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ABSTRACT 

 

Aerial and underwater drones present a paradigm shift away from the long term use 

of manned airplanes, helicopters and mini-submarines. This is evident from the 

number of scientific research articles that focus on research data obtained with 

drones. For instance, a special edition of the International Journal of Remote 

Sensing consists of 65 articles focused solely on aerial drone research (Remote 

Sensing, Vol 38, 2017). A second special edition consists of another 36 aerial drone 

articles (Remote Sensing, Vol 39, 2018). 

 

While less prevalent, underwater drones are also playing an ever increasing role in 

scientific research and proving to be effective contributors in many contexts (Harris, 

2018; Zhou et al 2019). For example, if a typical daily drop camera productivity rate 

is 700 images per day, underwater drones can already achieve 15,000 images per 

day (Smale et al 2012). 

 

This study predominantly examines the use of aerial drones at high latitudes and in 

cryospheric regions. The study aims to provide insights into the navigation accuracy 

of Global Navigation Satellite Systems (GNSSs) use for drones, and the accuracy 

levels of drone positioning data achieved by GNSS augmentation. 

 

Currently, drone use in the global polar and cryospheric community is limited, and 

there is a scarcity of data on drone GNSS navigation and augmented 

measurements. The drone use survey in this study attempted to gain insights on 

general GNSS accuracy and augmented GNSS.  

 

The drone survey data obtained is the first representative sample from this close-knit 

community across the specialisms of climatology, ecology, geology, geomorphology, 

geophysics and oceanography. The drone survey data revealed that many different 

combinations of augmentation were used to obtain sub-metre and even sub-

decimetre accuracy.  
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Chapter 1 

Introduction 

1.1 Justification for the Study  

Unmanned Aerial Vehicles (UAVs) and Unmanned Underwater Vehicles (UUVs) 

(singularly and collectively „drones‟) are already a crucial instrument of scientific 

research. This is evident from the rapid increase in the number of articles that focus 

on research data obtained with drones. For instance, a whole edition of the 

International Journal of Remote Sensing, comprising of 65 articles, has focused 

solely on aerial drone research (Remote Sensing, 2017, Vol 38). Shortly after the 

same journal published another special edition also dedicated to drone research, 

comprising of 36 articles (Remote Sensing, 2018, Vol 39). In sum, 101 drone articles 

in less than 24 months. 

 

Drones are also increasingly assisting research not only at high latitudes (Bernard et 

al, 2017; Chudley et al, 2017; Hawley and Millstein 2019), but also in cryospheric 

regions (Bühler et el, 2017; Kraaijenbrink, P. et al 2017). In both these locations 

drones support important research on climatology, ecology, geology, 

geomorphology, geophysics and oceanography. 

 

Whatever the precise research, all scientists need to navigate a drone from a known 

point of departure to perform specific research tasks. The drone has to then return 

safely with data or samples or both. For example, Figure 1.1 (Intel, 2019) shows an 

infrared sensor attached to an aerial drone locating a polar bear in a remote part of 

Svalbard. The small green patch in the cross hair surrounded by a large blue patch 

is an adult polar bear sleeping in >1m of snow. 

 

In the atmosphere of Earth, aerial drones navigate and verify accurate positioning 

based on one or more Global Navigation Satellite Systems (GNSSs). Furthermore, 

other satellite systems and diverse augmentation methods refine the accuracy of 

GNSS measurements. Therefore, a common denominator of drone navigation is to 

understand how each GNSS operates.  
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Fig 1.1 Drone Locating Polar Bear Sleeping in Snow 

 

 

Turning to underwater drones, while less prevalent, they are also playing an ever 

increasing role in scientific research and are proving to be effective contributors in 

many research contexts. For example, one team of scientists recorded that their 

daily image collection rates for drop cameras was 700 images per day compared 

with underwater drones achieving 15,000 images per day (Smale et al 2012). Figure 

1.2 (UC Davis, 2017) shows a typical underwater drone used for polar science.  

 

Fig 1.2 Drone in Antarctica  

 

 

When they are submerged GNSS signals suffer from attenuation. However, 

underwater drones can still measure accurately their submerging and surfacing 

positions with GNSS. Further, based on water surface GNSS signals these drones 

can validate their underwater doppler sonar and inertial measurements.  
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Further, it cannot be assumed that aerial or underwater drones are used solely for 

GNSS-based data collection. For example, ecologists are increasingly collecting 

physical samples that are supported with GNSS data. For example, this dual role 

could potentially include future sample collections from whales and other mammals 

as has already been achieved at lower latitudes (Apprill et al, 2017).  

 

It is timely to assess the location finding, measuring ability and other navigational 

limitations placed on drones. Hereafter in this study, a scientist operating a drone, 

whether aerial or underwater or both, is referred to as a Scientific Remote Pilot 

(SRP). 
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1.2 Aims and Objectives 

The key aims of this study are four-fold. First, to present and analyse the data 

provided by a drone use survey of respondent SRPs, with special focus on their 

GNSS choices, measurement accuracies achieved and selected augmentation 

methods.  

To succeed, the drone use survey must show the GNSS choices of SRPs for 

navigation in the traditional sense of moving from a base to the research subject 

matter. Further, the drone use survey must reveal the more precise positioning data 

achieved by one of numerous augmentation methods. These augmentation methods 

may be physical such as Ground Control Points (GCPs) or water surface buoys, but 

are mainly based on electronic receivers, sensors or transmitters. 

Second, to assess the operational planning and visual navigation variables relevant 

to aerial drones. This includes pre-mission risk assessment, fuselage design, wing 

design, the use of LEDs, and also careful reliance on magnetometers at high 

latitudes. 

Third, to assess the operational planning and navigation variables relevant to 

underwater drones. This includes pre-mission risk assessment, the use Doppler 

Velocity Log (DVL) and other ways to improve underwater navigation systems bereft 

of GNSS. 

Fourth, to critically interpret aviation law most relevant to SRPs in a number of the 

most researched polar and cryospheric regions, including Antarctica, Greenland, 

Nepal and Svalbard. 

1.3 Overall Approach 

To attempt to achieve the most important aims of this study, in March 2019 a global 

drone survey of SRPs was completed (hereafter „the drone survey‟). The target 

sample of 211 scientists was a balanced international mix. Asian, European, Latin 

American, North American and Russian institutions. 

 

The survey questionnaire was drafted so that aerial-only and underwater-only SRPs 

were presented with 10 focused questions. SRPs operating both aerial and 

underwater drones were presented with 17 questions. The logic of a succinct 

questionnaire approach was to maximise the number of respondents. Additionally 
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each respondent was also given the option of providing a short note at the end of the 

survey. A sample questionnaire is attached as Appendix 1.  

 

The second approach is to make a multi-disciplinary analysis of operational planning 

and navigation decisions. This analysis is based on established (i) risk analysis 

methods and (ii) physics. Authoritative sources include the Antarctic Remotely 

Piloted Aircraft Systems Operators‟ Handbook (COMNAP, 2017) and NASA. Further, 

the physical principles of aerodynamics, classical mechanics, electroluminescence, 

electromagnetism, gravity and light all influence the flying and retrieval of drones.  

 

The third approach is to establish the legal context in which SRPs will operate 

drones. Showing competence, gaining permission to operate drone missions and 

avoiding law suits are three increasing challenges for all SRPs. The legal context is 

best understood on the foundations of one jurisdiction‟s aviation law. In this study UK 

law (English law) is chosen. However, the analysis and summaries on aviation laws 

from five polar and cryospheric regions where drone missions are likely to occur are 

structured to enable an SRP from any country to read everything in the context of 

their home jurisdiction.  

 

1.4 Thesis Structure  

This study is divided into six chapters. This chapter summarised its basic aims and 

motivations. The second chapter covers the background evolution of Global 

Navigation Satellite Systems (GNSS) and location errors typically experienced in 

polar regions. Further, it summarises the theory of a Scintillation Nerve Unit (SNU) 

chip that receives short Support Vector Machines (SVM) messages from ground 

level GNSS ionospheric monitoring equipment. 

The third chapter provides an assessment of the main operational planning and 

visual navigation factors relevant to aerial drones in polar and cryospheric regions. 

This chapter also assesses the operational planning and navigation factors relevant 

to underwater drones in polar regions. 

The fourth chapter moves away from science to analyse aviation law governing 

drone use in Antarctica, Greenland, Nepal, Norway and the UK. The fifth chapter 
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presents and discusses the statistical results of the drone survey. Finally, chapter 6 

provides conclusions and proposes future research areas. 

 

The predominant focus of this study is aerial drones. The drone survey results 

showed that 78.57% of scientists used aerial drones compared with 4.76% who used 

underwater drones. The remaining 16.67% used both types of drone.  

 

One final introductory matter concerns terminology. Navigation and positioning have 

always been imbued heavily with abbreviations, and this tendency is multiplied by 

quite a factor when discussing GNSS, aerial drones and underwater drones. The 

Glossary is found at the start of this thesis after the Index. However, to aid fluidity of 

reading less well known abbreviation explanations are repeated throughout. 
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Chapter 2 

Global Navigation Satellite Systems 

2.1 Aims and Structure 

 

All aerial drones used at high latitudes and in cryospheric regions rely on Global 

Navigation Satellite Systems (GNSS). While not the only basic navigation or data 

positioning systems available, GNSS are the primary means of both navigation and 

positioning for scientists.  

 

This chapter explains how GNSS functions. It also analyses the constraints, errors 

and limitations of GNSS in the context of high latitudes. The US Global Positioning 

System (GPS) has been at the forefront of polar research for more than three 

decades. Consequently, there is significantly more research on GPS errors and 

performance. However, it will become clear that access to all GNSS can be 

important, and these alternatives to GPS are also assessed, especially GLONASS. 

 

2.2 Background Evolution of Satellites 

The origins of GNSS can be traced back to both Isaac Newton and Johannes Kepler. 

Published in 1726, Newton‟s third book of the Principia Mathematica has a section 

entitled A Treatise of the System of the World. In this section he reasoned that: 

 

„bodies to be projected in the directions of lines parallel to the horizon from greater 

heights…will describe arcs either concentric with the Earth, or variously eccentric, 

and go on revolving in the heavens in those trajectories, just as the Planets do their 

orbs [orbits]‟ (Millard, 2017:p.19).  

 

Second, Johannes Kepler‟s three planetary laws of motion (published 1609-1619) 

apply equally to satellites orbiting the Earth when applying Newton‟s inverse square 

law (F = G Mm / (d^2)) and law of gravitation. These are (Wiley and Larson, 2000): 

 



20 
 

(1) The orbit of each planet is an elipse; 

 

(2) The line connecting the planet to the Sun sweeps out equal areas in equal 

times; 

 

(3) The square of the period of a planet is proportional to the cube of its mean 

distance from the Sun. 

 

The contributions of Kepler and Newton allowed many subsequent scientists to 

ultimately advance physics towards satellite technology. In this respect special credit 

must go to Konstantin Tsiolkovsky and Robert Esnault-Pelterie.  

 

Then in 1957 the Soviet Union‟s successful launch of Sputnik I dramatically changed 

the science of navigation. Sputnik I was monitored by Bill Guier (mathematician), 

Frank McClure (John Hopkins Applied Research Laboratory research director) and 

George Weiffenbach (physicist). In less than six months the genesis of GNSS is 

seen in a 1958 memorandum from McClure: 

 

‘Guier, Weiffenbach et al have been analysing the shape of the doppler signals from 

the Sputniks…They have found they were able to establish the parameters [eight] of 

a satellite’s orbit with surprising accuracy…the doppler information received from a 

single pass seems to be sufficient to determine all these parameters…It occurred to 

me that the inverse problem, namely that of locating the observing station by 

analysis of the doppler signal of a well-established satellite, would be much 

simpler...In such a system one would use quite sophisticated equipment on land to 

determine the satellite orbit parameters...A receiving station would have knowledge 

of these orbit parameters and then doppler observation of a pass would leave the 

receiving station with the problem of determining…its coordinates on the surface of 

the Earth...‟ (May, 2019: pp.10-11). 
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2.3 Satellite Orbiting 

As represented in Equation 2.1 (Cojocaru, 2009; Larson and Wertz, 2000), a satellite 

is launched into orbit relying on the well-established six Keplerian parameters of 

integration: 

  

                           Pi (i…6) = {a,e,i,Ω,ω,v}                        [Equation 2.1] 

 

Where a is the semi-major axis, meaning the size of the ellipse; e is the eccentricity, 

which refers to the shape of the ellipse where a perfect circle = 0 and a highly 

eccentric shape has a value of 0.77; i is the inclination; Ω is the right ascension of 

the ascending node; ω is the perigee, meaning the angle from the ascending node to 

the eccentricity vector; and v is the true anomaly, referring to the angle from the 

eccentricity vector to the satellite position vector. 

 

These six unperturbed variables are affected by a number of perturbing 

accelerations, namely: an oblate Earth; the direct gravity of the Moon and Sun; 

acceleration produced by tides as an indirect effect of Moon and Sun; and the 

acceleration caused by direct radiation from the Sun (Cojocaru et al, 2000). 

Ephemeris1 data corrections to account for these perturbations are then updated in 

each satellite at four hour intervals (Parkinson, 1996). 

 

In combination, these constants and variables affecting an orbiting satellite highlight 

the considerable technical challenges in maintaining a consistent orbit fundamentally 

required in satellite management. Software tools allow for simulations to assist this 

task, and allow for visualization. For instance, the program SaVi allows two and three 

dimensional simulations of satellite orbits and coverage.2 

 

 

 

 

                                                           
1
 Ephemeris has several meanings. In the context of satellites it refers to “predictions of current satellite 

2
 The Savi software can be downloaded at https://savi.sourceforge.io/ 
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2.4 Geographic Satellite Coverage 

In addition to Newton‟s laws and Kepler‟s parameters and perturbing accelerations, a 

fourth essential aspect to understanding GNSS is that satellite constellation design is 

based on advanced geometry. The fundamental question challenging satellite 

designers is „what is the minimum number of satellites required to provide 

continuous geographic coverage of the Earth?‟ By which is meant being certain that 

any point on Earth has at least one satellite pointing at it. Any reliable navigation 

satellite constellation requires more than 20 satellites, but starting with the theoretical 

minimum for any signal beaming onto Earth assists in grasping the complex multi-

variables of GNSS discussed later in this chapter.  

 

In the evolution of satellites, the theoretical minimum question has produced several 

convincing answers (Larson and Wertz, 2000). Ultimately, the settled answer is four 

satellites (Draim, 1987; and Draim, US Patent No 4,854,527 1985). More recently 

Draim and others have re-endorsed that the theoretical „Tetrahedral Multi-Satellite 

Continuous-Coverage Constellation minimum’ still applies. The satellite to Earth 

coverage is captured by the light blue beams in Figure 2.1 (Draim et al, 2012: p.6).  

 

The original patent abstract states „Each of the satellite orbits is made elliptic…the 

ellipses are so arranged that two opposing satellites have their perigees in the 

Northern Hemisphere, while the other two have their perigees in the Southern 

Hemisphere. Additionally, the mean anomalies for the starting positions of the 

satellite orbits are selected so that one opposing satellite pair has one satellite at 

perigee and the other at apogee. The other pair are placed midway (in time) between 

apogee and perigee (i.e., one at 90° mean anomaly and the other at 270° mean 

anomaly)‟ (Draim, 1985; US Patent No 4,854,527 1985). 

 



23 
 

Fig 2.1 Four SatelliteTetrahedral Constellation  

 

 

2.5 GNSS Positioning Requirements 

The geometry of GNSS satellites varies between designers, but what they all share 

in common is that to achieve an accurate position, that is ≈10 metres, the receiver on 

the ground has to lock onto four satellites.  

By applying trilateration the position of the receiver at a precise point in time is 

known (Larson et al., 2000). Figure 2.2 (Chong, 2013: p.11), illustrates that at least 

four satellites are above the horizon anywhere on Earth is required to obtain an 

accurate position. When a third satellite, the lower left one, is added the location can 

be either of the two starred points. If the lower right fourth satellite is added then the 

location can only be the lower yellow star point. 

Fig 2.2 GNSS Trilateration 
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As the original US government technical briefing on GPS explained „a minimum of 

four satellites are normally required to be simultaneously „in view‟ of the receiver, 

thus providing four pseudorange and four delta range measurements…Less than 

four satellites can be used by a receiver if time or altitude are precisely known or if 

these parameters are available from an external source‟ (Navstar GPS, 1996).  

GNSS signal availability is determined by three key factors: the altitude of the orbit, 

the inclination angle of the satellite and the Earth ground level „field of view‟ width of 

the signal transmitter attached to the satellite. 

Each satellite is transmitting two pieces of information: (a) its position in space, and 

(b) its clock time. All satellite clocks are synchronised and accurate to one millionth 

of a second. Applying the equation distance = speed x time, the speed of light (2.997 

924 58 x 108 m s-1) multiplied by the time taken for a satellite signal to arrive at a 

GNSS receiver, provides the altitude (distance) of the satellite from the user. The 

example in Equation 2.2 (adapted from Parkinson, 1996) based on the known orbit 

altitude of the US GPS satellites, underlines that each signal reaches a GNSS 

receiver in a millionth of one second.  

              t = d/s                                                                      [Equation 2.2] 

   

              t =  26,600 (km) / 2.997 924 58 x 108 ms-1  

 

   t = 26,600,000 / 299,792,458 

              t = 8.8728E-5s 

              t = 0.000088728s 

The concept of pseudorange is critical to explaining how GNSS works with such high 

precision. Pseudorange refers to the difference between the satellite clock time and 

the user clock time when the user clock time is always relatively imprecise 

(Parkinson, 1996). The Achilles heel of GNSS is the inaccuracy of the receiver. The 

fourth satellite in any position fix is required to determine how far off precisely the 

receiver clock is compared with the satellite clocks. To underline how important this 

is, if the receiver clock is off by 1.25 seconds (≈300,000 x 1.25) the position would be 

in inaccurate by 375,000km - the same distance as the moon‟s orbit from Earth. 
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In Equation 2.3 (Parkinson, 1996) the pseudorange is expressed as 

                                    = |         |                                             [Equation 2.3]                           

Where    is the satellite position at transmit time;    is the receiver position at receive 

time;     is the receiver clock bias expressed in seconds; and    the combined 

calculation for all the estimated or measured ionosphere and troposphere delays, 

clock mis-modelling, ephemeris and multipath. 

 

2.6 Minimising GPS Error with Optimum Satellite Geometry 

From the leading text on space mission analysis and design it is clear that the task of 

maximising the precision of a satellite constellation is a daunting one requiring highly 

detailed budget, equipment and orbit calculations (Larson and Wertz, 2000). 

However, three common denominator components are critical to minimising errors 

created because of the geometry of satellites. These are the spacing, altitude and 

attitude of the satellites. 

 

The quality of spacing of satellites has been termed as the Geometric Dilution of 

Precision (GDOP). The errors experienced by GPS users at high latitudes can 

significantly depend upon GDOP. Equation 2.4 expresses how GDOP performance 

measurement is calculated, based on the variables of three dimensions plus time 

(Parkinson, 1997). 

      
 

 
    √  

     
     

    
          [Equation 2.4] 

As a general rule the wider the spacing of satellites the higher the quality of signal 

consistency. Figure 2.3 shows two dimensional representations where the 

uncertainty on the range of measurement is indicated by the grey shading on either 

side of each circle. The receiver is assumed to be located anywhere on the 

intersection of area A in each. 

 

In the theoretical first constellation in Figure 2.3 (Sunehra, 2013; p.76) the satellites 

have good geometry because they are spread out. The light blue coloured area 

indicates minimal GDOP – the lower the GDOP, the better the accuracy. In contrast, 

in the second constellation the satellites have poor geometry because they are close 
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together. As a consequence, the positioning area (coloured light blue) over the 

receiver position is far larger. Therefore, the GDOP is higher (Sunehra, 2013).  

 

For any SRP operating in high latitudes or cryospheric regions the task of 

determining GDOP before drone use may make sense because the drone can then 

be switched to the GNSS with the lowest GDOP. A GDOP between 2 and 5 is good 

and a GDOP of 1 is excellent. A website exists that allows this calculation to be 

made (www.calsky.com/cs.cgi/Satellites). For example, on 22nd May 2019 at 1800 

hours at Ny-Ålesund, for the 13 GALILEO and GPS satellites in view, the GDOP is 

4.52. For the seven GPS satellites in view the GDOP was 4.8. On that date, any 

SRP was served almost equally well by either of these GNSS.  

 

Fig 2.3 Dilution of Position 

 

 

 

2.7 Polar GNSS 

It is insufficient to explain GNSS without a comparison of the leading systems in the 

context of high latitudes. No SRP needs to rely solely on GPS. Appendix 2 at the 
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back of this study summarises GNSS relevant to not only polar scientists, but also a 

regional satellite system, namely India‟s IRNSS relevant to cryospheric scientists 

researching in the Himalayas. 

 

Figure 2.4 (Li et al, 2016: p.610) records the ground tracks of the four main GNSS 

recorded in September 2013. Top to bottom, these are BEIDOU, GALILEO, 

GLONASS and GPS. What is apparent from all four is that high latitudes are less 

well served compared with equatorial regions. The BEIDOU tracks in the top graph 

show that these are confined to latitudes 55°N and 55°S. The third graph shows that 

GLONASS is the most likely to best serve an SRP operating in polar regions. 

 

Fig 2.4 Four GNSS Ground Tracks 

 

Loss of GNSS signals is most evident when analysing how GPS performs at high 

latitudes compared with the Russian GLONASS system and the EU Galileo system. 

At first glance, these three systems seem similar. GPS functions with 31 operational 

satellites, GLONASS 24 and Galileo 24 (RIN, 2018). The flight altitude of each are 

GPS at 20,180km, GLONASS at 19,100km and Galileo at 23,222km. So each 

individual satellite in each constellation has a similar fraction of the Earth in view 

(Parkinson, 1996). Thirdly, the attitude, by which is meant the satellite orbital 

inclination angle of each system are GPS at 55°, GLONASS at 64.8° and Galileo at 

56°. 
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The differences between these three constellations are clearly of importance based 

on these variables alone. With reference to Galileo, it has been observed that 

factoring in its different „orbital inclination and the flight altitude of the satellites will 

considerably increase the coverage of the polar regions, not so well achieved by 

GPS‟ (Cojocaru, 2009). Further, although GLONASS orbits at a similar altitude to 

GPS, its higher altitude orbit coverage over different higher latitudes is superior as 

shown in Table 2.5 (extracted from Januuszewski, 2016: p.96). 

 

Table 2.5 Percentage of Visible Satellites Above Angle H Degrees 

LATITUDE RANGES SYS 40°H 50°H 60°H 

 

70-75° GLONASS 

GPS 

34.4 

27.1 

20.2 

16.1 

11.7 

4.4 

75-80° GLONASS 

GPS 

37.2 

26.0 

20.9 

11.0 

9.2 

1.1 

80-85° GLONASS 

GPS 

40.2 

24.8 

19.9 

4.5 

19.9 

4.5 

85-90° GLONASS 

GPS 

26.6 

21.8 

1.3 

0.4 

1.3 

0.4 

 

From Table 2.5 it can been deduced that GPS is not performing well at a ≥50° 

degrees angle from 75° degrees latitude. At the 75-80° latitude range the percentage 

of GPS satellites is nearly half of the number of GLONASS satellites. Further, 

applying the minimum four satellite principle, at the 75-80° latitude range, GLONASS 

would still achieve a full position fix with five visible satellites3, but GPS would 

provide just three4. Therefore, taking just two important high latitude location 

examples, an SRP on Svalbard (+78°N) or Ellesmere Island (+76°N) would be better 

served by ensuring GLONASS is included as part of their navigation choices. In sum, 

in combination these two GNSS have played and logically will continue to play 

navigation and positioning data at the poles. 

                                                           
3
 20.9 per cent of the 24 GLONASS satellites = 5.0. 

4
 11.0 per cent of the 31 GPS satellites = 3.41. Require at least four satellites for a full position fix; and time or 

altitude fix. 
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2.8 Scintillation Effects 

At high latitudes both the amplitude and phase of the received GNSS signal can be 

affected by scintillation. Amplitude scintillation occurs less frequently compared with 

phase scintillation (Jacobson and Dahn, 2014). At high latitudes, scintillation effects 

can last for many hours, even days (Parkinson, 1996). Phase scintillation is 

important to polar scientists relying on GNSS. Receiver measurements can result in 

„…positioning errors of tens of metres or, in the most severe cases, in complete 

outages due to Loss of Lock (LOL). Such a threat has a disruptive impact on sub-

metre navigation and precise positioning‟ (Linty et al., 2016: p.1). Figure 2.6 

(adapted from Parkinson, 1996: p.50) shows how scintillation effects GNSS signals. 

Fig 2.6 Ionospheric Scintillation 

 

Phase scintillation research reveals specific patterns that correlate with GNSS 

errors. For example, Pan and Yin published an „Analysis of Polar Ionospheric 

Scintillation Characteristics Based on GPS Data‟, derived from a 12 month, daily 

observation of scintillation in 2011 at the South Pole (Pan et al, 2014).  

Their results revealed that phase scintillation followed a pattern of seasonal variation 

with two low periods starting in January and June. In April and October it peaks (Pan 

et al, 2014). For SRP researching with drones at high latitudes, these findings may 

point to the need to make most use of drones for research in the low phase 

scintillation months. 
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Ionospheric phase scintillation disturbance predominantly caused by aurora occur 

not just in high latitudes, but are most visible in the latitude bands ±60° degrees of 

the Northern and Southern Hemisphere. From data derived from the International 

Polar Years 1882-3 and 1932-3, scientists have long known that above 60° degrees 

latitude North or South the complexity, intensity and variability in time of magnetic 

disturbance is most great (Chapman, 1951: p89).  

At high latitudes, strong ionospheric storms can persist for many hours (Parkinson, 

1996). Based on research by the US Space Weather Division, GNSS signal errors 

strongly correlate with the auroras (Viereck, 2014). The aurora sub-storms are 

typically around 60° degrees in the Northern Hemisphere. Ionospheric irregularities 

tend to occur within 90 minutes of a sub-storm onset. The irregularities typically 

occur within the auroral oval and not outside of it. To clarify, dayside aurora exist as 

well (Lorentzen and Egeland, 2011), and it is likely that awareness of the location of 

the dayside aurora is relevant to most SRP given they will plan to or may only be 

permitted to fly in daylight hours. 

2.9 Scintillation Nerve Unit 

Collectively, all the above research highlights the risk of GNSS signal delay 

disruption from scintillation. Theoretically, it may be possible to mitigate this effect by 

inserting new artificial intelligence (AI) electronic components into the drone.  

Specifically, a Scintillation Nerve Unit (SNU) electronic chip can be logically added 

as a parallel control to an aerial drone‟s main flight control platform. Figure 2.7 (my 

adaption from Russell and Norvig, 2010: p.728) shows a mathematical model of a 

neuron invented by McCulloch and Pitts in 1943 on which an SNU could function in a 

drone. 
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Fig 2.7 Scintillation Nerve Unit 

 

 

My concept of an SNU is beyond the scope of this study, but it is theory worth 

summarising because its possible implementation mitigates the problem of delayed 

GNSS reception for drones at high latitudes. In Equation 2.5 (Russell and Norvig, 

2010: p.728) the SNU nervous reaction is based on: 

                                                                           [Equation 2.5] 

 

Where a is the outputs, meaning the neural action to circle 360° for 60 seconds or 

Return To Home (RTH); g is the activation function; and in are inputs, meaning the 

scintillation data message received every 60 seconds. 

 

The SNU would be supported by a base station operated on a rugged low 

temperature-tolerant laptop. At the base station there would be a multi-frequency, 

multi-constellation GNSS ionospheric receiver5 and antenna capable of monitoring 

local amplitude and phase scintillation. 

The GNSS ionospheric receiver is connected to the laptop that runs machine 

learning software. Regression calculations would be made to determine the margin 

of amplitude and phase scintillation levels that are likely to cause (a) disruption to 

GNSS signal sufficient to push positioning accuracy >10m; or (b) result in loss-of-

lock (LOL) meaning the GNSS signal is lost. 

                                                           
5
 An example is the Novatel GP Station-6. See www.novatel.com/products/scintillation-tec-monitor/gpstation-

6/. 
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Increasingly, machine learning has shown it has the potential to improve phase 

scintillation prediction (McGranaghan et al, 2018). However, models to date rely on 

huge amounts of data. Latency and substantial energy use mean that a drone 

cannot efficiently process large amounts of data whilst in flight. With an SNU the 

need for large amounts of data processing and transfer is removed, because the 

laptop transmitter is simply forwarding two inputs simultaneously every 60 seconds. 

The message (Input Links) sent from the laptop to the drone SNU contains 

information on scintillation relevant only to the latest Support Vector (SV) 

classification examples stored in the SNU.  

The Support Vector Machines (SVM) data is formed on a “model of learning from 

examples” (Vapnik, 1998: p.19). As Figure 2.8 (Gales, 2019: p.8) illustrates, SVM 

are based on the idea of creating a hyperplane that divides a dataset into two 

classes with the widest margin – the wider the margin the more accurate the 

classification of data points.  

Fig 2.8 Support Vector Classification 

 

The key benefit of SVM is that the hyperplane provides an efficient means of 

classifying with previously unobserved data points (Russell and Norvig, 2010). This 

is achieved by factoring in only new data points compared with the existing Support 

Vectors as marked in Figure 2.8. Here, the new data points are the latest scintillation 

levels to determine if the drone will in under 60 seconds experience significant signal 

disruption resulting in greater than GNSS 10m accuracy or even LOL. 
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The laptop transmits every 60 seconds. The transmission provides just two inputs: (i) 

phase scintillation levels; and (ii) amplitude scintillation levels. Collectively these are 

SV Input Functions. The SNU cannot directly receive non-linear SVM because this is 

computationally burdensome. Instead the laptop performs regression calculations, 

including where necessary Kernel functions (Vapnik, 2018), then transmits to the 

drone a short compressed data message. 

The SNU is using minimal energy because it only consumes battery power (i) when 

the drone antenna receives the combined code of the two inputs, and (ii) at the point 

of excitation when the combination of the two inputs exceeds a hard threshold that 

requires specified outputs. For fixed wing drones there would be the added 

opportunity to make the SNU fully-energy independent by grafting photovoltaic outer 

skins on the top wing surfaces. 

If the activation function results in LOL categorisation of GNSS interference the SNU 

„fires‟ an overriding instruction to the drone‟s flight control module to Return To Home 

(RTH) – the drone flies back to the SRP. As the original neural network theorists put 

it “at any instant a neuron has some threshold which excitation must exceed to 

initiate an impulse” (McCulloch and Pitts, 1943: p.115). 

If the activation function results in predicted GNSS measurements >10m, the neural 

SNU „fires‟ an overriding instruction to the drone‟s flight control module to maintain a 

360° holding pattern for 60 seconds (360° Circle for 60s). If the drone has been 

placed in a 360° Circle for 60s holding pattern, the next message sent from the base 

station to the SNU determines if the drone remains circling for another 60 seconds or 

continues on the pre-programmed mission flight pattern. SVM models often predict 

false alarm scintillation events (McGranaghan et al, 2018), so the 360° Circle for 60s 

impulse output minimizes the number of aborted drone missions. Further, if there is a 

reduction in scintillation after 60 seconds the drone quickly resumes its mission flight 

pattern. 

The inclusion of an SNU component that can override the drone‟s flight control 

platform potentially solves the challenge scintillation presents to accurate drone 

missions at high latitudes. In the event that the drone malfunctions and is unable to 

move out of the 360° holding pattern, the drone eventually loses all power and glides 

or drops down to the ground. The drone is recoverable when calculating the most 
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likely circumference of its landing based on the gravitational constant, mass, velocity 

and wind vectors. 

Introducing a new component into the control platform of a drone requires an open-

source main hardware board of which there is a significant selection (Ebeid et al, 

2017). Put another way, an SRP would be unable to incorporate an SNU into an off-

the-shelf manufactured drone.  

In sum, by only receiving minimal Support Vector data messages every 60 seconds, 

the neural nature of the SNU provides a potentially superior solution. Further, based 

on logic it would potentially place no extra or minimal extra processing power 

demands on the main Inertial Measurement Unit (IMU). 

 

2.10 Augmentation of GNSS 

High latitude errors in GNSS accuracy are a significant weakness to manage. 

Currently and for the medium-term, existing augmentation systems provide a 

scientifically proven gap-filling service to mitigate GNSS errors.  

A Satellite-Based Augmentation System (SBAS) is designed for all flight phases of 

commercial aircraft navigation. In each geographical region the relevant SBAS 

provides the accuracy, availability and integrity needed to rely on a GNSS. This is 

achieved by providing, via a separate constellation of geostationary satellite signals, 

a set of positioning and time to the user‟s GNSS receiver (GSA, 2019). As Figure 2.9 

(SBAS Interoperability Working Group, 2012: p.24) shows, there are SBAS operating 

that cover GPS in North and South America including Southern Patagonia (WAAS 

and WAAS expansion), Galileo in Europe including Iceland and Svalbard (EGNOS), 

and GLONASS across all Russia (SDCM). 
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Figure 2.9 SBAS With ≤3m Accuracy  

 

 

 

The use of a SBAS at high latitudes and in cryospheric regions is addressed again in 

Chapter 5 of this study. Chapter 5 covers the drone survey which included a 

question put to the SRPs about what, if any, SBAS they use. 

 

Turning specifically to a service of relevance only to GPS, the Global Differential 

GPS (GDGPS) System is a network of 75 geodetic quality triple frequency (L1, L2 

and L5) receivers positioned globally (www.gdgps.net/system-desc/network.html). 

GDGPS has a latency level of approximately five seconds6 from receiving a 

navigation signal to dispatch of the differential corrections.  

NASA ultimately controls GDGPS and claims it „provides sub-decimetre (<10 cm) 

positioning accuracy and sub-nanosecond time transfer accuracy anywhere in the 

world, on the ground, in the air, and in space, independent of local infrastructure‟ 

(GDGPS, 2018). It is evident that GDGPS receivers are located in several key high 

latitude locations, including the Antarctic Peninsula, Greenland and Svalbard. The 

British Antarctic Survey, among other research organisations, uses this service 

(British Antarctic Survey, 2018). 

                                                           
6
 NASA states that even lower latency levels are available for GDGPS real-time integrity monitoring services. 
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While acknowledging the positive role of GDGPS and other augmentation systems, 

there is also a common denominator weakness, namely they all7 still rely on GNSS 

signals. Therefore, when there is no GNSS the SBAS is useless (Spaans, 2000).  

 

 

 

 

 

 

 

  

                                                           
7
 An exception was Eurofix. However, since 2016 Eurofix is not operational. 
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Chapter 3  

Operational Planning and Navigation 

3.1 Introduction 

This chapter addresses the risk management, scientific principles and technical 

factors to consider when navigating drones for scientific research purposes at high 

latitudes and in cryospheric regions. Operational planning has a very wide 

application, because safe drone use requires decision making on exact design 

specifications and precise electronic components to minimise damage and loss of 

expensive research equipment.  Thorough planning and decision making also 

mitigate risks linked to taking-off, flying and landing a drone near humans, animals 

and property. In short, the drone needs to perform and return with data without high 

cost or damage in often extreme environments.  

 

In the context of general aviation pilots, the use of GNSS has an added weakness of 

making pilots overconfident about the aircraft‟s position without reference, to among 

other things, ground-based navigation methods (Psyllou, 2018). The risk of SRPs 

behaving in the same way is very likely, because a drone under good GNSS 

conditions performs reliably. However, both polar and cryospheric locations share in 

common a high likelihood of unreliable GNSS signals or even LOL. 

 

There are many SRP risk management issues. These include aerial line of sight, 

differentiating drone landing from background snow, and coping with moving 

platforms floating on ice or water. The selection of appropriate Light Emitting Diodes 

(LEDs) on the drone to aid competent and safe drone piloting and ground level 

retrieval (Grundmann, 2010). Minimizing environmental impact of route, especially 

dB levels of unmanned aerial drones both above the ground and underwater (Erbe et 

al, 2017) based on up to date scientific evidence of wildlife responses to drone 

activity (Mustafa et el, 2018).  
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The rest of this chapter 3 addresses these key issues. The structure is to first cover 

general risk management matrices to aid pre-planning risk mitigation. Thereafter, 

design and electronic components are discussed. 

 

3.2 Risk Management in Polar and Cryospheric Areas 

The Council of Managers of National Antarctic Programs (COMNAP) has produced a 

cause-consequence matrix, Table 3.1 (COMNAP, 2017: p.9) which uses a vertical 

axis based on Likelihood of event occurrence, namely „Probable‟, „Remote‟, 

„Extremely Remote‟ and „Extremely Improbable‟. Each Likelihood categorisation is a 

qualitative measurement based on the lifetime of one drone. By which is meant an 

event occurring is Probable when it is anticipated to occur at least once in the 

operational lifetime of a drone.  

An event occurring is Remote when it is unlikely to occur in the operational lifetime of 

a drone. An event is Extremely Remote when it is not anticipated to occur in the 

operational lifetime of a drone. An event is Extremely Improbable when it is not 

anticipated to occur throughout the operational lifetime of an entire fleet of drones 

(COMNAP, 2017).  

For instance, drone icing, typically on the wing surfaces, can result in maximum lift 

decreasing by up to 80% and drag can increase by up to 60% (Sørensen, 2016). 

Therefore, ice forming on wings could cause the drone to crash. Subject to planning 

and mitigation, the risk of drone icing causing the drone to crash is Probable or 

Remote. 
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Table 3.1 Cause-Consequence Matrix 

Severity 
Level 
 

No Safety 
Effect 

Minor Major Hazardous Catastrophic 

Likely 
Occurrence 

     

Probable Nav sys 
malfunc 
causes 
loss on 
tundra in 
daylight. 
Need to 
retrieve. 

Nav sys 
malfunc 
causes 
loss on 
snow in 
daylight. 
Need to 
retrieve. 

Nav sys 
malfunc 
causes 
loss on 
tundra at 
dusk. 
Need to 
retrieve. 

Ice on wings 
causes drone 
to crash near 
SRP or 
ground 
support staff. 

Nav sys 
malfunc causes 
crash in 
crevasse. Need 
to retrieve. 

Remote    Drone 
crashes 
through the 
roof of an 
occupied 
building. 

On take-off 
drone catches 
fire caused by 
exploding 
lithium battery. 

Extremely 
Remote 

    Drone collides 
with helicopter 
causing both to 
crash. 

Extremely 
Improbable 

    Drone battery 
explosion 
causes 
research boat 
to sink. 

 

Turning to the horizontal axis of the Cause-Consequence Matrix, the Severity Level 

is based on definitions provided by NASA as a risk analysis structure specifically for 

drone pilots.  

In Table 3.2 (COMNAP, 2017: pp.9-10), these Severity Levels has been adapted 

and made relevant and succinct to an SRP. By reading Table 3.1 and Table 3.2 

together an SRP can assess and seek to lower risks for each mission.  
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Table 3.2 NASA Severity Definitions for SRPs 

Severity 
Level 

Definition 

Catastrophic 
Failure 

Failure of a drone would result in loss of life or serious injury. 

Hazardous The SRP would be unable to perform his or her flying or research 
tasks, distress to persons and injury to persons. 

Major Reduced capability or functional safety margins of the SRP or other 
ground crew to cope with adverse operating conditions, potential 
injuries or potential physical discomfort to persons. 

Minor No significant reduction to human safety. Minor failure conditions 
may include a slight reduction in safety margins or functional 
capabilities or a slight increase in the workload of ground crew. 

No Safety 
Effect 

Would have no effect on safety, meaning there would be no effect 
on operational capability of the drone or any increase in ground 
crew workload. 

 

Referring back to the Table 3.1 Cause-Consequence Matrix, an SRP planning a 

drone flight has to first identify hazards and risks, and then decide how they can 

mitigate each risk to a lower or low level. In Table 3.1, green indicates a low risk, 

yellow a medium risk and red a high risk.  

For example, imagine the navigation systems of a drone malfunction in flight with 

complete loss of SRP control. The drone crashes BVLOS into a crevasse 

approximately 500m from the side of the glacier where the SRP controlled its take-

off. Attempting to retrieve the drone has the potential of being a Catastrophic Failure 

Severity Level consequence and is initially coded a high risk (coloured red) situation. 

In this crash scenario the SRP would assess how to mitigate the mission to move 

from high risk to ideally a low risk (green) or perhaps a medium (yellow) risk. 

Mitigating the high risk (red) of attempting retrieval to one of medium or low risk 

would include:  

(a) working out how to lessen the chance of the drone crashing in the first place 

based on thorough drone navigation system operational checks before each flight;  

(b) applying standard safety procedures for locating any crashed drone; 

(c) applying local expert knowledge safety procedures for locating any crashed drone 

on the specific glacier taking into account its dynamics, the time of day and the time 

of year; 
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(d) the procedure for safe retrieval based on the SRP and ground crew roping up to 

retrieve the drone. 

 

3.3 Environmental Challenges 

One way of analysing the use of lightweight drones in demanding environments is 

set out in Table 3.3 (Duffy et al, 2017: p.7). While Table 3.3 provides a useful 

structure to start planning SRP drone flights, it has three omissions, because in both 

polar and cryospheric regions there can be both challenges from fine particles and 

telemetry issues.  

 

First, previous studies have indicated that high altitude cryospheric regions, such as 

the Himalayas, have been subject fine particles in the form of episodic dust plumes 

that travel over the mountains (Gautam et al, 2013). High altitude plateaus can also 

be affected. For example, studies indicate black carbon is prevalent in the air on the 

Himalayan-Tibetan Plateau glaciers (Chaoliu et al, 2016). Second, both polar and 

cryospheric regions can experience difficulties deploying and locating GCPs 

(Chudley et al, 2018). For each area in different conditions a specific challenge chart 

can be produced on a mission to mission basis. 

 

Third, high altitude environments are often exposed to telemetry issues, because 

high peaks can create multipath errors (Parkinson, 1996). Further, the aurora at both 

poles can lead to extreme interference with GNSS signals (Lorentzen and Egeland, 

2011). 
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Table 3.3 Environmental Challenges 

 

 

3.4 Katabatic and other High Wind Forces 

Katabatic winds are often most fierce and persistent when developing off large ice 

sheets (Strahler 2013; Grazioli et al, 2017). This affects not only polar regions, but 

also the Himalayas and the Patagonic Andes. Use of an anemometer will prevent 

starting missions that have a high risk of a crash, but such devices are not a 

panacea. A more important planning decision for drone research by an SRP is a 

fuselage and wing design that copes well with these sudden and often extreme 

conditions. Conversely, inadequate aerodynamic design will result in more drone 

losses.  

 

Researchers have recently analysed that high wind loading design of both the 

fuselage and wings copes best with the turbulent environment of the Antarctic coast 

in the context of a drone for monitoring penguins. High wind loading is „responsible 

for low sensitivity to gust and low weight-to-power ratio – important for high excess of 

power and quicker recovery from diving, pull-up and other manoeuvres’ (Goraj, 

2014: p.1). Visually, Figure 3.4 (Goraj, 2014: p.9) shows the end product of high 

wind loading calculations - not a delta-shaped wing but a stocky NASA Space 

Shuttle-like fuselage with a short wingspan. 
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Fig 3.4 High Wind Loading Design 

 

3.5 Mitigating Drone Loss with Light Emitting Diodes 

It is timely to first explain what a Light Emitting Diode (LED) is, then in the next 

section address factors relevant to the properties of LEDs in the context of human 

vision. An LED is a pn-junction semiconductor. As for any electric light, the efficiency 

is measured in lumen (lm)8, indicating the amount of light produced. Technical 

explanations on how a pn-junction works is beyond the scope of this chapter, but are 

provided succinctly elsewhere (Tipler and Mosca, 2008; Grundman, 2010; Galvez, 

2013).  

LEDs work by a process known as injection electroluminescence. An electric current 

injection mechanism produces photons – luminescence. The more photons that can 

be produced the brighter the light, which is achieved by electric current passing 

through the energy gap of the semiconductor (Parker, 2004).  

LEDs are essential components to have on a drone in remote, often featureless and 

predominantly white environments.  

Even in lower high latitude boreal forest regions where in spring, summer and 

autumn there is less or no snow, the costs and inconvenience of lost drones has to 

be thoroughly thought through.  

The drone has to leave point A where the SRP stands, fly over or hover near the 

subject matter of research, then return to the same take-off point or land at a safe 

                                                           
8
 Oxford Dictionary of Physics defines lumen (lm) as the SI unit of luminous flux equal to the flux emitted by 

uniform point source of 1 candela in a solid angle of 1 steradian. 
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short distance from the take-off point. Therefore, the basic risk mitigation of the 

drone is achieved in daylight by LEDs attached to the drone. At dusk LEDs are vital. 

In the event of a drone crashing or landing Beyond Visible Line of Sight (BVLOS), 

still working LEDs may be pivotal to finding it. In short, one of the simplest 

semiconductors that a drone can have is the most practical mitigant to avoid loss. 

Choice of LEDs have to centre on specifications that mean natural human vision has 

the best chance of seeing a drone, whether in the air or on the ground. Any 

assessment of LED colour choices also has to be based on recent colour-blindness 

tests by the relevant SRP. 

Manufactured drones are not generally built for a specific climate in mind, but there 

are exceptions. For instance, as shown in Figure 3.5 (GPS World, 2018) the Russian 

Zala series of drones, 421-08M and 421-16E, are both designed for use at freezing 

temperatures (GPS World, 2018). An SRP with a self-made drone with the relevant 

selection of LEDs attached can see the drone in flight all of the time. If unexpectedly 

there is a loss of altitude and fall to the ground, there is a higher likelihood of 

searching the correct crash area and locating the fuselage along with its main 

electronic components.  

Fig 3.5 Russian High Latitude Drone 

 

3.6 LED Colour Compatible with Human Vision 

In Figure 3.6 (my colour adaption from Lynch and Livingston, 1995: p.720) are 

aspects relevant to an SRP choosing LEDs to assist seeing a drone during flying, 

and for ground level retrieval of a drone. It is vital to choose the best LED colour to 

maximise (a) inflight sight of the drone, and (b) relocate a drone that has landed or 
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crashed out of sight. The boundaries of the eye‟s sensitivity are from 310 to 1050 

nanometers (nm) (Lynch and Livingston, 1995). This sensitivity is based on a 

trichromatic receptor that has colour sensors called retinal cones, coated with blue, 

green and red pigments. Red and green cones are close in wavelength. 

Fig 3.6 Photonic Cones and Scotopic Rods 

 

Figure 3.6: Relative response (r) of the eye for the photopic (high light level) cones 

(C) and scotopic (darkness functioning) rods (R) based on wavelength (λ). Scotopic 

sensitivity in the blue-violet weakens with age and the applicable age in years (y) is 

shown. The Purkinje Effect (PE) takes place in going from cone to rod vision. UV = 

Ultra-Violet; V = Violet; B = Blue; G = Green; Y = Yellow; R = Red; IR = Infra-Red. 

The challenge for SRPs is to factor in three aspects to their LED decision making – 

the limitations of blue, green or red LEDs. First, eye sensitivity to brightness of LEDs 

is greatest in the visible spectral range of green (Lynch and Livingston, 1995). 

Therefore, green LEDs have the greatest chance of being seen by scientists across 

age groups. However, the background landscape context matters as well. For 

instance, green LEDs can be a risk, because polar open water, glacier surfaces and 

cryospheric glacial lakes are often, but not exclusively green. 

Second, the Purkinje effect means that after sunset peak eye sensitivity to colour 

results in red objects appearing very dark, and green-blue becoming more visible in 

the landscape, because peak colour sensitivity decreases from 560 to 500 nm 
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(Lynch and Livingston, 1995). Therefore, after sunset, red LEDs are a risk. Further, 

green LEDs in a foliage landscape will be challenging to see. 

Third, middle age results in blue and violet colours being fainter (Lynch and 

Livingston, 1995). Many chief and senior researchers will be middle-aged or 

approaching it, so this fact cannot be ignored. An SRP in the 25 years of age range 

has the wider flexibility to choose blue, green or red. (Lynch and Livingston, 1995). 

However, blue LEDs are not a good choice if the chief scientist or senior researcher 

is also the SRP. 

Fourth, given the limitations of blue, green or red LEDs, all LEDs need to flash or 

vary in brightness to be consistently spotted by the SRP and any ground crew. It is 

proven that image fluctuations are required to stimulate a signal in either a photopic 

or scotopic context, or perception fades to a grey background (Pritchard, 1961). This 

risk of a faded background supports having some form of image fluctuation on a 

drone in the form of one or more flashing LEDs. Further, as covered in Chapter 4 

(Regulation) of this study, there are already legal requirements in Norway for a drone 

used in Beyond Visual Line of Sight (BVLOS) flights to have flashing LEDs with a 

light intensity of not less than 10 candela (Cd). 

Taking all the above factors into account, a lead SRP has to assess and decide the 

best choice of LEDs based on their unique research circumstances. Logically, the 

most efficient choice is to fly in the clearest daylight hours, but that is not going to 

maximise research output in all specialisms. For instance, some ecologists and 

oceanographers are going to want to use a drone at dusk when certain animals and 

birds are more active. 

  

3.7 LED Lens Shape 

There are several aspects that determine the angle of the external radiant output of 

an LED beam. These include the surface area of the p-n junction, the intrinsic 

semiconductor chosen, and any extrinsic impurity doping excitation (Parker, 2004). 

However, the shaping of the back surface of the LED has a very significant impact 

on external efficiency – the radiation pattern of light (Galginaitus, 1965). 
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Figure 3.7 (my adaption from Grundmann, 2010; p.664) is a comparison between 

three LED radiation patterns, expressed in degrees of radiance, namely: (i) parabolic 

reflector; (ii) hemispheric; and (iii) rectangular. Note the colours used in Figure 3.8 

are just for ease of reference only and do not indicate the colour of the LED. As can 

be seen by comparing the three geometric patterns and their angles of light 

dispersion, the parabolic reflector pattern (i) is the superior choice. Based on the 

same amount of electrical energy, the parabolic pattern radiates a parallel beam of 

light (Galginaitus, 1965). 

Whether the SRP chooses a bespoke or manufactured drone, it is logical to ensure 

parabolic reflectors are (a) selected; and (b) positioned on the drone to maximise 

seeing the drone whether inflight or stationary. The task of checking the parabolic 

qualities of LEDs is easier with self-made drones, because these can be ordered 

from manufacturers that provide detailed specification sheets showing key 

performance data, including a spatial distribution graph to check the precise lens 

shape including its view angle (RS, 2019). In sum, LED colour choice requires very 

careful planning. 

Fig 3.7 Geometry of LED Radiance 

 

3.8 LED Maintenance 

Before each take-off, it is sensible for an SRP to check LEDs for any obstruction, dirt 

or malfunctioning. Further, the SRP needs to schedule at least annual testing of LED 

intensity. This test can be achieved with a digital light meter in an appropriate 



48 
 

scientific environment – indoors, away from shadows, reflective surfaces and with no 

external light affecting the light from each tested drone LED.  

However, a note of caution is required when attempting to measure the light intensity 

of an LED. Traditionally, the inverse square law of the point source is applied, but an 

alternative method of calculation highlights that the specified luminosity value does 

not necessarily remain constant at varying distances (Manninen et al, 2007). 

For all SRPs, the key radiance distance is going to vary based on when (i) the drone 

is in flight and (ii) seeking to retrieve the drone. The inverse square law method 

causes distance dependence errors of up to 47% (Manninen et al, 2007). However, 

to date the alternative method of calculation has been tested on only 17 LEDs. 

Therefore, while the alternative method‟s claimed reduction in statistical variation of 

less than 1% is impressive, it requires further research before concluding it can 

replace the inverse square law that is still used by all LED manufacturers (Manninen 

et al, 2007). 

3.9 LED Longevity 

Accepting the importance of LEDs as both an aerial indicator of position and a 

means of finding a drone that has flown out of sight, an unknown challenge is 

determining when these vital components should be replaced. Research shows that 

aging causes both a reduction in external efficiency (brightness) and colour offset. 

Although LED performance over a lifetime has found to be independent of its colour 

(Cuadras et al, 2017). 

However, monitoring the predicted lifetime of each LED is complex, because long 

term studies conclude that many factors affect longevity, including electronic 

component temperature operation, external environment temperature, on-off 

switching patterns and discoloration or cracking of the lens casing (Cuadras et al 

2017; Yang et al 2010). The industry standard provided by the Illuminating 

Engineering Society states that the threshold for use is 70% normal intensity – 

measured in lumens depreciation (IES, 2011). 

3.10 Internal Drone Semiconductors 

There are five essential flight control components found in nearly all aerial drones 

relevant to navigation and positioning. These are:  
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(a) a magnetometer that measures the magnitude and direction of a magnetic field, 

which in turn can be converted into a magnetic north, south, east and west bearing 

(OUP Dictionary of Physics, 2015); 

(b) an accelerometer which measures changes in velocity and in turn distance 

travelled based on the time elapsed from one point to another (Feynman et al, 2013); 

(c) a gyroscope that maintains the orientation of the drone keeping it upright in flight 

by maintaining a perpendicular direction to any force applied to it (Denny, 2012); 

(d) a GNSS receiver; 

(e) a barometer used to measure the drone‟s altitude by sensing even a centimetre 

change in atmospheric pressure (Ebeid et al, 2017); 

Notably, (a) (b) and (c) are usually combined in the same component, namely the 

Inertial Measurement Unit (IMU).  

Magnetometers in drones are vital navigation components, because they 

communicate how GNSS is functioning in terms of north, south, east or west 

movement when a drone is flying. More importantly when GNSS is unavailable or 

unreliable, magnetometers facilitate accurate drone flight research and as a means 

of locating a drone that has crashed out of sight of the SRP or support team. To 

explain the reasoning for this operational and planning importance it is necessary to 

briefly explain how magnetometers work. 

3.11 Magnetic Fields in High Latitudes 

Iron-rich liquid iron movement in the Earth‟s outer core produces a constant 

magnetic field over the Earth‟s entire surface (Backus et al 1996). Both the flow and 

the field are unstable resulting in both magnetic North and South moving several 

miles each year (Huth, 2015: pp.115-116). In high latitudes variation in the strength 

of this magnetic field is „most intense, most variable in time, and most complex‟ 

(Chapman, 1951: p.89).  

The established means of finding the magnetic variation in a research location has 

been to apply data from the World Magnetic Model (WMM) (NOAA, 2019). The 

WMM is a joint initiative of the United States‟ National Geospatial-Intelligence 

Agency (NGA) and the United Kingdom‟s Defence Geographic Centre (DGC).  
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Fig 3.8 WMM Declination Model 2015 

 

Figure 3.8 (NOAA, 2019) shows the five year WMM Declination Model 2015 which 

predicts that both the North and South Poles experience greater declination levels 

compared with anywhere else. The WMM is based on accurate five year predictions 

on the Earth‟s outer core magnetic field and its rate of change. However, there are 

other magnetic field influences from the Earth‟s crust and the ionosphere not 

factored in.  

The consequence for magnetometers in drones is that a „magnetometer may 

observe spatial and temporal magnetic anomalies when referenced to the WMM‟ 

(NOAA, 2019). In particular, certain local, regional, and temporal magnetic 

declination anomalies can in rare situations exceed 10 degrees, but more commonly 

range between 3-4 degrees. 

The focus on the outer core magnetic field means important magnetic field variables 

in high latitudes are not included in the WMM calculations. Omissions include daily 

changes driven by the solar wind that change magnetospheric and ionospheric 

systems. Specifically relevant to high latitudes, these omissions include the North 

and South Polar auroral electrojet currents (NGA, 2019). 
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A further limitation of the WMM is that annually over each five year model lifespan its 

prediction loses accuracy. However, updates mitigate this weakness. For example, 

the WMM 2015 Model was updated to 2015 version 2, as shown in Figure 3.9 (BGS, 

2019). The justification for this latest update was that since 2014 the core magnetic 

field had unpredictably varied „particularly at high northern latitudes‟ (BGS, 2019). 

The next five year WMM Model will be released in late 2019. 

Fig 3.9 WMM Model 2015 Version 2 

 

Turning back to the pivotal magnetometer contained in every drone, the key question 

for SRPs is how can this component exploit the WMM data to provide precise 

navigation in high latitudes without relying on GNSS? Before answering this 

question, it is timely to briefly explain how a magnetometer functions.  
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Fig 3.10 Magnetometer Readings μT 

 

A magnetometer works because of the Hall Effect. The Hall Effect is the 

electromotive force within a semiconductor through which an electric current is 

flowing when there is a strong magnetic field from a permanent magnet close by. 

The potential difference, called the voltage (V) produced develops at right angles to 

both the electric current and the permanent magnet (OUP Dictionary of Physics, 

2015). 

Figure 3.10 is a screen shot of the data produced from an Android App that is 

recording the magnetic field measured by a magnetometer chip operating in my 

Nokia smartphone. This magnetometer chip works on the exact same physical 

principles inside a drone. The Tesla Units (μT) measurements for three magnetic 

field forces can be seen: X 11.6; Y 13.6; and Z 30.8. The X, Y and Z measurements 

represent the Hall Effect voltage converted to a digital signal. In turn, these show the 

magnetic field strength on these three perpendicular axes. 

When the drone turns, the X and Y axis will show significant changes in their data 

readings. This is because the X axis records changes in the magnetic field caused 

by movements toward or away from the Magnetic North Pole. The Y records 
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changes to the magnetic field caused by movements towards or away from East. 

Together, the X and Y provide an accurate 360° compass of the drone‟s orientation 

based on the magnetic field. The Z axis records the altitude difference of a drone 

compared with the Earth‟s surface. Finding degrees of direction on a level plane is a 

two dimensional task that relies on the X and Y axes 

3.12 Magnetic Declination 

In an operational and planning environment in which GNSS is working, the GPS or 

equivalent service would make automatic adjustments for the magnetic declination 

using the latest WMM data. However, that still presents two challenges for any SRP 

when there is no GNSS or GNSS is limited or unreliable. 

First, when conducting research with drones in northern latitudes without GNSS, the 

SRP has to ensure the drone operates with an adjustment for declination, because it 

is the highest on Earth. Depending on precise location, the range is >6 to 15 

degrees. Once the current declination is checked it can be programmed into the 

drone‟s flight operations. The benefit is that the flight path of sensor data would then 

more precisely correlate with ground truth evidence and the maps used to record 

positions of what is observed. 

Second, an SRP needs to factor local declination in to know exactly where the drone 

is heading with reference to a map. If the drone crashes then the direction is clear 

based on current declination versus any potentially out of date declination recorded 

on the map. 

My example Equation 3.1 shows a calculation that a SRP would make to ensure a 

drone with limited or without GNSS can fly with maximum accuracy. It would require 

a program that alters the magnetometer to include the WMM declination for the 

precise latitude and longitude together with a Kalman Filter that provides a value for 

daily ionospheric and local magnetic changes.  
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Equation 3.1 - Calculating True Bearing with WMM and a Kalman Filter 

True Bearing (TB) = Magnetic Declination (MD) (GV grid = D-C) + Magnetic Bearing 

(MB) ± Kalman Filter (K) 

TB = MD + MB ± K 

MD (WMM) (version 2) = 6.8⁰; MB = 270⁰; K = +1° 

MD + MB ± K = TB 

TB = 264.2⁰ (264’12’’) 

Briefly a Kalman Filter is a computationally complex algorithm that can be use one 

known measurement to predict another unknown measurement (Grewal and 

Andrews, 2015; Valade et al, 2017). It has been described as a “predict-update” 

cycle, where predictions are updated based on observations - a continuous cycle of 

new predictions based on revised known data (Stutters et al, 2008). 

3.13 Operational Planning and Navigation for Underwater Drones 

The structure of this section follows, where relevant, the earlier thematic structure on 

aerial drones. Therefore, an SRP working only with underwater drones can choose 

to read just this section or supplement it with the whole chapter. Indeed, based on 

the international response of researchers to the survey results analysed in chapter 5 

of this thesis, a significant percentage of SRPs use both aerial and underwater 

drones. Therefore, all of this chapter 3 may apply to some SRPs. 

Many of the aspects covered so far in this chapter are also relevant to underwater 

drones. From a risk management viewpoint the Cause-Consequence Matrix and 

NASA Severity definitions covered earlier in this chapter can equally be adjusted to 

be valuable methods for an SRP to pre-assess underwater drone missions. 

However, there are notable differences. First, there is negligible visual line of sight 

navigation with an underwater drone, given an SRP only sees the drone when it is 

floating on the surface of the water. Figure 3.11 (NERC, 2018) is a typical example. 

Second, navigation accuracy is more challenging because GNSS signals do not 

penetrate water (Emami and Taban, 2018).  
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Fig 3.11 Glider-Shaped Drone 

 

3.14 Quantitative Risk Management for Underwater Missions 

Experts in underwater drones and risk analysis have adopted a Risk Management 

Process model called the RMP AUV process specifically for extreme environments. 

The RMP AUV focuses on risk of loss of the drone, but excludes financial loss and 

loss of scientific data (Brito et al 2010). The RMP-AUV process is sophisticated, 

relying on experts to provide quantitative value for risk based on many precise 

observed faults and successful missions. One model created using this method was 

based on four different underwater drone operating environments – coastal water, 

ice shelf, open water and sea ice (Brito et el, 2010). 

In summary, the risk assessment process is split into three parts. First, the SRP 

specifies the probability of risk. Second, the SRP defines the minimum operational 

requirements, including the minimum number of missions and distances to be 

travelled by the underwater drone. Third, a risk assessor calculates the probability of 

losing a drone over the research campaign, meaning over the total number of 

missions. Based on the probability provided, the SRP can proceed. Alternatively, the 

SRP may need to work with technical support colleagues or external experts to 

mitigate and consequently obtain a revised probability of loss (Brito et al, 2010). 

Statistics for the glider underwater drone in Figure 3.12 (data extracted from Rudnick 

et al, 2016: p.1116), covering 12 years (2004-2014) show that for thousands of 

missions of greater than five days in duration it is possible to have a relatively low 

loss rate of 12 per cent. However, this 12 year period needs to be treated with 
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caution in the context of SRPs in high latitude waters. First, it is based on one 

specific type of glider model, called the Spray (2m length, 50 kg mass). Second, the 

trajectories of the Spray missions were global and not focused on high latitude 

oceans where sea ice and ice bergs would increase risk of loss. Third, the SRPs of 

the Spray gliders were always expert users trained by the developers of Spray, 

rather than using a range of different gliders. 

Fig 3.12 Glider Statistics for Missions >5 Days 

Number of missions  297 

Total duration (days) 28,091 

Median duration (days) 100 

Upper quartile (days) 119 

Number of losses 9 

Loss rate (per year) 0.12 

 

3.15 Locating Drones on the Surface of Water  

A brightly coloured underwater drone at the water surface is sufficient risk mitigation 

in daylight. However, there will be research missions that require operating a drone 

in the dark or recovering a malfunctioning drone in the dark. LED selection has 

already been covered earlier in this chapter. What is evident is that when using 

underwater drones the surfacing of the drone has to factor in a mainly green 

background. Therefore, a drone with green LEDs is going to be harder to pinpoint 

and easier to lose against mainly green or green-tinged ice or water backgrounds. 

Further, flashing LEDs that are not green in colour will assist against dark grey 

ocean backgrounds (Pritchard, 1961). 

3.16 Electronic Components for Underwater Navigation and Positioning 

The essential flight control components in underwater drones follow a similar format 

to aerial drones. That is they rely on an IMU made up of accelerometers, gyroscopes 

and magnetometers. There is also a GNSS module so that GPS or an equivalent fix 

is obtainable for localization on the water surface, and can also function with sonar 

components. In combination, these sensors: (a) calculate the position of the drone 

underwater in the context of where it submerges and surfaces; and (b) map or 

survey the research focus underwater using sonar or inertial measurements or both. 
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A key addition to an underwater drone‟s navigation systems is the Doppler Velocity 

Log (DVL) that uses active sonar. An active sonar device uses sound to detect and 

locate objects in water, where signals are transformed into either images or 

bathymetric maps (Paull et al, 2014). 

The DVL sensor, called a transducer (Nortek, 2019), uses the Doppler return signal 

from the bottom of the sea to calculate the velocity of the drone relative to the sea 

bottom. If the sea bottom is too far from the water surface then a DVL would be too 

imprecise to rely on. The DVL provides accurate data on velocity gained from four 

beam directions which can be added into inertial navigation measurements (Miller et 

al, 2010). In Equation 3.2 (Bowditch, 2017: p.416) the doubled Doppler shift is 

expressed as: 

                                             Fd = 2Fs (V/C)               [Equation 3.2] 

Where Fd is the Doppler shift frequency; Fs is the frequency of the sound when 

everything is still; V is the relative velocity between the sound source and the sound 

receiver (m/s); and C is the speed of sound in water (m/s). 

The original patent summary by the inventors of the first digital sonar navigation 

sensor explain that the „horizontal motion of a vessel through a body of water is 

determined by providing means to receive Doppler-shifted signals along the fore-aft 

and port-starboard axes of the vessel, digitizing the received Doppler-shifted 

signals…integrating the digitized signals…throughout a given period of time to obtain 

an indication of the incremental distance travelled along each axis during the given 

period of time‟ (Kritz and Lerner, 1972: p.1). Figure 3.13 (my adaption from 

Bowditch, 2017: p.417) shows how DVL works by constantly pinging signals to 

calculate velocity.  
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Fig 3.13 Doppler Velocity Log 

 

3.17 Eclectic Navigation Systems 

Underwater drone technology relevant to navigation is rapidly developing. The 

consequence is that both fundamental A to B navigation and the accuracy of 

measurements made for research purposes increasingly rely on eclectic solutions. 

Three examples are (a) Deep Ocean Gliders Using Sonar and Thrusters; (b) Sonar 

Combined with GNSS and Cameras; and (c) Simplifying Algorithms to Decrease 

Computational Load. 

(a) Deep Ocean Gliders Using Sonar and Thrusters 

The threat of icebergs occurs not only at the Poles, but also in cryospheric regions 

such as Southern Patagonia. Research on and near glaciers and icebergs are high 

risk for ship-based projects. Therefore, more underwater drones can be more safely 

better used to carry out research in such environments.  

Recent using a hybrid underwater glider to measure the underwater shape of an 

iceberg using sonar shows that SRPs can successfully reconstruct icebergs 

(adapted from Zhou et al, 2019). Even deep sea optical mapping has included the 

use of underwater drones because of innovative acoustic systems (Iscar et al, 2017). 

The glider design, as shown earlier in Figure 3.11, is widely used by SRPs because 

they provide a low-powered drone well-designed for oceanography. The normal 

gliding path is a vertical zigzag pattern created by a buoyancy pump (Rudrick, et al, 

2016). 
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SRPs can fit a thruster forward propulsion device to the back of the glider so that it 

can travel horizontally rather than only zigzag vertically at different depths. The 

consequence is that sophisticated mapping of the exterior of icebergs is now 

possible, as shown in Figure 3.14 (adapted from Zhou et al, 2019: p.3). Further, 

below ice shelves this same sonar and thruster combination is useful for mapping a 

variety of seafloor morphological features (Wynn et al, 2014). 

Fig 3.14 Revolutions around an Iceberg 

 

In this hybrid set-up, the glider receives a GPS or equivalent GNSS fix for 

localization on the water surface. Thereafter, the mission starts with the standard 

glider vertical buoyancy movement and relies on dead reckoning to reach the 

required initial depth. Then once at the required depth the thruster enables the glider 

to horizontally revolve around the iceberg taking continuous sonar measurements. 

(b) Sonar Combined with GNSS and Cameras 

A hybrid system based on an “instrumented workspace bound by the range of the 

acoustic transducers” has the effect of combining “odometry estimate with the range 

measurements for accurate localization” (Iscar et al, 2017). As shown in Figure 3.15 

(adapted from Iscar et al, 2017: p.11), this is achieved by (i) GNSS localization 

based on two static beacons on the water surface. Then, (ii) sonar transducers are 

placed on the underside of each beacon. Further, dead reckoning provides distance 

information within the parameter of the two beacons. Finally, (iii) cameras attached 
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to the drone provide visual odometry when the drone is travelling near to the sea 

floor. 

Fig 3.15 Sonar with GNSS and Cameras 

 

(c) Simplifying Algorithms to Decrease Computational Load 

Increasingly, algorithms are being used to reduce the computational load on all types 

of drones, including underwater drone navigation systems (Emami and Taban, 

2018). The benefits of doing are reduced costs, less heat loss, improved 

performance and more efficient power consumption.  

For instance, researchers have produced simplified algorithms to reduce the 

complexity of conventional Kalman Filter (KF) algorithms. In a recent underwater 

drone sea trial a low complexity KF algorithm was compared with a conventional 

system (Emami and Taban, 2018). The performance was similar. This result showed 

that underwater drone designers have greater choice of semiconductor processors, 

which will reduce costs, increase flexibility of drone design and improved reliability. 

The benefits for navigation are clear – comparable quality research output for less 

cost.  

Further, in colder high latitude and cryospheric waters the reduced computational 

burden may decrease already weaker battery (measured in mAh) power longevity. 

Battery life is a vital variable that contributes to increases the probability of a lost 

drone trapped under ice potentially surfacing many months later (Harris, 2018). 
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Chapter 4  

Drone Regulation for Scientists 

4.1 Introduction to the Approach  

It is vital that scientists taking control of drones accept the professional 

responsibilities of airmanship, airspace, navigation and safety. This requires 

complying with relevant laws even though the norm may be to research in locations 

distant from civilian populations and urban areas. 

 

There are many aviation “laws” relevant to SRPs.9 The tactical aim of this chapter is 

to cover aviation law10 in a memorable and practical way most pertinent to SRPs 

navigating and positioning drones in key high latitude jurisdictions and in the 

Nepalese Himalayas. Inevitably with expensive, long range drones the task of flying 

will often be carried out by professional technicians. However, as evidenced by the 

Remote Sensing Volume 38 (2017) and Volume 39 (2018) drone-focused articles 

mentioned in chapter 1 of this study, many short and medium range aerial drones 

are operated by scientists. 

 

While the following analysis is based on UK requirements, the structure of this 

chapter allows any SRP11 from another country to read everything as it relates to 

their home jurisdiction. They just need to factor out UK law and factor in the law of 

their home jurisdiction. 

 

 

 

                                                           
9
 In contrast, a lawyer would take the exact opposite approach and absorb all the law, and then be well placed 

to analyse any specific application. For an SRP this would be unnecessary! 
10

 English Law precisely includes statutes, secondary legislation and common law precedent, and until at least 
2020 EU Law. However, laws in the context of aviation are best understood by references to all relevant law, 
guidance and policy. 
11

 As in all chapters of this study the term Scientific Research Pilot (SRP) is used throughout chapter 4. SRP is 
not a legally defined term in the UK or under any other jurisdiction’s aviation law. It merely serves to highlight 
the focus is aviation law relevant to scientists. 
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4.2 UK Aviation Laws Relevant to SRPs 

In the UK, the Air Navigation Order (ANO), and all its subsequent amendments, is 

the key aviation law to apply. The Civil Aviation Authority (CAA), as the main UK 

aviation regulator of all aircraft including drones, also provides guidance in the form 

of Civil Aviation Procedure (CAP) documents that contain further detail, explanations 

and policy. Each CAP has a unique number so that there is no confusion when 

communicating or cross-referencing CAPs. 

 

Drone regulations are contained within the Air Navigation Order 2016 (ANO 2016) 

and its subsequent amendments. To date, so June 2019, the most recent ANO 2016 

amendment is CAP 393 (2019) the Air Navigation (Amendment) (No.2) Order 

2018.12 

 

Technically, any UK-based SRP can rely on Section 3.10 of the UK CAA Unmanned 

Aircraft System Operations in UK Airspace – Guidance (CAP 722) which exempts 

„research‟ work conducted „in-house‟ from the legal requirements to seek permission 

and undergo a flight competence test. The logic is that research is not commercial 

work because there is an absence of „valuable consideration‟ (CAA, CAP 722). So 

researchers could communicate with and seek permission from the CAA on a 

mission by mission basis. 

 

While, the ANO 2016 context of „commercial‟ drone activity is based on for-profit 

activities, these terms have become increasingly relevant to research scientists 

because of the potential risk of injury caused by drones to persons and property and 

protected species. This risk is mitigated with insurance cover under UK law.  

Consequently, managers of research institutes are rapidly moving towards policies 

that ensure that all staff operating drones are competent at the commercial level of 

qualification. Without proof of this competence at the commercial level, insurance 

may be unobtainable or exorbitant (Cracknell, 2017). 

 

It has been observed that 'increasingly, academic researchers utilizing remotely 

piloted aircraft systems [drones] may deem it necessary to obtain permission from 
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 See https://publicapps.caa.co.uk/docs/33/CAP393_Fifth_edition_Amendment_13_March_2019.pdf; also at 
http://www.legislation.gov.uk/uksi/2019/261/made 
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the CAA, codifying their operational competence' (Cunliffe et al, 2017: p.2739). The 

motivation to do so relevant to SRPs may include, the need to comply with 

institutional insurance requirements (Lloyd‟s, 2015), and to confirm professional 

competence to research collaborators. The consequences of meeting legal 

requirements and applying risk mitigation are that operating a drone in this context 

requires PfCO is in effect a licence to operate a drone. Table 4.1 sets out the three 

main requirements. 

Table 4.1 Main PfCo Requirements 

PfCo 
Requirement 

Essential elements 

  
Theoretical 
Examination 

A theoretical examination based on Air Law, Airmanship, Map-
reading & Navigation and Meteorology. Then a practical test to 
prove the remote pilot can take-off, fly, land and perform 
emergency procedures. 

  
Operations 
Manual (OM) 

SRP or research institute submits a very detailed operations 
manual recording all its administrative processes and risk 
assessment models for drone use. 

  
Practical 
Examination 

Practical flight tests to confirm the applicant pilot can safely take-
off, fly, land and perform emergency procedures, all in the 
overarching context of thorough operational and safety planning. 

 

Further, polar and cryospheric research institutions are likely to assess that the 

operational risk management of drones is mitigated by Standard Operating 

Procedures (SOPs). Any SOPs would rationally require a consistent approach and 

measurable level of pilot competence and legal knowledge. PfCO, especially the OM 

component of it, fulfil this role. Further, in the context of wildlife research an OM is 

strong evidence that all requirements of the PfCO are understood, and in turn it is 

evidence of best practice to manage operational risks (Hodgson and Koh, 2016). 

 

Seeking a CAA PfCO is the most cost-effective and logical SOP to consistently 

minimise injuries, avoid law suits concerning damage to property, reduce lost drone 

costs and avoid fines from aviation authorities. Minimising insurance costs is not a 

legal requirement, but it presents the opportunity to negotiate insurance contracts 

that factor in a high level of SRP flying competence. A Lloyd‟s report on drones has 

specifically pointed out that „commercial insurers have the opportunity to encourage 
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good practice in commercial operators by varying terms and conditions, risk retention 

(deductibles or excess) and premiums on the basis of the quality of clients‟ risk‟ 

(Lloyd‟s, 2015). 

 

Analysed further, there are two separate elements that the SRP is satisfying – legal 

and risk. Law often merges legal and risk elements so it‟s important to clarify 

precisely the reasoning of each point in the context of the CAA Permission for 

Commercial Operation (PfCO) in Table 4.2, checked and updated to 1st June 2019. 

 

Table 4.2 An SRP with CAA PfCo 

Legal Requirement or Risk 

Mitigation 

Advantages, Examples and Key Points 

Legal Requirement - EC 

785/200413 - Regulation (EC) No 

785/2004 of the European 

Parliament and of the Council of 

21 April 2004 on insurance 

requirements for air carriers and 

aircraft operators 

Legal Requirement for third party public liability 

insurance at all times based on maximum take-

off mass (MTOM). The insured risks must 

include force majeure and acts of sabotage. In 

the UK the pilot training provider check the 

applicant‟s insurance before recommending to 

the CAA whether a PfCO is granted.   

Risk Mitigation - Potential Legal 

Cost attached to third party claims 

 

Flying over private land for research purposes 

would in most instances not require a PfCO. 

Only the land owner‟s permission would be 

needed. However, possession of a PfCO would 

reduce insurance premiums. Large research 

institutions are likely to have public liability 

insurance policies that require renegotiating to 

include negligent damage cause by its drones. 

Risk Mitigation - Independent 

testing of competency based on 

safe airmanship, airspace, 

navigation and safety 

Proves drone pilot competence to research 

partners. Joint research projects create more 

risk which is mitigated by measurable pilot 

competence standards. Just institutional in-
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 See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32004R0785. Available in 23 languages as a 
PDF format. 
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 house training is unlikely to be sufficient. 

Risk Mitigation - Independent 

testing of competency based on 

safe airmanship, navigation, 

operational planning 

Pilot is less likely to crash, damage or lose 

drones. Number of third party claims with the 

consequence of court enforced or settled 

damages would be reduced. 

Risk Mitigation – Working with 

colleagues who also have PfCO. 

PfCo pilot more likely to exercise good safety 

management and leadership when working with 

in-house or joint project colleagues who are 

operating drones to a commercial standard. For 

example, awareness about decision making 

under stress, fatigue, the effects of alcohol, 

illness and medication. 

 

The exponential rise of drone use in all research has been matched by expanding 

legal requirements and risk management logic to seek PfCO from the CAA.  

 

The 400 Feet Rule 

The ANO 2016 was amended in May 2018 to require that all drones fly no higher 

than 400 feet from the ground. The application of the 400 feet restriction is indicated 

in Figure 4.3 (CAA, 2019). This shows that the maximum height rule applies 

regardless of how high the ground is compared with sea level. So subject to specific 

airspace restrictions indicated on CAA aviation maps, the UK rules would allow an 

SRP to fly a drone up to 400 feet above the summit of a mountain. 

A small unmanned aircraft is defined as „any unmanned aircraft, other than a balloon 

or a kite, having a mass of not more than 20 kg without its fuel but including any 

articles or equipment installed in or attached to the aircraft at the commencement of 

its flight‟  (CAP 722, 2015). Most polar and cryospheric scientists may have drones 

that qualify as a small unmanned aircraft. If the drone is more than 20kg the rules 

are far more onerous and the likelihood of the commensurately higher cost would 

make a professional drone pilot not an SRP the only rational choice. 
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Fig 4.3 The Meaning of 400 Feet 

 

4.3 Other Relevant ANO Articles 2016 

Given the constant changes to the legal treatment of drones, it is imperative to check 

aviation law statutes on a weekly basis. Conveniently, Article 23 allows an efficient, 

albeit not 100 per cent assessment of changes. Article 23 sets down which of the 

275 Articles in ANO 2016 are relevant to drone use. The current applicable Articles 

are listed in Table 4.4 below. 

 

Table 4.4 ANO Article 23 Provisions 

Article Relevance 

2 Interpretation 

91 Dropping of articles for agriculture etc. 

92  Mooring, tethering, etc. (not related to small unmanned aircraft) 

93 Release of small balloons (not related to small unmanned aircraft) 

94 Small unmanned aircraft: requirements 

94A Small unmanned aircraft: height restrictions on flights (new) 

94B Small unmanned aircraft: restrictions on flights over or near aerodromes 

(new) 

94C Small unmanned aircraft: registration of SUA operator (new) 
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94D Small unmanned aircraft: requirement for registration as SUA operator  

(new - not applicable until 30 November 2019) 

94E Small unmanned aircraft: competency of remote pilots (new) 

94F Small unmanned aircraft: requirement for acknowledgement of competency 

(new – not applicable until 30 November 2019) 

94G Meaning of „remote pilot‟ and „SUA operator‟ (new) 

95 Small unmanned surveillance aircraft 

239 Power to prohibit or restrict flying (Prohibited and Restricted Areas) 

241 Endangering safety of any person or property 

257 CAA‟s power to prevent aircraft flying (except 257(2)(a)) 

253 Revocation, suspension, variation of certs, licences or other documents 

(new to this list) 

265 Offences and penalties 

266 Exemption from the ANO (new to this list) 

269 Certificates, authorisations, approvals and permissions (new to this list) 

4.4 SRP in Antarctica, Greenland, Nepal, Southern Patagonia or Svalbard 

Having set down the minimum explanation and legal content relevant to a SRP 

based in the UK, hereafter this chapter focused on the applicable aviation laws of the 

specific jurisdiction that that a polar or cryospheric scientist would conduct research 

in. Given the importance of Antarctica, Greenland and Svalbard to polar scientific 

research, these three locations are covered. Nepal is also included because of given 

the increasing research focus on its cryospheric areas with drones. 

 

4.5 Antarctica 

From an aviation law viewpoint, Antarctica is the most complex location to analyse. 

To provide a memorable contrast, if a scientist is dedicated solely to Arctic research, 

there are only eight jurisdictions to think about. On or above Antarctica, both its land 
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and coast14, there is no single applicable jurisdiction, because currently there is no 

universally accepted sovereignty territory. 

For example, Figure 4.5 (Foreign & Commonwealth Office 2012) illustrates the 

British Antarctic Territory claimed since 1908. On examining this Foreign Office map, 

anyone would be forgiven for deducing the governing law between longitude 20°W 

and 80°W is likely to be UK law. However, it is not. The reason is that governance of 

all Antarctica is based on the 1959 Antarctic Treaty (the “UN Treaty”) which holds in 

abeyance all sovereign territorial claims (Foreign & Commonwealth Office 2012). 

Fig 4.5 British Antarctic Territory 

 

The basis of all legal analysis on what law should apply to any scientist on Antarctica 

is set out in Article 8 of the UN Treaty. Article 8 states that “each country [signatory] 

has legal jurisdiction over its own citizens and observers.” Therefore, citizenship of 

an SRP is always relevant to his or her drone use. For a scientist who is a British 

citizen, UK aviation laws would apply. 

 

In the scenario of an SRP with British citizenship working out of an Antarctic base 

not managed by British Antarctic Survey, the jurisdiction of the country managing 

that non-UK base station is going to have no legally enforceable relevant, but it 

certainly has political and practical relevance. For example, increasing numbers of 

                                                           
14

 Above and below the surface of water, congruent with public international law, the Antarctic Treaty extends 
12 nautical miles from its coast.  See Article 3, United Nations Convention on the Law of the Sea (United 
Nations, 2019). 
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scientists are likely to operate drones on the Fildes Peninsula, located at Latitude: 

62° 13' and Longitude: 58° 59', on the western side of King George Island.15  

 

Another important influential form of authoritative guidance for SRPs using drones on 

Antarctica is the Council of Managers of National Antarctic Program (COMNAP), 

Antarctic Remotely Piloted Aircraft Systems (RPAS) Operator’s Handbook 

(COMNAP, 2017). Produced by the COMNAP drone working group, its full title is the 

COMNAP Unmanned Aerial Systems Working Group, from this detailed document 

three points are essential to factor in.  

 

(a) Point 8 (COMNAP, 2017) – strongly recommends that all drone flights in 

Antarctica are notified to responsible officials in the relevant area. Table 4.6 is 

a crystallization of a very detailed Notice to Airman (NOTAM) or similar 

notification that would need to be made by an SRP, to be circulated via a 

website posting by a national Antarctic program air operations manager. 

 

Table 4.6 Notice to Airman Details 

NOTAM 

Pilot Details: 

Notam Details: New; Cancel; Update 

Launch Location: [Latitude and Longitude] 

Radius of Flight: [Latitude and Longitude] 

Centre of Flight: [Latitude and Longitude] 

Timeframe: 

 

(b) Point 9 (COMNAP, 2017) – recommends that each national Antarctic 

program ensures each drone pilot is appropriately trained based on its 

national regulations. Therefore, an SRP who is not a British citizen but works 

with BAS who does not possess UK CAA PfCo logically needs to prove 

possession of a comparable national drone pilot qualification. 
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 Note Annex 3 in this study summarises the law and regulation applicable to a number of SRP situations, 
including drone use in Antarctica on or near King George Island (South Shetland Islands). 
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(c) Point 4 (COMNAP, 2017) – recommends that where manned operations 

exist, the use of geofences may be appropriate. 

 

4.6 Greenland 

Danish (2017), CAA Amendments, Order on flights with drones outside built-up 

areas, Order no. 788 applies (“Order 788”). Danish law has many similarities with the 

UK rules. Height restriction is slightly lower set at 100m. There is no specific distance 

limit, but VLOS is always required, except by special dispensation for research 

approved by prior application. Therefore an SRP can apply for a waiver to fly BVLOS 

(Aeronautical Information Circular B 08/14). The application fee for processing such 

applications is 150 Euro per hour so this cost needs to be included in projected 

research budgets. 

 

4.7 Nepal 

Flight Operations Directives No.7, May 2015 contains the core rules, conferred by 

Rule 82 of the Civil Aviation Authority Nepal (CAAN) of Nepal, Civil Aviation 

Regulation, 2058 (Directives No7). Nepalese law mirrors the UK rules with a VLOS 

required of 122m maximum height and 500m maximum range from the SRP. Note 

“Operations beyond these distances must be approved by the CAAN (the basic 

premise being for the operator to prove that he/she can do this safely)” (Rule 4.1, 

Directives No 7). 

 

The second key document for guidance is the CAAN Procedure Manual for Flight 

Permission. In its Appendix G there is set out the Application for Drone Use. Further, 

Appendix – H lists the required documents for Drone Operation Permission. These 

include: 

 

1) A Letter of Request;  

2) A copy of Operation Specifications of Drone; 

3) A copy of the Map of the Operation Area;  



71 
 

4) A document indicating the latitude and longitude box of the proposed Operation 

Area;   

5) A “No Objection” or “Recommendation Letter” from the relevant private or public 

land owner, or military unit if in an operational military area; 

6) Letter from the concerned authority for security clearance and or other clearance.  

 

4.8 Svalbard 

The Norwegian Civil Aviation Authority, via Norwegian Amendments (2016) to the 

Aviation Act 1993, The Regulation Drones - concerning aircraft without a pilot on 

board, applies (Drone Reg 2016). Note this is an English translation of the 

Norwegian text published by the Norwegian Civil Aviation Authority, 

https://luftfartstilsynet.no/en/drones/commercial-use-of-drones/. In the event of any 

deviation between the English and the Norwegian version the Norwegian would 

apply.  

 

Section 51 of the Drone Regs 2016 requires drones to operate within VLOS during 

daylight hours. On Svalbard this is a most important rule, given its many months of 

darkness and short daylight hours. There is a no exception in Section 59 of the 

Drone Regs 2016 that allows BVLOS with drone lights. The drone must have white, 

low-intensity lights that have a light intensity of least 10 candela, where flashes are 

produced by rotating lights (strobe lights) at a rate of at least 20 flashes per minute. 

 

Once the SRP is in situ they would need to comply with local laws. Given Svalbard is 

part of Norway, the Norwegian laws concerning commercial drones apply along with 

the Svalbard Environmental Protection Act and local laws.  

 

For example, at Ny-Ålesund (78°55‟ N, 11°56‟ E), there is the requirement to submit 

a signed agreement with the local Aerodrome Flight Information Service (AFIS). This 

signed agreement needs to set out the planned use. The SRP must sign an 

agreement with the local AFIS (Kings Bay) regarding use of Ny-Ålesund airspace. All 
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relevant permits, notice to authorities, drone pilot licence and proof of insurance 

have to be presented to Kings Bay AFIS before signing the contract.16  

 

There is an application guide (Kings Bay ALIS, 2016) that sets out all details, 

including a reminder concerning the latest possible notice periods required before 

commencing BVLOS (three months) and VLOS (four weeks) flights, and as marked 

with a purple coloured circle on Figure 4.7 the 20km radio silence exclusion zone. 

 

Fig 4.7 Ny-Ålesund Radio Silence Zone 

 

4.9 Summary of jurisdictions 

Appendix 3 of this study provides a route map for SRPs who are either UK CAA 

PfCo qualified or hold British citizenship. However, any SRP regardless of country of 

citizenship can make use of Appendix 3. In each jurisdiction the SRP would simply 

need to confirm the specific answers relevant to their home jurisdiction. Put another 

way they would replace all references to UK law with the law of their home 

jurisdiction and replace the words UK citizenship with that of their own. 

 

4.10 International Recognition of Competence 

For a SRP who has UK PfCO registration, a key recurring question will be „when I 

set up in Antarctica, Greenland, Nepal, Southern Patagonia or Svalbard, will the 

authorities in each of these remote locations recognise my UK drone pilot 

                                                           
16

 The email address for Kings Bay AFIS is airport@kingsbay.no. 
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competency?‟ First, international principles and policies cannot be ignored, and may 

facilitate quicker access to a research area. Specifically, all 192 member states of 

the United Nations are signatories to The Convention on International Civil Aviation 

met in 1944 in Chicago („the Chicago Convention‟).  

For each location the answer will be not only different but evolving. What is likely to 

play a constructive role is the ICAO‟s promotion of the Chicago Convention. Article 

33 of the Chicago Convention covers, among other things, the recognition of 

licences and certificated of competency held by pilots, so that each pilot‟s 

competency can be recognised, subject to meeting minimum standards established 

by the Convention. In the context of drones this cross border recognition principle 

alone makes the Convention and its updates relevant to any SRP. 

Second, the ICAO Manual on Remotely Piloted Aircraft Systems (ICAO RPAS, 

2015), published in Arabic, Chinese, English, French and Russian, provides a 

detailed grounding in all the risk issues that drones present as aircraft that have to 

be integrated within a very established international framework of safe aviation 

principles.  

4.11 Maritime Law Relevant to SRPs Operating Underwater Drones 

The regulatory detail surrounding aerial drones is contrasted by the paucity of 

underwater drone regulation. This reflects the position that underwater drones are 

neither defined under English law as a “ship”, nor are they a fixed structure, such as 

a buoy or jetty. Maritime law has unaffected core principles, but it has also 

continually adapted (Van Hooydonk, 2014). Therefore, changes usually occur with 

reference to established legal concepts and case law. 

As underwater drone use increases, there is a need for greater legal clarity on their 

treatment (Wynn, R. 2014). Nevertheless it is still vital that SRPs taking control of 

underwater drones accept that such a research tool creates an extra role – to think 

simultaneously about navigation and safety. Therefore, the planning and operation of 

underwater drones requires the same level of thoroughness as aerial drones. 

Further, third party public liability insurance would mitigate risks, even if the risks are 

less than aerial drones. 
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Chapter 5 

Data and Methods 

5.1 Frame Sample Methodology 

The fundamental aim of the drone survey was to target respondents that would meet 

the three quality survey implementation criteria of (i) reliability, (ii) validity and (iii) 

representativeness (Buckingham and Saunders 2004; Ritter, 2012). The criterion of 

representativeness was the most challenging of these three, because it involved 

attempting to avoid over-concentration on clusters of researchers, for example just 

geomorphologists or only Arctic researchers. To maximise representativeness, five 

specialisms were finally selected. 

(a) Climate & Climate Change 

 

(b) Ecology & Biodiversity 

 

(c) Geomorphology 

 

(d) Ice & Moving Ice 

 

(e) Oceanography 

Additional consultation within the SPRI resulted in the decision to broaden the survey 

coverage to not only aerial, but also underwater drones. The logic was that two of 

the five research groups, namely Ecology & Biodiversity (b) and Oceanography (e), 

would potentially reveal SRPs using only underwater; or both aerial and underwater 

drones. 

5.2 Target Population of Scientists 

 

With the framework of the above five research specialisms, a to e, the next task was 

to compile a list of polar and cryospheric institutions globally as the source of the 

potential SRPs. A former Head Librarian at BAS, Andrew Gray, has analysed the 
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statistical output of polar research globally on a country level (Gray, 2016). In his 

research, polar is broadly defined to include cryospheric research, so not just 

research focused at high latitudes.  

Applying Gray‟s results for the highest national share of total polar publishing the 

relevant countries for both Antarctic and Arctic research could be targeted. For 

Antarctic research these were Australia, China, France, Germany, Italy, New 

Zealand, Russia, Spain, UK and USA. For Arctic research these were Canada, 

China, Denmark, Finland, France, Russia, Sweden, UK and USA. 

While Argentina and Chile are not leading countries measured by national share of 

total global polar publishing, both have the highest number of polar publications as a 

percentage of their respective national output (Gray, 2016). Further, Switzerland-

based researchers were included because there was strong publishing evidence that 

this community uses drones to support research in the European Alps and 

Himalayas. 

The target respondents were selected from polar and cryospheric research journals 

and the leading polar and cryospheric institutions in the countries in the two 

aforementioned lists. Added to this were the national polar research institute or 

institutes for each of these countries.  

5.3 Questionnaire Structure 

The survey required asking sufficient questions to reveal SRP choices, and also 

brevity to facilitate its quick completion. The original plan was to ask not more than 

six questions. Ultimately, 10 questions were put to respondents answering the aerial-

only or underwater-only questionnaire. SRPs using both aerial and underwater 

drones were asked 17 questions. 

Four polar professionals, Gareth Rees (SPRI), Tom Chudley (SPRI), Tom Jordan 

(BAS) and Carl Robinson (BAS), were consulted on refining the survey questions to 

maximize the value of any responses based on asking ≤10 questions. The value of 

this feedback was that questions contained a more comprehensive list of (a) 

sensors, and (b) methods of augmentation. 



76 
 

5.4 Choice of Online Survey Platform 

Cambridge University's Statistics Department was able to provide access to 

Qualtrics, a cloud-based survey solution (www.qualtrics.com). The Qualtrics software 

enabled a professional online questionnaire template to be developed. 

 

In early March 2019 an initial preparatory exercise involved sending 144 emails to 

polar and cryospheric researchers to understand who would be relevant inclusions in 

the final sampling frame of researchers using drones. After this exercise, the final 

number of potential respondents emailed was 211. Table 5.1 shows the subsequent 

42 responses from both the northern and southern hemisphere. 

 

Table 5.1 Drone Survey Summary 

Country of 
institute 

No of researchers sent 
survey 

No of researchers 
replying 

Argentina 6 0 
Australia 9 1 
Brazil 5 1 
Canada 9 1 
Chile 7 1 
China 7 1 
Denmark 7 0 
Finland 12 3 
France 12 4 
Germany 23 5 
Italy 8 0 
Japan 5 0 
New Zealand 12 2 
Norway 13 3 
Russia 11 1 
South Korea 5 1 
Sweden 11 5 
Switzerland 11 4 
UK 20 5 
USA 18 4 
Total 211 42 

 

5.5 Survey Questions 1 to 3 

This section deals with the first three questions of the drone survey. After this 

section, the remainder of chapter 5 applies a thematic approach that allows a 

succinct synthesising of the remaining questions. All 17 aerial and underwater 
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questions can be seen in an anonymous sample answer at the back this study 

(Appendix 1). 

 

Question 1 of the drone survey asked SRPs to confirm the research areas in which 

they use drones. Based on 69 counts from the 42 respondents, Figure 5.2 shows 

that Ice & Ice Movement had 18 drone users (26.09%), followed by Climate & 

Climate Change with 16 drone users (23.19%). A total of 8 users (11.59%) recorded 

that their drones were used for Oceanography. 

 

Fig 5.2 Research Areas 

 

 

Question 2 concerned the types of drone used. The respondent would answer (a) 

aerial; or (b) underwater; or (c) both. Their answer to this question then determined 

which questions were relevant to put to them for the remainder of the survey.  

As shown in Figure 5.3, 33 of the 42 respondents used only aerial drones. All 33 

aerial-only SPRs answered all questions comprehensively. Seven respondents used 

both aerial and underwater, and just two respondents used only underwater drones. 

Only three of the aerial and underwater respondents provided detailed answers past 

question 4. This must in part be a result of the 17 questions that they were asked to 

answer covering both types of drone.  
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Fig 5.3 Types of Drones 

 

 

The results indicated a dominant use of aerial drones (78.57%), and a minority using 

only underwater drones (4.76%). Significantly, a sizeable minority (16.67%) used 

both aerial and underwater drones. It is evident that aerial drones have an 

overwhelming exposure in geographical research. For example, as noted in the 

abstract of this thesis, the International Journal of Remote Sensing 2017 Volume 38 

comprising of 65 articles focused solely on aerial drone research (“Remote Sensing, 

2017, Vol 38”).  

Question 3 concerned drone sensor use. As shown in Table 5.4, there was the 

expected diverse range of sensors used, because of the broad research areas. 

Notably, because SfM achieves very accurate measurements at a reasonable cost 

compared with other methods (Chudley et al, 2018), it is unsurprising that this was a 

popular choice (9.09%). 

Table 5.4 Aerial Drone Applications 

Sensor type Percentage 

Collecting physical samples / physical retrieval of objects  18.18% 

LiDAR  0.00%  

Photogrammetry  0.00%  

Photography  36.36% 

Spectral / Hyperspectral measurement   0.00% 

Structure from Motion (SfM) / orthophoto  9.09% 

Other, please specify  27.27% 

Don't know  9.09% 
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A weakness in the Question 3 answers emerged. First, there were gaps from some 

respondents that answered „Other please specify‟ (27.27%), but then omitted to 

record any information. The result was that 15.58% stated they were using a 

sensor(s) not covered by one of the six broad categories in Table 5.4. An 

examination of all their typed answers revealed that a majority of these „Other please 

specify‟ used aerial drones for atmospheric, gravity, magnetic and thermal 

measurements. 

5.6 GPS Reliance 

For the 33 SRPs using only aerial drone users, the breakdown of GNSS choices is 

shown in Table 5.5. An important aspect of this survey was the aim of establishing if 

there is an over reliance by SRPs on GPS (45.59%). At first glance, the 45.59% 

using GPS underlines that GPS is certainly important. However, for an inference to 

be drawn that there is an over reliance on GPS it was important to know what 

percentage of aerial-only GPS users were also using GPS and GLONASS; or GPS 

GLONASS and GALILEO. 

Analysis of the 33 aerial-only SRP questionnaires showed that 12 (36.36%) relied 

solely on GPS. Nine relied on GPS and GLONASS (27.27%). Another nine (27.27%) 

relied on GPS, GLONASS and GALILEO. Only one SRP used GPS and GALILEO, 

but not GLONASS. In contrast, when the three per cent (3.03%) of SRPs who did not 

answer the GNSS survey question are factored-out, 60.61% of SRPs use more than 

one GNSS.  

If the seven SRPs that used both aerial and underwater are added to these results, 

the answer is not more insightful on GPS reliance percentages. With the SRPs using 

both types of drone the sample size is 40 SRPs. Of these seven SRPs, two (27.57%) 

relied solely on GPS. However, because five of the seven (71.42%) provided a „Don‟t 

know‟ answer this makes the data provided by the seven SRPs using both aerial and 

underwater drones unreliable. 

In sum, the 33 aerial-only SRPs showed no over reliance on GPS. The drone survey 

data on GNSS use for aerial-only SRPs appears to be reliable, because all but one 

of the 33 SRPs (96.96%) answered the GNSS use question with specific choices. 

One exception answered „Don‟t know‟. 
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Table 5.5 GNSS Choices by 33 Aerial-Only 

Sensor type Percentage 

BEIDOU  5.88% 

GALILEO 14.71%  

GLONASS  27.94%  

GPS 45.59% 

IRNSS   1.47% 

Other, please specify 1.47% 

Don‟t know  2.94% 

Total 100% 

5.7 GNSS Combinations 

Other results included the choice on GPS with GLONASS (27.27%). This is 

consistent with their established orbital operations for more than two decades over 

both polar regions. 

Another aspect that points to increasing reliance on a trio of GNSS at high latitudes 

was the significant use of GALILEO (14.71%). As mentioned in chapter 2 of this 

study, the different “orbital inclination and the flight altitude of the [GALILEO] 

satellites will considerably increase the coverage of the polar regions, not so well 

achieved by GPS” (Cojocaru, 2009). 

Further, the drone survey revealed low level use of both BEIDOU and IRNSS, which 

is consistent with the fact they both commenced operations as regional satellite 

systems rather than GNSS. Considerable expansion of BEIDOU means it is now a 

potentially valuable global satellite system (Navigation, 2019). However, it was used 

by only 5.88% of the SRPs. 

5.8 Satellite Based Augmentation System Use 

Turning to the enhancement of GNSS with geostationary Satellite Augmentation 

System (SBAS), a high percentage (38.89%) made no use of any SBAS. Further, an 

even higher percentage (41.67%) did not know what, if any, SBAS was used. The 

remaining respondents either used WAAS (13.89%) or EGNOS (5.56%). In sum, for 

this sample the use of any SBAS was an insignificant part of SRP missions, and 

many SRPs lacked awareness on whether any SBAS is relied on at all. One 
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explanation for the low level use is that at high latitudes geostationary satellites have 

poor visibility (Jensen, 2018). 

5.9 Drone Precision Measurement Choices and Plans 

SRPs were asked for information about (i) their current precise measurement 

choices, and (ii) future planned measurement choices. As shown in Table 5.6, the 

current and planned percentages changes are insignificant. 

An exception was the planned use of the NASA GDGPS service. Subsequent to the 

survey, on 7th May 2019 an email was sent to the NASA Jet Propulsion Laboratory 

(JPL) to understand if there was any reason known to JPL for this increased interest 

among polar users for GDGPS. The JPL technical manager replied that there was no 

specific reason or reasons known to them. 

Having checked all the individual questionnaires none of the current users intended 

to stop using it, so the real planned change (8.78%) indicated a significant increase 

in its use. 

Table 5.6 Precision Measurement 

Precision Research Method Current            Planned 

Differential GNSS using own base station 28.33% 23.88% 

Geo-referenced Ground Control Points  26.67% 23.88% 

Inertial Navigation System  11.67% 10.45% 

Iridium satellite constellation 1.67% 2.99% 

NASA Global Differential GPS (GDGPS) 1.67%                 10.45% 

Post-Processing Positioning  20.00% 16.42% 

Other, please specify  5.00% 4.48% 

Don't know  5.00% 7.46% 

Total  100% 100% 
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5.10 Ground Control Points 

The results on the precise average number of Ground Control Points (GCPs) used 

were half positive and half negative. The mean use was 5.61 GCPs with a standard 

deviation of 3.29. 

Fig 5.7 Number of GCPs 

 

As shown in Figure 5.7, 10 respondents (33.30%) stated “zero” to the use of GCPs 

in Question 9 of the drone survey, but in fact in one of these respondents indicated 

earlier in Question 6 they did use GCPs. An additional 7 respondents (21.21%) 

recorded “Don‟t Know”, but 3 of these indicated in their earlier answers (Question 6) 

that they did use GCPs. Therefore, 8 out of 10 of the GCPs results need to be 

treated with caution. In retrospect asking the average number of GCPs deployed 

was too time-consuming a question for many respondents to answer. However, 

nearly half (16) provided a number ranging from 3 to >10. 

It is logical to add in the four respondents that used GCPs, but erroneously recorded 

otherwise, to the total number of GCPs at the minimum of ≥1 GCPs level. The use of 

GCPs shown in Table 5.8 indicates that 20 SRPs (60.60%) currently use ≥1 GCPs. 
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Table 5.8 GCPs Used by the 33 SRPs 

No of 

GCPs used 

No of 

SRPs 

No of SRPs as % 

of Sample 

Ave 

Accuracy (m) 

Range (m) 

0 13 39.39 8.06 0.10-100 

1 4 12.12 2.33 1-5 

3 2 9.09 0.10 0.10-0.10 

4 1 3.03 0.40 0.40-0.40 

5 2 15.15 0.05 0.0001-0.10 

>5 1 3.03 0.50 0.50-0.50 

>10 10 30.30 1.38 0.0005-10 

Totals 33 100 1.76 0.0001-100 

 

5.11 Regression Calculations 

The calculations sought to establish if there was a functional relationship between 

the accuracy of measurements obtained (the dependent variable or response 

variable) with the following individual and pairings of independent variables:  

(i) Differential GNSS; 

 

(ii) ≥1 GCPs used; 

 

(iii) PPP; 

 

(iv) Differential GNSS + ≥1 GCPs; 

 

(v) Differential GNSS + PPP; 

 

(vi) Differential GNSS + ≥1 GCPs + PPP; 

 

(vii) Differential GNSS + ≥3 GCPs; 

 

(viii) Differential GNSS + ≥3 GCPs + PPP. 
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Table 5.9 Regression Results 

Accuracy relationship R Adj 

R² 

P-value SRPs 

Diff GNSS 0.20 N/A 0.07 33 

≥1 GCPs 0.16 N/A 0.09 33 

PPP 0.11 N/A 0.13 33 

Diff GNSS + ≥1 GCPs 0.23 -0.007 0.14 33 

Diff GNSS + PPP 0.23 -0.005 0.12 33 

Diff GNSS + ≥1 GCPs + PPP 0.25 -0.03 0.05 33 

     

Of these six relationship results in Table 5.9, only Diff GNSS + ≥1 GCPs + PPP had 

a significant p-value (0.05). A p-value needs to be ≤0.05 for the R value to be 

scientifically significant.  

Of the six regression calculations, the R results for (i) the weak relationship between 

accuracy obtained and the use of differential GNSS (0.20), and (ii) accuracy 

obtained and the use of ≥1 GCPs (0.16), were the most surprising. A weak 

relationship is generally considered to be in the range 0.20 to 0.39. These two 

augmentation techniques are well established methods of increasing measurement 

accuracy.  

Further, the pairings of (iv) Diff GNSS with ≥1 GCPs and (v) Diff GNSS with PPP 

would both logically expect to have yielded a stronger R. However, their respective 

results (0.23 and 0.23) were also both in the weak range. 

The R value for (vi) differential GNSS, ≥1 GCPs plus PPP was 0.25. Its p-value was 

0.05. Therefore, this is was a close result. Notably, GNSS, ≥1 GCPs plus PPP has 

only a marginally stronger relationship (0.25) when compared with Diff GNNS + ≥1 

GCPs (0.23) or Diff GNSS + PPP (0.23). Based on a meaningful sample of 33 SRPs 

and a p-value at the statistically significant level, this is still the most valuable result 

of the six regression calculations.  

An additional inference to be drawn from the three results (iv to vi) is that (i) Diff 

GNSS alone (0.20) is the most important augmentation method. 
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5.12 The 16 SRPs Using ≥3 GCPs  

As shown in Table 5.10, additional regression calculations were performed 

concentrating on the 16 SRPs, therefore just under half of the original 33 aerial-only 

sample (48.48%), that all used differential GNSS and ≥3 GCPs.  

Table 5.10 Results for Two Combinations 

Accuracy relationship R Adj 

R² 

P-value SRPs 

Diff GNSS + ≥3 GCPs 0.39 0.025 0.27 16 

Diff GNSS + ≥3 GCPs + PPP  0.43 -0.09 0.25 16 

 

A sample of 16 respondents is insignificant from a statistical confidence view point. 

Nevertheless, the results provide an additional insight for future drone use surveys. 

In particular differential GNSS, ≥3 GCPs and PPP showed a moderate relationship 

between these three coefficients and accuracy achieved (0.43), albeit at the bottom 

end of the moderate category, which is generally considered to be in the range 0.40 

to 0.59. 

5.13 Validation of the Drone Survey Data against Published Research 

The drone survey data was validated for accuracy of answers against published 

measurement data spread across the 65 articles focusing on drone research in the 

International Journal Remote Sensing, 2017, Vol 38 („Remote Sensing, 2017 Vol 

38‟). On examination, in fact only 53 of the articles concern GNSS or GNSS 

augmented measurements (see Table 5.11). 

Table 5.11 Remote Sensing 2017 Data 

Applications Number of Articles Accuracy Range (m) 

Collecting physical samples  0 (0.0%) N/A 

LiDAR  6 (11.32%) 0.05-30  

Photogrammetry  8 (15.09%) 0.015-5.82  

Photography  8 (15.09%) 0.01-10 

Spectral / Hyperspectral measurement 19 (35.8%) 0.0002-70 

Structure from Motion SfM)/orthophoto 11 (20.75%) 0.015-5 

Other, please specify  1 (1.88%) N/A 
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Of the 53 relevant articles, one article is based on Arctic research (Bernard et al, 

2017), and three concern cryospheric regions (Bühler et al, 2017; Seier et al 2017; 

and Yi, 2017). Three out of four of these researchers achieve sub-decimetre 

accuracy, and three out of four use SfM. A collective weakness of the 49 articles is 

that they deal with drone use globally not just high latitudes and cryospheric regions.  

While the 49 SRPs in these 49 articles are not representative of polar and 

cryospheric SRPs, their published measurements still provide validation on the 

accuracy levels achieved by the 33 aerial-only respondents. Notably, 31 of the 53 

(58.49%) use ≥1 GCPs as a part of their solution, a percentage in the same region 

as the drone survey (72.72%). Further, 20.75% use SfM which is similar to the drone 

survey percentage (22.08%). 

 

5.14 Underwater Drone Use 

As mentioned at the beginning of this chapter, only two SRPs used only underwater 

drones (6.06%), and a larger minority of 7 SRPs (21.21%) used both aerial and 

underwater drones. The general pattern of the 7 both aerial and underwater SRPs 

was that out of the 17 drone survey questions they had to answer, the first 7 to 10 

questions were answered well, but later questions, for example covering number of 

baselines (nodes) used and accuracy achieved, were left unanswered. Of these nine 

SRPs using underwater drones (21.42% of the 42 sample), one third (33.33%) used 

the Iridium service. One third (33.33%) used DVL. The accuracy range achieved was 

0.2m to 1,000m. 

Positively, over half of these respondents (55.55%) provided details on their precise 

underwater research applications, as set out in Table 5.12. This also shows 33.33% 

use underwater drones for Conductivity, Temperature, and Depth (CTD). 
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Table 5.12 Underwater Drone SRPs 

Research Areas Underwater Applications 

Oceanography and Ice Movement „Drone lands on the ice and transmits 

position updates to exactly measure the 

ice´s drift‟ 

Oceanography and Ecology & 

Biodiversity 

„CTD, Turbulence, Fluorescence, PAR 

[Photosynthetically Active Radiation], 

Nitrate, Oxygen‟ 

Oceanography, Climate & Climate 

Change and „Cloud microphysics, 

aerosol, hydrometeorology‟ 

„Temperature, salinity and depth 

measurements‟ 

Oceanography „CTD, O2, turbidity measurements‟ 

Oceanography „CTD and ocean currents‟ 

 

5.15 Summary 

Overall, the survey results illuminated the limitations on analysing the multifaceted 

nature of GNSS drone navigation and positioning augmentation. 

The response to the survey by the 33 aerial-only SRPs was a representative sample 

of the SRP population using aerial drones in polar and cryospheric regions. SRPs 

from all five research areas answered along with a range of institutes from both the 

northern and southern hemispheres. In this context the sample was comprehensive 

and unbiased. 

The sample of 33 aerial-only SRPs was relatively small, therefore the results have to 

be interpreted cautiously. However, the current total global population of polar and 

cryospheric SRPs is certainly less than 300 if not less than 200. Whatever, the 

precise total population, 33 SRPs is an insightful sample. 

The detailed answers of all 33 aerial-only SRP respondents showed a complex, 

multifaceted list of methods used. Different combinations, some without differential 

GNSS or without the use of GCPs, provided measurements at the sub-metre level.  

Further, it was not possible to establish a strong functional relationship between 

combinations of augmentation methods that predict navigation or positioning with 
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sub-metre accuracy. However, the drone survey revealed the combination of 

differential GNSS, ≥1 GCPs and PPP had a weak relationship (0.25). This finding 

provided an insight for future research. A different or larger sample may show that 

this combination provides a consistent chance of sub-metre accuracy. 
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Chapter 6 

Conclusions, Implications and Further Research  

6.1 Conclusions and Implications 

The drone survey data revealed six important points.  

1. No Common Augmentation Pattern 

First, answers from all 33 aerial-only SRP respondents revealed that multi-faceted 

combinations of measurement methods are used to augment GNSS signals. It was 

not possible to establish a strong pattern from any specific combination of 

augmentation methods that correlate with sub-metre accuracy. 

2. No Over-Reliance on GPS 

Second, out of the 33 aerial-only SRP respondents just over one third (36.36%) used 

solely GPS. Nine used GPS and GLONASS (27.27%). A further nine (27.27%) relied 

on GPS, GLONASS and GALILEO. Therefore, the risk of over reliance on GPS does 

not apply to aerial-only SRPs operating in polar or cryospheric regions.  

3. Projected Increase Use of NASA’s GDGPS 

Third, the chapter 5 drone survey revealed a marked projected increase in the use of 

the NASA Jet Propulsion Laboratory (JPL) GDGPS; from 1.67% to 10.45%. 

Subsequently, NASA JPL has offered no explanation for this significant projected 

increase. Therefore, it would be valuable for future drone research to look at how the 

NASA JPL GDGPS service improves research by polar and cryospheric SRPs. 

Specifically, the whole situation in Antarctica needs to be assessed, because the 

GDGPS augmentation network is prevalent on the Antarctic Peninsula, but not 

elsewhere (NASA, 2019). 

Further, the drone survey included a questionnaire from an SRP who achieved a 

GDGPS accuracy of 3m. NASA JPL states the accuracy is <10cm. Therefore, more 

research is needed to understand the gap, if any, between actual averages and the 

NASA JPL represented accuracy. 
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4. Larger SRP Samples May Not Reveal Extra Insights 

Fourth, the drone survey yielded a total of 42 respondents. Speculatively, it might be 

that a larger sample compared with the fully answered aerial-only 33 SRP sample, 

may show a stronger relationship between the accuracy of measurements achieved 

and a specific augmentation method. Conversely, expecting a larger aerial-only 

sample size ≥34 SRPs to provide superior results may be irrelevant in the context of 

a relatively small global community of polar and cryospheric SRPs. 

5. Technological Change Rapidly Dates Drone Survey Data 

Technology used to augment GNSS in drones is moving so rapidly that any drone 

survey results become quickly dated. Taking just one example, the drone survey 

results in this study showed that one fifth (20.75%) used SfM. This percentage 

compares with the SfM percentage (22.08%) from the data collected from the 49 

SRPs that published in Remote Sensing, 2017 Vol 38. However, the risk mitigation 

benefits of SfM mean that 20.75% is likely to be imminently dated. SfM provides not 

only accurate measurements, but also lowers mission risk for SRPs because in both 

polar and cryospheric environments GCPs are often challenging or dangerous to 

position and retrieve (Chudley et al, 2018). 

6. Dearth of Quality Data on Underwater Drones 

Out of the total drone survey sample of 42 SRPs, seven respondents used both 

aerial and underwater, and just two respondents used only underwater drones. Nine 

responses is not a meaningful scientific sample. 

Further, not all of the both aerial and underwater SRPs provided detailed 

questionnaires, including information on any baseline beacon use. A sample of ≥30 

respondents is a minimum requirement for a 95% statistical confidence interval. A 

future drone survey that gains 30 plus respondent answers from dedicated 

underwater drone SRPs would be hugely valuable. 
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6.2. Further Research 

 

1. Aerial Drone GNSS Navigation for Underwater Research 

A recent experiment used an aerial drone with an underwater acoustic sensor (Lloyd 

et al, 2017). This research shows an important innovation to avoid the challenges of 

weak GNSS attenuation. Aerial drones are manoeuvred onto water surfaces so that 

sensors can be dropped into the water, which simultaneously benefits from 

continuous GNSS coverage. Clearly, many research missions that require sensing at 

depth will not benefit from this approach. However, this approach has potential value 

for many just under the water surface missions.  

To explain, the sensors perform accurate underwater research based on (a) above 

water surface GNSS augmented signals; (b) water surface GNSS signals; and (c) 

below the water surface acoustic survey data corroborated by GNSS augmented 

signals. Figure 6.1 (adaptation of Lloyd et al, 2017 photographic evidence: p.2810) 

illustrates (i) a fully waterproof drone lowering onto the water surface, then (ii) 

landing on the water surface.  

Further research is needed in polar and cryospheric regions where weather and 

temperature put extra demands on drones. The drone used in the experiment could 

only tolerate winds of up to 21m/s, but even at that speed, waves can be 4m heigh. 

Therefore, a polar or cryospheric water proof drone may need a wide base surface to 

reduce the risk of capsize (Lloyd et al, 2017). 

Fig 6.1 Waterproof Aerial Drone 
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2. Post-Processed Kinematic and Real-Time Kinematic Technology 

The drone survey respondents covered in chapter 5 of this study included one SRP 

focused on biodiversity, ecology, hydrology and snow science. This SRP recorded 

constant sub-20cm measurement accuracy (5cm-15cm).  

He or she also commented that „well distributed GCPs are often difficult to collect in 

mountain and glacier environments‟, and that their measurements were achieved by 

„PPK with dual phase GNSS‟. This „PPK with dual phase GNSS‟ answer can be 

interpreted to mean that two sets of GNSS frequencies are checked against each 

other. These inflight GNSS signals are picked up by the drone. Thirdly, a more 

accurate base station records the drone flight with triangulation. Then after each 

mission, Post-Processed Kinematic (PPK) technology allowed the SRP to thoroughly 

augment positioning data from the drone mission by reference to data from the base 

station and data stored on past flights. Carl Robinson of BAS has pointed out that at 

high latitudes where signal loss is common, the use of PPK is valuable (BAS, 2019). 

Real-Time Kinematic (RTK) technology is similar to PPK except that corrections to 

the GNSS signal data is made during the mission flight (BAS, 2019). The two 

technologies are not mutually exclusive. Further research is needed into how PPK 

and RTK technologies can be used more across the five polar and cryospheric 

areas. 

3. Multi-Frequency GNSS Semiconductor Chips 

Nottingham Scientific Limited, a professional GNSS testing company, has published 

field results comparing a geodetic class GNSS receiver (Septentrio PolaRx5e); with  

a dual-frequency (L1/L5) GNSS Broadcom 47755 single-chip inside a smartphone; 

with a second smartphone containing an older single frequency Broadcom 4774 

chipset. 
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Fig 6.2 Broadcom 47755 Chip Accuracy 

 

One test involved placing all three devices at a fixed Ground Control Point (GCP) for 

10 minutes. The Figure 6.2 (NSL, 2018: p.1) position scatter graphically represents 

the accuracy of the distance from the origin. A radius containing 95% of solutions is 

recorded for each. Unsurprisingly, the Septentrio device, coloured blue, recorded an 

exceptionally high level of accuracy. However, what is equally impressive is that the 

horizontal accuracy of the dual-frequency Broadcom 47755 chip-set, coloured 

yellow, is nearly 50 per cent better than the Broadcom 4774 single-chip, coloured 

green, decreasing from 4.92m  to 2.75m (NSL, 2018). The Broadcom 47755 chip is 

available for purchase to install in a bespoke drone. 

Further, the software navigation company Swift Navigation („Swift‟) has produced a 

software program called Starling, that enhances an integrated IMU and multi-GNSS 

Broadcom BCM 47755 chip. Swift‟s Starling program claims to offer multi-

constellation interoperability, and to provide “centimetre-level accuracy and supports 

the calculation of integrity outputs to provide absolute position, velocity and time 

(PVT)” (GPS World, 2018). More research is needed to examine and test how the 

Starling program and equivalent software can better augment dual-frequency GNSS 

chips. 

Another semiconductor company, u-blox (www.u-blox.com) has produced a multi-

GNSS chip. The u-blox F9 chip uses GNSS signals in multiple frequency bands to 

correct ionospheric errors. To achieve centimetre-level accuracy, u-blox F9 chip also 

offers optional on-chip RTK technology (GPS World, 2018).  



94 
 

4. Open Source Drone Building for Polar and Cryospheric Regions 

Finally, the opportunity to exploit multi-frequency chips can be most flexibly and cost-

efficiently achieved with the use of open-source flight controller hardware boards. 

Open-source is valued for research because knowledge can be built upon in the long 

term without licensing constraints (Pope et al, 2014). A good example, is the 

Raspberry Pi based Navio2 platform developed by a company called Emlid (Ebeid, 

2017). Navio2 has already been used in studies by many institutions including 

Cambridge, ETH Zurich and Stanford. Further research is required into exploiting 

open source hardware boards that include performance tests on multi-frequency 

chips at high latitudes and in cryospheric regions. 
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Appendix 2 Current and Planned GNSS 

 

System Accuracy and 

Coverage 

Frequency Number and 

Altitude 

Regime Additional Facts 

BEIDOU 

北斗卫星导航系统 

China 

www.cnsa.gov.cn 

10m 1.561098 GHz 

(B1) 

1.589742 GHz 

(B1-2) 

1.20714 GHz (B2) 

1.26852 GHz (B3) 

35 orbiting at 

21,150 km based 

on 2020 

schedule 

 

GEO(5) 

IGSO(3) 

MEO(27) 

Initially coverage was 

Long 70°E to 140°E; Lat 

5°N to 55°N, so covers 

all Himalayas 

35 scheduled to orbit by 

2020 (RIN, 2019) 

GALILEO 

EU 

www.gsa.europa.eu 

 

1m 

Global 

1.559–1.592 GHz 

(E1) 

1.164–1.215 GHz 

(E5a/b) 

1.260–1.300 GHz 

(E6) 

26 orbiting at 

23,222 km 

MEO(26) Hydrogen maser clock 

+ reserve rubidium 

clock 
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GLONASS 

ГЛОНАСС 

Russia 

www.roscosmos.ru 

4.5-7.5m 

Global 

1.593–1.610 GHz 

(G1) 

1.237–1.254 GHz 

(G2) 

1.189–1.214 GHz 

(G3) 

27 orbiting at 

19,130 km 

MEO(27) Superior positioning 

where masking 

elevation >50° at 

latitudes >75° 

GPS 

USA 

www.afspc.af.mil 

 

15m 

Global 

1.563–1.587 GHz 

(L1) 

1.215–1.2396 GHz 

(L2) 

1.164–1.189 GHz 

(L5) 

31 orbiting at 

20,180 km 

MEO(31) Continuously adapted 

with planned long term 

investment 

IRNSS (NAVIC) 

India 

www.isro.gov.in 

10m 

Regional, inc all 

Himalayas 

1176.45 MHz(L5) 

2492.028 MHz (S) 

7 orbiting at 

36,000 km 

High Earth(7) Long 30°E to 130°E; Lat 

30°S to 50°N, so covers 

all Himalayas 
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Appendix 3 Regulation Applicable to a Scientific Research Pilot 

 

Law, 

Regulation or 

Restriction 

Max 

height  

Max  

range 

VLOS only Max 

weight 

3
rd

 Party 

Insurance 

Notes 

 

 

UK 

English law 

(hereafter UK 

law) 

 

122m 

(400ft) 

500m Yes 

 

20kg Yes 

Regulation 

(EC) No 

785/2004 

Applies to all pre-testing in the UK 

Would apply to insurance cover globally 

UK law standards would apply unless in direct conflict with law 

of specific airspace 

Antarctica, 

Rothera 

 

UK law if SRP 

is a UK citizen.  

For risk 

management 

still need to 

know law of 

areas controlled 

by other 

national 

programs, 

especially air 

122m 

(400ft) 

500m Yes, if jurisdiction 

of which SRP is a 

citizen requires 

20kg if 

subject to 

UK law 

Yes, if 

jurisdiction of 

which SRP is 

a citizen 

requires it. 

 

Practically, 

SRP likely to 

be breaching 

employment 

contract and 

employer 

SOPs for 

flying without 

Mix of legal jurisdictions 

 

Missing drone policy requires reporting loses 

 

Effect on wildlife  

 

Antarctica (CONMAP) 
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traffic control 

stations. 

insurance. 

Antarctica  

King George 

Island 

 

UK law if SRP 

is a UK citizen.  

For risk 

management 

still need to 

know law of 

areas controlled 

by other 

national 

programs, 

especially ATC 

stations. 

122m 

(400ft) 

 

 

400m 

above 

the 

ground 

if 

subject 

to 

Chilean 

law 

500m Yes, if jurisdiction 

of which SRP is a 

citizen requires 

20kg if 

subject to 

UK law, but 

only 9Kg if 

subject to 

Chilean law 

Yes, if 

jurisdiction of 

which SRP is 

a citizen 

requires. 

 

Practically, 

SRP likely to 

be breaching 

employment 

contract and 

organisation 

SOPs for 

flying without 

insurance. 

Mix of legal jurisdictions 

 

Missing drone policy 

 

Effect on wildlife 

 

Maximum Take-off Mass is 9 kg, excluding parachute weight. 

Must have parachute. 

 

Only  manufactured drones are allowed; no home-made 

 

Antarctica (CONMAP) 

Greenland 100m No specific Yes, but for 25kg Yes  
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Danish Law distance 

stated, but 

VLOS 

applies, 

except if 

have 

successful 

application 

for waiver 

research can 

apply for waiver. 

Regulation 

(EC) No 

785/2004 

Greenland issues its own Aeronautical Information Circulars so 

cannot just rely on Danish law 

 

Arctic Council Drone Operator‟s Handbook may provide useful 

updates on changes affecting Greenland.  

Nepal 

Nepalese law 

122m 500m Yes 

 

20kg Yes Flight Operations Directives No.7, May 2015 contains the core 

rules, conferred by Rule 82 of CAAN, Civil Aviation Regulation, 

2058. 

 

Drone pilots should be proficient in flying and drone operation 

 

Research permission of from following required: 

 

Relevant Ministry/Department relating to the research subject 

matter; Ministry of Home Affairs; CAA 

 

Appendix G of the CAA Procedure Manual for Flight 

Permission is the  

Application for Drone Use. 
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Svalbard 

Norwegian Law 

 

120m 500m Yes 25kg Yes Section 59. Mandatory strobe lights 

for all BVLOS flying. Light intensity of at least 10 candelas, 

where flashes are produced by rotating lights (strobe lights) at 

a rate of at least 20 flashes per minute. 

Special rules apply to Ny-Ålesund, including at least 3 months‟ 

notice to apply for BVLOS. 

 


