, and in most cases a structural
mechanism was not proposed for the SDRs suggested. The analysis was also limited to a sin-
gle model organism (S. cerevisiae). A similar approach for human kinases was performed
also in 2015 but the SDRs predicted were not assigned to substrate positions and there was
limited discussion of the structural basis for specificity (Creixell et al., 2015a). Some exam-
ples do exist of studies in which the predicted SDR are cross-referenced with the available
structural data. However, these projects are designed to identify residues that define a par-
ticular Group/Family/Subfamily rather than specificity determinants per se (Kannan et al.,
2007a; Kannan and Neuwald, 2004; Li et al., 2003; Mohanty et al., 2016).

Here I attempt to provide the most comprehensive analysis to date of protein kinase pep-
tide specificity by considering explicitly both kinase sequence variation and kinase structure.
To this end I have exploited most of the available data relating to kinase structure and known
kinase target sites. The objective of this study was to relate the predicted kinase SDRs to
particular substrate preferences (R-3, P+1, etc) and not just to particular substrate positions
(-3, +1, etc). Following from this, I place a particularly strong emphasis also on proposing

structural mechanisms to account for the SDRs predicted.
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As an application of these results, I use the putative SDRs to generate sequence-based
predictors of kinase specificity. As discussed in the Introduction chapter, such tools can be
leveraged towards the evolutionary analysis of kinase specificity, and this is explored further
in Chapter 3. For this chapter I predict the specificities of human kinases only and use these
results to understand the differential mutation of residues in cancer between the two most
common preferences (P+1 and R-3). I also use the detailed analysis of SDRs to form the
basis of a more general analysis of SDR mutations in cancer, following on from previous
publications concerning kinase domain mutations and cancer progression (Creixell et al.,
2017, Dixit et al., 2009).

2.2 Overview of protein kinase peptide specificity

2.2.1 Protein kinase specificity models

Protein kinase specificities at the active site are modelled here in the form of position proba-
bility matrices (PPMs). Each value in the 20 x 11 matrix represents the empirical probability
of finding a particular amino acid (e.g. proline) at a particular position (e.g. +1) relative to
the phosphoacceptor serine, threonine, or tyrosine residue. For this analysis, I generated
specificity models for human, mouse, and S. cerevisiae protein kinases on the criterion that
each PPM must be supported by at least 10 non-redundant and experimentally-verified tar-
get phosphorylation sites for a given kinase. I do not include protein kinases defined as
‘Atypical’ in the Manning classification of protein kinases, which have little to no sequence
similarity to the eukaryotic protein kinase (ePK) domain (Manning et al., 2002b).

I generated 179 PPMs on this basis, representing 9,005 unique kinase-phosphosite re-
lations in total. For each species studied, this represents a small proportion of the total an-
notated kinome (human: 126/478, mouse: 35/504, S. cerevisiae: 18/116). For further anal-
ysis, I selected high-confidence PPMs that could successfully discriminate between target
and non-target phosphorylation sites during 10-fold cross-validation (see Methods chapter
Section 6.1.8). This resulted in 136 PPMs in total to be used for all of the analysis discussed
below (88 human, 30 mouse, 18 S. cerevisiae). Among the remaining serine/threonine mod-
els, I observed a strong over-representation of kinases belonging to either the AGC, CAMK,
or CMGC Groups, as these Groups represent 78% of the serine/threonine models generated
but only ~49% of annotated serine/threonine kinases (Manning et al., 2002b).

The extent of kinase selectivity per substrate position can be summarised by calculating
the information content in units of bits (Figure 2.1). For serine/threonine kinases, consistent

evidence of active site selectivity is only apparent for the -3 and +1 positions, and to a lesser



42 Global analysis of kinase specificity determinants

extent the -2 position. The -3 and -2 constraints are generally only evident in the non-CMGC
kinases and +1 constraint only generally in CMGC kinases. These constraints correspond
mainly to the well-established preferences for basic side chains (R or K) at the -3 and/or -2
position, and in most CMGC kinases for proline at the +1 position. For specific amino acid
preferences outside these well-known cases, I find that the selectivity is either less stringent
than for R/K-3 and P+1 and/or less pervasive across the kinome, usually in that the specificity
is restricted to a particular kinase Family or Subfamily. Such instances are discussed in detail
in the following sections.

For the tyrosine kinases there is no evidence in this dataset of a single position for which
the substrate amino acids are generally constrained. This is consistent with systematic anal-
yses demonstrating a lower average performance for tyrosine kinase specificity models (rel-
ative to serine/threonine models) when benchmarked (Miller et al., 2008; Saunders et al.,
2008; Wagih et al., 2015).

Matrix information content

serine/threonine (120 kinases) CMGC (39 kinases)

ﬁ 1T Eiiiiﬁéi abs

tyrosine (16 kinases) non-CMGC (81 kinases)

Bits

pEdEe iﬁiiii Ei iiiiﬁ

P5 P4 P33 P2 P1 PO P+l P+2 P+3 P+4d P55 P-4 P-3 P2 P-1 PO P+l P:+2 P+3 Psd

Fig. 2.1 Sequence constraint at substrate positions -5 to +4 is represented for all models of
serine/threonine kinases (top-left), tyrosine kinases (bottom-left), CMGC S/T kinases (top-
right), and non-CMGC S/T kinases (bottom-right). Sequence constraint is represented in
terms of the matrix information content (unit bits).
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2.2.2 Kinase-substrate interface at the active site
Retrieval of kinase-substrate complexes from the Protein Data Bank

Kinase-substrate cocrystal structures are an important resource for the inference of specificity-
determining residues, as they provide direct physical evidence for residue-level kinase-substrate
interactions. Here I have automated the retrieval of kinase-peptide complex structures at the
active site from the protein data bank (PDB). The results for serine/threonine kinases and
tyrosine kinases are listed in Tables 2.1 and 2.2, respectively.

In total I identified 9 different serine/threonine kinases with kinase-peptide co-crystal
structures, and 7 tyrosine kinases, where kinase orthologues and close paralogues (e.g. AKT1
and AKT?2) are counted once only. These numbers are close to what can be derived from the
ProtCID database of common protein-protein interfaces (Xu and Dunbrack, 2011; Xu et al.,
2015). I also identified cocrystal structures for the EGFR tyrosine kinase and for the SYK
tyrosine kinase, in addition to the structures listed in ProtCID.

I also sought to automate the retrieval of inhibitory interactions at the active site that
mimic substrate binding; such interactions are found for ABL1, CAMKII, INSR, MARK2,
PAK4, and PKA cocrystal structures. For substrates and inhibitors, the PO position and flank-
ing residues (-5 to +5) are identified automatically here by considering the residue closest
to the kinase HRD catalytic aspartate as 0. While useful, kinase-inhibitor structures should
be interpreted with caution, however, as inhibitor binding can not always be expected to per-
fectly mimic substrate binding. In Pak4 kinase, for example, where both kinase-substrate and
kinase-inhibitor structures are available, equivalent residues identified by structural superpo-
sition are offset by a single residue (inhibitor -3 position equivalent to peptide -2 position) (Ha
et al., 2012).

Table 2.3 lists co-crystal structures where the substrate is greater than 35 amino acids
in length. I detected only two different kinases (PKA and brassinosteroid insensitive 1-
associated receptor kinase) where this is the case, in accordance with ProtCID data. I also de-
tected an additional protein substrate (PRKAR1A) co-crystal structure for PKA. Two struc-
tures in which the kinase is in complex with a protein mimetic inhibitor (PKA-PRKA2B;
EGFR-ERBB1) were also identified. With respect to kinase autophosphorylation, I used
the structures identified from a comprehensive survey of autophosphorylation published in
2015 (Xu et al., 2015). In addition to these, I identified auto-inhibitory complexes for the pu-
tative orthologues of protein kinase G in Plasmodium vivax from a systematic query (Table
2.3).
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Survey of kinase-substrate contacts

I next identified for each serine/threonine kinase-substrate structure the residues in the pro-
tein kinase in contact with the substrate. The residues identified were then mapped to the
protein kinase domain and the results across all structural models aggregated (Figure 2.2a).
Each kinase residue at the kinase-substrate interface was assigned to a particular substrate
position by taking the substrate residue closest to the catalytic aspartate (HRD) as the O po-
sition. The results show that each substrate position can be bound by several different kinase
residues, contrary to a previous study suggesting a more limited range of contacts between
the kinase and substrate (Brinkworth et al., 2003).

Results for position +1 support the idea of a dedicated binding pocket (P+1 pocket), with
most contacts occurring with kinase domain positions 157, 158, and 159 of the P+1 loop
(Figure 2.2a). To alesser extent, contacts also exist with the 161 and 164 positions previously
implicated as important for proline specificity at position +1 (Kannan and Neuwald, 2004).
Finally, ~40% of structures are contacted by the ‘DFG+1" residue (domain position 144)
that has been suggested previously as a +1 specificity determinant (Brinkworth et al., 2003;
Howard et al., 2014; Kannan and Neuwald, 2004).

Positions +2 and +3 are bound most frequently by four residues of the activation seg-
ment (kinase domain positions 156-159). Position +2 however is also frequently bound
by position 11 of the N-terminal glycine-rich loop, position 42 of the «C helix, and the
‘DFG+1’ residue mentioned above. The binding profile at position +4 seems more broadly
distributed, although it should be emphasised that there are only 6 unique kinase-peptide
complexes where position +4 is bound (Table 2.1)

Position -1 is contacted frequently by positions 160 and 161 of the P+1 loop although
these represent non-specific backbone contacts. Sidechain contacts however do occur more
frequently with position 125 of the K-x-x-N motif. Position -2 is frequently in contact with
domain position 160/162 of the P+1 loop, and positions 125/127 of the K-x-x-N motif.
Positions 125 and 160 however are unlikely to serve as an SDRs as they are highly conserved
within the kinase superfamily.

Position -3 contacts are most common for domain positions 84, 86, and 87 on the a D
helix and the preceding loop. The aforementioned 127 position of the K-x-x-N motif however
is also a frequent binder. For substrate positions -4 and -5, position 86 of the @ D helix binds
most frequently. However, residues on the a F helix and the a F-aG loop are also common
binders at position -5, and to a lesser extent at position -2 also.

Some of the most common binding residues in the kinase domain are represented struc-

turally in Figure 2.2b.
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Fig. 2.2 a) Binding profile of Ser/Thr kinases for substrate positions -5 to +4. The numbering
refers to the kinase Pfam domain (PF00069) position . b) Structural representation of some
kinase domain positions most often in contact with the substrate PDB: IATP. -3: red, -2:
pink, -1: orange, +1: green, +2: blue, +3: purple
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2.2.3 MSA-based inference of kinase SDRs

I sought to complement the direct structural evidence discussed above with MSA-based in-
sights into kinase specificity. To this end, I implemented a pipeline for the automated de-
tection of putative kinase SDRs for each amino acid preference at the substrate positions
flanking the phosphoacceptor residue. Each substrate position (-5 to +5) was considered in
turn and the major specificities (e.g R/K at position -3) were identified by generating clus-
ters from the corresponding PPM columns (across all PPMs generated). For each preference
identified, the MSA of 119 kinases of known specificity was divided into a positive group (all
kinases with the specificity of interest) and negative group (all kinases without the specificity
of interest). Those alignment positions that best discriminated between the two specificity
groups were then implicated as SDRs. This method is represented in Figure 2.3.

A previous study has shown that the mode of substrate binding differs between ser-
ine/threonine and tyrosine kinases; the -1 substrate position for tyrosine kinases binds to what
would be the -3 pocket in serine/threonine kinases, for example (Brinkworth et al., 2003). 1
therefore intended originally to perform this analysis separately for the serine/threonine and
tyrosine kinases. However, there were too few tyrosine kinase PPMs (16) for the reliable
detection of SDRs, and so the analysis was applied to the serine/threonine kinases only.

The results of this analysis are summarised in Figure 2.4. I identified 30 putative SDRs
across 16 different preferences. Notably, I find a significant over-representation of SDRs
among residues close to the substrate peptide (10/30, Fisher p < 0.01). Many of these had
been described previously and are discussed in more detail below. In some cases I associate
a known SDR with a new substrate preference. Position 189 for example was previously
identified as an R-5/R-2 determinant but here it emerges as a determinant also of L-5 speci-
ficity. There are also some cases where I assign an SDR to a new substrate position; kinase
position 164 for example is considered to be a +1 determinant usually but here I predict it to
be a determinant of leucine specificity at position +4 also. I also predict a number of putative
distal SDRs that have not been described previously, which are discussed in more detail in

the section below.
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Fig. 2.3 Process for SDR detection from kinase domain multiple sequence alignments. Speci-
ficity matrices are first constructed for all kinases with at least 10 known target sites. The
pipeline then iterates through each column of the matrix (-5, -4, -3, etc) and, for each posi-
tion, clusters the columns to identify kinases with similar specificities at that position (e.g.
for proline at +1). The pipeline then iterates through each of the clusters (e.g. proline+1,
aspartate/glutamate+1, etc.) and, for each iteration, sorts the kinase domain MSA into two
groups: kinases with the specificity of interest (e.g. proline+1) and those without. Those
positions that best discriminate between the two sequence groups are predicted as SDRs
(represented by a red asterisk)
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Preference SDR positions

Arg-3 (55) 17, 82, 86, 127, 158, 162, 185
Pro+ 1 (36) 158, 159, 161, 164, 188, 196
Arg-2 (27) 27, 162

Pro-2 (25) 82, 161, 162, 188, 196
Leu-5 (21) 86, 189

Arg/ lys+ 2 (14) 45, 61, 126, 229

Asp/ glu-2 (13) 157, 189

Asp/ glu-3 (13) 86, 127, 140, 157

Arg-5 (12) 162

Arg/ lys+ 3 (10) 161, 237

Arg-5 (12) 162

Asp/glu+1 85, 249

Leu-2 (8) 131

Asp/ glu+2 (7) 13,34

Pro+2 (7) 145

Leu+4 (6) 164

Asp/ glu+4 (6)
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*157,158,159,161,162,164
140 142 145 . 165
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85-92 97-116

229 237 249

141-167 177-192

(activation segment)

Ler)—

235-244

Fig. 2.4 a) Table of the SDRs predicted using the alignment-based procedure represented in
Figure 2.3 b) Mapping of the results to a 1 D-representation of the protein kinase domain. c)
SDRs mapped to the a structure of protein kinase A. SDRs within 4 A of the peptide substrate
are coloured in red. PDB: IATP
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2.3 Analysis of protein kinase SDRs

In the following section I make use of available kinase-substrate PDB models to rationalise
the determinants that have been discovered. For some specificities not represented in Ta-
bles 2.1, 2.2, or 2.3, I generated models of the kinase-substrate interface using the method
described in the Introduction (Section 1.4.2) and Methods chapters (Section 6.1.7). I also re-
peatedly cross-reference the results here with previous kinase SDR analyses in the literature.
In the subsection headings, I state whether the inferences made derive from an alignment-
based analysis or purely from a structure-based analysis or both. Results that are of only

minor significance have been placed in the Appendix.

2.3.1 Position +1
Proline (alignment and structure-based)

I identified 6 SDRs for the proline+1 specificity, 5 of which had been predicted previ-
ously (Kannan and Neuwald, 2004). Four of the six residues I identified as SDRs map to
the kinase P+1 pocket (Figure 2.5). Of these four, the results suggest that domain positions
159 and 164 are the most discriminating. The role of these two residues in proline-directed
kinases was explained in the Introduction chapter.

YEor rox oL
VVITL R A L
VVITL R A L 0 Thr P+1 Pro
Pros1 V\VIT L R A |l
rot IQSRFNR A L 158 ILE
LQSRYNMR A L 159 GLN
VA'TR R A I .
CGTPEFL P J
CGTPNN I P 157 PTR
non-Pro+1 CG PN L P
CGTPNNV P
TGSVLWM P el
VGTPDY I P

Fig. 2.5 The predicted SDRs for proline at the +1 position are marked by a red asterisks and
coloured in red in the structure (right). Position 157 was not predicted to be an SDR but is
discussed in the main text. PDB: 2W06

At position 158, I observe valine and leucine/isoleucine exclusively in proline-directed

kinases whereas in non- proline-directed kinases I observe mainly cysteine, but also alanine,
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isoleucine, and valine. The residue side chain does not project towards the +1 position and
is therefore unlikely to be a direct determinant of specificity. It does however participate
in a network of contacts in the activation segment, involving also positions 122 (HRD),
168 (APEI) and position 174 (Y). I therefore suggest a role for position 158 in the CMGC-
specific stabilisation of the activation segment in its active conformation. Consistent with
this, in silico mutation of residue 158 from valine to cysteine is predicted to destabilise the
kinase-peptide complex (AAG = +1.93)

Atposition 161, I observe mainly proline in the non- proline-directed kinases but arginine
(non-CDK Families) and leucine (CDK Family) in the proline-directed kinases. The arginine
residue is likely important for binding the second activation loop phosphorylation that can
occur in CMGC kinases (Kannan and Neuwald, 2004; Soundararajan et al., 2013; Varjosalo
et al., 2013), which functions to fully activate the CMGC kinase (Prowse et al., 2001). This
does not however account for the role of leucine in the CDK kinases, which do not generally
have a second activation loop phosphorylation. In CDKs, a ‘phosphomimetic’ glutamate at
position 202 (aG helix) instead projects towards the P+1 pocket (Cheng et al., 2006) and
binds to the arginine at position 164 (Figure 2.6). I note from the MSA that, in the absence
of a phosphorylatable tyrosine at 157, that position 157 is either a glutamate/aspartate or
position 202 is, suggesting that acid-mediated stabilisation of the P+1 pocket is a required
feature for proline specificity.

At position 188 I observe mainly alanine in the proline-directed kinases and tyrosine
otherwise, and at position 196 mainly leucine in the proline-directed kinases and proline
otherwise. Position 188 is found on the aF helix and position 196 on the flexible loop
connecting the aF helix with the aG helix (Figure 2.6). Both positions are distal from
the +1 substrate site. It has been previously suggested that 188 and 196 — among several
other functionally divergent residues in the a F to G region — are important for connecting
the substrate-binding residues with a CMGC-unique region (‘CMGC insert’) that has been
implicated in scaffold/adaptor binding (Bax et al., 2001; Dajani et al., 2003; Oruganty and
Kannan, 2012). I note here that the positioning of the aG helix in CMGC differs from that
of non-CMGC in kinases, in that the N-terminus of the helix in the former is tilted more
closely towards the P+1 pocket. As a consequence, the domain position at 202 discussed
above is in closer proximity to the critical determinant at 164. It is possible that the presence
of divergent residues in the a-F to a-G region contribute to the repositioning of the a-G
helix, suggesting one possible factor linking the distal SDRs detected (188 and 196) with
the proline+1 preference.
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aF helix

202 GLU (CDK)

aG helix

Fig. 2.6 The 188 and 196 positions (coloured red) are found on the a F helix and a F-aG
loop, respectively. They may influence the positioning of the aG helix, which contains at
least one substrate-binding position (202). PDB: 2CCI (CDK) and PDB: IATP (PKA)

Aspartate/glutamate (structure-based)

Iidentified eight kinases with a preference for aspartate and/or glutamate at the +1 position in
the dataset. Of these eight, five belong to the acidophilic casein kinase 2 (CK2) Family, with
varying levels of aspartate/glutamate preference spanning from the -4 to +4 positions of the
substrate peptide (Kuenzel et al., 1987; Songyang et al., 1996). Here, I generated a kinase-
subsrate model that implicates a lysine at position 164 as the primary substrate determinant
(Figure 2.7). This is in agreement with experimental data and previously generated CK2-
substrate models (Niefind et al., 2007; Sarno et al., 1997).

The kinase ADRBK1 (GRK?2) was also found to be acidophilic for the +1 position. This
kinase belongs to the GRK (G-protein coupled receptor kinase) Family of the AGC Group,
and is distantly related to the CK2 kinases. A kinase-substrate model generated here for
ADRBKI1 however suggests a lysine at position 202 (aD helix) as the primary substrate
determinant (Figure 2.7). These results therefore suggest that the D/E+1 preference evolved
by different mechanisms in the two different Families.

Domain positions 85 and 249 were inferred as putative SDRs. Both however are distal
from the P+1 binding pocket and no obvious structural mechanism that could link these
sites to +1 selectivity was observed. These sites may therefore represent either indirect

determinants of specificity or false positive identifications.
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Fig. 2.7 The D/E+1 specificity for CK2 kinases (left) and the ADRBKI1 (right) kinase is
likely to be determined by different kinase domain positions. The kinase-substrate interfaces
here were modelled as part of this analysis.

Arginine (structure-based)

I detected a single protein kinase (SRPK1) with a significant preference for arginine at the +1
position. This kinase belongs to the SRPK Family of the CMGC Group. The generation of a
kinase-substrate model here places the +1 arginine in the P+1 pocket, and in specific contact
with an aspartate at position 157. The placement of the +1 residue in the P+1 pocket is in
agreement with a previous model generated for the S. cerevisiae homologue Skylp (Nolen
et al., 2001). However, it challenges a different model that places the +1 residue outside of
the +1 pocket and proximal the DFG+1 residue, which was the suggested SDR (Kannan and
Neuwald, 2004). The mode of determination of this specificity is therefore still contested.

Glycine (structure-based)

I observed a single kinase (PRK1) in the dataset that is highly selective (96%) for glycine
at the +1 position. PRK1 is a yeast kinase of the NAK Family (‘Other’ Group). All yeast
kinases of the NAK Family (AKL1, ARK1, PRK1) exhibit strong glycine specificity when
tested against degenerate peptide libraries (Mok et al., 2010). All human NAK kinases con-
tain an a-helical insert towards the C-terminus of the activation segment (named ASCH) (Sor-
rell et al., 2016), a feature not yet observed in any kinase outside the NAK Family. Two
different kinase-substrate models in the literature suggest different consequences for peptide
binding. The first suggested that the peptide undergoes a half-turn about +1 glycine so that
the residues C-terminal to it are directed towards the hydrophobic groove between ASCH
and the @-FG helices (Eswaran et al., 2008). The second model however places the substrate
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peptide C-terminus ‘above’ the ASCH in an extended linear conformation (Chaikuad et al.,
2014).

The kinase-substrate model generated here agrees with the former model by suggesting
that the substrate peptide forms a kink at the +1 position (Figure 2.8a). This is likely enabled
by the role of glycine as a frequent Ramachandran outlier. In particular, the model generated
implicates arginine at 164 and threonine at 159 as G+1 specificity determinants (Figure
2.8b).

ASCH

P+1 GLY

Fig. 2.8 a) The NAK Family of kinases contains an activation segment C-terminal helix
(ASCH) in the activation segment (dark green) and is highly specific for glycine at the +1
position. The model generated here suggests that the substrate peptide does not bind in the
extended linear conformation; b) kinase positions 159 and 164 are suggested as specificity
determinants.

2.3.2 Position +2
Arginine (alignment and structure-based)

Of the 14 kinases I identified with an arginine/lysine +2 preference, 10 belong to the protein
kinase C Family (AGC Group). The alignment-based analysis performed here implicates
domain position 45 as a potential determinant, which is present mainly as a cysteine in R+2
kinases and as a polar/charged residue otherwise (particularly arginine/lysine). This residue

projects towards the aB-aC loop and may serve as a negative determinant of arginine binding
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when present as an arginine or histidine by attenuating the electronegative charge of the aB-
aC loop. This loop has been implicated previously as an R+2 substrate determinant (Creixell
et al., 2015a; Li et al., 2003; Wang et al., 2012a) and is again here for the kinase-peptide
model generated (Figure 2.9). The other three domain positions (61, 126, and 229) inferred
from the multiple sequence alignment (MSA) are unlikely to be direct determinants given
their distal positions in the protein kinase domain (ATP-binding site, P-2 subsite, and C-

terminal tail, respectively).

aB-aC loop

aB helix
Arg+2

aC helix

non-Arg+2

45 CYS

-<<K<K<KK4{4{444< 64
U>P>PUUOUOUrrCr U 128

R+2 arginine

M- - T KKKKKKT 218

AAANDODOOOOOON=*45

Fig. 2.9 I identified one residue (position 45) in the aC helix as a possible R+2 determinant.
Previous studies have also implicated the aspartate residues at positions 40, 41, and 42

Aspartate/glutamate (structure-based)

I'identified seven kinases here that are acidophilic at the +2 position. Four (human CSNK2A1,
human CSNK2A?2, §. cerevisiae CKALl, S. cerevisiae CKA2) belong to the casein kinase II
Family, two to the CAMK?2 Family (human CAMK2A and CAMK2D), and one to the Polo-
like kinase Family (human PLK3).

A CAMK?2 co-crystal structure for the D. melanogaster orthologue supports the role
of R41 and K44 as D/E+2 determinants in this Family (PDB: 5H9B, unpublished). Both
residues are located in the N-terminal lobe. Notably, for a PLK3-substrate model constructed
here, I also find a lysine at domain position 44 that co-ordinates D at the +2 position. Both
kinase Families are distantly related and so it appears that the kinases have converged upon
a similar mechanism to determine the D/E+2 preference.

Although I find some preference for D/E+2 among the CK2 kinases, the +1 and +3

positions are thought to be the major determinants of specificity, with the other flanking
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positions playing more subsidiary roles (Kuenzel et al., 1987; Niefind et al., 2007; Sarno
et al., 1997). In accordance with this, I do not observe a clear candidate SDR from the
CSNK2A1-substrate model constructed here.

2.3.3 Position +3
Arginine (structure-based)

SRPKs exhibits a strong preference for arginine at this position (Wang et al., 1998). The
SRPK1 model that I have constructed suggests that an aspartate at domain position 47 forms
a hydrogen bond with the arginine side chain at position +3. A glutamate at position 43
does not bind directly to the arginine but may contribute to selectivity by strengthening the
negative charge of the +3 pocket.

Aspartate/glutamate (structure-based)

The acidophilic constraint observed for peptide substrates of casein kinases II are thought to
be the most stringent at the +3 position. The model constructed here suggests that a lysine
at domain position 44 and an arginine at position 47 form hydrogen bonds with the aspartate
side chain. This is consistent with previously-constructed model and with the results of
substrate peptide assays on mutant (K44A, R47A, etc) CSNK2A enzymes (Niefind et al.,
2007; Sarno et al., 1997). Positions 43, 44, and 47 are all located on the aC helix.

2.3.4 Position +4
Leucine (alignment and structure-based)

I detected six kinases (MARK?2, CAMK1, PRKAA1 (human), PRKAA1 (mouse), PRKAA2
(human), and Snfl) with a moderate preference for leucine at position + 4. All belong to
the CAMK Group. Snfl (S. cerevisiae), PRKAAT1, and PRKAA?2, are homologous enzymes
involved in the metabolic regulation of AMP levels (Hardie et al., 1998). For Snfl, the
phosphosite-based classification is supported by the results of a peptide library assay (Mok
et al., 2010), and from the analysis of synthetic peptide variants (Dale et al., 1995). This is
also the case for PRKAA enzymes (Dale et al., 1995; Weekes et al., 1993), and CAMKI1 (Dale
et al., 1995).

The alignment-based analysis performed implicates domain position 164 as the sole puta-
tive SDR. This position has been discussed extensively above as a determinant for specificity

at the +1 position. This residue is an alanine in five of the kinases listed above (valine in
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CAMK1), and otherwise will be an aliphatic hydrophobic residue (L/I/M) or arginine in the
case of most CMGC kinases and NEK kinases.

The PDB file 31EC listed in Table 2.1 contains the MARK?2 enzyme in complex with
a peptide featuring a leucine residue at position +4. The peptide bound to the substrate-
binding site is not a substrate but a peptide mimetic inhibitor of the Helicobacter pylori
protein cagA (Nesi€ et al., 2010). In the cocrystal structure, the peptide forms a turn about
position +2 so that the +4 hydrophobic side chain projects towards the P+1 pocket and
stacks against the +1 residue (Figure 2.10). The substitution of aliphatic residues for alanine
at position 164 in these kinases therefore seems to generate a small binding pocket that allows
the substrate +4 position to functionally substitute for position 164 by stacking against the

+1 residue.
C P+1 VAL
Leu+4 A
A
A
A
R
R P+4 LEU
non-Leu+4 R
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Fig. 2.10 The presence of a small side chain at kinase domain position 164 may promote the
projection of a hydrophobic side chain at position +4 towards the P+1 pocket. PDB: 3IEC

2.3.5 Position -2

Proline (alignment and structure-based)

Of the 25 kinases I detected with a moderate proline preference, 22 belong to the CMGC
Group. From the alignment-based analysis, I detected five positions (82, 161, 162, 188, 196)
that are linked to this specificity.
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Kinases with the preference usually contain a bulky hydrophobic residue (Y or W) at
position 162, with a lack of conservation at this site for the non- proline-directed kinases
(Figure 2.11). This residue has previously been named the *P-3i-aromatic’ as it was expected
to bind most closely to the -3 residue (Kannan and Neuwald, 2004). However, for the two
CMGTC kinases listed in Table 2.1 with a residue at position -3 (PDB: 1QMZ and PDB:
2WO06), a larger contact area between 162 and position -2 was found than with 162 and
position -3 (44.7 A% and 26.9 A2, respectively).

The domain position 161 is part of the P+1 pocket and has been discussed previously
in relation to proline +1 specificity, where it has been shown to bind to the ‘secondary’
activation loop phosphorylation moiety in some CMGC kinases (Bao et al., 2011)). How-
ever, it can also bind at the -2 position (Figure 2.11), as previously suggested (Kannan and
Neuwald, 2004). In both structures referenced directly above, the residue at 161 forms non-
bonded contacts with the -2 proline (17.90 A% and 38.90 A2, respectively). For both domain
position 161 and 162, I suggest that hydrophobic contacts with the pyrrolidine ring of the -2
proline confers this specificity. Position 161 was previously predicted to interact with the -2
substrate position (Kannan and Neuwald, 2004). Position 189 was also predicted to be a P-2
determinant but I find no basis for this from the analysis here (Mok et al., 2010).

The domain positions 188 and 196 were discussed previously (with respect to proline+1
specificity) and are again likely to serve as distal determinants here. Domain position 82
is marked by the absence of glycine relative to non-proline directed kinases. Its role as a
proline-2 determinant is not immediately clear.

A RW A L
A RW A L P-2 proline
Pro-2 T RW A |
M Ew A L
Q LW A L
E RY A ||
G PG >
G PG P
non-Pro-2 G PG P 161 LEU
G PD P 162 TRP
G PD P
G PD P

Fig. 2.11 Two of the five detected SDRs (161 and 162) are proximal to the -2 position in the
structure shown. PDB: 3QHR
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Aspartate/glutamate (alignment and structure-based)

I identified 13 kinases (7 Other, 1 AGC, 1 CAMK, 2 CK1, 2 CMGC) with a moderate pref-
erence for acidic amino acid residues. Domain positions 157 and 189 are implicated as
specificity determinants here. Domain position 157 is located in the activation loop and so
is unlikely to be a direct determinant for position -2. Position 189 however has previously
been identified as a position -2 determinant in non-CMGC kinases from a number of struc-
tural analyses (discussed below). In support of this, a structural model generated here of
an ADRBKI1-peptide complex implicates this residue as a direct determinant of the -2 D/E
preference (Figure 2.12). As expected, a CK2 kinase-peptide model generated here does not
implicate position 189 for this role, as the CK2 Family belongs to the CMGC Group. This
model suggests that a histidine at position 127 may instead influence position -2 specificity.

Position 189 in these kinases is marked by the absence of a negatively charged D/E residue.

L T
W K
D/E-2 LY % %ﬁ

R S
R A 8HS oot
L V
F E
E E

non-D/E-2 L E
M E 189 LYS 198 ARG
F D
F E

Fig. 2.12 A model constructed here for the ADRBK1-substrate complex places kinase do-
main position 189 in close proximity to the -2 substrate position
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Arginine (alignment and structure-based)

The binding pocket for arginine at the -5 position has been observed to overlap structurally
with that of arginine at the -2 position (Ben-Shimon and Niv, 2011; Zhu et al., 2005b),
as was discussed in the Introduction section. I observe 6 kinases (PKN1, CHUK, PRKCB,
PRKCD, PRKCE and PRKCG) with the acidic 127/189 pair that lack a significant preference
for either arginine or lysine at positions -2 or -5 (CMGC kinases excluded, see below). This
observation is in accordance with the suggestion of Ben-Shimon and Niv in 2011 that the
acidic pair is neither necessary nor sufficient for the attainment of this specificity in some
structural environments (Ben-Shimon and Niv, 2011).

In terms of R/K-2 binding, the mode of binding to arginine at -2 is similar between protein
kinase A and PAK4/PAK1, in which both residues 127 and 189 co-ordinate the substrate
arginine (Ben-Shimon and Niv, 2011). Protein kinase A and PAK1 belong to evolutionarily
distant kinase Groups (AGC and STE, respectively), suggesting either that this binding mode
evolved convergently or was an early event of protein kinase evolution (Zhu et al., 2005b).
With respect to R/K-5 specificity, arginine binding in AKT structures is similar to that of
R/K-2 arginine binding in protein kinase A, with the 127/189 acidic pair co-ordinating the
substrate arginine along with a tyrosine residue at position 126 (Yang et al., 2002). In PIM
kinases, the -5 arginine is also co-ordinated by two acidic residues but at positions 126 and
189, with the 127 glutamate not involved in binding (Ben-Shimon and Niv, 2011).

The alignment-based tools (see Methods chapter Section 6.1.3) employed here to identify
specificity determinants assume independence between alignment positions and therefore
would be unlikely to detect residues that determine specificity co-operatively such as the
127/189 acidic pair discussed above. Here, the alignment-based analysis implicates domain
position 162 as a determinant for both the -2 and -5 arginine preferences (Figure 2.13). This
position is represented mainly by an aspartate/glutamate for basophilic kinases and Y/W/N/G
otherwise. This residue does not form polar contacts with the -2 arginine, but is proximal
to the arginine-binding pocket (within 3.5 A of -2 arginine in PDB: [IATP). This residue
has been implicated previously as an R-6 determinant but genetic analysis suggests a role
for this SDR in the binding of other residues (Moore et al., 2003). Domain position 27 of
the N-terminal p-pleated sheet is also implicated (tyrosine bias in arginine-directed kinases,
valine otherwise), although is unlikely to be a direct determinant given its distance from the
active site.
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Fig. 2.13 Position 162 is predicted here as an R-2 SDR, and the 127/189 acidic pair has been
described extensively in the literature

2.3.6 Position -3

Arginine (alignment and structure-based)

The basis for R-3 specificity was described in the Introduction section. While a univer-
sal mechanism for R-3 selectivity has sometimes been assumed on the basis of past stud-
ies (Ben-Shimon and Niv, 2011), the extent to which position 84 determines specificity in
general is not fully understood. As previously discussed, sequence alignment-based analy-
ses are required for a broader analysis of kinase specificity in the absence of kinome-wide
experimental data. The multiple sequence alignment generated here of human, mouse, and
S. cerevisiae protein kinases supports the earlier observation that E84 is not an obligate de-
terminant (Mok et al., 2010), as 6 arginine-directed kinases do not feature E84. While I note
that all arginine-directed kinases within the AGC and CAMK Groups feature E84, I identify
5 AGC/CAMK kinases with E84 but without a significant arginine preference at position -3.

The absence of the -3 R/K preference in these 5 kinases can likely be accounted for
by domain positions 86 and 127, which line the -3 arginine binding-pocket of AGC and
CAMK kinases. Both positions were identified as putative determinants from the alignment-
based analysis performed here (Figure 2.14). For kinases with this preference, position 86
is mainly a tyrosine/phenylalanine and a polar amino acid otherwise, and position 127 is

mainly a glutamate and serine/glutamine otherwise. In protein kinase A cocrystal structures,
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Fig. 2.14 Position 86 and 127 are predicted here as R-3 SDRs, and the aspartate/glutamate
at position 84 has been described extensively in the literature

positions 86 and 127 pack against the hydrophobic moiety of the arginine side chain (Figure
2.14). I note that PDK1 features a leucine at position 86, GRK?2 features a histidine at 86
and an alanine at 127, and that GRKS features a lysine at position 86. These deviations from
the canonical sequence patterns may account for the absence of the -3 arginine preference
in these kinases. Kinase domain position 86 was predicted previously as an SDR for the
Mok et al study (Mok et al., 2010). Domain position 127 was also suggested as an R-3
determinant but for CMGC kinases only, whereas it is suggested here that it can serve as an
R-3 determinant for non-CMGC kinases also (Mok et al., 2010).

Glutamate at 127 has also been strongly implicated in the -2 arginine preference, as de-
scribed above. I note however that, for AGC or CAMK kinases in which 127 is not involved
in binding to either the -2 arginine or -5 arginine, that the glutamate can co-ordinate the
arginine side chain at -3. I observe this to be the case for PKC1 (PDB: 4DC2) and PIM1
structures (e.g. 2C3I). Interestingly, in the AKT2 (-3 arginine and -5 arginine) PDB files
3ES8D and 3ES87, co-ordinates exist for the 127 glutamate side chain in polar contact with the
-3 arginine and alternatively with the -5 arginine, suggesting that E127 can alternate flexibly
between -3 and -5 co-ordination during the course of substrate binding and unbinding. I
do not however observe the -3-binding conformation in any of the other 17 AKT cocrystal
structures, suggesting that -5 contact is the dominant binding mode for E127 in AKT. Signif-
icantly, of the 22 kinases in the dataset with -3 arginine specificity but without a significant

-2 or -5 arginine preference, all still feature E127, which suggests strongly that the observed
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association between E127 and -3 is a direct association and not just an indirect result of com-
pound -2 or -5 arginine preferences in -3 arginine kinases. Notably, a recent mutagenesis
analysis of PKC/ has revealed that position 127 can indeed serve as an R-3 determinant in
a non-CMGC kinase, and so confirms the prediction made here (Barber et al., 2018a).

The alignment-based tools employed here (see Methods chapter Section 6.1.3) also im-
plicate domain positions 17, 82, 158, 162, and 185 in addition to the two other putative SDRs
(86 and 127) previously discussed. Domain position 17 is marked by a leucine in arginine-
directed kinases and by mainly by charged (K or E) residues otherwise. This residue side
chain can be observed to pack against a tyrosine residue at position 79 in protein kinase A
crystal structures. Notably, the tyrosine at position 79 is three residues N-terminal to the
putative SDR at position 82, which is usually represented by glycine in R-3 kinases. I note
also from manual observation of multiple sequence alignments that most arginine-directed
kinases are characterised by a glycine insertion directly C-terminal to domain position 82.
The alignment-based analysis performed here therefore suggests that divergent residues in
the kinase hinge region (positions 79 to 83) between the N- and C-terminal lobes may con-
tribute to the -3 arginine preference (Figure 2.15).

Domain positions 158 and 162 are part of the kinase activation segment and have been
discussed previously. Position 185 is located on the kinase aF helix and is represented mainly
by valine in arginine-directed kinases and mainly by cysteine otherwise. Given its position
in the kinase domain, this position is unlikely to represent a direct determinant of specificity.

The R-3 kinases analysed belong to a total of 6 different kinase Groups (AGC, CAMK,
CMGC, STE, TKL, and ‘Other’). The structural analysis of some representative kinases
revealed some Group-specific features for R-3 binding. I find for example that -3 binding
in CMGC kinases is determined by the 127/189 acidic pair (discussed above), and therefore
that -3 arginine binding in CMGC kinases corresponds to -2 arginine binding in non-CMGC
kinases. For CAMK kinases also, it appears that an aspartate at position 87 binds to the
R-3 in addition to the SDRs discussed above (Figure 2.14). For STE kinases, the mode of
R-3 determination is not clear as the -3 arginine side chain is exposed to the solvent in the

relevant co-crystal structures.
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P-3 ARG

Fig. 2.15 The mechanism by which distal SDRs influence R-3 specificity is not currently
clear. A network of contacts spanning the N-terminal lobe (position 17) and the active site
(position 84) may affect R-3 selectivity. Positions 17 and 82 (coloured in red) were predicted
as SDRs.

Aspartate/glutamate (alignment and structure-based)

I identified 13 kinases (8 Other, 2 CMGC, 2 AGC, 1 CKI) that are acidophilic at position -3.

For PLK1/PLK3/CDCS5 (S. cerevisiae Polo-like kinase), a lysine at position 90 (aD he-
lix) 1s a likely determinant as it forms a hydrogen bond with the -3 glutamate according to
the model constructed here. Conversely, a lysine at position 86 (aD helix) is suggested as
a determinant by the CSNK2A1 model constructed here as it forms a hydrogen bonds with
the -3 glutamate (Figure 2.16). The model constructed here of the human CSNKID pro-
tein suggest that arginine at 162 (activation segment) and a lysine at domain position 205
(oG helix) are the determinants of specificity. Position 162 was previously implicated as an
pSer/pThr-3 determinant from an analysis of yeast kinases (Mok et al., 2010). In the con-
structed ADRBK1 model, the -3 glutamate side chain projects towards the solvent and does
not form polar contacts with the protein kinase. The basis for the acidophilic character of
ADRBKI1 at position -3 is therefore not clear.

There is some support for the structural findings here in the form of the putative SDRs
identified by alignment-based methods (see Methods chapter Section 6.1.3). Domains po-
sitions 86 (implicated in CK2 -3 D/E preference) was identified as a putative determinant,
as was domain position 127 (implicated in CK2 -2/-3 D/E preference) by the alignment-
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based tools employed here. Domain position 86 is marked in the alignment by an over-
representation of basic residues relative to non-acidophilic kinases. Domain position 127 is
marked in the alignment by an under-representation of glutamate residues relative to non-
acidophilic kinases (Figure 2.16). In the latter case, it is likely that the loss of negative charge
at this position contributes to a general acidic preference N-terminal to the phosphoacceptor.
Domain position 157 was also identified as a putative SDR, although it is probable that this
indirectly reflects the 41 acidophilic nature of some of the kinases listed rather than a direct
contribution of 157 to -3 constraint, given the position of 157 in the kinase structure (kinase
activation loop). Position 140 was also inferred as a determinant although the underlying
mechanism is unclear as this residue is located closer to the ATP/inhibitor ligand than the

substrate peptide in most kinase structures.
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Fig. 2.16 Two of the predicted SDRs (86 and 127) for D/E-3 mapped onto a CSN2KA1-
substrate model. Both kinase residues are in close proximity to the modelled position of the
-3 substrate residue
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2.3.7 Position -5

Leucine (alignment and structure-based)

I detected 21 kinases (14 CAMK, 5 AGC, 1 CMGC, 1PRK) with a moderate preference for
leucine at position -5. The alignment-based analysis performed here suggests positions 86
and 189 as putative determinants (Figure 2.17). For the -5 leucine preference, most kinases
with the preference feature a hydrophobic amino acid (mainly phenylalanine) at position
86. At position 189, most of the leucine-preferring kinases are marked by the absence of a
glutamate at this position. However, I note that this trend relates to the CAMK kinases only
— which account for 2/3 of leucine-preferring kinases — as all AGC and CMGC kinases with
this preference still feature a glutamate at this position. Both residues are proximal to the -5
leucine in a MARK?2-substrate structure (PDB: 3IEC), strongly suggesting that hydrophobic
interactions between the kinase and substrate form the basis for this interaction (Figure 2.17).

F I
F | 86 PHE
= A 90 VAL
Leu-5 P *

F A ;ab
M E
L V P-5 LEU
K S 189 THR
K S

non-Leu-5 E E - Q 195 LEU
K E
N E 194 SER
N E

Fig. 2.17 The two predicted SDRs for the L-5 preference (positions 86 and 189) are proximal
to the substrate and partly comprise a hydrophobic pocket surrounding the -5 substrate site
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2.4 Experimental validation of SDRs

Kinase mutations and kinase activitity assays were performed by Cristina Viéitez at the
EMBL research campus in Heidelberg. The mass spectrometry experiments were performed
by Vinothini Rajeeve under the supervision of Pedro Cutillas at the Barts Cancer Institute,
Queen Mary University of London. The author (David Bradley) selected the kinase to be
mutated, the positions to mutate, and the three target peptides. Pedro Beltrao and Cristina
Viéitez designed the assay. The data presented in Figure 2.18 was processed by Cristina
Viéitez. Figure 2.18 was generated by the author (David Bradley).

Experiments were then undertaken to validate the MSA-based analysis described above.
Here the objective was to mutate an SDR predicted from the analysis above and then to as-
say the peptide specificity of the wild-type and mutant kinases. For this purpose we analysed
domain position 164 for the L+4 preference and 189 for the L-5 preference, as neither pref-
erence had been fully characterised at the time of the analysis. The S. cerevisiae kinase Snfl
was selected for mutation as both L-5 and L+4 preferences are found in this kinase (Dale
et al., 1995). An overview of the experimental procedure is given in Figure 2.18. Briefly,
the 164 and 189 positions were first subject to non-synonymous mutations (Snfl A218L and
Snfl V244R, respectively). Each kinase was then incubated with 3 different peptides: WT,
MutA (L+4 — A+4), and MutD (L-5 — D-5).

The WT peptide should represent an optimal substrate for the WT Snfl kinases. The
MutD peptide however would be expected to represent an optimal substrate for V244R due
to complementary positive-negative charges between the kinase and substrate. For MutA,
we expected this peptide to bind to A218L with equal or greater efficiency than the WT
peptide, as the expected basis for L+4 specificity would be lost (see Position+4: leucine).
From Figure 2.18, we do indeed observe these trends generally across the 3 time points (0
min, 7 min, and 20 min) for each of the three kinases assayed (WT, A218L, and V244L).

A recent study also concomitantly predicted position 189 as an L-5 determinant from a
comparative structural analysis (Chen et al., 2017). However, while this residue was mutated
and the specificity tested, mutation of 189 always occurred in combination with other kinase
residues and so the role of position 189 per se as an L-5 SDR remained ambiguous. This
study exists in addition to a previous one experimentally confirming the role of position 195
as an L-5 determinant (Scott et al., 2002). Domain position 126 has also been predicted as
an L-5 determinant but without experimental confirmation (Mok et al., 2010). It is therefore
likely that position 189 is one of multiple residues in the kinase hydrophobic pocket that
confers L-5 specificity.
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The L+4 specificity in comparison was completely uncharacterised before this analysis,
and is significant because a traditional +1 determinant (164) has been linked to a distal

substrate position (+4) for the first time.
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Fig. 2.18 S. cerevisiae kinase Snfl was mutated at residues 218 (domain position 164) and
244 (domain position 189). The three SNF1 kinases (WT, A218L, and V244R) were sep-
arately incubated with the peptide substrates: one wild-type, one mutated at position+4
(MutA), and one mutated at position-5 (MutD). The extent of phosphorylation of each sub-
strate peptide by each kinase was determined using mass spectrometry. The results of this
analysis are explained in the main text.

2.5 Prediction of protein kinase specificity

Kinase sequence-based predictors of kinase specificity were discussed in the Introduction
section. Here I was interested in using the results discussed above to inform a new predictor
based on the kinase domain primary sequence. To this end, simple naive Bayes models were
constructed to predict kinase specificity in a binary fashion. For the proline+1 specificity, for

example, a given naive Bayes model would take a kinase primary sequence as an input and as
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an output would give the posterior probability that the kinase of interest has this specificity.
As a training set I use an MSA of all Ser/Thr kinase sequences with known specificity (i.e.
the 119 Ser/Thr kinases used for the analysis in this chapter). Each position in the sequence
alignment could potentially be used as a feature for model training. However, I limit feature
selection for each model to the SDRs predicted for that model as described above and as
listed in Figure 2.4a. I make only one exception for the R-2 model, as the 127 and 189 acidic
residues are strongly implicated as determinants in the literature but mediate their effects
inter-dependently and so were not predicted by the MSA-based procedure outlined in Figure
2.3

Models were generated for the five specificities with at least 20 positive examples in
the data set used: R-3, R-2, P+1, P-2, L-5. A leave-one-out approach was then used for
the cross-validation of models. This involved training a model on an MSA of all kinase
sequences with one removed (119-1 = 118 kinases for training), and then testing the model
on the excluded kinase. This procedure is repeated 119 times — once for each unique kinase.
The performance of the models was assessed by calculating the area under the ROC curve
and the area under the precision-recall curve, which are presented in Figure 2.19. The ROC
curve AUCs were also used to to select the optimal subset of model features (i.e. kinase
SDRs) to be used for training, which are listed in Table 2.4. The results presented in Figure
2.19 are based on these features.

Relatively high ROC AUC values were calculated for all five models (P+1: 0.99, P-2:
0.91, R-2: 0.82, R-3: 0.96, L-5: 0.82). The areas under the precision-recall curves (P+1:
0.98, P-2: 0.73, R-2: 0.47, R-3: 0.93, L-5: 0.55) were also higher than the baseline expec-
tation for all five cases (P+1: 0.30, P-2: 0.21, R-2: 0.23, R-3: 0.46, L-5: 0.18). To put these
results into perspective, I repeated this cross-validation procedure but for models trained us-
ing the Predikin method described in (Saunders et al., 2008) and the Introduction section.
I then repeated cross-validation again also using a naive Bayes model but this time using
the SDRs suggested by the Predikin method instead of those given in Table 2.4 (Brinkworth
et al., 2003; Saunders et al., 2008). The same data was used for training and cross-validation
for all 3 approaches (see Methods chapter Section 6.1.8). The results show that the naive
Bayes model (with MSA-predicted SDRs) performs as well as the full Predikin method for
all specificities except P-2, for which it performs better (Figure 2.19). The main advantage
of the naive Bayes approach is that it can predict the specificity of any alignable kinase se-
quence, whereas Predikin requires that at least one of the reference kinases is sufficiently
similar to the kinase of interest to make a prediction. Also, the Predikin approach is limited

to substrate positions -3 to +3 and so is unable to represent preferences such as L-5.
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Fig. 2.19 a) ROC curves for naive Bayes models for five different kinase specificities: P+1,
P-2, R-2, R-3, and L-5. b) Precision-recall curves for naive Bayes models for five different
kinase specificities: P+1, P-2, R-2, R-3, and L-5. ¢) Area under the curve (AUC) values for
the naive Bayes model (NB), the naive Bayes model trained upon the SDRs suggested by
Predikin, and the full Predikin method implemented here. The data used for model training
and cross-validation was the same in all three cases. The L-5 specificity is not represented
because the Predikin method only considers substrate positions -3 to +3
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P+1 159, 188, 196
pP-2 82,162, 188
R-2 127,162, 189

R-3 non-CMGC: 82, 86, 127, 162
CMGC: 86, 127, 189
L-5 86, 189

Table 2.4 Kinase SDRs that were used to train the naive Bayes models discussed above. All
positions were predicted as SDRs based on the approach presented in Figure 2.3 except from
the residues highlighted in red, which were derived from previous studies

2.6 Mutation of kinase SDRs in cancer

Kinase SDRs are often targeted in cancer and congenital diseases (Berthon et al., 2015;
Creixell et al., 2015b), and regulatory and substrate-binding regions are known to be fre-
quently mutated in non-cancerous diseases also (Dixit et al., 2009; Torkamani et al., 2008).
Here I have used mutation data from The Cancer Genome Atlas (TCGA:
http://cancergenome.nih.gov/) to quantify the extent to which SDRs are targeted relative to
kinase domain residues with other functional roles.

Overall, 20,032 unique mutations were mapped to the protein kinase domain. Some
of these kinases had been identified previously as the products of oncogenes or tumour-
suppressors and are recurrently mutated in these TCGA samples. The Ser/Thr oncokinase
BRAF for example was mutated 749 times in these samples, and 116 unique mutations were
found in the domain of the tumour suppressor CHEK?2. In some cases, the cancer-associated
kinases are mutated at residues that are likely to affect the peptide specificity of the kinase.
For example, the cancer-associated kinase ERBB4 is found to be mutated twice at domain
position 159 (in the +1 binding pocket), and its oncogenic paralogue ERBB2 was found to
be mutated 17 times at position 164, which also forms part of the P+1 pocket. However, the
mechanism (if any) linking these mutations to cancer progression awaits further experimental
analysis.

For further analysis, I divided the kinase domain into one of four functional categories:
‘regulatory’, ‘catalytic’, ‘SDR’, and ‘Other’. ‘Regulatory’ positions are defined as those
residues that are either located in the activation loop or are proximal in space to the primary
activation loop phosphate. I include the kinase regulatory spine and the APE motif also as

both regions have been linked to kinase regulation (Steichen et al., 2010; Taylor and Ko-
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Catalytic 8,10, 13, 15, 28, 30, 48, 85, 123, 125, 128 129, 130, 131, 140, 141, 186, 190
Regulatory | 44, 52, 63, 121, 122, 142, 144, 145, 146, 147, 148, 149, 150, 151, 152, 155, 156, 157, 158, 165, 166, 167
SDR 6,126, 127, 157, 158, 159, 161, 162, 164, 189

Table 2.5 Kinase domain positions that were used to define the functional kinase categories
described in the main text

rnev, 2011). The ‘catalytic’ positions were defined primarily from the literature and were
discussed in the Introduction chapter; residues of the catalytic spine were included also (Tay-
lor and Kornev, 2011). I considered as ‘SDRs’ those residues that are both listed in Figure
2.4 and are proximal to the substrate (within 4 A of the substrate peptide). This therefore
represents a ‘high-confidence’ set of predicted SDRs that will minimise the number of false
positive SDR predictions. ‘Other’ represents the complement of the kinase domain to these
other three sets. These functional categories are represented structurally in Figure 2.20 and
listed in Table 2.5.

Analysis of this mutation data reveals that the ‘SDRs’ are more frequently mutated than
‘Other’ residues with an unassigned function (Mann-Whitney p = 0.0006, one-tailed; Fig-
ure 2.20). This corresponds well to previous findings that kinase SDRs are often targeted in
cancers. The finding that ‘SDRs’ are also more frequently mutated than ‘catalytic’ residues
(Wilcoxon p = 0.010, one-tailed; Figure 2.20) contradicts a previous analysis suggesting a
stronger enrichment of non-synonymous mutations in catalytic residues (Dixit et al., 2009).
However, it is in agreement with a more recent analysis suggesting that kinase mutations
altering kinase specificity are more common than mutations that would be predicted to in-
activate the kinase (Creixell et al., 2015b).

Finally, I was interested to determine whether kinases SDRs are differentially targeted
between kinases of different specificities. To this end, residue mutation frequencies were
compared between predicted P+1 kinases and predicted R-3 kinases in human (posterior
probability > 0.9 for both P41 and R-3 predictors, respectively), as P41 and R+3 represent
the most common human specificities. For this comparison I identify 3 kinase SDRs (159,
161, and 164) that are differentially mutated between the two groups (Figure 2.20). I find this
to be the case also when analysing just kinases of known specificity and therefore exclude the
possibility that this result could be an artefact of inaccurate naive Bayes specificity predic-
tions (Appendix Figure A.1). Domain position 164 and 161 are located in the P+1 loop and
were mutated more often in proline+1 kinases. For position 161, the MAP kinases in par-
ticular are recurrently mutated in independent samples (MAPK1: 3, MAPKS: 3, MAPK11:
2, MAPK1: 1). This position is known to bind to the phosphotyrosine at 157 that exists in
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MAPKSs (Varjosalo et al., 2013). However, a previous study suggests that this this secondary
activation loop phosphotyrosine is more important for kinase activation than kinase speci-
ficity (Prowse et al., 2001). Conversely, position 159 and 164 are both expected to be critical
for kinase specificity and are highly conserved within their respective subgroups (high 164
R conservation in P+1 kinases and high 159 G conservation in R-3 kinases). I therefore find
some limited evidence that the frequency of SDR mutations can differ depending upon the

kinase specificity.
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Fig. 2.20 a) Division of the kinase domain into functional categories ‘regulatory’ (orange),
‘catalytic’ (blue), ‘SDRs’ (red), and ‘Other’ (grey). b) The frequency of kinase domain
mutation by functional category. c) The frequency of residue mutations for predicted R-3
kinases (x-axis) and P+1 kinases (y-axis). SDRs listed in Figure 2.4 for R-3 and P+1 are
coloured in red.

2.7 Discussion

The analysis of kinase sequence and kinase structure has been combined to provide a com-
prehensive study of protein kinase specificity. Specificity models were first constructed for
over 100 kinases belonging to either human, mouse, or S. cerevisiae. An unsupervised learn-
ing approach was then adopted to identify recurrent specificities for substrate positions -5 to
+5. For each recurrent preference, MSA positions with the strongest association to that pref-
erence were predicted as SDRs. Where possible, available kinase-substrate structures in the
PDB have been used to rationalise the results obtained. However, several kinase-substrate
were also constructed where the specificity of interest was not represented by the list of

cocrystal structures given in Tables 2.1-2.3. Two of the SDRs predicted were validated
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experimentally using a mass-spectrometry based approach. I also use the results here to
interpret data from the The Cancer Genome Atlas (TCGA: http://cancergenome.nih.gov/),
and demonstrate that SDRs are more frequently mutated even than catalytic residues, and
that SDRs can be differentially mutated between kinases of different specificities. Finally,
I aggregated contact data from all known kinase-substrate cocrystal structures to give an
overview of physical kinase-substrate interactions.

The physical analysis of kinase-substrate contacts is largely concordant with a previous
analysis suggesting well-defined pockets in the kinase (‘subsites’) required for binding to
the substrate positions -3 to +3 (Brinkworth et al., 2003). Remarkably, most of the kinase-
substrate contacts described for that analysis of only three structure — CDK, PKA, and PHKg
— are recapitulated among many of the newer structures analysed here and therefore attest
to the structural conservation of the kinase domain in its active conformation. The analysis
of newer structures however demonstrates a broader range of contacts than first described,
and that most kinase-substrate contacts are not universal even if common. These results
imply that the structure-guided prediction of kinase specificity (as implemented in Predikin,
for example) should still provide a reasonable estimate for many canonical protein kinases.
However, for some kinases these structure-based predictions will not be valid. The haspin
kinase-substrate structure and the NAK-peptide model for example deviate strongly from
the structures used to guide the Predikin approach (Eswaran et al., 2008; Maiolica et al.,
2014), where the substrate binds in an extended linear conformation. Both kinases belong
to the non-canonical ‘Other’ Group whereas most of the kinases listed in Tables 2.1-2.3
belong to the AGC/CAMK/STE Groups. The extent to which the binding profile presented
in Figure 2.2 will apply to other Groups is not clear at present, but for the ‘Other’ kinases
in particular a broad range of binding conformations is likely given the current evidence.
Structural approaches also do not account for the looping of the substrate discussed in the
Introduction chapter, but from the Results above it is clear that this can have a strong effect on
kinase specificity. L+4 looping for example (Figure 2.10) allows a traditional +1 determinant
(position 164) to influence +4 specificity. The prevalence of substrate looping at the active
site is not currently known.

The 119 specificity models constructed suggest strong constraint for the -3, -2, and +1
positions. This is consistent with the structural evidence as dedicated pockets for binding
exist for these positions, whereas binding to -4 and -1 is generally weak, and the +2 and +3
residues bind usually in a groove between the aC helix and the activation loop. However,
as with the structural data, the specificity data is incomplete (only ~20% of human kinases
covered) and biased towards the canonical AGC/CAMK/STE Groups. Whether the results

will be robust to the influx of new data from human and/or other species remains to be
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seen. It should be noted however that the results presented here are largely consistent with a
previous study surveying the specificity of 61 S. cerevisiae kinases (~50% of kinome) (Mok
et al., 2010).

The analysis of specificity here covers previously characterised preferences (P+1, R-3,
R-2) but also under-studied ones (L-5, P-2, L+4, etc). Generally, the results generated for
the well-characterised species are in agreement with past studies, but some new features
were discovered also. I suggest for example that position 127 is a determinant for R-3 also
and not just for R-2, a prediction that has recently been validated (Barber et al., 2018a).
For P+1, the structural analysis also implicates domain position 202 as a determinant in
the CDKSs specifically. For R-3, it was noted also that the mode of kinase binding differs
between the AGC, CAMK, CMGC and STE Groups. This should be contrasted with the
R-2 preference, where the mode of binding is identical between the distantly related AGC
and STE Groups (Zhu et al., 2005b). Finally, a number of SDRs distal from the kinase active
site were also predicted. I propose a mechanistic role for a few cases, but these have yet to
be validated experimentally. It will be interesting to probe in the future the mechanism (if
any) linking these distal positions to the kinase active site.

Insights were also revealed for many specificities that were poorly characterised previ-
ously. In most cases, the predicted SDRs were not entirely new but represent ‘new’ roles
for SDRs previously assigned to a different specificity. Position 189 for example was previ-
ously linked to R-2/R-5 specificity (Zhu et al., 2005b), but its role as an L-5 determinant was
predicted and experimentally validated also. As described above, position 164 is tradition-
ally considered as a +1 determinant (Kannan and Neuwald, 2004; Zhu et al., 2005a), but we
predict and experimentally validate its role as a +4 determinant also. Other specificities are
not represented by the structures in Tables 2.1-2.3 and so models have been manually con-
structed here for the kinase-substrate interface. In many cases the same specificity is found
in distantly related Families. For some cases — such as D/E+1 in in the CK2 (CMGC) and
GRK (AGC) - the models suggest that the same specificity has evolved by different mecha-
nisms in the two Families. In this case, the SDRs for CKs had been experimentally verified
before (Sarno et al., 1997), and so this conclusion is supported by extension. However, in
other cases the opposite is observed; that the same specificities in unrelated Families had
converged upon the same mechanism to determine that preference. This is suggested to be
the case here for D/E+2 in the PLK and CAMK?2 Families upon the basis of the modelled
interface for PLK3 and its substrate and a kinase-substrate crystal structure of CAMK?2 in the
PDB. As more structural data becomes available, it will be interesting to determine whether

or not the model-based predictions were correct. A summary of all SDRs discussed in this
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chapter, based either on structural models or kinase sequence evidence, is given in Figure
221

The results listed in Figure 2.4 were used to construct sequence-based naive Bayes pre-
dictors for P+1, R-3, R-2, P-2, and L-5. Benchmarking of these models reveals that they
perform similarly to the Predikin method for specificity prediction (Saunders et al., 2008),
except for the P-2 specificity, which is modelled more successfully using the naive Bayes ap-
proach. There are three advantage overall to this approach relative to Predikin 1) predictions
can potentially made for any specificity and not just those within the -3 to +3 window. 2)
Predictions can be made for any query kinase sequence, although the accuracy of prediction
will vary (depending on whether any kinases in the training set were similar in sequence to
the query kinase) and 3) the predictions are probabilistic, and so the level of confidence in
the prediction can be quantified. All three of these are significant advantages for research
into the evolution of protein kinase specificity, and this is explored further in Chapter 3.

Finally, as an application of these findings, I used the results here to interpret cancer
genome data from The Cancer Genome Atlas (TCGA: http://cancergenome.nih.gov/). I first
discovered that kinase SDRs are mutated more frequently than random residues in the kinase
domain, and even more often than catalytic residues. This accords with a previous analysis
and suggests that signalling pathways are more likely to be rewired than inactivated dur-
ing tumourigenesis (Creixell et al., 2015b). It was also found that SDR mutations can occur
differentially between kinases of different specificities, which is in line with expectation con-
sidering that the impact of SDR mutation will differ depending upon the specificity of the
kinase. Grouping all SDRs regardless of kinase specificity would therefore over-estimate
the effect of mutation for some kinases. Overall, the results generated here could be ex-
pected to help further in classification of cancer mutations into ’drivers’ and ’passengers’.
More generally, multiple other pathologies can be triggered also by kinase domain muta-
tions (Lahiry et al., 2010), and I expect the results presented here to aid in the interpretation

of such variants.
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Group/Family  Specificity SDRs

Fig. 2.21 Summary of all SDRs discussed in this chapter, either on the basis of structural
evidence or sequence evidence (or both). The left-hand column refers to the kinase Group
and Family where applicable. The middle column refers to the kinase specificity. The third
column refers to the SDRs associated with a particular kinase specificity and Group/Family.






Chapter 3

The evolution of kinase function

In this chapter, I investigated the evolution of kinase specificity following speciation and fol-
lowing gene duplication. All of the analysis was performed by the author (David Bradley)
under the supervision of Pedro Beltrao. Some of the work presented in this chapter was in-

cluded in a preprint manuscript:

David Bradley, Cristina Viéitez, Vinothini Rajeeve, Pedro Cutillas, and Pedro Beltrao (2018):

Global analysis of specificity determinants in eukaryotic protein kinases. bioRxiv

3.1 Introduction

Protein kinase peptide specificity was discussed extensively in Chapter 2 from a structural
perspective. The objective of Chapter 3 instead is to investigate the evolution of protein ki-
nase specificity and the evolution of kinase SDRs. This is a key question in evolutionary cell
biology as kinases often serve as ‘hubs’ in complex signalling pathways (Albert, 2005; Zhu
et al., 2007). Changes in kinase specificity are therefore likely to represent dramatic changes
in their corresponding kinase-substrate networks. However, this subject has received sur-
prisingly little attention in the literature compared to studies regarding the evolution of tran-
scription factor specificity (Babu et al., 2004, 2006; Howard et al., 2014; Teichmann and
Babu, 2004). Moreover, while some studies do exist for the evolution of phosphorylation
sites (Beltrao et al., 2009; Freschi et al., 2011, 2014; Landry et al., 2014, 2009), the phos-
phorylating kinases and their evolution are not usually considered in these analyses. For this
chapter, I focus on protein kinases as potential alternative drivers of phenotypic diversity and
divergence. The evolution of kinase orthologues and paralogues are first studied separately
and then both are considered together for a detailed case study of kinase evolution within

one Family.
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The extent to which kinase specificity is conserved between orthologues is not under-
stood. However, previous experimental studies suggest indirectly that kinase specificities
are conserved between distantly related species. Most notably, a genetic complementation
study in Schizosaccharomyces pombe revealed that the human CDK1 could functionally
substitute for the fission yeast cdc2 cyclin-dependent kinases (Lee and Nurse, 1987). This
implies that the specificities of these kinases are also conserved between S. pombe and hu-
man. Since then, a number of Saccharomyces cerevisiae kinases have been similarly comple-
mented genetically, including CDC28, HOG1, CDC15, MPS1, CAK1, and HRR25 (Elledge
and Spottswood, 1991; Hamza et al., 2015; Yang et al., 2017). In 2010, more direct evidence
for the specificity of conservation was provided when 61 S. cerevisiae kinases were assayed
using peptide libraries (Mok et al., 2010). This experiment revealed a number of examples
where kinase motifs are conserved between budding yeast kinases and their human ortho-
logues (Miller and Turk, 2018). For example, the S/T-P-x-K motif is found in both CDC28
S. cerevisiae and CDK?2 (human), and the R-R-x-S/T motif in both Tpkl S. cerevisiae and
PKA (human). However, the extent to which kinase specificities are conserved between or-
thologues has not been investigated systematically. In this chapter, the extent of specificity
conservation is quantified for the first time using experimental data from both S. cerevisiae
and human. The predictive models presented in Chapter 2 are leveraged here also for a pan-
taxonomic conservation analysis. These models take a primary kinase sequence as an input
and therefore can be used to predict kinase specificities from a wide range of species.

Orthologues are generally assumed to be more conserved in function than paralogues
— the so-called ‘orthologue conjecture’ — and this assumption extends to protein kinases
also (Koonin, 2005; Studer and Robinson-Rechavi, 2009; Thomas et al., 2012). Paralogue
divergence in protein kinases can be tested by comparing kinases belonging to different
Families or Subfamilies, which are most often generated following gene duplication events.
Therefore, by identifying divergent residues between sister families in a kinase phylogeny,
it would be possible to discover the residues responsible for the functional specialisation of
kinases following duplication. This is attempted in this chapter for 99 kinase Families and
88 kinase Subfamilies. 1 adopted a phylogenetic approach for functional residue prediction
to explicitly account for residue changes occurring only following gene duplication. The re-
sults are then aggregated between Families to gain a global perspective of kinase evolution at
the Family level. Sequence changes that map to kinase SDRs imply the divergence of kinase
specificity. These analyses are performed at the Subfamily level also for this study to gain
insight into more recent evolutionary divergence.

Finally, ancestral sequence reconstructions are used for the detailed evolutionary anal-

ysis of a single kinase Family. This analysis follows from the previous ancestral sequence
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construction of the CMGC Group in 2014 (Howard et al., 2014), which was concerned with
the R+1 and P+1 specificities in particular. The central conclusions from that analysis were
1) that substitution of a single residue can induce divergence in specificity 2) divergence can
occur without a corresponding drop in kinase activity and 3) evolution of a new specificity
occurred through an intermediate of broad specificity and therefore occurred via a process
of subfunctionalisation. The purpose of the research conducted in this chapter was to test the
generality of these conclusions with respect to kinases of a different Family and specificity.
It was also hoped that a detailed case study would strengthen the understanding of kinase
evolution at the active site. Towards this end, an evolutionary reconstruction of the GRK (G
protein-coupled receptor kinase) Family was performed, which is an acidophilic kinase that

likely emerged from a basophilic ancestor (Lodowski et al., 2006).

3.2 Conservation of specificity between orthologues

3.2.1 Conservation of predicted specificities

As discussed in the Introduction section of this chapter, the extent to which kinase peptide
specificities are conserved between orthologues is not currently understood. To explore this
further, the sequence-based naive Bayes models described in Chapter 2 have been used to
predict the specificity of kinase orthologues. All five models — P+1, P-2, R-2, R-3, and L-5 —
performed well when assessed by cross-validation (Figure 2.19) and are therefore appropriate
for the evolutionary analysis performed in this chapter.

I use the Ensembl Genomes pan-taxonomic Compara resource for the prediction of ki-
nase orthologues across a taxonomically broad dataset, including sequences from fungi,
plants, metazoa, and protists (Herrero et al., 2016; Kersey et al., 2018; Yates et al., 2015). In
Figure 3.1, conservation values are plotted for the SDRs across orthologues for each of the
five specificities listed above. The conservation values were averaged across three functional
categories: ‘kinase domain’, ‘SDR’, and ‘catalytic’. In all five cases, the SDRs predicted in
Chapter 2 are highly conserved and are also more highly conserved than random (i.e. non-
SDR) residues in the protein kinase domain. These results suggest that sequence changes
likely to affect kinase peptide specificity have been subject to purifying selection. However,
the average conservation of kinase SDRs is less than that of kinase catalytic residues, sug-
gesting that a modest level of orthologue divergence may have occurred during evolution.

To test this, the naive Bayes models described above were used to determine whether the
variation observed is likely to alter the kinase specificity. Towards this end, average poste-
rior probabilities were calculated for each orthologous group of kinases, where the human
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Fig. 3.1 Conservation of kinase domain residues, SDRs, and catalytic residues across ortho-
logues. Each data point represents the average conservation (among kinase domain posi-
tions, SDRs, or catalytic residues) for an alignment of orthologous kinases where the human
kinase is of corresponding specificity (P+1, R-3, R-2, etc.). The conservation values were
calculated using a protein substitution matrix (see Methods chapter Section 6.2.1)
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kinase is of corresponding specificity (P+1, R-3, P-2, etc.) As above, the results suggest
that the specificity of orthologues is highly conserved for all five specificities (Figure 3.2).
Indeed, only 5% of orthologous groups overall were found to have diverged in specificity
(i.e. the average posterior probability across orthologues was less than 0.5). For example,
the Wee2 protein in human features a hydrophobic -5 binding pocket, but retrieval of kinase
orthologues reveals this to be the case mainly for vertebrate sequences only, due to the pres-
ence of an E at position 189 in most other sequences. Likewise, the CAMK kinase TSSK3
is predicted to be an R-3 kinase in human but not for its non-vertebrate orthologues due to

non-conservative substitutions at positions 82, 86, and 162.
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Fig. 3.2 For each of the five specificities represented, each data point represents the average
posterior probability (PP) among orthologues of a human kinase of corresponding specificity
(P+1, R-3, R-2, etc), according to the naive Bayes models presented in Chapter 2. This
is the posterior probability that the kinase sequence has the same specificity as its human
orthologue (P+1, R-3, R-2, etc).

Finally, I investigated the extent to which kinase specificity is predicted to differ between
one-to-one orthologues and one-to-many orthologues. One-to-many orthologues differ from
one-to-one orthologues in the sense that the former represents orthologues that have under-
gone at least one round of gene duplication subsequent to the speciation event that generated
them. One-to-one orthologues however are present only as single copies for the two species
being considered. I therefore hypothesised that one-to-many kinase orthologues would be

more like to have diverged in their specificity than one-to-one orthologues of the same age,
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assuming that gene duplication will have led to a relaxation of selective constraint upon gene
function (Altenhoff et al., 2012; Koonin, 2005; Rogozin et al., 2014). In Figure 3.3, the di-
vergence of one-to-many orthologues is compared with one-to-one orthologues of the same
species, again using the naive Bayes predictive models presented in Chapter 2. For each data
point, the mean posterior probability among one-to-many orthologues of a given species was
subtracted from the mean posterior probability among one-to-one orthologues of the same
species. Therefore, if one-to-many orthologues were more divergent on average then this
net difference would be greater than 0. The results provide no evidence for the hypothesis
that one-to-many orthologues will have been more likely to have diverged than one-to-one
orthologues (Figure 3.3). This finding is discussed further in the Discussion section.

Difference in conservation between one-to-one and one-to-many orthologues

0.50 -
o

4 -0.25-

O-to-0 - O-to-M (posterior probability)
o
8
I
I' L]

-0.50 -

-0.75 - z v v v v
P+1 P-2 R-3 R-2 L-5
Specificity

Fig. 3.3 Divergence in kinase peptide specificity for one-to-many orthologues and one-to-
one orthologues. Each data point represents the difference in average posterior probability
between one-to-one orthologues and one-to-many orthologues (O-to-O - O-to-M) for ortho-
logues of the same species

3.2.2 Conservation of empirical specificities

I next used empirical models of specificity to assess the conservation of kinase specificity.
As described in Chapter 2, substantive data on kinase specificity currently only exists for
human, mouse, and S. cerevisiae. The objective of this analysis was therefore to determine
the extent to which the specificity of yeast kinases differs from that of their orthologues in
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mouse and human. The advantage of this approach relative to the analysis conducted above
is that a broader range of kinase specificities can be considered, and that all positions flanking
the phosphoacceptor can be taken into account rather than just a single position at a time.
For human and mouse kinases, I use the 101 phosphosite-based specificity models that
were described in Chapter 2. For the yeast specificity models, I use the 18 phosphosite
models described in Chapter 2 in addition to 61 specificity models derived from the peptide
library screen presented in (Mok et al., 2010). The Mok et al PWMs were required to extend
the sample size of S. cerevisiae PWMs, although the accuracy of these 61 models is not
clear as the cross-validation procedure described in Chapter 2 can not be applied to them.
The human and yeast orthologous kinases often share similar features, as represented by two

examples of orthologous groups given in Figure 3.4.
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Fig. 3.4 Specificity logos for the casein kinase II orthologous group (left) and the
SNF1/PRKAA orthologous group (right). In both examples, key features of specificity have
been conserved between the human and yeast orthologues
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Overall, 14 orthologous groups were identified that contained specificity models from
both human/mouse and S. cerevisiae. The divergence in specificity between orthologues was
computed by calculating the Frobenius distance between the two specificity matrices (hu-
man/mouse and S. cerevisiae). This metric represents the sum of the squared element-wise
distances between models (followed by square-rooting) and so increases when specificity
diverges between kinases. To determine whether the differences are significant, they are
compared to a null distribution of Frobenius distances calculated for kinases within the same
Family and species (n=218). This assumes that kinase specificity is generally conserved at
the Family level within a species. This assumption is discussed further in the Divergence
of kinase peptide specificity subsection (subsection 3.3.4). I also calculated p-values from a
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more stringent null distribution generated by comparing kinases within the same Subfamily

and species (n=110).
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Fig. 3.5 The divergence in specificity between yeast kinases and their human/mouse or-
thologues is computed by calculating the Frobenius distance between the yeast and hu-
man/mouse specificity matrices. This is then compared to a null distribution of Frobenius
distances from kinases belonging to the same Family and species. An example of specificity
conservation (Cdc28/CDK2: top) and divergence (Pkc1/PKNT1: bottom) is given on the right
hand side. Hs = Homo sapiens, Sc = Saccharomyces cerevisiae.

As expected, the results of this investigation suggest that kinase specificity is highly
conserved between human/mouse and S. cerevisiae despite an estimated divergence time of
1.3 billion years (Vlastaridis et al., 2017). Overall, I identify only 3 orthologous groups
with evidence of orthologue divergence at a significance level of 0.05 (Table 3.1). Very
similar results were found when using a null distribution constructed from within-Subfamily
Frobenius distances. In Figure 3.5, an example is given of orthologue conservation and
divergence for the yeast kinases Cdc28 and Pkcl, respectively. For the second example, the
+2 R/K signature is present in the yeast kinase (PKC1) but seems to absent in one of its
human orthologues (PKN1).

This analysis was then repeated but this time excluding positions from the PWMs with-
out any evidence of substrate selectivity. The purpose of this was to exclude random varia-
tion (i.e. noise) from the distance calculations so that only positions contributing to kinase
specificity are considered. The results of this analysis are consistent with those generated
when considering the full matrix for comparison between orthologues, as I identify only two
orthologous groups with evidence of orthologue divergence at a significance level of 0.05
(Table 3.1).

Finally, I repeated the analysis but instead grouped human/mouse and yeast kinases ac-
cording to their Family/Subfamily assignations instead of by their orthology predictions. The

purpose of this was to determine whether the conclusions stated above are robust to the
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method used to group yeast kinases with their human/mouse counterparts, as orthology pre-
dictions themselves are not without error (Altenhoff et al., 2016; Vallender, 2009). For the
results shown in Table 3.2, the yeast kinases are matched instead to human/mouse kinases
belonging the same Family or Subfamily according to manual annotations (Manning et al.,
2002b). The results of this analysis are largely concordant with the results given in Table
3.1. Specifically, the results reveal that 4/18 yeast kinases show evidence of divergence
when comparing the full specificity matrices. The evidence overall therefore suggests that
orthologous kinases between human/mouse and S. cerevisiae tend to be conserved in terms

of their active site specificity.
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3.3 The evolution of kinase Families and Subfamilies

The research presented above concerns kinases separated originally by a speciation event
(i.e. kinase orthologues). This following analysis instead focuses on the evolution of the
kinase domain following a gene duplication event. This is achievable by studying the evolu-
tion of kinase Families and Subfamilies, which are normally generated by gene duplications.
The objective of the research was therefore to identify residue substitutions following gene
duplication that are responsible for the functional divergence of kinase Families and Sub-
families.

Towards this end, I have adapted a previously published method for the identification of
functionally divergent residues using ancestral sequence predictions. The BADASP (Burst
After Duplication with Ancestral Sequence Predictions) tool is a phylogenetic method that
aims to identify divergent residues that arise following gene duplication (Edwards and Shields,
2005). Residues are predicted to be divergent if they are conserved within the clade of in-
terest but differ between sister clades, as inferred using ancestral sequence reconstructions.
This method is typically applied towards a given family of interest but I have automated
its implementation to predict divergent residues for all kinase Families in a global kinase
phylogeny. The adapted method used for this analysis is presented in Figure 3.6.

A score is generated for each position in the alignment. RC (recent conservation) repre-
sents the sequence conservation for the clade of interest (clade A). AC represents the con-
servation of ancestral nodes for the clade of interest (clade A) and the nearest sister clade
(clade B); this is given as a 1 if the most likely residues are identical to each other and a
—1 otherwise. As an innovation here I also weight the predicted scores to account for the
uncertainty in ancestral sequence predictions. This is represented by the p(AC) term in the
equation. For matching residues (AC=1), this is the posterior probability of the predicted
residue for clade B; for differing residues (AC=-1) this is the summed posterior probability
of all residues in clade B besides from the predicted residue for clade A. Therefore, scores for
suspected divergence would be down-weighted if there is ambiguity concerning the nature

(matching or mismatching) of the clade B ancestor.
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ScoreFaminA = RCFamilyA - AC x p(AC)
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Fig. 3.6 Explanation of the scoring method for the systematic identification of kinase func-
tionally divergent residues. A score is generated for each position in the alignment. RC:
sequence conservation within the clade of interest (Family A). AC: ancestral conservation
between predicted ancestral residue for the clade of interest (Family A) and predicted an-
cestral residue for the sister clade (Family B). p(AC): probability that the ancestral sequence

predictions are correct
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3.3.1 Functional divergence at the Family level

To begin the evolutionary analysis, a global kinase phylogeny was constructed from the
kinase domain sequences of 9 different opisthokont species (H. sapiens, M. musculus, S.
purpuratus, D. melanogaster, C. elegans, A. queenslandica, M. brevicollis, S. cerevisiae, C.
cinerea). All kinomes had been manually annotated previously and so the computational pre-
diction of Group/Family/Subfamily classifications was not necessary (Manning et al., 2002b).
Functionally divergent residues across all Families were then predicted using the scoring ap-
proach described above. In Figure 3.7, the results of this analysis have been aggregated by
counting the total number of observed ‘switches’ at each site across all Families considered.
I consider a residue to have switched at a particular Family if its score is above the 95th
percentile of scores for all residues compared at the Family level, which in this case is 1.79.
Domain positions with more than 8 observed switches (90th percentile) are considered to be
‘frequent switchers’. This plot reveals that the distribution of switch events is non-uniform.
In particular, I find an especially high number of switches within or close to the kinase ac-
tivation segment, but also at the aC helix, the f5-aD region, and the aF-aG regions, all of

which had been discussed in Chapter 2 in the context of kinase specificity.
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Fig. 3.7 Number of switches for each residue in the protein kinase domain when kinases are
compared at the Family level

Number of switches

To aid in the structural interpretation of the results, functions have been assigned to each
residue of the kinase domain where possible. The Catalytic and Regulatory categories are
self-explanatory and are defined as they were for the analysis of cancer mutations in Chapter
2. I define as a Proximal residue any residue within 4 A of the substrate peptide; substitutions

of these residues may affect kinase specificity. Distal residues refer to putative SDRs listed
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in Figure 2.4 that are not within 4 A of the substrate peptide. Finally, Interactions residues
refers to those sites that are often found to be in contact with other protein domains in co-
crystal structures (see Methods chapter Section 6.2.3). Other represents the complement of
the kinase domain against these 5 previous sets.

In Figure 3.8, the total number of switches per residue is grouped according to the func-
tional annotation of the residues. The majority (14/21) of frequently-switching residues can
be assigned to a functional category (Catalytic, Proximal, Regulatory, etc.), which is more
than would be expected by chance (p,,;;,=0.0083 ; Fisher’s Exact Test, one-sided). This
suggests that the approach here successfully predicts residues that are of functional rele-
vance for the kinase domain. I also find that the median number of substitutions for Proximal
residues is significantly higher than for residues with no assigned function (Other residues)
(Mann-Whitney, one-tailed, p = 1.1x107>). This analysis therefore suggests that kinase
Family evolution is dominated by changes that are likely to affect peptide specificity at the

active site.
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Fig. 3.8 Functional analysis of divergent residues at the Family level. Left: mapping of the
number of switches per residue to the protein kinase domain (PDB: IATP). Deeper shades
of red denote a higher number of switches. Right: The number of switches per residue is
grouped according to the functional annotation of residues. Descriptions of the categories
are given in the main text
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3.3.2 Functional divergence at the Subfamily level

The above analysis was then repeated at the Subfamily level. This gives a more recent
overview of kinase functional evolution considering that Subfamilies generally emerged later
in evolution than kinase Families. As before, for a given comparison between Subfamilies, a
residue is considered to have ‘switched’ if its score is greater than the 95th percentile of all
scores for comparisons at the Subfamily level, which in this case is 1.90.

In Figure 3.9, the total number of observed switches at the Subfamily level is plotted for
every residue in the protein kinase domain. I consider domain positions with more than 7
observed switches (90th percentile) to be ‘frequent switchers’. Overall, the results are similar
to what was observed for the Family-level analysis, as the switch events are non-randomly
distributed and cluster towards particular domain regions (activation segment, aC helix, and

the aF-aG regions).

7

Number of switches

FI—

Fig. 3.9 Number of switches for each residue in the protein kinase domain when kinases are
compared at the Subfamily level

In Figure 3.10, the total number of switches per residue at the Subfamily level is grouped
according to the functional annotation of the residues. As with the analysis at the Family
level, the majority (11/15) of frequently switching residues can be assigned to a functional
category (Py,p £amity=0.0008 ; Fisher’s Exact Test, one-sided). Moreover, Proximal residues
on average switch significantly more often than is the case for residues without an assigned

function (Mann-Whitney, one-tailed, p = 1.0><10_4). I therefore predict that changes in ki-
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nase peptide specificity are more common than any other functional change at the Subfamily
level, although the overlap here with ‘Other’ residues is greater than for Families. This is
consistent with the detailed analysis of the GRK Family described below, where several
substitutions between GRK Subfamilies were observed that would be likely to affect kinase
specificity.
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Regulatory _
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Interactions  _

Fig. 3.10 Functional analysis of divergent residues at the Subfamily level. Left: mapping
of the number of switches per residue to the protein kinase domain (PDB: IATP). Deeper
shades of blue denote a higher number of switches. Right: The number of switches per
residue is grouped according to the functional annotation of residues. Descriptions of the
categories are given in the main text

3.3.3 Examples of functional divergence

From this analysis, residue divergence scores have been calculated for 99 kinase Families
and 88 kinase Subfamilies. 1 expect the results generated for any given Family or Subfamily
to be of interest to specialist kinase researchers. Examples are given below to illustrate the
different mechanisms by which residue divergence may affect kinase function. The target-
ing of these regions with drugs could enable the selective inhibition of a kinase Family or
Subfamily of interest.
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Substrate docking

Three divergent residues identified for the SRPK (SR-protein kinases) Family map to the aF-
aG region. The SRPKSs are known primarily for their involvement in the control of mRNA
splicing, but they also have roles in the cell cycle, metabolic regulation, and the organisation
of chromatin (Giannakouros et al., 2011). They are members of the CMGC Group but are
generally basophilic rather than proline-directed (Wang et al., 1998). This is in agreement
with the results generated here, as 2 of the 3 switches mapping to the aF-aG region generate
additional negative charges. Analysis of a SRPK-peptide structure reveals that the 3 residues
identified bind to arginine residues in the substrate peptide (Ngo et al., 2005), suggesting
that the substitutions presented in Figure 3.11 (top) increase the affinity of the kinase for the
substrate (PDB: 1WBP). Since the kinase residues are located outside the active site, then

the kinase-substrate contacts can be considered as docking interactions.

Regulation of activity

For the analysis of CDC7 Family (CMGC), I identify two divergent residues that are likely
to affect the function of kinases within this Family (Figure 3.11 bottom). Both map to the
N-terminal lobe of the kinase and interact with the DBF4 protein (PDB: 4F9A). Specifically,
arginine at kinase position 68 interacts with D328 on DBF4, and an aspartate at kinase po-
sition 71 interacts with H315 on DBF4 (Hughes et al., 2012). Both interactions are likely to
increase the affinity of the kinase for DBF4. This is relevant for the regulation of CDC7 ac-
tivity as DBF4 is required for the activation of CDC7 (Matthews and Guarné, 2013), which
is necessary for the initiation of DNA replication.

Peptide specificity

The Polo-like Kinases (PLKs) belong to the ‘Other’ Group and are generally important for
mitotic entry and mitotic exit (Glover et al., 1998). They are acidophilic kinases but form
a sister clade to the Aurora kinases (kinase.com), which are themselves basophilic (Brown
et al., 2004; Johnson, 2011; Salvi et al., 2012). SDR divergence was therefore likely neces-
sary for the functional specialisation of the Aurora and PLK Families. Indeed, I identify five
high-scoring residues that are in locations likely to affect kinase specificity when mutated
(Figure 3.12 bottom). Four of these substitutions would serve to increase the positive charge
in the PLK active site. Notably, 3 of the 5 positions described (126, 127, and 162) have also
undergone mutation during the evolution of the GRK Family (described below). The two
Families are analogous in the sense that they are acidophilic kinases that have evolved from

a basophilic ancestor.
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Fig. 3.11 Functionally divergent residues in the SRPK and CDC7 Families. Top: func-
tionally divergent residues identified for the SRPK Family may influence substrate docking.
Bottom: divergent residues identified for the CDC7 Family are likely to affect kinase activity
via their proximity to the activator DBF4 protein.



100 The evolution of kinase function

Kinase activity and specificity

For the CAMK?2 (CAMK) Group, 1 detected changes in the kinase domain that are likely
to affect both the specificity of the kinase and its regulation. As discussed in Chapter 2,
CAMK?2 kinases have a +2 D/E preferences that is likely mediated by positively charged
residues in the aC helix that bind at the +2 position (PDB: 5SH9B). Both residues (positions
41 and 44) score highly using the approach described above and are therefore implicated as
residues responsible for the functional divergence of CAMKII (Figure 3.12 top).

Unlike most other kinases, CAMKII kinases do not require phosphorylation at their acti-
vation loops to be activated. In CAMKII kinases, the HRD arginine that is usually stabilised
by a phosphoserine/phosphothreonine instead binds to the carbonyl group of a phenylalanine
at position 155. The residue directly C-terminal to this phenylalanine is a glycine (GLY 156)
and is strongly implicated here as a functional determinant. This glycine replaces the threo-
nine residue that is normally phosphorylated. I suggest here that the increased flexibility of
the glycine backbone enables the observed contact between R122 and F155, and is therefore
critical for the constitutive stability of the activation loop.

The importance of this glycine for CAMK2 has been demonstrated previously (LeBoeuf
et al., 2007), and therefore validates the prediction here. However, the underlying mecha-
nism is contested as it has been suggested that the glycine is instead necessary to prevent
unfavourable interactions between CAMKII kinase domains in the holoenzyme (Chao et al.,
2011).
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Fig. 3.12 Functionally divergent residues in the CAMK?2 and PLK families. Some of the
divergent residues identified for the CAMK?2 Family map to substrate binding regions and
may affect kinase specificity and regulation. Likewise, some divergent residues identified
for the PLK Family map to the substrate-binding region and likely confer a preference for

D/E residues.
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3.3.4 Divergence of kinase peptide specificity

The results described above suggest that the emergence of new kinase Families and Subfam-
ilies often coincides with the divergence of kinase SDRs. These predictions would imply
that kinase specificity will diverge also at the level of the Family and Subfamily. To test
these prediction, the kinase specificity models described in Chapter 2 were compared sys-
tematically at the level of the kinase Family and Subfamily. At the Family level, each kinase
was compared to the kinases in the same Family and also to kinases of different Families but
belonging to the same Group. Likewise at the Subfamily level, each kinase was compared
to the kinases in the same Subfamily and also to kinases belonging to different Subfamilies
but to the same Family. In each case, the Frobenius distance is used to calculate the dis-
tance between the specificity matrices being compared. The Frobenius distance represents
the sum of the squared distances between matrix elements (followed by square-rooting) and
so would be relatively small when the two kinases being compared are similar in specificity.

The results of this analysis are presented in Figure 3.13. As expected, I find that kinase
specificity often diverges at the level of the Family as kinase specificity models within a Fam-
ily are more similar on average than they are between kinases belonging to different Families
but the same Group. I find this to be the case also when comparing kinases at the Group
level. However, this is difficult to relate to patterns of kinase functional divergence because
there are too few kinase Groups to attempt a systematic analysis of residue divergence. At the
Subfamily level, however, the distribution of matrix distances within a Subfamily overlaps
strongly with the distribution of distances for kinases between Subfamilies (but belonging
to the same Family). Contrary to expectation, there is therefore little evidence for the diver-
gence of kinase specificity at the Subfamily level, suggesting that kinase specificities tend to

be conserved within Families. Possible reasons for this are given in the Discussion section.
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Fig. 3.13 The Frobenius distance represents the sum of the squared element-wise differences
between two kinase specificity matrices (followed by square-rooting). Distributions of these
distances within and between classifications were calculated at the Group, Family, and Sub-
family level. On the right hand side, example are given of two kinases belonging to different
Groups, Families, and Subfamilies, respectively
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3.4 Evolution of the G-protein coupled receptor kinases

3.4.1 The GRK Family of protein kinases

In the previous sections, it was demonstrated that kinase specificities often differ between
Families, and that kinase evolution at the Family level is dominated by changes to protein
kinase SDRs. This process is characterised here in detail for a single Family using the an-
cestral sequence reconstruction of kinase domain sequences. Sequence changes between the
associated Subfamilies are also characterised. The G protein-coupled receptor kinase (GRK)
family was chosen for this purpose as it is an acidophilic (i.e. D/E-preferring) Family located
within a generally basophilic Group (Pearce et al., 2010), and so its emergence represented a
dramatic shift in kinase specificity at the active site. The knowledge of kinase SDRs acquired
in Chapter 2 is used for the interpretation of the observed kinase SDR substitutions.

The GRKSs are one of 15 Families belonging to the AGC Group (Manning et al., 2002b).
They are named for their ability to target G-protein coupled receptors (GPCRs) as substrates,
although GRKSs can also phosphorylate non-GPCR proteins (Gurevich et al., 2012). The
Family itself is divided into two Subfamilies: the first called the BARK (f-adrenergic re-
ceptor kinase) Subfamily and the second Subfamily also called GRK. The BARK Subfamily
comprises GRK2 (ADRBK1) and GRK3 (ADRBK?2) in human, whereas the GRK Subfam-
ily comprises GRK1 (rhodopsin kinase), GRK4, GRKS5, GRK6, and GRK7 (Manning et al.,
2002b). The GRK Subfamily can be divided further into two clades on the basis of sequence
similarity, one consisting of GRKs 1 and 7 and the other consisting of GRKSs 4, 5, and
6 (Mushegian et al., 2012).

Although a constituent Family of the AGC Group, the GRKs do not exhibit the charac-
teristic -2/-3/-5 basic residue preference often found in other kinases of this Group (Pearce
et al., 2010). The GRKs are instead characterised by varying levels of D/E preference be-
tween members of the Family (Asai et al., 2014; Lodowski et al., 2006; Onorato et al., 1991).
Indeed, an inspection of a GRK sequence alignment by other researchers has revealed that
many of the D/E residues thought to be determinant for R-3/R-2 preferences have undergone
non-conservative substitutions in these kinases (Lodowski et al., 2006).

Here I have taken a taxonomically broad sample of kinase sequences to generate a com-
prehensive phylogeny of the GRK Family. From this, a maximum-likelihood reconstruction
of all ancestral sequence states has been performed. This has enabled the diversity of sub-
strate preferences among extant GRKSs to be rationalised with respect to the set of ‘most
probable’ SDR substitutions occurring along the phylogeny branches, on the basis of the
current understanding of how kinase structure relates to kinase specificity (as discussed in
Chapter 2).
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3.4.2 Phylogeny of the GRK domain

A maximum-likelihood representation of the GRK phylogeny is represented in Figure 3.14.
Protein sequences were first retrieved from a taxonomically broad set of non-redundant pro-
teomes (representative proteomes) (Chen et al., 2011), and then each proteome was queried
with a hidden Markov model (HMM) of the GRK domain to retrieve GRK sequences. The
Subfamily classifications of each GRK were then predicted using Kinannote (Goldberg et al.,
2013). Sequences of the basophilic RSK Family kinases — the Family most similar in se-
quence to the GRKs — were also included as an expected outgroup in the phylogeny, as were
two kinases of the basophilic PKA Family. The kinase domain sequences (GRK kinases plus
outgroups) were then aligned and filtered to remove pseudokinases and redundant sequences
(97% threshold), resulting in 163 sequences to be used for phylogenetic reconstruction.

The phylogeny presented here is generally concordant with a GRK phylogeny published
in a previous study (Mushegian et al., 2012). The BARK Subfamily emerge as a single clade
with relatively high confidence (57 out of 100 bootstrap trails), with the exception of a sin-
gle sequence (AOAOLOCKWO in Lucilia cuprina) classified as a BARK by Kinannote. The
GRK Subfamily is also recapitulated in the most probable tree, and in 99 out of 100 bootstrap
trials. A single GRK representative is present in the choanoflagellate Monosiga brevicollis,
and also in the closely-related unicellular filasterean Capsaspora owczarzaki. However, both
sequences are found in separate clades (Monosiga kinase in the BARK clade and the Capsas-
pora kinase in the GRK clade), suggesting that gene duplication probably occurred before
the emergence of the metazoa over 600 million years ago but one copy was lost in each re-
spective lineage (choanoflagellate and filasterea) (Mushegian et al., 2012). A duplication of
the ancestral GRK gene in vertebrates likely generated the partition between the GRK1/7
and GRK4/5/6 clades (supported here by 99 bootstrap replicates), with subsequent duplica-
tions contributing to the gene diversity within clades. Both gene duplications — separating
GRK 1/7 from GRK 4/5/6 and generating new copies within the clades — are speculated to
be a result of two rounds of whole-genome duplication events during the evolution of the
vertebrates (Mushegian et al., 2012).

A small clade of heterokont sequences is also reconstituted in this analysis, as in the
previous phylogenetic study of GRK (Mushegian et al., 2012). However, I also discov-
ered a small clade of GRK sequences belonging to organisms of the eukaryotic super-group
rhizaria. The heterokont and rhizaria clades are both strongly supported as monophyletic
groupings (99 and 100 supporting bootstrap replicates, respectively) and both show greater
sequence similarity to BARK sequences than to GRK Subfamily sequences with respect to
the kinase domain. Notably, the heterokont and rhizarian sequences are predicted to be or-
thologous to the sequences found in human, suggesting that they were separated originally
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by a speciation event in a very early eukaryotic ancestor. The GRK and BARK Subfami-
lies however are present in most animal species and therefore must have been generated by
a gene duplication event, as is confirmed by ensembl Compara orthology/paralogy predic-
tions. These findings suggest that the ancestral gene duplication leading to the emergence of
the GRKSs occurred in a common ancestor of the filozoa, heterokonts, metazoa, and rhizaria
early during eukaryote evolution, but was subsequently lost in multiple lineages such as in
green plants and in fungi. This vertical form of descent is implied by the phylogeny pre-
sented in Figure 3.14. The GRK ancestral gene may alternatively have been transmitted to

the metazoa (or vice versa) via a process of horizontal gene transfer (HGT).

a b RPS6KA1 (RSK) GRK2 (GRK/BARK)  GRK5 (GRK/GRK)
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Fig. 3.14 a) Maximum likelihood phylogeny of the GRK kinase domain, including RSK and
PKA kinases as outgroups. Numbers on the internal nodes refer to the number of bootstrap
replicates (out of 100) that support the partitions presented here. B) Specificity logos at the
-2 and -3 positions for GRK2, GRKS, and an outgroup kinase belonging to the RSK family

3.4.3 Ancestral probabilities

Posterior probabilities were determined for each site of each ancestral node in the phy-
logeny. As expected, more ancient sites were reconstructed with less confidence than recent
sites (Howard et al., 2014). For example, the mean posterior probability for all sites of the
universal GRK+RSK ancestor is 0.69, for the universal GRK ancestor is 0.77, whereas it is
0.92 and 0.88 for the metazoan GRK/BARK and GRK/GRK ancestral nodes, respectively
(Appendix Figure A.2). The posterior probabilities for the substitutions described below in
Figures 3.15 and 3.16 and the main text are provided in Figures A.3 and A.4 in the Appendix
section for reference.
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3.4.4 SDR evolution N-terminal to the phosphoacceptor

Ancestral sequence reconstruction was performed for all nodes of the phylogeny, in which the
probability of all 20 amino acids is calculated for each alignment position using a maximum
likelihood algorithm (Ashkenazy et al., 2012). On the basis of the Chapter 2 results, I suggest
two non-conservative substitutions occurring between the ancestor of RSK and GRK kinases
and the ancestor of all GRK kinases that are likely to have altered the peptide specificity of
the GRK ancestor (Figure 3.15). The substitution of glutamate at 162 (R-3 and R-2 SDR)
for glycine would be expected to weaken substrate binding to basic peptides on the basis of
the Chapter 2 results and on previous biochemical evidence (Moore et al., 2003). The non-
conservative substitution of phenylalanine at position 86 — most likely either to histidine or to
lysine — would also be expected to weaken R-3 binding on the basis of the Chapter 2 results
and one previous study (Mok et al., 2010).

In the Rhizarian lineage there is an additional substitution of glutamate at 189 for argi-
nine, suggesting the complete loss of the R-2/R-3 preference and probably the emergence of
anovel aspartate/glutamate preference at position -2 given the presence of the 86K/189R pair
(c.f. Chapter 2 Section 2.3.6 aspartate/glutamate), potentially analogous to the 127E/189E
pair found in basophilic kinases. Proline at position 127 is substituted for leucine in Rhizar-
ian kinases also. The loss of proline at 127 has previous been linked tenuously to a reduced
R-2 preference, although the mechanism is unclear (Ben-Shimon and Niv, 2011).

In the heterokont lineages, the histidine/lysine at position 86 is substituted for serine.
Therefore, while the heterokont kinases retain the aforementioned 127E/189E pair, the R-2
and R-3 specificities are likely to be attenuated or eliminated completely given the non-
conservative substitutions at positions 86 and 162.

BARK kinases are characterised by the loss of a negative charge at 127 (E — A), and
the gain of a lysine at position 189 (E — K). The ancestral sequence reconstructions suggest
that the former substitution preceded the divergence of the metazoa and choanoflagellates,
whereas the mutation at 189 occurred in metazoa after their divergence. The changes cor-
respond well to the observed preference for aspartate/glutamate at -2 and -3 in empirical
specificity models of GRK2. The glutamate preferences in GRK2 more N-terminal to the
phosphoacceptor — -4, -5, -6, etc. — are more difficult to understand given a lack of under-
standing of how specificity is determined at these positions.

In the GRK Subfamily, a lysine residue is usually found at position 86, although ancestral
sequence reconstruction suggests that this may have occurred via a glutamine intermediate,
as glutamine is found in the extant Capsaspora owczarzaki GRK sequence. Notably, no R-
2/R-3/R-5 preference is evident in the GRKS specificity model, suggesting that the described
substitutions (E162 — G162 and F86 — K86) are sufficient to eliminate this specificity.
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Fig. 3.15 Structures of GRK homology models at the -2 and -3 binding pockets. The identity
of the ancestral kinases residues (blue) was predicted from the ancestral sequence reconstruc-
tions. Favoured residues at position -2 and -3 (yellow) have been predicted qualitatively by
the author. The red asterisks represent positions where an amino acid substitution has been
predicted along the branch from the ancestor to the extant sequence.
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3.4.5 SDR evolution in the P+1 pocket

No changes in the P+1 pocket are observed between the ancestor of GRK+RSK and the an-
cestor of all GRKSs according the reconstruction here. At the critical 164 position, methionine
is substituted for threonine in the Rhizarian GRKSs (Figure 3.16). While this is expected to
affect P+1 binding, the resulting P+1 specificity is unclear as none of the 119 Ser/Thr ki-
nase models used in the Chapter 2 analysis feature a threonine at this position, although the
Predikin webserver predicts a resulting A/G+1 preference (Saunders et al., 2008).

There is a substitution of tyrosine for alanine at position 157 in the branch leading to the
heterokont and filozoan GRKs (Figure 3.16). The substitution to a smaller side chain may be
expected to accommodate bulkier substrate residues in the P+1 pocket. I also find that 6 of
the 8 heterokont sequences form a clade that features tryptophan at 164 and arginine at 161,
suggesting selectivity for D/E at +1. Four of these six sequences also feature an arginine at
position 157, which may strengthen selectivity for +1 D/E even further.

In the BARK kinases, proline at position 161 is substituted for histidine, which I hy-
pothesise is — in combination with lysine at position 202 on the aG-helix — responsible for
a moderate D/E preference at this position, as discussed in Chapter 2. The ancestral se-
quence reconstruction suggests that this occurred in the metazoa after their divergence from
the choanoflagellates.

In the GRK Subfamily, the ancestral sequence reconstruction suggests a substitution of
alanine for arginine at 157 in the filozoan GRK ancestor (Figure 3.16). Again, I hypothesise
here that this substitution is responsible for a moderate D/E preference at +1. Indeed, a
previous biochemical analysis has established a C-terminal glutamate preference for GRK1
(GRK Subfamily) and an N-terminal glutamate preference for GRK2 (BARK Subfamily),
although the experimental design did not allow for the differentiation of +1/+2/4+3 glutamate
preferences (Onorato et al., 1991).

In the branch leading to GRK7, position 161 is substituted from proline to asparagine,
polarising the P+1 pocket further (Figure 3.16). The ancestral sequence reconstruction per-
formed here also suggests that the arginine at position 157 is replaced by phenylalanine or
tyrosine in the branch leading to the vertebrate GRK1 clade, which is likely to reconstitute
the hydrophobic P+1 binding pocket found in the kinase ancestral to all extant GRKs.
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3.4.6 Evolution of the aF-aG loop

The loop of amino acids linking the oF and oG helices can be observed to contact N-terminal
substrate amino acids in some co-crystal structures, such as for PKA (PDB: 1ATP) and for
MARK?2 (PDB: 3iec). In GRK kinases, the aF-aG loop is generally longer and has a higher
net positive charge than for kinases of the RSK sister clade. Specifically, I find from the
GRKSs used to construct the phylogeny presented here, that the median length and charge of
the aF-aG loop is 14 and +3 respectively, compared to 10 and 0 in RSK kinases, and 10 and
-1 in PKA kinases.

The extension of the aF-aG loop is represented in all major GRK clades (not necessarily
however in all GRK sequences), suggesting that the kinase ancestral to all extant GRKs fea-
tured an extended aF-aG loop. The structural role of the flexible loop is inherently difficult
to predict for sequences without associated structures. However, if considered in analogy
to the aforementioned PKA and MARK?2 structures, they could potentially contribute to the
moderate -4/-5/-6 aspartate/glutamate preferences suggested by the empirical GRK models.
The basic loop extension may alternatively/additionally contribute to the -2/-3 D/E selectiv-

ity or general substrate recruitment.

3.5 Discussion

An in-depth evolutionary analysis of protein kinase specificity was performed in this chap-
ter. Of particular interest was the substitution of SDR residues following speciation or the
duplication of kinase genes. For the former, the analysis performed here strongly confirms
the hypothesis that kinase peptide specificities tend to be conserved even between distantly
related orthologues. This finding is suggested both from the computational prediction of ki-
nase specificities and from the comparison of empirical specificity matrices from human and
S. cerevisiae. This finding aligns well with similar studies of transcription factor specificity
across species (Brandt et al., 2009; Jolma et al., 2013; Nitta et al., 2015). Taken together,
these studies support the conjecture that orthologues tend to be conserved in function, al-
though this in part may reflect the roles of kinases and transcription factors as functional
hubs in their respective regulatory networks (Carlson et al., 2006).

The extent of specificity conservation was quantified for the first time here by generating
a null distribution of kinase matrix distances from kinases within the same Family and same
species. This assumes that kinase within the same Family will tend to have similar speci-
ficities, a finding which is strongly supported by the data used for the analysis (subsection:
Divergence of kinase peptide specificity). An obvious caveat of this analysis is that only ki-

nases from three different species (H. sapiens, M. musculus, S. cerevisiae) can be compared



112 The evolution of kinase function

in this manner; this reflects a basic limitation in the current availability of phosphorylation
data. It will be important to repeat this analysis in the future as data from more species
becomes accessible.

Similarly, the predictive models described in Chapter 2 strongly suggest that kinase
specificities tend to be conserved between species, but were trained on data from human,
mouse, and S. cerevisiae sequences only, which presents concerns for the reliable prediction
of kinase specificities from other species. This is less likely to be a problem for animal or
fungal sequences than it is for species distantly related from either human or S. cerevisiae
(plant sequences, for example). Moreover, the limited availability of phosphorylation data
for model training currently prevents rarer specificities (e.g. L+4, R+2, D/E-2) from being
represented in this analysis. Both issues could be remedied by the acquisition of more data
on kinase target sites or on kinase specificity more directly (e.g. from peptide libraries).

Surprisingly, the results of the analysis suggest that one-to-one kinase orthologues are
no more highly conserved than one-to-many orthologues. Therefore, kinase orthologues in
general seem to be highly conserved even after gene duplication. It will be important in
future analyses to use phylogenetic methods to determine if this finding would still apply for
one-to-many orthologues arising from ancient duplications. Moreover, it should be noted
that the current analysis includes strong preferences such as P+1 or R-3 that are critical for
substrate binding, but weaker substrate preferences not examined here may be more labile
during evolution.

A phylogenetic approach was also adopted in this chapter to predict divergent residues
across multiple Families and Subfamilies in the fungi and metazoa. These results supple-
ment a published study performed concurrently that employed a BLAST-based approach to
identify divergent residues across multiple Families (Kalaivani et al., 2018). The results
generated from both studies are expected to be of interest to specialists for the prediction
and experimental validation of drug target sites or protein-protein interactions particular to
a Family or Subfamily of interest. Detailed examples for four different Families (CDC7,
CAMK, PLK, SRPK) are given in the main text, and for PKC and PKG in (Kalaivani et al.,
2018).

For the analysis performed here I adopt an evolutionary perspective by aggregating re-
sults between Families and grouping residues with a common predicted function (SDR, cat-
alytic, regulatory, etc). These results suggests that kinase divergence at the Family level
is dominated by changes that are likely to affect kinase specificity. At the Subfamily level,
divergence is distributed more evenly between different functions although a significant en-
richment of SDR substitutions is still observed. Overall, these results suggests that the di-

vergence of older paralogues (i.e. Family level) in particular following duplication is often
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driven by changes in peptide specificity, but that this is less common for newer paralogues
(i.e. Subfamily level). Currently however, kinase substitutions occurring between the Family
and Subfamily levels, in addition to substitutions before Family duplications and after Sub-
family duplications, are hidden from the analysis. Sequence divergence occurring at all levels
of the kinase phylogeny could be considered in the future to further resolve the relationship
between specificity divergence and the time since the last common kinase ancestor.

Predictions of domain residue function could also be improved for future analyses. The
Interaction residues in particular are predicted across kinase domains from only a limited
set of structural data (Mosca et al., 2014). The acquisition of more kinase specificity data
could also improve the annotation of distal SDRs. Other functional categories however are
inherently more difficult to predict. Docking sites for examples have been discovered in
several different kinase domain regions (Biondi and Nebreda, 2003), and are therefore not
amenable to the aggregated analysis performed here. Kinase specificity divergence is there-
fore likely to be underestimated in general as most kinase docking sites will be assigned to
the ‘Other’ category. For the Regulatory category, I assume that any substitutions in the
activation loop or the alpha-C helix N-terminus are likely to affect kinase regulation. How-
ever, kinase-specific modes of regulation are known that fall outside these regions (Sang
et al., 2018; Simon et al., 2016), and likely exist for uncharacterised kinases also. There-
fore, as with docking regions, the extent of divergence for Regulatory regions may also be
underestimated. Such kinase-specific examples of residue function may account for many
of the switching events currently placed in the ‘Other’ function. Finally, for multi-domain
kinase Families or Subfamilies, a certain degree of functional specialisation may be driven
by changes in the protein domain composition of from sequence changes in the non-kinase
domains (Pearce et al., 2010), which are not accounted for here .

To some extent the above analysis parallels the analysis of specificity models, which sug-
gests that kinase specificity diverges at the Family level but not the Subfamily level. However,
from the analysis of Subfamily sequences, some divergence of Subfamily specificity would
be expected given that known SDRs are often substituted between Subfamilies. It should be
noted that the sample size for the Subfamily-level comparisons between specificity models
is low, and that there are examples (GRK vs. BARK, PLK1 vs. PLK2) where specificity is
known to diverge between Subfamilies (Franchin et al., 2014; Onorato et al., 1991), suggest-
ing some level (albeit modest) of Subfamily divergence. Taken together, it is therefore likely
that specificity divergence can occur between Subfamilies but is more likely to occur at the
Family level. However, a more complete understanding of specificity divergence awaits the

full characterisation of kinome specificity.
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Finally, ancestral sequence reconstructions were used for detailed evolutionary recon-
struction of the GRK protein Family. This represents the second study of this kind, following
from the 2014 evolutionary analysis of the CMGC Group (Howard et al., 2014). In contrast
to that analysis, where a single determinant was predicted for the P+1 -> R+1 transition,
I predict several different kinase domain substitutions that are likely to impact upon kinase
peptide specificity. Notably, divergence in specificity was predicted between both GRK or-
thologues and paralogues. These include likely effects on substrate residues N-terminal and
C-terminal to the phosphoacceptor. The actual effect of the substitutions observed however
awaits experimental validation. This is also required to reveal whether the derived specifici-
ties emerged de novo or via a process of subfunctionalisation (as shown in 2014). Of note
also is whether any of the predicted changes in kinase specificity will also affect the activ-
ity of the enzyme. For many protein superfamilies, changes in enzyme specificity are often
accompanied by a loss of enzyme activity (the ‘stability-activity’ trade-off) (Miller, 2017;
Tokuriki et al., 2008). Compensatory or permissive mutations that stabilise the protein are
therefore often required also for the evolution of new functions (Bloom et al., 2010; McKe-
own et al., 2014). However, no loss of activity was found for ancestral kinases of the CMGC
Group (Howard et al., 2014). Whether this robustness to the evolution of new specificities
constitutes a universal feature of all kinase clades however awaits the experimental charac-
terisation of the ancestral GRK enzymes reconstructed here and other ancestral kinases. If
this robustness is a general feature of the kinase domain, then it may help to explain why this
superfamily has been able to successfully evolve such a wide range of specificities (Bloom
et al., 20006).



Chapter 4
The evolution of phosphorylation motifs

In this chapter, I investigated the evolution of phosphorylation motifs in over 50 different
species. All of the analysis was performed by the author (David Bradley) under the super-

vision of Pedro Beltrao.

4.1 Introduction

Sequence patterns surrounding the phosphoacceptor that occur more often than would be
expected by chance are referred to as ‘phosphorylation motifs’. They are typically identi-
fied by comparing a large sample of phosphorylation sites against a background sample of
sequences from the species proteome. Advances in phosphoproteomic technologies have
therefore proved pivotal for the identification of new motifs (Ritz et al., 2009; Schwartz and
Gygi, 2005; Wang et al., 2012b). Notably, many motifs identified in such a way overlap
with the kinase substrate motifs revealed from more reductionist approaches (Schwartz and
Gygi, 2005). The accumulation of phosphorylation data can therefore yield insights into ki-
nase specificity even without knowledge of kinase-substrate relationships. This is important
because available phosphorylation data at the time of writing far exceeds kinase-substrate
relationship data in terms of both its depth and taxonomic range (Peri et al., 2003; Ritz et al.,
2009). For this reason, the analysis of raw phosphorylation data across species provides an
avenue into the research of kinase specificity and its evolution.

Phosphoproteomics studies in many species have now been conducted. Their results
reveal that the classic acidophilic (S/T-D/E-x-D/E), basophilic (R-x-x-S/T), and proline-
directed (S/T-P) motifs are present in all species so far examined and were likely univer-
sal (Al-Momani et al., 2018; Resjo et al., 2014; Tian et al., 2014; Zhai et al., 2008). How-
ever, attempts to extend this analysis to multiple species at a time have so far been limited.

In 2014, Yoshizaki and Okuda collated motifs from publicly available phosphorylation data
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and then calculated their conservation across 9 different opisthokont species (Yoshizaki and
Okuda, 2014). As expected, the phosphomotifs identified in human were highly conserved,
but this conservation decreases with evolutionary distance. In 2015, a related analysis was
performed across species but with the aim of identify all over-represented substrings (‘N-
grams’) among phosphorylation sites instead of motifs per se (Frades et al., 2015). The
authors of this study were able to identify several N-grams that could discriminate different
species from each other. However, there has been no systematic attempt as of yet to relate
the detected motifs to known kinase preferences, or to quantify enrichment across several
species.

More recently, phosphoproteomics efforts have been extended to cover S/T phosphory-
lation sites in prokaryotes (Kennelly, 2014; Lin et al., 2015b; Potel et al., 2018; Wu et al.,
2016). As discussed in the Introduction chapter, many prokaryotes encode kinases homol-
ogous to eukaryotic protein kinases. A motif analysis of prokaryotic phosphorylation data
could therefore reveal insights into the specificity of such kinases. While the number of
identified ST-phosphosites from such studies is typically low (Pan et al., 2015), more recent
advances have increased the number of sites detected and therefore made a motif analysis
tractable (Lin et al., 2015b). Analyses of the few species studied so far however has failed
to recover any of the standard phosphorylation motifs often found in eukaryotes (Lin et al.,
2015b). Moreover, for the set of 11 S/T protein kinases present in Mycobacterium Tubercu-
losis, none of the experimentally characterised kinase substrate motifs correspond to a known
eukaryotic motif (Prisic et al., 2010). These are not surprising findings if it is to be believed
that prokaryotic S/T-kinases were not horizontally transferred but were in fact present in an
early ancestor of prokaryotes and eukaryotes (Stancik et al., 2018).

In general, the extent to which a species kinome can be related to its phosphoproteome
is not clear. The latter represents the summation of kinase-substrate interactions across the
proteome, and so some evidence of co-evolution between the two is expected. This was first
demonstrated when it was found that genomic tyrosine content in the metazoa correlates
negatively with the number of predicted tyrosine kinases in the genome (Tan et al., 2009b).
A follow-up study later demonstrated that the loss of tyrosine was unlikely to have been
driven by selection against deleterious phosphorylation, as previously suggested (Pandya
et al., 2015). However, since then there have been limited efforts to correlate other kinase-
motif combinations. A 2016 study by Studer and colleagues correlating the S/T-P motif
with predicted proline-directed kinases represents — to the author’s knowledge — the only
other investigation of this topic to date (Studer et al., 2016). Despite this, some qualitative
observations have been made on this subject. For examples, the plant species A. thaliana is

depleted for the R-R-x-S/T, which may be explained by absence of the cognate effector PKA
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in plants (Frades et al., 2015). Moreover, the strong enrichment of the L-x-x-S/T motif in
Tetrahymena correlates with the expansion of cognate Nek kinases in the genome (Tian et al.,
2014). Finally, for the CK1d kinase, known substrates were found to be conserved across
vertebrate orthologues for the cognate target motif (SR motif), but for a related protein that is
not a substrate for CK1d kinase, the substrate motif was not conserved, implying co-evolution
between the kinase and target motif (Xing et al., 2017). In the proceeding analysis, I attempt
to systematically quantify the relationship between protein kinase Families and their cognate

target motifs where this information is known.

4.2 Results

4.2.1 Motif prevalence across the Tree of Life

The primary objective of this analysis was to study the evolution of phosphorylation motifs
in the eukaryotes. Towards this end, phosphorylation data was collected from 48 different
eukaryotic species. This dataset covers a taxonomically broad set of organisms, including
species from the alveolates (4), amoebozoa (1), excavates (3), fungi (19), heterokonts (1),
metazoa (12), and plants (8). A global eukaryotic phylogeny is provided in Figure 4.1 for
reference. Phosphorylation motifs were extracted automatically from each species using
the motif-x tool (Schwartz and Gygi, 2005). Motifs found in less than a third of all species
within a clade (metazoa, fungi, plants, etc) were considered as ‘low-confidence’ and therefore
excluded from any further analysis (see Methods chapter Section 6.3.1).

Ten of the motifs identified had been characterised previously in the literature and as-
signed as substrate motifs for particular kinase Families or Subfamilies (Amanchy et al.,
2007; Miller and Turk, 2018). Notably, nine of the ten motifs feature either the P+1 (proline-
directed), R-2 (basophilic), or D/E+3 (acidophilic) signatures. Enrichment values for the
three signatures across the 48 species is presented in Figure 4.2a. These are calculated by
dividing the foreground motif fraction (phosphosite motif count normalised by total number
of phosphosites) by the background motif fraction (motif count among random S/T sites in
the proteome normalised by the total number of such sites). Ratios greater than 1.0 suggest
motif enrichment among phosphorylation sites whereas values less than 1.0 imply motif de-
pletion among phosphosites. Significantly, all three signatures (P+1, R-3, and D/E+3) are
enriched across the majority of the species and therefore suggest that these signatures were
present in the universal eukaryotic ancestor.

Enrichment values are calculated for the full motifs in Figure 4.2b. Enrichment values

were calculated as described previously but are normalised also by enrichment values for
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Fig. 4.1 Simplified phylogeny of the 48 species from which phosphorylation data was sam-
pled. The number of species contributing to each clade for this analysis is given in paren-
theses. The clades drawn in black are not represented for this analysis

the relevant subset motif (i.e. P41, R-3, or D/E+3). The purpose of this normalisation is to
quantify motif enrichment over and above that which can be accounted for by enrichment
due to the P+1, R-3, and D/E+3 signatures. Therefore, random residue additions to the
aforementioned signatures (e.g. S/T-P-N, R-W-x-S/T, S/T-C-x-D/E) would not be expected
to yield enrichment values greater than 1.0 following this normalisation. The results suggest
that the majority of motifs are broadly enriched across the Tree of Life and were therefore
probably present in the universal eukaryotic ancestor. In Figure 4.2c, the statistical signif-
icance of each enrichment is calculated by using the motif probability in the background
set to calculate binomial p-values for the foreground motif prevalence (see Methods chapter
Section 6.3.1). The results of this analysis support the above conclusion that most motifs
are universal or near universal. The depletion of two basic motifs (R-R-x-S/T and R-x-R-x-
x-S/T), in plants are exceptions to this rule, as has been observed previously (Resjo et al.,
2014). T also observe that the L-x-R-x-x-S/T motif is highly enriched in plant species but
rarely in other species. The results also reveal that the R-x-x-S/T-x-D/E motif seems to be
depleted in the fungal species.

This analysis was then repeated for ‘new’ motifs that had not previously been assigned
to an upstream effector kinase Family or Subfamily. Multiple constraints were imposed to
ensure that the phosphorylation motifs are likely to represent bona fide kinase target motifs.
For example, motifs with simple S/T additions to a classic motif were filtered from the analy-

sis, as they likely result from the clustering of phosphorylation sites in the substrate primary
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Fig. 4.2 Enrichment of phosphorylation motifs where the upstream kinase is known. Rows

represent different motifs and columns represent different species.

A: enrichment values

for three different motif signatures. B: enrichment values relative to the proteome for 10
different phosphorylation motifs. C: p-values for the motifs, which are calculated by using
the motif probability in the background set to calculate binomial p-values for the foreground

motif prevalence
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sequence (Moses et al., 2007; Schweiger and Linial, 2010). Moreover, I do not consider
motifs that may result from the ‘looping’ of a known linear motif (Duarte et al., 2014). The
putative linear motif ‘S/T-P-x-x-x-K’ for example could represent the classical ‘S/T-P-x-K’
motif when considered in three dimensions. Overall, 24 such motifs were identified using
the strict criteria outlined in the Methods section (see Methods chapter Section 6.3.1). No-
tably, the list comprises motifs with determinants such as asparagine and glycine in addition
to more standard motifs with R/K (basic), D/E (acidic), or proline (Figure 4.3). As above,
some motifs were identified (e.g. S/T-P-x-x-x-P, S/T-P-x-P) that were likely present in the
universal eukaryotic ancestor. However, for the majority of motifs identified the distribution
is either intermittent or confined to a single clade or species. There are multiple asparagine-
containing motifs for example that are confined either to fungal or apicocomplexan clades.

Overall, the established and ‘new’ motifs account for a significant proportion of the phos-
phoproteome across all species (Figure 4.4). Specifically, the established motifs account for
31.6% of phosphorylation sites on average (averaging across species) while the newly iden-
tified motifs account for 23.7% of motifs on average. The combined average across species
is 55.3%.
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Fig. 4.3 Analysis of phosphorylation motifs for which the upstream kinase is unknown. A)
Enrichment values relative to the background proteome are calculated across all 48 eukary-
otic species. B) p-values for the motifs, which are calculated by using the motif probability
in the background set to calculate binomial p-values for the foreground motif prevalence
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Motifs as proportion of phosphoproteome

1.00 -

0.75 -

0.00 _IIII I I IIIII

Unannotated

o

o

S
f

New
B established

Proportion

Species

Fig. 4.4 Proportion of phosphorylation sites that match the motifs examined for this analysis.
‘Established’ refer to phosphosites matching motifs previously described in the literature
and for which the upstream kinase is known. ‘New’ refers to phosphosites matching motifs
for which the upstream kinase (if any) is not known. ‘Unannotated’ motifs are those not
matching any of the motifs discussed for this analysis
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4.2.2 Kinase motif enrichment in prokaryotes

As discussed in the Introduction section, many kinases encoded in the genomes of prokary-
otes share homology to eukaryotic protein kinases. The specificity of such kinases would be
expected to influence the S/T phosphoproteomes in these species. However, the S/T phos-
phoproteomes of archaean and bacterial species have remained poorly characterised until
recently. It is only with the advent of new experimental methods that a motif-based analysis

of prokaryotic S/T phosphosites has become tractable (Lin et al., 2015a).
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Fig. 4.5 Binomial p-values were calculated for every eukaryotic phosphorylation motif
across all 48 eukaryotic species. Binomial p-values were calculated for two prokaryotic
organisms also, and for a pooled set of prokaryotic phosphorylation data (right hand side).
Motifs previously described in the literature and for which the upstream kinase is known are
coloured in red.

In Figure 4.5, the 34 motifs described above were queried in the S/T phosphoproteome of
E. coli (bacteria) and Sulfolobus spp (archaea), which are the only two organisms to the au-
thor’s knowledge with more than 1,000 known S/T phosphorylation sites. The same process
was applied also to a pooled sample of phosphorylation sites from 8 different prokaryotic
species. While the sample sizes (E. coli: 2287, Sulfolobus spp: 1655, pooled sample: 1440)
are relatively small, it is comparable to that of some eukaryotic species that show evidence
of motif enrichment for motifs such as S/T-D/E-x-D/E and P-x-S/T-P (c.f. L. infantum, sam-
ple size 1,266). However, the analysis presented in Figure 4.5 suggests that the majority
of eukaryotic phosphorylation motifs are not significantly enriched in these two species, or

in the pooled sample of phosphorylation sites. I observe also that the S/T-P and R-x-x-S/T
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motifs that are highly prevalent in all eukaryotic species so far examined show no evidence
of strong enrichment across the 4 prokaryotic species tested (Table 4.1). The enrichment
of R-3 for Sulfolobus is an exception to this rule, but this specificity is part of a uniform
R/K preference from -5 to +5 and therefore is unlikely to be determined by a mechanism

homologous to eukaryotic R-3 determination.

E.coli (2287) 1.00 | 0.03
Synechococcus sp. (448) | 0.28 | 0.02
M. tuberculosis (610) 1.00 | 0.84
Sulfolobus (1655) 1.00 | <0.01
Table 4.1 Binomial p-values for the R-3 and P+1 signatures across four different prokaryotic
species. The number of phosphorylation sites used for the analysis are given in brackets

Next, phosphorylation motifs were identified de novo in E.coli and Sulfolobus using the
motif-x tool that was described previously. As previously shown (Lin et al., 2015a), I find
that S/T phosphosites are over-represented towards the N-terminal end of proteins, hence the
over-representation of methionine in known phosphosites. For both species, a fairly uniform
preference for K and/or R in the S/T flanking positions is found (Table 4.2). None of the
motifs identified correspond to the eukaryotic motifs presented above.

Finally, the kinomes of both species was analysed using Kinannote to help account for the
phosphorylation patterns observed in the eukaryotes. Neither species was found to contain a
protein kinase that could be placed into a canonical eukaryotic kinase Group (AGC, CMGC,
CAMK, etc.). This is consistent with the lack of observed eukaryotic motifs, and with the
argument that eukaryotic and prokaryotic kinases have been diverging vertically for billions
of years and were not transferred horizontally (Stancik et al., 2018). It should be stated
however that these species may still contain highly divergent kinases of the ELK (ePK-like
kinase) class, which can not easily be detected using sequence-based methods but may still

phosphorylate serine or threonine.
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LWKGSTT 10.81
K.....[ST]....... 8.892
...... K[ST]....... 8.861
...... S[ST]....... 8.761
...... M[ST]....... 8.665
..... K.[ST]....... 7.493
....... [STIH...... 7.692
...... G[ST]....... 6.729
....... [ST]...K.. 6.169
GKG[ST 6.423
WML[STIK...... 314.4
....... [ST].K..... 307.7
K.....[STIR...... 314.6
....... [STIK...... 307.7
....... [STIR...... 307.7
..... K.[ST]....... 307.7
....... [STIR...... 307.7
KG[ST 15.65
..RL[ST]....... 307.7
....... [ST].K.... 12.71
..... R.[ST]....... 12.43
KL[ST 13.09
...... K[ST]....... 1091
....... [ST]..R.... 12.64
...... M[ST]....... 10.92
...... R[ST]....... 9.496
..R..[ST]....... 7.383
....... [ST]..K... 6.274

Table 4.2 Significant motifs identified from E. coli and Sulfolobus phosphorylation data using
the motif-x tool (minimum of 20 sites and p-value threshold of 1 X 107%)

4.2.3 Co-evolution between the kinome and phosphoproteome

The results presented in Figure 4.5 reveal that many phosphorylation motifs are broadly
distributed across the eukaryotic Tree of Life (Figure 4.1). This is especially the case for
established motifs where the upstream kinase is known from experimental analyses in hu-
man and budding yeast. These results imply that the effector kinases will also be broadly
distributed across the Tree of Life. To test this hypothesis, the Kinannote tool was used to
predict the presence of upstream kinases across a taxonomically broad set of species in the
eukaryotic Tree of Life (Figure 4.1). Indeed, the results reveal that almost all of the effector
kinase Families are universal or near-universal in the eukaryotes, with the exception of the
CAMK?2 Family, which was present in only a small number of the species tested (7Table 4.3).
In particular, it should be emphasised that these kinases seem to be absent in plants but their
cognate substrate motif (R-x-x-S/T-x-D/E) is still enriched in this species, suggesting that a
different kinase Family/Subfamily has convergently evolved this specificity. Overall, the re-
sults suggest that, for many motifs, both the phosphorylation motif and the upstream kinase
emerged in an early ancestor of all eukaryotes.



The evolution of phosphorylation motifs

126

sonnuvg dIH + SO + MYAd + ATO + TAD + JAdVIN
+ 3AD xDDIND “(wsopf vxd&wononay) euezigy (F3y) YY ‘ovoissviq vioydoipousv]d) eueziqy :(qd) U ‘ovisiaalad s208uiol
-pyoopg) yuooyisidQ :(0S) dQ ‘s1j09142.4q v31souopy) yuoxoyistdQ :(qQN) dO ‘vuuvuopnasd as1so15svpvY ) JWONOINAH :(dL) OH
‘(suv4affa3vydoun sn2202024ny) JUONOINAH :(BY) OH ‘(14ojxny vuvnnuyg) Alkydoydey :(Yq) eH ‘(J62dWID pulnuioldosfiy)))
lydoydey :(0D) ‘®vH ‘(112gm)3 v142]3avN) dyeAedxq :(BN) "X ‘(Sypumsajul vipivin)) deaedxy :(10) ‘X ‘(1pivyulal spuowiop
-Qwppy)) epnsejdeeyory :(1D) 1y ‘(vuvypy; sisdopigoay) epuseidoeyory :(1y) 1y {(woudjoisry vqaowviuy) vozogqaowy :(Yg)
Wy ‘(wnap1oasip wini)a3so1o1(7) eozoqaowy (qQ) "Wy ‘(vpydoutiayy vusudynaiaf) A0V :OL) TV ‘(Xvaia wnipouisv]J) 1[0
-OATY ((Ad) TV oweu S10ads SI1 JO UOTIBIAQLIQE JO)IQ[-0M] B AQ PIMO[[0F ‘SSUO0[( I1 YIIym 0) 9pe[d2Jadns & JO UONRBIAJIQUE J9)IQ[-0M]) B
Aq uaAI13 st saroads yoey ‘sesoyjuared ur UdAIS SI dnotL) 10 Aj1up,y seury 9y} JO JIOW JeISqNSs pPIBIJOSSE AY [, Piudsaxdar st saroads
JUQIQJJIP [BIOAJS UI SOSBULY 9saY) JO Aouanbaiy pajorpaid oy ‘oseuny weansdn umouy yirm synow uonejAioydsoyd ay) 10 ¢4 9[qe],

€8 8T (44 0¢ 8¢ St 8L 9 91 L S 9% 0zl ST 1T LS 91 (L/S-X-X-4-X-T) VD

0 4 9 L 0 8 0 I € I 4 I 61 9 I 81 0 |(/S-X-X-Y-X-4) ADSHIASY+IIV|
61 S € € 4! €C 9 I1 I I 0 9 4 0 [ ¥ I (1/S-X-4-9) OMd+VId

9 0¢ 61 6C 81 6¢ 7€ [94 S¢ jal 4! Ly 8I1 LE 61 8% €l (d-1/S-%-d) +DDND

4 8 4 8 S 6 8 91 L L I 9 ¥T 81 S 91 I (d-L/S-X-X-¥) IDY+IAA

4 0 0 I 0 4 I 0 0 0 0 0 0 0 0 0 0 (F/A-X-L/S-X-X-4) TIAVD

4 I ¥ 4 I I 4 4 I 4 4 I 81 14 4 9 ¢ (S-¥-X-d-1/S) JSO

1 1 L 4 6 4! 4! 6 ¢l S S ¢l Ly 4 01 SI 9 OI-x-d-L/S) JIAD

I I 4 I 4 4 I I 4 I I 4 4 € 4 € I (3/A-X-7/A-L/S) TIAD




4.2 Results 127

On the other hand, the motifs described in Figure 4.3 have no known upstream effector
kinase Family or Subfamily. However, it may be possible to predict upstream kinases by
identifying kinase Families or Subfamilies that correlate most strongly with the motif of
interest. A strong correlation would imply a putative upstream effector that could be tested
experimentally.

As a positive control, kinase Families of known specificity could be correlated with their
target motifs across the 48 eukaryotic species for which data exists. In Figure 4.6, the rela-
tionship between kinase Family frequencies and kinase motif enrichments across 48 species
is explored. Phylogenetic independence contrasts are used for this analysis to account for
the phylogenetic non-independence of data points (Felsenstein, 1985). However, for all 6
Families tested, no significant relationship was found between the kinase Family frequency
and the target motif enrichments. I therefore conclude that kinase Family frequencies cannot
reliably be used for the quantitative prediction of target motif enrichments. Potential reasons
for this are given in the Discussion section of this chapter.

Next, the kinase Family frequencies and motif enrichments were mapped onto a species
phylogeny to determine if there was any local evidence of co-evolution between the kinome
and phosphoproteome. Such effects may be obscured when the two variables are compared
globally, as performed above. Formal tests were therefore used to demonstrate that the phos-
phomotif enrichments and kinase Family frequencies possess phylogenetic signal, meaning
that both variables are non-randomly distributed with respect to the species phylogeny, im-
plying the possibility of co-evolution. P-values were below 0.01 for all kinase Families
tested (see Appendix), and for the phosphorylation motifs are given in Table 4.4. Figure 4.7
reveals some examples of local co-evolution between the kinome and phosphoproteome. In
the plants, for example, the lack of enrichment of the basophilic R-R-x-S/T motifs can likely
be explained by the depletion of their cognate effector kinases (PKA and PKG). Also for the
yeast kinases, relative expansions in the GSK Family correspond to stronger enrichments
for the S/T-P-x-x-S motif. However, many other patterns cannot be similarly accounted
for, which suggests that there are multiple factors that can affect the fold enrichment values
calculated. Plots for the remaining Families are provided in the Appendix (Figure A.5 and
Figure A.6).
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Fig. 4.6 Phylogenetic independence contrasts for kinase Family frequency (independent vari-
able) and the phosphomotif enrichment value (dependent variable). No significant relation-
ship was found for any of the 6 kinase Families tested.
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Fig. 4.7 For two kinase clades (PKA/PKG and GSK), the kinase frequency (divided by total
number of kinases) and the cognate substrate motif enrichment were mapped onto a species
phylogeny of the 48 eukaryotes used for this analysis. Similar plots for four other kinase
clades are provided in the Appendix. Red boxes are used to guide the reader to relevant
features of the plot. Top: Absence of PKA/PKG in plant species correlates with a lack of
enrichment for the R-R-x-S/T motif. Bottom: An expansion of the GSK Family in yeast
species correlates with a stronger enrichment for the S/T-P-x-x-S motif
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S/T-D/E-x-D/E | 0.01 |0.01|0.01| 0.01 | 0.01
R-x-x-S/T-P | 0.05 |0.02/0.02| 0.04 | 0.01
P-x-S/T-P 0.16 |0.12/0.27/ 0.15 | 0.15
S/T-P-x-K 0.04 |0.1]0.01) 0.04 | 0.01
R-R-x-S/T 0.01 10.01/0.01| 0.01 | 0.01
R-x-x-S/T-x-D/E| 0.01 |0.01|0.01| 0.01 | 0.01
S/T-P-x-x-S | 0.01 |0.01|0.01| 0.01 | 0.01
R-x-R-x-x-S/T | 0.01 |0.01/0.04| 0.01 | 0.01
L-x-R-x-x-S/T | 0.01 |0.01/0.01| 0.01 | 0.01
S/T-x-E/pS 0.01 |0.01)0.01} 0.01 | 0.01

Table 4.4 Statistical tests for the phylogenetic signal of 10 different phosphorylation motifs.
p-values less than 0.01 are represented by the number 0.01 in italics

4.3 Discussion

The analysis above represents a comprehensive investigation of phosphorylation motifs and
their distribution across species. I find that many phosphorylation motifs are universal across
species, although there is some evidence of clade-specific motif evolution. This suggests a
‘burst’ of motif generation in early eukaryotic evolution followed by a much lower rate of
motif emergence. However, while informative, there are a number of caveats inherent to
any comparative phosphoproteomics analysis that apply also here. The first is that the list
of motifs presented above is unlikely to be exhaustive, as there may be insufficient power
to detect all kinase target motifs. This is especially likely for species with poorly sampled
phosphoproteomes (A. Solari et al., 2015; Riley and Coon, 2016), or kinase Families with
few target sites. To some extent therefore the analysis above is biased towards strongly
sampled clades and kinases that are particularly active or have a high number of target sites,
or target sites with a high copy number. Kinases of the ATM/ATR Family for example
target the S/T-Q motif (Traven and Heierhorst, 2005), but this motif is not represented here,
perhaps because this Subfamily is represented by only two kinases in most species. More
obviously, the Tree of Life presented in Figure 4.1 is unevenly sampled for this analysis, with
a bias towards opisthokont species (animals and fungi), and with some protist superkingdoms
(such as the Haptists and Rhizaria) not represented at all. Ongoing projects for the more even
representation of model organisms among the protists superkingdoms may help to remedy
this issue in the future (Waller et al., 2018).

Other caveats to the analysis are more subtle. The experimental workflow of high-
throughput phosphoproteomics contains several steps, each of which can introduce biases for
the phosphopeptides that are detected (Boekhorst et al., 2011). Slight differences in experi-
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mental protocol between species may therefore produce artefactual variation. The approach
used for phosphoenrichment in particular (antibodies, IMAC or TiO2) has been shown to
affect phosphosite sampling (Boekhorst et al., 2011). In some cases there can be systematic
experimental biases towards particular amino acids in the phosphopeptide, such as for TiO2
and acidic amino acids (Pinkse et al., 2008). Another issue is that strategies used for the
growth and sampling of the organisms are likely to strongly affect the in vivo phosphoryla-
tion sites present at the time of sampling (Boekhorst et al., 2011). This is one of the reasons
why the extent of inter-species overlap in phosphorylation sites is typically low (Boekhorst
et al., 2011). However, this is less likely to be a limitation for the aggregated phosphomotif
analysis here, assuming that artefacts ‘average out’ between motif classes.

As part of the analysis presented above, ‘low confidence’ motifs found in one or a few
species were excluded from the analysis. This precludes the possibility of species-specific
phosphomotif evolution in the analysis. However, from Figure 4.5 it is apparent that clade-
specific motif evolution is quite rare. The probability of motif evolution in a single species
or pair of species — thus occurring on a shorter evolutionary timescale — I therefore judge to
be low, suggesting that many more false positive than false negative (if any) phosphomotifs
were excluded.

More generally, the extent to which the results presented here are affected by the back-
ground set used for motif detection remains to be seen. As outlined above, an unbiased sam-
ple of sequences flanking random S/T positions in the proteome was used to generate the
background set. However, given that most phosphorylation sites are found in disordered re-
gions (Landry et al., 2009; Levy et al., 2012), a proteome sample of S/T sites biased towards
disordered regions may provide a more suitable background, assuming different amino acid
distributions between ordered and disordered regions (Brown et al., 2010). More recently,
it has been suggested that the use of random S/T sites in the proteome may bias motif detec-
tion towards amino acids that are over-represented in the foreground set (phosphoproteome)
relative to the background set (proteome) (Cheng et al., 2018). A potential solution could
be to randomly shuffle foreground peptides to generate a background set that is identical in
amino acid composition to the foreground set (Cheng et al., 2018).

The analysis of prokaryotic phosphorylation data performed suggests that the motifs
identified originated in the universal common ancestor of eukaryotes and not in the univer-
sal common ancestor of all life. However, a phosphoproteomic analysis of more prokaryotic
species will be required to strengthen this conclusion. In this case, it would be particularly
useful to profile prokaryotic species with a high number of ePK kinases. Myxobacteria
for example have been found to contain several species with S/T protein kinase densities

rivalling those of some eukaryotic species (Pérez et al., 2008). It would be especially inter-
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esting in these cases to determine how the diversity of phosphomotifs compares with that of
eukaryotic species with a similar number of kinases. This could be supplemented by analy-
sis of sequence diversity for kinase domain positions that are likely proximal to the peptide
substrate. Such an analysis would be enabled by the finding that prokaryotic S/T kinases are
structurally similar to canonical S/T kinases in eukaryotes (Pereira et al., 2011).

Finally, I conclude from the above analysis that kinase frequency is not generally predic-
tive of motif enrichment for the cognate phosphorylation motif. In other words, the number
of kinases encoded in a genome does not correlate positively with the number of phospho-
rylation sites matching the target motif, as might have been expected. There are a number
of reasons why this may be the case. If kinase evolution proceeds via a process of subfunc-
tionalisation, for example, then the target sites of the ancestral kinase would be subdivided
among the duplicate kinases rather than increasing in proportion to the number of duplicate
kinases. Similarly, paralogous kinases may be functionally redundant or just spatially or
temporally separated from closely related kinases, in which case there is no particular rea-
son why the pool of target sites would be significantly larger than it was for the ancestral
kinase. At this point it should be emphasised that, in Figure 4.6, the independent variable is
an imperfect proxy for the total number of kinases that were active at the time of phosphosite
sampling. This proxy is likely to be especially poor for multicellular species, or for kinase
Families with a broad range of activity levels between kinases. Finally, I remind the reader
that specificity data currently exists only for a minority of human kinases, and therefore that
kinase Families of unknown specificity may have peptide specificities overlapping with the
kinase Family of interest used to produce the plots in Figure 4.6.

Some qualitative relationship was found however between the kinome and phosphopro-
teome, even in the absence of a clear quantitative relationship. For example, for all phospho-
rylation motifs found to be universal or near-universal across the eukaryotes, their cognate
effector kinases were also found to be broadly distributed across the eukaryotic Tree of Life
(Figure 4.1 and Table 4.3), in line with expectation. Therefore, the origin of these motifs
can likely be traced to the origin of their upstream effector kinases. Also, as previously
described, the data presented here shows that the depletion of basic motifs in plant species
broadly correlates with the absence/depletion of the AKT and PKA kinases in these gene
Families (Resjo et al., 2014). A simple binary prediction of the enrichment/non-enrichment
of a motif of interest is still therefore possible just from an inspection of the kinome. Whether
this could ever be extended to quantitative models however awaits the acquisition of more
phosphorylation data and an improved annotation of kinase specificities.



Chapter 5

Summary and future directions

The objective of this thesis was to explore the evolution of protein kinase specificity. The
results of all analyses performed are divided into three chapters. In Chapter 2, specificity
determining residues (SDRs) of the eukaryotic protein kinase (ePK) domain were examined
in detail. In Chapter 3, the evolution of kinase specificity following speciation and gene
duplication was explored. In Chapter 4, phosphorylation data from over 50 species was
collected and used to evaluate the evolution of phosphorylation motifs.

The results presented in Chapter 2 represent a comprehensive analysis of protein kinase
specificity at the active site. In it, kinase SDRs are predicted and rationalised structurally for
several different kinase specificities. The results overlap with previous studies but also yield
many new predictions. In two cases, the predicted SDRs have been validated experimentally.
The full extent of available structural data was also leveraged to generate a binding profile
for substrate positions -5 to +4. Sequence-based specificity predictors were constructed also
and benchmarked for the five most common position-based preferences. Finally, the anal-
ysis of cancer tissue data demonstrated again that kinase SDRs are heavily targeted during
cancer (Creixell et al., 2015b; Dixit et al., 2009), and for the first time suggested that kinase
SDRs are differentially mutated between kinases of different specificity.

This work represents a significant advance in the mechanistic understanding of kinase
peptide specificity. A number of obstacles however prevent a more complete understanding
of specificity. The most fundamental of these is the lack of phosphorylation data both within
and between species. As described, accurate specificity models can only be constructed
for ~25% of human kinases and these are unequally distributed within the human kinome
phylogeny. Between species, only a small portion (mammals and S. cerevisiae) of the Tree
of Life is significantly represented. In the author’s view, this currently represents the biggest
bottleneck for further advances in this field. While it can be argued that sequence-based

predictors can be used to address this problem, it should be stated also that none of these
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methods predicts specificity completely de novo, which is to say that all depend to varying
degrees on current kinase-substrate annotations for human, mouse, and S. cerevisiae for
model training. Itis for this reason difficult to envisage how kinase specificities could reliably
be predicted for the kinases that lack close homology to previously characterised kinases.
More experimental data will be required in the future to train these experimental models.
An important first step will be the full kinome annotation of a model organism in a similar
vein to the (Mok et al., 2010) characterisation of 61 S. cerevisiae kinases (50 % of kinome).
This would give a sense of the range of possible kinase specificities, and also the extent to
which the kinome is covered by current sequence-based predictors.

An alternative would be the complete de novo prediction of protein kinase specificity.
Such an aim could be conceivably realised by the biophysical modelling of the kinase-
substrate interface to identify high-affinity substrate sequences. A previous attempt how-
ever did not produce promising results (Kumar and Mohanty, 2010). As before, such efforts
are likely to be hampered by the lack of kinase-substrate models in the PDB. This is espe-
cially likely to be the case for the ‘Other’ Group of kinases, which are poorly represented
currently but have been shown previously to bind the substrate in non-standard conforma-
tions (Eswaran et al., 2008; Maiolica et al., 2014). This is a polyphyletic grouping, and so
the binding conformation is likely to differ between kinases belonging to different clades.
Sequence-based predictors that assume homology of binding conformation are therefore
likely to perform poorly for these kinases. In view of a full kinome characterisation, it would
be especially important to target all kinase specificities not currently represented in Tables
2.1, 2.2, and 2.3 for kinase-substrate crystallography analyses. Such projects are likely to
significantly expand the current set of residues known to act as proximal SDRs.

Changes to kinase specificity in cancers will likely be subject to further research. In a
previous study and in here, it has been found that kinase SDRs are often targeted for mu-
tation in cancerous cells (Creixell et al., 2015b). However, the precise changes in substrate
phosphorylation or signalling flux following SDR mutation have yet to be determined by
phosphoproteomics experiments, nor have SDR mutations been linked to a particular stage
of cancer progression. Itis assumed that SDR mutations promote carcinogenesis by rewiring
signalling networks, thereby contributing towards the dysregulation of cell cycle control.
This implies that other changes to specificity — to docking motifs, to short linear motifs, to
adaptor proteins, to scaffold proteins, and to subcellular localisations — may occur at a sim-
ilar frequency to what is observed at the kinase active site, although this has not yet been
demonstrated. This avenue of research will be particularly important for the tyrosine kinases,

which are often mutated in cancers but tend to rely less heavily on active site interactions
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to determine their specificity (Ubersax and Ferrell, 2007). More generally, the mechanism
linking SDR mutation to cancer progression requires further attention.

The results from Chapter 3 suggest that kinase peptide specificity tends to be highly con-
served between orthologues. As previously discussed, this analysis could be strengthened
by the experimental characterisation of a taxonomically broader set of kinases. Beyond this,
it will be important to determine if specificity outside the active site — docking interactions,
adaptor interactions, scaffold interactions — is also strongly conserved. This could involve a
relatively simple conservation analysis of the short linear motifs that determine these inter-
actions. Such analyses could conceivably conclude that overall kinase specificity is highly
divergent even if active site specificity is conserved. It would also be useful to extend the
analysis to kinase-substrate interactions rather than kinase specificity per se, as has been
attempted previously (Tan et al., 2009a). This analysis suggested that kinase-substrate rela-
tionships tend to be conserved between species. However, for this research the specificity
of non-human (D. melanogaster, C. elegans, and S. cerevisiae) kinases was assumed to be
the same as their human orthologues. More work will be needed to generate predictors that
take into account the kinase and substrate sequence simultaneously when predicting kinase-
substrate interactions.

The Chapter 3 results also suggest a simplified model of kinase evolution in which speci-
ficities diverged rapidly during early kinase evolution but to a much lower extent late in kinase
evolution. This is based on the analysis of kinase clades at Family and Subfamily levels. As
discussed previously, this conclusion could be strengthened by considering the kinase phy-
logeny at all depths. The finding also raises the question of whether the result is an exclusive
feature of kinase evolution or will generalise to other enzymes and/or signalling modules. It
may be the case, for example, that the emergence of eukaryotic cells necessitated a ‘burst’
of communication potential in early evolution, but that in the later stages of evolution there
was little selective pressure for the evolution of new specificities. It would therefore be in-
teresting to repeat the analysis for other protein domains such as the SH2 domain, which is
an important signalling protein and is also characterised by a range of binding motifs (Tinti
et al., 2013).

Finally from Chapter 3, a detailed evolutionary reconstruction was performed for the
GRK Family of kinases responsible for the phosphorylation and regulation of G-protein cou-
pled receptors. As discussed previously, the results of this analysis yield important insights
into the evolution of specificity at the active site. However, a full interpretation for this anal-
ysis awaits an experimental characterisation of the reconstructed kinases. Perhaps the most
important question is whether the predicted changes in specificity lead to any corresponding

changes in protein kinase activity in the reconstructed kinase; if not, then the apparent toler-
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ance of the kinase domain to the ‘stability-activity tradeoff’” would have implications for the
evolvability of the protein kinase domain.

In Chapter 4, phosphorylation data was sampled from over 50 species and used to study
the evolution of phosphorylation motifs. This analysis revealed that many eukaryotic phos-
phorylation motifs were likely present in the universal eukaryotic ancestor. While insuffi-
cient species were sampled to determine whether the motifs are universal across the eukary-
otic Tree of Life — heterokont and haptist species are missing, for example — the broad distri-
bution of species sampled strongly support the conclusion that many of the motifs emerged in
a common ancestor of all eukaryotes. It is unlikely however that the list of motifs provided in
Chapter 4 1s exhaustive, as weakly enriched motifs are unlikely to be detected in poorly sam-
pled phosphoproteomes. A more comprehensive evolutionary analysis of phosphorylation
motifs therefore awaits advances in phosphoproteome protocols that will increase coverage.
For many of the motifs detected, the upstream kinase is unknown. In silico docking experi-
ments could conceivably be used to predict upstream kinases, but would require experimen-
tal validation assays also. The analysis performed also suggests that the phosphorylation
motifs observed in eukaryotes post-date their divergence from the prokaryotes. However,
this conclusion is currently supported by relatively scant phosphoproteome data from the
prokaryotes — a taxonomically broad sample of phosphoproteomes from the archaea and
bacteria in the future will be required to strengthen this conclusion.

More generally, for the phosphorylation data used in Chapters 2, 3, and 4, each phos-
phosite was assigned an equal weight during the analyses. However, some phosphorylations
may represent ‘noisy’ target sites, either in the sense that the mass spectrometry analysis can
not assign the phosphoacceptor serine, threonine, or tyrosine with high confidence (Olsen
et al., 2006), or that the target site represents a low-affinity substrate for the kinase (Levy
et al., 2010). Measures taken to downweight spurious or low confidence phosphorylations
may help to improve the quality of kinase specificity models and motif predictions from
phosphoproteome data. For example, phosphosites identified from MS/MS data can be as-
signed to one of four categories (Class I, Class II, Class III, or Class IV) depending upon
the localisation probability of the phosphoacceptor, and matches to known phosphorylation
motifs (Olsen et al., 2006). Moreover, previous analyses have suggested an enrichment of
non-functional phosphorylation sites at low stoichiometry on proteins of high abundance,
suggesting that off-target phosphorylations could occur by chance in crowded molecular
environments (Levy et al., 2012). Finally, recent studies have suggested that high-affinity
kinase substrates tend to be phosphorylated more early in phosphoproteomic time courses
than poor substrates (Godfrey et al., 2017; Kamenz and Ferrell, 2017; Swafter et al., 2016).

Future studies could therefore take into account these factors — substrate abundance, phos-
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phorylation stoichiometry, and time-point of phosphorylation — to identify model kinase
substrates among the complete set of target sites.

In conclusion, a number of questions in the field remain open, even in spite of the ad-
vances presented in Chapters 2, 3, and 4. It is the view of the author that further progress
in the field will hinge upon the acquisition of experimental data primarily rather than the
development of new computational methods. Significant advances may therefore require
sizable investments of money and resources. To secure funding, it will be incumbent upon
biochemists and bioinformaticians to demonstrate the importance of this field. This objective
is abetted by a number of recent high-profile studies relating to protein kinase specificity and
its evolution (Creixell et al., 2015a,b; Howard et al., 2014; Studer et al., 2016). In particular,
the finding that phosphorylation site turnover in fungal species can act as a driver of pheno-
typic diversity highlights the central role of kinases in cellular evolution. The role of kinases
also as hubs in signalling networks makes them prime candidates for studies within the bur-
geoning field of evolutionary systems biology (Albert, 2005; Zhu et al., 2007). Moreover,
the ever detailed knowledge of kinase SDRs at the active site presents applications within
the domain of synthetic biology, as has been demonstrated recently (Lubner et al., 2016). As
this field expands, opportunities for further kinase-driven research are likely to increase also.
Finally, the clinical relevance of protein kinases has now been apparent for many years, but
recent research demonstrating the importance of kinase specificity rather than activity per
se is likely to consolidate interest in kinase SDRs. It is for these reasons that research efforts
directed towards kinase specificity and kinase SDRs are likely to remain robust. Advances
in bioinformatic analyses — as has been presented here — would then be expected to arise

secondarily from the influx of new data.






Chapter 6

Materials and Methods

The methodology underlying the results presented in chapters 2, 3, and 4 are described in

detail here.

6.1 Methods for Chapter 2

6.1.1 Generating kinase specificity models

Phosphorylation site data were retrieved from the databases HPRD (human), Phospho.ELM
(human), PhosphoGRID (S. cerevisiae), and PhosphoSitePlus (human and mouse). Phos-
phorylation sites without an annotated upstream kinase or literature reference were removed
from the dataset. Phosphorylation sites in PhosphoGRID supported exclusively by the (Bo-
denmiller et al., 2010) or (Holt et al., 2009) studies were excluded from further analysis as
these studies provide only indirect evidence for kinase-substrate interactions. Target sites
that are likely to be homologous were removed with the CD-HIT program using an 85%
sequence identity cut-off (Li and Godzik, 2006). Kinases of the Atypical class were also
excluded, as they share little to no sequence homology with canonical eukaryotic protein
kinases (Manning et al., 2002b).

The dataset was further filtered to remove phosphorylation sites mapping to the ac-
tivation segment of kinase substrates. The justification for this is twofold. First, it has
been observed that kinase autophosphorylation sites at the activation segment often conform
poorly to kinase consensus motifs derived from peptide library experiments and/or trans-
phosphorylation site data (Miller et al., 2008; Pike et al., 2008). Second, from the prelimi-
nary analysis I observed a small number of kinases (CAMKK1, PDK1, and LKB1/STK11)
with strong substrate motifs corresponding to the CG[S/T]P motifs found in non-CMGC

kinase activation segments. However, for the kinases CAMKI11 and PDK1, experimental
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evidence suggests that substrate specificity is determined predominantly by allosteric fac-
tors, with only a weak reported affinity between the kinase and consensus substrate pep-
tide (Biondi et al., 2000; Okuno et al., 1997). For LKB1/STK11, while the kinase is able to
efficiently phosphorylate substrate activation loop sequences in vitro (Lizcano et al., 2004),
peptide library results fail to recapitulate any residues from the C-terminal CG[S/T]P motif,
instead implicating leucine at the -2 position as a substrate determinant (Shaw et al., 2004).
These results suggest that the strong CG[S/T]P consensus motifs observed are more likely
to be artefacts of the functional constraints upon this activation segment motif rather than
substrate determinants of specificity.

Specificity matrices for each kinase with at least ten phosphorylation sites were then
constructed in the form of a position probability matrix (PPM). In this study, the PPMs
constructed are 20 x 11 matrices with the columns representing substrate positions -5 to
+5; each value in the matrix represents the relative residue frequencies (from O to 1) for
the given substrate position. Cross-validation was used to assess kinase model performance.
Briefly, a 10-fold cross-validation procedure was implemented to determine the extent to
which each kinase model could successfully discriminate between true positive and true
negative phosphorylation sites using a matrix-based scoring function, using the protocol
described in Wagih et al., 2015. For the purpose of scoring only, the PPMs were converted
into PWMs by accounting for background amino acid frequencies in the proteome. Kinase
PWMs with an average AUC (area under curve) value < 0.60 were excluded from further
analysis (Wagih et al., 2015).

For all kinase Group/Family/Subfamily classifications, the KinBase data resource was

used unless otherwise specified (Manning et al., 2002b).

6.1.2 Position-based clustering of specificity models

Clustering of the PPMs was performed in a position-wise manner for the sites N- and C-
terminal to the phosphoacceptor (-5, -4, -3, -2, -1; +1, +2, +3, +4, +5) using the affin-
ity propagation (AP) algorithm (Frey and Dueck, 2007), which is a graph-based clustering
method. For the application here, single column vectors (20 x 1) from each kinase PPM con-
stitute nodes in the network, and the negative Euclidean distance between vectors represent
edges upon initialisation. AP considers all nodes as potential exemplars upon initialisation,
and then uses an iterative procedure to automatically identify the optimal number of clusters
and cluster exemplar nodes (Frey and Dueck, 2007). AP was implemented in R using the AP-
Cluster package with default parameters for the apcluster() clustering function (Bodenhofer
etal., 2011).
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The position-based clusters generated were subject to further refinement before any fur-
ther analysis. Non-specific clusters, which I define here as any cluster where the summed
average probability of the two most preferred residues is <0.30, were filtered from the analy-
sis. Clusters with fewer than 6 constituent kinases were also excluded. I also merged clusters
where the dominant cluster preference was for the same amino acid or for physicochemically
similar residues, as such fine-grained analysis of specificity — for example, comparisons be-
tween kinases with moderate +1 proline specificity and strong +1 proline specificity, or
between arginine preference and lysine preference — are beyond the scope of this investi-
gation. For each remaining specificity cluster I retrieved possible ‘false negative’ kinases
by incorporating kinases in clusters for which the maximum vector weight is greater than
the lower quartile of the dominant cluster preference. I suggest such false negative cluster
placement to result from noisy weights for non-preferred residues and/or the presence of
non-linear phosphorylation sites in the training data. Finally, potential ‘false positive’ clus-
ter members were designated as those kinases where the most preferred residue(s) differs
from that of the top three average preferred residues of the cluster, and were subsequently

removed from the cluster.

6.1.3 Sequence alignment-based detection of putative specificity deter-

mining residues (SDRs)

Three alignment-based methods (GroupSim, Multi-Relief 3D, SPEER) were used for the
detection of putative specificity-determining residues (SDRs). The use of more than a sin-

gle method was motivated by the finding that ensemble approaches that incorporate predic-

tions from three high-performing methods achieve higher specificity values than either two-

method predictions or the best-performing single-method predictions when benchmarked (Chakrabarti
and Panchenko, 2009). The three methods employed here represent the three algorithms with

the highest single AUC values when benchmarked against a set of 20 protein family align-

ments with known specificity determinants (Chakraborty and Chakrabarti, 2015).

6.1.4 Procedure for sequence alignment-based inference of SDRs

I implemented an automated pipeline for the MSA-based inference of SDRs in an R envi-
ronment. The inputs to the pipeline are the kinase specificity models and an MSA of all
corresponding kinase protein sequences. The MAFFT L-INS-i method was used to generate
MSAs for this analysis (Katoh et al., 2005); this was the highest-performing method in two
independent benchmarks of popular alignment tools (Ahola et al., 2006; Nuin et al., 2006).
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The trimAl tool was also used to remove MSA positions containing more than 20% ‘gap’
sites (Capella-Gutiérrez et al., 2009).

The pipeline clusters the kinase specificity models in a position-wise manner (discussed
above), and then iteratively predicts SDRs for each cluster identified (e. g. +1 proline pref-
erence). This is achieved for each cluster by generating a binary partition of the MSA on the
basis of cluster membership, and then using the GroupSim, Mutli-Relief 3D, and SPEER
methods to predict the most likely SDRs from the MSA partition.

The GroupSim, Multi-Relief 3D, and SPEER methods use distinct schemes for position
scoring; I therefore follow the precedent of the Chakrabarti and Panchenko 2009 study and
identify as putative SDRs those residues among the top 15 ranked sites across all three meth-
ods. Standalone versions of GroupSim and SPEER were employed in the pipeline (Capra
and Singh, 2008; Chakrabarti et al., 2007); for MultiRelief-3D, a custom R script for the
method was generated on the basis of the algorithm description in (Ye et al., 2008).

This whole process described above was implemented for serine/threonine and not tyro-
sine kinases. I base this on the observation from structural data that SDR ordering with re-
spect to the substrate differs at some positions; for example, the -1 residue in tyrosine kinases
binds to residues that usually bind at position -3 in serine/threonine kinases (Brinkworth
et al., 2003). Combining serine/threonine and tyrosine specificity models could therefore
confound the analysis, and there were too few (n=16) tyrosine kinase specificity models for
the reliable detection of kinase SDRs.

6.1.5 Identification of kinase-substrate cocrystal structures

Multiple steps were employed in an automated procedure to identify with confidence all
cocrystal structures in the protein data bank (PDB) featuring an active site kinase-substrate/inhibitor
interface. I suggest three different types of structure that are relevant to this investigation:
kinase-peptide complexes at the active site, kinases in complex with long-chain substrates
or inhibitors at the active site, and trans-autophosphorylation complexes.

For the detection of kinase-peptide complexes, I first used the hmmsearch command in
HMMER (default parameters) to identify all PDB structures containing a eukaryotic protein
kinase domain (PFAM: PF00069) sequence (Finn et al., 2016). All PDB files with at least
one peptide chain comprising fewer than 35 amino acids were then selected. To distinguish
between active site and allosteric short-chain binders, I selected all PDB files with at least one
residue in contact with either the HRD catalytic aspartate of the kinase domain (PO binding)
or with the position 159 residue of the kinase activation loop (position +1 binding). I used
a lenient cut-off of 6 A to determine inter-chain contacts; the retrieved PDB files were then
filtered manually to retain kinase-substrate complexes at the active site only.



6.1 Methods for Chapter 2 143

The above protocol was adapted slightly to account for long-chain substrates and au-
tophosphorylation complexes. For long-chain substrates, the procedure above was repeated
to select for protein chains longer than 35 amino acids. For autophosphorylation complexes,
the PDB biological assemblies were also screened for kinase-substrate contacts. All process-
ing was performed in R with use of the Bio3D package (Skj@rven et al., 2016). SIFTS XML
files were also used for residue-level structure-sequence mappings (Velankar et al., 2013).

The results of these searches are given in Tables 2.1, 2.2 and 2.3.

6.1.6 Structural analysis of the kinase-substrate interface

For all of the retrieved kinase-substrate structures, an automated procedure was implemented
to identify the kinase substrate-binding residues for the substrate positions -5 to +4 (exclud-
ing PO). I used the PDBSum tool to predict all substrate-binding residues (de Beer et al.,
2014). The substrate residue in closest proximity to the catalytic aspartate of the kinase
HRD motif was identified as PO, and the flanking positions (-1,+1,-3, etc) were designated
accordingly. For the binding profile shown in Fig 2.2a, Tyr kinases were excluded from the
analysis. Kinase domain residues that bind infrequently to the substrate peptide (<10% of

structures) were also excluded.

6.1.7 Construction of kinase-substrate models

Kinase-substrate models were constructed using existing X-ray cocrystal structures as tem-
plates. Superposition of the kinase of interest (query) with a template cocrystal structure is
used to achieve a plausible positioning of the substrate peptide with reference to the query
kinase. The template kinase is then removed and the template peptide mutated in Silico to the
sequence of a known phosphorylation site of the query kinase. After resolving steric clashes
between kinase and substrate, the resulting complex is then subject to energy minimisation
(EM), followed by molecular dynamics (MD) equilibration and production runs.

For all models constructed, the template kinase was chosen to be similar in sequence to
the query of the kinases listed in 2.1, 2.2 and 2.3. Structural superposition was performed in
PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC). Steric
clashes were resolved manually by rotating side chains in PyMOL. Where applicable, side-
chain positioning was guided by simple physicochemical considerations and/or the residue
interaction data discussed above.

All necessary input files for EM and MD were prepared using the web-based CHARMM
graphical user interface (CHARMM-GUI) with default parameters (Jo et al., 2008). EM
and MD runs were executed with the CHARMM36 force field using the NAMD molecu-
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lar dynamics tool (Phillips et al., 2005). I imposed a harmonic restraint (force constant 90
kcal/mol/Az) on the catalytic aspartate of the HRD motif and on the substrate PO residue to
ensure correct positioning of the phosphoacceptor residue.

In each case, the final model used for analysis was generated by finding a representa-
tive set of co-ordinates from the protein trajectory. I used the Bio3D package to generate a
Principal Components Analysis (PCA) plot of the substrate peptide trajectory co-ordinates
(Skjeerven et al., 2016). Partition around medoids (PAM) was then used to cluster n PCA
component scores, where n is the lowest number of components that can account for 70%
of the variation. I selected as the kinase-substrate model the set of peptide co-ordinates that
served as the medoid to the terminal cluster i.e. the cluster of co-ordinates corresponding to

the trajectory before the end of simulation.

6.1.8 Construction of predictive models and cross-validation

Naive Bayes (NB) algorithms were used to predict the specificity of protein kinases on the
basis of sequence alone. Five separate classifiers were generated, corresponding to the five
preferences — P+1, P-2, R-2, R-3, and L-5 — supported by at least 20 kinases.

Each classifier was trained on the 119 Ser/Thr kinase sequences of known specificity,
and each kinase was labelled (‘positive’ or ‘negative’) according to the clustering of kinase
specificity models described above. In each case, the prior probability of classification was
set to 0.5 so that positive or negative classifications would be equally likely a priori. I also
set a Laplace correction factor of 0.5 during training to account for the absence of particular
amino acids in either positive or negative sets of the training data for a given alignment posi-
tion. The R libraries klaR and cvTools were used for model generation and cross-validation,
respectively (Weihs et al., 2005).

Each naive Bayes classifier was initialised with the putative specificity-determining align-
ment positions listed in Figure 2.4. Leave one-out cross-validation (LOOCYV) was then used
for each classifier to identify the subset of input SDRs that would optimise the performance
of the model on the training data with respect to the AUC. For R-2, positions 127 and 189
were not implicated here as the methods used for SDR detection considers each alignment
position independently of other positions. Both positions however are strongly supported as
co-operative SDRs in the literature (Ben-Shimon and Niv, 2011; Zhu et al., 2005b), and are
included here for specificity prediction. For R-3, separate models were trained for CMGC
and non-CMGC kinases separately as this preference seems to be determined by an indepen-
dent mechanism in CMGC kinases (see Chapter 2).

The performance of the naive Bayes models were also compared to that of the Predikin
method (Saunders et al., 2008), which was described in the Introduction chapter. For this
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purpose, a stand-alone version of the Predikin approach was implemented using a custom R
script written by the author. The naive Bayes model and Predikin method were both trained
on the same phosphorylation data to make their performance comparable. For the bench-
marking of Predikin, each of the 119 models was predicted using a leave-one-out approach,
where a single kinase at a time was exlcuded from the training set and then had its specificity
predicted on the basis of the 118 other kinases of known specificity. All 119 predicted PPMs
were then clustered using the procedure outlined above, and then were compared to cluster
membership of the 119 empirical PPMs to generate the ‘true positive’/‘true negative’/‘false
positive’/‘false negative’ assignations, thus enabling the calculation of an AUC score for dif-
ferent predictions (P+1, P-2, R-2, R-3). Predictions could not be made for the L-5 preference

as no Predikin SDRs exist for positions outside the -3 to +3 window.

6.1.9 Analysis of kinase mutations in cancer

Mutation data for primary tumour samples was obtained from The Cancer Genome Atlas
(TCGA) (https://cancergenome.nih.gov/). Each kinase mutation was assigned to the correct
protein isoform and then mapped to the corresponding kinase domain position.

All kinase domain positions were categorised as ‘SDR’, ‘Catalytic’, ‘Regulatory’, and
‘Other’. Catalytic and regulatory sites were inferred on the basis of literature evidence.
‘SDR’ sites refers to residues that are both potential SDRs (Fig 2.4) and found within 4
A the substrate peptide. ‘Other’ refers to the complement of these three sets relative to the
kinase domain. The list of relevant residues is given in Table 2.5.

Most of the ‘Catalytic’ residues were described in the Infroduction chapter and are found
in the highly conserved motifs and loops of the protein kinase domain. Specifically, domain
positions 8, 10, and 13 represent the critical glycine residues in the glycine-rich loop; posi-
tions 30 and 48 represent the highly conserved lysine and glutamate residues (respectively)
in the N-terminal lobe that form an ionic bond in active kinases; residues 123, 125, and
128 are found in the ‘xRDxKxxN’ motif of the catalytic loop; residue 140 forms side chain
contacts with ATP, and residue 141 represents the aspartate residue of the ‘DFG’ motif that
co-ordinates the Mg?* ion between the ATP f- and y- phosphates. All other positions listed
— 15, 28, 85, 129, 130, 131, 186, and 190 — constitute the catalytic spine (Kornev et al.,
2008).

The frequency of mutations for each functional category is given in Fig 2.20b, and a
comparison of mutation recurrence per site for predicted P41 and R-3 kinases is represented
in Fig 2.20c. Per site, I used the proportion of mutations mapping to that site for a given
kinase, and then took the average of this value across all kinases of the same specificity.
This was preferred to the use of raw mutation frequencies, which would bias the analysis
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towards highly frequent kinase-specific mutations (e.g. BRAF V600E). Tyrosine kinases
were excluded from all of the cancer-based analysis, as the predicted SDRs relate to Ser/Thr

kinases only.

6.1.10 SNF1 mutant in vitro kinase activity assay

This experimental analysis was performed by Cristina Viéitez at the EMBL research campus.

The description of the methods used below was also written by Cristina Viéitez

The SNF1 plasmid from the Yeast Gal ORF collection was used as a template for directed
mutagenesis to create the mutants A218L and V244R. Wild type and mutant plasmids were
transformed into a BY4741 SNF1 KO strain. Cells were grown to exponential phase in SD
media lacking uracil, and Snfl expression was induced with 2% galactose for 8h. Cell pellets
were collected, lysed using protease and phosphates inhibitors (Sigma) and stored O/N at -
80C. Snfl immunoprecipitation was performed using Protein A agarose beads (Sigma) with
rotation for 2h at 4C. Kinase assay was performed using AQUA synthetic peptides (Sigma).
Each of the 3 kinases was incubated with equal concentration of the 3 synthetic peptides
(VQLKRPASVLALNDL, VQDKRPASVLALNDL and VQLKRPASVLAANDL), ATP mix
(ATP 300 pM, 15 mM MgCl2, 0.5 mM EGTA 15mM g- glycerol phosphate, 0.2 mM sodium
orthovanadate, 0.3 mM DTT) and allowed to react for 0, 2, 7 and 20 minutes. The reactions

were quenched by transferring the reaction mixture onto dry ice at the corresponding times.

6.1.11 Mass spectrometry identification and quantification

This experimental analysis was performed by Vinothini Rajeeve at the Barts Cancer Institute,
Queen Mary University of London, under the supervision of Pedro Cutillas. The description

of the methods used below was also written by Vinothini Rajeeve

Kinase reaction products were diluted with 0.1% formic acid in LC-MS grade water and
5 pl of solution (containing 10 pmol of the unmodified peptide substrates) were loaded LC-
MS/MS system consisting of a nanoflow ultimate 3000 RSL nano instrument coupled on-
line to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific). Gradient elution
was from 3% to 35% buffer B in 15 min at a flow rate 250 nL/min with buffer A being used
to balance the mobile phase (buffer A was 0.1% formic acid in LC-MS grade water and B
was 0.1% formic acid in LC-MS grade acetonitrile). The mass spectrometer was controlled
by Xcalibur software (version 4.0) and operated in the positive ion mode. The spray voltage

was 2 kV and the capillary temperature was set to 255 °C. The Q-Exactive Plus was operated
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in data dependent mode with one survey MS scan followed by 15 MS/MS scans. The full
scans were acquired in the mass analyser at 375- 1500m/z with the resolution of 70,000 ,
and the MS/MS scans were obtained with a resolution of 17, 500. For quantification of each
phosphopeptide and its respective unmodified form, the extracted ion chromatograms were
integrated using the theoretical masses of ions using a mass tolerance of 5 ppm. Values of
area-under-the-curve were obtained manually in Qual browser of Xcalibur software (version
4.0).

6.2 Methods for Chapter 3

6.2.1 Conservation of predicted specificities

Kinases with the P+1, P-2, R-2, R-3, and L-5 classes were first predicted for each kinase
in human by identifying each sequence with a posterior probability greater than 0.9 for the
corresponding naive Bayes model. Pan-taxonomic orthologues for each kinase were then
identified using the REST API for ensemblGenomes Compara (Herrero et al., 2016; Kersey
et al., 2018; Yates et al., 2015). Each orthologous set of sequences was aligned using the
MAFFT L-INS-i algorithm (Katoh et al., 2005), and then pseudokinases were filtered from
the orthologous set by identifying substitutions at the catalytic domain positions 30, 123, and
141. For an MSA of an orthologous group, the conservation of all alignment positions was
assessed on the basis of the bio3d substitution matrix similarity (Skjaerven et al., 2016). For
each MSA, these values were then averaged across the groups ‘Kinase domain’, ‘SDR’, and
‘Catalytic’. The ‘SDR’ group in Fig 3.1 represents the predicted SDRs present in Fig 2.4a,
with the addition of domain positions 127 and 189 for the R-2 specificity. The ‘Catalytic’
group is the same as what is listed in Table 2.5. ‘Kinase domain’ represents the complement
of the kinase domain to the other two groups.

Posterior probabilities corresponding to the human kinase specificity were also predicted
for every sequence in an orthologous MSA. These values were averaged across all sequences
within an MSA to quantify the extent of specificity divergence among a set of orthologues. A
value of 1.0 would indicate complete conservation of specificity among orthologues and vice
versa. Therefore, each data point in Fig 3.2 represent the average posterior probability across
all sequences in the MSA of having the same specificity as the human kinase orthologue (‘R-
2°,‘P+1°,°P-2, etc).

For Fig 3.3 however, each data point represents the mean difference in posterior prob-
abilities between one-to-one orthologues and one-to-many orthologues for a given species
(O-t0-O - O-to-M). One-to-one and one-to-many predictions were again made using the
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REST API for ensemblGenomes Compara (Herrero et al., 2016; Kersey et al., 2018; Yates
et al., 2015).

6.2.2 Conservation of empirical specificity models

Human, mouse, and budding yeast (S. cerevisiae) specificity models were used for this anal-
ysis. All human and mouse models were generated from target site phosphorylation data
as described in the Kinase specificity models subsection. Only 18 of 81 models however
were constructed this way for the yeast kinases, with the remaining models deriving from
the peptide screening data presented in (Mok et al., 2010). Before further analysis, the pT
and pY sites were removed from each of the peptide screening models and then the matrices
were normalised so that all columns (i.e. site positions) sum to 1.

To generate a null distribution of model distances, all possible pairwise comparisons
were made for kinases existing within both the same Family and same species (n=218).
This procedure was repeated also at the Subfamily level (n=110). In both cases, the Frobe-
nius distance (‘FD’) was calculated for each pairwise comparison using the norm() function
in R. This is equal to the sum of the squared element-wise distance between matrices, and

then square-rooted:

A = matrix, — matrix,

FD = \/Z:rlzl 27:1 |Aij|2

Human/mouse orthologues of yeast kinases were identified using the Rest API for Ensembl
Compara (Yates et al., 2015). From this dataset, only 14 orthologous groups were detected
containing specificity from both S. cerevisiae and human/mouse. Each of the S. cerevisiae
kinases was compared to all of its human/mouse orthologues, and then the maximum Frobe-
nius distance was extracted and compared to the null distribution (Table 3.1.) This procedure
was repeated in Table 3.2 for S. cerevisiae and mouse/human kinases belonging to either the
same Subfamily or Family, as defined by the kinase.com resource (Manning et al., 2002b).

This analysis was also repeated using truncated matrices where ‘noisy’ positions in the
matrix had been filtered. Unconstrained positions were identified by calculating the infor-
mation content (in bits) for each matrix position, and then filtering out matrix positions at a
threshold of 0.75 bits. The calculation for the number of bits (R;) is as follows:

R; =10g,(20) - (H; +¢,)
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where H; and e, are as follows:

H; = =%, fpiX10g, f};
1 eo-n

n T2 N T
where f}, ; is the relative frequency of amino acid b at position i, and n is equal to the number
of sequences in the alignment

When comparing any two matrices, all constrained positions from either of the two ma-
trices are considered together (i.e. if matrix, is constrained for 1 position, and matrix, for 2
positions, then 3 positions from each of the two matrices will be compared). The Frobenius
distance calculated is then divided by total number of constrained positions to normalise the

distance metric calculated.

6.2.3 Analysis of the evolution of kinase function

Kinase domain sequences were collected for all 9 opisthokont species in KinBase with an
annotated kinome (H. sapiens, M. musculus, S. purpuratus, D. melanogaster, C. elegans, A.
queenslandica, M. brevicollis, S. cerevisiae, and C. cinerea). The kinase domain sequences
were then aligned using the MAFFT L-INS-i method (Katoh et al., 2005), and filtered to
remove pseudokinases (kinases without expected residues at positions 30, 48, 123, 128, and
141). A manual correction was then made to the multiple sequences alignment (MSA), and
the trimAl tool employed to remove positions with 80% or more of ‘gap’ characters among
the sequences (Capella-Gutiérrez et al., 2009). Finally, a further filter was applied to remove
truncated sequences with fewer than 190 kinase domain positions.

The resulting MSA (2094 sequences) was used to generate a maximum-likelihood ki-
nase domain phylogeny with the RaxML tool (Stamatakis, 2014). Amino acid substitutions
were modelled using the LG matrix, and a gamma model was employed to account for the
heterogeneity of rates between sites. A neighbour-joining phylogeny generated with the R
ape package was used as the starting tree (Paradis et al., 2004).

Ancestral sequence reconstructions were performed with the CodeML program (part of
the PAML package) using an LG substitution matrix (Yang, 2007). No molecular clock was
assumed (cl/ock = 0), and a gamma model was employed again to account for rate hetero-
geneity between sites. The alpha parameter of the gamma distribution was estimated (fix-
alpha = 0) with a staring value of 0.5 (alpha = 0.5), and four categories of the gamma
distribution were specified (ncatG = 4). The physicochemical properties of the amino
acids were not taken into account when performing the ancestral sequence reconstructions
(aaDist = 0).
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For the analysis of kinase evolution, each Family and Subfamily was assessed iteratively
and a divergence score (s) was assigned to each position of the MSA. The divergence scores
are calculated by comparing the Family/Subfamily of interest (clade A) with the closest sister
clade (clade B) in the phylogeny. The score calculated is adapted from the BADX score of
a previous publication (Edwards and Shields, 2005), specifically:

S =RC, —AC.p(AC)

RC (recent conservation) represents the sequence conservation for the clade of interest (clade
A) and is calculated here on the basis of substitution matrix similarity in the R package
bio3d (Skjerven et al., 2016). AC represents the conservation of ancestral nodes for the
clade of interest (clade A) and the ancestral node for the nearest sister clade (clade B); this is
given as a 1 if the predicted residues are identical to each other and a -1 otherwise. Finally, as
an innovation here, the score is weighted by the value p(AC), which represent the the proba-
bility that the AC value was correctly assigned. For matching residues (AC = 1), this is the
posterior probability of the predicted residue for clade B; for differing residues (AC = —1)
this is the summed posterior probability of all residues in clade B besides from the predicted
residue for clade A. Therefore, scores for suspected divergence would be down-weighted if
there is ambiguity concerning the nature (matching or mismatching) of the clade B ancestor.

Where the sequences of interest were divided into two or more clades in the phylogeny,
only the largest clade was considered for further analysis. In some cases also the clade of
interest contained spurious sequences from the wrong Group, Family, or Subfamily. Spuri-
ous sequences were tolerated only if they comprised less than 15% of the clade sequences,
otherwise the largest ‘pure’ subclade (with the sequences of interest only) was selected for
further analysis. For the calculation of divergence scores, the nearest sister clade to the clade
of interest was selected. However, scores were only calculated if the nearest sister clade con-
tained 5 or more sequences and belonged to the correct category (e.g. two Subfamilies that
are being compared must belong to the same Family). All searching/manipulation of the
phylogeny was performed using a custom script in R with the aid of the ape package.

For the global analysis represented in Fig 3.7 and 3.9, the number of switches was cal-
culated at the Family and Subfamily level. A substitution is considered a switch if it is above
the 95th percentile for all Subfamily (s g,p famity9s5) = 1.904) or Family (S ¢ gmiry95) = 1.793)
scores. For the one-sided Fisher tests described in the Results subsection of Chapter 3, a site
is considered to be frequently switching if the number of switches is above the 90th percentile
of switch frequencies for the 246 alignment positions. This was calculated separately at the
Family (90th percentile = 8) and Subfamily (90th percentile = 7) level. For the analysis,
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each kinase domain position was assigned to a functional category. The Catalytic and Reg-
ulatory categories are defined as they were for the analysis of cancer mutations in Chapter
2 (Table 2.5). 1 define as a Proximal residue any residue within 4 A of the substrate peptide,
as determined from the PDB: IATP structure. Distal residues refer to putative SDRs listed
in Figure 2.4a that are not within 4 A of the substrate peptide. Interactions residues refers
to those sites that are often found to be in contact with other protein domains in co-crystal
structures, as determined using data from the 3DID database, which is a database of protein-
protein interactions for which residue-level structural data exists (Mosca et al., 2014). The
Interactions category refers to the 17 residues found to be in contact with at least 10 other
protein domains from structural data. Other represents the complement of the kinase domain

against these 5 previous sets.

6.2.4 Divergence of kinase specificity at the Group, Family, and Sub-

Sfamily levels

For the analysis of kinase specificity, 101 high-confidence specificity models of human and
mouse kinases were collected as described in the Kinase specificity models subsection. Each
kinase was annotated at the Group, Family, and Subfamily level (as required) using the man-
ual annotations given in the kinase.com website. The analysis of specificity divergence was
performed separately at each of the three levels. For each level, all pairwise Frobenius dis-
tances within a grouping is computed and then all possible pairwise distances are calculated
between groupings. Importantly, the higher-level categorisation is retained for all pairwise
comparisons. For example, at the Family-level, all between-Family distance comparisons
would occur for kinases belonging to the same Group only. For each pairwise compari-
son, the Frobenius distance between specificity models was calculated using the *norm()’

function in R.

6.2.5 Evolution of the GRK Family

Protein sequences were first retrieved from a taxonomically broad set of non-redundant pro-
teomes (representative proteomes) (Chen et al., 2011), and then each representative proteome
(rp35) was queried with a hidden Markov model (HMM) of the GRK domain (KinBase) us-
ing HMMsearch (E = 1e-75) (Eddy, 1998). The Subfamily classifications of each GRK were
then predicted using Kinannote (Goldberg et al., 2013). Sample sequences of the RSK Fam-
ily kinases — the Family most similar in sequence to the GRKs — were also included as an

expected outgroup in the phylogeny, as were two kinases of the basophilic PKA Family.
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The kinase sequences (GRK kinases plus outgroups) were then aligned using the L-INS-i
algorithm of MAFFT (Katoh et al., 2005), and filtered to remove pseudokinases and redun-
dant sequences (97% threshold), resulting in 163 sequences to be used for phylogenetic re-
construction. A maximum likelihood phylogeny was generated with RAXML using a gamma
model to account for the heterogeneity of rates between sites. The optimum substitution ma-
trix (LG) for reconstruction was also determined with RAXML using a likelihood-based ap-
proach (Stamatakis, 2014). FastML was then used for the ML-based ancestral reconstruction
of sequences for all nodes in the phylogeny (Ashkenazy et al., 2012). Sequence probabilities
were calculated marginally using a gamma rate model and the LG substitution matrix.

Orthology and paralogy predictions for the GRK sequences were obtained from the Com-
para resource of ensemblGenomes (Herrero et al., 2016; Kersey et al., 2018), and were ac-
cessed using the ensembl REST-API (Yates et al., 2015).

6.3 Methods for Chapter 4

6.3.1 Kinase motif enrichment across many eukaryotic species

The phosphorylation site data was collected from a range of sources. They are as follows:
Trypanosoma brucei (Nett et al., 2009; Urbaniak et al., 2013), Trypanosoma cruzi (Amorim
et al., 2017; Marchini et al., 2011), Leishmania infantum (Tsigankov et al., 2013), Trichoplax
adhaerens (Ringrose et al., 2013), Homo sapiens/Mus musculus/Rattus norvegicus (Horn-
beck et al., 2015), Strongylocentrotus purpuratus (Guo et al., 2015), Drosophila spp. (Hu
et al., 2018), Caenorhabditis elegans (Rhoads et al., 2015), Magnaporthe oryzae (Franck
et al., 2015), 18 fungal species (Studer et al., 2016), Dictyostelium discoideum (Charest
etal., 2010), Medicago truncatula (Rose et al., 2012; Yao et al., 2014), Glycine max (Nguyen
et al., 2012; Yao et al., 2014), Arabidopsis thaliana (Lin et al., 2015a; Yao et al., 2014), Se-
laginella moellendorffii (Chen et al., 2014b), Brachypodium distachyon (Lv et al., 2014),
Oryza sativa (Hou et al., 2015; Yao et al., 2014), Zea mays (Marcon et al., 2015; Yao et al.,
2014), Chlamydomonas reinhardtii (Wang et al., 2014), Plasmodium falciparum/Plasmodium
bergheilToxoplasma gondii (Invergo et al., 2017; Treeck et al., 2011), Tetrahymena ther-
mophila (Tian et al., 2014), and Phytophthora infestans (Resjo et al., 2014). For each species,
redundant phosphosite 15mers (centred on S or T) were filtered from the analysis.
Phosphorylation motifs for each of the 48 species were obtained by running r-motif-x
using its default parameters (p-value of 1 x 107 and a minimum of 20 motif occurrences).
This tool takes as its input a ‘foreground’ set of known target sites and a ‘background’ set
of sites known not to be target sites (Wagih et al., 2015). In this case, sites not currently
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thought to be phosphorylation sites were sampled randomly from the background proteome
of each relevant species at 10x the number of observed phosphorylation sites. The frequency
of motifs in the foreground relative to the background expectation is then used to calculate
binomial p-values for each detected motif. The foreground and background sites were 15
residues long and with S/T present as the central residue.

For further analysis, I selected only those ‘high-confidence’ motifs appearing in at least
a third of species within one or more superphyla (i.e. fungi, metazoa, and plants). For the
poorly-sampled superphyla (alveolates and excavates), the motif had to be present in at least
two of the examined species. Motifs exclusive to the amoebozoa or heterokonts were not
considered as both superphyla are represented here by only a single species. Other con-
straints were imposed to filter out potentially spurious motifs. Serine or threonine additions
to a classical motif were not considered, as they may result from the clustering of phospho-
rylation sites in the substrate primary sequence (Moses et al., 2007; Schweiger and Linial,
2010). I did not also consider motifs that may result from the ‘looping’ of a known linear
motif (Duarte et al., 2014). The putative linear motif ‘S/T-P-x-x-x-K’ for example could
represent the classical ‘S/T-P-x-K’ motif when considered in three dimensions. I also con-
sidered R/K and D/E to be synonymous when identifying new motifs. Finally, D/E additions
to the classic casein kinase 2 motif ‘S/T-D/E-x-D/E’ were not considered as weak D/E pref-
erences outside the +1 and +3 positions have already been described for this kinase (Sarno
et al., 1997). Motifs detected here that do not match the list of motifs given in (Amanchy
et al., 2007) or (Miller and Turk, 2018) are declared to be ‘new’ motifs with an unknown
upstream regulator.

To calculate motif enrichment values in each species, the proportion of motif matches
in the phosphorylation set (no. of matches to phosphosites / total number of phosphosites)
is divided by the proportion of motif matches to the background set (no. of matches to
background set / total number of sites in the background set). For motifs with more than one
constrained position (i.e. n > 1), I normalised the enrichment value by the highest enrichment
score of a subset motif with 1 fewer constrained position (n-1). This control ensures that all
positions within the motif are enriched, and not just a favoured subset motif such as S/T-
P or R-x-x-S/T. Binomial p values were calculated in an analogous sense as the motif null
probability was taken to be equal to the total frequency of motif (e.g. P-x-S/T-P) matches
to the background sites divided by the total number of matches for the subset motif (e.g.

S/T-P). All binomial p values are represented in Fig 4.5.
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6.3.2 Kinase motif enrichment for prokaryotic phosphorylation sites

Phosphorylation data for E. coli comes from the following sources: (Lin et al., 2015b; Pan
et al., 2015; Potel et al., 2018). Phosphorylation data for Sulfolobus acidocaldarius and Sul-
Jfolobus solfataricus comes from the dbPSP database (Pan et al., 2015). Phosphorylation
data for Synechococcus sp. and M. tuberculosis (Table 4.1) also derives from the dbPSP
database (Pan et al., 2015). The ‘pooled species’ in Fig 4.5 comprises 180 unique phosphory-
lation sites from 8 different prokaryotic species — Halobacterium salinarum, Bacilus subtilis,
Mycobacterium tuberculosis, Streptomyces coelicolor, Escherichia coli, Synechococcus sp.,
Sulfolobus solfataricus, Sulfolobus acidocaldarius — all of which comes from the dbPSP
database also (Pan et al., 2015).

Enrichment values and binomial p-values were calculated using the same methods de-
scribed in the previous subsection. The motif-x tool was executed using its default parameters

(p-value of 1 X 107% and a minimum of 20 motif occurrences), as described above.

6.3.3 Co-evolution between the kinome and phosphoproteome

A starting phylogeny for the 48 species was assembled using the NCBI taxonomy tool (Ben-
son et al., 2009; Sayers et al., 2009). Unresolved branches (polytomies) for particular clades
were then resolved manually after referring to previous phylogenetic studies in the litera-
ture (Cavalier-Smith et al., 2014; Consortium, 2007; Mathews et al., 2000; Shen et al., 2016;
Telford et al., 2015). Kinome annotations for each species were generated automatically us-
ing the KinAnnote tool (Goldberg et al., 2013), which employs BLAST- and HMM-based
searches to identify and classify ePKs.

The relationship between kinase motifs and their cognate kinases (e.g. S/T-P-x-K and
CDKs) was modelled with phylogenetic independent contrasts (PIC) in R using the ape pack-
age (Felsenstein, 1985; Paradis et al., 2004). This method generates phylogenetic ‘contrasts’
between variables on a tree to account for the non-independence of data points (Felsenstein,
1985). The contrasts are first generated by finding the difference between trait values on
the phylogeny for each pair of neighbouring tips (Freeman and Herron, 2003). Then, for
each pair of neighbouring tips, the ancestral trait values are predicted by taking a weighted
average of the two neighbour values, where the reciprocal of the branch lengths are used as
weights. Each neighbouring pair of tips is then pruned from the tree, and the branch leading
to their common ancestor is extended by taking into account the branch lengths from the
common ancestor to its descendant tips. All possible contrasts for each pair of neighbouring
tips is then calculated for the pruned tree, and the process is repeated until the phylogeny

can not be pruned any further. Each contrast is then standardised by taking into account the
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branch lengths of the tip pairs that were used to generate the contrast (Freeman and Herron,
2003). This process is applied for two continuous variables (‘X’ and “Y’), with the objective
of generating independent data points for each variable that can be used for a regression or
correlation analysis.

In Fig 4.6, indepence contrasts were calculated for motif enrichment values on the x-axis
and for relative kinase frequencies (number of kinases of interest divided by total number
of kinases detected in the proteome) on the y-axis. The kinase frequencies for each species
were calculated using the Kinannote tool (Goldberg et al., 2013). Kinase frequencies for
species spanning the eukaryotic Tree of Life (as presented in Table 4.3) were also calculated
using the Kinannote tool.

Tests for the phylogenetic signal of different motifs were conducted in R using the Phy-
loSignal package (Keck et al., 2016), as were tests for the phylogenetic signal of kinase family
frequencies. The phylogenetic plots in Fig 4.7 were also generated using PhyloSignal.
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Appendix A

A.1 Chapter 2 commentary on SDRs

Lysine+3

Of the ten basophilic kinases identified, eight are cyclin-dependent kinases of the CMGC
Group. In CDK2 cocrystal structures, a lysine at the +3 position forms a hydrogen bond
with a phospho-threonine at the 155 domain position in the kinase activation loop (Bao
etal., 2011; Brown et al., 1999). Brown et al hypothesised that the restricted dihedral angles
of the proline at position +1 help to orient the 43 side chain towards the primary activation
loop phosphate, suggesting some level of inter-positional dependency for CDK specificity.
As stated in the Introduction, specific contacts are also formed between K+3 and a cyclin
subunit, which likely explains why this specificity is observed in CDKs but not in other
proline+1 kinases such as the MAPKSs.

Position-1

I detected a single significant preference for leucine (10 kinases: 8 CMGC, 1 AGC, 1ICAMK)
at the -1 position. Six of the the ten kinases with this preference belong to the MAPK Family.
The identified preference is supported by peptide library analysis of MAPK3, although the
identified preference is weak and to a lesser extent extends to other hydrophobic amino acids
such as methionine (Songyang et al., 1996). The basis for this specificity is unclear as the -1
residue in the CMGC structures listed in Table 2.1 do not form contacts with the kinase. A
single domain position was implicated from the alignment-based methods as a putative SDR
at domain position 5 which is also located on the N-terminal loop.

No other significant preferences at the -1 position were detected. This is consistent with
a previous screen of yeast kinase specificity that suggested a general lack of sequence con-
straint at the -1 position (Mok et al., 2010).
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Leucine-2

I detected 8 kinases with a moderate preference for leucine at -2: MAPK7 (human), MAPKS8
(human and mouse), MAPK9 (human and mouse), MAPK 10 (human and mouse), and YCK2.
In this grouping there is also minor selectivity for proline and likewise for the ‘proline-
directed’ kinases there is minor selectivity also for leucine. It is likely therefore that both
groups represent the same general specificity for hydrophobic residues at position -2. Do-
main position 131 of the kinase hinge region is implicated as a putative SDR (valine bias
in leucine-directed kinases, I/L otherwise), although is unlikely to be a direct determinant

given its distance from the active site.

Position -4

Only one specificity (serine / threonine preference) emerges from the clustering procedure
employed. However, this is unlikely to represent a physiological kinase preference. For all
serine/threonine preferences identified, I failed to identify a general structural mechanism
that could explain this feature either from the analysis performed here or from a survey of

the relevant literature.
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Kinase mutations in cancer (empirical models)

Q .
= O
® o
g
& o 161
~ L]
g S °
§ © .
= L]
& 0 164 . _
s S ° -
s ° )
2 . -7
[
2 g = o %o,
§ ° A I A e
g ° 8 o 8 o, o® L . e - N
E 8 ° ..... .'...... [ ,.—’/". ® *
o -~ e o
= ..:. :' ..‘ o.‘f};:’.t..l. o, « ° 1‘29
é‘ : o° ./.7,!"‘*03’. s ce, . $ ® .
= e 1% Sl T PP A LI T .
O. 7_’,.’ (L] o 0O O O0O0B KOO L N L] L] L] L]
© T T T 1
0.000 0.005 0.010 0.015

Proportion of mutations per site for R-3 kinases (averaged)

Fig. A.1 The frequency of residue mutations for known R-3 kinases (x-axis) and known P+1
kinases (y-axis). Kinase domain positions 159, 161, and 164 are coloured in red. Here, the
kinase classification (P+1 or R-3) was known from kinase specificity models and was not
predicted
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A.3 Posterior probabilities from the ancestral sequence re-

constructions
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Fig. A.2 Distribution of posterior probabilities across sites for particular nodes of the GRK
ancestral sequence reconstruction. The mean probability for the GRK+RSK ancestor is 0.69,
for the universal GRK ancestor is 0.77, for the metazoan GRK/BARK ancestral node is 0.92,
and for the GRK/GRK ancestral node is 0.88
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Fig. A.3 Ancestral probabilities for SDR substitutions likely to affect specificity N-terminal

to the phosphoacceptor in GRK (as represented in Figure 3.15)
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Fig. A.5 For two kinase Families (CDK and CAMK?2), the relative kinase frequency and
the cognate substrate motif enrichment were mapped onto a species phylogeny of the 48
eukaryotes used for this analysis.
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Fig. A.6 For two kinase clades (AKT/SGK/RSK and CK?2), the relative kinase frequency
and the cognate substrate motif enrichment were mapped onto a species phylogeny of the 48
eukaryotes used for this analysis.
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AKT |<0.01<0.01{<0.01{<0.01} <0.01
CAMK?2| <0.01 <0.01{<0.01{<0.01| <0.01
CK2 |<0.01|<0.01{<0.01{<0.01} <0.01
CDK | <0.01 |<0.01|<0.01{<0.01| <0.01
GSK |<0.01 |<0.01{<0.01/<0.01| <0.01
PKA |<0.01{<0.01{<0.01<0.01| <0.01

Table A.1 Statistical tests for the phylogenetic signal of 6 different kinase Families with
respect to a species phylogeny of 48 eukartoic species. P-values were less than 0.01 for all
Families tested and for all statistical tests applied.




	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 The protein kinase superfamily
	1.1.1 Protein kinase function
	1.1.2 Protein kinase sequence and structure
	1.1.3 Protein kinase classification and evolution

	1.2 Protein kinase specificity
	1.2.1 Spatial and temporal factors
	1.2.2 Adaptor and scaffold proteins
	1.2.3 Substrate docking
	1.2.4 Phosphoacceptor specificity
	1.2.5 Peptide specificity

	1.3 Identification and prediction of new kinase substrates
	1.3.1 Experimental detection of new substrates
	1.3.2 Experimental determination of kinase specificity
	1.3.3 Computational prediction of kinase substrates and specificity

	1.4 Identification of protein kinase specificity determinants
	1.4.1 Structures
	1.4.2 Homology models
	1.4.3 Kinase sequence alignments
	1.4.4 Mutational analysis

	1.5 Identification of functionally divergent residues
	1.6 Ancestral sequence reconstructions
	1.7 Phosphoproteome analysis
	1.8 Mutation of kinases in disease
	1.9 Aims of the thesis

	2 Global analysis of kinase specificity determinants
	2.1 Introduction
	2.2 Overview of protein kinase peptide specificity
	2.2.1 Protein kinase specificity models
	2.2.2 Kinase-substrate interface at the active site
	2.2.3 MSA-based inference of kinase SDRs

	2.3 Analysis of protein kinase SDRs
	2.3.1 Position +1
	2.3.2 Position +2
	2.3.3 Position +3
	2.3.4 Position +4
	2.3.5 Position -2
	2.3.6 Position -3
	2.3.7 Position -5

	2.4 Experimental validation of SDRs
	2.5 Prediction of protein kinase specificity
	2.6 Mutation of kinase SDRs in cancer
	2.7 Discussion

	3 The evolution of kinase function
	3.1 Introduction
	3.2 Conservation of specificity between orthologues
	3.2.1 Conservation of predicted specificities
	3.2.2 Conservation of empirical specificities

	3.3 The evolution of kinase Families and Subfamilies
	3.3.1 Functional divergence at the Family level
	3.3.2 Functional divergence at the Subfamily level
	3.3.3 Examples of functional divergence
	3.3.4 Divergence of kinase peptide specificity

	3.4 Evolution of the G-protein coupled receptor kinases
	3.4.1 The GRK Family of protein kinases
	3.4.2 Phylogeny of the GRK domain
	3.4.3 Ancestral probabilities
	3.4.4 SDR evolution N-terminal to the phosphoacceptor
	3.4.5 SDR evolution in the P+1 pocket
	3.4.6 Evolution of the αF-αG loop

	3.5 Discussion

	4 The evolution of phosphorylation motifs
	4.1 Introduction
	4.2 Results
	4.2.1 Motif prevalence across the Tree of Life
	4.2.2 Kinase motif enrichment in prokaryotes
	4.2.3 Co-evolution between the kinome and phosphoproteome

	4.3 Discussion

	5 Summary and future directions
	6 Materials and Methods
	6.1 Methods for Chapter 2
	6.1.1 Generating kinase specificity models
	6.1.2 Position-based clustering of specificity models
	6.1.3 Sequence alignment-based detection of putative specificity determining residues (SDRs)
	6.1.4 Procedure for sequence alignment-based inference of SDRs
	6.1.5 Identification of kinase-substrate cocrystal structures
	6.1.6 Structural analysis of the kinase-substrate interface
	6.1.7 Construction of kinase-substrate models
	6.1.8 Construction of predictive models and cross-validation
	6.1.9 Analysis of kinase mutations in cancer
	6.1.10 SNF1 mutant in vitro kinase activity assay
	6.1.11 Mass spectrometry identification and quantification

	6.2 Methods for Chapter 3
	6.2.1 Conservation of predicted specificities
	6.2.2 Conservation of empirical specificity models
	6.2.3 Analysis of the evolution of kinase function
	6.2.4 Divergence of kinase specificity at the Group, Family, and Subfamily levels
	6.2.5 Evolution of the GRK Family

	6.3 Methods for Chapter 4
	6.3.1 Kinase motif enrichment across many eukaryotic species
	6.3.2 Kinase motif enrichment for prokaryotic phosphorylation sites
	6.3.3 Co-evolution between the kinome and phosphoproteome


	References
	Appendix A 
	A.1 Chapter 2 commentary on SDRs
	A.2 Kinase mutations in cancer
	A.3 Posterior probabilities from the ancestral sequence reconstructions
	A.4 Phylogenetic analysis of kinase Families and motif enrichments


