
Tomographic-PIV Measurement

of Coherent Dissipation Scale

Structures

Nicholas Worth

Darwin College

University of Cambridge

A thesis submitted for the degree of

Doctor of Philosophy

April 2010

mailto:naw30@cam.ac.uk
http://www.dar.cam.ac.uk
http://www.cam.ac.uk


Declaration

This dissertation is the result of my own work and includes noth-

ing which is the outcome of work done in collaboration except where

specifically indicated in the text. No part of this dissertation has

already been, or is currently being reviewed for any other degree,

diploma or qualification. This thesis contains approximately 64,900

words, and 122 figures.

Nicholas Worth

April 2010



Acknowledgements

First and foremost I would like to acknowledge the patient guidance,

supervision, and support I have received from Dr. Timothy Nickels

throughout the course of this project. I would also like to acknowledge

useful discussions with Professor Peter Davidson, Dr. Nedunchezian

Swaminathan, Dr. Gerrit Elsinga, and Professor Min Chong. I wish

to thank Professor Mamoru Tanahashi for providing the DNS data

used in this thesis. My thanks extend to Michael Underwood and all

the CUED technicians for their help and support manufacturing the

experimental facility and set-up, to Thomas Clark for his divergence

correction algorithm, and to Peter Clarkson, Dr. Arul Britto, Peter

Benie, and Tim Love for technical computing support.

Finally I wish to acknowledge funding from the Engineering and Phys-

ical Sciences Research Council, through a Cambridge University Doc-

toral Training Award.



Tomographic-PIV Measurement of Coherent

Dissipation Scale Structures

Nicholas Worth

Further understanding the small scale coherent structures which oc-

cur in high Reynolds number turbulence would be of enormous ben-

efit. Therefore, the aim of the current project was to make well re-

solved three-dimensional flow measurements of the mixing flow be-

tween counter rotating impellers, using Tomographic Particle Image

Velocimetry (TPIV).

TPIV software was developed, with a novel approach permitting a

significant reduction in processing time, and a series of numerical

accuracy studies contributing to the fundamental understanding of

this new technique. Basic flow characterisation determined the lo-

cal isotropy, homogeneity and expected Reynolds number scaling. A

favourable comparison between planar PIV and TPIV increased confi-

dence in the latter, which was used to assess the dynamics and topol-

ogy of the dissipation scale structures.

In support of previous investigations similar topology, strain rate

alignment, scale-invariance, and clustering behaviours are demonstrated.

Correlated high enstrophy and dissipation regions occur in the periph-

ery of larger structures, resulting in intermittency. Geometry charac-

terisation indicates a predominance of tube-like structures, which are

observed to form from larger ribbon-like structures through unsteady

breakdown and vortex roll-up. Significant correlation between inter-

mittent fields of dissipation and enstrophy describe the fine scales

effects. These relationships should pave the way for more accurate

models, capable of relating small scales and large scales during the

prediction of dynamically important quantities.
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Introduction

Due to its prevalence in a huge variety of practical engineering problems, un-

derstanding the complex phenomenon of turbulence is of great importance. The

subject balances great interest stemming from its significance with a high level

of complexity, the former fuelling it’s intensive study while the latter has drawn

this out for more than a century.

The definition of turbulence is not straight forward, and it is usually charac-

terised by unsteady, three-dimensional motion, which contains a wide range of

scales, shapes, and orientations of motions. Observation of the large range of

eddying motions prompted Richardson (101) to develop an energy cascade con-

cept; whereby flow instabilities result in the initial formation of large eddies from

the mean flow. These large eddies tend to become unstable and break down into

smaller eddies, which also contain instabilities, transferring energy down through

coherent structures into increasingly fine-scale motions. This breakdown contin-

ues until viscosity begins to exert an effect on sufficiently small scale motions,

resulting in energy dissipation into heat.

The large scale structures appear to scale with the flow width, and dominate

momentum, mass, and heat transport. The small scales govern the dissipation of

kinetic energy and also the behaviour of the inertial sub-range; a region where the

scales of motion are much larger than the dissipative scales, but much smaller

than the large scales. The universal equilibrium range and inertial sub-range

were originally defined by Kolmogorov (62) using assumptions of local isotropy,

statistical equilibrium and universality. According to these assumptions, motion

in the universal equilibrium range will depend solely on the kinematic viscosity

and average global dissipation, with the former dependence relaxed in the inertial

sub-range.
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Introduction

Kolmogorov’s theories have been tested extensively, and although there ap-

pears to be some support for these (80), the concept of universality is still debated.

Sreenivasan & Antonia (116) detail a number of investigations which question

the exactness of Kolmogorov’s original hypotheses (119; 144), with discrepancies

manifesting in higher order structure functions (p ≥ 4). However, as noted by

Frisch (35), due to the difficulty measuring these higher order structure functions,

any departures from Kolmogorov’s predictions are far from resolved.

Modifications to Kolmogorov’s original theory suggest the dissipation at the

finest scales does not have a uniform distribution; a phenomenon known as dis-

sipative intermittency. Landau (64) was the first to object to Kolmogorov’s as-

sumptions, noting that large scale inhomogeneities will be passed to the small

scale. Therefore, eddies of a particular size should be controlled by the locally

averaged, rather than the globally averaged dissipation, as each local area will be

subject to its own specific energy cascade. Although a large number of models

have been generated to take account of this intermittency through extra scal-

ing arguments, Sreenivasan & Antonia (116) note that due to the tenuous link

between these models and physical understanding it is difficult to recommend

one model over others. Additionally, model performance is often assessed with

respect to experimentally determined high-order structure functions which, as al-

ready stated, may be subject to significant errors. Frisch (35) supports this view,

noting that it is difficult to ascertain which intermittency model best describes

the actual processes, or even if Kolmogorov’s original hypothesis is accurate over

a greater range than is currently assumed.

Coherent structures are thought to be related to this intermittency, and al-

though the influences of certain structures as active or passive components are

still not fully resolved, their connection with turbulent mixing phenomena has

been demonstrated. It is the coherency of such structures that make them eligi-

ble for study, permitting greater understanding of the fluid processes at both large

and small scales, which may lead to more accurate turbulence models based on

physical observations rather than solely statistical data. The desire for a greater

understanding of these small scale structures has motivated a large number of

numerical and experimental investigations.
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Introduction

Numerical investigations are often focused on small-diameter, long, high vor-

ticity filaments or worms, studying their scaling properties, formation processes

and influence on the small scales in some depth. Experimental investigations have

also been used in confirming the presence of these and other structures, identify-

ing possible formation mechanisms, and assessing their significance in the flow.

However both numerical and experimental approaches are somewhat restricted;

the former limited to relatively low Reynolds numbers by computational costs,

and the latter by accurate resolution of extremely small fast motions, typically

allowing only one-dimensional data to be collected, making the study of these

structures and their interactions difficult.

Therefore, the aim of the current investigation is to study high Reynolds num-

ber small scale turbulent motions experimentally using both conventional Digital

Particle Image Velocimetry (DPIV) and Tomographic-PIV (TPIV), which is a

new, fully three-dimensional approach. The use of a very large mixing tank will

bring the smallest length and time scales within the reach of this technique, allow-

ing full 3D experimental quantification of these structures. This should support

other experimental, and more crucially, numerical findings, providing information

for further statistical model development on the flow features which still retain

the greatest universal potential. This is particularly relevant to improving com-

putational simulations such as the increasingly affordable Large Eddy Simulation

(LES), which depends on accurate modelling of these scales. Further knowledge

of these structures may also contribute significantly to the understanding of tur-

bulent mixing (59) and particle dispersion (86) at the small scales, each with a

host of applications, and also allow accurate assessment of the local dissipation

distribution. Additionally, through the use of this new tomographic technique,

it is hoped that insight leading to its further development can be gained, and

through implementation, the method’s effectiveness can be increased.

Chapter 1 introduces some tools for the study of turbulence before covering

some of the findings from previous studies regarding the nature of the small tur-

bulent scales. Next a range of measurement techniques are reviewed before a

TPIV is discussed in more detail, including its applicability to the current inves-

tigation. In Chapter 2 the current experimental set-up is introduced, and the

design and implementation of an iterative tomographic reconstruction program

3



Introduction

is detailed, before discussing data post-processing algorithms. The DPIV and

TPIV simulations conducted in Chapter 3 allow quantification of the measure-

ment uncertainty, allowing more definite conclusions to be drawn from the large

mixing tank results, which are presented in Chapters 4 and 5. In the first of these

the Reynolds number scaling and nature of the statistically steady flow is char-

acterised, demonstrating the consistency of DPIV and TPIV data. In Chapter 5

the coherent flow structures are characterised using a combination of visualisation

and statistical methods, before finally drawing some conclusions in Chapter 6.
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Chapter 1

Turbulence Measurements at the

Dissipation Scale

This chapter begins by introducing a number of tools for studying turbulence,

ranging from statistical to topological, with the former useful in broadly classify-

ing the range of scales present in fully developed turbulent flows, and the latter for

identifying specific coherent structures. An understanding of these methods and

their shortcomings is necessary before previous work can be critically analysed.

Next, a review of literature concerning coherent small scale turbulent motions

is attempted, in order to identify areas which require further study and provide

the objectives for the current investigation. A review of experimental techniques

is then conducted, focusing on TPIV. The chapter ends with a summary, followed

by a statement of aims and objectives.

1.1 Turbulence Analysis Tools

1.1.1 Statistical Tools

Although turbulence is intrinsically unsteady, useful predictions often relate to the

time-averaged statistical flow behaviour. Statistical descriptions can be presented

through probability density functions (PDFs), which denote the probability of

a certain event occurring. Comparison of these functions with Gaussian fields

can provide a useful characterisation of the flow field (8). Other higher-order
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1.1 Turbulence Analysis Tools

correlations such as skewness and flatness may also prove useful with regard to

quantifying any deviation from Gaussian behaviour.

It is also useful to extend single point distributions to the product of velocities

at separate points to capture structural flow features, with positive correlation

suggesting coherency. For example, a two point double velocity correlation tensor

is denoted by, Cij(xi, xi + ri, t) = 〈ui(xi, t)uj(xi + ri, t)〉, where ri is the position

vector connecting the two points. Through the variation of this vector, r, the

value of Cij indicates the correlation of the velocity field around the point xi.

Homogeneity and statistical steadiness will remove this function’s dependence on

a fixed position, xi, and time, t, respectively.

To determine the distribution of kinetic energy, this function can be extended

to form longitudinal structure functions (moments of velocity increments) or

the energy spectrum. A structure function, ∆u, of order p can be defined by

〈[∆ur(xi, xi+r, t)]p〉 = 〈[ux(xi+r, t)−ux(xi, t)]p〉, where ∆ur is the difference be-

tween two velocities components, ux, in the x direction, separated by a distance,

r in the x direction. Thus, when p = 2, the structure function gives an indication

of the energy of contribution of different sized eddies, and varying the distance,

r, allows the contribution of different sized structures to be assessed, and hence

the eddy population distribution to be inferred.

An alternative way of viewing the energy distribution is by wavenumber

through the energy spectrum function. A Fourier transform is used to convert the

velocity correlation function into wavenumber space, thereby decomposing the lo-

cal fluid motion into different scales according to wavenumber, κ. The energy at

a particular wavenumber, E(κ), can be considered the energy contribution from

eddying motions of size π/κ.

However, it should be noted, although the structure functions take account of

the energy contained in eddies of size ∼ r and under, at the dissipation scales the

enstrophy from larger eddies also contributes significantly. Also with regard to

spectral methods, it should be stressed that although eddies of a particular size

will contribute predominantly to a band of wavenumbers, they will contribute

to a lesser extent across a broad range of wavenumbers. Therefore, these tech-

niques only permit the range of scales and the energy they contain to be broadly

categorised.

6



1.1 Turbulence Analysis Tools

1.1.2 Turbulent Scales

It is useful to at this point to quantify what is meant by large and small scale mo-

tions. As previously mentioned the largest turbulent eddies extract energy from

the mean flow, and therefore can be defined in terms of characteristic mean flow

length and velocity scale, Λ and U respectively. The largest turbulent motions

are observed to transfer their energy on a time-scale of, Λ/U , resulting in a rate

of energy transfer, which in statistically steady turbulence can be equated to the

mean dissipation rate, 〈ε〉.
Expressed in terms of RMS velocity and integral length scale the mean dissi-

pation rate can be calculated using Equation 1.1. From high Reynolds number

homogeneous isotropic turbulence DNS (Rλ > 200) the value of A has been shown

to be ≈ 0.5 (23; 115).

ε = A
u3

Λ
(1.1)

According to Kolmogorov’s analysis (62) at the large scale UΛ/ν � 1, and

the cascade is dominated by inertial forces. However, as the Reynolds number

based on eddy size and mean velocity approaches unity, viscous forces begin to

become important, and the smallest length, velocity and time scales, η, υ and

τ respectively can be defined as functions of ε and ν alone, and derived from

dimensional analysis.

η ∼
(
ν3

ε

) 1
4

υ ∼ (νε)
1
4

τ ∼
(ν
ε

) 1
2

(1.2)

Another important small scale is the Taylor microscale, which gives a rea-

sonable estimate of where the majority of dissipation occurs (8). As detailed in

Hinze (43) it is possible to define the correlation function shape at r = 0 in terms

of velocity derivatives at that point with a Taylor series expansion. At small
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1.1 Turbulence Analysis Tools

distances the shape of the correlation function approaches a parabola, which can

be defined by introducing a length, λ, as in Equation 1.3.

f(r) ≈ 1− r2

2λ2
(1.3)

Alternatively this length scale can be directly related to the local velocity

gradients through the dissipation rate, as shown in Equation 1.4 (23).

λ2 =
15νu2

ε
(1.4)

1.1.3 Role of Coherent Structures and their Identification

As previously mentioned, intermittency is thought to be responsible for the ob-

served departures from the universality of Kolmogorov’s small scale theories. Al-

though a number of models have taken account of this through additional scaling

arguments (35), further knowledge of the origins of this phenomenon may be use-

ful in improving these. Understanding the evolution and interaction of dynami-

cally significant structures with the background turbulence, other large and small

scale structures, and the distribution of dissipation should provide valuable in-

sight into dissipative intermittency, potentially permitting characterisation. Even

more fundamentally, if such structures are responsible for transferring energy to

each other as in the Richardson cascade, studying the evolution of such struc-

tures should enhance the understanding of this process, allowing the connection

between large scale and small scale intermittency to be investigated.

One way to study the structural properties of the small scales of turbulence is

through the vorticity and strain fields. By considering eddying motions as regions

of concentrated vorticity the local structure of these regions can be studied (47).

This view is shared by Cadot et al. (20) who note that the time-dependent features

of a turbulent flow can be characterised by the squares of both vorticity and

strain rate, with the former known as the enstrophy whereas the latter can be

directly related to the dissipation rate through the kinematic viscosity. If the most

significant contributions to these fields are governed by coherent structures down

to the smallest scales, it should be possible to characterise the flow depending on

these structures.

8
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The interaction of these fields however is non-trivial, and although the en-

strophy integrated over the domain can be related to mean dissipation, due to

dissipative intermittency in general the local distributions of these quantities are

quite separate. For example, a Burgers vortex type structure will have a core of

enstrophy wreathed in dissipation (16).

The correlation between these regions can be examined using a several ap-

proaches: firstly through direct examination of local strain and vorticity distribu-

tions (or the balance of these quantities), popularised by DNS studies (4; 56; 103)

but also reproduced experimentally (37); and secondly through single point sta-

tistical correlations of these properties or other quantities relating to local flow

topology. The various properties required for coherent structure identification

and statistical analysis will now be introduced and compared.

1.1.4 Velocity Field Decomposition

In practical terms the velocity field can be decomposed into three more funda-

mental effects of translation, rotation and distortion. These effects are clearly

demonstrated by considering the change of a fluid element in a flow field. The

average rate of rotation can be determined using Equation 1.5. The vorticity is

most clearly written in vector notation as the curl of the velocity field (Equation

1.6).

Wij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(1.5)

ωi = ∇× ui (1.6)

The enstrophy is a scalar measure of vorticity magnitude, playing a similar role

to the kinetic energy with respect to velocity, and can be defined by Equation 1.7.

Ω =
1

2
ωiωi (1.7)

The enstrophy transport equation can be derived from the vorticity transport

equation (see Davidson (23)), and is defined symbolically and in tensor notation

in Equation 1.8. Here the terms from left to right represent the enstrophy rate of
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1.1 Turbulence Analysis Tools

change with respect to time (Φ), advection (Υ), stretching or compression (Π),

viscous diffusion (Ψ) and viscous dissipation (Ξ), with the balance of these terms

determining the evolution of this quantity.

∂
(
1
2
ωiωi

)
∂t

+ uj
∂
(
1
2
ωiωi

)
∂xj

= ωiωj
∂ui
∂xj

+ ν
∂2
(
1
2
ωiωi

)
∂xj∂xj

− ν ∂ωi
∂xj

∂ωi
∂xj

Φ + Υ = Π + Ψ− Ξ

(1.8)

In the absence of sufficient temporal resolution, the time rate of change of

enstrophy can be calculated from the other terms, with this quantity denoted as

the equivalent rate of change, Φeq, shown in Equation 1.9.

Φeq = Π + Ψ− Ξ−Υ (1.9)

The distortion of an element is given by the angular strain rate, which can be

defined through the strain rate tensor, Sij.

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.10)

The local rate of energy dissipation is defined in terms of this strain rate

(equation 1.11), where ν is the kinematic viscosity.

ε = 2νSijSij (1.11)

Thus, calculation of the spatial distribution of these quantities in numerical

and some experimental studies permits both qualitative and quantitative study

of their correlation and interaction, with single point analysis providing useful

statistical clarification of these observations.

However, it should be noted that the velocity gradient tensor (VGT) Aij =

∂ui/∂xj can be decomposed into these symmetric and anti-symmetric compo-

nents respectively, Aij = Sij +Wij. Strain rate and vorticity are not independent

quantities (23) which complicates the study of these, prompting some investiga-

tors to use identification parameters which express the balance of these component

quantities.
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1.1.5 Pressure Minima

As noted by Cadot et al. (20) there exists a simple relationship between vorticity,

strain and pressure, p (equation 1.12), and therefore the pressure difference can

be used to determine the relative strength of the vorticity and strain fields. It

is thought that this pressure difference is established through the balancing of

pressure and centrifugal forces (the cyclostrophic balance), although this is only

strictly true in steady inviscid planar flow (50).

1

ρ
∇2p = (WijWij − SijSij) (1.12)

Iso-surfaces of pressure can be used to identify coherent vortical motion, with

some authors claiming advantage over vorticity schemes (102). However, it is

noted that in densely populated regions pressure iso-surfaces may fail to capture

all flow structures (27).

1.1.6 Topological Methods

Introduced by Chong et al. (22) topological methods are theoretically able to

identify vortical motion without threshold or reference-frame constraints, and

thus, may provide a more general and widely acceptable definition of vortical

motion. Following the description in Ooi et al. (85) the solution to the character-

istic equation of the VGT is given in Equation 1.13, where PA, QA and RA are

the first, second, and third tensor invariants respectively, which can be calculated

as in Equations 1.14-1.16, where tr[· · · ] is the trace of the matrix.

λ3i + PAλ
2
i +QAλi +RA = 0 (1.13)

PA = −Aii = −tr [A] (1.14)

QA = P 2
A −

1

2
AijAji =

1

2

(
P 2
A − tr

[
A2
])

(1.15)

RA = −1

3
AijAjkAki =

1

3

(
−P 3

A + 3PAQA − tr
[
A3
])

(1.16)
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1.1 Turbulence Analysis Tools

Figure 1.1: QA −RA plane flow topologies (85)

For incompressible flow, PA = 0, and the local flow topology can be char-

acterised solely in terms of QA and RA. Therefore, the position of any flow

point on the two-dimensional QA − RA plane defines it in terms of one of four

non-degenerate topologies (see Figure 1.1). JPDFs of these quantities tend to

have the same generic shape for a range of flows, with a predominance of vortex

stretching and bi-axial strain1 (23), for example see Ooi et al. (85) and O’Neill &

Soria (84).

Similarly topological invariants can also be calculated for the symmetric rate

of strain tensor Sij, (PS, QS, RS) and the anti-symmetric rate of rotation tensor

Wij, (PW , QW , RW ). Noting that again in incompressible flow PS = PW = 0,

RW = 0, and QS and QW are negative and positive definite respectively. The

rate at which vorticity is stretched and contracted can also be defined in terms

1Bi-axial strain is defined here in terms of the principal strain field as one large compressive

and two smaller extensional strains, whereas vortex stretching is defined as one large extensional

and two smaller compressive strains.
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of topological invariants, as in Equation 1.17.

Σ =
ωiSijωj
ωkωk

=
RS −RA

QW

(1.17)

1.1.6.1 QA-Criterion

Hunt et al. (46) used the second invariant, QA, to define vortical motion (Equa-

tion 1.15). QA > 0 indicates a dominance of vorticity over strain and suggests

vortical motion, and as vorticity increases towards the centre of a vortex QA is

expected to remain positive inside a vortex core region. It is noted that there is

an obvious relationship between this and the pressure criterion in Equation 1.12,

as 2QA = ∇2p/ρ.

1.1.6.2 ∆A-Criterion

Chong et al. (22) propose a critical point scheme, where a vortex core is defined

at points where complex eigenvalues imply a closed or spiral streamline pattern

around the point, and this occurs at points where the VGT discriminant is positive

(Equation 1.18).

∆A =
27

4
R2
A +Q3

A > 0 (1.18)

This discriminant definition is also related to the QA-criterion by noting that

positive values indicate a dominance of rotation over strain, and while it is thought

to be less restrictive than the QA-criterion it is not not entirely clear which is

more appropriate (50).

1.1.6.3 λ2-Criterion

Jeong & Hussain (50) discard unsteady straining and viscous effects in the Navier-

Stokes equations to obtain their definition of vortical motion, which is only valid

for incompressible flow. Therefore, the two conditions of Hunt et al. (46) are

combined into a single definition: that vortex cores exist in connected regions

with negative eigenvalues of SikSkj + WikWkj. If the eigenvalues are ordered

λ1 ≥ λ2 ≥ λ3, this definition therefore requires that λ2 < 0 in the vortex core. As

13
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such this method is shown be closely related to the QA-criterion, although slight

variations are observed (50).

1.1.6.4 Swirl Criterion

Zhou et al. (143) define swirling strength, λci, as the imaginary part of the complex

eigenvalue of the velocity gradient tensor. In addition to removing reference frame

constraints, this method will not highlight regions of vorticity which have no local

spiralling motion (for example shear layers), and therefore is widely applied in

boundary layer investigations.

1.1.7 A Comparison of Identification Schemes

Jeong & Hussain (50) argue that the common methods of identifying vortices

such as iso-vorticity surfaces, pressure minima, and closed or spiral stream lines,

albeit intuitive, are ultimately fallible. Due to the lack of agreement between

these definitions and the problems that beset them, they recommend using more

general topological approaches.

Pressure minima do not necessarily indicate net vorticity, and can be created

through straining or viscous effects and as such may be inadequate for a general

definition of such structures. Additionally, considering a Burgers vortex, although

the length scale of vortex core is fixed, the position of the local pressure maximum

(∂p/∂r = 0, where p is the pressure and r is the radius from the centre) is not, and

will increase with vorticity, and as such pressure-isosurfaces may fail to identify

some motions (50).

Closed or spiral streamlines are not Galilean invariant and therefore changing

the frame of reference may change the appearance of these. For example, in a

moving frame of reference streamlines may no longer appear closed (or for a fixed

frame of reference with rapid vortex advection), which could possibly alter their

classification. Additionally, vortical motions which do not undergo a complete

revolution will also not contain closed pathlines and may be omitted. Further-

more, Melander & Hussain (72) show that in reconnecting regions, particularly for

high Reynolds numbers, pathlines and streamlines can become highly distorted

and may become difficult to identify reliably.
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Iso-vorticity surfaces suffer from thresholding problems, where variation of

vorticity in a single structure may result in the prediction of several separate

vortices. Additionally, under this approach the magnitude of the structures must

exceed the general background level, and therefore it is impossible to identify all

but the strongest structures (20).

To illustrate the differences between various vortex identification techniques,

Dubief & Delcayre (27) compared schemes in a variety of flows, with their study

of homogeneous isotropic freely decaying turbulence particularly relevant to the

current study. As shown in Figure 1.2 all schemes identify filament structures,

although the pressure criteria finds fewer but larger diameter structures, failing

to capture some finer details. The vorticity criterion is the only scheme which

identifies layered sheet structures in addition to the filaments. The QA-criterion

and λ2-criterion produce similar fields without these sheet-like structures, with

the latter subject to additional noise.

The large differences between pressure and vorticity criteria illustrates the dif-

ficulty with comparing results analysed using different methods. After comparing

all methods over a range of flows Dubief & Delcayre argue that the QA-criterion

is more suitable than other methods, in that it is insensitive to mean-shear and

large scale pressure variations, demonstrating an ability to pick out streamwise

vortices close to Kelvin-Helmholtz instabilities in a mixing layer (27).

Jeong & Hussain (50) note the similarity between QA and λ2-criteria in a

number of cases, arguing that their scheme is superior, with the QA-criterion

misrepresenting structures in the presence of strong external strain. However,

Dubief & Delcayre (27) note that the flow configurations in this investigation, such

as the Bödewadt vortex1are unlikely in common turbulent flows, and therefore,

due to the intrinsic link between them, these methods largely predict similar

results. Jeong & Hussain (50) also note that the discriminant criterion takes low

positive values outside vortex cores in DNS mixing layer and vortex ring data,

resulting in noisier visualisations with slightly larger core sizes and a large number

of additional small scale structures.

Despite these comparisons, it is extremely difficult to determine if one method

offers clear advantage over the others, as the performance of each is relative to the

1A vortex normal to a stationary wall.
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(a) Pressure iso-surfaces, P = −0.15ρU2 (b) Vorticity iso-surfaces, ω = 0.36ωI

(c) λ2 Iso-surfaces, λ2 = −0.25 (d) Q iso-surfaces, Q = 0.5

Figure 1.2: Comparison of vortex identification techniques in isotropic homoge-

neous turbulence (27) U =
√

3, ωI = 2π/
√

3

particular flow in question, and without a definitive answer there is no rigourous

way to determine relative scheme accuracy.

1.2 Dissipation Scale Coherent Structures

After their discovery by Siggia (110), a large number of numerical and a smaller

number of experimental studies have provided support for the idea that the

smallest scales of high Reynolds number turbulence contain coherent turbulent

structures. Further elucidation of these structures should contribute towards an

understanding of dissipative intermittency, providing valuable material for con-

16
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structing statistical models based on real flow behaviour, and also giving insight

into the stretching of material lines and planes by these structures, which is of

great importance with regards to the study of mixing phenomena (59).

Typical numerical and experimental methods will now be introduced, to per-

mit assessment of their relative advantages and shortcomings, before discussing

the findings of various studies, and identifying areas where further work would

be useful.

1.2.1 DNS Approach

Direct integration of the Navier-Stokes equations is known as Direct Numerical

Simulation (DNS); a technique which has gained popularity with the availability

of increasingly powerful computing resources. However, due to large costs, DNS

cannot currently be used as a practical engineering tool, and is limited to pro-

viding flow solutions to geometrically simple problems at relatively low Reynolds

numbers. Typical simulations are currently of O(Rλ) ∼ 100−500, although some

have reached Rλ = 1200 (56). However, despite this constraint these simula-

tions are very useful for studying small scale coherent structures, contributing

significantly to the current understanding.

To maximise Reynolds number it is common practice to use the simplistic ge-

ometry of the periodic cube, which allows for application of very efficient spectral

algorithms. The periodic cube is characterised by unphysical forced symmetry

between opposite faces, with the assumption that these will have little influence

on the bulk flow provided the largest eddies, O(Λ), are much smaller than the

domain size, LD. However, the lure of high Reynolds numbers has resulted in

rather high Λ/LD ratios (∼ π−1), meaning the large scales may be influenced

by the artificial boundary conditions. Therefore, if the small scales remain de-

pendent on the large scales at these Reynolds numbers (as shown by Shen &

Warhaft (109) and Sreenivasan (113)), then the predictions pertaining to these

scales may also be affected.

The small scale resolution of these studies is set by the need to accurately

capture the dissipation spectra, typically around κmaxη ≈ 1.5 based on the maxi-

mum wave number, which equates to a physical grid spacing of ∆x/η ≈ 2.1 (93).
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Therefore, although sufficient for resolving the majority of the dissipation spectra,

other resolution effects may persist. Caution is therefore advised concerning the

results of these numerical investigations, as although filament-like structures are

present in the large number of DNS simulations performed with different forcing

schemes (20), the structure characteristics and Reynolds number dependence are

yet to be definitively supported experimentally.

1.2.2 Experimental Approach

In experimental investigations adequate spatial and temporal resolution of high

Reynolds number small scale turbulence is extremely challenging. For example

in the laboratory setup of Belin et al. (7) using L = 100mm, the smallest length

and time scales are of order η ∼ 12µm and τ ∼ 1.3ms respectively at Rλ ≈ 800.

Therefore, both small diameter probes or measurement volumes with extremely

high-frequency response must be used to capture these motions.

These difficulties have led to a number of novel approaches, for example using

extremely low viscosity fluids such as cryogenic helium (7; 120; 144) to permit

a large range of Reynolds numbers in small apparatus, or very rapid response

equipment-such as position sensitive silicon photo diodes (63; 127), and sonar-

doppler techniques (81) to increase measurement resolution. Approaches often

include other more standard rapid response sensors such as hot-wire, hot-film,

Laser Doppler Anemometers, high-frequency pressure transducers, and direct vi-

sualisation using very high frame-rate video. However, despite these measures,

full small-scale resolution is either rarely achieved, or is so at the cost of Reynolds

number or measurement dimensionality.

For example, in a helium gas flow experiment (Rλ = 151 → 2300) Belin et

al. (6; 7) measured velocities using a 7µm diameter carbon fibre hot wire, giving

a spatial resolution between 0.2→ 3η (although the longer wire length will result

in a lower resolution).

Resolution constraints also typically limit measurements to a single dimension,

through choice of experimental technique. In these cases, measurements must be

combined with assumptions of local isotropy and Taylor’s frozen turbulence hy-

pothesis in order to infer the three-dimensional structure, and determine statis-
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tical quantities such as dissipation; an approach with proven shortcomings (37).

Furthermore, considering the possible persistence of anisotropic effects even at

the high Reynolds numbers typical of these experiments (109) this approach may

be considered unsatisfactory.

Although full three-dimensional measurements have been made, these too are

subject to a number of restrictions. Given very limited information from single

particle traces far short of full field resolution, previous 3D particle tracking ex-

periments (63; 127) are limited to speculation regarding particle/flow structure in-

teractions. Although Dual-plane Stereo-PIV measurements (82) permit volumet-

ric measurements, the very thin volume restricts structural observations. Other

Stereo-PIV investigations are forced to rely on Taylor’s hypothesis to produce

quasi-instantaneous volumes from time-resolved measurements (37). Further-

more, PIV methods such as these are also typically limited to moderate Reynolds

number (Rλ . 150).

The use of pressure transducers limited measurements by Cadot et al. (20) to

the near wall region to avoid interference effects. Here secondary flow stabilisation

and attached filament stretching gave rise to extended lifetimes and broadening in

these regions, biasing these measurements. Additionally, the measured pressure

drop magnitude was strongly dependent on filament proximity to the transducers,

making reliable strength measurement difficult. Bubble visualisations (20; 26)

also suffer the same problem as iso-vorticity thresholding, and as such coherent

structures with weaker pressure fluctuations may not be identified, potentially

biasing results towards tubular structures (63). Additionally, due to their size

the bubbles may not accurately follow the small scale structures, for example the

0.05mm bubbles used by Douady (26) to measure structures of approximately

0.1mm diameter.

1.2.3 Vorticity Filaments

Despite various numerical and experimental limitations these approaches have led

to a rough picture of the small scale structures; where some details regarding the

local vorticity and strain field interaction and structure scaling properties and

Reynolds number dependence are known.
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Simulations generally identify persistent tubes, sheets and blobs of small scale

vorticity (116). As noted by She et al. (108) the highest vorticity tends to be con-

tained in tubular structures, with moderate values in sheets, becoming pattern-

less at lower amplitudes. Therefore, typically investigations focus on the most

coherent of these structures: thin threads of concentrated vorticity known as

vortex tubes, filaments or worms. Some remarks now follow on the speculated

dynamic life cycle of these structures, beginning with their formation, discussing

some of their typical properties, before ending with their breakdown.

1.2.3.1 Formation of Filaments

The creation of vortex filament structures has been the focus of much interest, and

in general it can be stated that these are formed in the presence of axial or (via the

Kelvin-Helmholtz instability) bi-axial strain fields (78). By expressing the rate of

enstrophy generation in terms of the strain field, Betchov (9) demonstrated that

given that enstrophy generation is positive, a pre-dominance of bi-axial strain is

expected, which may favour the latter mechanism. Brachet et al. (13) support

this after observing the formation and subsequent thinning of pancake-like sheets

of vorticity subject to constant bi-axial strains. At some point during this vortex

stretching, the sheet is subject to an instability and tubes of concentrated vorticity

result from the decomposition of the layer.

Passot et al. (89) used a modulational perturbation analysis technique to

kaneda06further the work of Lin & Corcos (67), demonstrating that when thin

strained vortex sheets become unstable, vorticity tends to concentrate in tubu-

lar filament structures. From a 2563 grid point DNS study of decaying turbu-

lence, visualisation techniques were used to deduce that the filaments form under

the combined influences of sheet compression and self-induced rotation. It was

demonstrated that when regions of strong vorticity are aligned with a constant in-

termediate principal rate of strain, the vorticity becomes concentrated. As noted

by She et al. (108), at any given time concentrated vorticity is present in the

form of vortex tubes and more moderate values in the form of sheets. Therefore,

it is assumed by some authors that the tubes form via the sheet instability, and

increase in strength by continuously rolling up the sheets vorticity.
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Figure 1.3: Visualisation of vorticity contours from asymptotic vortex filament

formation model (Passot et al. (89))

To a certain extent these mechanisms are supported experimentally in studies

of the flow between counter rotating impellers. Bonn et al. (10) and Douady

et al. (26) suggest that tubes form from the roll-up of thin shear layers in the

presence of shearing and stretching. Cadot et al. (20) also argue that filaments

attached to the tank wall form as a consequence of mean shear layer roll-up,

whereas other smaller weaker filaments may be generated in a process similar to

classical mixing layer vortex generation by other large eddies, thereby inheriting

length scale properties from their parent vortices.

In the case of larger scale filament structure formation, sheet decomposition

takes place before the sheet has become sufficiently thin, and as such the time-

scales are too slow to be observed using DNS (89). Cadot et al. (20) argue that

both larger scale low pressure filaments and smaller scale vorticity filaments may

form as previously described. However, further to the numerical investigations,

they also suggest that vorticity filaments may also form as a low pressure filament

bursts into several thinner intertwined filaments (see Figure 1.4). The interaction

and stretching of these by one another lead to an increase in vorticity, which is

accompanied by an increase in dissipation between separate strands, or sections

of the same contorted strand.

In conjunction with the basic formation mechanism Vincent & Meneguzzi (125)

suggest that the longest vortex filaments are formed by the amalgamation of sev-

eral shorter parallel filaments originating from the same shear region, and it is

this behaviour that allows these structures to develop to such extreme lengths.

This view is supported to a certain degree experimentally by Cadot et al. (20)

who note that although filaments exist in all orientations, the largest of these are

aligned with mean shear layer.
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(a) Low pressure filament (b) Intertwined vortex filaments

Figure 1.4: Visualisation of a low pressure filament bursting into vortex filaments

(Cadot et al. (20))

1.2.3.2 Strain and Vorticity Interaction

The relatively low Reynolds number (Rλ ≤ 83) results of Kerr (58) show con-

centrations of vorticity in tubular and sheet like structures, with scalar gradients

wrapped around the tubes. The strain field appears to be well correlated with

these structures, with the following arrangement of the principal rates of strain

from largest to smallest with respect to the tubular structures: radial compres-

sive, radial stretching, and axial stretching. It was noted that the intermediate

strain was usually therefore aligned with the vorticity, and the compressive strain

with the scalar gradient.

Ashurst et al. (4) attempt to quantify this relationship through intermediate

strain rate PDFs. For low magnitude intermediate strains these appear symmet-

ric, however as strain rate is increased their distribution becomes increasingly

asymmetric, with most probable principal strain rate distribution from highest

to lowest suggested as 3:1:-4. The agreement of these predictions and previous

analysis by Betchov (9) is noted by a number of authors (23; 116). Betchov

predicted that on average one strong compressive strain is accompanied by two

weaker stretching ones, with this bi-axial strain resulting predominantly in the

formation of vortex sheets.

Kida (59) identified filaments using the characteristically low pressure cores

in conjunction with the local peak in u2θ/r, where uθ is the azimuthal velocity,

to study steady simulations from Rλ = 80 → 170. This study attempted to
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quantify the location of these important quantities, suggesting that the majority

of the enstrophy is located at the vortex cores (≈ 60% of the total), whereas

the dissipation (≈ 30% of the total) as in the Burgers vortex surrounds the core.

Although it is noted that these results remain approximately independent of

Reynolds number, the range of Reynolds numbers is perhaps too small to support

this conclusively. The separation of high magnitude vorticity and dissipation

may account for vortex filament stability, explaining their typical existence of

several turnover times. A consequence of this coherence is their observability

in DNS simulations, although a more important feature may be their sustained

contribution to the flow field.

Kida also suggests that the strong swirling motion around the vortex core may

trap small stray filaments, resulting in the normal component of vorticity having

a complex distribution around the filament. However, the strongest dissipation in

the annulus region cannot be necessarily attributed to this cross-axial vorticity,

as the Burgers vortex also contains a similar dissipation distribution (23). The

trapping of stray filaments gives the filament a spiral nature (visible in Figure 1.5),

although this is different to the spiral vortex in Lundgren’s model (70).

(a) Vorticity mag. (b) Axial vorticity (c) Cross-axial vort. (d) Dissipation

Figure 1.5: Cross-section (412η) of a spiral vortex filament, diameter ≈ 10η, CCW

rotation, Rλ = 170, dark indicates high values (Kida et al. (59))

Recently Kaneda & Ishihara (56) performed very large scale 40963, Rλ =

1200 simulations. Simultaneous plotting of high vorticity and high dissipation

fields (see Figure 1.6) shows a strong correlation, similar to the findings of Kerr

et al. (58). However, as stated rather disappointingly, no attempt is made to
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understand or further quantify the relationship between the coherent structures

and dissipation, or its variation with Reynolds number in this study.

(a) 3D distributions, vorticity, ω >

〈ω〉+ 3σω shown in purple, dissipation,

ε > 〈ε〉+ 3σε shown in black

(b) Contour plot of dissipation, ε >

〈ε〉+3σε (vorticity ω > 〈ω〉+3σω shown

in black)

Figure 1.6: Comparison between regions of intense dissipation and intense vor-

ticity Rλ = 167 (56)

A number of these findings have also been repeated experimentally. Ganap-

athisubramani et al. (37) made far field measurements of an axisymmetric co-flow

jet using time-resolved stereo PIV. Taylor’s hypothesis was used to reconstruct

a quasi-instantaneous 3D volume, in which similar structural observations were

made. The study also identified similar principal strain rate distributions and

alignments, which have also been found in previous hot wire (123) and Dual-

Plane SDPIV investigations (82).

1.2.3.3 Typical Scaling Properties

Some insight into typical vortex filament scaling has also been gained, including

details such as: diameter, length, shape, population density, and the dependence

of these on Reynolds number. Filaments are usually described as having ap-

proximately circular cross sections, with diameters ranging between λ and η, and

lengths between λ and Λ, approximately resembling Burgers vortices. The diam-

eter and length are however extremely difficult to predict accurately, and slight
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differences in the findings of various authors may also be attributed to the use

of different analysis techniques. Additionally, as noted by Sreenivasan & Anto-

nia (116), inconsistencies may also arise from the poor scale separation in these

low Reynolds number results, making an accurate assessment difficult.

Numerical investigations (53; 56; 58; 110; 125) often suggest dissipation scale

filament diameters ∼ 6 → 10η, although larger diameter filament structures are

not precluded. Jiménez & Wray (52) consider that less intense, larger diameter

vortical motions may also become coherent given higher vorticity than the back-

ground level (ωrms), and if these took azimuthal velocities of urms, then their radii

could be ∼ λ. However, the high thresholds required for visualisation show only

the highest vorticity structures.

Figure 1.7: High Vorticity regions ω > 〈ω〉 + 4σω from a high Reynolds number

Rλ = 732 simulation (56)

Experimental investigations tend to support the numerical findings, with sim-

ilar scale structures first observed by Douady et al. (26) using bubble visualisa-

tions. Ganapathisubramani et al. (37) also find intense worm-like vortex struc-

tures with characteristic diameters and lengths∼ 10η and 60→ 100η respectively.
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As previously mentioned Cadot et al. (20) identified a larger range of radii

from ∼ λ→ η. Furthermore, although only relatively long structures up to size L

are observed, these authors claim that lengths down to the dissipation scale may

be possible, assuming strain must be coherent over the length of the structure.

However, this claim is disputed by Jiménez & Wray (52) on the basis that strong

vortices will be de-coupled from the background, and even in the case of locally

compressive strains the coherent vortex structure can be maintained (124).

Jiménez et al. (52; 53) performed a sequence of forced steady simulations from

Rλ = 40 → 170, proposing additional scaling relationships for the maximum az-

imuthal velocity of urms, and maximum axial vorticity of ωrmsR
1/2
λ . However, due

to the reasonably high threshold Ω ≈ Ωrms employed in these studies it is clear

that these results only relate to the most intense vorticity structures. Studies

by Belin et al. (6; 7) support these length and velocity magnitude scalings up

to Reynolds numbers of Rλ ≈ 700. Additionally Cadot et al. (20) found the

magnitude of the filament low pressure regions scales only with the square of

the injection velocity, ∼ U2, and although the circulation was found to be ap-

proximately constant, the pressure drop depended on filament length. At much

higher Reynolds numbers it is postulated that filaments may blend into the back-

ground (6), however much higher Reynolds number results may be required to

confirm these Reynolds number scalings.

Both numerically and experimentally filament population density has been

shown to remain approximately constant with Reynolds number (20; 52; 59),

and therefore their fractional volume decreases as R
−1/2
λ (52). These findings

are however contrary to those by Abry et al. (1) who found that population

density increased with Reynolds number, although the use of different stirring

mechanisms does not permit a more conclusive analysis.

Belin et al. (6; 7) also observed that beyond Rλ ≈ 700 filaments tend to widen,

filling more space and reducing flow intermittency; a change confirmed by the

plateau of skewness and flatness at this threshold. The transition is linked to the

idea that the internal Reynolds number of the filaments increases with Reynolds

number (52), and therefore the filaments will become unstable, with the Rλ ≈ 700

threshold possibly setting the transition point. Although this transition is also

observed by Tabeling et al. (120), it requires further experimental support (116)
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as it is not observed in some other experiments (90), and therefore may simply

be caused by a particular facet of the experimental set-up or resolution.

1.2.3.4 Filament Breakdown

As observed by Douady et al. (26) although initially straight, filaments rapidly

become unstable, decaying in a process of vortex breakdown and forming larger,

less intense eddies. This observation is supported by Cadot et al. (20) who note

that after becoming unstable, roll up is shown to continue; characterised through

an increasing circulation in the larger diameter eddy left in a filament’s wake.

The decay of the larger low pressure filaments to smaller vortex filaments

discussed by Cadot et al. (20) also signifies the breakdown of a coherent structure.

It is interesting to note that this breakdown could at one stage bear resemblance

to the spiral structures observed by Kida (59). Cadot et al. also note that

the majority of the current DNS results are at insufficient Reynolds number to

capture this form of decay, and therefore the structural evolution of this form of

breakdown may benefit from further study.

1.2.3.5 Significance of Vortex Filaments

The influence of various structures on the statistical properties of turbulence

is of great importance, with continuing debate over the relative dominance of

sheets, tubes and ribbon like structures. Brachet (12) and Bonn et al. (10)

suggest that filaments will not govern the dynamics of the small scales as they

contain only a small fraction of the dissipation and vorticity. Jiménez et al. (53)

added support to this argument by artificially removing these structures without

significantly affecting dissipation. On the other hand, Kida (59) suggests rather

more influence, through significant correlation between the most intense vorticity

and dissipation fields. However, the variation of this fraction with Reynolds

number is still not yet entirely certain (35), and the different definitions of these

filament structures clouds this debate.

Bonn et al. (10) used Polyethylene oxide (≈ 3 × 106amu) and Polyox coagu-

lant (≈ 5 × 106 amu) polymers to inhibit vortex filament formation in the flow

between counter-rotating disks. Bubble visualisations indicate the introduction
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of polymers significantly reduces filament formation, and also inhibits large scale

motions. For example, the smaller particles at a concentration of 40ppm (by

weight) approximately halved the number of filaments produced. The small sized

polymers are advected by the large scales, only interacting dynamically with the

smaller scale motions, and therefore it is the large scale motions resulting from

the decay of vortex filaments which are suppressed. However, it is concluded in

this investigation that by disrupting the process by which the filaments form,

then the process that controls dissipation may also be disrupted, and the absence

of filaments are merely a symptom of this disruption. Further to this, Cadot

et al. (19) use a variety of forcing schemes to show the suppression of coherent

structures by the polymers can take place without any reduction in drag, and

therefore the structures may not be directly related to the energy dissipation.

1.2.3.6 Inertial Range Structures

Although the structure of the finest scales has been widely identified through DNS

results, whether similar structures are present at all levels in the energy cascade

is still unclear. Vincent & Meneguzzi (125) support the idea that the cascade

is characterised by the formation of sheets and their subsequent breakdown into

tubes. Boratav & Peltz (11) found that ribbon-like structures are dominant in

the inertial range, not tubes. Furthermore, by comparing the effects of both

enstrophy and strain dominated structures, they suggest that an intermittent

strain field as opposed to the vorticity field may result in the shortcomings of

Kolmogorov’s original model. In the numerical simulations of Porter et al. (94)

Favre averaging was used to separate dissipation and inertial range structures,

demonstrating that although larger scale structures were filament like, they were

distinctly shorter and showed increased curvature compared to the smaller scales.

Lundgren (70) and Pullin & Saffman (98) attempted to use random distribu-

tions of elementary structures, such as those uncovered by DNS results to model

the inertial range. However, as illustrated by Kaneda & Ishihara (56) (see Fig-

ures 1.6 and 1.7) and supported by other authors (53; 94), the distribution of these

structures may not be random, with filament structures apparently clumped to-

gether in distinct regions. Porter et al. (94) suggest there is a correlation between
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the large scale eddies, with the filaments filling the background between sparsely

populated larger scale motions.

Moisy & Jiménez (79) attempted to quantify these essentially qualitative ob-

servations, albeit at the relatively low Reynolds number of Rλ = 168, applying

box counting methods to an existing DNS dataset (53). An interesting approach

is used to characterise the geometry of coherent vorticity and dissipative struc-

tures; each structure is assigned three characteristic inner, outer and intermediate

lengths, which are used to classify structures over a range of thresholds between

four extremes: sheet-like; spherical; tubular; and ribbon-like. The moderate

and intense dissipative structures tend to be flat sheet-like or ribbon-like, and

the moderate and strong vortical structures tend to be ribbon-like and tubular

respectively. Moreover, individual structure centres appear to be grouped in hi-

erarchical inertial scale clusters between 20 → 400η, and although the clusters

are shown to be distributed self-similarly, the simulation Reynolds number is

insufficient to effectively isolate a characteristic fractal dimension.

More knowledge of the inertial range structures would be extremely useful

to further quantify the strain and vorticity field interaction at higher Reynolds

numbers, the intermittency of these, and any clustering that can be related to

larger scale structures. More accurate knowledge of this small scale clustering

could improve statistical models through more accurate fundamental structure

distributions.

1.3 Flow Measurement Techniques

The current investigation will follow an experimental approach, and therefore a

discussion regarding method selection is now presented.

Dissipation scale measurements have been performed using a variety of instru-

ments, such as hot-wire, hot-film, Laser Doppler Anemometry (LDA), pressure

transducers, and high speed PTV through use of silicon accelerometers. These

techniques are largely used in response to the high-frequency demands made by

many of the experimental set-ups (see Section 1.2.2). However, the larger length

and time-scales of the present experimental set-up (Section 2.1.1) relax these

constraints somewhat, allowing consideration of a broader range of techniques.
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As discussed by Jiménez & Wray (52), it is difficult to accurately assess the

evolution of coherent flow structures using single-point measurements, which must

typically invoke assumptions such as local flow isotropy, and Taylor’s frozen tur-

bulence hypothesis in order to describe statistical properties, such as the dissi-

pation rate. Furthermore, the influence of invasive detectors placed in the flow

cannot be altogether discounted (20), and therefore non-invasive techniques are

preferable. Particle Image Velocimetry (PIV) therefore appears to be an appro-

priate choice, adequately satisfying the measurement frequency requirements, and

providing good spatial resolution.

Additionally, in order to remove dependence on the assumptions of isotropy

and permit a more intuitive study of coherent flow structures, full 3D measure-

ments are highly desirable. Therefore, after a brief introduction to PIV, a number

of 3D extensions to the basic technique are reviewed before selecting one of these

methods for further study.

1.3.1 Digital Particle Image Velocimetry

Digital Particle Image Velocimetry is a non-invasive planar measurement tech-

nique (Figure 1.8). The flow is seeded with small particles and illuminated twice

in rapid succession typically using a laser light sheet (2). The scattered light

is recorded on either a doubly exposed image or more commonly a pair of im-

ages. The particle displacement is obtained by dividing each image pair into

small interrogation regions and correlating corresponding windows. Therefore,

this process does not take individual particle motion into account, instead calcu-

lating the mean motion of a group of particles. The displacements are converted

from image to global co-ordinates through calibration.

Spatial resolution is a function of the optical set-up and can reach ∼ 10µm

in microfluid applications (2), producing 2D fields with ∼ 104 vectors. However,

sampling frequency is limited by laser repetition rate, which for high powered

lasers can be as low as 10Hz.

Recent advances have enabled extension of the basic PIV technique into three

dimensions, through a variety of different methods. An overview of the most

popular of these techniques, and their relative merits follows.
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Figure 1.8: PIV Schematic

1.3.2 Stereoscopic PIV

Stereoscopic-PIV resolves all three velocity components in a planar region of in-

terest (3; 95; 135). The illuminated plane is imaged from two different directions,

with camera orientation determined through calibration with a known 3D object.

The particle velocity projection on each image plane can be evaluated, correcting

for perspective error, and the vectors can combined to reconstruct all 3 velocity

components (100; 135).

The accuracy of the out-of-plane velocity component is 1/ tan(θ) times the in-

plane component, where θ is the camera angle with respect to the light sheet (95).

Therefore, although an angle of θ = 45◦ is optimal this may be impractical

due to other conflicting requirements such as: increased lighting power; aperture

settings; or camera positioning limitations. Accuracy is also highly dependent on

precise calibration plate positioning at the laser sheet location, although this can

be improved somewhat through advanced self calibration methods (131).

Stereoscopic-PIV increases the number of gradient terms which can be directly

measured to 6, which is a slight improvement over the 4 which can measured

using DPIV. However, in order to calculate the entire velocity gradient tensor,

it is possible to extend this technique by using multiple closely spaced parallel

light sheets, which is known as Dual-Plane Stereo-DPIV (54). The two light
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sheets are polarised differently, and therefore the light from each can be recorded

by two cameras fitted with the appropriate filters. However, this increases the

complexity of the set-up considerably, and accuracy is dependent on the precise

alignment of the two laser sheets.

1.3.3 Holographic PIV

In Holographic-PIV (HPIV) light scattered from particles in a volume is recorded

on a hologram in superposition to a reference light beam (42; 74). Real space

particle positions are recovered by illuminating the hologram with the conjugate

of the reference beam (illuminating the plate from the reverse direction). HPIV

set-ups can be sub-classified as ‘in-line’ or ‘off-axis’ based reference light beam

position. The simpler in-line technique suffers from excessive speckle noise, which

limits the maximum seeding density, and the small numerical aperture formed by

the forward particle scattering gives poor depth resolution. The more compli-

cated off-axis technique allows higher seeding, better SNR and higher accuracy,

although at the expense of higher laser power and more stringent coherence re-

quirements (97).

In contrast to PIV, which is now almost exclusively digital, HPIV is still

also performed on photographic film. Therefore in addition to the complexity of

the set-up, standard HPIV requires the time consuming wet-processing of film

and scanning of the hologram with a CCD, which also introducing errors from

positioning, re-sampling, and image distortion (31).

In digital-HPIV (DHPIV) images are recorded directly on CCD chips, and

through calculation of the diffraction integral using the Fresnel approximation the

3D particle information can be reconstructed (87). CCD chips are currently much

lower resolution that photographic film, which limits the fine scale interference

fringe detail which can be recorded, and therefore requires an in-line approach

to be used; limiting accuracy and resolution (42; 87). Currently DHPIV is only

capable of capturing 2 to 3 times fewer vectors than standard HPIV (31).

Off-axis HPIV allows capture of large data sets (up to 106 vectors), with accu-

racy comparable to DPIV, however the technique is complicated, expensive, and
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capturing enough holograms to compute adequately converged turbulent statis-

tics would be extremely difficult (2). DHPIV is limited in terms of its accuracy

and resolution, and therefore more suitable for very small volumes; such as those

used in micro-PIV (2).

1.3.4 Scanning-PIV

Another way to extend DPIV or Stereo-PIV into 3D is to rapidly scan the light

sheet through the volume, sequentially capturing slices of data which can be

combined to create a 3D volume of data (15; 44). The scanning rate must be high

in comparison with flow time-scales (44) and therefore extremely high repetition

rate lasers are employed (∼kHz), which may limit illumination power. High speed

cameras are also required, which maybe unable to operate at full resolution at the

repetition rates required, reducing the maximum resolvable volume. Additionally,

extra complexity will be introduced through the requirement to rapidly translate

or rotate the light sheet in small increments.

1.3.5 Defocusing-DPIV

Defocusing-DPIV (DDPIV) modifies the optical aperture to produce 3D informa-

tion from a single optical axis setup (91; 136). A mask with 3 off-axis pin-holes is

placed before the lens, which is slightly defocused, causing each particle to create

3 image exposures. Then, through knowledge of the pin-hole arrangement, the

global particle position can be determined by the relative particle image posi-

tions, with their separation proportional to the out-of-plane plane position. 3D

particle positions are obtained in 2 volumes of interest at a small temporal dis-

placement, and through cross-correlation of these volumes, the velocity field can

be determined.

Complex set-ups can be imaged using this approach as optical access is only

required from a single direction. However, the small angles between each of the 3

ray paths for this in-line method limits out-of-plane component accuracy. Addi-

tionally, particle seeding density is limited due to the increased image plane size

of out-of-focus particles. Capturing all particle images on a single image sensor

further limits the seeding density by a factor of three. Although this problem can
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be alleviated, at the expense of additional complexity, by using 3 separate image

sensors to capture the particle images (55), the maximum permissible seeding

density, and therefore measurement resolution remain low.

1.3.6 Particle Tracking Velocimetry

In similarity with PIV, in particle tracking velocimetry (PTV) the flow is seeded

with small particles, which are illuminated in a volume of interest (71). In PTV

however, scattered light is recorded simultaneously by three or more cameras ar-

ranged around the volume of interest. After camera calibration, lines of sight

through the volume are calculated from each particle image position, and groups

of these are matched, with their closest intersection defining the 3D particle po-

sition. Global particle positions are matched over either frame pairs or more

commonly short frame sequences to determine velocity and particle trajectories.

Therefore, the technique permits Lagrangian measurements of particle trajecto-

ries, which are particularly useful for studying particle dispersion (86). These

principles have been applied using extremely high response silicon strip photo-

diodes to make extremely high frequency measurements (up to 70kHz (126)).

Eularian measurements require interpolation of the results onto a regular grid.

Due to finite calibration accuracy, scattering intensity variations from differ-

ent camera angles, and illumination inhomogeneity, particle lines of sight will

not converge perfectly to a single point instead requiring some relaxation cri-

terion (86). Therefore, to prevent matching incorrect lines of sight the seeding

density is severely limited to around 0.005 particles per pixel (31), limiting spatial

resolution. Although a number of different algorithms are used, matching particle

pairs often uses a nearest neighbour approach; requiring closely spaced sequential

frames. Additionally, validation of matched lines of sight is often made by fol-

lowing a particle over a number of frames (typically 3 or 4) (137). This requires

the laser pulse rate and camera frame rate to match the time interval, δt, which

may restrict the choice of laser to a higher repetition rate lower power design.
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1.3.7 Tomographic-PIV

Similar to PTV, in TPIV the flow is seeded with small particles and a volume

of fluid is illuminated. Light scattered from the illuminated particles is recorded

from a number of different angles, with typically between 3 and 5 cameras used.

The camera positions are defined through camera calibration (imaging a known

3D object), which allows the derivation of a mapping function for each individ-

ual camera, to tranform image coordinates into global (real world) lines of sight.

It is then possible to use these mapping functions and the recorded images to

reconstruct the particle positions in the volume of interest (as a volume of light

intensity) through use of a tomographic reconstruction algorithm (31). These

light intensity volumes can then be used directly for PIV cross-correlation; dis-

tinguishing the technique from PTV.

Without the need to individually match particles, the seeding density restric-

tions can be relaxed somewhat, allowing higher resolution than PTV. The tech-

nique set-up is also relatively simple. However, both Scanning and HPIV allow

higher spatial resolution due to limitations still imposed on seeding density by the

tomographic technique. Accuracy is limited by imperfect reconstructions caused

by optical defects (134) and relies heavily on high precision calibration (30). Fur-

thermore the reconstruction problem is computationally intensive (107), and well

resolved statistical data requiring hundreds of vector fields require significant re-

sources. The need to illuminate a volume of fluid will also require an extremely

high power light source.

1.3.8 Comparison of 3D Techniques

Despite its excellent resolution, the application of HPIV is complex and unable

to provide sufficient data for turbulent statistics, or make time-resolved measure-

ments to follow the evolution of flow structures. Relatively long flow time scales

make Scanning-SDPIV possible, however the quasi-instantaneous nature of this

technique may introduce inaccuracies at high Reynolds numbers as the small scale

turnover time becomes increasingly fast. Furthermore, the high repetition light

source requirement would limit illumination power, and use of a scanning mir-

ror introduces additional complexity. The in-line approach of both DHPIV and
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DDPIV result in limited in-plane measurement accuracy, and in addition to their

complexity, both techniques suffer from seeding density and therefore resolution

limitations. As the current set-up allows optical access from a range of angles

(see Section 2.1.1), multiple camera set-ups are favoured.

Although both PTV and TPIV would be suitable, the former suffers from

limited seeding density and therefore resolution, and if particle positions are to

be validated over a sequence of frames, the choice of illumination is also limited.

Although TPIV also imposes some restrictions on the seeding density, these are

less severe than PTV, and allow higher measurement resolution. The technique

uses a relatively simple set-up, and despite requiring accurate calibration and

significant data processing time, offers a good balance between spatial resolution,

measurement accuracy, and temporal resolution.

Therefore, a combination of DPIV and TPIV measurements will be made in

the current investigation, with technique comparison allowing TPIV validation

against the more widely used DPIV, and assessment of 2D isotropy assumptions.

1.4 Fundamentals of TPIV

Due to its relatively recent introduction, there now follows a more in depth review

of TPIV and its application.

1.4.1 The Image Reconstruction Problem

Image reconstruction from projections is the process of producing an image distri-

bution of some physical property from estimates of its line integrals along a finite

number of lines at known locations (41). The reconstruction problem was initially

solved by Radon, who showed that the distribution of some property along an

infinitely thin projection slice can be determined exactly using an infinite set of

line integrals around the object. However, in practice it is only possible to use

a finite number of projections, which are unlikely to be exact due to inherent

experimental measurements inaccuracies. Therefore the reconstruction problem

is generally under-defined, and direct solution to Radon’s Inverse Formula, which

is extremely sensitive to any inaccuracies or finiteness is unattainable (41). A
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finite set of projections could therefore define a number of possible reconstructed

objects, and a reconstruction algorithm should be applied in order to determine

the object which best matches the projection data.

Therefore, solutions to more practical problems require a discretised approach,

such as algebraic series expansion. This method defines a set of basis functions,

which can be combined linearly to give an adequate approximation of the ob-

ject (41), reducing the reconstruction problem to Equation 1.19, where pr rep-

resents a data matrix of some measurable projected property; f represents the

object matrix; and W represents a two-dimensional weighting matrix, which pro-

vides a relationship between every discretised projected data point and every

discretised point in the object volume. Therefore, the discrete reconstruction

problem can be stated as: given the data, pr, estimate the object, f .

Wf = pr (1.19)

This apparently straight-forward problem of solving a set of linear-equations

is complicated by its size, as the object f is a vectorisation of a discrete approx-

imation to a function of typically two or three spatial variables (17). Therefore,

iterative methods are often the tools of choice for image reconstruction due to

their simple, versatile nature, ability to handle constraints and noise, and process

large data sets efficiently (83). Despite the efficiency of an iterative approach the

requirement of processing huge numbers of voxels (volume elements) in the discre-

tised volume still gives rise to substantial computational costs (see Appendix A).

A large number of image reconstruction algorithms are available, based on

the algebraic series expansion of a function; these can be categorised as iter-

ative, block-iterative, or simultaneous. Broadly speaking, sequential schemes

such as the Algebraic Reconstruction Technique (ART) and multiplicative ver-

sion (MART) tend to converge more quickly than simultaneous schemes, and

although block-iterative methods may provide small improvements they tend to

be more unstable (18). The sequential order, under-relaxation parameters, and

rescaling (dividing every row in the W matrix by its maximum value - RMART)

must be carefully applied to ensure rapid convergence. Although testing of differ-

ent reconstruction algorithms for TPIV may prove fruitful, simple, fast sequential
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schemes appear to be well suited for this application. Moreover the relatively low

number of iterations required to achieve adequate convergence (typically 5 to 6)

might render any improvements as marginal.

1.4.2 Practical Application of TPIV

The methodology of Elsinga et al. (30) is followed to illustrate the practical appli-

cation of TPIV. The object is modelled using simple 3D cubic voxel (volumetric

pixel) elements as basis functions. These take a positive value inside the voxel, but

are zero outside it, with these simple elements arrayed to form a volume. Hence,

each weighting array element is defined simply as the intersecting volume between

a sphere representing a voxel, and a cylinder representing the projection line of

sight, taking a value between zero and one. After testing both additive (ART)

and multiplicative (MART) reconstruction algorithms, the latter was shown to

offer advantage through more distinct particle identification (Equation 1.20).

Figure 1.9: Schematic of numerical TPIV Setup

fkit+1
j = fkitj

(
pi

Wifkit

)µWij

(1.20)

In a series of 2D parametric studies it is suggested that reconstruction ac-

curacy can be maximised by adding cameras to the system, and by using an

optimum angle of 30◦. To evaluate reconstruction quality a correlation coefficient

between artificial and reconstructed object arrays was used, with a cut-off value

of 0.75 above which reconstruction is considered successful. High seeding den-

sities and camera angles where θ >> 30◦ or θ << 30◦ were shown to decrease

reconstruction accuracy through an increase in Ghost Particles, which arise where
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intensity from all lines of sight create a particle that does not exist. Seeding den-

sity is defined in terms of the number of particles per pixel (Nppp), relatable to

volumetric seeding density through camera resolution and domain volume. The

importance of sub-pixel calibration accuracy was also demonstrated, with errors

over 0.4 pixels exceeding the assigned accuracy cut-off limit. However, although

Ghost Particles are noted to decrease accuracy, in cross-correlation these essen-

tially random events may not significantly affect the vector field results. Therefore

there is scope for further quantification of set-up parameters with respect to cross-

correlation, rather than correlation coefficient based accuracy analysis (discussed

further in Section 2.3.3).

Degradation due to image noise was shown to be controllable through image

pre-processing. Subtracting the minimum pixel intensity from all pixels helps

treat Hot Pixel, Window Dirt, and laser reflections (134). Removing the image

background intensity reduces noise from erroneous Ghost Particles (29). Intensity

normalisation takes account of forward and backscattering intensity differences

in addition to laser profile variations and areas of weak seeding, and the 3 × 3

Gaussian smoothing, reduces noise and improves the small particle (≤ 2 pixels)

reconstruction.

Additionally, a number of other important considerations were highlighted

including: small camera apertures to keep the whole volume in focus; use of a

reconstruction volume thicker than the illuminated volume in order to correctly

place all recorded light; and removal of reconstruction edges, where placement of a

finite volume of interest results in light from the entire thickness being erroneously

concentrated in thin regions.

1.4.3 Previous TPIV Experiments

Due to its recent introduction there have been relatively few experiments per-

formed using TPIV (28; 29; 61; 75; 107; 133; 134), which are almost exclusively

based on the principles derived by Elsinga et al. (30). A number of set-up pa-

rameters for full-volume TPIV have been compared in Table B.1 in Appendix B.

Elsinga et al. (29) studied the turbulent wake velocity distribution behind two

different circular cylinders in a 10ms−1 free stream velocity flow, demonstrating
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the potential of TPIV. First a thin laser sheet was used to compare the technique

to the more well established Stereo-PIV, after which a thicker light sheet was

used to analyse the flow pattern. Using the thin-sheet (2.3mm) it was found

that the mean particle displacement differences between Stereo-PIV and TPIV

is 0.03 pixels with a standard deviation of 0.2 pixels and a maximum difference

of approximately 1 pixel. Although this indicates the potential of TPIV, the

accuracy of the thin-sheet may not reflect the full 3D accuracy, and requires

further quantification.

(a) Stereo PIV (b) TPIV

Figure 1.10: Comparison of Stereo and TPIV for a thin light sheet (29)

Through a series of water jet experiments Wieneke et al. (133) also demon-

strate a favourable comparison between thin-sheet TPIV and Stereo-PIV. Addi-

tionally light from a single source was split into 4 thin sheets, and although this

increased accuracy in comparison with full volume TPIV and 3D-PTV, it was

concluded that this is still less accurate than Stereo or Dual-Plane PIV with a

velocity error from 0.1→ 0.2 pixels.

Comparing Stereo-PIV and thin-sheet TPIV numerically, Wieneke & Tay-

lor (134) found that the latter was more accurate, however, with real data Stereo-

PIV proved to be more effective, especially in low gradient regions. Given very

accurate calibration (< 0.1 pixels), the RMS displacement difference in the [x,y,z]

planes between the techniques was [0.22,0.22,0.30] pixels (16 × 16 interrogation

window, over 20 images) corresponding to 3% of the maximum velocity, with error

based on local velocity variation estimated as 0.13 and 0.20 pixels for Stereo-PIV

and TPIV respectively.
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(a) Mean Velocity Profile (b) RMS Velocity Components

Figure 1.11: Comparison of Hot Wire, Stereo-PIV and TPIV (Elsinga et al. (28))

A Dual-Plane Stereo-PIV comparison was also conducted using a slightly

thicker ‘fat-sheet’. Dual-plane PIV accuracy is limited by light sheet alignment,

instantaneous particle positioning, and large gradients due to non-overlapping

light interrogation windows, in addition to standard errors from Stereo-PIV (with

gradients containing at least a 10% error), producing typical in-plane and out-

of-plane errors of at least 5→ 10% and 10→ 20% respectively. TPIV can avoid

particle positioning problems through deforming interrogation volumes, and given

accurate calibration compares favourably to Dual-Plane Stereo-PIV, with out-of-

plane gradient accuracy between 5→ 10% and 10→ 20% reported for numerical

and real data respectively.

A number of experiments demonstrating the technique’s ability to identify

turbulent flow structures have been conducted. Michaelis et al. (75) studied the

wake flow behind a cylinder in a water flow channel, obtaining time-resolved

measurements of the small scale 3D flow features. Although visualisation of

both spanwise vortices, and secondary connected counter-rotating structures is

enabled, the accuracy of these measurements is not indicated.

Schröder et al. (107) analysed the sub-structures within an artificially tripped

turbulent spot in a laminar boundary layer, and flow structures in a tripped

turbulent boundary layer. The measurements yielded full 3D spatial and temporal

resolution of the spot, including elucidation of rapidly forming hairpin vortex

structures. Cross-correlation peak errors of order ∼ 0.2 voxels related to a 4%
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uncertainty in the vector results.

Elsinga et al. (28) used TPIV to study the coherent structures in a turbulent

boundary layer at Reθ = 1900, reporting a dynamic range (ratio of the highest

to lowest velocities which can be resolved) of 260, which yielded a measurement

accuracy 0.1 voxel. The mean velocity profile and the three RMS components of

velocity through the boundary layer compare well with both Stereo-PIV and hot

wire results (shown in Figure 1.11).

1.5 Summary and Aims

An introduction to various turbulence analysis techniques has been given, followed

by an overview of the small scale turbulent structures and the investigations

which uncovered these. Additionally a range of experimental techniques have

been reviewed with emphasis on TPIV.

Although the scaling of the highest vorticity magnitude/lowest pressure struc-

tures has been loosely defined, there are some discrepancies between findings, with

the use of different identification schemes making comparisons difficult. Glimpses

of a hierarchical clustering system have been shown, although evidence for this is

almost exclusively qualitative. Additionally, the majority of results are severely

limited in terms of Reynolds number, and in both numerical and experimental

approaches typically only the strongest structures are considered, which may not

contribute significantly to the distribution of dissipation. Therefore, it is clear

from this review that a comprehensive unified understanding of the small scales

is proving elusive.

Previous investigations have raised a number of important questions, many

of which remain under debate: How is dissipation distributed with regard to the

coherent structures, and how does this changes with Reynolds number? Does a

vortex instability transition region exist, and if so how does this relates to the scal-

ing of the coherent structures? Why are vortex tubes more prevalent than sheets

despite the predominance of bi-axial strain? Furthermore, Richardson might be

perplexed to find that although there is wide acceptance of his original cascade

concept, the mechanisms through which it propagates are still under discussion,
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and according to some authors even the fundamental dissipation scaling has not

been satisfactorily proven for high Reynolds number flow (115; 144).

Therefore, there is a need to establish these processes over a broader range of

scales, to give a more comprehensive picture of the kinematic life cycles of these

filaments and other significant small scale structures (35). The distribution of

enstrophy and dissipation should also be examined at higher Reynolds numbers,

where increased intermittency may permit more conclusive dissipation distribu-

tion visualisation. There is also a need to further understand the time-dependent

evolution of structures, to bolster knowledge of the cascade process.

With regard to the experimental technique, although the potential of TPIV

has been demonstrated a number of aspects are not yet well understood. Cur-

rently there is little evidence of the technique’s full 3D accuracy, with studies

instead focussing on relatively thin-light sheets rather than a full volume. Fur-

thermore, previous parametric studies were limited to 2D reconstructions (30),

and used a correlation coefficient to assess the reconstruction; a measure which

does not fully represent velocity field calculation accuracy. Hence, it would be

beneficial to extend these accuracy studies into 3D using a more applicable mea-

sure of accuracy.

Therefore, the aims of the current investigation are:

• To develop fast TPIV software in order to gain better technique under-

standing.

• To conduct a series of parametric TPIV tests and accuracy simulations.

• To make DPIV and TPIV measurements over a range of Reynolds numbers

in the large mixing tank.

• To statistically characterise the flow, and compare DPIV and TPIV results.

• To characterise small scale turbulent structures in order to increase our

fundamental understanding of the complete life cycle of these events, their

significance, and their inertial scale clustering.

43



1.5 Summary and Aims

Repetition of previous TPIV parametric tests will permit a validation of the

current code, with the extension of these tests into 3D and the use of a more ap-

plicable accuracy assessment addressing the current lack of literature regarding

the accuracy of this method. The deduction of experimental measurement uncer-

tainty through a series of simulations will also permit a more complete analysis

of the results.

Due to the bias in terms of their extensive numerical study, further exper-

imental study of coherent dissipation-scale structures will be extremely useful.

These measurements will first be used to quantify measurement accuracy and

resolution and statistically characterise the flow, with comparison of 2D and 3D

results providing support for the less accurate TPIV approach. Next the 3D data

will be used to investigate the dissipation scale coherent flow structures using a

variety of methods.

It is hoped that this will provide support for the myriad of DNS and other

experimental studies, contributing towards a better understanding of the funda-

mental physical flow interactions at these scales, and thus, support the derivation

of physics-based statistical models.
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Chapter 2

Experimental Set-up and Code

Development and Optimisation

Having introduced the choice of experimental techniques in Chapter 1, imple-

mentation details will now be covered. The chapter begins by introducing the

experimental procedure and hardware set-up, before giving an overview of the

software development, optimisation, and validation through numerical and ex-

perimental tests, and post-processing details.

2.1 Experimental Set-up

This section begins by outlining the experimental facility, detailing the proce-

dure and discussing limitations imposed by the current geometry. Following this

individual set-up elements are examined, justifying the reasoning behind set-up

choices. The choice of seeding particles, timing set-up, and camera configura-

tion and calibration are discussed, in addition to water temperature and purity

control.

2.1.1 Large Mixing Tank Facility

A large number of experimental studies investigating the small scale turbulent

structures have measured the flow between between two counter-rotating disks or

impellers (1; 6; 10; 20; 21; 26; 33; 63; 127; 144).
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Rotating the disks in opposite directions at equal velocities causes the fluid

nearest the impellers to spin in opposite directions, establishing a strong shear

plane in the centre of the tank, which creates the majority of the turbulence.

Two secondary toroidal recirculation regions are formed, stretching the flow in

the central region. These component motions are shown in Figure 2.1. Due to

the axial symmetry of the tank, the shear should be zero at the axial and vertical

centre of the tank, where the measurements are made. Douady (26) observed

that the size of the largest eddies are of the same order as the impeller radius,

RI , and the characteristic velocity, U , is that of the mean rotation velocity. The

impellers are typically but not always rimmed and set at a separation distance,

∼ RI , with radial baffles used on the tank walls to inhibit global rotation, and

further increase turbulence production. While anisotropy may persist at the large

scale, the flow is known to approximate homogeneous isotropic turbulence at least

locally.

(a) Central Shear (b) Centrifugal Pumping

Figure 2.1: Streamline Representation of the flow between counter-rotating im-

pellers (La Porta et al. (63))

This flow set-up is useful for generating high Reynolds numbers with constant

energy injection at the largest scales, with the closed geometry permitting the

spatial evolution of flow structures to be studied, without these being transported

away too quickly by the mean flow. In fact the flow is similar to the Taylor-Green

vortex, although instead of having periodic no-slip boundaries the current flow

is contained by the tank geometry, therefore permitting direct comparison with

DNS results (20; 26). A statistical investigation using this geometry by Zocchi et
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al. (144) suggests the non-dimensionalised nature of the flow is comparable with

other experiments based on energy spectrum results.

The flow can be characterised through the geometry of the tank using Equa-

tion 2.1, where ΩI is the impeller rotation rate.

Re =
URI

ν
=

ΩIR
2
I

ν
(2.1)

Due to turbulent energy dissipation into heat, previous experiments have had

to consider the effects of temperature and hence viscosity drift over time during

long experimental runs, which required the use of temperature regulating pumps.

This control is only required for long run times and, as will be shown later (see

Section 2.1.11), the current experiments did not require such measures.

In order to increase the measurability of the dissipation scale structures the

current investigation made use of a more simplistic strategy than those previ-

ous discussed (see Section 1.2.2); significantly increasing the impeller radius, RI ,

which is the characteristic flow length, which increases the size and scale of these

structures. This also alleviates the problem of using relatively large particles to

study extremely small scales (127).

To this end, a very large 2m diameter dodecahedral perspex mixing tank with

two eight vane 0.8m diameter impellers, set at a separation distance of 1.25m

was used in the current investigation (shown in Figure 2.2). Water was used as

the working fluid and radial baffles were fitted to remove any net rotation. Two

micro-stepping motors controlled impeller rotation, permitting accurate speed

matching. In comparison with other experimental set-ups the predicted length

and time scales in this set-up are one and two orders of magnitude larger respec-

tively, permitting study of dissipation scale structures using the chosen measure-

ment technique.

2.1.2 Overview of Experimental Procedure

The mixing tank (Section 2.1.1) was seeded with small neutrally buoyant particles

(Section 2.1.4), and two stepper motor controlled impellers were set to counter-

rotate at a range of speeds to create a high Reynolds number mixing flow. Double

pulsed lasers (Section 2.1.6) were used to illuminate a thin volume (Section 2.1.7)

47



2.1 Experimental Set-up

(a) Mixing Tank Schematic (b) Mixing Tank during TPIV Experiment

Figure 2.2: Large Mixing Tank Facility

at the centre of the tank, using signal generators (Section 2.1.8) to control laser

pulse separation and camera synchronisation.

For the DPIV measurements, a single camera perpendicular to the light sheet

(Section 2.1.9.1) was calibrated (Section 2.1.10) and used to record the light

scattered from the seeding particles. Images were recorded at a small temporal

displacement (Section 2.1.8) allowing these to be cross-correlated (Section 2.2.6)

to produce a 2D velocity vector field.

For the TPIV measurements a number of cameras were positioned around

the volume of interest (Section 2.1.9.2), calibrated using a 3D calibration object

(Section 2.1.10), and used to record the light scattering from particles at two in-

stances separated by a small temporal displacement (Section 2.1.8). The images

were pre-processed (Section 2.2.3) before being used to tomographically recon-

struct the light intensity within the discretised volume of interest (Section 2.2.4).

These light intensity volumes were directly cross-correlated to obtain 3D velocity
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vector fields (Section 2.2.6).

Data was be collected at two sampling speeds: the first over ∼ 80 impeller ro-

tations in order to achieve statistical convergence (Section 2.1.8); and the second

at the maximum frequency available (Section 2.1.6), in order to achieve quasi-

time resolved results for analysis of coherent structure evolution. A total of four

DPIV experiments were conducted at different resolutions, which from lowest to

highest resolution are denoted as cases D1, D2, D3 and D4. A single TPIV case

was conducted, denoted as case T1.

2.1.3 PIV Limitations in the Current Geometry

In order to study coherent dissipation scale structures it is desirable to study

a large volume of interest at high resolution. However, the experimental tech-

nique and facility both impose limitations on these measurements, which are now

discussed.

In all PIV the resolution and domain size are linked (through CMOS reso-

lution and optical set-up magnification), and therefore it was decided to make

measurements at a range of resolutions; allowing a broader range of structures

to be measured and resolution effects to be quantified. The four different DPIV

resolutions are introduced in Section 2.1.9.

The application of TPIV is subject to a number of additional restrictions

stemming from hardware limitations, which limit the maximum domain size and

resolution through SNR and image density requirements. The scattered light in-

tensity is a function of particle seeding density, particle size, laser power, laser

sheet size, camera sensitivity, and camera aperture setting, while the image den-

sity is a function of the seeding density and laser sheet thickness.

TPIV is particularly sensitive to these limitations for the following reasons:

1. A thick light sheet is used to illuminate a volume of fluid, which spreads the

beam energy over a greater area; 2. To maintain a sufficient depth of field to

keep the entire volume in focus, particularly from cameras set at an angle to the

volume, smaller aperture settings must be used; 3. At the high seeding densities

required the effect of multiple scattering increases light diffusion (140). These all

serve to reduce the SNR and impose strict limits on domain size and resolution.
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The maximum measurement frequency is also limited by the SNR through the

choice of laser system; making use of lower powered but higher frequency lasers

difficult.

During preliminary testing the current set-up geometry and PIV hardware

were found to impose strict limits on the attainable volume and resolution of

measurements. Increasing the seeding beyond 10g/6000 litres (based on the seed-

ing particles described in Section 2.1.4) resulted in a rapid drop in SNR due

to multiple scattering generated diffusion, limiting the maximum attainable res-

olution. At the other end, increasing the illuminated volume dimensions over

60 × 60 × 10 mm, resulted in an unworkable reduction in the SNR. Therefore,

although DPIV measurements were made at a range of resolutions, the more de-

manding TPIV requirements only permitted accurate measurements at a single

resolution.

A range of Reynolds numbers were measured for each case, with only 5 points

chosen to minimise the considerable processing costs (see Section 2.2.4). The

Reynolds number range was chosen to maintain good resolution at the low end

while covering a sufficiently large range. Various set-up details for the different

cases can be found later in Tables 2.2 and C.2.

2.1.4 Seeding Particles

PIV is an indirect measurement technique, in that flow velocity is deduced from

the movement of small suspended particles. Therefore particle choice is extremely

important, with conflicting requirements demanding particles large enough to

scatter a reasonable quantity of light, and small enough to faithfully follow the

smallest flow structures (73). The image plane particle diameter affects both

the PIV accuracy and the image density, with a diameter of 2-3 pixels recom-

mended (100). Due to diffraction limited imaging, this size is a function of image

magnification, particle size, aperture setting, and wavelength of the illuminating

light. Furthermore, in the current set-up particle size is also limited by optical

attenuation through the volume, due to strong multiple scattering effects (140).

After testing a number of potential seeding particles, Dantec Dynamics silver

coated hollow glass spheres offered the best compromise. These are spherical hol-
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Case D1 D2 D3 D4 T1

Seeding density (Nppp) 0.015 0.010 0.010 0.010 0.020

Table 2.1: PIV seeding densities (approximate)

low Borosilicate Glass spheres with a density of 1.4g/cm3 and a diameter ranging

from 2 → 20µm, with a mean size of dp = 10µm. The highly reflective metallic

coating gives a more intense and even scattering profile across a broad range of

scattering angles, known to increase accuracy through intensity fluctuation re-

moval (106). This may be particularly advantageous in TPIV, increasing image

uniformity between cameras at different scattering angles. However, due to in-

creased scattering and absorption isotropy these spheres are likely to increase

optical attenuation.

Particle diameter is an order of magnitude less than the smallest flow struc-

tures, η/dp ≈ 10 (see Table 4.1), and due to their similar density the particles

are therefore expected to follow the flow faithfully. Furthermore, these mono-

dispersive particles should limit the variation in scattering intensity between par-

ticles, and ensure similar response to fluid acceleration.

Seeding density estimates for each case were measured after each experiment

using a particle tracking algorithm to identify particle centres, averaged over ten

randomly selected images, and expressed in Table 2.1 in particles per pixel.

2.1.5 Water Purity Control

To ensure the water contains no large particulate matter other than the intended

seeding, and to prevent lime-scale deposits, a series of water control measures

are used. Supply water is passed through a water softener, before being filtered

twice using 100µm and 1µm mesh diameter filters. The tank is kept in darkness,

and a weak Copper Sulphate II solution is used (1g/1000 litres) as a herbicide to

prevent organic growth.

2.1.6 Laser Systems

The seeding requirements require the use of very small particles (Section 2.1.4).

Therefore, to produce images with a reasonable SNR and meet stringent pulse
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duration and pulse separation restrictions (95) a high powered double pulse laser

light source is required (2).

A New Wave Gemini PIV 120-15 laser system was used for the majority of the

results. This is a water-cooled, dual-head, flashlamp pumped, Nd:YAG system.

At the maximum repetition rate of 15Hz, the energy per pulse is 120mJ at a

wavelength of 532nm, with a pulse width of 5ns. Due to the relatively slow nature

of the flow (See Table. 4.1) it was possible to achieve quasi-time resolved results

at this repetition rate for the majority of cases. That is, it is possible to follow the

evolution, and interaction of flow structures as they pass through the volume of

interest. The sacrifice of full time resolution at all Reynolds numbers is necessary

due to the lighting requirements, and extension of these results may have to

await further development in high-power, high-repetition rate laser systems (See

Section 6.5).

The less demanding DPIV power requirements allowed a New Wave Pegasus

PIV laser system to be used for the D3 case. This is a water-cooled, dual-head,

high repetition rate, diode-pumped Nd:YLF system. At 2kHz, the energy per

pulse is 10mJ at a wavelength of 527nm, with a pulse width of 135ns.

Despite the advantages offered by Nd:YAG lasers in terms of high energy and

short pulse duration, Raffel et al. (100) note that due to thermal lensing issues the

beam quality tends to be low in comparison with continuous wave lasers. High

power beams tend to have very poor beam profiles with hot spots and different

ring modes, producing uneven illumination between pulses and within the same

light sheet, and increasing measurement uncertainty.

2.1.7 Sheet Expansion

Both DPIV and TPIV experiments require laser beam expansion from a point

source into sheets of varying height; a thin sheet for the DPIV, and a thick sheet

or ‘slab’ of light for TPIV.

In the DPIV experiment the beam was expanded and then re-collimated by

passing it through two cylindrical lenses (see Figure 2.3). The re-collimation is

imperfect by design and the resulting sheet is weakly expanding, with relative
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lens positioning allowing a variety of sheet sizes. The measurement point sheet

thickness is 1.5mm.

To produce the thick sheet the laser beam was first passed through a Galilean

beam expander (consisting of a plano-convex and an achromic lens series, as

shown in Figure 2.3) to create the desired beam width, before being expanded

into a sheet as before. This produces a ovoid shaped beam cross-section which

could then be clipped to produce the required rectangular cross-section, with a

thickness of 10mm.

Figure 2.3: Beam Expansion

2.1.8 Timing Set-up

DPIV and TPIV timing set-ups differ only in the control of multiple cameras.

Three Thurlby TGP110 pulse generators were used to create the correct input

signals for the cameras and laser, with signal timing measured using a Tektronix

TDS 2002 digital oscilloscope, and cameras controlled through Photron FAST-

CAM Viewer V2.4.5.2 software. Exact set-up details, and configuration diagrams

can be found in Appendix C.

The time increment, δt, must be carefully chosen to allow the particles to

displace by a distance which is both large enough to give a reasonable dynamic

range, and small enough to allow accurate displacement evaluation and minimise

out-of-plane particle loss. This time increment is adjusted for each Reynolds num-

ber to maintain a reasonable mean image particle displacement ∼ 5 pixels/voxels.
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This rule of thumb was derived from a comparison of different time increments,

and is similar to previous investigations (82)

The shear plane location is likely to be unsteady with a frequency propor-

tional to the impeller rotation rate, and therefore the measurement frequency

should be much longer or shorter than this. For the statistical study 1000 fields

were collected over 80 impeller rotations to ensure good statistical convergence

(see Section 4.1.2), with these timings and camera software set-up details again

included in Appendix C. 500 fields were also captured at the maximum laser

repetition rate of 15Hz.

2.1.9 Camera Configurations

In PIV the appropriate lens, distance between the object plane and lens, and

aperture setting must be carefully chosen to provide the desired field of view

(FOV) and depth of field (DOF), while allowing enough light to give a reason-

able SNR. Narrow apertures produce darker images with larger DOF, and wider

apertures produce brighter images with a smaller DOF. Additional choices must

be made to accommodate multiple cameras in the TPIV set-up, with reconstruc-

tion accuracy consideration. Images were written to disk as loss-less 16 bit TIFF

files.

2.1.9.1 DPIV Camera Configuration

A single 1024× 1024 pixel CMOS Photron APX was positioned perpendicular to

the light sheet (through alignment with the relevant tank face) using a Manfrotto

055XPROB tripod and Manfrotto 410 geared head, at a distance of 1100mm

from the measurement point. Details of the lenses, aperture settings, FOV, and

resolution can be found in Table 2.2 for the different resolution cases. The camera

was focused manually, initially using the calibration plate, and then using the

illuminated particles themselves. Correct particle focus is extremely important,

and therefore this extra focusing stage is crucial to ensure high quality images.

After the particle focus, the calibration plate is repositioned, and imaged.
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Case lens(es) f/# FOV resolution

(mm2) (pix/mm)

D1 60mm Nikon 2.8 212× 212 4.8

D2 105mm Sigma 2.8 117× 117 8.8

D3 180mm Sigma 3.5 77.4× 77.4 13.2

D4 180mm Sigma 3.5 32.0× 32.0 32.0

& 2× Komura teleconverter

Table 2.2: PIV camera configuration parameters

2.1.9.2 TPIV Camera Configuration

In TPIV the volume of interest must be imaged from different angles, with the

choice of these directly related to reconstruction accuracy and illumination level

(through depth of field requirements and corresponding aperture restrictions, as

discussed in Section 2.1.3). Previous numerical investigations recommend an an-

gle of 40−50◦ (see Section 2.3) based solely on reconstruction accuracy. However,

illumination difficulties required the following compromise to be reached.

Four 1024 × 1024 pixel CMOS Photron APX cameras were positioned using

Manfrotto 055XPROB tripods and Manfrotto 410 geared heads. Three cameras

were fitted with Sigma 180mm lenses and the fourth with a 200mm Nikon lens,

using aperture settings of f = 1/8. These were angled in the yaw and pitch planes

by θ = [−30, 0, 0, 30]◦ and φ = [0, 15,−15, 0]◦ respectively, contained therefore

within a solid angle of [60, 30]◦. The cameras are positioned 1100mm from the

measurement volume, which gives a FOV of 70 × 70mm2, with a resolution of

≈ 15pixels/mm.

As the cameras are now angled with respect to the object plane, the depth of

field required to keep the region of interest in focus will increase with the tangent

of the angle. Therefore, in order to maintain a low aperture settings and keep

the light intensity high the lens plane has been angled with respect to the image

plane; a practice described by the Scheimpflug condition. The technique results

in a wedge shaped depth of field, bringing an angled object plane into focus, and

allowing reasonably low aperture settings to be used. At these settings the lenses

give a depth of field of ≈ 20mm, which is large enough to keep the entire volume

of interest in-focus.
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Water filled perspex prisms are positioned between the central cameras and

the tank, to correct for the refractive index effects through the air/perspex/water

interface. Prasad & Jensen (96) showed through use of liquid prisms the optical

radial distortion can be significantly reduced.

2.1.10 Camera Calibration Hardware

In DPIV, to convert from a displacement in pixels measured on the image plane to

an object plane displacement in SI units it is necessary to calibrate the camera.

By carefully aligning the light sheet parallel to the image plane and assuming

negligible image distortion, calibration can be performed by imaging a target

of known dimensions. A calibration constant can be defined by measuring the

distance between points (spanning the majority of the field of view) on the image

plane and relating these to the actual distance between the two reference points.

TPIV requires a more involved calibration function to relate each image plane

pixel position to a line of sight through the volume of interest for each camera. To

calculate the necessary 3D calibration mapping function, an image or images of a

calibration target with known 3D geometry should be acquired (112). A sufficient

number of points for least squares regression should spread over the entire field

of view, with spacing inversely proportional to image distortion (112).

Using a translation stage to move a single plane calibration object in the

mixing tank would be difficult, due to the access point distance from the region of

interest, adding unnecessary complexity. It was therefore decided to manufacture

a single piece 3D calibration object, with a number of different designs created

and tested before a printed design was chosen (see Figure 2.4). This method

allows extremely small calibration dots to be produced, which are less affected

by uneven illumination.

Two regular arrays of 23 × 23 7 pixel diameter black circles with a point

spacing of 5.67mm were created using the GNU Image Manipulation Program

2.4.2, and printed at 600dpi onto acetate sheets. These were cut to size, and

affixed to either side of a 75×75mm2 piece of clear 10mm perspex using Tensol-70

cement, pressed flat to create a clear interface. The two arrays are misaligned to

facilitate point identification. Due to imperfect pressing the z-direction variation
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(a) Drilled perspex (b) Anodised Aluminium (c) Printed

Figure 2.4: Different calibration plate designs

was measured as ±0.05mm, and the accuracy in the x and y directions can be

related to the printing resolution of 0.04mm. To take account of any misalignment

between the planes, the misalignment is measured at the four corners of the plate

using microscope and traverse table (accurate to within 0.01mm), and the global

locations are adjusted according to a linear interpolation of these measurements.

The printed calibration plate was attached to an adjustable stainless steel frame,

allowing it to be precisely positioned at the tank centre, through careful use

of adjustment screws. Correct positioning was confirmed by firing the laser on

a low power setting and adjusting the frame as required. Following the sheet

path through the perspex calibration plate allowed accurate parallel alignment.

A translucent white plastic backing was affixed to the calibration plate, which

could then be backlit using two 250W projector beams. The calibration plate

images were used to derive image/global scaling parameter for DPIV, and camera

calibration functions for the TPIV experiments (see Section 2.2.1).

2.1.11 Water Temperature

The water temperature is measured at the start of each experiment with a mer-

cury thermometer, to an accuracy of ±0.5◦C. Other similar experimental designs

are required to regulate the temperature, as the dissipation of turbulent kinetic

into heat raises the fluid temperature significantly (127). However, the large vol-

ume of water used in the current set-up results in a negligible temperature change.

The accuracy of the temperature reading (±0.5◦C) will give rise to around a 1%

uncertainty in the kinematic viscosity. Therefore, the dissipation estimates will
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include an additional 1% uncertainty, although the estimates of other quanti-

ties such as the Kolmogorov length and time scales will only vary by 0.3% and

0.6% respectively. In comparison with other error sources this error is considered

negligible.

2.2 Data Processing

In order to gain a better understanding of TPIV it was decided to develop a

complete software suite, to process raw data in the form of calibration and particle

field images, and produce velocity vector fields. Additionally, development of this

software has allowed an independent study of the factors affecting reconstruction

accuracy to be made (see Section 2.3).

The flow diagram shown in Figure 2.5 gives an overview of the data processing

procedure. Each process will now be discussed in the following sections, including

software design details and choice of key parameters.

2.2.1 Camera Calibration

Popular choices for the camera calibration function are the pin-hole (135) and

polynomial model (112); the former creates a volumetric mapping by fitting the

object and image plane points to a simple pin-hole camera model with added lens-

distortion parameters; whereas the latter fits the data to a third-order polynomial

in x and y at multiple z locations. Both approaches typically use least-squares

regression to fit the data to the selected camera model.

In addition to defining the image-object mapping, the polynomial model has

the ability characterise and correct for optical distortion caused by optical mis-

alignment, lens aberrations, and/or refraction from media interfaces (112). There-

fore, for these reasons and its implementation simplicity, a 3rd order polynomial

calibration function was used in the current investigation (similar to Mann et

al. (86)). Sollof et al. (112) recommend a 3rd order model, and despite testing

higher order functions up to 5th order in the present investigation, negligible

accuracy benefits were obtained.
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Figure 2.5: TPIV Flowchart
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The calibration routine was written in MATLAB and requires the user to es-

timate the image plane position of three central points for each plane (referred

to as the ‘Lambda’ points) and define the point spacing, the separation between

planes, and the misalignment between planes at four locations. The calibration

images are inverted, bandpass filtered, and the background noise is subtracted,

after which the Lambda point estimates are refined using a centroid approach.

The routine finds the remaining calibration points by estimating their position

based on extrapolation from the Lambda point positions and spacing, using a

robust least squares approach, which is refined to include new points as they

are identified and validated. Examples of these stages are shown in Figure 2.6.

The real space co-ordinates are also calculated, taking account of the misalign-

ment between planes, and making a refractive index correction for the back plane

points.

(a) Original Image (b) Lambda Points (c) All Points

Figure 2.6: Example Calibration Point Detection

Calibration functions are defined by a series of coefficients, fkij, in a 3rd order

Taylor series expansion in x and y for each z plane and for each camera, centred at

the image centre co-ordinates, xcen and ycen (see Equation 2.2). The coefficients

are obtained by fitting the real and image space mark co-ordinates using a robust

least squares approach. The reverse transformation is also calculated for later use

in the self-calibration routine (Section 2.2.2) and PIV simulations (Chapter 3).

Fk(xim, yim) =

np∑
i=0

np−i∑
j=0

fkij(xim − xcen)i(yim − ycen)j (2.2)
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Once the Calibration function has been derived, it can be used to assess the

calibration accuracy. The real space coordinates of the calibration points are

transformed (mapped) into image space coordinates using the calibration func-

tion. These coordinates are then compared with the original positions of the

calibration marks on the image plane, with the mean difference representative

of calibration accuracy. This accuracy value, expressed in image coordinates,

is comparable with the measure used in previous investigations (31), and the

accuracy studies conducted in the present report. A typical mean mapping ac-

curacy of 0.25 pixels is achieved, which is sufficient for accurate TPIV results

(see Section 2.3.3). However, it should be noted that this assessment fails to take

account of real space co-ordinate errors, and as such may overestimate calibration

accuracy.

2.2.2 Self-Calibration

Stringent TPIV calibration requirements can be addressed by ‘self-calibration’ (132),

in which the calibration is refined based on particle images, thereby removing any

residual error from calibration plate inaccuracies. In self-calibration real space

particle positions are triangulated from their image projections as functions of

the current calibration. Particle field images are used, with thresholding applied

to retain only the strongest particle signals. The mean perpendicular distance

between the triangulated particle centres and the converging lines of sight gives

an estimate of the calibration error, which can then be minimised by updating

the calibration to reduce this distance.

Due to the use of a pin-hole camera model, Wieneke details a method where

this disparity calculation is performed at discrete points in the volume, with the

update based on the mean displacement at these locations (132). In the current

investigation, self-calibration software was written in MATLAB, with the current

two plane 3rd order polynomial calibration system allowing a slightly different

approach.

Again particle location through triangulation was used, with a similar method

to Wieneke (132). Groups of possible matching lines of sight are defined as follows:

after image pre-processing particle centres are located on each image using a
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centroid approach and stored as lists. For each particle, the line of sight through

the volume from the first image is mapped onto the second image. Particle centres

close to this line of sight are shortlisted, and their the lines of sight together with

that from the particle in the first image are mapped onto the third image. This

process is repeated for the fourth image. All possible combinations of shortlisted

lines of sight are tested, and the set which minimises distance between the lines

of sight and particle centre location are grouped (86), and removed from the

respective particle centre lists. An example of this process is shown in Figure 2.7,

with the line of sight from a single particle identified in Figure 2.7(a), traced

across all other images to identify possible matches.

 

 

Im. 1 part.

(a) Image 1

 

 

Im. 1 LOS

Im. 2 parts.

(b) Image 2

 

 

Im. 1 LOS

Im. 2 LOS

Im. 3 parts.

(c) Image 3

 

 

Im. 1 LOS
Im. 2 LOS

Im. 3 LOS
Im. 4 parts.

(d) Image 4

Figure 2.7: Example self-calibration point detection

Real space particle locations were then projected using the inverse transfor-

mation onto the front and back calibration planes, using an iterative refinement

approach. Updated calibration coefficients are calculated from a robust least

squares fit relating the updated calibration plane positions to the original parti-

cle image locations. These updated calibration coefficients are then used to refine

the entire self-calibration process, which is iteratively executed over 3 passes.

This approach offers a number of potential advantages over the pin-hole cam-

era volumetric approach, such as: use of all particle positions on each plane,

ensuring an accurate fit and requiring fewer fields; and a simpler approach which

removes any effects of arbitrary disparity map discretisation. For later use in

the TPIV simulations (see Section 2.8) calibration disparity maps were still pro-

duced (shown in Figure 2.8) by identifying the mean local difference between the

original and updated particle image co-ordinates.
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0.2 pixel

(a) Image 1

0.2 pixel

(b) Image 2

0.2 pixel

(c) Image 3

0.2 pixel

(d) Image 4

Figure 2.8: Self-calibration disparity maps; LOS=line of sight

The accuracy is assessed by transforming the real space coordinates of the

particles into image space, and calculating the mean difference between these

positions and the original image plane particle positions. The typical mean accu-

racy after self-calibration is reduced to around 0.15 pixels. Quantitatively, only

a slight improvement in accuracy is realised, which may be due to the previous

accuracy overestimation. It should also be noted that this measure of accuracy

is dependent on user defined threshold for grouping particles. For example a

high threshold will only allow very closely defined particle matches, which will

result in a low calibration error, and therefore this measure should be treated

with some caution. However, after the bundle adjustment implicit in the self-

calibration method, there is a significant reduction in camera misalignment and

corresponding improvement in the tomographic reconstruction (132).

2.2.3 Image Pre-processing

As discussed by Elsinga et al. in several papers (29; 31) image pre-processing

significantly increases accuracy through a reduction in noise, with local intensity

normalisation and Gaussian smoothing recommended (29). It is also necessary

for a number of the cost reduction methods detailed in Section 2.2.4.

An image pre-processing routine was implemented in MATLAB. Initially a

blank image is defined as the mean image intensity from all particle fields. Sub-

tracting this from each image reduces camera noise due to light sheet diffusion

and hot-pixels. After which bandpass filtering is performed using a 3 × 3 Gaus-

sian kernel, subtracting background noise below a user defined threshold. Local
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intensity normalisation is performed, before repeating the bandpass filtering and

background noise removal operations (shown in Figure 2.9).

(a) Original (b) After bandpass (c) After local norm.

Figure 2.9: Example of image pre-processing in a 50× 50 pixel window

2.2.4 Tomographic Reconstruction

In order to test the fundamental principles of TPIV and to make an independent

study of the factors affecting reconstruction accuracy a 2D Tomographic program

was written in MATLAB and a series of 2D studies performed (see sections 2.3.1).

This also allowed some familiarity with iterative reconstruction techniques to be

established before extending the code into three-dimensions, and translating it

into FORTRAN 90.

The tomographic reconstruction software is based on an implementation of

the MART algorithm (see Section 1.4.2), employing similar basis functions and

pixel/voxel intersection relationships to Elsinga et al. (30). Thus, the volume is

discretised into voxels which take a non-zero value inside and zero outside. The

weighting values between pixels and voxels are determined by the distance be-

tween their centres and their relative sizes, based on the approximation of the

intersecting area between a circle and rectangle, which are a simplified represen-

tation of the voxel volume and pixel line of sight respectively.

During code development the technique restrictions due to computational cost

became clear; large spatial domains, high resolution images, and use of an iter-

ative technique require both a huge number of calculations and a vast quantity
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of RAM (random access memory) to store variables during processing. For ex-

ample, resolution of a 700 × 700 × 140 voxel volume imaged with 3 cameras set

at 0◦ and ±30◦ would require 4.8 × 1012 floating point operations (FLOP), and

ignoring programming overheads, if run on a standard single core 3GHz processor

would take approximately 25 minutes. Moreover, storing the W matrix for this

calculation would require 13.2 GBytes of RAM, which far exceeds the current

standard of approximately 1-2 GBytes (see Appendix A). Addressing these com-

putational costs was necessary during the program development, and a number

of programming solutions were employed.

MATLAB is originally an interpreted rather than a compiled language, and

despite the ability to compile code, executing times are considerably slower than

languages such as FORTRAN and C (25). Therefore, re-writing the code in

FORTRAN 90 with the Intel Fortran compiler permitted a speed increase of ap-

proximately 50 times. Additionally, the code was parallelised using the OpenMP

interface.

A new processing method was developed based on a ‘Multiplicative First

Guess’ (MFG) of the intensity field (See Section 2.2.5), which cuts the number

of voxels requiring the expense of MART algorithm iteration by approximately

95%, for typical seeding densities and domain aspect ratios (138). This first guess

is so close to the final solution, that it contains sufficient information to directly

obtain reasonable cross-correlation results (explored further in Section 2.3.3).

To reduce memory requirements W matrix values are only calculated when

required. This ‘on the fly’ approach requires values to be re-calculated for every

iteration and for every volume requiring reconstruction. However, after the first

guess only the values relating to non-zero voxels are required. Testing demon-

strated that this method only increases the reconstruction time by ∼ 15% (as-

suming 5 iterations) and therefore although being slightly more computationally

intensive, this method provides an acceptable solution.

As discussed in Section 1.4.1 voxel update order has a significant effect on con-

vergence (18). Finding the optimum order would be computationally expensive,

however even a random order will increase convergence (17) and is therefore em-

ployed. The RMART algorithm is also employed, with re-scaling affected through
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the basis functions, although this does not generally result in significant time sav-

ings. Other measures include filtering insignificant updates, and use of ordered

look-up tables to reduce weighting array value calculation times.

Specifically in the current investigation, the T1 case uses a 60 × 60 × 12mm

volume discretised at 15voxels/mm to create a 900×900×180 voxel volume, with

a pixel to voxel ratio of approximately 1. An under-relaxation parameter of 1 is

used in the RMART algorithm, which after the multiplicative first guess is ap-

plied iteratively over 3 passes. Application of the first guess procedure accelerates

convergence, and allows fewer iterations in comparison with previous investiga-

tions (see Section 2.3.3). Processing was performed on a 2 × 3GHz Quad-core

Intel Xeon workstation (MAC OSX 10.4.11) with 16GB of RAM. The mean pro-

cessing time per field (including cross-correlation) was 12.4 minutes, with 7500

fields processed in around 6 weeks.

2.2.5 Multiplicative First Guess

Using an iterative algebraic approach requires an initial volume intensity distri-

bution to be set, which can then be updated using a reconstruction algorithm.

The most basic first guess is uniform intensity throughout the volume; a solu-

tion commonly employed in other investigations (28; 31). As in CFD, a poor first

guess will slow solution convergence, with a uniform intensity distribution forcing

the algorithm to search every voxel during the initial iteration. A better approach

would be to set the intensity field so that only regions that will contain blobs of

intensity after the reconstruction are given an initial value. In other words, find

regions within the volume to which non-zero intensity contributions are made

by all cameras, and set any voxels outside these regions to zero intensity. This

is justified by considering the update of a voxel within the volume: irrespective

of updates from other high intensity pixels, if just one strongly correlated pixel

contains zero intensity this will dominate the voxel update, and its intensity will

tend towards zero.

Several new first guess methods were created by calculating the current pro-

jection pTW of each camera through the volume (Figure 2.10). This extends
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(a) Artificial particle distribution (b) Camera 1 current projection

(c) Camera 2 current projection (d) Camera 3 current projection

Figure 2.10: 2D projections (3 cams at 0◦ and ±30◦)

(a) Artificial particle distribution (b) Uniform first guess field

(c) Additive first guess field (d) Multiplicative first guess field

Figure 2.11: First guess scheme comparison (3 cams at 0◦ and ±30◦)

intensity from each pixel along its line of sight, creating a series of constant in-

tensity streaks through the volume for each camera. Overlapping regions were

either set to a uniform value, summed, or multiplied (Figure 2.11), creating dif-

ferent initial fields. This places intensity only where all lines of sight converge,

and in the latter two cases the magnitude of that intensity becomes dependent on

all camera contributions. If any contribution to a particular voxel is zero, then

the voxel intensity will be zeroed; accelerating the inevitable fate of the voxel

under the MART scheme. In the case of the multiplicative first guess (MFG)

scheme, the intensity magnitude is also normalised by raising it to the power

1/Ncam, where Ncam is the number of cameras, to ensure relative field magnitude

continuity. Thus, the elimination of a huge number of voxels from the iterative

calculation is performed through simple matrix multiplication, without requiring
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the expense of the MART algorithm (Equation 1.20), thereby reducing compu-

tational costs significantly (Detailed in Appendix A).

(a) Artificial particle distribution (b) MFG field (3 cams at 0◦, ±30◦)

(c) MFG (4 cams at 0◦, ±30◦ and 60◦) (d) MFG field (5 cams at 0◦, ±30◦ and ±60◦)

Figure 2.12: Effect of additional cameras on the MFG intensity field

The currently proposed MFG scheme appears to offer the most accurate es-

timate of the solution, and is therefore recommended over the other previously

mentioned schemes. The effect of adding cameras to the system can also be shown

to further increase the accuracy of this first guess (see Figure 2.12), offering more

well-defined intensity distribution in local regions of high particle density, and

more effective elimination of Ghost Particles.

(a) Artificial image (b) Initialised intensity field

Figure 2.13: Predictive regions first guess procedure

Although not considered in this study, an additional PIV based first guess

mechanism could be used. If the maximum possible particle displacement is well

understood, the probable region in which a particle may be found in a subsequent

frame of a pair of images, or indeed subsequent pairs of images should be deter-

minable to within certain limits. Therefore a spherical radius of possible intensity

surrounding the likely particle location could be created, which could also take
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account of the mean flow velocity (shown in Figure 2.13). Taking account of local

flow velocity could permit a tighter radius of probable locations, although this

would be more involved. Combined with the previous criterion, further compu-

tational savings may be possible. However, highly intermittent flow may require

the use of large radii, and the implementation costs of this scheme may render it

unworkable.

2.2.6 Displacement Evaluation

Currently a bewildering array of correlation techniques exist with no commonly

agreed standard. In response to this the ‘PIV challenge’ initiative (117; 118) com-

pared algorithms using synthetic and experimental data. Despite classification

difficulties arising from various algorithm subtleties, the following general trends

were observed: Gaussian sub-pixel estimation and multi-pass window shifting are

both widely adopted; around 50% of the algorithms tested employed some form

of window deformation; and local median or mean filters are popular choices for

post-processing. In their analysis, Stanislas et al. (117; 118) conclude that the

majority of algorithms produce similar results. Only modest improvements are

seen for the more advanced algorithms (most results are within 0.1→ 0.2 pixels),

which interestingly come at the expense of robustness (especially with regard to

image quality (117)), in addition to computational cost and implementation com-

plexity. Furthermore, despite evidence to suggest that these advanced algorithms

improve results in high gradient regions, it should be noted that they also have

a tendency to overestimate quantities such as the vorticity (117).

Initially both 2D and 3D cross-correlation software was developed in MAT-

LAB, to gain a better understanding of different correlation techniques and reduce

development time. The code was then translated to FORTRAN 90 and incor-

porated into the tomographic reconstruction algorithm. Davis 7.2 software was

used to process the DPIV results.

The present TPIV cross-correlation software employs a Fast Fourier Transform

(FFT) based correlation process, using Gaussian correlation plane smoothing

before the inverse transformation. The correlation plane is multiplied with a

triangular weighting function to correct for the known velocity under-prediction
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bias (detailed by a number of authors (100; 129)). A Gaussian curve fit method

is used to achieve sub-pixel accuracy, which due to its effective minimisation

of bias error and implementation simplicity, is recommended by a number of

authors (100; 129).

A multi-pass recursive window-shifting approach is adopted, using vector val-

idation and Gaussian smoothing of the velocity field between passes, with inte-

ger window displacements based on linear interpolation of the smoothed fields.

This approach is relatively simple to implement, has a low computational over-

head (105), and will reduce the detrimental effects of in-plane particle losses (57),

allowing smaller interrogation regions to be used to obtain higher spatial resolu-

tion.

Due to increased algorithm complexity and computational cost, balanced

against the potential gains in accuracy (2) it was decided not to implement win-

dow deformation.

Increasingly over-sampled data is subject to more severe coupling effects as

neighbouring cells lose independence. Furthermore, the measurement noise re-

mains constant even if the distance between neighbouring grid cells is reduced,

increasing the uncertainty of the differential quantity estimation as the overlap in

increased. Therefore, an overlap of 50% is recommended (100), providing a good

compromise between resolution and accuracy. The size of the smallest interroga-

tion windows was set by the requirement to have a minimum number of particles

within the window (detailed in Table 2.3).

The vector validation subroutine follows the methodology of Westerweel (128),

comparing vectors across a 3× 3× 3 mask, rejecting vectors which exceed twice

the median RMS velocity in any component. A multi-pass approach is again

applied, retaining only valid vectors for the final comparison, and extending the

mask to 5 × 5 points in the case of an insufficient number of valid data points.

Spurious vectors are replaced with vectors derived from the second and third

highest correlation plane peaks and revalidated as detailed by Raffel et al. (100),

to be finally replaced by a mean value in the case of repeated failure.

Similar options were selected for the DPIV processing, with the only major

difference being the use of window deformation in this code. A summary of the

cross-correlation options is presented in Table 2.3.
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Technique Overlap Passes IW1 IW2 IW3 IW shift IW def. Vectors Vec. Val.

DPIV 50% 3 1282 642 322 yes yes 64× 64 median

TPIV 50% 3 803 503 323 yes no 51× 51× 8 median

Table 2.3: PIV processing options

2.3 Code Validation and Optimisation Studies

During the project the TPIV software was validated and optimised using a variety

of numerical and experimental tests, which are over-viewed in this section.

Initial testing was by performed through a series of numerical studies. 2D and

3D parametric studies were conducted and compared with previous results (28),

based on a similar measure of reconstruction accuracy. Following these, the new

MFG method was analysed, with parametric studies based on an accuracy anal-

ysis technique more applicable to PIV.

Following this a series of experimental tests were carried out to first recon-

struct a real object, then assess the displacement of ‘frozen’ particles on a traverse,

and finally to resolve a simple laminar vortex ring flow field. These tests formed a

valuable part of the code development and optimisation; permitting an informed

choice of reconstruction parameters to be made in the main investigation.

2.3.1 2D Parametric Testing

A parametric reconstruction accuracy study was conducted using the MATLAB

based 2D Tomographic reconstruction code, allowing comparisons with Elsinga et

al. (31). A summary of the results are included below, and for further information

the reader is referred to Worth & Nickels (140).

The 2D code effectively reconstructs a 1 voxel slice of the 3D volume; so the

object can be considered as a 2D area and the camera projections as 1D images,

which are related through simple geometric relationships as opposed to a more

complex camera model. A random distribution of particles, modelled as Gaussian

intensity blobs, are created in the discretised domain, and the intensity of each

pixel is projected to create a set of artificial images. The images are processed

using the MART algorithm to reconstruct the original particle distribution.
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A 500× 200 pixel domain was reconstructed using artificial 500 pixel images,

with a correlation coefficient between the reconstructed and original artificial do-

main applied as a measure of reconstruction accuracy. Parametric tests show the

effect of varying seeding density, number of cameras, camera angle, calibration er-

ror, image noise, and discretisation; performed with and without the interference

and capping blocking models.

(a) Seeding density (b) Camera number

(c) Camera angle (d) Discretisation

Figure 2.14: Example of 2D parametric study results

Figure 2.14 shows close agreement with the previous study (30) for all vari-

ables except camera angle, which are only slightly different. A useful addition

was the quantification of volume discretisation effects shown in Figure 2.14(d),
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which demonstrate that increasing the pixel to voxel ratio beyond a value of 1

yields only modest accuracy benefits. Therefore, through this ratio, a given cam-

era resolution will dictate volume discretisation according to users’ preference of

accuracy against computational costs.

2.3.2 3D Parametric Study

A number of parametric studies were repeated using the 3D algorithm in order

to determine additional reconstruction effects. Using a similar methodology to

the 2D study, an artificial particle distribution was created in a 700× 700× 140

voxel volume, which was then reconstructed from three artificial 700× 700 pixel

images.

(a) Seeding density (b) Image noise

Figure 2.15: Example of 3D parametric studies

Comparing 2D and 3D results (Figures 2.15) highlights a sharp accuracy drop

for similar set-ups. Although not explicitly stated, a similar drop in accuracy

is shown in Elsinga et al. (31), where a 4-camera 3D reconstruction returns a

correlation coefficient of 0.75; far lower than the value of 0.94 given for a similar

2D reconstruction.

This accuracy drop can be attributed to increased ‘intensity smearing’ due to

the addition of an extra dimension. Image intensity from a single pixel will be

distributed over 2 voxels (in each row of the object) in a 2D case, but 4 voxels in
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3D. Therefore this extra ‘smearing’ may affect the correlation coefficient, but is

unlikely to affect cross-correlation accuracy, which can take account of coarsely

discretised intensity in the correlation plane using a sub-pixel estimator. Aside

from this accuracy drop these results showed similar trends to the 2D study, with

increases in seeding density, calibration error, and image noise all leading to a

loss of reconstruction accuracy.

2.3.3 A Cross-Correlation Based Accuracy Analysis

In order to quantify the impact of the new MFG method on reconstruction ac-

curacy and computational workload, a numerical study of an angled line vortex

flow field was conducted; including a parametric investigation of iteration num-

ber, seeding density, camera angle, image noise, calibration error, and first guess

scheme. In this study a cross-correlation based accuracy assessment was used

in place of the previous correlation coefficient method, which is a more applica-

ble measure for PIV investigations. A summary of the results follows, and for

more detailed set-up information and discussion the reader is referred to Worth

& Nickels (138).

(a) MFG, kit = 0 (b) MFG, kit = 5 (c) UF, kit = 5

Figure 2.16: Comparison of reconstructed displaced particle fields X-Y plane

view; MFG=multiplicative first guess; UF=uniform field; kit=number of itera-

tions

The new MFG method was shown to accelerate convergence, providing a rea-

sonably accurate solution even before MART algorithm implementation. Recon-
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(a) Iteration # - large volume (b) Seeding density- large volume

(c) Camera Angle - small volume (d) Calibration Error - small volume

Figure 2.17: Error variation with number of iterations and seeding density

75



2.3 Code Validation and Optimisation Studies

struction times were 175 and 35 times faster theoretically and during practical

application respectively (See Appendix A). Solution robustness to degradation

through camera misalignment was also enhanced, although after iteration this

advantage appears not to hold. These results also indicate fewer iterations can

be used in comparison with previous investigations (31) to reduce computational

expense with only a fractional reduction in accuracy.

The parametric study results for seeding density and camera number appear

to largely support the previous investigation (31), although the present study

suggests that the benefit of a fifth camera is less clear, especially at high seed-

ing densities. These results also show the solution is less noise sensitive than

previously indicated, and slightly wider camera angles give optimum accuracy,

although only yaw was considered.

2.3.4 Experimental Validation Testing

The first practical operability test was to reconstruct a translucent plastic frame

with a number of regularly spaced cells (see Figure 2.18), reconstructing a 200×
150×50 voxel volume from four 360×258 pixel images, taken within a solid angle

of 30◦ × 40◦, with a calibration accuracy of 0.55 pixels.

(a) Actual image (b) Intensity plot (c) Background removed

Figure 2.18: Object image before and after pre-processing

Reconstruction accuracy was assessed through frame cell spacing, depth, and

wall thickness measurements. Despite imperfections due to insufficient views

of the relatively complex object, poor calibration accuracy, and limited camera
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angles, the object was reconstructed reasonably successfully. The real and recon-

structed object’s cell dimensions were measured a number of times (25 in each di-

mension), with the difference between the two used as a measure of accuracy. The

RMS differences in the [x, y, z] directions were calculated as [1.16, 1.34, 1.66]mm.

Due to a pixel/voxel ratio of ≈ 1, accuracy to within a single voxel (1mm) is all

that can be demanded of the reconstruction, and therefore this test was consid-

ered successful.

(a) Reconstruction - isometric view (b) Reconstruction - x− y

Figure 2.19: 4 camera plastic frame reconstruction - small inner section

2.3.5 Reconstructing Frozen Particles

A more applicable test was performed by imaging a random distribution of 100µm

particles set into a cube of clear polyurethane resin. A known displacement was

applied using a motorised 2-axis translation stage (shown in Figure 2.20). A

30 × 30 × 30mm volume was reconstructed over a range of discretisations using

three 360 × 258 pixel images, taken within a solid angle of 50◦, with a camera

calibration accuracy of approximately 0.28 pixels.

An example of the volumetric reconstruction is shown in Figure 2.21(a) with

blue and red colour maps representing the original and displaced particles re-

spectively. The mean displacement was calculated using cross-correlation and a

correction for the known backlash error is applied. Figure 2.21(b) demonstrates
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Figure 2.20: Perspex block and calibration plate mounted on traverse

the software ability to produce good particle displacement estimates. The ac-

curacy is assessed comparing the measured PIV displacement with the traverse

displacement, with the percentage error expressed as a fraction of the latter,

taking a value of approximately 4%.

(a) Particle reconstruction - isometric view (b) Mean displacement x− z plane

Figure 2.21: Reconstructed volume and Mean Displacement after Cross Corre-

lation; (a) blue and red colour maps for original and displaced particle fields

respectively
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2.3.6 Simple Vortex Ring Flow Field

To test the software on a real 3D flow field and demonstrate the MFG method, a

simple vortex ring flow was chosen. A summary of the results is included below,

and for more information the reader is referred to Worth & Nickels (139).

A computer controlled piston and cylinder arrangement was used to generate

vortex rings (Re = 1× 103 and L0/D0 = 1) in a small water tank. A 50× 50×
20mm volume was discretised at 10 voxels/mm and reconstructed from three

512× 512 pixels images imaged at 0◦ and ±45◦ with a mean calibration error of

0.2 pixels. Three cases were compared: 1. The MFG alone (MFG kit = 0); 2. A

uniform field initial guess and 5 MART iterations (UF kit = 5); 3. The MFG and

5 MART iterations (MFG kit = 5). Cross-correlation yielded a velocity field at a

spatial resolution of 2.1mm which was smoothed using a 2-pass box filter.

(a) Vertical velocity profile (b) v-vorticity profile

Figure 2.22: Velocity and vorticity profile comparison

Analysis of velocity profiles, circulation estimates, and an examination of the

vorticity field demonstrate that the main flow details are captured well using all

processing variations. A further comparison can be made using the video files

included in Appendix D. The deviations between velocity profiles are within the

bounds of the experimental error, and even the more sensitive vorticity distri-

butions are very closely matched. The Slug Model assumes the vortex ring is

formed from a cylindrical slug of fluid ejected from the cylinder (66), predicting

the circulation, Γ0, in terms of the piston velocity, Up, and the piston stroke
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(a) MFG kit = 0 (b) UF kit = 5 (c) MFG kit = 5

Figure 2.23: Vorticity magnitude isosurface comparison (65% maximum vorticity

magnitude)

time, T0 (Equation 2.3). Comparing these circulation predictions to line inte-

gral measurements confirms the similarity between schemes. The variation of the

MFG method alone is consistent with the numerical study (see Section 2.3.3), and

the advantage of this new method is demonstrated; reducing the computational

workload by up to 70 times (139).

Γ0 =

T0∫
0

1

2
U2
p (t)dt (2.3)

2.4 Post-Processing

After velocity field processing the mean is calculated as an ensemble average,

and subtracted from each field to obtain the fluctuating component of velocity,

from which all other quantities are derived. The TPIV results are smoothed over

2-passes using a 3× 3× 3 Gaussian kernel with a standard deviation of 0.65, to

reduce the effects of noise (see Chapter 3).

This section contains details of the finite differencing scheme used to calculate

the gradient fields, various direct dissipation rate calculation methods, the energy

spectrum calculation method, and vortex identification algorithms.

80



2.4 Post-Processing

2.4.1 Differential Field Calculation

Finite differencing must be applied to evenly-spaced PIV data in order to calcu-

late the velocity gradient tensor. A first order central differencing scheme was

adopted (Equation 2.4) to maintain an effective spatial filter size of three grid

points, which at a 50% overlap is the same as the interrogation window size.

This scheme cannot be applied to the edge points, and therefore either forward

or backwards differencing must instead be used (Equations 2.5 and 2.6). Due

to the higher error associated with these alternative differencing methods (100),

these points are excluded from the majority of the statistical analysis, and only

used during visualisation and vortex geometry characterisation (sections 5.1.3

and 5.2.3) where a large domain size is important.(
du

dx

)
i

=
ui+1 − ui−1

2∆x
(2.4)

(
du

dx

)
i

=
ui+1 − ui

∆x
(2.5)

(
du

dx

)
i

=
ui − ui−1

∆x
(2.6)

2.4.2 Dissipation Estimation

The turbulent kinetic energy dissipation rate for a Newtonian fluid is defined in

Equation 2.7, the calculation of which requires knowledge of the velocity gra-

dients in all 3 dimensions. While TPIV provides sufficient information for this

calculation, the DPIV measurements do not, and it is necessary to eliminate some

terms.

ε = 2ν〈SijSij〉 = ν

〈
∂ui
∂xj

∂ui
∂xj

+
∂ui
∂xj

∂uj
∂xi

〉
(2.7)

Using assumptions of isotropy and homogeneity this can be simplified to Equa-

tions 2.8 and 2.9 in one and two dimensions respectively (43).

ε = 15ν

〈(
∂u1
∂x1

)2
〉

(2.8)
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ε = 6ν

[〈(
∂u1
∂x1

)2
〉

+

〈(
∂u1
∂x2

)2
〉

+

〈
∂u1
∂x2

∂u2
∂x1

〉]
(2.9)

The gradient terms in Equation 2.9 are replaced arbitrarily, which is justified

given the assumption of isotropy. However, depending on measurement reso-

lution and location within the energy cascade, local anisotropy may persist; in

which case the assumptions of isotropy may fail. This is noted by George &

Hussain (39), who propose an 2D axisymmetric dissipation estimate suitable for

the current flow geometry (Equation 2.10), which should account for persistent

anisotropy at the velocity gradient level. Although the persistence of anisotropy

may indicate insufficient measurement resolution and therefore failure to accu-

rately render gradient terms, given sufficient resolution it will be interesting to

compare these estimates with that of Hinze (43).

ε = ν

[
−

〈(
∂u2
∂x2

)2
〉

+ 2

〈(
∂u2
∂x1

)2
〉

+ 2

〈(
∂u1
∂x2

)2
〉

+ 8

〈(
∂u1
∂x1

)2
〉]

(2.10)

Three other estimates are also assessed, the first by de Jong et al. (24) (Equa-

tion 2.11), the second by Michelet et al. (76) (Equation 2.12), and the third

derived in the current investigation (Equation 2.13) based on the arbitrary re-

placement of gradient terms using all four available gradients, as opposed to the

three used by Hinze (43).

ε = 4ν

[〈(
∂u1
∂x1

)2
〉

+

〈(
∂u2
∂x2

)2
〉

+
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∂u1
∂x1

∂u2
∂x2

)〉
+

3

4

〈(
∂u2
∂x1

+
∂u1
∂x2

)2
〉]

(2.11)
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(2.12)

ε =
10

3
ν

[
1

2
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∂u1
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(2.13)
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2.4.3 Energy Spectrum Calculation

The 1D energy spectrum is calculated directly from the PIV data using a sim-

ilar approach to Foucaut et al. (34). 1D lines of the instantaneous velocity are

transformed using the FFT and multiplied by their conjugate values, with the

energy averaged over each field according to a homogeneity hypothesis and en-

semble averaged over all fields. To compensate for non-periodic PIV data which

will lead to truncation errors, a weighting function can be used (14). de Jong et

al. (24) show that these can have a dramatic impact on energy spectrum calcu-

lation, and therefore to quantify this effect in the current investigation, results

are shown with and without Hann windowing. It should be noted that applying

the windowing function results in energy loss through signal appodisation, and

therefore to take account of this, the integral of the windowed spectra energy

is re-normalised by the integral of the energy spectra without windowing. The

TPIV results are processed using Gaussian smoothing as before.

2.4.4 Vortex Identification Algorithms

In order to characterise coherent structure geometry and clustering it is necessary

to algorithmically define the set of points which constitute a single structure. Two

different techniques, following the vortex core tracking approach of Jiménez (53)

and the box-counting methodology of Moisy & Jiménez (79), are introduced here.

2.4.4.1 Vortex Core Tracking

As in Jiménez et al. (53) the radius and circulation of the high vorticity structures

are assessed using a vortex core tracking algorithm. An enstrophy threshold is

applied, Ω > Ωrms, with points above this marked as valid. Initially the tracking

algorithm identifies highest enstrophy point within the valid point subset, and

calculates the vorticity vector orientation at this location. Next the algorithm

extrapolates lines from the vorticity vector in both directions until these intersect

adjacent grid planes. The valid points surrounding the intersections in these

planes are searched to find the local enstrophy maxima, which are stored as the

next vortex core locations. The search for new core locations is repeated until
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no valid points surround the new extrapolated intersection, or the domain edge

is reached. Vortex cores with fewer than 6 points are rejected.

At each core point the vortex radius and circulation are assessed by slicing

the flow perpendicular to the vorticity vector. The slice is discretised and the

distance of each element, r, and vorticity value relative to the maximum, ω/ω0

are plotted (as shown in Figure 2.24(b)). A Gaussian distribution is fitted to

these points using a robust least squares approach, with the vortex radius, R1/e,

defined as the distance at which the vorticity drops to 1/e of the core value, ω0

(see Figure 2.24(c)). The circulation is approximated through integration of the

Gaussian as in Equation 2.14, and expressed in terms of its Reynolds number,

Reγ = γ0/ν.

γ0 = ω0πR
2
1/e (2.14)

After structure identification, the core points and any additional points within

the calculated vortex radius are removed from the list of valid locations. The

tracking algorithm is then re-applied until all valid points have been assessed.

2.4.4.2 Box-Counting Method: Geometry Classification

In order to characterise the shape of different flow structures a box counting ap-

proach was applied (79). Initially all points below the chosen enstrophy threshold

of Ω > Ωrms are discarded. The algorithm then searches through the remaining

points, grouping these with any neighbouring points. These connected regions are

then grouped with other connected regions to build up larger structures, with this

process repeated until no further connections can be made. Groups containing

less than 10 points are rejected, as these smaller groups contain too few points

for accurate classification. Structures are therefore defined as spatially connected

high enstrophy regions.

The limited domain size makes structure classification difficult (see Section 5.1.3).

So in order to classify structure geometry it is necessary to consider a subset which

will not be significantly affected by the domain truncation. Therefore, the mean

alignment between the vorticity vector and a unit vector in the out-of-plane direc-

tion is calculated for each structure (ω̂ · ẑ = cosθ), and only structures which are
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(a) Iso-surfaces of Enstrophy Magnitude (b) Slices parallel to vorticity vector

(c) Gaussian fit

Figure 2.24: Demonstration of vortex line tracking algorithm

predominantly aligned in this direction (cos θ > 0.65) are considered; removing

the potential ambiguity associated with in-plane aligned tube-like structures and

ribbon-like structures.

The remaining structures can then be classified as tube or ribbon-like by their

in-plane dimensions. Due to the alignment condition, the remaining structures

only vary significantly in the in-plane dimensions, and therefore the geometry

classification can be reduced to a 2D approach. Each structure is divided into

planes perpendicular to the out-of-plane direction. For each of these in-plane

layers, major and minor axes of an ellipse with the same normalised second cen-

tral moment as the structure can be calculated, with the ratio of these giving a
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measure of the structure shape (roughly equivalent to the inverse of aspect ratio).

Each layer value is weighted by the structure fraction contained within the layer,

with the sum of these defining the structure shape in the range, 0 > H > 1. Low

and high values of this shape parameter represent ribbon and tube-like structures

respectively.

An example of this classification is shown in Figure 2.25, where high enstro-

phy structures have been coloured according to shape parameter, allowing easy

differentiation between tube and ribbon-like structures. Structures which have

a mean alignment below the threshold are also included, but these are plotted

using a black wire mesh.

Figure 2.25: Example of box-counting structure classification

2.4.4.3 Box-Counting Method: Cluster Analysis

In order to quantify structure clustering a box-counting methodology similar to

Moisy & Jiménez (79) was applied, although differences in the present data set

require a slightly different approach to be taken.

The method is based on the clustering of structure mass centres, which were

calculated during the geometry classification (see Section 2.4.4.2). Similarly to

Moisy & Jiménez, the domain is divided into boxes of varying size, and the

number of boxes containing one or more structures are counted. For simplicity

a box size of 2n was used, where the integer n takes a value between 0 and 5.

However, the non-cubic domain size (51 × 51 × 8 grid points) means that cubic
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boxes can only be used up to a size of rx = ry = rz = 8. For larger boxes the

size in the z direction must remain fixed at rz = 8, while the other dimensions

are increased.

These box counts should be compared to a set of randomly distributed struc-

tures, which can be calculated using the Poisson expectation of finding empty

boxes given the number of structures and total volume (79). This random box

count, N0, has been modified in the current investigation to take account of the

largest non-cubic boxes and data distributed across Nvol volumes (see Equation

2.15).

N0 =

(
NvolVxVyVz
rxryrz

)(
1− exp

(
−rxryrz

v0

))
(2.15)

Vx, Vy and Vz are the reduced volume size (limited to a maximum of 32×32×8)

in the x, y, and z direction respectively. v0 is a measure of mean structure

separation evaluated as v0 = Nvol(VxVyVz)/Ntotal, where Ntotal is the total number

of structures across all volumes.
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Chapter 3

Numerical Accuracy Simulation

PIV experimental accuracy depends on a large number of factors and is highly

dependent on the flow conditions and experimental set-up (100), making quan-

tification through comparison with previous experiments difficult. Furthermore,

there are an insufficient number of TPIV accuracy studies, and the only study to

perform full parametric analysis (31) uses a measure of accuracy which cannot

easily be translated into a useful quantity (see Section 2.3.3). Although repre-

sentative in terms of measurement accuracy, the flow used for the simulations

detailed in Section 2.3.3 is not representative of the experimental flow field, and

the displacement evaluation algorithm is not comparable with the more advanced

algorithm used to evaluate the experimental results (see Section 2.2.6).

Therefore, in order to obtain experimental uncertainty estimates for DPIV

and TPIV experiments a more representative set of simulations have been con-

ducted, using velocity data from a Homogenous Isotropic Turbulence (HIT) DNS

simulation (121) to represent the ideal flow field. The following chapter begins by

detailing the ideal flow, computational set-up and flow matching strategy. After

which the two techniques are assessed using a wide variety of measures.

3.1 Computational Set-up

The DNS simulation solves the Navier-Stokes equations for a 4003 grid point do-

main using a spectral approach, achieving a Taylor microscale Reynolds number
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of Rλ = 141 (121). The domain size was L = 2π and the ratio of this to the inte-

gral length scale was L/Λ = 3.8. This Reynolds number is similar to the lowest

Reynolds number experimental results (see Table 4.1), allowing a comparison to

be made at this point through a careful choice of set-up parameters.

Flow spatial similarity is achieved by matching the DNS and experimental

non-dimensional ratio of domain size to Kolmogorov microscale, L/η. Different

sized regions are sampled to represent a range of spatial resolutions, with these

sampled fields stretched to fit the DPIV and TPIV volumes of interest (detailed

in Table 3.1). It should be noted that particle velocity averaging will take place

over the entire interrogation window size and it is therefore appropriate to match

this critical dimension to the DNS resolution, which is ∆x/η = 1.89. Therefore,

the highest resolution case uses an interrogation window size equal to the DNS

resolution but with a 50% overlap, giving a vector spacing of ∆x/η = 0.93, which

is quoted as the equivalent resolution in Table 3.1.

The DNS non-dimensional RMS velocity was scaled to match the experimental

RMS displacement of ∼ 5 pixels (or voxels). Matching the velocity in this manner

will produce similar particle displacements, permitting a reasonable comparison

with the experimental results.

In both DPIV and TPIV cases the simulations were set-up by creating sets

of artificial images. In the DPIV simulation, the DNS velocity field slice was

mapped into image space using a 3rd order polynomial Taylor series expansion

calibration function obtained from the D3 case (see Section 2.1.9). Particle centres

were randomly distributed in a volume matching the experimental domain size in

image space, assuming a light sheet thickness of 1.5mm, with a seeding density

of Nppp = 0.01 chosen to match the experimental conditions. The velocity at

each particle position was obtained from the DNS velocity field, using bi-cubic

interpolation to calculate the velocity at positions between grid nodes. These

were used to linearly displace the particles, removing those displaced beyond the

volume bounds. The original and displaced particle positions in the x and y

directions were then used directly as particle image co-ordinates to create two

images, with particles modelled as blobs of Gaussian intensity approximately 3

pixels in diameter.
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Case Ref. DNS slice size Fields Equiv. Res. ∆x/η

S −D1 33× 33× 1 100 0.93

S −D3 103× 103× 1 100 2.97

S −D5 171× 171× 1 100 4.95

S −D10 339× 339× 1 100 9.84

S − T1 39× 39× 7 50 0.94

S − T3 103× 103× 21 50 2.52

S − T4 171× 171× 35 44 4.20

S − T8 339× 339× 69 5 8.36

Table 3.1: Simulation case set-up details, Case references abbreviations are:

S=Simulation; D=DPIV; T=TPIV

In the TPIV simulation, particles centres were randomly distributed in a vol-

ume matching the real space experimental domain size of 60× 60× 12mm. The

velocity at the particle positions was found using tri-cubic interpolation, which as

before, was used to linearly displace the particles whilst removing particles dis-

placed beyond the volume bounds. The original and displaced particle positions

were then transformed into image space for 4 cameras using a set of polynomial

calibration functions obtained from the TPIV set-up (see Section 2.1.9.2). Pro-

jecting the particles into image space in this manner will eliminate the calibration

error, which has a significant effect on the measurement uncertainty (31; 138).

Therefore, disparity maps obtained from the camera self calibration (see Sec-

tion 2.2.2) were used to displace the particle image co-ordinates, modelling the

camera misalignment error based on the known experimental accuracy. Artificial

images were created from these particle image co-ordinates using the same mod-

elling assumptions as the DPIV simulation, with a seeding density of Nppp = 0.02.

Vector fields were computed from the artificial images using Davis 7.2 for the

DPIV and and an in-house algorithm for the TPIV simulations, with processing

options chosen to match the experimental cases (see Section 2.2.6). Where avail-

able 50 and 100 velocity fields were taken at regularly spaced intervals throughout

the DNS data cube for the DPIV and TPIV simulations respectively, to produce

reasonably well converged statistics and permit analysis of quantities such as the

energy spectrum. Due to the size of the largest field slices (see Table 3.1) fewer

samples could be taken, and most significantly only 5 fields were used for the
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TPIV S − T8 case. The resolutions quoted in Table 3.1 refer to the spacing

between vectors.

To simulate the effect of camera noise on the PIV accuracy, a 10% level of

random noise was added to each set of images. The effect of noise is investigated

more fully for the S−D1 and S−T1 cases, where varying levels of noise ranging

from 0 to 50% (of the total image intensity) are added to the images.

The S − D1 and S − T1 cases are the only simulations in which the ideal

and PIV velocity data point are similarly spaced. Therefore, a direct comparison

can be made between the ideal and PIV velocity, vorticity and dissipation fields

using Equation 3.1. This represents the local error, which is the modulus of the

difference between ideal and PIV fields at each point in the domain, summed

and normalised by the mean ideal values. The local error is representative of

the mean error in the instantaneous fields, which will affect visualisation of the

instantaneous distribution of quantities in the domain. The necessary modulus

use in this error estimate precludes determination of the error direction (under

or over prediction).

The global error is the mean ideal value minus the mean PIV value, again

normalised by the mean ideal value (Equation 3.2), where Nideal and NPIV are the

number of data points for ideal and PIV fields respectively. Positive or negative

values for this error indicate PIV under or over-prediction respectively. The

global error is representative of of the mean statistical error, relating to statistical

quantities such as the mean RMS velocity and mean dissipation rate. Except for

the highest resolution cases, the ideal and PIV data points are at different spatial

locations. Therefore, as the effect of spatial averaging over the interrogation

region cannot be discounted in the lower resolution cases, while it is still possible

to assess the global errors, the local errors are not compared.

Elocal =

∑
(|uideal − uPIV |)∑

|uideal|
× 100 (3.1)

Eglobal =

∑
uideal/Nideal −

∑
uPIV /NPIV∑

uideal/Nideal

× 100 (3.2)

Although representative as far as possible, Reynolds number differences be-

tween the ideal and real flow and the different forcing methods may affect the
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measurement accuracy. Additionally, these simulations neglect the following ef-

fects which may be present during experimentation: particle loss and uneven il-

lumination due to laser sheet non-uniformity, sheet misalignment between pulses,

and irregular particle shape and size; any inhomogeneity in the particle distri-

bution; persistent non-random noise due to camera hot-pixels and light diffusion

due to multiple scattering effects; use of interpolation to displacement particles,

particularly using the coarse ideal data in the high resolution case. Furthermore,

the velocity matching employed in the current simulation matches the mean value

calculated experimentally, which may itself be under-predicted due to spatial av-

eraging effects, affecting accuracy predictions accordingly.

3.2 Simulation Results

DPIV and TPIV accuracy is assessed using a number of measures, visually com-

paring local fields of velocity, vorticity and squared strain rate, before examining

trends in local and global mean quantities. The squared strain rate, S2
ij, is rep-

resentative of the dissipation rate, and was chosen over the latter quantity to

give a more generally applicable representation of the mean local errors. Given

that the velocity is expressed as a displacement in pixels, the squared strain rate

is therefore non-dimensional. The one dimensional energy spectrum is also cal-

culated and compared, as are topological invariants and divergence for the 3D

TPIV fields.

3.2.1 Visual Comparison of Fields

Figures. 3.1 and 3.2 compare the u velocity component and squared strain rate

across a range of spatial resolutions for the DPIV simulation. The same colour

map scaling is used for each resolution case allowing easy comparison of their

relative magnitudes. Flow details are well predicted in the high resolution S−D1

case. However, with reducing spatial resolution the fields show the effect of spatial

averaging, resulting in smoothing and a loss of fine scale information. This can

be further illustrated by directly averaging the ideal field (taking the mean value

within an interrogation window sized region at each interrogation window location
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3.2 Simulation Results

on the ideal field) and comparing it to the PIV results (Figure 3.1(i)-(l)). The

effect of this direct spatial averaging is extremely close to the DPIV simulation,

demonstrating the smoothing source.

The effect of smoothing on the velocity magnitude is slight, with a small

reduction in the peak velocities. However, the effect on the vorticity and dissipa-

tion fields is more pronounced, and despite similar spatial distributions, the peak

magnitude is increasingly under-predicted as the spatial resolution is reduced.

Therefore, despite the ability of high resolution PIV to identify the spatial dis-

tribution of important quantities such as dissipation, at low resolution spatial

averaging significantly reduces the magnitude of these predictions, and alters

structure topology.

(a) S −D1 ideal (b) S −D3 ideal (c) S −D5 ideal (d) S −D10 ideal

(e) S −D1 DPIV (f) S −D3 DPIV (g) S −D5 DPIV (h) S −D10 DPIV

(i) S −D1 SF ideal (j) S −D3 SF ideal (k) S −D5 SF ideal (l) S −D10 SF ideal

Figure 3.1: DPIV u velocity comparison; displacement in pixels; SF=Spatially

filtered
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3.2 Simulation Results

(a) S −D1 ideal (b) S −D3 ideal (c) S −D5 ideal (d) S −D10 ideal

(e) S −D1 DPIV (f) S −D3 DPIV (g) S −D5 DPIV (h) S −D10 DPIV

Figure 3.2: DPIV squared strain rate comparison; squared strain rate

(pixels/pixel)2

Figure 3.3 shows the velocity, vorticity and squared strain rate error distribu-

tion for the S−D1 case. The largest errors appear to be concentrated in regions

of highest gradient, as a result of correlation peak broadening in these areas (100).

However, as the gradient magnitude is higher in these regions the relative gradi-

ent error magnitude reduces with increasing gradient magnitude (36). This trend

is demonstrated later in Section 3.2.4. The inclusion of fewer points in the finite

difference calculation at the edges also results in a loss of accuracy (as discussed

in Section 2.4.1), which is remedied by removing these points from the mean local

and global estimates.

(a) S −D1 u velocity (b) S −D1 v velocity (c) S −D1 vorticity (d) S −D1 dissipation

Figure 3.3: Spatial location of errors, absolute error magnitude

Figures 3.4 and 3.5 compare u velocity and squared strain rate slices across a
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3.2 Simulation Results

range of spatial resolutions for the TPIV simulation, with and without Gaussian

smoothing. The ideal and TPIV velocity vector locations are not coincident, and

therefore slices are taken at the central depth plane of the ideal fields, with cubic

interpolation used to obtain values for the TPIV fields at these locations. As the

volume edges are trimmed where all camera lines of sight fail to converge, these

plots have a smaller domain size in comparison with the DPIV simulation.

Although the main flow features are predicted well the fields are considerably

less smooth than the DPIV simulation, as a result of the noise introduced through

the TPIV technique (31). This noise will produce significant errors during gra-

dient calculation, and therefore smoothing with a 3 × 3 × 3 Gaussian kernel is

recommended for 3D data (36). The kernel is as described in Section 2.4. The

smoothed fields show significantly better agreement with the ideal flow, and im-

proved gradient predictions (Figure 3.5). As in the DPIV simulation, the high

resolution case predicts flow field magnitude reasonably well, with lower resolu-

tion resulting in increasing under-prediction. The under-prediction of gradient

quantities is more severe than the DPIV simulation, which may be due to the

necessary smoothing.

Figures 3.6(a)-(h) show iso-surfaces of vorticity magnitude above a threshold

value of twice the mean DNS data vorticity magnitude (denoted as ‘high thresh-

old’). Reducing resolution is again shown to reduce peak vorticity magnitude,

resulting in the identification of fewer high vorticity magnitude structures. How-

ever, if the known reduction in vorticity magnitude is taken into account and the

threshold based instead on the mean TPIV vorticity magnitude (Figure 3.6(i)-(l),

with the threshold denoted as ‘low threshold’), the same high vorticity structures

can be identified at high resolution. As the spatial resolution is reduced spatial

averaging effects again remove the finer flow features, with the vorticity distri-

butions in lowest resolution cases bearing little resemblance to the ideal flow

distribution.

3.2.2 Local Errors

Figure 3.7 shows mean error variation in the local velocity, velocity gradient,

vorticity and dissipation estimates for the S−D1 and S−T1 cases with increasing
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(a) S − T1 ideal (b) S − T3 ideal (c) S − T4 ideal (d) S − T8 ideal

(e) S − T1 TPIV (f) S − T3 TPIV (g) S − T4 TPIV (h) S − T8 TPIV

(i) S − T1 TPIV GS (j) S − T3 TPIV GS (k) S − T4 TPIV GS (l) S − T8 TPIV GS

Figure 3.4: TPIV u velocity comparison; displacement in voxels; GS= 2-pass

Gaussian smoothing

noise. Figure 3.7(a) shows the absolute velocity error. The accuracy of the DPIV

simulations is similar to previous studies (100), taking a value of around 0.1

pixels. Even after smoothing the TPIV accuracy is found to be lower, with a

mean error of around 0.2 voxels in the u and v components and 0.3 voxels in

the w component, which is again in line with previous experiments (134; 138).

Figure 3.7(b) shows the velocity in percentage terms, with a DPIV measurement

uncertainty of around 3→ 4%, and after smoothing around 6% and 11% for the

TPIV in-plane and out-of-plane components respectively. The effect of noise is

slight below a value of 20%, becoming increasingly significant at higher levels,

showing a similar trend to the previous study (see Section 2.3.3). The effect of

Gaussian smoothing on the TPIV velocity field is shown to increase accuracy by

several percent, and also reduce the measurement uncertainty noise dependence.
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3.2 Simulation Results

(a) S − T1 ideal (b) S − T3 ideal (c) S − T4 ideal (d) S − T8 ideal

(e) S − T1 TPIV (f) S − T3 TPIV (g) S − T4 TPIV (h) S − T8 TPIV

(i) S − T1 TPIV GS (j) S − T3 TPIV GS (k) S − T4 TPIV GS (l) S − T8 TPIV GS

Figure 3.5: TPIV dissipation rate comparison; squared strain rate

(voxels/voxel)2; GS= 2-pass Gaussian smoothing

Figure 3.7(c) shows the measurement uncertainty associated with each gradi-

ent component. The TPIV gradient fields are subject to extremely large errors,

which can be controlled to a certain degree through smoothing. The DPIV gra-

dient uncertainty is around 20% for reasonable noise levels, which is half that of

the smoothed in-plane TPIV gradients. As expected the highest uncertainty is

associated with w component velocity gradients, particularly those out-of-plane.

Figures. 3.7(d) and (e) demonstrate gradient error effects on local vorticity

and dissipation prediction, producing vorticity errors around 17% and 27%, and

dissipation rate errors around 22% and 40% for the DPIV and smoothed TPIV

simulations respectively at reasonable noise levels. As with the velocity gra-

dients, smoothing dramatically reduces the measurement uncertainty, and noise

only produces a significant accuracy reduction at very high levels. The known ve-
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(a) S − T1 ideal, high

thresh.

(b) S − T3 ideal, high

thresh.

(c) S − T4 ideal, high

thresh.

(d) S − T8 ideal, high

thresh.

(e) S − T1 TPIV GS,

high thresh.

(f) S − T3 TPIV GS,

high thresh.

(g) S − T4 TPIV GS,

high thresh.

(h) S − T8 TPIV GS,

high thresh.

(i) S − T1 TPIV GS,

low thresh.

(j) S − T3 TPIV GS,

low thresh.

(k) S − T4 TPIV GS,

low thresh.

(l) S − T8 TPIV GS,

low thresh.

Figure 3.6: TPIV iso-surfaces of vorticity magnitude (voxels/voxel); (a)-(d)

|ωideal| > 2〈|ωideal|〉; (e)-(h) |ωTPIV | > 2〈|ωideal|〉; (i)-(l) |ωTPIV | > 2〈|ωTPIV |〉

locity gradient sensitivity to noise and error amplification through use of squared

gradient terms produces the high measurement uncertainty, which although sub-

stantial, is again in line with previous experiments (36; 134).

3.2.3 Mean Global Errors

Figure 3.8 show the global RMS velocity, velocity gradients and dissipation vari-

ation with reducing resolution for the DPIV and TPIV techniques in terms of

percentage error magnitude.

Figure 3.8(a) shows that at high resolution, both the DPIV and TPIV results
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(a) Velocity (absolute) (b) Velocity (percentage)

(c) Velocity gradient (d) Vorticity magntiude

(e) Dissipation

Figure 3.7: Local errors; GS= 2-pass Gaussian smoothing
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give good RMS velocity predictions. As resolution is reduced the velocity is

increasingly under-estimated, resulting in increasing errors. The DPIV accuracy

decrease is slight, showing ∼ 7% error for the S−D10 case. The increase in TPIV

measurement uncertainty is more significant however, with an error magnitude of

∼ 20% for the smoothed S−T8 case. The erroneous over-prediction of velocity in

the unsmoothed TPIV data counters the natural under-prediction due to spatial

averaging, resulting in lower measurement uncertainty for the unsmoothed results.

This noise related over-prediction error is much more prominent in the un-

smoothed field velocity gradients in Figure 3.8(b), resulting in poor accuracy at

high measurement resolution. As measurement resolution is reduced the gradient

under-prediction due to spatial averaging increases, with the two effects balancing

each other in the unsmoothed TPIV results at a resolution of ∆x/η ∼ 3. Beyond

this value the spatial averaging error dominates, resulting in increasing gradient

under-prediction. Despite the apparent low error magnitude resulting from this

balance, it is not clear that this relationship will hold, and as such the smoothed

results are preferable. However, it is unlikely that all noise related gradient over-

prediction can be eliminated through smoothing, and therefore care should also

be exercised in the interpretation of smoothed dissipation estimates which may

also be subject to a balance of error sources.

At the lowest resolution the DPIV and smoothed TPIV results produce gra-

dient errors of around 80% for the lowest resolution cases. The effect of these

on the dissipation estimate are shown in Figure 3.8(c), producing errors of up to

90%. This analysis confirms the previous observations (see Sect. 3.2.1) that at

low resolution the effects of spatial filtering remove the smallest scale high gra-

dient regions responsible for the majority of the dissipation, resulting in severe

under-prediction.

3.2.4 Divergence

Another stringent accuracy test can be conducted by assessing velocity gradient

variation from the incompressible flow zero divergence condition (∇ · ui = 0).

Figure 3.9(a) shows the variation in mean normalised divergence ratio, ξ (142)

(defined in Equation 3.3), with measurement resolution for the TPIV simulation.
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(a) Velocity (b) Velocity gradient

(c) Dissipation

Figure 3.8: Global percentage errors; GS= 2-pass Gaussian smoothing

In comparison with the ideal data (zero divergence) the simulation divergence is

high. However, as this accuracy criterion is based on squared velocity gradients

it is very stringent, with the unsmoothed divergence values similar to the full

resolution value of ξ = 0.74 obtained by Zhang et al. (142). Smoothing is shown

to significantly reduce the divergence.

ξ =
(∂u/∂x+ ∂v/∂y + ∂w/∂z)2

(∂u/∂x)2 + (∂v/∂y)2 + (∂w/∂z)2
(3.3)

The divergence was also quantified by Mullin et al. (82) for dual plane Stereo-

PIV measurements using the local divergence value normalised by the local ve-

locity gradient tensor norm ∇·ui/(∇ui : ∇ui)1/2. The normalised divergence was
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(a) Mean normalised divergence error (b) Normalised Divergence PDF

Figure 3.9: Divergence Analysis

found to be normally distributed with a mean of zero, and an RMS variation of

0.35, which is similar to that found in the present investigation after smoothing

(see Figure 3.9(b)). The variation in the S − T8 case is caused by an insufficient

quantity of data resulting in poor statistical convergence; making it difficult to

draw conclusions from this case.

As PIV error is a function of gradient magnitude, JPDFs were constructed

to correlate the normalised divergence values with the velocity gradient magni-

tude at each point, as shown in Figure 3.10. The ideal data has been filtered

using a kernel width equal to the interrogation window size to demonstrate the

increase in divergence due to the effects of spatial averaging. The JPDFs show

that regions of high gradient magnitude, which may be associated with high

vorticity magnitude coherent structures, have lower divergence errors and there-

fore lower relative uncertainty. The distribution is similar to that presented by

Ganapathisubramani et al. (36) for Stereo-PIV measurements of a turbulent jet.

As measurement resolution is reduced the characteristic triangular distribution

loses definition, becoming increasingly circular as a result of high gradient magni-

tude region smoothing; a trend which can be independently observed in the ideal

data. However, comparison with the ideal data suggests that the divergence error

is dominated not by spatial averaging effects but rather through noise associated

with TPIV.
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(a) S − T1 SF ideal (b) S − T3 SF ideal (c) S − T4 SF ideal

(d) S − T1 TPIV (e) S − T3 TPIV (f) S − T4 TPIV

(g) S − T1 TPIV GS (h) S − T3 TPIV GS (i) S − T4 TPIV GS

Figure 3.10: TPIV gradient and divergence magnitude JPDF, contours of base

10 exponentials; SF=Spatially filtered; GS=2-pass Gaussian Smoothing

Another way of expressing the divergence error is through JPDFs of ∂u/∂x

against −(∂v/∂y + ∂w/∂z), in which the degree of divergence is represented by

the scatter of data away from the zero divergence line where the components

are equal, shown in Figure 3.11. The divergence is quantified through use of a

correlation coefficient, Q, between the components. Reducing resolution mani-

fests in the spatially filtered ideal data as an increase in scattering from the zero

divergence line, reducing the almost perfect correlation value of Q = 0.99 for the

S − T1 ideal data to Q = 0.95 for the S − T4 ideal case. However, TPIV noise
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is shown to dominate, with a much lower correlation value of Q = 0.66 for the

smoothed S − T1 case. This is lower than the value of 0.82 calculated by Gana-

pathisubramani et al. (36) and the value of 0.7 calculated from the multi-probe

hot-wire results of Tsinober et al. (123), demonstrating the reduction in accuracy

in comparison with hot-wire and stereo-PIV techniques. Noise is controllable us-

ing increased smoothing, with the twice smoothed TPIV simulation predicting a

similar correlation coefficient to Tsinober et al. (123).

(a) S − T1 SF ideal (b) S − T3 SF ideal (c) S − T4 SF ideal

(d) S − T1 TPIV (e) S − T3 TPIV (f) S − T4 TPIV

(g) S − T1 TPIV GS (h) S − T3 TPIV GS (i) S − T4 TPIV GS

Figure 3.11: TPIV divergence correlation JPDF, contours of base 10 exponentials;

SF=Spatially filtered; GS=2-pass Gaussian Smoothing
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3.2.5 Effect on Energy Spectrum

The 1D energy spectrum can be directly calculated from the ideal and PIV data

using the method described in Section 2.4.3.

Figure 3.12(a) shows the effect of aliasing due to a reduction in resolution

for the S − T8 case with and without windowing function application. Aliasing

limits the simulation data to lower wavenumbers and results in a loss of energy,

shown by the lower magnitude truncated spectra. The Hann windowing function

redistributes energy throughout the spectrum, causing a shift from high to low

wavenumbers, and increasing the spectrum gradient. Although this improves the

agreement of the ideal data with the Pao spectrum1 (88) around the dissipation

region, it causes the already aliased simulation data to diverge further from this

line.

The effect of aliasing on Kolmogorov power law scaling was examined by

studying the pre-multiplied spectra shown in Figure 3.12(b). Despite a reasonably

high degree of fluctuation in the ideal data, which may be due to insufficient low

wavenumber modes (similar fluctuations can be observed in Ishihara et al. (49)),

the brief plateau indicates Kolmogorov inertial range scaling. However, energy

losses through aliasing in the simulation result in a small persistent negative

gradient, the magnitude of which increases rapidly at the lowest wavenumber.

Figures. 3.13(a) and (b) show the effect of increasing noise for the S − D1

and S − T1 cases with and without the use of the windowing function. Without

a windowing function increasing noise appears insignificant, with both ideal and

PIV spectra peeling away from the Pao curve at high wavenumbers due to severe

spatial truncation effects, as shown by Foucaut et al. (34).

However, contrary to the low resolution case, Figure 3.13(b) shows that win-

dowing function application appears to improve high wavenumber accuracy, in-

creasing the agreement with the Pao curve. Controlling the spatial truncation

error through the windowing function allows image noise to dominate the dis-

sipation region accuracy, with higher noise levels causing the spectrum to peel

1The Pao spectrum is a one-dimensional turbulent energy spectrum for the entire universal

equilibrium range of wavenumbers, deduced from the spectral transfer of kinetic energy at large

wavenumbers (88). The spectrum has been shown to compare favourably with experimental

measurements (88; 104).
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(a) Effect of Hann windowing (b) Pre-multiplied energy spectrum

Figure 3.12: Effect of low resolution and windowing functions on the energy

spectra, S − T8 case

further from the Pao curve; an effect observed by a number of previous stud-

ies (34; 48; 130). The higher TPIV noise level is controlled through smoothing,

bringing these results in-line with the DPIV results. At the lowest wavenumber

the dramatic energy increase through windowing function re-distribution also

causes divergence from the Pao result, with similar effects shown by de Jong et

al. (24).

(a) No windowing function (b) Hann windowing

Figure 3.13: Effect of noise and windowing functions on the energy spectra, S−T1

case (N= Noise level)
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3.2.6 Topological Analysis

As described by Chong et al. (22) the flow can be characterised topologically using

invariants of the symmetric parts of the velocity gradient tensor. Figure 3.14

shows JPDFs of two invariant quantities Q∗A and R∗A, normalised by the mean

second invariant of vorticity, 〈QW 〉, as Q∗A = QA/〈QW 〉 and R∗A = RA/〈QW 〉3/2; a

plot which has been shown to take a characteristic teardrop shape for a number

of DNS studies (84; 85). This distinctive distribution is clearly shown in the ideal

data, which becomes fuller as larger volumes are sampled in cases corresponding

to lower resolutions. The simulation ability to reproduce this distribution is

again highly noise sensitive, requiring smoothing to reduce this sensitivity and

improve gradient accuracy (shown in Figure 3.14). Severe noise effects in the

unsmoothed results removes much of the distribution definition, leaving it almost

circular. The effect spatial averaging due to reducing measurement resolution

manifests as gradient magnitude reductions, resulting in smaller lower magnitude

distributions.

3.3 Summary of Simulation Results

Despite the close matching of experimental and simulation details, differences

between the ideal and experimental Reynolds number and flow fields, and the

use of modelling assumptions may affect these accuracy predictions. Due to a

number of unconsidered error sources and the possible under-prediction of velocity

the error estimates presented in this chapter may be slightly low, with these extra

error sources further increasing measurement uncertainty.

At high resolution the ability of both DPIV and TPIV to accurately predict

the velocity and gradient fields is demonstrated. Although measurement uncer-

tainty increases in TPIV due to additional noise introduced during tomographic

reconstruction, which manifests particularly in sensitive quantities such as the di-

vergence and topological invariants, this can be partially controlled with velocity

field smoothing.

The effect of reducing measurement resolution is shown to act in a similar

way to spatial averaging over interrogation window sized regions, significantly
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(a) S − T1 ideal (b) S − T3 ideal (c) S − T4 ideal

(d) S − T1 TPIV (e) S − T3 TPIV (f) S − T4 TPIV

(g) S − T1 TPIV GS (h) S − T3 TPIV GS (i) S − T4 TPIV GS

Figure 3.14: JPDF of normalised topological invariants Q∗A and R∗A, contours of

base 10 exponentials

reducing peak gradient magnitude and resulting in increasing under-prediction of

important quantities such as dissipation and vorticity. This under-prediction is

particularly severe for measurement resolutions lower than ∆x/η = 3, suggest-

ing this represents a minimum requirement for estimating these quantities and

studying their spatial distribution, with higher resolution desirable.

Direct energy spectrum calculation from PIV data is subject to aliasing and

spatial truncation effects, reducing agreement with the expected trend. Further-

more, the use of windowing functions to reduce truncation effects appears to
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be non-trivial, with accuracy dependent on the degree of aliasing caused by the

spatial resolution.

The quantification of measurement uncertainty in this manner, through the

careful matching of experimental conditions and use of a representative turbulent

velocity field, has enabled accurate DPIV and TPIV error estimation. These es-

timates were used in the following chapters, during experimental results analysis.
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Chapter 4

Flow Characterisation

Before investigating the nature of the coherent flow structures it is necessary to

characterise the flow in terms of both statistical turbulent properties and typical

length and time scales, including the variation of these with Reynolds number.

It is also important to quantify the level of statistical convergence, relating the

variation between the different cases and runs to this and the expected accuracy.

Therefore, the chapter begins with an assessment of the statistical conver-

gence, centring, and resolution, with these used to quantify the measurement

uncertainty. The fluctuating velocities and gradients are assessed and used to

determine the flow isotropy, after which the flow structure is statistically char-

acterised. Next a variety of dissipation rate calculation methods are compared

before using two of these methods, based on scaling argument and structure

function methods, to derive other important quantities such as Taylor and Kol-

mogorov microscales. Finally the chapter concludes with an investigation into

the TPIV divergence error, its effect on topological invariants, and the use of a

divergence correction scheme. These results provide a basis for the topological

investigation in the following chapter.
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Case ΩIRI Re Rλ urms vrms wrms λ η εm τ ν × 106

(mm/s) (mm/s) (mm/s) (mm/s) (mm) (mm) (m2/s3) (ms) (m2/s)

D1 − 1 56 3.77 × 104 240 17.4 10.7 - 16.4 0.536 2.01 × 10−5 243 1.18

D1 − 2 112 7.55 × 104 334 33.6 21.9 - 11.8 0.327 1.45 × 10−4 90.5 1.18

D1 − 3 223 1.51 × 105 479 69.1 41.8 - 8.2 0.191 1.26 × 10−3 30.7 1.18

D1 − 4 335 2.26 × 105 581 102 64.5 - 6.76 0.143 4.01 × 10−3 17.2 1.18

D1 − 5 447 2.94 × 105 651 131 86.6 - 6.03 0.120 8.67 × 10−3 11.8 1.22

D2 − 1 56 3.67 × 104 236 17.3 10.7 - 16.6 0.550 1.97 × 10−5 248 1.22

D2 − 2 112 7.35 × 104 332 34.2 22.2 - 11.8 0.330 1.52 × 10−4 89.3 1.22

D2 − 3 223 1.47 × 105 432 57.7 43.5 - 9.09 0.222 7.36 × 10−4 40.7 1.22

D2 − 4 335 2.20 × 105 584 105 62.5 - 6.73 0.142 4.48 × 10−3 16.5 1.22

D2 − 5 447 2.94 × 105 633 124 84.7 - 6.2 0.125 7.30 × 10−3 12.9 1.22

D3 − 1 28 1.91 × 104 174 9.04 5.61 - 22.5 0.867 2.82 × 10−6 643 1.17

D3 − 2 56 3.82 × 104 248 18.3 11.7 - 15.8 0.511 2.34 × 10−5 223 1.17

D3 − 3 112 7.65 × 104 356 37.8 23.9 - 11 0.296 2.06 × 10−4 75.2 1.17

D3 − 4 223 1.53 × 105 478 68.1 47.5 - 8.21 0.191 1.21 × 10−3 31.1 1.17

D3 − 5 335 2.29 × 105 628 117 69.8 - 6.25 0.127 6.18 × 10−3 13.7 1.17

D4 − 1 112 8.06 × 104 335 31.7 20.8 - 11.7 0.326 1.21 × 10−4 95.6 1.11

D4 − 2 223 1.61 × 105 501 70.8 43.6 - 7.84 0.178 1.36 × 10−3 28.6 1.11

D4 − 3 335 2.42 × 105 548 84.7 65.2 - 7.17 0.156 2.32 × 10−3 21.9 1.11

D4 − 4 447 3.22 × 105 700 138 87.2 - 5.61 0.108 1.01 × 10−2 10.5 1.11

T1 − 1 28 1.86 × 104 162 7.98 5.4 7.71 24.3 0.972 1.94 × 10−6 787 1.2

T1 − 2 56 3.72 × 104 224 15.3 10.2 15.6 17.5 0.595 1.38 × 10−5 295 1.2

T1 − 3 112 7.45 × 104 323 31.8 20.6 30.8 12.2 0.344 1.23 × 10−4 98.7 1.2

T1 − 4 223 1.49 × 105 458 64.1 41.2 58.5 8.58 0.204 1.00 × 10−3 34.6 1.2

T1 − 5 335 2.23 × 105 555 94.1 64.7 99.0 7.08 0.153 3.18 × 10−3 19.4 1.2

Table 4.1: Typical Flow Properties

4.1 Mean Flow Properties, Accuracy and Con-

vergence

This section begins with a mean flow parameter summary, which provides a useful

reference for the following analysis. This is followed by an investigation of mean

flow and mean spatial distributions of important turbulent quantities. Assess-

ments of flow convergence and measurement resolution are also conducted, with

measurement uncertainty quantified through these measures.

4.1.1 Summary of Results

Some typical flow properties are listed in Table 4.1. The dissipation rates, Kol-

mogorov length and time scales and Taylor microscales listed here were calculated

using the scaling argument method (as defined in Equation 1.1, using a constant

value of A = 0.5). A full comparison of dissipation estimation methods presented

later in sections 4.4.2 and 4.4.3.
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4.1.2 Mean Flow and Convergence

As detailed in Section 2.1.1 the large scale flow structure at the tank centre is a

combination of confined toroidal shear and poloidal pumping; producing a highly

unsteady flow with a turnover time proportional to the impeller rotation rate.

The mean flow averaged over 1000 fields is shown for a single case in Figure 4.1.

Figure 4.1: Mean flow field, D1− 1, every 3rd vector

Although care was taken to ensure all measurements are performed at the

exact geometric centre of the tank, fractional impeller misalignment, camera and

light sheet positioning inaccuracies, and a lack convergence at the large scales may

still result in discrepancies between experiments at different Reynolds numbers

and from different set-ups, which are now quantified.

Statistical convergence is assessed by studying cumulative RMS velocities and

mean dissipation rates normalised by their final values and plotted against im-

peller rotations, as shown in Figure 4.2. In general the level of convergence

after 80 impeller rotations is high, with Figure 4.2(a) showing that urms is con-

verged within ∼ ±10% after 20 rotations and ∼ ±5% after 60 rotations, which

is around twice the vrms variation shown in Figure 4.2(b). Figure 4.2(c) shows

the dissipation rate (calculated directly from the strain rate tensor as described

in Section 4.4.2) is converged within ∼ ±2.5% after 60 impeller rotations. The
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velocity and dissipation convergence is indicative of the large and small scale con-

vergence, demonstrating the higher level of the latter, especially in comparison

with the u velocity component.

(a) urms convergence (b) vrms convergence

(c) ε convergence

Figure 4.2: Normalised convergence plots

Flow convergence within the field of view will not take into account flow

centring discrepancies resulting from impeller rotation speed and camera posi-

tioning effects, which may cause additional discrepancies between runs and cases

respectively. The difference between the flow centres is quantified by plotting

stagnation point location, shown in Figure 4.3, with domain size representations

for each experimental case.

The significant scatter demonstrates a lack of convergence, with points up

to 100mm and 50mm from the flow centre in horizontal and vertical directions

respectively. Results from similar cases fail to show any strong Reynolds number

trends, indicating that the lack of convergence may dominate over stagnation

point movement due to imperfect impeller alignment or velocity mismatch. The

inability to separate out convergence effects make evaluation of the other error

components difficult.
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4.1 Mean Flow Properties, Accuracy and Convergence

Figure 4.3: Location of stagnation points: 4 = D1; � = D2; © = D3; ♦ = D4;

F = T1; colors in order of increasing Reynolds number from light blue to pink

The effect of this centring is dependent on flow inhomogeneity, which was

assessed by studying spatial contours of the ensemble averaged RMS velocity

normalised its spatial mean,
√
〈u2〉/

√
〈u2〉, shown in Figure 4.4(a). The D1 case

was chosen to demonstrate this effect over a large domain. The normalised RMS

velocity variation of ∼ 0.9− 1.1 demonstrates reasonably high flow homogeneity,

similar to that shown by Hwang & Eaton (48) in an acoustically driven near

isotropic homogeneous turbulent flow.

Examination of Figures 4.1 and 4.4(a) indicates that the u component of

fluctuating velocity magnitude is a function of the mean flow, increasing away

from the central stagnation point. Therefore, relating this variation to the flow

homogeneity suggests the u and v components of RMS velocity may vary by up

to 10% and 5% respectively, taking both flow convergence and centring effects

into account.

4.1.3 Experimental Resolution

The spatial resolution was calculated as the interrogation window spacing nor-

malised by the Kolmogorov length scale (calculated from the scaling argument
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(a)
√
〈u2〉/

√
〈u2〉 (b)

√
〈v2〉/

√
〈v2〉

Figure 4.4: Spatial variation in ensemble averaged normalised fluctuating velocity,

D1− 1

method), which was plotted against Reynolds number in Figure 4.5. The Kol-

mogorov length scale decreases with increasing Reynolds number resulting in a

reduction in resolution. However, for the lower Reynolds number runs in the

D3, D4 and T1 cases, a resolution ∆x/η . 3 is achieved, which as discussed

in Section 3.3 should be suitable for analysis of the flow structure and gradient

quantities.

These resolution values will be used in conjunction with the convergence es-

timate shown in Section 4.1.2 to quantify the measurement uncertainty for each

case. A value of measurement uncertainty is interpolated from the global error

trends shown in Section 3.2.3 at each resolution for each quantity of interest. This

is then added to the estimated convergence error to produce total error estimates,

which are plotted as error bars in the following analysis.

4.2 Statistical Flow Properties

Having estimated the measurement uncertainty, the statistical flow properties

can now be investigated. This section includes quantification of local and global

fluctuating velocities and gradients, including ratios of global properties which

are used to assess the level of isotropy at integral and dissipation scales.
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Figure 4.5: Spatial resolution

4.2.1 Fluctuating Velocities

Figure 4.6 shows the probability density functions for the 3 components of fluc-

tuating velocity normalised by impeller rotation velocity, which are fitted to zero

mean Gaussian distributions using a least squares approach.

Rotational symmetry similarities can be identified between Figures 4.6(a) and

4.6(c). The mean strain field generated by the poloidal mode has the effect of

amplifying the axial vorticity (126) and increasing radial and azimuthal turbulent

fluctuations. This effect can be seen by comparing the standard deviations in the

radial directions, σx = 0.314 and σz = 0.298, to that of the axial direction,

σy = 0.189, producing a ratio ∼ 0.6. This result is in broad agreement with Voth

et al. (126) who found a ratio of 0.5 between radial and axial standard deviations.

In general the data collapse is reasonable, with the highest deviation seen in

Figure 4.6(a) for the central region of the u velocity PDF, which may be due

to both poor large scale convergence (Section 4.1.2) and peak-locking effects.

The improved collapse shown in Figure 4.6(b) may be due to the reduced level

of turbulent fluctuation, and increased convergence in this direction. The w

velocity PDF exhibits slightly non-Gaussian behaviour at low velocity, which may

be attributed to the lower accuracy of this velocity component measurement and

the more significant effect of peak-locking on the TPIV data. The accuracy of the

out-of-plane component is lower than the in-plane components due to the camera

configuration (see Section 2.1.9.2). Set-up restrictions resulted in lower camera
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angles than the optimum 40− 50◦, which causes the tomographic reconstruction

of particles to become stretched in the out-of-plane direction, causing a loss of

accuracy during cross-correlation. The TPIV data also contains fewer higher

magnitude velocity events, which may be due to the necessary smoothing.

(a) u component (b) v component

(c) w component

Figure 4.6: Fluctuating velocity PDFs; for (a) and (b): × = run 1; © = run 2;

∗ = run 3; 4 = run 4; ; � = run 5

In Figure 4.7 normalised RMS velocity is plotted against Reynolds number.

The relatively high degree of scatter is likely a result of the large scale conver-

gence issues (see Section 4.1.2). However, the majority of points are within the

measurement uncertainty, and in agreement with other experiments (126; 144)

the RMS velocity scales linearly with the impeller rotation frequency. Voth et
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al. (127) comment on the importance of this linear scaling, which implies that

there are no major changes to the large scale flow structure. The fluctuation mag-

nitude of ∼ 30% in the present investigation is similar to the ∼ 35% measured

by Zocchi et al. (144), with slight variations attributable to set-up and geometry

differences.

Figure 4.7: RMS velocity, component by colour as indicated, case by symbol: ×
= D1; © = D2; ∗ = D3; 4 = D4; ; � = T1, [−−] = mean component value

averaged over all cases and runs

4.2.2 Ratio of RMS Velocities and Reynolds Stresses

Figure 4.8 shows the variation of RMS velocity ratios and Reynolds stresses with

Reynolds number. The ratio of radial and axial velocity components is ∼ 1.5

(See Figure 4.8(a)), which agrees well with the value of 1.48 calculated by Voth

et al. (126); referred to as a typical value for homogenous shear flows (38). The

TPIV radial component ratio of unity confirms the axial symmetry. The mean

Reynolds stress should be zero due to symmetry (127), which is confirmed in

Figure 4.8(b).

4.2.3 Velocity Gradients

Velocity gradients were evaluated using a central differencing scheme (detailed in

Section 2.4.1) yielding four and nine components for the DPIV results and TPIV

results respectively, which are studied both locally and globally.
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(a) RMS velocity ratios (b) Reynold stress ratios

Figure 4.8: Ratio of RMS velocities and Reynolds stresses, components by colour

as indicated, case by symbol: × = D1; © = D2; ∗ = D3; 4 = D4; ; � = T1,

[−−] = mean component value averaged over all cases and runs

4.2.3.1 Local Velocity Gradients

Figure 4.9 shows PDFs of normalised gradient components for all DPIV and

TPIV cases. The RMS vorticity normalisation parameter was chosen to match

the results of Jiménez et al.(53). Despite the reasonable collapse of data at low

gradient magnitudes, there is some variation in the tails. Comparing the in-plane

gradients from DPIV and TPIV results shows that the latter appear to be slightly

under-predicted, due to technique differences (see Section 3.2.2).

The five additional TPIV gradient components show similar behaviour to the

mean local gradient field errors shown in Section 3.2.2. The ∂w/∂x and ∂w/∂y

components are similar in magnitude to the other in-plane off-diagonal compo-

nents (∂u/∂y and ∂v/∂x). The out-of-plane gradients, ∂u/∂z and ∂v/∂z, are

smaller in magnitude than the other off-diagonal terms, due to the increasing

gradient under-prediction demonstrated in Section 3.2.2. Despite the large ex-

pected error in the ∂w/∂z term, the magnitude of this component is similar to

the other diagonal components, due to the balance of noise and spatial filtering

effects.

Jiménez et al.(53) compile a variety of numerical and experimental results,

demonstrating a slight increase in normalised gradient magnitude with increasing
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(a) ∂u/∂x (b) ∂u/∂y (c) ∂u/∂z

(d) ∂v/∂x (e) ∂v/∂y (f) ∂v/∂z

(g) ∂w/∂x (h) ∂w/∂y (i) ∂w/∂z

Figure 4.9: Components of velocity gradient; colours representing different cases:

T1 = black, D1 = red, D2 = blue, D3 = green, D4 = magenta: and line types

representing run numbers: [—] = run 1, [· · · ] = run 2, [−−−] = run 3, [−.− .]
= run 4, [***] = run 5

Reynolds number. Similar behaviour is also shown experimentally by Belin et

al. (7). Notably however, despite the large range of Reynolds numbers covered in

the current investigation, no strong Reynolds number trends are shown and the

gradients scale directly with the RMS vorticity. The simulations in Section 3.2.3

demonstrated that a reduction in resolution reduces gradient magnitude through

spatial filtering, which may counter the expected gradient magnitude increase at
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high Reynolds number.

The non-Gaussian PDF asymmetry is noted by a number of investigators (37;

53; 82). This is quantified by the last two authors by modelling the tails as a

straight line exponential decay in semi-logarithmic axes, as in Equation 4.1, where

a is the rate of decay, q is any velocity gradient, and P (q) is the probability density

function of that velocity gradient (37). Left and right hand side decay constants

are calculated for all gradient terms using a least squares approach, with the dif-

ference between them expressed as a percentage in Figure 4.10. Diagonal gradient

components are coloured separately, with a single colour for all off-diagonal com-

ponents. Similar to the findings of Ganapathisubramani et al. (37) and Mullin &

Dahm (82) substantial differences are found in the scaling of the diagonal com-

ponents, with much smaller differences in the off-diagonal terms. The cause of

this asymmetry is thought to be the departure from local isotropy (82).

a = − d

d|q|
lnP (q) (4.1)

Figure 4.10: Percentage change in decay constant for left and right hand PDF

tails; symbols denote cases: 4 = D1; � = D2; © = D3; ♦ = D4; F = T1

4.2.3.2 Global Mean Velocity Gradients

According to the Richardson cascade concept (for example see Davidson (23)),

energy injected at the large scale should be transferred to increasingly small

scales until it is dissipated into heat. Due to the high Reynolds number of the
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Figure 4.11: Velocity gradient ratio, components by colour as indicated, case by

symbol: × = D1;© = D2; ∗ = D3; 4 = D4; ; � = T1, [−−] = mean component

value averaged over all cases and runs

current measurements there should exist a sufficiently large separation between

the injection and dissipation scales, that any anisotropy present at the largest

scale should be lost during the transfer process. As the velocity gradients are

evaluated over the space of several cells, which in the present investigation are of

order η (see Section 4.1.3), global isotropy at the smallest scales can be tested by

examining the ratio of mean squared velocity gradients, shown in Figure 4.11.

As expected for isotropic turbulence the ratio of in-plane gradients takes a

value of around 1 for all data sets. Despite the reasonably high degree of scatter,

at low Reynolds number the ratio appears slightly higher than unity, which may

indicate an insufficient separation of scales due to under developed turbulence,

similar to the results of Voth et al. (126). However, this small level of anisotropy is

within the measurement uncertainty, making more definite conclusions difficult.

Additionally, the lower resolution D1 and D2 cases may not be capturing the

smallest flow scales, particularly at the highest Reynolds numbers. However, as

the range of scales increases with Reynolds number, despite the failure of these

cases to reach right down to the dissipation scale, the flow still appears to have

lost much of the anisotropy present at larger scales.

The ratios, (∂u/∂x)2/(∂w/∂z)2 and (∂v/dy)2/(∂w/∂z)2, were also shown for

the TPIV data. These both demonstrate a high degree of scatter and take values

significantly below 1. This under-prediction is due to the poor out-of-plane mea-
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surement accuracy (see Section 3.2.3), and within the measurement uncertainty

the gradients are isotropic.

4.3 Statistical Flow Structure Characterisation

In this section the flow structure is characterised statistically using the velocity

correlation function, longitudinal structure function, and energy spectrum. In ad-

dition to further flow isotropy investigation and integral scale determination, this

structural analysis is also useful in assessing the validity of the current measure-

ments through their reproduction of the widely recognised Kolmogorov scaling

laws. Conversely, it is also possible to estimate the dissipation rate from these

quantities on the assumption of this scaling.

4.3.1 Velocity Correlation Function

(a) Longitudinal correlation functions (b) Lateral correlation functions

Figure 4.12: Velocity correlation functions

In order to further examine the flow anisotropy and make an estimate of

the integral length scale, that is the scale over which velocities are appreciably

correlated, it is useful to plot the velocity correlation functions (see Section 1.1.1).

Figure 4.12 shows longitudinal and lateral u velocity correlation functions.

The agreement between different cases and runs is reasonable at small distances,
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with more significant variation seen as the distance is increased. As velocity is

correlated over a range of distances, de Jong et al. (24) note that spatial filtering

should affect the correlation less severely at larger separation distances. However,

the lack of convergence, particularly of the larger scales appears to dominate

the correlation, resulting in the observed variation between cases. Domain size

differences are seen through function truncation at f(r) > 0, with even the largest

domain failing to capture the correlation function at f(r) = 0.

Figure 4.13: Combined 2D velocity correlation function, D1− 5

The combined 2D correlation function of velocity magnitude in Figure 4.13

shows the effect of the flow straining due to toroidal re-circulation, increasing

correlation in the y direction over large distances, resulting in an oval distribution.

The combined 3D velocity magnitude correlation function for the TPIV data

is plotted on Figure 4.14 using semi-transparent iso-surfaces to display a range of

correlation values. Despite the axial symmetry of the current flow, the increased

uncertainty of the depth component causes strong additional correlation function

deformation; resulting in a prolate spheroid shape.

An integral length scale estimate is made through velocity correlation func-

tion integration. The premature function truncation (f(r) > 0) due to insufficient

domain size requires the modelling of the function tail. Therefore, a decaying ex-

ponential was fitted to the available data and extrapolated to f(r) = 0 (see Fig-

ure 4.15(a)). To decrease the length scale estimate dependancy on extrapolated

data, only functions from the largest domain D1 case were used to determine the
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(a) Entire function (b) Enlarged centre

Figure 4.14: Combined 3D velocity correlation function, T1− 4

(a) Example of extrapolated function, D1 (b) Length scale estimates

Figure 4.15: Length scale estimation

mean value. Length scale estimates are shown in Figure 4.15(b), with the level

of scatter consistent with the statistical convergence. A mean value from the

D1 case of Λ = 130mm is calculated, which will be used in all scaling argument

estimates.

4.3.2 Structure Function

Figure 4.16 shows the second order longitudinal structure function normalised by

the RMS velocity for each case at a single similar Reynolds number and across a
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range of Reynolds number for the D1 case.

(a) Case comparison (b) Reynolds number comparison

Figure 4.16: Longitudinal second order structure function

Figure 4.16(a) shows reasonable agreement between cases over small separa-

tion distances with variation increasing with distance. The interrelation of this

quantity with the velocity correlation function ([∆u]2 = u2(1 − f)) means this

variation is attributable to similar sources (see Section 4.3.1).

Due to the large domain size the D1 case allows the structure function to

be calculated over a greater range of separation values, shown in Figure 4.16(b).

The variation between different Reynolds numbers is within the limits of the mea-

surement uncertainty, which is set in this case by the RMS velocity normalisation

parameter.

To assess agreement with Kolmogorov’s two-thirds law the D1 case has also

been plotted logarithmically and pre-multiplied by 1/C2(εr)
2/3 in Figure 4.17,

where C2 = 2.12 as Rλ → ∞ (114). Gotoh et al. (40) show the exponent C2 is

constant over a value of Rλ = 250, and therefore a finite Reynolds number correc-

tion has not been made. Although modification to the original K41 law usually

involve an additional exponent to take account of intermittency, the correction

for the 2nd order structure function is usually small, and within the bounds of

experimental error (23).

Figure 4.17(a) shows a collapse of data at reasonable separation distances

onto the r2/3 line (plotted for run D1− 2), which is also shown in Figure 4.17(b),
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(a) Logarithmic scale (b) Pre-multiplied

Figure 4.17: Longitudinal second order structure function, Reynolds number com-

parison

where r2/3 scaling is represented by the plateau at a value of unity. The horizontal

section of the curves appear slightly later than may be expected, showing a slight

positive gradient in the inertial range. Similar behaviour is noted by Gotoh

et al. (40), who attribute this to an insufficient number of Fourier modes in

the energy spectrum inertial range, applying an exponent correction to their

results. Similarly, the large scale convergence issues in the present investigation

may produce the weak positive gradients shown in Figure 4.17(b).

Conversely, assuming the flow scales as predicted by Kolmogorov’s two-thirds

power law, the structure function can be used to estimate the dissipation rate (24).

Figure 4.18 shows normalised structure function variation, (1/r)([∆u]2/C2)
3/2,

with separation distance, r, with the plateau now representing the mean dis-

sipation rate, ε. These estimates have been compared with other methods in

Section 4.4.2.

4.3.3 Energy Spectrum

The 1D Energy spectrum was calculated directly from the PIV data using the

method described in Section 2.4.3. Due to its non-trivial effect, the use of the

Hann windowing function is also demonstrated.
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Figure 4.18: Dissipation estimate using the second order structure function

Figure 4.19(a) shows a good collapse of data between all experimental runs

and reasonable agreement with the Pao result (88) at low wavenumbers. Mea-

surements positions range from the tail end of the inertial range into the dissi-

pation region. Without a windowing function, similarities are observed between

the present results, previous experimental investigations (48; 68), and the accu-

racy simulation (see Section 3.2.5), with the spectrum peeling away from the Pao

curve at high wavenumbers due to spatial truncation effects and experimental

uncertainty.

Inertial range agreement with Kolmogorov scaling can be assessed more rigourously

through the pre-multiplied spectra shown in Figure 4.19(b), which for clarity

shows only the highest Reynolds number results containing the lowest wavenum-

ber components. The failure of these pre-multiplied spectra to plateau demon-

strates similarity with the simulation results (see Section 3.2.5), and the absence

of Kolmogorov scaling in the inertial range is attributed to an insufficient domain

size.

Figures 4.20(a) and 4.20(b) show the effect of Hann windowing on the D1

and D4 cases. Use of this windowing function produces similar effects to those

seen in the accuracy simulation (see Section 3.2.5), improving the dissipation

region in the D4 results, but causing increased inertial range under-estimation in

the D1 results. Despite significant deviations from the Pao spectra, the observed

errors are consistent with those defined in the numerical simulations, and therefore

within the bounds of technique accuracy, these appear to be predicted reasonably.
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(a) All cases and runs (b) Pre-multiplied selected cases

Figure 4.19: Energy spectra without windowing function, for (a): cases by colour

as indicated, run number by symbol: × = run 1; © = run 2; ∗ = run 3; 4 =

run 4; ; � = run 5

(a) case D4 (b) case D1

Figure 4.20: Effect of Hann windowing on the energy spectra

The dissipation rate can be estimated through the Energy spectra using Equa-

tion 4.2 (144).

ε = 15ν

∞∫
0

κ2E11(κ)dκ (4.2)

An example of the velocity gradient spectrum, κ2E11, is shown in Figure 4.21.
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The effect of convergence and noise at both low and high wavenumbers respec-

tively result in dramatic deviations from the ideal distribution, with similar be-

haviour identified by Ganapathisubramani et al. (36). These points, identified in

Figure 4.21, were trimmed before completing the original normalised E11 spec-

trum through a least squares fit of a 3 constant equation with fixed −5/3 power

law and exponential decay term (Equation 4.3), which gave the best fit over widest

range of values. The fitted curve is converted back into dimensional form, before

being multiplied by κ2 (shown non-dimensionally in Figure 4.21). The completed

function integral is used to calculate dissipation, which has been compared with

other methods in Section 4.4.2.

E11(κ)

υ2η
= a(κη)−5/3e−b(κη)

c

(4.3)

Figure 4.21: Dissipation estimate from energy spectrum

4.4 Estimation of Turbulent Properties and Scales

This section begins with an investigation of local and global dissipation rate esti-

mates. As discussed by de Jong et al. (24), accurate measurement of this quantity

is extremely difficult, with no current consensus to preference the multitude of

available methods. Therefore, the current investigation compares a number of

these methods, before selecting two estimates to derive other quantities of inter-

est such as the Taylor and Kolmogorov microscales.
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4.4.1 Local Dissipation Rate Distribution

Figure 4.22 shows PDFs of the normalised dissipation rate, ε∗ (where ε∗ = ε/εm).

(a) Effect of estimation method on T1−3 case (b) All cases and runs with current 2D method

Figure 4.22: Local normalised dissipation rate distribution; for (b): cases by

colour as indicated, run numbers by line type: [—] = run 1, [· · · ] = run 2,

[−−−] = run 3, [−.− .] = run 4, [***] = run 5

As discussed in Section 2.4.2, absence of the full VGT requires assumptions

of isotropy to complete the dissipation estimate. The replacement of gradient

terms according to user preference has lead to a number of slightly different

gradient combinations (24; 39; 43; 76), which are compared in Figure 4.22(a)

for the T1 − 3 case. In agreement with previous investigations (37; 82) the

dissipation rate calculated from the full VGT is distributed log-normally, which

is confirmed through a least squares regression (Equation 4.4), where σε∗ is the

standard deviation and ε∗m the mean.

P (ε∗) =
1√

2πσε∗ε∗
exp

(
−(ln(ε∗)− ε∗m)2

2σ2
ε∗

)
(4.4)

Other methods exhibit greater asymmetry and predict a higher probability of

lower dissipation values, caused by the projection of 3D dissipative structures onto

lower dimensional space (37). This conclusion is supported by the severe under-

prediction and slight over-prediction at the low and high dissipation magnitude

ends respectively of the 1D estimate. The use of more gradient terms in the 2D
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Run 1 Run 2 Run 3 Run 4 Run 5

Case Method σε∗ ε∗m σε∗ ε∗m σε∗ ε∗m σε∗ ε∗m σε∗ ε∗m
D1 2D 1.06 0.604 1.1 0.606 1.07 0.589 1.07 0.588 1.03 0.565

D2 2D 1.23 0.774 1.21 0.753 1.19 0.719 1.16 0.689 1.1 0.634

D3 2D 1.27 0.833 1.28 0.842 1.24 0.796 1.22 0.77 1.18 0.721

D4 2D 1.24 0.773 1.28 0.828 1.24 0.781 1.2 0.737 - -

T1 3D 0.999 0.471 1.05 0.535 1.09 0.584 1.03 0.522 0.992 0.492

T1 2D 1.23 0.737 1.28 0.802 1.28 0.817 1.24 0.767 1.18 0.704

Table 4.2: Log-normal dissipation rate distribution constants

estimates reduce the asymmetry by varying degrees. The estimates proposed by

de Jong et al. (24) and Hinze (43) both use only 3 of the available 4 measured

gradient terms, which may cause the greater asymmetry in these distributions.

The methods of Michelet et al. (76) and the authors own choice of components

produce similar results, and give the closest approximation to the log-normal

distribution, with the latter used to produce all subsequent 2D estimates.

Figure 4.22(b) shows normalised dissipation rate PDFs for all cases. The data

collapses well into two distinct distributions for the 2D and 3D calculation meth-

ods. The differences between calculation methods is again illustrated through

2D TPIV estimates, which produce similar results to the DPIV estimates. Af-

ter normalisation the effect of reducing spatial resolution is slight, although a

weak reduction in the high magnitude tail is observed, which may relate to the

increasing dissipation rate under-prediction. The effect of spatial resolution will

be examined in the following section. Finally, log-normal distribution parameters

are included in Table 4.2.

4.4.2 Comparison of Global Dissipation Rate Estimates

As demonstrated in previous work (24; 65) and the present investigation (see Sec-

tion 3.2.3) accurate dissipation estimation is highly dependent on measurement

spatial resolution. Therefore, the following comparison considers resolution ef-

fects using two approaches: firstly by dropping an increasing numbers of vectors

from the highest resolution D4 case to artificially reduce the resolution (shown

in Figure 4.23(a)); and secondly by comparing all experimental results, which
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include a reasonable range of measurement resolutions (shown in Figure 4.23(b)).

The dissipation rates are normalised by the scaling argument estimate (calculated

using Equation 1.1), forcing this estimate to a constant value of A = 0.5.

Lavoie et al. (65) demonstrate the effect of spatial filtering and finite differ-

ence gradient calculation on PIV dissipation rate prediction, by filtering a known

spectrum using a function based on interrogation window dimensions. Therefore,

the measurement resolution in Figure 4.23 is plotted against the normalised inter-

rogation window width, ∆h/η, which is double the interrogation window spacing,

∆x/η.

(a) Resolution variation through dropped vec-

tors, D4

(b) All results

Figure 4.23: Effect of measurement resolution on dissipation rate estimation; for

(a): calculation method by colour as indicated, resolution by symbol: × = full

resolution; © = every 2nd point; ∗ = every 3rd point; 4 = every 4th point; for

(b): calculation method by colour as indicated, case by symbol: × = D1; © =

D2; ∗ = D3; 4 = D4; � = T1

Figure 4.23(a) shows that direct estimation of the dissipation rate using the

1D or either of the 2D methods produce very similar results. The direct 1D

method produces the highest values closely followed by the 2D axisymmetric

and isotropic estimates, which are within ∼ 10%. Despite considerable scatter

the estimates show increasing dissipation under-prediction as the measurement

resolution is reduced; in broad agreement with the spectral correction predicted

133



4.4 Estimation of Turbulent Properties and Scales

by Lavoie et al. (65), and the correction ratio derived from the numerical accuracy

investigation (see Section 3.2.3).

Again despite considerable scatter, a similar trend in the direct estimates is

shown in Figure 4.23(b), with under-prediction increasing as measurement res-

olution is reduced. The more severe under-prediction of the D3 DPIV case is

expected to result from RMS velocity over-prediction and corresponding under-

prediction of the scaling factor. The 1D and 2D TPIV estimates show reasonable

agreement with those from the full 3D method, indicating that the poor predic-

tion of the local dissipation structure (shown in Section 4.4.1) only has a slight

effect during mean dissipation rate calculation. This observation is in contrast to

Ganapathisubramani et al. (37) who show severe under prediction of the dissipa-

tion rate for the 1D method.

Increased TPIV measurement uncertainty was shown in Section 3.2.3 to cause

more severe dissipation rate under-prediction in comparison with DPIV. This is

reflected in the current results, which show similar under-prediction to the TPIV

correction curve. Slightly higher than expected dissipation rate estimates may

be a result of increased experimental noise resulting in gradient over-prediction,

which compensate slightly (albeit erroneously) for the effects of spatial averaging.

Despite efforts to correct for lost dissipation scale energy through spectra

modelling in Section 4.3.3, the energy spectrum estimates are close to the direct

method. This under-prediction is expected to stem from spatial averaging effects,

which will result in a loss of energy at the smallest scales. The model effectively

extends the measured spectrum to account for higher frequency components lost

due to insufficient resolution, but fails to take account of the lost energy within

the measured spectrum itself. Although Lavoie’s spectral correction could be

applied to the spectrum directly, this level of manipulation is akin to remodelling

the entire spectrum, which although useful in terms of fully demonstrating the

source of the energy losses, may be excessive for dissipation rate estimation.

As shown by de Jong et al. (24) the second order structure function is a fairly

robust method for dissipation rate estimation, due to its use of relatively insen-

sitive large scale motions in comparison with the highly sensitive local velocity

gradient terms used during direct estimation. Therefore, despite considerable

scatter (≈ 0.3→ 0.5), this method results in the most consistent dissipation rate
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4.4 Estimation of Turbulent Properties and Scales

estimate. Accuracy is inversely proportional to correlation function truncation,

and despite exponential modelling to complete the function, better estimates are

obtained for cases with larger domains, irrespective of spatial resolution.

Normalising the structure function dissipation estimate by R4
I/ν

3 permits

comparison with the results of Zocchi et al. (144), shown in Figure 4.24(a). The

measurement uncertainty for this method scales with truncation error and is

estimated based on the convergence of the pre-multiplied functions (similar to

Figure 4.17(b)), and within the bounds of uncertainty the dissipation rates follow

the expected Re3 scaling. The current results appear to predict slightly higher

dissipation rates than Zocchi et al., which may be attributed to geometry differ-

ences between set-ups.

It is possible to correct for the known spatial averaging effects through the

correction ratio’s calculated from the results in Section 3.2.3, which are shown in

Figure 4.24(b). Despite increased scatter in comparison with Figure 4.24(a) the

corrected estimates predict Re3 scaling. As measurement resolution is reduced

the correction ratio tends to zero (see Figure 4.23(b)) dramatically increasing

the correction magnitude and its associated error, resulting in erroneously high

dissipation rates for low resolution high Reynolds number results. However, as

the direct method measurement uncertainty was calculated from the dissipation

rate under-prediction, it is difficult to estimate the uncertainty in these corrected

results, and therefore no error bars are included in Figure 4.24(b).

4.4.3 Taylor Microscale Estimate

In the current investigation two approaches have been used to calculate this length

scale: the first involves fitting a parabola to the velocity correlation function close

to r = 0 (see Section 1.1.2); the second relates it directly to local velocity gradients

through the dissipation rate defined by Equation 1.4 (23).

A least squares approach was used to fit parabolas to the velocity correlation

function close to r = 0 using between NLS = 5− 10 points in the regression. The

Taylor microscale is a function of the number of points, NLS, used during the

regression, and therefore to estimate this value as r → 0 a linear regression of
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4.4 Estimation of Turbulent Properties and Scales

(a) Structure Function Method (b) Corrected Direct Method

Figure 4.24: Different dissipation estimates in comparison to the scaling argument

method

the microscale variation with NLS has been calculated (shown in Figure 4.25(a)),

with the microscale estimated as λNLS=0.

The Taylor microscale is also calculated using the scaling argument dissipation

estimate, and Figure 4.25(b) shows a parabola comparison between this and the

best fit method for the D1 − 2 case. Both demonstrate reasonable agreement

with the velocity correlation function around r = 0, with the best fit method

predicting a slightly higher value for this case.

(a) Effect of NLS on least squares fit (b) Calculated parabola

Figure 4.25: Parabolic fit method for estimating Taylor microscale, D1− 2
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4.4 Estimation of Turbulent Properties and Scales

The two methods are compared in Figure 4.26. The urms/U Reynolds num-

ber scaling shown in Figure 4.7 accounts for the expected gradient based Taylor

microscale Re−1/2 scaling. The parabola best fit method produces a much higher

degree of scatter, with only the higher resolution DPIV case predicting the cor-

rect scaling. Therefore, the lower resolution results may contain an insufficient

number of points close to the high curvature r = 0 region where the parabola fit

is conducted, resulting in the observed over-prediction. Despite the high TPIV

resolution, these results severely over-predict the microscale, which may be due

to increased noise in the velocity correlation function.

Figure 4.26(b) compares values of the Taylor microscale calculated using dif-

ferent dissipation rate estimates from the scaling argument and structure function

methods. There is good agreement for the majority of runs, and only the increased

dissipation under-prediction due to structure function truncation in the higher

resolution cases results in slight microscale over-prediction.

(a) Parabolic fit method (b) Structure function method

Figure 4.26: Different Taylor microscale estimation methods; for (a) and (b):

calculation method by colour as indicated, case by symbol: × = D1; © = D2; ∗
= D3; 4 = D4; � = T1

Figure 4.27 shows Taylor microscale Reynolds number variation with Reynolds

number for the structure function and scaling argument methods. The predic-

tions again follow the expected Re1/2 scaling, and demonstrate that the original
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4.5 Flow Divergence

Reynolds number range of Re ≈ 2× 104 → 2× 105 is equivalent to Rλ ≈ 160→
700.

Figure 4.27: Different estimates of the Taylor microscale Renyolds number, Rλ;

calculation method by colour as indicated, case by symbol: × = D1; © = D2; ∗
= D3; 4 = D4; � = T1

4.4.4 Kolmogorov Microscales

It is also useful to compute the Kolmogorov length and time scales, which give an

idea of the smallest length and time scales within the flow. These have been cal-

culated from Equation 1.2 using the dissipation rate estimates from the structure

function and scaling argument methods. These length and time scales estimates

are functions of the fourth and square root of dissipation rate respectively, ap-

preciably reducing measurement uncertainty and resulting in good agreement

between cases and the expected Reynolds number scaling. Again the difference

between scaling argument and structure function methods manifests in the lat-

ter predicting slightly higher microscale values, although it should be noted that

these differences are within the measurement uncertainty.

4.5 Flow Divergence

Divergence errors are likely to arise from a combination of measurement uncer-

tainty, finite differencing error and spatial filtering of the velocity field. Therefore,
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4.5 Flow Divergence

(a) Kolmogorov length scale (b) Kolmogorov time scale

Figure 4.28: Comparison of Kolmogorov microscale estimates; for (a) and (b):

calculation method by colour as indicated, case by symbol: × = D1; © = D2; ∗
= D3; 4 = D4; � = T1

this section begins with a further TPIV accuracy quantification through the flow

divergence, using a number of measures introduced in Section 3.2.4. Several di-

vergence correction schemes are also assessed, as is the effect of divergence and

noise on the statistical topological invariants.

4.5.1 Divergence Correlation

Figure 4.29 shows JPDFs of ∂u/∂x against −(∂v/∂y + ∂w/∂z), in which the

degree of divergence is represented by the scatter of data away from the zero

divergence line where these components balance. Data from the second cross-

correlation pass is also plotted to demonstrate the discretisation error effect on

the divergence. The second and third passes are denoted by IW2 and IW3 re-

spectively, where IW2 = 1.56 IW3. Due to the small volume thickness, it is not

possible to study a wider range of discretisation levels.

Gradient components for the smaller window size shown in Figures 4.29(a)

to (c) produce a poor correlation, resulting in a rounded distribution and a low

correlation value, Q. As shown in Figure 4.29(d) to (f), increasing interrogation

window size reduces divergence and improves this correlation value. A similar

effect is shown by Zhang et al. (142) who conclude that this discretisation effect
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4.5 Flow Divergence

(a) T1− 1, IW3 (b) T1− 3, IW3 (c) T1− 5, IW3

(d) T1− 1, IW2 (e) T1− 3, IW2 (f) T1− 5, IW2

Figure 4.29: Divergence correlation JPDF, contours of base 10 exponentials

results from the non-uniform particle distribution in the volume; a problem which

is exacerbated at low seeding densities, where the mean particle position (interro-

gation region centroid) and centrally positioned velocity vector may be different.

Due to the random particle distribution method used in the numerical simulation

this problem may not have been accurately modelled, which might explain the

lower correlation values found in the experimental data. The correlation values

are significantly lower than previous investigations (36; 123), especially the high-

est and lowest Reynolds number cases. However, as discussed in Section 3.2.4

this accuracy reduction is related to the noise introduced in this full 3D method,

as opposed to higher accuracy single point hot-wire and planar stereo PIV mea-

surements.

4.5.2 Normalised Local Divergence

Although regions of high gradient magnitude may produce relatively large ab-

solute divergence contributions, these may be small in relation to the gradients,
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4.5 Flow Divergence

and therefore it is also useful to study the normalised local divergence.

(a) Gradient magnitiude normalised diver-

gence

(b) Normalised divergence ratio, ξ PDF

Figure 4.30: Gradient and divergence magnitude JPDF

Figure 4.30(a) shows the effect of discretisation on a PDF of local divergence

normalised by the local norm of the velocity gradient tensor, χ = ∇ · u/(∇u :

∇u)1/2. The larger window reduces the RMS variation slightly, although except

for the T1 − 3 case, the divergence is significantly higher than the value of 0.35

found in dual plane stereo-PIV measurements by Mullin & Dahm (82). A sim-

ilar reduction in divergence error is observed from the PDF of the normalised

divergence ratio, ξ (see equation 3.3), shown in Figure 4.30(b). Again however,

only the T1− 3 case gives a value at the smallest interrogation volume size, IW3,

similar in magnitude to the value of 0.74 calculated by Zhang et al. (142).

4.5.3 Divergence Location

Lower magnitude gradient regions will be more susceptible to inherent PIV errors,

and therefore although the flow contains a reasonable amount of divergence the

location of this should be quantified.

Figure 4.31 illustrates this relationship through the JPDF of normalised di-

vergence against velocity gradient magnitude. The characteristic pyramid shape

indicates that regions of low and high gradient magnitude are associated with the

highest and lowest divergence respectively. Again comparing Figures 4.31(a) to
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(a) T1− 1, IW3 (b) T1− 3, IW3 (c) T1− 5, IW3

(d) T1− 1, IW2 (e) T1− 3, IW2 (f) T1− 5, IW2

Figure 4.31: Gradient and divergence magnitude JPDF, contours of base 10 ex-

ponentials

(c) and 4.31(d) to (f) shows the effect of discretisation, with larger window sizes

reducing the divergence error and resulting in a sharper distribution peak.

The current study is focused on high gradient magnitude regions associated

with coherent structures, which this analysis indicates will have reasonably low

divergence errors. Therefore this association is now examined through two differ-

ent divergence reduction methods.

4.5.4 Divergence Thresholding

The effect of thresholding on the divergence correlation, and gradient magnitude

JPDFs is shown in Figures 4.32 and 4.33 respectively. The thresholding is based

on the normalised divergence ratio, ξ < ξrms, removing around 35% of the data

with the lowest gradient SNR.

This dramatically increases the correlation values in Figure 4.32, which are

shown to be particularly sensitive to these normalised divergence values. As ex-
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(a) T1− 1, IW2 (b) T1− 3, IW2 (c) T1− 5, IW2

Figure 4.32: Divergence correlation JPDF conditioned on low normalised diver-

gence, ξ < ξrms, contours of base 10 exponentials

(a) T1− 1, IW2 (b) T1− 3, IW2 (c) T1− 5, IW2

Figure 4.33: Gradient and divergence magnitude JPDF conditioned on low nor-

malised divergence, ξ < ξrms, contours of base 10 exponentials

pected Figure 4.33 shows that the removal of these points does not significantly

affect the high gradient magnitude regions, modifying the distribution shape to-

wards that shown by Ganapathisubramani et al. (36).

4.5.5 Divergence Correction

Another illustration of this association was performed by removing divergence

using the method of convex projections (111). In this method a vector field

correction containing the same divergence as the original vector field is calcu-

lated and subtracted from the original field. The problem is re-cast in terms of a

three-dimensional Poisson equation with the solution to this providing the closest

divergence free solution to the original field in a least squares sense. The domain

is zero-padded at the edges, and the dirichlet condition is applied at these bound-
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aries, with the solution equal to zero at these points. Although at low resolution

the velocity fields should not be entirely divergence free due to the effects of spa-

tial filtering, this inherent divergence error was shown to be small for resolutions

∆x/η ≤ 8 (see Section 3.2.4).

Application of this process for a single T1− 3 case velocity field reduced the

normalised divergence ratio from ξ = 0.76 to ξ = 0.02, through changes of 5.8,

7.6, and 6.7% in the u, v and w components respectively. The magnitude of the

velocity correction is similar to the estimated error for this case.

(a) Original, ξ = 0.76 (b) Divergence corr., ξ = 0.02

Figure 4.34: Iso-surfaces of vorticity magnitude |ω| > ωrms

(a) Original, ξ = 0.76 (b) Divergence corr., ξ = 0.02

Figure 4.35: Iso-surfaces of dissipation rate magnitude ε > 2εm
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Original Thresholding Corrected

Window ξ χrms Q ξ χrms Q ξ χrms Q

T1− 1
IW2 0.967 0.530 0.0427 0.323 0.313 0.582 0.0492 0.0683 0.980

IW3 0.957 0.546 0.00377 0.331 0.325 0.538 0.139 0.132 0.928

T1− 2
IW2 0.932 0.506 0.117 0.302 0.298 0.625 0.0493 0.0657 0.980

IW3 0.928 0.527 0.058 0.311 0.311 0.576 0.129 0.123 0.936

T1− 3
IW2 0.658 0.384 0.421 0.193 0.228 0.538 0.042 0.0567 0.984

IW3 0.794 0.459 0.235 0.249 0.27 0.682 0.116 0.111 0.945

T1− 4
IW2 0.787 0.440 0.255 0.243 0.262 0.711 0.0577 0.0699 0.976

IW3 0.853 0.486 0.156 0.273 0.287 0.649 0.129 0.119 0.940

T1− 5
IW2 0.867 0.474 0.177 0.275 0.28 0.650 0.0692 0.0781 0.971

IW3 0.907 0.516 0.0787 0.308 0.309 0.580 0.154 0.136 0.910

Table 4.3: Divergence Values

Figures 4.34 and 4.35 show divergence correction does not significantly affect

the high magnitude vorticity and dissipation distributions, reaffirming that the

divergence is not strongly associated with these high gradient regions. Further-

more, the correction changes the mean dissipation rate estimate by less than 2%.

This implies that the current investigation of these high gradient regions will be

largely unaffected by the divergence error present. Mean divergence values at dif-

ferent resolutions and after both thresholding and correction schemes are listed

in Table 4.3.

4.5.6 Effect of Divergence and Resolution on Topological

Invariants

A number of JPDFs have been constructed using the invariants introduced in

Section 1.1.6.2 in order to study the flow topology. The first second and third

invariants, PA, QA, and RA are calculated from the summation of multiple first,

second and third order gradient term combinations respectively, and therefore

are likely to be highly sensitive to noise. Furthermore, although regions contain-

ing high vorticity and dissipation were shown to be relatively insensitive to the

divergence error, this may still have a significant effect on the higher order gra-

dient products and lower magnitude gradient regions. Although the numerical
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(a) IW2, orig. (b) IW2, div. thresh. (c) IW2, div. corr.

(d) IW3, orig. (e) IW3, div. thresh. (f) IW3, div. corr.

Figure 4.36: The effect of resolution and divergence on the Q-R plane for the

T1− 3 case, contours of base 10 exponentials

accuracy investigation demonstrated the manifestation of these effects as a loss of

distribution definition (see Section 3.2.6), the higher divergence associated with

the experimental results requires further analysis.

Figure 4.36 shows JPDFs of the non-dimensional invariants Q∗A and R∗A at

two different resolutions for the T1−3 case. Divergence effects are assessed using

two methods: firstly thresholding by P ∗A = PA/〈QW 〉1/2 with the limits |P ∗A| <
(2/3)P ∗A,rms, which excludes around 35% of the highest divergence data; and

secondly through the divergence correction scheme introduced in Section 4.5.5.

Comparing distributions at different resolutions demonstrates the effect of

noise, which causes blurring of the higher resolution contours with an increased

tendency towards SN/S/S topology. The significant reduction of this SN/S/S

preference in the lower resolution results indicates this is a noise related arte-

fact. To confirm this, a 1× 107 point Monte Carlo simulation was conducted to

demonstrate the effect of random gradient field errors (−1 < ∂ui/∂xj < 1) on

the topological invariants, shown in Figure 4.37. The substantial effect of noise
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Figure 4.37: Error in Q-R plane due to random gradient field noise, −1 <

∂ui/∂xj < 1, contours of base 10 exponentials, black stars represent combina-

tions of the maximum possible errors

in the SN/S/S quartile strengthens the argument that this is the cause of the

invariant plot deformation.

Both thresholding and divergence correction reduce distribution blur, partic-

ularly around the teardrop tip, improving the agreement with previous investi-

gations (84; 85).

Divergence effects are investigated further by studying trivariate JPDFs of

the normalised invariants P ∗A, Q∗A, and R∗A, shown in Figure 4.38. The 9 subplots

correspond to different P ∗A bin locations, with the upper and lower bounds and the

percentage of points contained in each bin indicated at the top of each subplot.

These 9 bins account for all points within ±2P ∗A,rms, which is approximately 96%

of the total number of points.

As the magnitude of P ∗A increases the expected teardrop shape appears to

rotate about the origin. This behaviour is explainable through the definitions

of these two invariants (see Equations 1.14 to 1.16), and from knowledge of the

relative invariant magnitudes (in general P ∗A << Q∗A). If P ∗A and Q∗A are both

positive the first terms in the invariant R∗A will become R∗A = −P ∗3A + 3P ∗AQ
∗
A . . .,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.38: Trivariate JPDF slices of normalised topological invariants P ∗A, Q∗A
and R∗A for high resolution case, contours of base 10 exponentials

and as 3Q∗AP
∗
A >> P ∗3A , R∗A will tend towards positive values. On the other hand

if P ∗A is positive but Q∗A is negative the leading terms become R∗A = −P ∗3A −
3P ∗AQ

∗
A . . ., meaning R∗A will tend towards negative values. As the magnitude

of P ∗A is increased the effect of these tendencies is also increased, resulting in

an increasing net clockwise rotation on the Q∗A − R∗A plane. Conversely, it can

be shown that negative values of P ∗A will produce an anti-clockwise rotation.

The addition of these high divergence regions are responsible for the Q∗A − R∗A
plane blurring shown in Figure 4.36. The divergence threshold applied previously

148



4.5 Flow Divergence

effectively removes points from the first and last 3 subplots (Figure 4.38(a) to (c)

and (g) to (i)), where the tip is furthest from the ∆A = 0 line, resulting in the

sharper distribution shown in Figure 4.36(b).

Although thresholding results on a normalised divergence criterion (results

with low gradient SNR) was also tested, no significant improvements were ob-

served. It is likely that regions containing low SNR correspond to small gradients

and also low magnitude invariants, and therefore any distortion of the JPDF is

likely to occur at its centre where effects are masked by noise.

Therefore, due to this extreme sensitivity to noise and divergence the slightly

lower resolution results (from the second cross-correlation pass, IW2) will be

used in Sections 5.2.1 and 5.3.4, with a comparison made in each case against the

divergence free results.
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Chapter 5

Coherent Structure

Characterisation

Having quantified measurement accuracy and resolution, characterised the Reynolds

number scaling and nature of the statistically steady flow, and demonstrated the

consistency of the DPIV and TPIV data, the latter will now be used to investigate

the dissipation scale coherent flow structures. As described in Section 1.1.6, the

use of full 3D volumetric data permits a more in depth study of flow topology,

which should allow a more intuitive understanding of the flow. Additionally, the

availability of the full velocity gradient tensor gives access to statistical topolog-

ical analysis techniques, which are free from the assumptions of isotropy.

The chapter begins with a visual characterisation of these structures, before

statistically quantifying these observations using a variety of methods. The role

of the strain field in the formation of these structures is then assessed, and a

number of formation mechanism examples reviewed.

5.1 Coherent Structure Visualisation

Before the visual characterisation a comparison of different vortex identification

schemes and thresholding effects is conducted, in order to select an appropriate

scheme. Next, some observations are made with regard to the size, shape and

distribution of coherent flow structures across a range of Reynolds numbers.
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5.1.1 Vortex Identification

As described in Section 1.1.7, different authors employ a range of vortex iden-

tification schemes, and at present there exists no commonly agreed standard.

Therefore, in order to choose a method for the present investigation different

schemes were compared and their relative performance assessed.

(a) Enstrophy, Ω > nΩrms (b) Second Invariant, QA > nQArms

(c) Swirling Strength, λci > nλci,rms (d) Discriminant, ∆A > n∆A,rms

Figure 5.1: Comparison of vortex identification methods; colour bars of isosurface

level, n

A comparison of four different identification methods is presented in Figure 5.1

for a single example field from the T1− 3 case. Iso-surfaces are plotted across a

range of threshold levels with the colour map indicating the level, n, which is a

multiple of global RMS property variation, with each scheme requiring a different

151



5.1 Coherent Structure Visualisation

set of thresholds. To aid viewing, the lowest threshold levels are made transparent

with reducing transparency as the threshold level in increased, allowing a range

of iso-surface levels to be compared on the same plot, which is extremely useful.

In agreement with the study by Dubief & Delcayre (27), there is reasonable

agreement between the majority of schemes, with similar structures identified

by all. In particular, enstrophy, swirling strength and positive QA criterions

give very similar flow structure distributions. Although similarities are also seen

in Figure 5.1(d) for the discriminant criterion, this method shows the greatest

differences from the other techniques, with a less fluid transition between strong

and weak regions.

The techniques can be grouped into two distinct categories by threshold level

sensitivity. The enstrophy and swirling strength methods are the most sensi-

tive, with moderate threshold changes producing significant structural changes,

whereas the positive QA and discriminant criteria are relatively insensitive, with

large threshold changes required to produce structural effects. For example,

to produce similar structural variations using the enstrophy and QA criterions,

threshold ranges of around 6 and 90 times the lowest values respectively are

required.

If a well defined minimum threshold value existed insensitivity may be viewed

as an advantage, however both the positiveQA and discriminant schemes require a

‘slightly positive’ threshold, with this value significantly altering the distribution.

From another perspective a threshold sensitive method may be preferable, as this

would allow the viewer to visually sort vortices by strength; a possible advantage

in characterising coherent structures which possess a correlation between topology

and strength.

Another consideration is the accuracy of the different criteria with respect to

random gradient field errors (−1 < ∂ui/∂xj < 1), which are assessed through a

1 × 106 Monte Carlo simulation. The mean error magnitude is first normalised

by the mean criterion value, and second by the enstrophy criterion error, with

this relative error shown in Figure 5.2. Although the enstrophy criterion is the

most accurate for modest noise levels, the swirling strength and positive QA both

shown similar accuracy. However, due to the use of cubed gradient terms during

its calculation, the accuracy of the discriminant criterion is significantly lower,
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Figure 5.2: Relative accuracy of vortex identification schemes

which may explain the slightly different distribution of structures predicted by

this scheme.

Therefore due to its accuracy, threshold sensitivity, and simplicity the enstro-

phy criterion has been adopted in the present investigation.

5.1.2 Coherent Structure Definition

To define the term ‘coherent structure’ in the present investigation a further

thresholding study was conducted. Figure 5.3 shows enstrophy iso-surfaces for

four different threshold ranges, the last three of which are below the level Ω <

Ωrms, which has been previously used as a division between the incoherent back-

ground and coherent flow structure (53).

Figure 5.3(a) shows high enstrophy iso-surfaces above the coherent threshold.

Figure 5.3(b) shows the greatest dependence on this coherent flow structure,

occurring predominantly on its periphery and emphasising the absence of a sharp

coherent to background cut-off. As the threshold level is further reduced the

distribution becomes an increasingly complex tangle of inter-connected regions

as shown in Figure 5.3(c). Although these lower enstrophy regions are given

some structure by default, existing only where higher enstrophy does not, the

flow structure is visibly less well defined. Finally at the lowest background level

shown in Figure 5.3(d) the distribution becomes spotty, with noise expected to

dominate the distributions.
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(a) Ωrms > Ω > 6Ωrms (b) 0.2Ωrms > Ω > Ωrms

(c) 0.03Ωrms > Ω > 0.2Ωrms (d) 0 > Ω > 0.03Ωrms

Figure 5.3: Isosurfaces of enstrophy for a range of threshold levels

Despite structure arising from its enforced containment, the complexity of the

background enstrophy distribution would make studying its instantaneous distri-

bution extremely difficult. Therefore, the current study will focus on coherent

structures in regions where Ω > Ωrms. Although this may exclude lower enstro-

phy structures and truncate others, a threshold at some value is necessary, to

simplify the distribution enough for investigation. Jiménez et al. (53) suggest

that high enstrophy structures are simply intense realisations of the background

vorticity, and therefore through their study it may also be possible to understand

the weaker background structures.
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5.1.3 Visual Characterisation of Coherent Structures

In order to qualitatively analyse coherent structures two fields were selected from

each different Reynolds number run, shown in Figure 5.4. Iso-surfaces of enstro-

phy and dissipation rate across a range of coherent threshold values are plotted,

again using transparency to increase viewability. The enstrophy and dissipation

rate use different colour maps, representing threshold levels of Ω > nΩrms and

ε > nεm across the range, 1 < n < 4.

A number of shapes can be identified from Figure 5.4 with a predominance

of short tube-like and ribbon-like structures for both enstrophy and dissipation.

The diameter and thickness of these varies from approximately 2 → 20 grid

points, with the length of the ribbon-like structures varying from around 4→ 51

grid points (up to the maximum domain size). Accounting for spatial resolution

reduction at high Reynolds numbers produces structure diameter and thickness

variations of 2 → 140η, and ribbon-like structures length variation of 4 → 360η.

The wrinkled surface of the majority of structures is probably due to noise rather

than structure deformation by smaller scales, with similar artefacts present in the

accuracy simulation (see Section 3.2.1).

The majority of structures appear to be orientated with the out-of-plane z-

component, with a similar bias also seen during the accuracy simulations, arising

from a combination of sources: firstly the under prediction of gradient terms

shown in Section 4.2.3.1 gives preference to the out-of-plane component of vor-

ticity; and secondly the smaller volume size in the out-of-plane direction severely

truncates structures exceeding this size. For example, if tube-like structures are

orientated out-of-plane their length will shortened to the volume thickness, but if

these are aligned in-plane and their diameter exceeds the volume thickness then

they may be truncated into ribbon-like structures. Similarly, unless sheet-like

structures lie completely in-plane these will also be truncated into ribbon-like

structures. The shape of structures is quantified in Section 5.2.3.2.

Furthermore, structure size may also be grid limited, with even the highest

resolution case (∆x/η ≈ 1) identifying structures of order ∆x. Therefore, even at

this resolution the measurements may not be capturing the very smallest scales.

This observation is investigated further in Section 5.2.3.1.
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5.1 Coherent Structure Visualisation

(a) T1− 1, example1 (b) T1− 1, example2

(c) T1− 2, example1 (d) T1− 2, example2

(e) T1− 3, example1 (f) T1− 3, example2

Figure 5.4: Isosurfaces of enstrophy, Ω > nΩrms (red-yellow colour map), and

dissipation rate, ε > nεm (blue-green colour map)
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5.1 Coherent Structure Visualisation

(g) T1− 4, example1 (h) T1− 4, example2

(i) T1− 5, example1 (j) T1− 5, example2

Figure 5.4: Isosurfaces of enstrophy (continued), Ω > nΩrms (red-yellow colour

map), and dissipation rate, ε > nεm (blue-green colour map)
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5.1 Coherent Structure Visualisation

Enstrophy and dissipation disassociation has been shown by a number of au-

thors to occur around tube-like structures (37; 58; 125), and is often likened to

a Burgers vortex where a core of enstrophy is surrounded by a sheet of dissi-

pation (20). A number of examples can be seen in Figure 5.4, where tube-like

enstrophy structures are surrounded by ribbons and tubes of dissipation. Further

to this Ganapathisubramani et al. (37) note that the most intense dissipation oc-

curs when several structures are clustered close together, with crumpled sheets

of dissipation occurring between them. Again numerous examples of this can be

seen, where strong dissipation structures are sandwiched between strong enstro-

phy structures.

However, in other cases, within moderate-to-intense ribbon-like structures

regions of high enstrophy and dissipation are often coincident. These regions are

consistent with the intense shear layers described by some authors (53; 99), which

are thought of as either a precursor to the tube-like structures or a consequence

of them, occurring on their periphery. The contribution of these structures to the

global enstrophy and dissipation is quantified in Section 5.2.2.

The strength of the structures also varies considerably, with some structures

just visible above the lowest threshold while others contain regions over 4 times

this strength. In some cases stronger regions simply represent a structure’s core,

with these surrounded by a series of concentric tubes or ribbons. Alternatively,

more than one high enstrophy core can be nested within larger lower magnitude

ribbon or tube-like structures, forming an embedded cluster of structures.

Figure 5.4 shows that the structures have a strong tendency to cluster together

in this manner, forming groups of tube and ribbon-like structures, with isolated

structures occurring more rarely. The clusters often appear to be located at

the periphery of larger tube and ribbon-like structures which advect through

the volume. This behaviour is similar to that observed by Jiménez et al. (53)

who noted that the majority of structures tend to occur at the interface between

generally empty larger scale eddies, and quantified by Moisy & Jiménez (79) who

found that structures form clusters at a range of scales equal to the inertial range.

Similar sized clusters (in terms of grid points) can be observed throughout the

range of Reynolds numbers, with this qualitatively similar behaviour perhaps

indicative of scale-invariance, as observed in other investigations (56).
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The clusters tend to be sparsely distributed, surrounded by lower background

vorticity and dissipation, demonstrating the intermittency phenomenon. It is

also interesting to note that there are several examples of long chains of tube-like

structures, which bear resemblance to the breakdown of a vortex sheet through

the Kelvin-Helmholtz instability. Also of interest are the closely grouped bun-

dles of tube-like structures, which bear some similarity to the intertwined ‘burst’

vortex filaments observed by Cadot et al. (20). The clustering is quantified in

Section 5.2.4, with the latter observations investigated further in Section 5.3.5.

Finally, it should be noted that the fields in Figure 5.4 represent a tiny fraction

of the data reviewed, and a better understanding of the typical flow structures,

noise related structural wrinkling, clustering, and intermittency can be gained by

studying the time dependant nature of these structures, and the reader is referred

to the video files in Appendix D.

5.2 Statistical Characterisation of the Coherent

Structures

Observations from the visual characterisation are quantified statistically in this

section using a variety of methods. First the spatial distribution of vorticity

and dissipation are examined through JPDFs of their topological invariants, and

through conditional averaging the relative impact of coherent structures on global

flow properties is assessed. Next, the structure geometry is characterised using

the vortex line tracking and box counting algorithms introduced in Section 2.4.4

with the latter also used to quantify clustering.

5.2.1 Dissipation and Enstrophy Distribution

Figure 5.5 shows JPDFs of normalised strain rate and rotation rate invariants

−Q∗S against Q∗W ; quantities which are analogous to the dissipation and enstro-

phy density respectively (92). The self-similar flattened triangular distribution

indicates that although there is a weak correlation between these quantities there

is also a certain degree of separation at the highest values. Despite reasonable

general agreement, the ratio of (QW )MAX/(−QS)MAX for the T1− 1 and T1− 5
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.5: JPDF of normalised invariants −Q∗S and Q∗W at three Reynolds num-

bers, with and without divergence correction, contours of base 10 exponentials

cases is ∼ 1.5, which is slightly less than the ratio ∼ 2 predicted by other stud-

ies (53; 85; 141). The T1 − 3 case predicts a slightly higher ratio (∼ 1.7) which

suggests that the under-prediction in other cases is a result of noise, which may

also explain the squarer shaped distributions at the lowest and highest Reynolds

number.

The separation of enstrophy and dissipation shown in Figure 5.5 is similar to

the DNS results of Ooi et al. (85). The high Q∗W and low −Q∗S region is inter-

preted as solid body rotation with disassociated dissipation, which the authors

note may result in extended life times; an observation confirmed in the present

study by the time-resolved videos in Appendix D, which show long structure life

times in comparison with the Kolmogorov time scale. These regions may there-

fore correspond to the tube-like structures observed in Section 5.1.3, which also

demonstrated a separation of enstrophy and dissipation. Similarly the regions

of moderate enstrophy and moderate to high dissipation may be representative

of the ribbon-like structures observed in Section 5.1.3, where significant enstro-
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5.2 Statistical Characterisation of the Coherent Structures

phy and dissipation was found to be coincident. Characterisation of the coherent

structures in this manner would be extremely useful, and to this end these re-

lations are investigated further during the classification of structure geometry in

Section 5.2.3.2.

It is also interesting to note, in contrast to the QA−RA distribution (see Fig-

ure 4.36) the original and divergence free fields produce very similar distributions,

due to the smaller divergence dependence of the 2nd invariant Q compared with

the 3rd invariant R (see Equations 1.14 to 1.16). This reduced dependence helps

to explain the earlier observation in Section 4.5.5, where removing the divergence

had minimal effect on the vorticity and dissipation fields.

5.2.2 Prevalence and Significance of Coherent Structures

(a) Volume Fraction (b) Percentage Contribution

Figure 5.6: Intermittency and significance of high intensity structures; threshold

by colour as indicated, case by symbol: × = T1 − 1; © = T1 − 2; ∗ = T1 − 3;

4 = T1− 4; � = T1− 5

In order to quantify the intense structure intermittency and significance, their

volume fraction and percentage contribution to the total dissipation rate are

shown in Figure 5.6. The volume fractions were obtained by calculating the num-

ber of points greater than a given enstrophy or dissipation threshold compared to

the total number of grid points. Similarly the dissipation rate percentage contri-
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bution was found by integrating the dissipation of points above given enstrophy

and dissipation thresholds in comparison to the total integrated dissipation.

Figure 5.6(a) shows that the volume fraction occupied by intense enstrophy

structures is very low, with only around 10% of the flow exceeding a threshold of

n = 1, and 2% exceeding a threshold of n = 3. The fraction occupied by intense

dissipation structures is higher with around 30% of the flow exceeding a threshold

of n = 1 and around 6% exceeding n = 3. These low volume fractions indicate an

extremely intermittent distribution of these intense structures, particularly the

enstrophy field. The Reynolds number dependence of the volume fraction found

by previous authors (52; 59) cannot be seen in the present results, where instead

there is a good collapse of data. The absence of this trend is expected to result

from the loss of spatial resolution with increasing Reynolds number, with the

collapse of data attributable to the previously observed scale invariance.

Figure 5.6(b) shows the most intense 10% of enstrophy structures are coin-

cident with around 30% of the total dissipation, which is a significant fraction.

However, from the previous volume visualisation (see Section 5.1.3) it was clear

that regions of high enstrophy and dissipation are often highly correlated, with

a tendency to disassociate in tube-like structures. Therefore, when determining

the significance of these high enstrophy structures, the high dissipation regions

surrounding these cannot be ignored. For example, Figure 5.6(b) shows that re-

gions of dissipation greater than the mean value are responsible for the bulk of

the dissipation (∼ 70%), with even a higher threshold of n = 2 only reducing the

contribution to around 40%. These values are extremely similar to those found

by Ruetsch & Maxey (103). Given the high spatial correlation between these

fields, it is possible that the majority of the dissipation is caused by these intense

structures.

To quantify this another threshold was introduced, which includes regions sur-

rounding high enstrophy structures. Points over a given enstrophy threshold were

identified, and the volume fraction and dissipation contribution from these points

and all neighbouring points calculated, shown in blue in Figure 5.6. By including

the surrounding regions, it can be shown that approximately 25% of the flow

gives rise to 60% of the total dissipation; a significant proportion. The reason-

able agreement between this method and the standard dissipation threshold, in
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addition to the previous flow structure observations in Section 5.1.3, indicates the

high dissipation regions which are responsible for the majority of the dissipation

are spatially connected to the high enstrophy structures. Further quantification

of enstrophy location with respect to specific structures will be conducted in

Section 5.2.3.2.

5.2.3 Geometry Characterisation

In order to characterise the size, strength and shape of the coherent flow structures

two different algorithms are applied, following the methodology of Jiménez et

al. (53), and Moisy & Jiménez (79).

5.2.3.1 Vortex Line Tracking Method

As described in Section 2.4.4.1, the vortex tracking algorithm of Jiménez et

al. (53) was used to identify coherent structures in the statistically converged

data sets, then calculate their radius and circulation.

Figures 5.7(a) and (b) show PDFs of structure radius in terms of grid and Kol-

mogorov units. The radius estimate in terms of grid units shown in Figure 5.7(a)

are extremely similar. While it would be reasonable to expect structure radii in

the lower resolution cases to demonstrate some grid dependence due to spatial

averaging, the collapse of data indicates that spatial resolution may limit the

radius estimates in all cases (although the grid dependence of the highest reso-

lution case cannot be determined). It should also be noted that this grid limited

behaviour may also arise from the smoothing operation. Therefore, when the

radius estimates are expressed in terms of Kolmogorov units, the combination

of constant grid unit size and reducing Kolmogorov length scale result in larger

radius estimates for the higher Reynolds number cases, as shown in Figure 5.7(b).

Therefore, for all cases except the highest resolution T1− 1 case the radius esti-

mates may not be representative of the dissipation scale coherent structures, and

instead may represent some other slightly larger scale. The mean radius estimates

are listed in Table 5.1.

Previous investigations indicate the radius of intense vortex tubes is around

3−5η (53). However, the known grid dependence of the T1−2 case (∆x/η ≈ 1.75)
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(a) Radius in grid units, R1/e/∆x (b) Radius in Kol. units, R1/e/η

(c) Circulation

Figure 5.7: Radius and Circulation PDFs from vortex tracking analysis

indicates radius estimates from other similar resolution investigations may also be

grid dependent. In particular, high Reynolds number DNS studies typically use

a resolution based on the maximum wave number κmaxη ≈ 1.5, which equates

to a physical grid spacing of ∆x/η ≈ 2.1 (93). The experimental study by

Ganapathisubramani et al. (37) also found similar radius structures using a PIV

vector spacing of ∆x/η ≈ 1.5. The similarity between these grid spacings and

that of the T1 − 2 case, may explain the similar radius estimate from this case.

Therefore, in characterising the size of the most intense enstrophy regions higher

resolution may be required.

Figure 5.7(c) shows a PDF of circulation normalised by R
1/2
λ . The circulation
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Case Rλ res. (∆x/η) Nstruc R1/e/∆x R1/e/η Reγ/R
1/2
λ Reγ

T1− 1 161 1.09 2420 2.9 3.17 5.02 64

T1− 2 224 1.79 3673 2.92 5.22 9.43 141

T1− 3 323 3.10 4968 2.72 8.42 15.5 278

T1− 4 458 5.24 6328 2.78 14.6 23.1 494

T1− 5 555 6.99 5099 2.59 18.1 29.5 695

Table 5.1: Table of filament properties from vortex tracking approach

increase, at a rate greater than the Taylor scale Reynolds number, is expected

to again stem from the over-prediction of radius, which may dominate over the

known under-prediction of vorticity in Equation 2.14. The mean normalised and

actual circulation values are included in Table 5.1. Jiménez et al. (53) present a

compilation of normalised circulation values which vary from Reγ/R
1/2
λ ≈ 16 →

21 for Reynolds numbers of Rλ = 36→ 168. Again, the T1− 2 and T1− 3 cases

from the current investigation appear closest to these values, which may be in

part due to the similar resolution of these cases, although the under-estimation

of vorticity results in smaller normalised circulation values.

It should be noted that the algorithm also contains a significant bias towards

radius over-estimation. For each coherent structure identified the algorithm com-

putes the radius based on the variation of vorticity within a specified perimeter,

under the assumption that the highest enstrophy will be concentrated in tube-

like structures and with radial symmetry. Therefore, the inclusion of ribbon-like

structures will produce lower vorticity variation in one direction, increasing the

radial estimate. Although this weakness is noted in Jiménez et al. (53), the re-

sulting bias towards larger radius structures is not explicitly stated. In order

to consider the geometry of individual flow structures a different approach is

required.

5.2.3.2 Box Counting Method

Structural classification was performed on the statistically converged data sets

using the box counting method detailed in Section 2.4.4.2, with the number of

classifiable structures shown in Table 5.2. A PDF of the shape parameter, H, is

shown in Figure 5.8. Recalling that 0 > H > 1, with values approaching 0 and
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Figure 5.8: Shape Parameter PDF

Case T1− 1 T1− 2 T1− 3 T1− 4 T1− 5

Classifiable structure # 1205 2222 2470 3677 2545

Table 5.2: Number of classifiable structures

1 representing sheet-like and tube-like structures respectively, the mean value

of ∼ 0.6 → 0.7 indicates the majority of flow structures tend to be tube-like.

The good agreement between cases again suggests scale-invariance, with only the

T1 − 1 case showing exception. However, this case contains half the number

classifiable structures, and therefore these differences may be due to insufficient

convergence.

Figures 5.9(a) to (c) and Figures 5.9(d) to (f) show JPDFs of shape param-

eter variation with normalised enstrophy and dissipation respectively at three

Reynolds numbers. These enstrophy and dissipation values represent the mean

of each classifiable structure. Despite considerable scatter due to the low num-

ber of data points available, the skewed triangular distribution peak shown in

Figures 5.9(a) to (c) indicates that the highest enstrophy structures tend to be

tube-like. However, the majority of the tube-like structures are relatively low

enstrophy, with the JPDF peak just over the enstrophy threshold. These findings

are in agreement with Moisy & Jiménez (79) who showed that increasing the

vorticity threshold resulted in increasingly tube-like structures.

Figures 5.9(d) to (f) show that the mean dissipation within ribbon-like struc-

tures is larger than that associated with tube-like structures, implying that vortex
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(a) Ω−H JPDF T1− 1 (b) Ω−H JPDF T1− 3 (c) Ω−H JPDF T1− 5

(d) ε−H JPDF T1− 1 (e) ε−H JPDF T1− 3 (f) ε−H JPDF T1− 5

Figure 5.9: JPDF of shape parameter against normalised enstrophy and dissipa-

tion for classifiable structures, contours of base 10 exponentials

(a) T1− 1 (b) T1− 3 (c) T1-5

Figure 5.10: JPDF of shape parameter against normalised dissipation for regions

surrounding the classifiable structures, contours of base 10 exponentials

sheets may be responsible for the majority of the dissipation. However, this defini-

tion does not account for dissipation surrounding the tube-like structures which

may also contribute considerably, and therefore as in Section 5.2.2 it is useful

include this.

The box count is extended to include points immediately surrounding each
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structure, although for clarity the surrounding regions are considered separately

here. Where adjacent structures share the same surrounding point, the volume

fraction and dissipation contribution at that point are divided equally between the

structures. Figures 5.10(a) to (c) show JPDFs of the shape parameter variation

with the surrounding region normalised dissipation, which in comparison with

Figures 5.9(d) to (f) appears much flatter and takes lower mean dissipation values.

The small positive gradient indicates that slightly stronger regions of dissipation

surround the tube-like structures, although this trend is very weak.

(a) Vol. Frac. Structures (b) Perc. Cont. Structures

(c) Vol. Frac. Surrounding (d) Perc. Cont. Surrounding

Figure 5.11: Volume fraction and percentage dissipation contribution of the clas-

sifiable structures and surrounding regions

The dissipation values shown in these JPDFs represent the mean contribution
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of each structure, and therefore it is also useful to consider the volume fraction

and total dissipation percentage contribution of different structures, and their

surrounding regions. To this end, points within the structures and surround-

ing regions were divided into bins according to their parent structure’s shape

parameter, shown in Figure 5.11.

The volume fraction and percentage contribution are expressed as a percentage

of the total number of points within the classifiable structures and the surround-

ing regions respectively, and therefore the sum of the bins for each case is equal

to 100%. Although the classifiable structures represent a subset of the total num-

ber of coherent structures, assuming that the alignment is random the remaining

unclassified structures should produce similar statistics. Therefore, these contri-

butions are representative of the volume and dissipation fractions calculated in

Section 5.2.2 for the same enstrophy threshold (Ω > Ωrms).

Figure 5.11(a) shows a more symmetric distribution in comparison with Fig-

ure 5.8, which implies that despite being less numerous the ribbon-like structures

generally occupy a larger volume in comparison with the tube-like structures. The

global dissipation contribution in Figure 5.11(b) shows a similar relatively sym-

metric distribution. The stronger dissipation associated with more ribbon-like

structures only has a small influence, slightly skewing the distribution towards

lower shape parameter values.

Figure 5.11(c) shows the volume fraction distribution of regions surrounding

different shape high enstrophy structures, which show a similar distribution to

the structure distribution in Figure 5.11(a). Figure 5.11(d) shows the dissipation

contribution from these surrounding regions, with a clear skew towards tube-

like structures. Therefore, despite equal volume fractions, the higher dissipation

surrounding the tube-like structures gives rise to a greater total contribution.

This analysis indicates that the significant global dissipation contribution from

regions of high enstrophy shown in Section 5.2.2 must be attributed to the com-

bination of ribbon and tube-like structures. Ribbon-like structures tend to be

coincident regions of high enstrophy and dissipation, are relatively large in vol-

ume, and are surrounded by regions of weaker dissipation. In contrast, tube-like

structures tend to be smaller in volume but more numerous, are coincident with

moderate dissipation, and are surrounded by regions of higher dissipation.
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These observations may be considered contrary to a number of previous stud-

ies (19; 52; 53) which suggest that the high enstrophy tube-like structures con-

tribute little to the global dissipation rate.

These observations seem to suggest that tube-like structures contribute more

significantly to the global dissipation rate in comparison with a number of pre-

vious studies (19; 52; 53). However, these differences may arise from threshold

chosen, the inclusion of the region surrounding the high enstrophy structures, and

also the consideration of both tube and ribbon-like structures, with the present

study supporting the spatial dissipation distribution study by Ganapathisubra-

mani et al. (37).

Visualisation of this method is also useful for observing the interaction of

different structures and the evolution of these over time, and the reader is referred

to video files in Appendix D.

5.2.4 Clustering Behaviour

In order to quantify the clustering of structures observed in Section 5.1.3 the

box-counting method detailed in Section 2.4.4.3 has been applied. Figure 5.12(a)

shows normalised box counts plotted against the cube root of box volume, r =

(rxryrz)
1/3, which is representative a box length scale. At small box sizes the box

counts follow the random distribution. However, as box length scale increases the

box counts drop below the random distribution, indicating that the structures

occupy a smaller volume of space in comparison with the random set, and are

therefore clustered.

The Reynolds number of the highest resolution case (Rλ = 162) is very close

to the investigation by Moisy & Jiménez (79) (Rλ = 168), and therefore a com-

parison can be made at this point using the clustering fraction shown in Fig-

ure 5.12(b). Due to the limited domain size in the present study the clustering

behaviour over the entire inertial range cannot be examined, and therefore a com-

parison is made at the largest box size for this case. In the present investigation

a length scale of 20η corresponds to a clustering fraction of 0.24, which is very

close to the value of 0.25 found by Moisy & Jiménez (79). Slight differences may

arise from the use of non-cubic boxes in the current investigation, and necessary
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(a) Box counts (b) Clustering fraction

Figure 5.12: Box counting method clustering; (a) Symbols represent box counts,

Nbox, solid lines represent random box count, N0

use of a lower threshold due to a lower number of high enstrophy structures in

the smaller data set (the data set used in the study by Moisy & Jiménez is over

6 times larger).

The loss of fine scale information through spatial filtering demonstrated in

Section 3.2 produces qualitatively similar high enstrophy and dissipation distri-

butions across all cases (see Section 5.1.3). Therefore, due to the loss of this

fine-scale information, the clustering behaviour in the lower resolution cases may

not be representative of complete flow field, instead relating only to structures

remaining after spatial filtering. However, as these structures are representa-

tive of slightly larger scales, the similar clustering behaviour between cases again

supports the idea of scale-invariance across a range of scales.

While it is extremely interesting to observe the agreement with the previ-

ous investigation and quantification of scale-invariance, the limited domain size

prevents determination of a maximum clustering fraction.

5.3 Statistical Flow Topology

Next the role of the strain field in the formation of coherent structures is in-

vestigated by decomposing this into its principal components, and studying the
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location and alignment of these with respect to other quantities of interest such

as the vorticity and dissipation rate. These relationships are also investigated

through topological invariants, providing a comparison across a range of meth-

ods. Finally, with consideration of the underlying strain field, some examples of

structure formation are presented from the time-resolved measurements.

5.3.1 Predominant Strains and their Spatial Distribution

Betchov (9) suggested that the local flow topology is dependent on the sign of

the intermediate rate of strain, β; with negative values indicating bi-axial com-

pression and stretching and vortex-line topology, and positive values indicating

sheet-forming bi-axial extension coupled with compression (see Section 1.2.3.2).

This not only provides a convenient approach for topological analysis, but also

theoretical predictions of expected mean topologies. A number of statistical stud-

ies have been made to assess these predictions by comparing ordered strain rate

tensor eigenvectors, α > β > γ, with vorticity and dissipation (4; 37; 82).

Figures 5.13(a) and 5.13(b) show the three principal rate of strain eigenvalues,

normalised by the mean strain rate em = 〈e〉, where e =
√
α2 + β2 + γ2, for

the original and divergence free results. There is an excellent collapse of data

across different Reynolds numbers, and good agreement is shown with previous

studies (37; 82). The longer tail and lower peak of the γ PDFs compared to the

α PDFs indicates the flow preference for large compressions over extensions.

Incompressibility requires that α + β + γ = 0, and therefore α ≥ 0, γ ≤ 0.

Continuity violations are clearly seen in the original data as negative and positive

points in the α and γ strain rate PDFs respectively (see Figure 5.13(a)). These

are largely corrected in the divergence free results (Figure 5.13(b)), which also

show a better collapse of data. Averaging over all cases and conditioning for

positive values of β produces strains in the ratio 3.2 : 1 : −3 for the original

fields, and 3.3 : 1 : −4.3 for the divergence corrected fields, the latter of which are

consistent with the ratio of 3 : 1 : −4 found in other numerical and experimental

studies (4; 37; 123). Persistent incompressible flow violations in the divergence

corrected data together with the use of an imperfect divergence correction scheme

are thought to account for the slight over-prediction of the strain rate ratios.
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(a) Strain rate tensor eigenvalue PDF (b) Strain rate tensor eigenvalue PDF

(c) Normalised intermediate rate of strain

eigenvalue PDF

Figure 5.13: Strain rate eigenvalue PDFs, case by symbol: × = T1 − 1; © =

T1− 2; ∗ = T1− 3; 4 = T1− 4; � = T1-5

Figure 5.13(c) shows the intermediate rate of strain for both original and

divergence free data, normalised as in Ashurst et al. (4) as β∗ =
√

6β/e, where

incompressibility now demands that −1 > β∗ > 1. The skewed distributions

indicate a predominance β∗ > 0, with increasing asymmetry and sharper peaks

after divergence correction, with a peak shift from β∗ ≈ 0.25→ 0.4.

The gradient measurement uncertainty dependence of β∗ was quantified by

Lund & Rogers (69) who showed that a gradient error corresponding to a mea-

surement uncertainty divergence correlation coefficient value of Q = 0.7 shifted

the peak value from β∗ ≈ 0.55 to β∗ ≈ 0.25. The use of an isotropic diver-
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gence correction was shown to aid in the partial recovery of the true distribution,

although the peak value was still under-estimate (β∗ ≈ 0.4). Larger gradient

uncertainty errors in the present study give rise to more significant divergence

errors (see Section 4.5), resulting in the substantial under-prediction of the mean

strain rate in the original data. The slight under-prediction of the divergence

free data is consistent Lund & Rogers (69) resulting from imperfect divergence

correction.

(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.14: JPDF of normalised intermediate rate of strain eigenvalue and strain

rate magnitude, contours of base 10 exponentials

Figure 5.14 shows a JPDF of the normalised intermediate rate of strain eigen-

value, β∗, and normalised strain rate magnitude, e/〈e〉 for the original and di-

vergence free data. To aid comparison similar contour levels are used to the ex-

perimental study by Ganapathasubramani et al.(37). Although the distribution

appears relatively unchanged with increasing Reynolds number the divergence

correction has a significant effect, again shifting the distribution peak towards

increasingly positive β∗ values.
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This correlation between high magnitude strain and positive β∗ indicates the

sheet forming preference of the large strains. Again, the slightly lower positive

peak of β∗ in comparison with previous studies (4; 37) does not necessarily indi-

cate a preference for lower magnitude strain rates, but is more likely a result of

imperfect divergence correction. This is evidenced by the lowest divergence case

(T1− 3) most closely matching the previous value of ≈ 0.5.

(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.15: JPDF of normalised intermediate rate of strain eigenvalue and strain

rate magnitude, contours of base 10 exponentials

Figures 5.15 and 5.16 show JPDFs of vorticity and dissipation rate magnitude

against the non-dimensional intermediate rate of strain β∗. Similar differences are

observed between the original and divergence free data, with a shift towards in-

creasingly positive values of β∗ in the latter. Regions of intense vorticity and

dissipation show a preference for positive values of β∗, which are associated with

sheet forming strains. The more defined, less rounded peak shown for the dissi-

pation distributions in Figure 5.16 demonstrates the stronger preference of this

quantity in comparison with the vorticity.
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.16: JPDF of normalised intermediate rate of strain eigenvalue and strain

rate magnitude, contours of base 10 exponentials

These preferences can be further clarified by examining β∗ PDFs conditioned

on increasing vorticity and dissipation magnitude, shown in Figure 5.17 for the

lowest divergence T1−3 case after divergence correction. In Figure 5.17(a) higher

vorticity regions show no change in their preference towards positive values of β∗,

indicating the high vorticity structure may be independent of the local strain rate.

In contrast, conditioning on increasing dissipation rate changes the flow preference

towards regions of high positive β∗, shown in Figure 5.17(b). These findings are

in agreement with previous experimental and numerical studies (4; 37; 69), which

re-enforce the observation that the dissipation is concentrated in regions of sheet-

forming strain.

It is also interesting to further study the ratio of the principal strains de-

fined earlier. The continuity equation, α + β + γ = 0, can be arranged into the

form α/β = −(γ/β + 1), and therefore it is possible to characterise the principal

strains using either α/β or γ/β, with the former chosen and plotted as a PDF

in Figure 5.18. The ratio limits (−2 > α/β > 1) can be derived from earlier
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(a) Conditioned on |ω| (b) Conditioned on ε

Figure 5.17: Conditional PDFs of normalised intermediate rate of strain eigen-

value on divergence corrected data for the T1− 3 case

definitions of these quantities, with divergence accounting for values outside this

range. Recalling that α > 0, implies that regions where α/β > 0 correspond to

regions where β > 0. Therefore, the larger peak for α/β > 0 demonstrates the

flow preference for regions of sheet-forming strain. Due to the non-Gaussian PDF

distribution the location of this peak does not match the mean ratio calculated

previously, instead corresponding to the ratio 2 : 1 : −3, with this ratio repre-

senting instead the most probable strain state. It is also worth noting that the

peak for regions of axial strain (α/β < 0) also shares this ratio. Therefore, while

the ratio of the mean values (3 : 1 : −4) may provide a useful check against other

numerical and experimental results, it may not be linked to the physical flow

behaviour. The effect of thresholding is again demonstrated, with enstrophy and

dissipation thresholds applied to Figures 5.18(a) and (b) respectively. In similar-

ity with Figure 5.17, high enstrophy regions show no change in their preference

for regions of β > 0, but regions of high dissipation show significant preference.

From earlier visual observations and geometry characterisation, moderate to

high enstrophy is concentrated in both ribbon-like and tube-like structures, with

the latter containing the highest enstrophy. Therefore, from the analysis in this

section, it is possible that these moderate to high enstrophy ribbon-like struc-

tures may be formed by sheet-forming strains. However, the formation of the
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(a) Conditioned on Ω (b) Conditioned on ε

Figure 5.18: Conditional PDFs of principal strain eigenvalue ratio α/β on diver-

gence corrected data for the T1− 3 case

highest vorticity tube-like structures may not be dependent on the presence of

a favourable β∗ < 0 tube-forming strain field and may result from other mecha-

nisms, such as the unsteady roll up of moderate intensity vorticity sheets proposed

by Ruetsch & Maxey (103).

This conclusion can also be reached through the volume fractions calculated

previously. For example, if the formation of tube-like structures were strain field

dependent, then the predominant state of bi-axial strain should result in a preva-

lence of sheet-like structures. However, as demonstrated in Section 5.2.3.2 the

high volume fraction of tube-like structures implies that this is not the case.

Therefore, alternative formation mechanisms have been investigated further in

Section 5.3.5.

5.3.2 Orientation of the Principal Strains

As detailed in Section 1.2.3.2 previous studies have found alignment between re-

gions of high vorticity and the intermediate rate of strain. This can be calculated

through the dot product of the unit vorticity vector and principal strain rate

eigenvectors, returning an angle, cosφ, in the range 0− 1 corresponding at these

extremes to perpendicular and parallel alignment respectively.
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Figure 5.19 shows alignment angle PDFs for each principal rate of strain. The

collapse of data from different Reynolds number runs is very good, all showing

a large peak in β̂ · ω̂ at | cosφ| = 1, confirming the strong parallel alignment

preference of the intermediate rate of strain with the vorticity vector shown in

previous studies (4; 37; 82). The peak in γ̂ · ω̂ at | cosφ| = 0 indicates a weaker

compressive strain alignment tendency, which is perpendicular to the vorticity

vector, whereas the flatness of α̂ · ω̂ shows no strong alignment preference. These

results show less divergence dependence than previous measures, which may be

due to the use of divergence-correction-insensitive vorticity.

(a) Original data (b) div. corr.

Figure 5.19: Alignment of principal strain rate eigenvectors with vorticity vector,

case by symbol: × = T1− 1; © = T1− 2; ∗ = T1− 3; 4 = T1− 4; � = T1− 5

JPDFs of intermediate rate of strain alignment and vorticity magnitude are

shown in Figure 5.20 demonstrating the distribution of this alignment. As shown

in previous studies (4; 37), in regions of high enstrophy the vorticity vector tends

to be aligned parallel with the intermediate rate of strain. Again with no signifi-

cant differences between the original and divergence free data.

Again the alignment of high enstrophy regions with sheet-forming as opposed

to tube-forming strains provides further evidence that the formation of these

structures may be independent of the strain field. Therefore, to explain the

correlation and alignment of these quantities Jiménez (51) considered that rather

than the strain field producing these high enstrophy regions, instead the high
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.20: JPDF of intermediate rate of strain vorticity alignment and vorticity

magnitude, contours of base 10 exponentials

enstrophy regions may produce the strain field. By only considering the dominant

axial component of vorticity in these tube-like structures, Jiménez (51) idealised

the problem in 2D. Here the largest and smallest principal strains induced by the

vorticity are normal to the vortex axis and therefore the intermediate strain is

automatically aligned with the vorticity vector. As the strength of these tube-

like structures is much greater than the background vorticity, this strain field may

dominate over other strains present, resulting in the alignment shown. In the real

flow the situation is unlikely to be this simple, however this idea is consistent with

the findings of the current investigation.

5.3.3 Visualisation of Strain Rate Distribution

In order to visually interpret the statistical correlation and alignment preferences

of the strain rate, vorticity and dissipation fields these are plotted for a single

example field from the T1− 3 case in Figure 5.21.
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(a) Enstrophy and Dissipation (b) Vortex stretching strain field

(c) Sheet forming strain field (d) Alignment of vorticity and β

(e) Alignment enstrophy correlation (f) Orientation of vorticity

Figure 5.21: Comparison of strain rate distribution and alignment where: (a)

enstrophy, Ω > nΩrms (red-yellow colour map), and dissipation rate, ε > nεm

(blue-green colour map); (b) β < −nβrms; (c) β > nβrms; (d) cos(φ)β > n; (e)

cos(φ)βΩ > n
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Figure 5.21(c) shows a strong correlation between regions of positive strain

rate, β > 0, and intense vorticity and dissipation, compared to Figure 5.21(b)

where the regions of β < 0 are less well correlated with these fields. This is in

agreement with the previous statistical analysis and other investigations (37; 53).

It is also interesting to note that the sign of the intermediate rate of strain

fluctuates somewhat along the long structure, B.

Figure 5.21(d) shows iso-surfaces of strong alignment between the vorticity

vector and β. For reference the orientation of the vorticity vectors themselves are

shown for all points over the threshold, Ω > Ωrms, in Figure 5.21(f). Although

there is a strong alignment of these quantities for the strong structure A, the

alignment with structure B is quite patchy. The strong alignment in regions

of high enstrophy is emphasised by studying a plot of the correlation cos(φ)βΩ,

shown in Figure 5.21(e).

This visual demonstration again shows that only the most intense enstro-

phy structures are well aligned with the intermediate rate of strain. This can

be explained through the previous reasoning, where the strain field is a result

of the tube-like structures, resulting automatically in the favourable alignment.

Although the weaker structure B also gives rise to an aligned strain field, when

combined with the surrounding strain the combined field is no longer aligned with

the vorticity throughout this structure. Indicating that this alignment may only

be an artefact of strong enstrophy.

5.3.4 Study of Topological Invariants

The strain field role can also be quantified through topological invariants. Fig-

ure 5.22 shows JPDFs of normalised velocity gradient tensor invariantsQ∗A against

R∗A, which can be used to categorise the flow in terms of four non-degenerate flow

topologies. The near origin maximum shows the majority of the gradients are low

magnitude. The characteristic distribution deformation associated with experi-

mental divergence and noise (see Section 4.5.6) is visible on the uncorrected dis-

tributions and especially Figures 5.22(a) and 5.22(c). As shown in Section 4.5.6,

modifying the fields towards a divergence free condition significantly alters the
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.22: JPDF of normalised invariants Q∗A and R∗A at three Reynolds num-

bers, with and without divergence correction, contours of base 10 exponentials

distribution, shifting it towards the distinctive self-similar teardrop shape associ-

ated with a predominance of local stable focus/stretching (vortex stretching) and

unstable node/saddle/saddle (bi-axial strain) flow topologies, closely following

the ∆A = 0 line in the latter mode.

Despite noise related artefacts there is a high level of agreement between

the distributions at different Reynolds numbers, with each predicting similar

magnitude contour levels. Ooi et al. (85) conclude that the largely similar collapse

of data from a range of studies may be indicative of a form of invariant universality

in QA − RA space, which within the bounds of the experimental accuracy, the

present study appears to support.

To assess strain rate correlation in invariant space Figure 5.23 shows JPDFs

of normalised strain rate tensor invariants Q∗S against R∗S. These distributions

again show reasonable agreement with previous work (85), and a high level of

similarity between Reynolds numbers. The inclusion of the 3rd invariant R∗S
again introduces significant divergence errors, which manifest in the distribution
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.23: JPDF of normalised invariants Q∗S and R∗S at three Reynolds num-

bers, with and without divergence correction, contours of base 10 exponentials

crossing the bounding ∆A = 0 line. After divergence correction these incidences

are almost completely eliminated, dramatically sharpening the peak at high values

of R∗S and −Q∗S.

The second invariant R∗S can be related to intermediate rate of strain through

the signum function, sgn(β) = sgn(R∗S) (85), and as such takes the same sign.

Therefore, the R∗S > 0 preference is associated with the preference β > 0, indi-

cating the majority of the flow (∼ 65%) is subject to bi-axial straining. Again,

in agreement with the findings in Section 5.3.1 there is also a strong correlation

between high values of R∗S and −Q∗S indicating the dissipation is concentrated in

the most intense regions of bi-axial, sheet forming strains.

The strain field effect on regions of intense vorticity and dissipation can also be

examined through the stretching of vorticity, using the quantity Σ (see Equation

1.17). Figures 5.24 and 5.25 show JPDFs of this normalised ratio Σ∗ against the

normalised strain rate and rotation invariants −Q∗S and Q∗W respectively. As Σ∗

is a function of the third invariant, R, once again divergence has a significant
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.24: JPDF of normalised invariants Σ∗ and −Q∗S at three Reynolds num-

bers, with and without divergence correction, contours of base 10 exponentials

impact on the distribution at low values of −Q∗S shown in Figure 5.24, with the

corrected fields agreeing more closely with previous investigations. Due to the

shape of the distribution in Figure 5.25 the effect of divergence is less pronounced,

although the corrected fields give rise to a slightly tighter set of contours.

The preference towards positive Σ∗ values indicates a predominance of vor-

ticity stretching, with the majority of this stretching taking place in regions of

low level background enstrophy (Figure 5.25) and moderate to high strain (Fig-

ure 5.24). Jiménez et al. (53) explain this lack of correlation between high enstro-

phy and vorticity strain rate as evidence that the high enstrophy structures do

not stretch themselves, and after reaching a sufficiently high degree of rotation

de-couple from their parent strain fields and experience little more stretching.

Again therefore, these findings are in agreement with sections 5.3.1 and 5.3.2,

suggesting that the highest enstrophy structures are commonly formed through

mechanisms other than vortex stretching.

The alignment of the vorticity vector and the intermediate rate of strain can
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.25: JPDF of normalised invariants Σ∗ and −Q∗S at three Reynolds num-

bers, with and without divergence correction, contours of base 10 exponentials

also be illustrated in the QA − RA plane by plotting the normalised invariants

QA/β
2 against RA/|β3| (suggested by M.S. Chong, personal communication), as

shown in Figure 5.26.

The original fields show significant correlation blurring due to divergence,

which predominantly acts through the RA term (Figure 5.26(a) to (c)). However,

after divergence correction the correlation is significantly sharper (Figure 5.26(d)

to (f)). The strong alignment with the QA/β
2 + RA/|β3| = −1 line for all cases

again demonstrates the strong alignment between the vorticity vector and inter-

mediate rate of strain. The correlation is widest at low gradient magnitude and

pinches at higher magnitude, demonstrating the increased preference of the higher

enstrophy structures to take this alignment. These findings are similar to those

shown in DNS data by Horiuti(45), representing a neat way of demonstrating the

flow alignment preference.
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(a) T1− 1 (b) T1− 3 (c) T1− 5

(d) T1− 1, div. corr. (e) T1− 3, div. corr. (f) T1− 5, div. corr.

Figure 5.26: JPDF of normalised invariants QA/β
2 and RA/|β3| at three Reynolds

numbers, with and without divergence correction, contours of base 10 exponen-

tials

5.3.5 Coherent Structure Evolution

In the previous sections the relationships between fields of strain, vorticity and

dissipation have been quantified. There is a predominance of bi-axial strain, with

a tendency for both the high enstrophy and dissipation fields to be coincident

with these sheet forming strains. These strains may give rise to the moderate to

high enstrophy ribbon-like structures identified in Section 5.1.3, which are also

coincident with regions of dissipation. However, the fact that the tube-like high

enstrophy structures are also coincident with these sheet forming strains has led

some authors to suggest that these regions do not simply form under a favourable

strain field, and are a result of some other unsteady process.

The use of single instantaneous data sets forces a number of previous in-

vestigations to stop at this point (4; 37; 53), leaving these important forma-

tion mechanisms to conjecture. However, the quasi time-resolved data available

from the current investigation permits the study of coherent structure formation.
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Therefore, in this subsection the evolution of coherent structures is demonstrated

through the enstrophy field evolution and a number of visual examples.

5.3.5.1 Evolution of Enstrophy

The calculation of each term in the enstrophy transport equation (defined in

Section 1.1.4) permits an assessment of the enstrophy field evolution, and identi-

fication of the dominant source of these changes. Figure 5.27 shows mid z-plane

slices of normalised enstrophy, dissipation, enstrophy transport equation compo-

nents, and two different component combinations, which illustrate the equivalent

rate of change and the stretching/diffusion balance. In order to calculate the en-

strophy rate of change component the quasi-time resolved results were required.

Therefore, the most temporally well resolved T1−1 case was used and additional

noise was controlled through Gaussian temporal smoothing with a kernel width

of 5 frames. The ratio of measurement frequency to Kolmogorov time for this

case is around 12, which is sufficient for this analysis. It should be noted that

these first and second order enstrophy gradients are likely to contain significant

noise, which may preclude definitive conclusions.

The enstrophy and dissipation distributions in Figure 5.27(a) and (b) show

a high enstrophy core sandwiched between two high dissipation regions. The

five components of the enstrophy transport equation are shown in Figure 5.27(c)

to (g). Comparing Figure 5.27(a) and (c) it is clear that the greatest change

in enstrophy occurs in the regions of high enstrophy, which after comparison

between Figure 5.27(c) and (d) can be mainly attributed to advection, caused by

large scale motions. However, if a frame of reference moving with the vortex core

is considered then it would be appropriate to discard these advection effects, and

concentrate on the other enstrophy evolution contributions.

Figure 5.27(e) and (f) show that vortex stretching dominates over contraction

in the vortex core region, and that these regions of stretching are coincident with

regions of significant viscous diffusion. The balance of these components is fun-

damental to Burger’s vortex model (16), with these observations adding support

for the similarity of these typical structures to Burger’s vortices. Figure 5.27(h)

demonstrates in this example that stretching dominates over diffusion, which may
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(a) Enstrophy (b) Fluid dissipation (c) Rate of change

(d) Advection (e) Stretching/Compression (f) Viscous Diffusion

(g) Visc. enstrophy diss. (h) Stretch/diff. balance (i) Equivalent rate of change

Figure 5.27: Colour maps of enstrophy, dissipation, and terms relating to the

evolution of enstrophy; (a) Ω/Ωm ; (b) ε/εm; (c) Φ/Ωm (s−1); (d) −Υ/Ωm (s−1);

(e) Π/Ωm (s−1); (f) Ψ/Ωm (s−1); (g) Ξ/Ωm (s−1); (h) (Π + Ψ)/Ωm (s−1); (c)

Φeq/Ωm (s−1)

be expected given the roll up and thinning of this tube-like structure (shown later

in Section 5.3.5.3).

Figure 5.27(g) shows that enstrophy dissipation through viscosity occurs around

the vortex core, with the longevity of the vortices explained through the relatively

low magnitude of this. Finally the accuracy of temporal calculation is assessed

by comparing the equivalent enstrophy rate of change, shown in Figure 5.27(i),
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to that obtained through direct calculation, shown in Figure 5.27(c). Despite

slight differences in magnitude the distributions identify similar regions contain-

ing significant rates of change, indicating that the temporal measurements may

be sufficient for this analysis. Furthermore, this also indicates in the absence of

sufficient temporal resolution for the higher Reynolds number cases, the equiva-

lent rate of change may be a reasonable substitute, although the significant noise

makes a more definitive conclusion difficult.

(a) Advection against enstro-

phy rate of change

(b) Stretching-diffusion

balance 1

(c) Stretching-diffusion

balance 2

Figure 5.28: JPDFs of enstrophy transport equation components from T1 − 1

case with divergence correction (pass IW2); contours of base 10 exponentials

These trends can be generalised by studying JPDFs from the statistically

resolved T1− 1 case data, shown in Figure 5.28. Figure 5.28(a) shows a JPDF of

the normalised negative advection term−Υ/Ωm against the normalised equivalent

rate of change of enstrophy, Φeq/Ωm. The high degree of correlation is clear from

the close collapse of the data onto the line −Υ/Ωm + Φeq/Ωm = 1, demonstrating

that as seen previously the advection accounts for the majority of the enstrophy

evolution.

The stretching/diffusion balance was investigated further in Figure 5.28(b),

which shows a JPDF of normalised stretching/compression term Π/Ωm against

the normalised viscous diffusion Ψ/Ωm. The skewed JPDF shows a flow prefer-

ence for enstrophy stretching over compression, with significant correlation be-

tween enstrophy increase through stretching and enstrophy reduction through

viscous diffusion. Considering these components in the absence of advection

demonstrates the dominance of the stretching over the diffusion, especially at
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high magnitudes. Therefore, regions exist where enstrophy stretching is greater

than diffusion, leading to the intensification of enstrophy. It is also worth noting

that the magnitude of both the stretching and diffusion terms are significantly

lower than the advection component and therefore the total enstrophy change.

Figure 5.28(c) shows a JPDF of the normalised stretching-diffusion balance

(Π + Ψ)/Ωm against normalised enstrophy Ω/Ωm. The JPDF distribution indi-

cates that there exist regions where stretching dominates over diffusion and vice

versa, however at high enstrophy magnitude, there is a reasonable balance be-

tween these components. Therefore, the balance of stretching and diffusion in

the highest enstrophy magnitude structures provides further evidence that these

tube-like regions may be similar in structure to Burger’s vortex model.

5.3.5.2 Vortex Merger

(a) t/τ = 0 (b) t/τ = 0.84 (c) t/τ = 1.68

(d) t/τ = 2.54 (e) t/τ = 3.38 (f) t/τ = 4.24

Figure 5.29: Merging of coherent structures; case T1 − 1; Time-series at 1.5Hz

interval (t/τ = 0.84) ; Isosurfaces of enstrophy, Ω > nΩrms (red-yellow colour

map), and dissipation rate, ε > nεm (blue-green colour map)

Figure 5.29 shows an example of vortex merger for the T1 − 1 case, with
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two coherent structures combining to form a single structure (separate to the

traditional definition of vortex reconnection (60)). Figure 5.29(a) shows tube

and ribbon-like structures, A and B, which begin at a separation distance of

half the volume width. Figures 5.29(b) to (c) show structure A being advected

towards B, which remains relatively stationary. As the structures approach, a

high dissipation region is formed between the two.

As the structures’ outer layers begin to interact in Figures 5.29(d) to (e) the

structure is redefined as AB, although the high magnitude core regions are still

separately identifiable at these points. However, by Figure 5.29(f) the structures

have completely merged into a single large high enstrophy ribbon-like structure,

coincident with a region of high dissipation. This structure appears to be part of

a larger scale circular structure, which covers a large proportion of the volume.

5.3.5.3 Roll up of Vortex Sheet

(a) t/τ = 0 (b) t/τ = 0.42 (c) t/τ = 0.84

(d) t/τ = 1.27 (e) t/τ = 1.69 (f) t/τ = 2.12

Figure 5.30: Roll up of ribbon-like structure into a tube-like structure; case T1−1;

Time-series at 3Hz interval (t/τ = 0.42); Iso-surfaces of enstrophy, Ω > nΩrms

(red-yellow colour map), and dissipation rate, ε > nεm (blue-green colour map)
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Figure 5.30 demonstrates the roll up of a ribbon-like vorticity structure into

a tube-like structure for the T1− 1 case. Figure 5.30(a) shows a ribbon-like high

enstrophy structure, which is coincident with a region of high dissipation. The

structure spans the domain experiencing some truncation at the edges, with a

high magnitude enstrophy core of fluid at around ∆x/η = 30.

The roll up of the high enstrophy magnitude core is shown in Figures 5.30(b)

to (f). The core breaks away from the other high enstrophy structures, rotating

and changing shape during roll up from ribbon to tube-like. During roll up the

high magnitude dissipation is expelled from the core of the structure, becoming

disassociated in Figure 5.30(f).

5.3.5.4 Clustered Structure Interactions

The evolution of smaller scale structures which are clustered in the periphery of

larger scale vortex structures is shown in Figure 5.31 for the T1− 2 case.

(a) t/τ = 0 (b) t/τ = 1.58 (c) t/τ = 2.03

(d) t/τ = 2.48 (e) t/τ = 3.38 (f) t/τ = 4.96

Figure 5.31: Evolution of clustered coherent structures; case T1− 2; Time-series

at mixed interval; Isosurfaces of enstrophy, Ω > nΩrms (red-yellow colour map),

and dissipation rate, ε > nεm (blue-green colour map)

193



5.3 Statistical Flow Topology

Figure 5.31(a) shows the cluster after it enters the volume, with a slightly

stretched tube-like structure identified as structure A. As the cluster is advected

across the volume, structure A is drawn out into a more ribbon-like structure as

shown in Figure 5.31(b). During this process the enstrophy within the structure

intensifies, and becomes concentrated in two distinct cores in Figure 5.31(c), while

another tube-like structure B is formed. The dissipation is also increased, with

local maxima occurring between vortex cores.

The ribbon-like structure A then breaks into two separate tube-like structures,

A1 and A2, as shown in Figure 5.31(d). The first of these, structure A1, is advected

out of the volume as the larger scale vortex appears to disintegrate (Figure 5.31(e)

to (f)). Structure A2 interacts with structure B, combining to form the new

structure A2B, which at the instance of joining is ribbon-like structure containing

the two original vortex cores, shown in Figure 5.31(e). Figure 5.31(f) shows

that after continued interaction the cores become completely merged, with the

vorticity rolled up into a single strong tube-like structure.

The examples in this subsection demonstrate the stretching of vorticity into a

ribbon-like structures, the subsequent breakdown of this into tube-like structures,

and also the interaction and roll up of vorticity into strong tube-like structures.

Formation mechanisms such as these have been theorised by a number of au-

thors (53; 77; 89; 103), and therefore their demonstration here is an important

step in understanding the flow physics at these scales.

The observed formation of small scale ribbon-like structures on the periph-

ery of larger scale structures, and the breakdown of these into yet smaller scale

vortex-tubes provide evidence of the Richardson cascade; in which energy from

the larger scale is transferred to increasingly small scales. Tsinober (122) notes

that the cascade process does not necessarily require intermediate stages, with

the interaction of vortices at the integral scale capable of directly creating dissi-

pative scale motions. Evidence of this is provided by Shen & Warhaft (109) who

demonstrate a direct coupling of large and small scales. In the current investiga-

tion the substantial scale difference between relatively large motions and smaller

structures in the boundaries between these appears to support this idea of direct

energy transfer. However, similar clustering behaviour was identified in all cases
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5.3 Statistical Flow Topology

(see Section 5.2.4) suggesting a range of scales exist, as would be expected from

a more conventional cascade interpretation.

The example of vortex merger shows that small structures can combine to form

larger structures, which may appear to contradict the standard cascade theory.

However, as noted by Tsinober (122), energy can be exchanged in both directions

(from large to small scale and vice versa) but dissipation will only occur at the

small scales. Therefore, energy injected at the integral scale may be subject to

numerous complex interactions, but once it inevitably reaches the smallest scale

it will be dissipated through viscosity.

Although it would be extremely useful to quantify these formation mechanisms

statistically, the present data set contains too few examples of these processes,

and statistical convergence may require a data set orders of magnitude larger.
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Chapter 6

Conclusions

This report has introduced the concept of coherent dissipation scale turbulent

structures, discussed the current understanding of these and their significance,

and described measurement techniques capable of fully capturing these motions.

The unique experimental facility brings the small scale motions within the reach of

Tomographic PIV, a three-dimensional extension to standard planar PIV, with

a review of this technique highlighting its enormous potential. TPIV software

was developed and tested both numerically and experimentally, with parametric

studies allowing comparison with previous investigations and quantification of

measurement uncertainty. Next, after detailing the experimental set-up, a series

of high Reynolds number DPIV and TPIV measurements were conducted in the

large mixing tank facility, and analysed using a range of statistical measures.

6.1 TPIV Development and Implementation

During the development of TPIV software a greater technique understanding

was realised, with the code adopting a number of programming approaches to re-

duce the significant run times. Numerical testing supported previous parametric

studies, and extending this investigation into 3D coupled with a more applica-

ble PIV accuracy criterion addresses the shortage of literature in this area. In

comparison with previous findings the current results indicate the technique is

less sensitive to image noise, slightly wider camera angles give optimum accuracy,

and the benefit of a fifth camera is marginal. Novel findings regarding initialised
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6.2 Basic Flow Characterisation

intensity fields were also presented, resulting in significant computational cost

reductions, accelerated solution convergence, and increased robustness with re-

spect to camera misalignment. Interestingly the initialised fields obtained from

this new MFG method were close enough to the iterated solution to allow direct

cross-correlation; allowing extremely rapid processing with only a small accuracy

penalty. The reconstruction and calibration software was also tested experimen-

tally through a range of studies, the most applicable of which was the study of

a laminar vortex ring. This test captured the main vortex ring flow details well,

also demonstrating the new MFG method on experimental data.

DPIV and TPIV measurement uncertainty was quantified through a series of

simulations, which mimicked experimental conditions through a judicious choice

of ideal flow field, spatial and temporal scaling, and tomographic reconstruction

parameters. Additional TPIV noise from the reconstruction process manifests

particularly in sensitive gradient quantities, but was shown to be partially con-

trollable through velocity field smoothing. Reducing measurement resolution was

shown to act as a spatial filter, resulting in peak gradient magnitude, and corre-

sponding dissipation and vorticity under-prediction; with a minimum resolution

of x/η = 3 recommended. Furthermore, typical PIV aliasing and spatial trunca-

tion effects were demonstrated to reduce agreement with the expected spectral

energy distribution. This study was instrumental in defining the current mea-

surement accuracy, and contributes to the dearth of TPIV accuracy literature.

6.2 Basic Flow Characterisation

DPIV and TPIV measurements made in the large mixing tank over a range of

Reynolds numbers were analysed using a number of different methods. Initially,

flow convergence and centring analysis determined that despite adequate small-

scale convergence the largest scale motions may not be fully resolved. These

convergence estimates were combined with resolution estimates to fully quan-

tify the measurement uncertainty, and although undesirable this lack of large

scale convergence is unlikely to affect the well converged smallest scales, which

are the focus of the current study. TPIV accuracy is also assessed through the

highly noise sensitive flow divergence, which is in line with other previous full
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6.2 Basic Flow Characterisation

3D methods. Crucially, high gradient magnitude regions associated with coher-

ent structures contain relatively low divergence values, meaning these are less

sensitive to the divergence errors.

During flow characterisation similarities were observed between the current

flow and previous matching geometries, with RMS velocity scaling as expected

with impeller rotation frequency, and comparable large scale anisotropy. Global

mean gradient ratios confirm that within the measurement accuracy the small

scales are isotropic. Although non-Gaussian asymmetry in the gradient PDFs

illustrate the departure from local isotropy, the trend of increasing intermittency

with increasing Reynolds number shown in previous studies is not reproduced,

possibly due to spatial filtering effects at lower resolutions.

Velocity correlation function analysis confirmed flow anisotropy and demon-

strated the erroneously large out-of-plane TPIV correlation, due to insufficient

angular resolution. Longitudinal structure function and 1D energy spectrum anal-

ysis demonstrated reasonable Kolmogorov scaling, with discrepancies attributable

to large scale convergence and known PIV issues as observed in previous experi-

mental results and the present investigation’s accuracy study.

In agreement with previous results, the local dissipation calculated from the

full VGT was distributed log-normally. However, the distribution of individual

gradient components differ from this, and therefore estimates from one or two di-

mensional data completed with assumptions of isotropy tend to be poor; showing

significant over-prediction of both small and large dissipation regions. Compar-

ison of different isotropic gradient combinations demonstrate the estimate accu-

racy increases with the number of measured gradient components. The method

of Michelet et al. (76) and the author’s own choice of components provide the

best estimates, with the arbitrary selection of the latter perhaps indicating the

futility of more considered component selection.

The second order structure function method gives the most robust dissipa-

tion rate estimate, due to its reliance on larger, less noisy scales of motion. The

direct calculation and energy spectrum methods under-predict this quantity, due

to spatial averaging of the smallest scales. However, the quantification of this

under-prediction from the simulation allows reasonable estimate correction. Im-

portantly, for all of these characterisation results, the collapse of data is consis-
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6.3 Dissipation Scale Topology and Dynamics

tently within the measurement uncertainty, demonstrating the expected Reynolds

number scaling. Furthermore, good agreement between DPIV and TPIV results

demonstrate the latter’s validity.

6.3 Dissipation Scale Topology and Dynamics

After analysing a range of vortex identification schemes an enstrophy criterion

was selected for its accuracy, threshold sensitivity, and simplicity. Visual obser-

vation suggests coherent structures take the form of both tubes and ribbons, with

the latter likely to represent sheets truncated by the domain. High enstrophy and

dissipation regions are well correlated, often coincident in ribbon-like structures

or disassociated across a small spatial separation in tube-like structures; a trend

also observed in JPDFs of these quantities. The limited domain size made clas-

sification of clustering behaviour difficult, however, within the available volume,

a similar pattern to previous work was demonstrated (79).

Thresholding analysis showed that despite their small volume fraction (10%

above Ω > Ωrms), these coherent structures account for a significant proportion of

the global dissipation (30%). If the surrounding regions are included to account

for the known disassociation of dissipation and enstrophy, then 25% of the flow

accounts for 60% of the dissipation. It has been argued that high enstrophy

structures occupy too little of the volume to contribute significantly towards the

total dissipation. However, these conclusion are usually based on the threshold

level (for example Ruetsch & Maxey (103) reach this conclusions considering

structures above Ω > 9.5〈Ω〉). In the present study structures of strength Ω >

Ωrms, which are shown to be coherent over many turnover times, give rise to a

significant proportion of the global dissipation in relation to their small volume

fraction, and therefore on this basis the contribution of these structures cannot

be considered insignificant. Higher thresholds only identify the structure cores,

neglecting a significant proportion of surrounding fluid, which given the known

disassociation of enstrophy and dissipation is likely to bias conclusions relating

to their significance.

Coherent structure size characterisation proved inconclusive, with the vortex

line tracking algorithm identifying similar diameter structures in terms of grid
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6.3 Dissipation Scale Topology and Dynamics

units for all cases. This lack of grid independence has implications for other

investigations with similar spatial resolution, including numerous DNS studies.

Analysing the shape and significance of different coherent structures showed that

both tube-like and ribbon-like structures contribute significantly towards the total

dissipation. Tube-like structures are more prevalent, but due to their smaller

volume occupy a similar total volume fraction to the larger ribbon-like structures.

Ribbon-like structures tend to be associated with higher dissipation, although if

the surrounding fluid is considered, that around tube-like structures tends to be

marginally higher.

Principal rate of strain analysis demonstrates a flow preference towards bi-

axial strain, which is consistent with theoretical predictions (9). After divergence

correction the ordered rates of strain are measured in the ratio 3.3 : 1 : −4.3,

in agreement with previous numerical and experimental studies. Although both

high enstrophy and dissipation regions tend to be coincident with sheet forming

strains, only the latter shows a direct connection, with the former somewhat

independent of the strain field. Furthermore, despite the flow preference for sheet-

forming strains, the larger number of tube-like structures implies the formation of

these is not dependent on a favourable strain field, relying instead on some other

unsteady mechanism such as the breakdown of vortex sheets via the Kelvin-

Helmholtz instability.

In agreement with previous findings, in regions of high enstrophy the interme-

diate rate of strain and vorticity vector tend towards parallel alignment. Vincent

& Meneguzzi (125) argue that this alignment occurs during vortex sheet forma-

tion, with subsequent sheet breakdown into vortex tubes resulting in the coin-

cidental alignment of these structures too. However, as noted by Jiménez (51),

strong vortex tubes give rise to an aligned bi-axial strain field. Therefore, while

the mechanism proposed by Vincent & Meneguzzi may exist, it may not be the

dominant process, and given the stability and longevity of tube-like structures

the coherence of the strain field exerted by these may dominate over other more

unsteady strains.

Topological invariant analysis was also used to assess fields of vorticity and

strain, and despite higher uncertainty due to noise and divergence effects, rea-

sonable agreement is seen between the present and previous studies, supporting
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6.4 Final Remarks

the concept of invariant universality perceived by Ooi et al. (85). Invariants were

also used to demonstrate similar bi-axial strain and dissipation correlation, and

the lack of vortex stretching in high enstrophy structures. These reinforce the

previous conclusions that while high magnitude dissipation occurs predominantly

in regions of sheet forming strain, despite their coincidence, tube-like structures

remain independent (or perhaps the source) of these strains.

The self-similarity of both topological and strain and vorticity based JPDF

distributions, and close agreement between different Reynolds number cases in-

dicate similar behaviour across a wide range of scales; a feature observed during

the visual comparison. As noted by Jiménez et al. (53) this scale-invarinace im-

plies the coherent structures may simply be intense realisations of the background

vorticity.

Examples of energy transfer are illustrated through the evolution of coherent

structures, including vortex stretching, sheet breakdown, and vorticity roll up and

merger. The formation and subsequent breakdown of high enstrophy structures in

the periphery of larger scale motions illustrates several large to small scale energy

transfer mechanisms; consistent with Richardson’s original cascade theory. The

substantial separation between parent vortex sizes and that of their children offers

some support to the direct coupling concept of Tsinober (122), in which integral

and dissipation scale motions may be directly linked. However, the domain size

is insufficient to simultaneously render both of these scales, with the size of the

largest instantaneous vortices difficult to estimate. Furthermore, these examples

only provide qualitative evidence, and even if a method had been defined to

characterise these mechanisms, the quantity of data is grossly insufficient for

adequate statistical resolution of the dominant energy transfer process.

6.4 Final Remarks

To date, knowledge of the coherent dissipation scale structures has been largely

gained computationally through DNS, with experimental support somewhat lim-

ited and almost exclusively reliant on assumptions of isotropy or Taylor’s hypoth-

esis. Therefore, the similarity between the previous numerical studies and the
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6.5 Future Experimental Work

current experimental results, which are performed at reasonably large Reynolds

numbers and are independent of these assumptions, is extremely useful.

At the end of the Chapter 1 a number of questions were posed regarding the

small scale structures. The present study offers some response to these, such

as: defining the distributions of enstrophy and dissipation and quantifying the

significance of the observed correlation; explaining the prevalence of tubes over

sheets through an unsteady formation mechanism that permits consistency with

the global predominance of bi-axial strain; and providing evidence of the for-

mation processes and other energy transfer mechanisms. However, the inherent

difficulty of measuring small turbulent scales at high Reynolds numbers preclude

more definitive answers to other questions, such as: the Reynolds number scaling

of the local enstrophy and dissipation distribution; the presence of vortex insta-

bility region at Rλ > 700; and the level of coupling between the integral and

dissipation scale.

Determination of these issues await future investigations, which may build

on the current understanding and conclusively identify the source and transfer

mechanisms responsible for dissipative intermittency; paving the way for the cre-

ation of physically accurate models, and perhaps resolving the still open question

of small scale universality.

6.5 Future Experimental Work

The fundamental TPIV technique is still the subject of active research, with

increased accuracy and reduced computational costs desirable. Reductions in

processing time are being sought through alternative reconstruction algorithms,

for example after substantially reducing the size of the reconstruction problem

using the MFG method (or equivalent) it is possible to apply either a simultaneous

reconstruction algorithm (5), or calculate the volume intensity directly using least

squares regression. The benefit these methods has yet to be definitively proven,

with further investigation required.

The TPIV limitations experienced during the present investigation stem pri-

marily from hardware constraints (as described in section 2.1.3), with improve-

ment requiring an increase in the SNR through increases in either the light source
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6.5 Future Experimental Work

power or camera sensitivity. This would permit the extension of the results in

one of three directions: accuracy, spatial resolution, or domain size.

As PIV accuracy is highly dependent on the number of particles within the

interrogation region, reducing the seeding particle diameter while maintaining a

similar SNR would allow a larger number of particles per volume, thereby reducing

measurement uncertainty. Similarly with more particles, maintaining the same

number of particles per interrogation region as the current investigation would

allow smaller regions to be used, permitting an increase in the spatial resolution

at the same accuracy level. Alternatively using similar seeding particles to the

current investigation, a more powerful laser pulse could be spread over a larger

volume while maintaining a similar energy density, allowing a larger volume to

be investigated at a similar spatial resolution.

Capturing a larger volume at a similar spatial resolution would be useful in

better understanding the connection between large and small scale, with impor-

tant implications for the concept of universality, and higher resolution would

permit a more conclusive investigation into the grid dependence of the smallest

structures.

Use of a higher repetition rate laser would improve time resolution, permitting

a more detailed investigation into the formation of various coherent structures,

and through calculation of the material derivative, possible statistical charac-

terisation of their evolution (32). Capturing a significant quantity of data, and

applying this approach or other characterisation methods would allow statistical

prediction of the dominant energy transfer process. While any conclusions based

on a user defined characterisation will be dependent on the method itself, this

type of approach offers the greatest potential to understand the physical energy

transfer mechanisms; and therefore to model them successfully.
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Appendix A

Number of Calculations and

Memory Requirements

Number of Calculations

The computational cost of the MFG method can be compared to an iterative

calculation using the MART algorithm (Equation 1.20) by considering the number

of floating point operations required. In 3D, assuming a pixel to voxel ratio

of 1, each voxel should receive an intensity contribution from approximately 4

pixels in each image. The MFG method updates every voxel with each correlated

pixel, requiring 2 numerical operations: first to multiply the current pixel-voxel

weighting value, Wij, by the current pixel intensity, pi; second to multiply this

product with the previous voxel intensity. A further operation is required to

normalise the voxels, raising them to the power 1/Ncam. The number of required

calculations can be expressed as, FMFG = Nvox(8Ncams + 1), where Nvox is the

total number of voxels in the volume.

The iterative calculation is more involved, and crucially requires calculation of

the current object projection, Wif , for each voxel update. This calculation alone

involves 2 numerical operations for each voxel in the current pixel’s line of sight.

The number of voxels can be estimated by assuming approximately 4 voxels will

contribute to the pixel in each slice of the volume, resulting in 4L voxels, where L

is the average length of the line of sight through the volume in voxels. Elimination

of low or zero intensity voxels is employed in the current program to accelerate
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(a) Iterations (Nppp = 0.05) (b) Seeding Density

Figure A.1: Computational costs of the large volume reconstruction

the algorithm, and due to its significant impact on the total cost, this must be

considered. As such, the value of Nvox will change after each iteration and L will

change during each iteration. For cost estimation the former should be averaged

over the entire iterative calculation, as should the latter in addition to being

averaged over each iteration, with these averaged values denoted by Nvox and

L. Therefore, combined with an additional 4 numerical operations in the MART

algorithm, the iterative cost can be expressed as, FMART = 4kitNcamsNvox(8L+4),

where kit is the total number of iterations.

The following example uses a 500× 500× 150 voxel volume, imaged by three

500 × 500 cameras at 0◦ and ±30◦. Estimates of the Nvox variable are made by

examining the number of zero and low intensity voxels after successive iterations.

Dividing these by the total number of camera pixels, permits estimation of L.

A uniform field at kit = 0 results in initial values of Nvox = 37.5 × 106 and

L ≈ 150. Nvox reduces accordingly for successive iterations in comparison to

the initial value: 18%, 11%, 9%, 8%, 8%. After averaging appropriately, values

of Nvox ≈ 11 × 106 and L ≈ 30 are obtained. Therefore, in this example, the

MFG method alone performs approximately 175 times fewer calculations than

the uniform guess solution after 5 iterations.

If used before the MART algorithm, the MFG method dramatically reduces

the initial value of Nvox to around 40% of the uniform field method, with the
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following reductions after successive iterations: 15%, 10%, 9%, 8%, 8%. After

calculating average values of Nvox ≈ 6× 106 and L ≈ 20, the MFG method prior

to 5 MART algorithm iterations is shown to reduce the number of calculations

by a factor of approximately 2.5. It is possible that further cost reductions could

be made by using higher threshold values after the MFG to exclude more voxels

from the MART iterations (for example, kit = 0 solutions in section 2.3.3 are

obtained by cross-correlating only around 10% of the total voxels).

Actual program run-times are shown in Figure A.1. These run times relate to

a single large volume reconstruction, using a 64 bit, 3.4GHz Intel Xeon worksta-

tion. For a seeding density of Nppp = 0.05, the MFG method more than halves

the computational cost, for a given number of iterations (see Figure A.1(a)). As

seeding density is increased, the benefit of the MFG method becomes less pro-

nounced, as fewer voxels are excluded from the calculation as a result of higher

image densities (see Figure A.1(b)). Using the MFG method without any MART

algorithm iterations (the kit = 0 solution) is shown to be significantly faster than

the iterated solutions. The large magnitude of the speed increase possible with

this new method alone, albeit offset by a slight decrease in accuracy (see sec-

tion 2.3.3), may be particularly useful for time-resolved measurements, requiring

hundreds of velocity fields.

It should be noted that the cost of this method is constant in Figure A.1(b)

due to a previous programming practice of performing the first guess using all

of the information in each image (including the zero intensity lines of sight).

The current implimentation makes use of image sparsity, allowing the cost of

this method to become dependent on the seeding density, which decreases it

considerably, in particular for the lower seeding densities.

Memory Requirements

In addition to the huge number of calculations that must be performed, the

reconstruction procedure also requires a significant amount of memory. This

requirement stems from the need to relate every voxel to every pixel in the W

matrix. Despite the extreme sparsity of this matrix, a huge number of points

require storage. The number of points requiring storage can be approximated
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by considering that each voxel will be related to 4 pixels per camera in 3D. The

number of correlation values can be calculated as NWvals = 4NcamsNvox.

However, storing these values in sparse matrix form requires two additional

integer values indicating the m, and n position of each correlation value. By using

an ordered list system this requirement can be be reduced to a single integer,

however this still doubles the number of Bytes required for storage.

So the current example will require storage of 4.5×108 correlation values, and

as many index values. Conversion to a memory requirement can be made through

use of the REAL*4 and INTEGER*4 FORTRAN variables which both require 4

Bytes for every stored value, resulting in a RAM requirement of 3.6GBytes. This

requirement is for the W matrix alone, and although smaller by comparison, there

are still a number of other very large matrices which require storage.

Currently standard workstations have approximately 2 → 4GBytes of RAM.

Therefore, in the absence of sufficient computational resources these weighting

values will have to be recalculated every time they are needed, which will signif-

icantly increase the cost of the MFG method, but have a smaller relative impact

on the MART algorithm. Thus, in order to obtain the maximum speed benefit

from the MFG method, a workstation with a large amount of RAM memory is

recommended, allowing the W matrix to be stored.
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Appendix B

Reference Tables

Table B.1: Comparison of TPIV setups
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Appendix C

Additional PIV Set-up Details

The following procedure and settings were used to control the camera and laser

timing.

Generator 1 creates a TTL top hat ‘control pulse’ at the desired measurement

frequency, which was used as the master camera trigger input. On triggering, all

cameras record 2 frames at a specified frame rate and exposure time, after which

they return to standby to await the next trigger input. The frame rate is set to the

reciprocal of the time increment, 1/δt, and the exposure time the maximum value

of the frame rate reciprocal. In the TPIV experiment three additional cameras

are synchronised with the master camera.

To ensure the laser pulses are captured a delayed TTL pulse is triggered from

the control signal, and used to trigger the first laser head. The delay time is set

to half the camera frame rate reciprocal, placing the pulse in the centre of the

exposure. The positive edge of this 5V TTL signal is used to externally trigger

the laser flashlamp. The Q-switch is set to the internal trigger mode, to give the

maximum pulse energy.

To fire the second laser head a second 5V TTL delayed pulse is triggered

from the first laser head signal, with the delay set to the time increment, δt.

In conjunction with the frame rate settings, this places the second pulse in the

centre of the second frame exposure. Therefore, this delay setting alone controls

the time increment and its accuracy, which could be measured to ±δt/1000.

Figure C.1(a) shows the cable configuration required for this timing set-up,

while a pulse diagram is shown in Figure C.1(b). The camera software set-up
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(a) Camera and laser wiring diagram

(b) Pulse Diagram

Figure C.1: Wiring and pulse diagrams
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Cam. 1 Cam. 2 Cam. 3 Cam. 4

Status master slave slave slave

Frame rate δt δt δt δt

Trigger Mode Random 2 Random 2 Random 2 Random 2

General in Trig. pos. Trig. pos. Trig. pos. Trig. pos.

ext sync in disable cam sync pos cam sync pos cam sync pos

ext sync out v sync pos v sync pos v sync pos v sync pos

Table C.1: Photron FASTCAM Viewer V 2.4.5.2 Software set-up parameters

details can be found in Table C.1, and frequency settings are listed in Table C.2.
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Case ΩI ΩI Re δt Measurement Freq.

(rpm) (rad/s) (ms) (Hz)

D1-1 0.67 0.0698 3.77× 104 30 0.139

D1-2 1.33 0.1396 7.55× 104 20 0.279

D1-3 2.67 0.2793 1.51× 105 10 0.555

D1-4 4.00 0.4189 2.26× 105 6 0.833

D1-5 5.33 0.5585 2.94× 105 3 1.11

D2-1 0.67 0.0698 3.67× 104 30 0.139

D2-2 1.33 0.1396 7.35× 104 16 0.279

D2-3 2.67 0.2793 1.47× 105 8 0.555

D2-4 4.00 0.4189 2.20× 105 5 0.833

D2-5 5.33 0.5585 2.94× 105 2 1.11

D3-1 0.33 0.0349 1.91× 104 30 0.167

D3-2 0.67 0.0698 3.82× 104 22 0.25

D3-3 1.33 0.1396 7.65× 104 8 0.50

D3-4 2.67 0.2793 1.53× 105 5 1.00

D3-5 4.00 0.4189 2.29× 105 3 1.33

D4-1 1.33 0.1396 8.06× 104 4 0.278

D4-2 2.67 0.2793 1.61× 105 2 0.555

D4-3 4.00 0.4189 2.42× 105 1 1.11

D4-4 5.33 0.5585 3.22× 105 0.5 2.00

T1-1 0.33 0.0349 1.86× 104 30 0.0714

T1-2 0.67 0.0698 3.72× 104 15 0.143

T1-3 1.33 0.1396 7.45× 104 8 0.278

T1-4 2.67 0.2793 1.49× 105 4 0.555

T1-5 4.00 0.4189 2.23× 105 2 1.00

Table C.2: PIV timing parameters
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Appendix D

Movie Files

A DVD containing movie files can be found at the back of this report. The movies

are organised into 3 folders for: vortex ring movies (see Section 2.3.6); mixing

tank coherent structure visualisation movies (see Section 5.1.3); and mixing tank

shape parameter movies (see Section 5.2.3.2).

The compressed movies (Cinepak codec) are suitable for viewing directly from

the DVD using Windows Media Player or QuickTime. The uncompressed movies

are of higher quality, however these files have significantly larger file sizes (∼ 1GB)

and have been zipped for storage on the DVD. Therefore, these files should be

copied to a computer hard disk drive with sufficient free space before unzipping.

The following section details the included files and their description.

Set 1; Vortex ring movies (compressed)

Three vortex ring movie files are included (see Section 2.3.6), demonstrating the

vortex ring as it passes through the volume of interest from different camera po-

sitions. Iso-surfaces of vorticity magnitude (65% maximum vorticity magnitude)

are plotted for the three cases: 1. Blue iso-surfaces for MFG method alone (MFG

kit = 0); 2. Red iso-surfaces for the uniform field initial guess and 5 MART iter-

ations (UF kit = 5); 3. Green iso-surfaces for the MFG and 5 MART iterations

(MFG kit = 5). The file names for these movies are:

• Vortex ring movie Isometric.avi (AVI 1.8MB)

• Vortex ring movie X-Y.avi (AVI 1.9MB)
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• Vortex ring movie Y-Z.avi (AVI 1.4MB)

Set 2; Coherent Structure Visualisation

Movies have been compiled using the time-resolved TPIV mixing tank measure-

ments for each of the 5 runs to allow coherent structure visualisation (see Sec-

tion 5.1.3). This folder is sub-divided into 3 folders containing: compressed

movies; uncompressed movies; and 3D movies from the T1− 1 case.

Iso-surfaces of enstrophy, Ω > nΩrms (red-yellow colour map), and dissipation

rate, ε > nεm (blue-green colour map) are plotted on all movie files, and the

Kolmogorov time, τ , is indicated.

Set 2a; Compressed movies

Colour bars were not included on these movies. The 4 isosurface levels for en-

strophy and dissipation range from n = 1 → 4 as in Figure 5.4. The file names

for these movies are:

• Enstrophy and Dissipation T1 1 compressed.avi (AVI 17.7MB)

• Enstrophy and Dissipation T1 2 compressed.avi (AVI 20.4MB)

• Enstrophy and Dissipation T1 3 compressed.avi (AVI 22.1MB)

• Enstrophy and Dissipation T1 4 compressed.avi (AVI 22.0MB)

• Enstrophy and Dissipation T1 5 compressed.avi (AVI 18.9MB)

Set 2b; Uncompressed movies

Iso-surfaces of enstrophy and dissipation are shown in the main window, with

colour bars indicating the threshold level n. The 4 subplots at the bottom of the

window illustrate a mid-z-plane slice of the normalised enstrophy, Ω∗ = Ω/Ωm,

enstrophy advection, Υ∗ = Υ/Ωm, enstrophy stretching or compression, Π∗ =

Π/Ωm, and enstrophy diffusion, Ψ∗ = Ψ/Ωm. The file names for these movies

are:

• Enstrophy and Dissipation T1 1.avi (zipped AVI 39.5MB)

• Enstrophy and Dissipation T1 2.avi (zipped AVI 29.5MB)

• Enstrophy and Dissipation T1 3.avi (zipped AVI 36.0MB)
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• Enstrophy and Dissipation T1 4.avi (zipped AVI 42.7MB)

• Enstrophy and Dissipation T1 5.avi (zipped AVI 28.8MB)

Set 2c; 3D movies from T1-1 case (uncompressed)

A set of 3D movies was created by combining two slightly offset views of the vol-

ume, using perspective projection. Applying the ColorCode 3D anaglyph system,

red and green channels from the left-hand image are overlaid with a monochrome

blue channel created from the right-hand image using the RGB channel weighting

[0.15 : 0.15 : 0.7]. The movies should be viewed using the 3D glasses provided.

The file names for these movies are:

• Enstrophy and Dissipation T1 1 3D 1.avi (zipped AVI 19.0MB)

• Enstrophy and Dissipation T1 1 3D 2.avi (zipped AVI 32.7MB)

• Enstrophy and Dissipation T1 1 3D 3.avi (zipped AVI 27.0MB)

Set 3; Shape parameter movies

Movies have been compiled using the time-resolved TPIV mixing tank measure-

ments for each of the 5 runs in addition to the box counting algorithm (see section

2.4.4.2) to allow visualisation of the shape parameter (similar to Figure 2.25) and

structure evolution. The movies show iso-surfaces of high enstrophy (Ω > Ωrms),

with structures coloured according to their shape parameter value. The shape

parameter varies between 0 > H > 1 with values approaching 0 and 1 represent-

ing sheet-like and tube-like structures respectively. Structures which have a mean

alignment below the threshold are also included, but these are plotted using a

black wire mesh. The Kolmogorov time, τ , is indicated. The file names for these

movies are:

• Shape parameter T1 1.avi (zipped AVI 17.2MB)

• Shape parameter T1 2.avi (zipped AVI 13.6MB)

• Shape parameter T1 3.avi (zipped AVI 16.0MB)

• Shape parameter T1 4.avi (zipped AVI 20.3MB)

• Shape parameter T1 5.avi (zipped AVI 13.9MB)
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