
 

 

Reference: 

 

Stylianides, A. J., & Stylianides, G. J. (accepted). Introducing students and 

prospective teachers to the notion of proof in mathematics. The Journal of 

Mathematical Behavior. 

 



 1 

Running head: INTRODUCTION TO PROOF 

 

 

 

Introducing students and prospective teachers to the notion of proof in mathematics  

 

 

Andreas J. Stylianides1 & Gabriel J. Stylianides2 

 

 

Author note 

The two authors contributed equally to the preparation of this paper. The paper is 

based on research supported by funds from the Spencer Foundation to both authors 

(grant numbers: 200700100, 200800104) and the Economic and Social Research 

Council (ESRC) in England to the first author (grant reference: RES-000-22-2536). 

The opinions expressed in the paper are those of the authors and do not necessarily 

reflect the position, policies, or endorsement of either funding agency. The authors 

declare no conflicts of interest. 

 

1 University of Cambridge 
Faculty of Education 
184 Hills Road 
Cambridge CB2 8PQ, UK 
E-mail: as899@cam.ac.uk 
Tel.: +44 (0) 1223 767550  

 

2 University of Oxford 
Department of Education 
15 Norham Gardens 
Oxford, OX2 6PY, UK 
E-mail: gabriel.stylianides@education.ox.ac.uk  
 



 2 

Introducing students and prospective teachers to the notion of proof in 

mathematics 

Abstract: Although the notion of proof is important for all learners’ mathematical 

experiences, there has been limited attention to what it might involve and look like to 

introduce students and prospective teachers to proof. In this paper we argue for the 

importance of having a coherent approach to introducing students and prospective 

teachers to proof, and we discuss the theoretical basis of a learning trajectory relevant 

to both groups. We also discuss an instructional sequence that aimed to promote the 

learning trajectory among English secondary students and U.S. prospective 

elementary teachers, drawing on data from two multi-year design experiments. The 

learning trajectory comprises two milestones: (1) seeing a need to learn about proof 

and (2) developing an operationally functional conceptualization of proof. The “need” 

in milestone 1 entails an aspect of epistemological justification applicable to both 

students and prospective teachers, and a further aspect of pedagogical justification 

applicable to prospective teachers.   

Keywords: Intellectual need; Intervention; Proof; School mathematics; Task design; 

Teacher education  
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1. Introduction 

In recent decades, many researchers and curriculum frameworks 

internationally have recommended that proof and related notions, such as 

argumentation and proving, be part of students’ mathematical experiences throughout 

their schooling and as early as the elementary years (e.g., Department for Education, 

2013; NGA & CCSSO, 2010; Norwegian Directorate for Education and Training, 

2020; Stylianides, Stylianides, & Weber, 2017). An important reason for these 

recommendations is the central role that proof can play in students’ engagement with 

mathematics as a sense-making activity, whereby assertions are accepted based on 

reason and argument rather than by appeal to authority. The wide recognition of the 

importance of proof for students’ mathematical experiences in school signifies that 

proof should also be part of prospective teachers’ mathematical experiences in teacher 

education, because teachers’ knowledge and beliefs about proof shape their readiness, 

willingness, and capacity to support students’ engagement with proof (Bieda, 2010; 

Buchbinder & McCrone, 2020; Knuth, 2002; Stylianides & Ball, 2008). 

 Despite wide recognition of the importance of proof for learners’ 

mathematical experiences in both school and mathematics teacher education, the field 

has paid limited attention thus far to what students and prospective teachers’ 

introduction to proof might involve and look like. Research on this issue is important 

for at least three interrelated reasons.  

 First, this research can contribute to elevating the place of proof in school 

mathematics classrooms. Currently, proof has a marginal place in ordinary 

mathematics classrooms internationally (e.g., Bieda, 2010; Hiebert et al., 2003; Sears 

& Chávez, 2014). This marginalization of proof is the result of a synergy of factors 

related, for example, to teachers’ knowledge and beliefs, curricular resources, and 

testing regimes (Stylianides et al., 2017). Another fundamental obstacle to elevating 
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the place of proof in school mathematics is, we argue, the fact that the field currently 

lacks ways to introduce students and prospective teachers to the notion of proof that 

would help them see proof as relevant to and important for their mathematical work as 

well as serve as a solid foundation for their subsequent engagement with proof.  

 Second, this research can help begin to redress an imbalance in the current 

body of proof-related research that has paid much more attention to documenting 

problems of classroom practice as compared to seeking ways to begin to 

instructionally address some of these important problems (Stylianides & Stylianides, 

2017; Stylianides et al., 2017). Indeed, whereas many studies highlighted weaknesses 

in students and prospective teachers’ knowledge about proof, there is a scarcity of 

studies or debate on how to introduce students and prospective teachers to the notion 

of proof, which we view as a necessary (albeit insufficient) step towards their 

productive engagement with proof. Also, if students and prospective teachers’ 

introduction to proof is consistent with one another, as we aspire it to be, this can 

facilitate a coherent approach to proof instruction in school and teacher education 

settings. This coherence is particularly important for prospective teachers as it can 

support a continuity between their epistemological stance and instructional orientation 

(Schoenfeld, 1994a) in the area of proof.  

Third, this research can complement the literature on researchers’ debates 

about or reports of their own conceptualizations of proof (e.g., Balacheff, 2002; 

Mariotti, Durand-Guerrier, & Stylianides, 2018; Reid, 2005; Stylianides, 2007a, 

2007b; Weber, 2014). When reflecting on the meaning of proof in mathematics 

education research over 15 years ago, Reid (2005) noted that it was perhaps “a sign of 

the maturity of research into the teaching and learning of proof and proving that we 

[were] beginning to reflect on what it is we [were] researching, and whether, as a 

community, we [were] successful in communicating our work to each other” (p. 1). 
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We believe that it is time for the field to debate also, and become clearer about, the 

conceptualization(s) of proof that students and prospective teachers should be 

introduced to so as to help guide their engagement with proof.1  

 In this paper we take a step towards addressing this need for research by 

focusing on the following question:  

What might be a learning trajectory for students and prospective teachers’ 

introduction to proof in mathematics, and what might it look like when an 

instructional sequence aims to promote it? 

This question reflects our aim to initiate a discussion in the field about students and 

prospective teachers’ introduction to proof that would be based not only on a 

theoretical proposition of a learning trajectory but also on a proposition that we would 

illustrate could be put into practice, in both school and teacher education settings.  

While demonstrating the success of the instructional sequence to promote the 

learning trajectory is beyond the scope of this paper (given space constraints), we 

deemed illustrating its promise to be an ethical imperative: we did not want to put on 

others the onus of pursuing the practical implications of our theoretical proposition 

without us offering some concrete indication that this is indeed a viable endeavor. 

Also, as it is typical of design-based research (e.g., Cobb, Confrey, diSessa, Lehrer, & 

Schauble, 2003), the theoretical proposition co-emerged with the instructional 

sequence that we developed to promote the learning trajectory in two design 

experiments. Accordingly, reporting only the theoretical proposition without also 

illustrating its dialectic relationship with the design and implementation of the 

 
1 The two areas of debate – one concerning researchers’ own perspectives on proof and another 
concerning the perspective(s) on proof to which students and prospective teachers should be introduced 
– are obviously related and overlapping. Indeed, researchers like us who aspire to develop a 
conceptualization of proof that students and prospective teachers should be introduced to are inevitably 
influenced by their own epistemology of proof (Balacheff, 2002).  
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respective instructional sequence to promote the learning trajectory would fail to 

justify the value of the theory (Barab & Squire, 2004).     

Next we first present our proposed learning trajectory and its theoretical basis. 

Then we illustrate what it looked like when an instructional sequence that we 

developed in two design experiments to promote the learning trajectory was 

implemented with secondary students in England and prospective elementary teachers 

in the United States. These two groups offer a good variation to illustrate the learning 

trajectory and the feasibility of promoting it in practice. Towards the end of the paper 

we discuss possible adaptations to the learning trajectory and respective instructional 

sequence for use also with elementary students and prospective secondary 

mathematics teachers. 

 

2. The learning trajectory and its theoretical basis  

The learning trajectory is outlined in Fig. 1. Its overarching goal was to 

introduce students and prospective teachers to the notion of proof in mathematics and 

it comprised two milestones: (1) seeing a need to learn about proof and (2) developing 

an operationally functional conceptualization of proof. The “need” in milestone 1 

entails an aspect that is common for students and prospective teachers that relates to 

them seeing an intellectual need to learn about proof (milestone 1a), and a further 

aspect for prospective teachers only that relates to them seeing also a pedagogical 

need to learn about proof (milestone 1b). Before we discuss separately each 

milestone, we make six general comments about the learning trajectory. 
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Fig 1 An outline learning trajectory for introducing students and prospective teachers to the 
notion of proof in mathematics 
 

First, learners’ introduction to proof can be a long process comprising many 

milestones. The scope of our proposed learning trajectory is modest: It comprises a 

small number of milestones that we view as important when considering students and 

prospective teachers’ introduction to the notion of proof and that can be promoted 

using an instructional sequence of a relatively short duration (extending over a couple 

of lessons). We emphasize “introduction” to indicate that we are not intending this 

learning trajectory to be the endpoint of students and prospective teachers’ 

engagement with proof. Rather, we view the learning trajectory as marking the 

beginning of their proof-related work, preparing them for a productive subsequent 

engagement with proof. Having such a learning trajectory is an acknowledgment both 

of the fact that an introduction to proof deserves explicit instructional attention and of 

the reality of content-packed school and teacher education mathematics curricula that 

would make difficult the incorporation in them of a more extended introduction.  
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Second, we view the final milestone of learners’ introduction to proof in the 

learning trajectory as being the development of an operationally functional 

conceptualization of proof, that is, a set of criteria that classroom communities of 

students and prospective teachers, or individual members of these communities, can 

use to practically inform their engagement with proof. This, however, does not mean 

that the conceptualization of proof will allow, unambiguously and from the start, the 

members of a classroom community to distinguish between arguments that meet the 

standard of proof and others that do not. The expectation is that the meaning of the 

communal criteria for proof will be clarified over time and negotiated through social 

interactions amongst the members of a classroom community including the instructor.  

Third, an obstacle to the development of communal criteria for proof is that 

many students and prospective teachers do not see a need to learn about proof from an 

epistemological standpoint (Harel, 2008; Stylianides & Stylianides, 2009b), while 

many prospective teachers also fail to see a need to learn about proof from a 

pedagogical standpoint, viewing proof as an “advanced topic” that is appropriate only 

for a select group of students (Bieda, 2010; Knuth, 2002). Indeed, a distinguishing 

feature of our learning trajectory compared to other ways of introducing learners to 

communal criteria for proof (Campbell & King, 2020; Yee, Boyle, Ko, & Bleiler-

Baxter, 2018) is its provision for students and prospective teachers to see a need to 

learn about proof (in the sense outlined in milestone 1) before they are introduced to 

an operationally functional conceptualization of proof (milestone 2). 

Fourth, although the learning trajectory as a whole is a unique contribution to 

the mathematics education literature in the area of proof, prior research has informed 

its development as we will discuss later. Also, a small number of prior studies 

addressed in isolation ideas related to milestones 1 or 2. Regarding milestone 2, a few 

studies examined school and university students’ use of communal criteria for proof 
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in their argument constructions or evaluations (Campbell & King, 2020; Stylianides, 

2019; Stylianides & Stylianides, 2009a; Yee et al., 2018); yet how to introduce 

students and prospective teachers, in actual classroom practice, to an operationally 

functional conceptualization of proof was not an explicit concern of these studies. 

Regarding milestone 1, although some research considered ways of creating among 

students and prospective teachers a need to learn about proof from an epistemological 

standpoint (Brown, 2014; Harel, 2008; Stylianides & Stylianides, 2009b, 2014b), 

there has been no research on how to help prospective teachers see a need to learn 

about proof from a pedagogical standpoint. The bottom line is that prior research in 

areas relevant to the learning trajectory has not been integrated into a single coherent 

learning trajectory nor has a way of promoting such a learning trajectory been 

illustrated in its entirety before. 

Fifth, we view the construct of a learning trajectory as referring to a goal (in 

this case, to introduce students and prospective teachers to the notion of proof in 

mathematics) and a learning progression (reflected in the two milestones we described 

earlier), as summarized in Fig. 1. These features capture two of the three features that 

Clements, Sarama, Baroody, and Joswick (2020) proposed should characterize a 

learning trajectory. We agree with Clements et al. that it is vitally important for 

educationalists to design instructional sequences to promote their specified goals and 

learning progressions, but, contrary to them and consistent with the conceptualization 

of a learning trajectory that we used in our prior work (e.g., Stylianides & Stylianides, 

2009b, 2014b), we do not view the instructional sequences as part of the notion of the 

learning trajectory. For us, the term “learning trajectory” draws attention more to the 

learner–content side of the “instructional triangle” (Cohen, Raudenbush, & Ball, 

2003), and so we consider useful to label separately the instructional sequences that 

aim, through the teacher, to enable the desirable learner–content relationship.  
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Sixth, the particular learning trajectory can be “hypothetical” (Simon, 1995), 

representing the learning path students and prospective teachers can be expected to 

follow during the implementation of an instructional sequence that aims to promote 

the learning trajectory, or “actual” (Leikin & Dinur, 2003), representing the learning 

path students and prospective teachers actually followed during the implementation of 

such an instructional sequence. Also, the trajectory can be “individual,” representing 

the learning path of individual students or prospective teachers in a school or a teacher 

education class, or “communal,” representing the learning path of a classroom 

community as a whole, which might differ from the learning paths of individual 

classroom participants (Stylianides & Stylianides, 2009b, 2014b). Even the existence 

of “communal criteria for proof” (milestone 2) can be understood or used variably by 

individual classroom participants. Our presentation of the particular learning 

trajectory is not contingent upon it being viewed as hypothetical or actual, individual 

or communal.  

 
2.1. A need to learn about proof (milestone 1) 

According to Harel’s (2008) necessity principle, “[f]or students to learn about 

the mathematics we intend to teach them, they must have a need for it” (p. 900). Harel 

specified this need in terms of “intellectual need,” which corresponds to milestone 1a 

and applies to both students and prospective teachers. Milestone 1b refers to another 

kind of need, which we call “pedagogical need,” relevant only to prospective teachers.  

 
2.1.1. Intellectual need (milestone 1a) 

The notion of intellectual need is “inextricably linked to the notion of 

epistemological justification” (Harel, 2013, p. 120) and “has to do with disciplinary 

knowledge being born out of people’s current knowledge through engagement in 

problematic situations conceived as such by them” (Harel, 2008, p. 898). According 
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to Harel (2008, 2013), learners are often epistemologically resistant to changing some 

of their current conceptions, despite the conceptions deviating from conventional 

mathematical understandings, and this is because instructors fail to present learners 

with a clear intellectual purpose for what the instructors want to teach.  

In the particular area of proof, substantial research evidence shows that 

learners of all ages, including prospective teachers, tend to hold views about the 

meaning of proof that deviate from broadly accepted meanings (for reviews see: Harel 

& Sowder, 2007; Stylianides et al., 2017). Accordingly, learners’ perceived proofs 

frequently fall short of satisfying a mathematical standard of proof and thus are non-

proof arguments (Stylianides, 2008). Empirical arguments, that is, invalid arguments 

that purport to establish the truth of a mathematical generalization based on the 

confirming evidence obtained from examining a proper subset of all the possible cases 

covered by the generalization, are arguably the most notable kind of non-proof 

argument perceived by learners to be a proof (Education Committee of the European 

Mathematical Society, 2011; Harel & Sowder, 2007; Stylianides et al., 2017).  

According to the Education Committee of the European Mathematical Society 

(2011), a “solid finding” of mathematics education research is that many learners 

“rely on validation by means of one or several examples to support general 

statements, that this phenomenon is persistent in the sense that many [learners] 

continue to do so even after explicit instruction about the nature of mathematical 

proof, and that the phenomenon is international” (pp. 50-51; emphasis added). 

Indeed, no other phenomenon in the area of proof appears to have attracted so much 

attention by mathematics education researchers. Also indicative of the important 

epistemological place of empirical arguments in learners’ progression to proof is that 

all major classifications of arguments that learners consider to be proofs (reviewed in 

Stylianides et al., 2017) include at least one category of empirical arguments 
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immediately prior to the categories of arguments that meet the standard of proof. In 

one of the most influential hierarchies of arguments by Balacheff (1988), two 

categories of empirical arguments (“naïve empiricism” and “crucial experiment”) is 

all there is prior to the proof categories (“generic example” and “thought 

experiment”). In another influential framework, Harel and Sowder’s (2007) proof 

schemes, the empirical category (“empirical proof schemes”) again immediately 

precedes the proof category (“deductive” or “analytic proof schemes”). 

Therefore, addressing the epistemological obstacle of considering empirical 

arguments as proofs is an important prerequisite for instruction in order to create an 

intellectual need among students or prospective teachers to learn about proof (Brown, 

2014; Harel, 2008; Stylianides & Stylianides, 2009b) (aspect 1 of intellectual need, 

Fig. 1). We emphasize that the focus here is on what counts as a proof in the learners’ 

eyes, for many of whom empirical arguments constitute conclusive acts of validation, 

and should not be misinterpreted as a lack of appreciation of empirical explorations in 

proving; indeed, examples have important roles and uses in the proving process, 

including in helping formulate conjectures and offer insights into the development of 

proofs (Stylianides, 2008; Zaslavsky, Knuth, & Ellis, 2019). Once learners begin to 

view proof as a class of non-empirical arguments, they can be expected to become 

intellectually curious about what kind of a non-empirical argument might meet the 

standard of proof (aspect 2 of intellectual need). This is not to deny the fact that even 

mathematicians in some cases see value in numerical validations (Bailey & Borwein, 

2005) or gain conviction by deference to authority or other non-deductive means 

(Weber, Inglis, & Mejía-Ramos, 2014); rather it is to emphasize the importance of 

learners understanding the distinctions between empirical and non-empirical 

validations and the prominent role of the latter in mathematical practice in the area of 

proof (Brown, 2014; Harel & Sowder, 2007; Stylianides, 2007a).     
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2.1.2. Pedagogical need (milestone 1b) 

Although having an intellectual curiosity can mark students’ readiness to be 

introduced to an operationally functional conceptualization of proof, the situation is 

different for prospective teachers. Prospective teachers need to see further a 

pedagogical need to learn about proof, which we define as the need for them to learn 

about proof from a teacher’s standpoint.  

Prospective teachers tend to resist learning mathematics that they perceive 

have little relevance to teaching (Stylianides & Stylianides, 2014a; Wasserman, 

Weber, Fukawa-Connelly, & McGuffey, 2019). Regarding proof in particular, prior 

research showed that some secondary mathematics teachers view proof as an 

“advanced topic” and engagement with proof as a goal appropriate only for a select 

group of students (Bieda, 2010; Knuth, 2002). Given these findings, one can 

reasonably expect that many elementary teachers, who teach younger students and 

whose experiences with proof were likely limited to their own secondary schooling, 

would view proof as a notion that is beyond the reach of elementary students. All of 

these highlight the importance of helping prospective teachers, especially elementary 

teachers, to recognize that proof can be relevant to school mathematics (aspect 1 of 

pedagogical need, Fig. 1) and appreciate that even elementary students can engage 

meaningfully with proof (aspect 2 of pedagogical need).  

It is important to note that the aim here is not for prospective teachers to see a 

pedagogical need to learn about any conceptualization of proof but rather a need to 

learn about a conceptualization of proof that is compatible with the one to which 

prospective teachers will be introduced in milestone 2. Consider, for example, a group 

of prospective elementary teachers holding the encompassing conception that “proof 

is any sort of explanation” or a group of prospective secondary mathematics teachers 
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whose conceptualization of proof is restricted to two-column proofs in geometry (cf. 

Herbst, 2002). Neither of these conceptualizations present defensible ways of thinking 

about the notion of proof in school mathematics and beyond (Stylianides, 2007a, 

2016), and so both groups of prospective teachers would need to see a pedagogical 

need to learn about proof in a new way, before they could be ready to be introduced to 

the operationally functional conceptualization of proof that we discuss next.     

 
2.2. An operationally functional conceptualization of proof (milestone 2) 

Learners’ introduction to proof would be lacking a necessary foundation 

without a set of criteria that could serve as points of reference to guide their proof-

related work (e.g., “What sort of argument should we aim for when we want to 

develop a proof?”) or as a framework to allow learners to reflect on or evaluate this 

work (e.g., “Should we count this argument as a proof? If not, how might we modify 

or improve it?”) (e.g., Campbell & King, 2020; Yee et al., 2018). This is not to say, 

however, that once given or presented with proof criteria, the members of a classroom 

community will interpret each criterion the same way or as intended by the instructor. 

Indeed, as we will discuss next, even mathematics education researchers have 

different perspectives on the meaning of some key terms like “explanation” that could 

be used potentially in the formulation of proof criteria.2 No matter how clearly 

defined the proof criteria are, the meaning of these criteria will still have to be socially 

negotiated within a classroom community – both at the point of the introduction of the 

criteria and over time during the application of the criteria in proving tasks – so as to 

progressively support the emergence of a shared understanding amongst its members 

(Mariotti, 2006; Stylianides, 2007b; Yackel & Cobb, 1996).   

 
2 There is no agreement among researchers on a set of proof criteria in the first place. 
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Thus, our position on learners’ development of an operationally functional 

conceptualization of proof (milestone 2) is that, once learners see a need to learn 

about proof (milestone 1), they should be introduced to proof criteria that meet certain 

considerations, even though it is to be expected that learners will interpret and use 

these criteria in different ways, at least at the beginning. These criteria will constitute 

the basis and starting point of learners’ subsequent proof-related work, and their 

formulation will have to take into account prior research knowledge on the meaning 

of proof and key functions (i.e., purposes or goals) proofs can serve in learners’ 

mathematical work. Regarding considerations to guide the selection or formulation of 

proof criteria, we propose the following (Fig. 1): (1) honesty to the discipline of 

mathematics, (2) contextual appropriateness, and (3) support of mathematical sense-

making through justification/conviction and explanation. Consideration 2 implies that 

certain criteria cannot apply universally across different settings, while considerations 

1 and 3 imply that contextually modified criteria should still abide by some core 

principles.  

 
2.2.1. Meaning of proof 

 Discussions or debates about the meaning of proof in mathematics education 

research tended to revolve around theoretical issues and methodological ramifications 

of researchers’ use of unclear, variant, or inconsistent meanings of proof (e.g., 

Balacheff, 2002; Mariotti et al., 2018; Reid, 2005). In recent years researchers have 

started to address also how existing conceptualizations of proof can be used in the 

classroom at the school, university, or teacher education levels (Campbell & King, 

2020; Stylianides, 2019; Stylianides & Stylianides, 2009a; Yee et al., 2018), though 

the process of introducing learners to proof criteria was not the focus of their 

publications.  
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The latter group of researchers used as a theoretical basis for their proof 

criteria the definition of proof that was proposed by Stylianides (2007a); we do the 

same in this paper. According to Stylianides (2007a), a proof in the context of a 

classroom community at a given time is an argument for the truth or falsity of a 

mathematical statement that has the following three characteristics:  

1. It uses statements accepted by the classroom community (set of accepted 
statements) that are true and available without further justification; 
2. It employs forms of reasoning (modes of argumentation) that are valid and known 
to, or within the conceptual reach of, the classroom community; and 
3. It is communicated with forms of expression (modes of argument representation) 
that are appropriate and known to, or within the conceptual reach of, the classroom 
community. (Stylianides, 2007a, p. 291; emphases in original) 
 

 In his elaboration on the definition, Stylianides (2007a, 2007b, 2016) 

explained that the definition seeks to achieve a balance between honesty to the 

discipline of mathematics and contextual appropriateness. Regarding honesty to the 

discipline of mathematics (consideration 1 under milestone 2, Fig. 1), the definition 

respects the mathematical integrity of a proof by imposing certain requirements on 

arguments that meet the standard of proof: these arguments need to use true 

statements, valid modes of argumentation, and appropriate modes of representation, 

whereby the terms “true,” “valid,” and “appropriate” should be understood in relation 

to what is typically agreed upon nowadays in the field of mathematics, in the context 

of specific mathematical theories. Regarding contextual appropriateness 

(consideration 2), the definition supports a rather “elastic” meaning of proof that takes 

account of the current state of knowledge or conceptual capabilities of a particular 

classroom community at any level of education. On the basis of consideration 1 

empirical arguments are disqualified from the class of proofs due to their use of 

invalid modes of argumentation. Empirical arguments are also disqualified from the 

class of proofs on the basis of consideration 2: findings from both psychological and 

mathematics education research show that non-empirical modes of argumentation are 
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within even young students’ conceptual reach (for a review of relevant literature, see: 

Stylianides & Stylianides, 2008). Thus, learners who have not gone through milestone 

1a and view empirical arguments as proofs are unlikely to interpret as intended a 

proof criterion that (directly or indirectly) specifies proof as a non-empirical argument 

(supportive evidence for this proposition is found in studies that omitted milestone 1a: 

Campbell & King, 2020; Yee et al., 2018). 

 The two considerations find philosophical support in the works of general 

education scholars (e.g., Bruner, 1960; Schwab, 1978) who argued for subject areas 

being represented in the educational process in ways that are both honest to their 

respective disciplines (consideration 1) and honoring of learners’ current state of 

knowledge (consideration 2). Further support for the two considerations can be found 

in the works of mathematics education researchers in the area of proof. According to 

Mariotti (2006), “the crucial point that has emerged from different research 

contributions [in the area of proof] concerns the need for proof to be acceptable from 

a mathematical point of view [consideration 1] but also to make sense for students 

[consideration 2]” (p. 198).  

 
2.2.2. Functions of proof  

An operationally functional conceptualization of proof cannot be viewed in 

isolation from the functions that proof can serve in mathematical work. Yet there are 

many important functions a proof can play in learners or mathematicians’ work – 

including explanation, verification/falsification, communication, generation of new 

knowledge, and systematization (Bell, 1976; de Villiers, 1990; Hanna, 1990; 

Stylianides, 2009b) – and so the question arises as to which of these functions to 

highlight when introducing learners to proof. In grappling with this question, we 

found useful Harel and Sowder’s (2007) account of learners’ engagement with 
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mathematics as a sense-making activity (consideration 3 under milestone 2, Fig. 1). 

According to Harel and Sowder (2007), “[m]athematics as sense-making means that 

one should not only ascertain oneself that the particular topic/procedure makes sense, 

but also that one should be able to convince others through explanation and 

justification of her or his conclusions” (pp. 808-809; emphases added).  

Thus, one primary function of proof emerging from Harel and Sowder’s 

notion of mathematical sense-making is justification, which can be broadly defined as 

showing that a mathematical statement is true (Bell, 1976). The notion of justification 

is interlinked with the idea of proof as a means for promoting conviction, which can 

take different forms as in Mason’s (1982) tripartite hierarchy “convince yourself, 

convince a friend, convince a skeptic.” Conviction in the field of mathematics is often 

linked to the feeling of certainty that a proof can yield to mathematicians that a 

statement “has to be true” (Schoenfeld, 1994b, p. 74; italics in original), though there 

is disagreement as to whether mathematicians prove to gain (absolute) certainty 

(Weber et al., 2014). An indication of the importance of conviction as a proof 

function is that proving as convincing has been identified as one of three main 

perspectives from which mathematics education researchers have investigated the 

activity of proving (Stylianides et al., 2017).3   

The second primary proof function that emerges from Harel and Sowder’s 

notion of mathematical sense-making is explanation, which can be broadly defined as 

offering insight into why a mathematical statement is true (Bell, 1976; de Villiers, 

1990; Hanna, 1990). Although there is no agreement among mathematics education 

researchers as to the characterization of explanatory arguments (Lockwood, 

Caughman, & Weber, 2020; Stylianides, Sandefur, & Watson, 2016), many 

 
3 The other two perspectives discussed in Stylianides et al. (2017) were proving as problem solving and 
proving as a socially embedded activity.  
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researchers endorse the idea that explanation is an important function of proof in 

learners’ mathematical work (Hanna, 1990; Stylianides et al., 2016; Weber, 2010) 

with some of them even describing proofs as a special class of “explanatory 

arguments” (Knuth, 2002) or as a sub-class of “explanations” (Balacheff, 1988).  

While it is important to acknowledge justification/conviction and explanation 

as important proof functions in their own right, it is perhaps unnecessary for the 

purposes of learners’ introduction to proof to try to make clear distinctions between 

these functions or between “proofs that explain” and “proofs that only convince” 

(Hanna, 1990; Lockwood et al., 2020). According to Mariotti (2006), explanation and 

conviction are interlinked as students engage with and develop ownership of the 

proving activity in a social setting: “students explain their arguments to a peer or to 

the whole class, including the teacher, also to convince themselves [or others] of their 

truth” (p. 198; italics added). Thus, as far as proof functions are concerned, when 

formulating proof criteria for learners’ mathematical work it might suffice to try to 

capture Schoenfeld’s (1994b) statement that “[w]hen you have a proof of something 

you know it has to be true, and why” (p. 74; italics added to “why”). 

 

3. Two design experiments  

To illustrate what it might look like when an instructional sequence aims to 

promote the learning trajectory, we draw on data from two design experiments (Cobb 

et al., 2003) where we designed one such instructional sequence and implemented it 

with prospective elementary teachers in the United States and secondary students in 

England. These two groups offer a good variation to illustrate the learning trajectory 

and the feasibility of promoting it in practice in different contexts. As we noted 

earlier, we aimed for the learning trajectory for introducing students and prospective 

teachers to be as consistent as possible between the two groups; we aimed for the 
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same level of consistency in designing the instructional sequence so as to facilitate a 

coherent approach to proof instruction in school and teacher education settings.  

Full documentation of the implementation of the instructional sequence in 

either setting is beyond the scope of this paper. Our aim is to strike a balance between 

describing the theoretical basis of the instructional sequence, which co-emerged with 

the design and refinement of the instructional sequence over the cycles of our design-

based research, and illustrating how the instructional sequence played out during its 

implementation. Accordingly, there is no suggestion that the sequence’s 

implementation represented a fully successful way to promote the learning trajectory, 

only a promising one.  

 
3.1. Research context 

In line with the tenets of design experiment methodology, the two studies 

involved theorization and iterative empirical testing and refinement of instructional 

sequences that aimed to facilitate learner progression along particular learning 

trajectories (Stylianides & Stylianides, 2014b). Although each study addressed a wide 

range of topics in various mathematical domains (algebra, geometry, etc.) as these 

were relevant to the respective research participants, both studies treated proof as a 

vehicle to mathematical sense-making across domains. Accordingly, some of the 

learning trajectories or parts thereof, like milestones 1a and 2 of the focal learning 

trajectory, were relevant to the participants of both studies. The respective 

instructional sequence was the first one that we implemented in the participating 

classes in both studies, and this aligned with the purpose of the learning trajectory to 

mark the beginning of participants’ proof-related work and prepare them for a 

productive engagement with proof.  
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The first design experiment was a 4-year study that we conducted in an 

undergraduate mathematics course for prospective elementary teachers in the United 

States. In the last research cycle of the study, from which the data for this paper 

derive, the course included two parallel classes that followed the same curriculum, 

were taught by the second author, and included a total of 39 students. The course was 

prerequisite for admission to a masters-level elementary teacher education program, 

and the students were primarily third year undergraduates majoring in different fields 

of study. For many students this was their first mathematics course since secondary 

school, and they tended to have weak mathematical backgrounds. Although it was 

beyond the scope of the course to teach prospective teachers about mathematics 

pedagogy (this was done in a follow up course), the course did pay attention to the 

application or relevance of the targeted learning goals to the work of mathematics 

teaching (Ball, Thames, & Phelps, 2008; Stylianides & Stylianides, 2014a). This 

implied that a learning trajectory in the course for introducing prospective teachers to 

the notion of proof in mathematics would also need to consider the creation of a 

pedagogical need for prospective teachers to learn about proof (milestone 1b).   

The second design experiment was conducted by the first author in two 

secondary mathematics classes in a state school in England. The classes were taught 

by their regular teachers over a 2-year period, when the students were between 14 and 

16 years old. All 61 students from the two highest attaining classes in their year group 

(out of a total of seven classes) participated in the study. The focus on high-attaining 

students was guided by the participating teachers’ wish to work with this particular 

group of students in the project and was deemed reasonable given the findings of a 

previous large-scale longitudinal study in England (Küchemann & Hoyles, 2001-03) 

that raised concerns about English high-attaining students’ knowledge about proof 

and their readiness for advanced mathematical courses. The study involved the 
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design, implementation, and analysis of six instructional sequences that related to 

proving and were embedded in a range of topics according to the national 

mathematics curriculum; each instructional sequence lasted between one and five 45-

minute lesson periods. At the beginning of the study, the researcher took main 

responsibility for planning the instructional sequences, though all plans were subject 

to discussion with and modification by the teachers prior to their implementation. 

Over time, the teachers took more responsibility for planning the sequences. The 

planning for the focal instructional sequence was done by the researcher and was an 

adapted version of the intervention we had designed and iteratively refined previously 

in the university study.  

The data sources most relevant to this paper are: transcripts produced based on 

video and audio records of the implementation of the focal instructional sequence 

with prospective teachers and secondary students; field notes taken by a research 

assistant; and copies of participants’ classwork, including participants’ written 

responses to specific prompts (what we call “conceptual awareness pillars”, see below 

for elaboration) at strategically selected points during the intervention that gave us 

“snapshots” of participants’ individual state of understanding with respect to the 

learning milestones. In our discussion of milestone 1b, we also draw on participants’ 

responses to three multiple-choice questions in a pre- and post-course survey that we 

administered in the university study to explore prospective teachers’ perceptions 

about various aspects of mathematical practices and mathematics teaching; we 

adapted several of the questions in the survey from Schoenfeld (1989), and these three 

were the only questions relevant to this paper. 
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3.2. General features of the instructional approach in the two studies 

 The instructional sequences in the two studies shared some common design 

features but also had some unique features that were tailored to their specific aims and 

respective learning trajectories. For this reason, we discuss our instructional approach 

to promoting each milestone of the focal learning trajectory separately in section 4. In 

this section we briefly present four general features of our instructional approach in 

the two studies that applied also to the focal instructional sequence. 

First, we aimed for the instructional sequences to have a rather narrow and 

well-defined scope, which in turn could allow the instructional sequences to have also 

a relatively short duration and standalone nature (Stylianides & Stylianides, 2017). 

The modest scope of the focal learning trajectory, discussed earlier, aligns with this 

instructional design feature.    

Second, each instructional sequence comprised instructional materials – 

notably tasks and prompts – and a description of instructor actions in implementing 

those materials in the classroom. The tasks comprised different kinds of mathematics 

tasks, such as tasks with emerging true and failing patterns (as in the part of the 

instructional sequence addressing milestone 1a), and mathematics tasks 

contextualized in a pedagogical context (as in the part addressing milestone 1b). The 

prompts took primarily the form of “conceptual awareness pillars” that we discuss in 

the third feature below. The tasks and prompts were carefully designed and sequenced 

based on our hypothesized relationships between the instructional materials and 

participants’ learning progressions, facilitated by the instructor’s actions that we 

discuss in the fourth feature below. Through “empirical tinkering” (Morris & Hiebert, 

2011) from one research cycle to the next, and based on our evolving theoretical 

understanding of the relationships at play between instructional design and learning, 
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we made progressive improvements to the instructional sequences to better support 

the respective learning trajectories. 

Third, a key role in many instructional sequences was played by a special type 

of prompts that we call conceptual awareness pillars or simply pillars (Stylianides & 

Stylianides, 2009b). This is a notion that emerged from our design-based research, 

and we use it to describe instructional activities that aim to direct students or 

prospective teachers’ attention to their conceptions (understandings, beliefs, 

pedagogical dispositions, etc.) about a particular mathematical topic or issue. As we 

explain later, we used pillars in two ways in the focal instructional sequence: (1) to 

trigger and support the resolution of cognitive conflicts among learners in helping 

them overcome the epistemological obstacle of considering empirical arguments as 

proofs (milestone 1a); and (2) to direct prospective teachers’ attention to the role and 

meaning of proof in school mathematics in helping them see a pedagogical need to 

learn about proof (milestone 1b). The extent to which the pillars fulfilled their 

intended purposes was examined over the cycles of our design-based research, which 

supported incremental improvements to the phrasing and sequencing of the pillars. 

Fourth, the instructor played a critical role in the implementation of the 

instructional sequences and was viewed as the representative of the mathematical 

community in the classroom (Mariotti, 2006; Stylianides & Stylianides, 2009b; 

Yackel & Cobb, 1996) and, in the university study, of the teacher education 

community too. The instructor supported the classroom participants to develop 

knowledge that was consistent with conventional understandings through social 

interactions around the planned activities (Yackel & Cobb, 1996). The outcomes of 

these interactions became part of the evolving “taken-as-shared” knowledge of the 

class (Simon & Blume, 1996; Yackel & Cobb, 1996) through “situations for 

institutionalization” (Brousseau, 1981). The instructor orchestrated situations for 
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institutionalization and other whole class discussions by implementing the following 

four key practices (for elaboration, see Stylianides & Stylianides, 2014b): (1) 

soliciting multiple contributions so that different voices could be heard and various 

ideas could be considered and discussed; (2) asking participants to explain their 

thinking for their contributions; (3) inviting participants to listen and respond to 

others’ contributions; and (4) revoicing or highlighting selected contributions in order, 

for example, to help direct the classroom community’s attention to ideas relating to 

specific milestones in the respective learning trajectory. A well-designed set of tasks 

and pillars, complemented by the instructor’s use of practice 4, supported the 

emergence of patterns in learners’ contributions during whole class discussions that 

increasingly (over the cycles of our design-based research) clustered around the 

intended learning milestones.  

 

4. The instructional sequence  

4.1. Promoting milestone 1a: intellectual need 

As we explained earlier, creating an intellectual need for proof involves 

removal of learners’ epistemological obstacle of considering empirical arguments as 

proofs. This includes empirical arguments of all kinds including Balacheff’s (1988) 

“naïve empiricism” and “crucial experiment.” In naïve empiricism the examined cases 

in the generalization under consideration are selected for no particular reason or on 

the basis of practical convenience, while in crucial experiment the examined cases are 

selected according to a rationale such as a strategy for discovering possible 

counterexamples.    

According to Harel (2008, 2013), the removal of an epistemological obstacle 

is best experienced through a problematic situation that helps an individual or a 

community become aware of the limitations of their current knowledge (thus 
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experiencing a state of disequilibrium) and prompts them to develop new knowledge 

to resolve the problematic situation (thus reaching a new state of equilibrium). To 

remove learners’ epistemological obstacle of considering empirical arguments as 

proofs, we used cognitive conflict (Piaget, 1985; see also Zaslavsky, 2005) as a 

mechanism to support a series of disequilibrium-equilibrium phases from a naïve 

empirical conception of proof to a crucial experiment conception of proof and, 

subsequently, to a non-empirical conception of proof. To evoke and facilitate the 

resolution of the emerging cognitive conflicts and respective stepwise progressions in 

learners’ conceptions about proof, we used a sequence of three tasks and four 

conceptual awareness pillars (CAPs) as outlined in Fig. 2. The sequence was almost 

identical in the two studies with only a slight modification in Task 1, as we explain 

below. We only give details of Task 1 in our description of how we promoted 

milestone 1a due to space constraints and because Task 1 was used again for the 

promotion of milestone 1b in the intervention. Detailed report of each implementation 

goes beyond the scope of this paper and can be found in Stylianides (2009a) and 

Stylianides and Stylianides (2009b) for the school and university studies, respectively. 

 

Fig 2 Outline of the part of the instructional sequence used in both studies for milestone 1a  
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Task 1 was the Squares Problem that we adapted from Zack (1997) and used 

in slightly different but mathematically similar forms in the two studies (Fig. 3).4 This 

involved an emerging pattern that was true and lent itself to empirical validation. As 

expected from prior research and our experience in previous research cycles, the 

participants in both studies identified the emerging pattern in their work on the first 

two questions of the problem for N = 4 and 5, and, on the basis of this confirming 

evidence, they accepted the pattern as true and applied it for N=60 to respond to the 

third question thus demonstrating a naïve empirical conception.  

 
 

Fig 3 The versions of the Squares Problem (adapted from Zack, 1997) used in the two 
studies 
 

To help participants become more aware of their validation method, we used 

the first conceptual awareness pillar (CAP 1). This was a prompt asking participants 

to write individually whether they were sure that their answer for N=60 was correct, 

and why. Dan’s5 response from the school study illustrates the general trend in 

participants’ thinking within the realm of naïve empiricism: “I am sure that the 

answer [for N=60] is correct because it has been proved for a number of smaller grids 

[for N = 4 and 5].”  

 
4 We used a slightly simpler version of Task 1 with the school students so as to address the 
collaborating teachers’ request for the sequence to have a shorter duration.     
5 We use pseudonyms for all research participants we refer to in the paper. 
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The other two tasks in the sequence had embedded in them a “plausible 

pattern” (Stylianides, 2008) that failed for N=6 in Task 2 and for a large case (in the 

order of septillions) in Task 3. Our choice and sequencing of these tasks and 

respective counterexamples were deliberate, theoretically informed by the notions of 

“example spaces” (Watson & Mason, 2005) and “pivotal counterexamples” (Zazkis & 

Chernoff, 2008), so as to trigger two cognitive conflicts for learners and challenge 

sequentially their naïve empirical and crucial experiment conceptions. The CAPs 

before each potential cognitive conflict directed learners’ attention to their current 

conceptions thus helping them become more aware of these conceptions. The CAPs 

after each contradictory situation (which had the form of an unexpected 

counterexample to an empirically validated and apparently true pattern) directed 

learners’ attention to the implications of the contradictory situation for their 

previously expressed conceptions thus facilitating a process of reflection, experience 

of a cognitive conflict, and subsequent modification of these conceptions.  

Dan’s written response to CAP 3, which followed Task 2, illustrates 

participants’ transition from naïve empiricism towards a more strategic selection of 

cases when validating mathematical generalizations, as in crucial experiment. 

Specifically, Dan wrote that the experience of working on Task 2 taught him he could 

not always trust a formula that worked for the first few cases (cf. naïve empiricism); 

rather, he would have to try “spread cases” to test patterns (cf. crucial experiment). By 

the end of Task 3, participants’ faith in empirical arguments of any kind, including 

crucial experiment, was shaken, with several participants expressing the view in the 

context of CAP 4 that one had to check all cases in a generalization so as to avoid 

missing a “hidden” counterexample when validating the generalization. The students 

recognized, however, that checking all cases in a generalization is not always 

possible. When the secondary teacher asked, “When do you trust a pattern then?” 
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Adam said: “When you cannot find one [a counterexample], until you are dead!” 

Adam’s and other students’ disappointment in the “absence” (from their point of 

view) of a feasible and secure method to validate mathematical generalizations 

marked the emergence of an intellectual need for the class to be introduced to proof as 

such a method.  

The classroom discussions and outcomes of implementing the instructional 

sequence in the school and university classes to promote milestone 1a were markedly 

similar to each other, as we reported in Stylianides and Stylianides (2014b). Further 

supportive evidence for the promise of our instructional sequence to promote 

milestone 1a has been provided by subsequent publications of other researchers. For 

example, Brown (2014) used similar tasks with undergraduate students and reported 

that, once the students saw an intellectual need for a non-empirical proof conception, 

the students did not revert to previous empirical validation practices. Also, Gal (2019) 

identified students’ lack of cognitive preparedness as a reason for teachers’ failure to 

evoke a cognitive conflict among students, which reinforces our staged approach to 

supporting changes to learners’ proof conceptions and our use of CAPs prior to each 

potential cognitive conflict. 

 
4.2. Promoting milestone 1b: pedagogical need 

As indicated by prospective teachers’ responses to the three relevant questions 

of a survey that we administered at the beginning of cycle 5 of the university study 

(Table 1), many prospective teachers began the course with a restricted view of proof 

as an argument presented in two columns in the context only of geometry (items 1 and 

2). This was unsurprising because many students and adults in the United States 

would have first and only encountered proof in its “two-column format” in high 

school geometry courses (Herbst, 2002); this format emphasized getting proof in the 
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“proper” form rather than mathematical sense making (Schoenfeld, 1989). These 

experiences created an obstacle to our prospective teachers seeing the relevance of 

proof to school mathematics as an argument not restricted to specific representational 

forms or mathematical domains (cf. aspect 1 of pedagogical need in Fig. 1). 

Relatedly, at the beginning of the course many prospective teachers considered proof 

to be an advanced topic beyond the scope of the elementary school (item 3). This 

view created a further obstacle to them appreciating that elementary students can 

engage meaningfully with proof (cf. aspect 2 of pedagogical need). As indicated by 

the results of the comparison between prospective teachers’ pre- and post-course 

responses to the three survey questions (Table 1), the prospective teachers, according 

to their self-reports, appeared to have overcome these obstacles.   

Table 1 
Prospective Elementary Teachers’ Responses to Relevant Survey Items at the 
Beginning and at the End of the Course (n=39) 
 

 

 
Survey itema 

Mean (SD) Result of comparisonb 

Beginning End t(36-38) p Cohen’s d 

1. Proofs are sequences of steps 
presented in two columns: one 
has the statements and the other 
has the reasons.  

 
 
 

1.42 (.65) 

 
 
 

2.44 (.85) 

 
 
 

5.44 

 
 
 

<.001 

 
 
 

1.13 
2. Proof is a topic that relates 
only to geometry 

 
2.95 (.80) 

 
3.74 (.45) 

 
6.00 

 
<.001 

 
.81 

3. Proof is an advanced topic 
that goes beyond the scope of 
the elementary school grades 

 
 

2.22 (.75) 

 
 

3.28 (.84) 

 
 

7.22 

 
 

<.001 

 
 

.90 
 
Notes. a  Following Schoenfeld (1989), the Likert scale options for each item were “1: 
very true,” “2: sort of true,” “3: not very true,” and “4: not at all true.”   
b The effect size d was large (>.80) for all three items. 
 

To promote a pedagogical need among prospective teachers to learn about 

proof, we used two complementary approaches. The first approach utilized a key idea 

emerging from research on mathematical knowledge for teaching (Ball et al., 2008), 
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namely, the importance of using pedagogical situations to contextualize prospective 

teachers’ learning of mathematics in ways that have a bearing on the work of 

mathematics teaching (Heid & Wilson, 2015; Stylianides & Stylianides, 2014a; 

Wasserman et al., 2019). We operationalized this idea in a special kind of tasks that 

we call pedagogy-related mathematics tasks (Stylianides & Stylianides, 2014a) and 

that have two major features: a mathematical focus that relates to mathematical ideas 

that theory, research, or practice suggest are important for teachers to know; and a 

substantial pedagogical context that is an integral part of the task and essential for its 

solution. By interweaving mathematics and pedagogy, Pedagogy-Related 

Mathematics (PR-M) tasks not only can facilitate learning of mathematics that is 

useful in and for teaching (Ball & Bass, 2000), but also, and more relevantly to our 

purposes here, can help nurture a pedagogical need for that learning (Stylianides & 

Stylianides, 2014a).  

As part of the instructional sequence for milestone 1b, we used the two PR-M 

tasks outlined in Fig. 4, which we asked prospective teachers to complete individually 

as part of a homework assignment before the next class session. To design the 

pedagogical context of these tasks, we used a classroom episode reported in Zack 

(1997). Vicki Zack, a teacher-researcher, described her Canadian fifth-graders’ 

encounters with the notion of proof in the context of a version of the Squares Problem 

that was almost identical to the version we had used previously with the prospective 

teachers (Fig. 3) for promoting milestone 1a.6 The episode presented Zack’s 

elementary students engaging in mathematics as a sense-making activity, with proof 

playing a key role in their work: the students had a disagreement over a method for 

finding the total number of squares in a 60-by-60 square, and they sought to resolve 

 
6 The version of the Squares Problem used by Zack (1997) included an additional question about the 
number of different squares in a 10-by-10 square. Also, it did not ask students to explain or indicate 
their confidence for their answer for the number of different squares in a 60-by-60 square. 
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their disagreement by means of proof (“You have to prove us wrong”) rather than by 

appeal to an authority. We expected that the fact that the words “prove” and “proof” 

were used naturally and meaningfully by the elementary students in the context of the 

same problem that the prospective teachers had worked on previously would reinforce 

for prospective teachers the relevance of proof to elementary school students’ work, 

thereby helping promote both aspects of pedagogical need under milestone 1b.  

 
 

Fig 4 Outline of two “pedagogy-related mathematics tasks” (Stylianides & Stylianides, 
2014a) used as part of the instructional sequence for promoting milestone 1b 
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The mathematical focus of PR-M task 1 in Fig. 4 was for prospective teachers 

to construct a proof to resolve students’ disagreement, while the mathematical focus 

of PR-M task 2 was for them to evaluate arguments that elementary students 

constructed for that purpose. While the prospective elementary teachers were not yet 

introduced to criteria for proof, their engagement with these questions was intended to 

prime them for milestone 2 in the learning trajectory. Also, the consideration of the 

elementary students’ debate in PR-M task 1 and their arguments in PR-M task 2 

aimed to emphasize further the relevance of proof to school mathematics (aspect 1 of 

pedagogical need) and the ability of elementary students to engage meaningfully with 

this notion (aspect 2).   

The second approach we used to promote a pedagogical need among 

prospective teachers complemented the approach we just described (based on PR-M 

tasks) and utilized the following key idea that emerged from research on teachers’ 

professional learning: the use of narrative or visual cases (also referred to in the 

literature as vignettes, scenarios, stories, comic-style animations, etc.) of teaching 

practice to offer a concrete context for (prospective) teachers to project themselves 

into a certain pedagogical context and reflect on pedagogical or mathematical issues 

pertaining to that context (e.g., Arbaugh, Smith, Boyle, Stylianides, & Steele, 2018; 

Herbst & Chazan, 2011; Skilling & Stylianides, 2020). Although there are many 

published narrative or visual cases, none of these were suitable for our aim to create a 

pedagogical need for proof among prospective elementary teachers. Engaging 

elementary students in proving is uncommon in school mathematics practice 

internationally (Stylianides et al., 2017) and so relevant cases based on actual 

classroom data at the elementary school level are scarce; the few available cases are 

found mostly in research reports of teacher-researchers’ practices (e.g., Ball & Bass, 

2000) and are not packaged in a way that is readily usable in teacher training. Even 
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fictional cases in the area of proof are hard to find for this particular school level; the 

only purposefully created narrative or visual cases related to proof we know of 

focused on the secondary school level (Arbaugh et al., 2018; Herbst & Chazan, 2011). 

Despite these difficulties, we found what we were looking for in Zack’s 

(1997) paper that we referred to earlier and that constituted the basis for the design of 

the two PR-M tasks. This was a brief conference paper, which, although not written as 

a narrative case, was essentially an authentic, first-person account of an elementary 

teacher who critically reflected on her proof-related instruction with the Squares 

Problem, having already endorsed and articulated in her paper the ideas that proof is 

relevant to elementary school mathematics (aspect 1 of pedagogical need) and that 

elementary students can engage meaningfully with proof (aspect 2). Another reason 

for the suitability of Zack’s paper for our purposes was that, while Zack endorsed the 

two aforementioned ideas, she also discussed openly some mathematical and 

pedagogical challenges she faced when trying to engage her elementary students in 

proving; this honest, non-idealized reflection made it more likely that our prospective 

teachers would project themselves into Zack’s position (cf. Skilling & Stylianides, 

2020). Also, Zack’s reflective account was consistent with the three considerations for 

communal criteria for proof, which we planned to guide our work in milestone 2 (Fig. 

1). For example, regarding consideration 3, Zack expressed the contention “that in 

order for an argument to be considered a proof, the students need not only convince, 

but also to explain” (p. 291; italics and emphasis in original).    

Given the suitability of Zack’s paper as a narrative case for our aim to promote 

milestone 1b among our prospective teachers, we asked them to read Zack’s paper as 

part of the same homework assignment that included the two PR-M tasks. Also, we 

asked the prospective teachers to respond to a new CAP that prompted them to 

identify and rank order three ideas in Zack’s paper that they considered important, and 



 35 

explain briefly why they considered them to be important. We intentionally did not 

channel prospective teachers’ choices towards ideas relevant to milestone 1b; our 

experience using this CAP in previous research cycles suggested that the bulk of what 

prospective teachers would choose to comment on would still be in the area of proof. 

Also, we expected that their choices would constitute a good basis for the whole class 

discussion that the instructor would orchestrate in the next class session with the aim 

to “institutionalize” (Brousseau, 1981), that is, raise and give official status to, the two 

aspects of pedagogical need under milestone 1b.  

In what follows, we discuss transcript excerpts from the whole class 

discussion of prospective teachers’ selected ideas from Zack (1997) in one of the 

university classes (18 prospective teachers), which illustrate how the two aspects of 

pedagogical need can be institutionalized; the discussion in the other university class 

was similar. The instructor orchestrated the whole class discussion by implementing 

the four key practices we discussed in Section 3.2. In using practice 4 – revoicing or 

highlighting selected student contributions – the instructor kept in mind not only the 

two aspects under milestone 1b but also the three considerations for the proof criteria 

that would be introduced later under milestone 2. 

The discussion started with prospective teachers sharing key ideas they 

identified in Zack (1997). Maria and Amanda were the first ones to make comments 

that directed the discussion to the notion of proof, which remained the focus of the 

discussion thereafter. None of the prospective teachers questioned Zack’s pedagogical 

decision to engage her elementary students with proof. Rather, this decision seemed to 

be readily accepted by the prospective teachers who focused their comments on the 

learning affordances of elementary students’ engagement with proof.  

Maria:  I also thought that one of the most important ideas was, like at the end, the 
teacher [Zack] went back to make sure that everyone understood, and that having 
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them [the students] explain it [the process of finding the number of different 
squares] helped.  

[…] 
Amanda: I think it was important that she [Zack] didn’t assign the task [the Squares 

Problem] with the intention of talking about proof, but the kids were curious and 
led the discussion there. She went [along] with it, and allowed them to deepen the 
ideas on their own. 

   
Maria and Amanda’s comments linked elementary students’ engagement with 

proof with deepening students’ understanding of mathematical ideas. Maria’s 

comment also suggested a connection between students’ understanding and them 

explaining their thinking. Amanda’s comment suggested further that not only can 

proof be relevant to elementary students’ mathematical work but also it can emerge 

naturally from that work, thereby reflecting an appreciation of both aspects of 

pedagogical need. 

To draw attention to the explanatory function of proof, the instructor asked 

prospective teachers to comment on the elementary students’ reactions when Zack 

showed to them the following formula for the sum of the first N square numbers: 

N×(N+1)×(2N+1)/6. Zack found this formula in Anderson (1996) but noted she did not 

know how the formula was derived. Sherrill’s comment reinforced the explanatory 

function of proof as a “credible” means for establishing knowledge in the classroom 

as opposed to “given” knowledge by an authority (in this case, a journal article): 

Sherrill:  They [the students in Zack’s class] basically like wanted him [Anderson] to 
explain why7 it [the formula] worked. It looked like it would work, it looked like 
a good idea but so they didn’t find it as credible as if she had explained why. This 
brought up the whole idea of proof, because they were just given the formula 
[from Anderson’s article]. 

 
 Prospective teachers’ recognition that proof can be relevant to school 

mathematics (aspect 1 of pedagogical need) was further suggested by their subsequent 

discussion of the importance of teachers doing tasks like the Squares Problems 

 
7 Italics in transcript excerpts are ours to draw attention to specific segments. 
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themselves and being able to explain why things work when they implement these 

tasks with their students. Natalie’s comment illustrates this point: 

Natalie:  One of the things that I said was important was the teacher’s role in explaining 
how it works. And she [Zack] said that the way she did that was by talking about 
her own inquiries and her own steps through solving the problem. She didn’t just 
say: “Okay I need to solve this Squares Problem, look in a book and find this 
formula.” She went through and did it herself as well so she could see what the 
students were talking about. 

 
The instructor then added to Natalie’s comment that, if a teacher only knows one way 

to solve a problem, the teacher will not be well equipped to respond to different 

student arguments, such as the arguments that the prospective teachers had analyzed 

in PR-M task 2 (Fig. 4).   

The discussion shifted next to another important idea in Zack’s paper, namely, 

that an argument should convince not only oneself and a friend but also a skeptic. As 

we noted earlier, these three levels of conviction by Mason (1982) are relevant to the 

justification function of proof (consideration 3 under milestone 2). 

Beth:  I just thought that it was important because Will [a student in Zack’s class] was 
determined to find a pattern, so that’s the only way he wanted to look at it, and 
didn’t really have an open mind to it. And I don’t really get how he convinced his 
friend, he just said you know, the pattern’s right, and he thought he was a genius. 
[…] 

Stylianides: And what’s harder to do? To convince yourself, to convince a friend, or to 
convince a skeptic? 

Beth:  Convince a skeptic. 
 

Knowing that these levels of conviction would be part of the conceptualization 

of proof the prospective teachers would be introduced to in milestone 2, Stylianides 

commented that the three levels of conviction were relevant to their teacher education 

class as much as they were relevant to Zack’s elementary school class. After that, he 

asked directly whether it would be meaningful to talk about “proof” in the elementary 

grades, a question that related to both aspects of pedagogical need.  

Joan responded in the affirmative and explained how during the previous 

activities for milestone 1a (outlined in Fig. 2) her thinking shifted from a restricted 
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view of proof as an argument in geometry presented in two columns (cf. survey items 

1 and 2 in Table 1) to a view of proof as a means for engaging children in sense-

making across mathematical domains: 

Joan:  I had a pretty strict interpretation of proof before I came in here, which was the 
geometry proof [in high school] which I don’t really remember very well, but I 
know that there’s a proof using geometry; there’s a column for the steps and a 
column on the other side for why you’re doing that and the reasoning behind it. 
But so yeah, this is an interesting way, I guess, to explain, the students or 
children themselves [in elementary school], why something works and it doesn’t 
have to be specific to geometry or the proofs in geometry. 

Stylianides: [To the class:] Did you write something on this issue? [Pause. Some prospective 
teachers nod in agreement.] So what does Vicki Zack take proof to mean? What 
is proof for her? Amanda? 

Amanda:  Um, explain. She takes it to mean as long as you can explain why you’re doing 
that and why it works. That’s what it seems to be. 

 
Building on Joan and Amanda’s comments, Stylianides ratified the connection 

between the notions of “explanation” and “proof,” and he offered a fuller account of 

Zack’s (1997) view of proof to refer also to “conviction.” He concluded the 

discussion by giving an official status to the idea that emerged from the previous 

contributions (relevant to milestone 1b) that proof can be a meaningful concept for 

elementary school mathematics and thus important for prospective elementary 

teachers to learn about, provided that proof is appropriately conceptualized. This 

comment led smoothly to the class’s work on milestone 2.  

 
4.3. Promoting milestone 2: an operationally functional conceptualization of 

proof 

In considering learners’ introduction to an operationally functional 

conceptualization of proof, one needs to recognize that it is unrealistic for instructors 

to expect learners to discover their own proof criteria (Hanna & Jahnke, 1996; 

Mariotti, 2006). Thus, instructors have a critical role to play in offering to members of 

their classroom communities (students and prospective teachers alike) access to 

appropriate criteria for proof. Yet it is not a matter of instructors simply giving to 
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learners a set of proof criteria for learners to accept and apply. Rather, instructors 

should provide opportunities for the criteria to be socially negotiated and understood 

in the classroom community – both at the point of the introduction of the criteria (as 

in Campbell & King, 2020; Yee et al., 2018) and over time during their application in 

proving tasks (as in the two design experiments) – while ensuring that the criteria do 

not compromise important considerations like those under milestone 2 (Fig. 1).  

Learners’ readiness to make sense of or accept the instructor’s proposed 

criteria is fundamental. Take, for example, a possible criterion for proof to be a 

convincing argument: a student who views empirical arguments as proofs would have 

different standards for conviction (for that student, empirical arguments are 

convincing) than another student who has been supported to overcome the 

epistemological obstacle of viewing empirical arguments as proofs (milestone 1a).   

To introduce the participants in our studies to an operationally functional 

conceptualization of proof, we took into account the aforementioned ideas about the 

instructor’s role. Also, in both studies, we presented the participants with a starting set 

of criteria, and we organized a discussion around the proposed criteria so as to 

socially negotiate the criteria and institutionalize them for further negotiation and use 

in future classwork.  

Next we discuss how we introduced the participants in each study to 

communal criteria for proof. In doing so, we offer concrete images of what the social 

negotiation of communal criteria for proof can look like at the point of the 

introduction of these criteria, an issue that received little attention in prior relevant 

studies (Campbell & King, 2020; Stylianides, 2019; Stylianides & Stylianides, 2009a; 

Yee et al., 2018). Two major similarities between the starting sets of proof criteria 

used in each study were that the criteria (1) were consistent with the three 

considerations under milestone 2 and (2) were viewed as tentative and subject to 
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further negotiation and discussion as each class continued to engage with proof over 

time. A major difference concerned how the proof criteria were devised in each study. 

The criteria for the secondary students were purely our own creation, in collaboration 

with the two secondary teachers, and so we had flexibility to devise criteria that 

would meet squarely the three considerations. We did not have the same flexibility in 

devising the starting set of criteria for the prospective teachers: a textbook we used 

occasionally in the course had a chapter on characteristics of a “good explanation” in 

mathematics (Beckmann, 2005) that, although not ideal for our purposes, we felt we 

could productively incorporate into our instructional design as we explain below.  

 
4.3.1. The case of prospective teachers 

The discussion of Zack (1997) that we reported previously showed that the 

prospective teachers were prepared to accept several criteria for proof, such as criteria 

relating to proof’s explanatory and convincing functions (consideration 3). In 

preparation for a more focused discussion of proof criteria, we asked the prospective 

teachers to read Beckmann’s (2005) discussion of characteristics of a “good 

explanation” in mathematics (first column in Table 2) and respond in writing to the 

following prompt: “Does Beckmann’s list of characteristics of good explanations 

make sense to you? Is there anything you would like to add, delete, or change?” 

 Although Beckmann discussed criteria for explanations rather than proofs, we 

could still use her list and help the class view “proof” as a special type of a “good 

explanation” (in Beckmann’s sense) applicable to tasks that required the solver to 

show the truth or falsity of a statement; this view of proof would be consistent with 

some of the literature that described proofs as a special kind of “explanatory 

arguments” (Balacheff, 1988; Knuth, 2002). The other major function of proof we 



 41 

decided to focus on – conviction – also featured prominently in Beckmann’s 

characteristics 3b and 3c, thus addressing consideration 3 for proof criteria.  

Table 2  
Characteristics of a Good Explanation in Mathematics and the Criteria for Proof 
Used in the University Study 
 
Beckmann’s (2005) characteristics of a 
good explanation in mathematics 

Characteristics of a good explanation as 
adapted by the prospective teachers for 
use in the teacher education class (These 
served also as criteria for proof) 

1.  The explanation is factually correct, or 
nearly so, with only minor flaws (for 
example, a minor mistake in a 
calculation).  

2.  The explanation addresses the specific 
question or problem that was posed. It 
is focused, detailed, and precise. 
There are no irrelevant or distracting 
points. 

3.  The explanation is clear, convincing, 
and logical. A clear and convincing 
explanation is characterized by the 
following: 
(a) The explanation could be used to 

teach another (college) student, 
possibly even one who is not in 
the class. 

 
(b) The explanation could be used to 

convince a skeptic. 
(c) The explanation does not require 

the reader to make a leap of faith. 
 
 
(d) Key points are emphasized. 
(e) If applicable, supporting pictures, 

diagrams, and equations are used 
appropriately and as needed. 

(f) The explanation is coherent. 
(g) Clear, complete sentences are 

used.  
 
 

1.  The explanation is correct.  
 
 
 
2.  The explanation addresses the specific 

question or problem that was posed. It 
is focused, detailed, and precise. 
There are no irrelevant or distracting 
points. 

3.  The explanation is clear, convincing, 
and logical. A clear and convincing 
explanation is characterized by the 
following: 
(a) The explanation uses language, 

representations, definitions that 
are understood by the people to 
whom the explanation is 
addressed. 

(b) The explanation could be used to 
convince a skeptic.a 

(c) The explanation does not require 
the reader to make a leap of faith 
(e.g., “This is how it is” or “You 
need to believe me”). 

(d) Key points are emphasized. 
(e) If applicable, supporting pictures, 

diagrams, and equations are used 
appropriately and as needed. 

(f) The explanation is coherent. 
(g) Clear, complete sentences are 

used. 
(h) The explanation could be used by 

someone to solve a similar 
problem. 

 
Note. a  The prospective teachers wanted this phrase to be in italics for emphasis. 
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The other two considerations were also satisfied to a good extent in 

Beckmann’s list. Regarding consideration 1 (honesty to the discipline of 

mathematics), Beckmann required good explanations to be factually correct (see 

characteristic 1, even though this characteristic leaves open the possibility for minor 

errors) and to address precisely, clearly, convincingly, and logically the question at 

hand (characteristics 2 and 3). Regarding consideration 2 (contextual 

appropriateness), Beckmann required good explanations to be formulated with other 

members of the classroom community or a similar kind of audience in mind 

(characteristic 3a). If we had authored the characteristics, we would have modified 

some of them, but overall we felt that Beckmann’s list offered a good starting point 

for our discussion with the prospective teachers. Also, the fact that the list could be 

used as a pre-discussion reading offered the opportunity for prospective teachers to 

reflect individually on the criteria and come prepared for the discussion.  

The second column in Table 2 presents the criteria for proof agreed upon in 

the class following the whole class discussion of Beckmann’s list. As we can see in 

the table, several criteria were modified in that discussion. Below we present excerpts 

from the whole class discussion to illustrate how some of selected criteria were 

negotiated and accepted. During the discussion the instructor kept a public record of 

what was being agreed by annotating Beckmann’s list. To identify the points of 

consensus and to steer the discussion towards changes we thought would strengthen 

the alignment of the accepted criteria with the three considerations, including our 

intended link between “proof” and Beckmann’s notion of a “good explanation,” the 

instructor orchestrated the whole class discussion by implementing the four practices 

we described in Section 3.2.  

Characteristic 2 in Beckmann’s (2005) list sparked considerable discussion.  
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Laura:  On number 2, I think the statement “there are no irrelevant or distracting points” 
is subjective. Some kids might have to go through the irrelevant or distracting 
points to eliminate those as part of the thinking process. […] 

Stylianides: This is an interesting point. Also in number 2 it says that the explanation should 
be “detailed” and then it says that there are “no irrelevant or distracting points.” 
Do you see any conflict with these two? Lindsey? 

Lindsey:  Yeah, I also thought something similar to her [Laura], that they might have to go 
through… but I thought more, like, I guess I thought more of the teacher bringing 
up the distracting point. I guess I read it that way, like bringing up a point from a 
previous lesson that might need to be brought up to further explain and 
understand. […] 

Natalie: Well, I read it as “detail” and “to the point” where it’s necessary. If you think 
about the example that, if you’re teaching a college-level course, you wouldn’t 
need to explain how to do a subtraction problem. Like that would be detail, but it 
wouldn’t be necessary, it would be irrelevant and distracting. 

Stylianides: So what both of you [Lindsey and Natalie] are saying and what Laura said 
earlier, that it depends on the students, is perhaps one characteristic that is 
perhaps missing from this list: that explanations should be suitable for the 
audience, for the students who will be using them, and their background 
knowledge. What do you think about that? Someone noticed that? Britni? 

 
Natalie’s comment was reconciling Laura and Lindsey’s earlier points and 

illustrates how the meaning of characteristic 2 was socially negotiated in the class. In 

his last comment, Stylianides implemented practice 4 so as to highlight some relevant 

bits in Lindsey and Natalie’s contributions and direct the class’s attention to issues of 

audience and contextual appropriateness (consideration 2). Britni’s response to the 

instructor’s questions led to revision of characteristic 3a: 

Britni: I was going to say about… which one is it… [characteristic] 3a where it’s saying 
that it should be irrefutably taught to someone else. Not all kids learn the same 
way or explain in the same way, so if you’re talking about younger kids, like 
younger kids to explain this as opposed to an adult. 

Stylianides: So then I will change that [characteristic 3a] and say that a good explanation 
should be appropriate for the background knowledge and understanding of the 
students. Okay? [Britni nods in agreement.] This issue about the detail and non-
relevant and distracting points […] was similar to what Natalie said earlier: it 
should be detailed as long as it makes sense. Detailed enough for the person who 
is the audience. […] 

 
The previous exchange is illustrative of the important role of the instructor in 

ensuring that the list of characteristics captured appropriately the three considerations 

while listening carefully to and building on prospective teachers’ contributions. In 

addition to capturing better consideration 2, the revised characteristic 3a itemized 

aspects of an explanation (language, representations, definitions) that require attention 
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when accounting for the audience of an explanation, thereby operationalizing the 

characteristic and strengthening its usability.  

The prospective teachers made some additional comments on the other points 

under Beckmann’s characteristic 3. For example, characteristic 3h was added 

following a suggestion from Laura and agreement by the rest of the class.  

Laura:  On number 3, I also added that the explanation that is given could be used to 
solve a similar problem where maybe just some of the numbers were changed. 
That could be another way of them, you know, offering proof. 

Stylianides: What do other people think about that? So how would you write that, Laura? 
Laura:  That the explanation can be used to solve another variation of the problem, is 

what I wrote. 
Stylianides: Do you think… should we add it to the list? [Prospective teachers nod in 

agreement and Stylianides adds it to the list.] 
 

The previous excerpt illustrates the instructor’s readiness to accept inclusion 

of criteria to the list that we did not consider necessary but were still viewed as 

important by the classroom community and did not compromise the three 

considerations. Laura’s comment illustrates also that some prospective teachers were 

already thinking of the list of characteristics for good explanations as applying also 

for proofs. The instructor picked up on Laura’s reference to “proof” and made explicit 

for all prospective teachers the connection between the notions of a “good 

explanation” and a “proof.” He also clarified the way in which the list of 

characteristics would be used in the future work of the teacher education class. 

Stylianides: Okay, so we can always revisit this list later in the course […] It would be good 
for us if we could try to follow the characteristics that appear on this list that are 
applicable in the problem that we’re trying to solve or in homework assignments. 
[…] Before we move on to something else, I would like to say something about 
the relation between a “good explanation” and a “proof,” as we discussed in the 
context of the Vicki Zack paper last week. The same criteria would apply also for 
a good proof. The only difference in my mind between a good explanation and a 
good proof is that “proof” is a more restricted term that applies when we want to 
show whether a statement is true or false. So the explanation could be [a] broader 
[term] and include also other things that go beyond showing whether something 
is true or false. But I think that perhaps all of the characteristics that we have here 
would also be applicable to a good proof. What do you think? […] 

Natalie:  Well, I think that it would be just as necessary for a proof to be answering a 
specific question, logical explanation… which also applies to a proof. 
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Natalie’s comment reinforced the idea proposed by the instructor that the same 

characteristics would apply for proofs. Once it was established that the revised list of 

Beckmann’s characteristics of a good explanation would be used also as proof criteria 

in the teacher education class, the instructor made a note about that in the document 

he was annotating publicly so as to “institutionalize” (Brousseau, 1981) this piece of 

knowledge for use in the classroom community’s future work.  

Before we move on to the case of secondary students, we note that in the 

discussion of characteristics 3a and 3b, the prospective teachers made references to 

earlier parts of the intervention (the tasks in Fig. 2, the PR-M tasks in Fig. 4, and the 

discussion of Zack’s paper) thereby illustrating their understanding or indicating their 

acceptance of those criteria. Due to space constraints, we do not elaborate on the 

discussion of those characteristics, but the reader can see similar issues reflected in 

the next section in the discussion that took place in the secondary classroom.   

 
4.3.2 The case of secondary students 

In accordance with the lesson plan that the researcher had agreed with the 

secondary teachers, the teachers capitalized on their students’ emerging intellectual 

need to learn about proof (milestone 1a) to introduce them to a proposed set of criteria 

for proof. The criteria, which we present in Fig. 5 in the form of the actual 

PowerPoint slide that was used by the teachers, were developed collaboratively 

between the researcher and the teachers. The researcher brought into play his 

knowledge of the relevant literature (including the three considerations) and prior 

experience from the university study, while the two secondary teachers offered useful 

practical knowledge so that the criteria were contextually appropriate (consideration 

2), notably understandable to and usable by their students. Contextual appropriateness 

was also reflected in criterion 3, which essentially referred to the community’s “set of 
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accepted statements” (Stylianides, 2007a). Regarding honesty to mathematics 

(consideration 1), an argument that met the standard of proof had to contain no errors 

(criterion 4), be clearly presented (criterion 5), and not require one to make a leap of 

faith (criterion 1). The latter requirement was meant to emphasize logical thinking as 

the basis of epistemic belief rather than appeal to an authority. Relatedly, an argument 

qualifying as a proof had to be convincing and explanatory (criteria 1 and 2, 

respectively) thus addressing both main functions of proof in consideration 3. 

 
 

Fig 5 The criteria for proof that the teachers proposed to their students in the school study 
 
 In what follows we briefly illustrate the introduction of one of the secondary 

classes (30 students) to the proposed criteria for proof; a similar discussion took place 

in the other class. According to the plan, the classroom teacher, who we call Kathy 

(pseudonym), would solicit students’ own views about criteria for proof before 

presenting the proposed criteria in Fig. 5 for the students to comment on and begin to 

develop a shared understanding of their meaning. The teacher would use the same 

four practices as the university instructor when orchestrating the whole class 

discussion, and she was prepared to accept modifications the students would suggest 

to the criteria that would not compromise the three considerations.  

What should count as “proof” in our class? 

 An argument that counts as proof should satisfy the 
following criteria: 

1.  It can be used to convince not only myself or a friend but 
also a sceptic 

•  It should not require someone to make a leap of faith   
(e.g., “This is how it is” or “You need to believe me that 
this will go on for ever”) 

2.  It should help someone understand why a statement is 
true (e.g., why a pattern works the way it does) 

3.  It should use ideas that our class knows already or is 
able to understand (e.g., equations, pictures, diagrams) 

4.  It should contain no errors (e.g., in calculations) 

5.  It should be clearly presented 
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Kathy:  […] We need to have some sort of idea then of what we need our proof to consist 
of. So let’s have a think about the sorts of things that we need our proof to do. 
What for us is going to be enough to guarantee that we have proved it [a 
statement], guarantee that that the pattern will always work. What might our 
proof consist of? 

 
Kathy’s question solicited first a comment from Larry that related to proof’s 

explanatory function (consideration 3):  

Larry: It needs to show why there are actually 16 3-by-3 squares in a 5-by-5 grid. [Larry 
refers to question 2 in the Squares Problem. He probably meant to say “9” 
instead of “16,” which was the result established in the class for this question.] 

 
Kathy revoiced Larry’s point (practice 4) given its relevance to criterion 2 

(Fig. 5) and invited further contributions from the class: 

Kathy: We have to show why. We can’t just say, “this is the formula and it works.” We 
have to show why it works. We have to show why there are so many 3-by-3 
boxes in a 5-by-5, 6-by-6, or whatever… So we have to help people reading our 
proof understand it, it has to be understandable. What sorts of things might our 
proof have in it, then? Especially the proof for the Squares Problem, what might 
it look like when it gets on paper? 

Robert: It might have a diagram in it. 
Kathy: What else might have in it? 
Larry: You would put in how you got to the equation yourself. 
Kathy: Yes, you could have some neat working to show the steps you went through to 

get the final, whatever it may be, a formula or explanation. 
 
Larry’s new contribution seemed to relate to the presentation of a proof and the 

importance of proof making relevant processes explicit (consideration 1).  

 Notable in the discussion so far were students’ references to earlier parts of the 

intervention. At this point, Kathy presented the PowerPoint slide in Fig. 5, indicating 

that the criteria were not set in stone and the class could modify them or revisit them 

in the future. She read the criteria and commented briefly on each of them, engaging 

students in discussion about what the criteria meant for them and how they thought 

the criteria related to their earlier mathematical work. Here is an excerpt from the 

discussion concerning criterion 1: 

Kathy: What do we mean by “skeptic”? 
Blaze: Someone who doesn’t believe us.  
Kathy: So we’ve got to convince even those skeptical persons. And most importantly, it 

shouldn’t require someone to make “a leap of faith,” to just trust us, like “this is 
how it is” or “you need to believe me that this will work for ever,” which is what 
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we’ve done so far, isn’t it? [She refers to the empirical arguments the class had 
produced earlier in the Squares Problem.] […] 

Students:  Yes. [Some students say “yes”; others nod in agreement.] 
Kathy: We checked cases and said, “Oh, we’ve seen it working, therefore it will work 

for the rest.” And we showed that perhaps this isn’t the case like in [Task 2, Fig. 
2].  

 
In this excerpt Kathy presented criterion 1 as one that would disqualify empirical 

arguments from meeting the standard of proof by explaining to the students that 

arguments of this kind would fail to convince a skeptic. This comment addressed an 

important aspect of consideration 1 and offered to the class a sense of what would 

dissatisfy a skeptic in terms of accepting an argument as a proof. The reference to 

“conviction” also made a connection with consideration 3. 

 To further facilitate reflection on and understanding of the criteria, Kathy 

asked the students which criterion they thought was the most important. Sylvia 

nominated criterion 2, saying that an argument should help “rationalize it [a 

statement], understand why something is true.” Sylvia’s emphasis on the explanatory 

function of proof was consistent with Larry’s earlier contribution. Recognizing its 

importance, Kathy revoiced Sylvia’s contribution and made a connection between 

explanation and conviction (consideration 3): “If you can explain it, you are more 

likely to convince a skeptic.” Overall, the students’ contributions in this part of the 

discussion suggested that the criteria were contextually appropriate (consideration 2).  

Finally, Kathy invited the class to say whether there were any further criteria 

they wanted to add to the list or any criteria they wanted to take out of the list. The 

class was content with the proposed criteria, so Kathy concluded the discussion by 

“institutionalizing” (Brousseau, 1981) the criteria for use in the future work of the 

class: she summarized again the criteria and said that an argument that fulfilled the 

criteria would “likely be a really good proof.” 
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5. Concluding remarks  

 In recent decades, there has been notable progress in the field towards 

clarifying the meaning of proof for research purposes. We believe it is now time for 

the field to debate also, and become clearer about, the conceptualization(s) of proof 

that students in school and prospective teachers in teacher education can be 

introduced to so as to practically guide their engagement with proof. The lack of a 

clear stance on possible ways to introduce learners of mathematics to an operationally 

functional conceptualization of proof creates a significant obstacle (not the only one) 

to proof gaining the place that the field envisions for it in everyday classroom activity. 

Also, it perpetuates the imbalance in the current body of research that places more 

emphasis on documenting students and prospective teachers’ difficulties with proof as 

compared to seeking ways to instructionally improve the learning experiences 

available to them to be able to productively engage with proof.  

 In this paper we took a step towards addressing this gap – which lies in the 

intersection of research, theory, and practice – by discussing and illustrating a 

learning trajectory and a respective instructional sequence that we used to help 

secondary students and prospective elementary teachers in two different countries to 

move along the milestones in the learning trajectory. We argued that, if students and 

prospective teachers’ introduction to proof is consistent with one another (in terms of 

both the learning trajectory and the instructional sequence), like we proposed it to be, 

this can facilitate a coherent approach to the treatment of proof in school and teacher 

education settings.  

A notable aspect of our proposed learning trajectory is that students and 

prospective teachers are expected to see an “intellectual need” (Harel, 2008) to learn 

about proof prior to their introduction to an operationally functional conceptualization 

of proof. To create such an “intellectual need,” we targeted the removal of 
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participants’ epistemological obstacle of viewing proofs as empirical arguments, 

which prior research showed is a significant stumbling block to proof learning (e.g., 

Education Committee of the European Mathematical Society, 2011; Harel, 2008; 

Harel & Sowder, 2007). Once this epistemological obstacle is removed, we argued, 

participants are conceptually better prepared to make sense of and accept criteria for 

proof, including a notion of conviction linked to non-empirical arguments. Studies 

that did not focus on creating among their researcher participants an intellectual need 

for proof as a non-empirical argument observed resistance in participants’ immediate 

work to use their proof criteria to evaluate empirical arguments as non-proofs 

(Campbell & King, 2020; Yee et al., 2018). The participants in our studies, on the 

other hand, showed in their immediate (oral) proof constructions (Stylianides, 2019) 

and in their longer-term (written) proof constructions and evaluations (Stylianides & 

Stylianides, 2009a) good awareness of the fact that empirical arguments are not 

proofs. Also, Brown (2014), in one of her studies where she followed an approach to 

promote an intellectual need among undergraduate students that was similar to ours, 

found that students’ non-empirical proof conception was long-lasting. 

Another notable aspect of our proposed learning trajectory is that prospective 

teachers need to see further a pedagogical need to learn about proof before their 

introduction to an operationally functional conceptualization of proof. The notion of 

pedagogical need is a new notion we introduced in this paper to describe the need for 

(prospective) teachers to learn about proof from a teacher’s standpoint. Creating such 

a need is important in the context of the proposed learning trajectory because 

prospective teachers’ epistemological readiness to learn about proof does not 

immediately translate into their readiness to learn about proof from a teacher’s 

standpoint (Stylianides & Stylianides, 2014a; Wasserman et al., 2019). 
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While we made a case for the particular learning trajectory we presented in 

this paper and the significance of its various milestones, being guided by theoretical 

perspectives that we made explicit in our discussion and by a practical need to be 

selective and keep the scope of the learning trajectory relatively modest, we invite 

researchers to debate whether other milestones deserve also inclusion or priority over 

our selected milestones in the learning trajectory. With regard to the instructional 

sequence that we discussed in this paper, we present it as a possible way to promote 

the learning trajectory and to show that our theoretical proposition can be put into 

practice meaningfully rather than as a fully successful or the only way to achieve the 

goal of introducing learners to an operationally functional conceptualization of proof. 

Indeed, future research can help improve the instructional sequence or provide 

alternative pathways to promoting its various milestones.  

Regarding milestone 1a, Brown (2014) already suggested an alternative 

pathway, called the “Cultural, Non-Experiential Pathway,” for how to help students 

develop skepticism towards empirical validations through the power of an authority. 

She described this pathway as follows: 

The Cultural Non-Experiential Pathway is a didactical pathway that arises when an 
authority within the collective dismisses a basis of belief but there is no experiential 
history that the collective has shared, which serves as grounds for this action. In this 
case, a way of reasoning is established as an expected practice through the power of 
an authority. The authority’s warrant for introducing the practice is that it is a practice 
of the larger community—it is a part of their culture—and, therefore, must be adopted 
by those who wish to legitimately participate. (Brown, 2014, p. 327, italics in 
original) 
 

We have two reservations about this pathway. First, if students do not develop an 

intellectual need that would motivate them to change their views about empirical 

validations, they may simply be showing obedience to the authority with the latter 

running the risk of becoming a habitual way of reasoning, that is, a new obstacle to 

learning. Second, in the early cycles of our university-based design experiment we 
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trialed a version of the instructional sequence to promote milestone 1a that relied on 

the power of an authority and obtained poor results: the instructor emphasized 

repeatedly to students that empirical validations do not meet the standard of proof 

within the broader mathematical culture but, although the students did not challenge 

the instructor and went along with his lead to seek non-empirical arguments, the 

students showed resistance to change their empirical conceptions. Despite our two 

reservations, however, we believe that this pathway as well as others merit further 

exploration, discussion, and debate. 

 Regarding milestone 2, Campbell and King (2020) and Yee et al. (2018) 

discussed an alternative pathway for how to engage learners in developing and 

socially agreeing on proof criteria. In both of these studies, learners (secondary 

students in Campbell & King, 2020; university students in Yee et al., 2018) had an 

opportunity to openly share and discuss their views of what should count as a proof in 

their class before the instructor played an active role selecting from, or helping the 

class to narrow down, the extended list of possible proof criteria proposed by the 

classroom participants. We believe this way of engaging learners in developing and 

socially agreeing on proof criteria could offer a viable alternative to our way of 

promoting milestone 2 so long as the communal criteria for proof ultimately accepted 

by the class satisfied some key considerations like those we discussed earlier in the 

paper (i.e., honesty to the discipline of mathematics, contextual appropriateness, and 

support of mathematical sense-making through justification/conviction and 

explanation).   

Our proposed learning trajectory and respective instructional sequence may 

also be used with elementary (not only secondary) students and with prospective 

secondary (not only elementary) mathematics teachers, though the instructional 

sequence would likely need to be tailored to each of these groups. Regarding 
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elementary students, the tasks that we used to generate an intellectual need for proof 

in the school study might need some modification, especially Tasks 2 and 3 in Fig. 2 

(for the actual tasks, see Stylianides & Stylianides, 2009b). The Squares Problem 

(Fig. 3) was used by Zack (1997) with elementary students, so it has good potential to 

be used without adaptation with students of a similar age. The phrasing of the proof 

criteria we used with secondary students (Fig. 5) might also need some modification 

so that they are understandable to younger students as per our “contextual 

appropriateness” consideration.    

 Regarding prospective secondary mathematics teachers, they might need less 

support than prospective elementary teachers to see a pedagogical need to learn about 

proof, not least because proof tends to have a more visible place in the secondary than 

in the elementary school curriculum. Indeed, teachers tend to see more the relevance 

of content that they will teach and, even more so, content that their students will be 

assessed on (e.g., Birenbaum, 2014). As we explained previously, however, the notion 

of “pedagogical need” in the learning trajectory should be considered both in relation 

to the conceptualization of proof to which prospective teachers will be introduced 

next in the instructional sequence and in relation to prospective teachers’ current 

conceptions of proof.  

 Finally, we draw attention to the dual role of teacher educators to introduce 

prospective teachers to the notion of proof and to prepare them as future teachers of 

mathematics who, in turn, will introduce their own students to proof. Our proposed 

learning trajectory and respective instructional sequence can be used in the service of 

this dual role. First, teacher educators can implement the instructional sequence (or an 

adapted version thereof) to help prospective teachers progress along the learning 

trajectory in a way similar to our university study. Afterwards, teacher educators can 

discuss with their prospective teachers how prospective teachers can help their future 
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students to progress along the same learning trajectory in a way similar to our school 

study. Towards this end, teacher educators can use as a “narrative case” a paper like 

the one by Stylianides (2009a), which was published in a practitioner journal and 

described the implementation of the instructional sequence with secondary students, 

in order to discuss with prospective teachers pedagogical issues pertaining to the 

instructional sequence and reflect on the teacher’s role. 
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