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Abstract

We review recent work on holographic aspects of electric-magnetic dualities in theories
that involve conformally coupled scalars and abelian gauge fields in asymptotically AdS4

spaces. Such models are relevant for the holographic description of M-theory. We also
briefly comment on some new results on the holographic properties of generalized electric-
magnetic duality in gravity.

1 Introduction and Summary

The standard AdS5/CFT4 paradigm may be viewed as the holographic image of the de-
coupling of massive degrees of freedom in four-dimensional YM theories. In YM theory
the decoupling takes place moving from the asymptotically free UV limit to the strongly
coupled IR regime. In string theory the decoupling takes place by running down to the
low-energy supergavity limit. The field and string theory decoupling limits are holograph-
ically identified, hence supergravity corresponds to strongly coupled field theories. The
presence of D-branes, singularities and black holes in string theory is naturally associated
to phenomena such as symmetry breaking, confinement and finite-temperature in field
theory.

Recent work on AdS4/CFT3 brought in light a possible new kind of holographic cor-
repondence. Bulk theories that exhibit a generalized form of electric-magnetic duality
correspond to boundary theories whose correlation functions have special transforma-
tion properties [1, 2]. The latter transformations are induced by certain “double-trace”
deformations [2]. This implies the existence of “duality-related fixed points” in three
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dimensions, which would be the holographic images of the electric-magnetic dual de-
scriptions of the bulk theories [3, 4]. Very recently, some intriguing transport properties
of three-dimensional theories have also been attributed to bulk electric-magnetic dual-
ity [5, 6, 7]. Such studies, combined with the observation that three-dimensional field
theories have a quite different quantum structure from their four- and two-dimensional
counterparts,1 imply that the bulk theory is rather exotic. As electric-magnetic duality
appears to be relevant for M-theory compactifications it is natural to conjecture that the
quantum structure of three-dimensional field theories provides crucial information on the
non-linear dynamics of M-theory2.

In this note we review recent work on various holographic aspects of generalized
electric-magnetic duality and briefly comment on a few new results concerning gravity. In
Section 2 we present models with conformally coupled scalars and in Section 3 the case of
a U(1) gauge field in asymptotically AdS4. These models can be embedded into M-theory,
so our results provide a hint for the role of generalized electric-magnetic duality in the
holographic description of the latter. The U(1) gauge field is the first step towards the
discussion of YM, gravity and higher-spin gauge fields in AdS4. We summarize and put
our findings into perspective in Section 4.

2 Conformally coupled scalars

2.1 A toy model

A conformally coupled scalar with quartic self-interaction in fixed Euclidean AdS4 simpli-
fies, after a suitable conformal rescaling of the field and metric, to the model of a massless
scalar Φ(r, ~x) with quartic self-interaction (λ/4!)Φ4 on the upper half of R4 with r ≥ 0
[10]. The boundary is the hyperplane r = 0. Φ behaves near the boundary as

Φ(r, ~x) = α(~x) + r β(~x) + · · · (2.1)

with α and β arbitrary functions. Requiring regularity of (2.1) for r → ∞ gives a non-local
and generally invertible relationship β = β[α]. It was pointed out in [10] that the bulk on-
shell action Wren[α] of the model evaluated as a functional of α gives (minus) the effective
action of a DBT (Dual Boundary Theory) that contains an operator O1 with dimension
∆ = 1. “Duality” refers here to the dimension of the operator (a duality between CFT’s)
not to the holographic dual. The vacuum structure of the DBT is determined by

〈O1(~x)〉α=α0
= −α0(~x) ,

δW [α]

δα(~x)

∣

∣

∣

α0

= 0 . (2.2)

For λ < 0 our toy model possesses a non-trivial classical instanton solution

Φ(r, ~x) =

√

48

−λ

b

b2 + r2 + ~x2
⇒ α0(~x) =

√

48

−λ

b

b2 + ~x2
, (2.3)

1For a review of three-dimensional theories see [8].
2A related idea appeared long ago in the context of E11 [9]. Here, a non-linear realization of M-theory

based on E11 is shown to require the formulation of eleven-dimensional supergravity in terms of mutually
dual fields.

2



with b an arbitrary parameter with dimensions of length. This implies that the DBT
has a non-trivial vacuum structure where the operator O1 has non-zero expectation value
−α0. A three-dimensional model that may reproduce the bulk results is a massless scalar
with self-iteraction (g/6!)ϕ6. For g < 0 this model has the instanton solution

ϕ0(~x) =

(

360

−g

)1/4(
c

c2 + ~x2

)1/2

. (2.4)

One can show that the parameters of the bulk and boundary models are related as

1

g
= −32

45

1

λ2
, c = κ b , ϕ2

0(κ~x) = −〈O1(~x)〉 ⇒ κ2 =
16π2

3λ
. (2.5)

It appears that the bulk and boundary theories in this model are both accessible by
standard field theoretic methods. This is connected to the fact that both α and β can
be interpreted as expectations values of boundary operators. In a Hamiltonian analysis
of the bulk scalar field theory α and β play the role of “coordinate” and “momenta”,
hence their mutual interchange resembles the standard canonical transformation p → q,
q → −p of Hamiltonian mechanics. This may be termed harmonic oscillator duality to
be contrasted with the usual electric-magnetic duality.

To strengthen the above observation we have radially quantized the bulk and boundary
theories [10]. The corresponding mode expansions of the free field configurations are

Φ̂(R, θ,Ω2) =
∑

jlm

(

a+jlm√
j + 1

Rj Y∗
jlm(Ω3) +

a−jlm√
j + 1

1

Rj+2
Yjlm(Ω3)

)

, (2.6)

ϕ̂(R,Ω2) =
∑

ℓm

1√
2ℓ+ 1

(

b†ℓmRℓ Y ∗
ℓm(Ω2) + bℓm

1

Rℓ+1
Yℓm(Ω2)

)

(2.7)

with Yjlm the hyperspherical harmonics of S3. The boundary is at θ = π/2. Our result
above implies that the bulk elementary operator is identified with a properly normal
ordered boundary composite operator as

Φ̂
(

R,
π

2
,Ω2

)

≡ −O1(~x) =: ϕ̂2(x) : . (2.8)

The bulk and boundary creation and annihilation operators are related as

ajlm =
∑

m1m2

cℓℓm1m2

lm bℓm1
bℓm2

, a†jlm
∑

m1m2

cℓℓm1m2

lm b†ℓm1
b†ℓm2

, j = 2ℓ (2.9)

with constant coefficients cℓℓm1m2

lm that were computed in [10]. Bulk one-particle states
correspond to boundary two-particle states. We have made an effort to extend the above
remarkable bulk/boundary quantum correspondence to fluctuations around the non-trivial
instanton solutions. We obtained a highly non-trivial classical correspondence between
the bulk and the square of the boundary fluctuations around the instantons3 but we have
not yet fully developed the quantum correspondence.

3This result was obtained with T. Koornwinder and appears in the appendix of [10].
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2.2 A model embedded in M-theory

In [11] it was pointed out that conformally coupled scalars also appear in M-theory com-
pactifications. Specifically, we considered the model with action

S =
1

2

∫

d4x
√
g

(−R + 2Λ

κ2
+ (∂µφ)

2 +
1

6
Rφ2 + λφ4

)

(2.10)

where κ2 = 8πG4, λ is a dimensionless coupling and the cosmological constant is Λ =
−3/l2. For the special value of the quartic coupling λ = κ2/6l2 > 0 the action (2.10) is
obtained by a consistent truncation of 11-dimensional supergravity.

The asymptotic behavior of the scalar φ is as in (2.1). Motivated by the existence of
the instanton solution (2.3) we can impose the “self-dual” boundary conditions β = −laα2

by adding the boundary term

Sbdy = − l3a

3

∫

d3xα3(~x) . (2.11)

We consider solutions with vanishing energy momentum tensor in which case the back-
ground is still AdS, since all extrema of the action (2.10) have constant Ricci scalar
R = −12/l2 [12]. It is quite remarkable that in this case we are able to calculate exactly

the effective potential (constant α) of the DBT as

Vλ,a(α) =
1

3λ

[

(

R

6
+ λα2

)3/2

− aλα3 −
(

R

6

)3/2
]

, (2.12)

as well as its effective action in the double-scaling limit λ− a2 = µ → 0

Γeff[α] =
1

3a

∫

d3x
√
g(0)

(

1

2
∂iϕ∂

iϕ+
1

16
R[g(0)]ϕ

2 +
1

8
µϕ6

)

+O
(

a−2
)

, (2.13)

where ϕ2 = α and g(0)ij is the boundary metric. Remarkably, (2.13) coincides with the
conformal three-dimensional models used in [10].

For λ > 0 the action (2.10) has the instanton solution

φ =
2

l
√

|λ|

(

Br

−sgn(λ)B2 + (r + A)2 + (~x− ~x0)2

)

, (2.14)

where A,B, xi
0, i = 1, 2, 3, are arbitrary constants. This is non-singular provided A >

B ≥ 0 and satisfies the “self-dual” boundary condition. The existence of this solution
is rather surprising and implies the instability (a la Coleman-de Luccia) of pure AdS4

towards the spontaneous dressing by a scalar field. In also implies the possible instability
of a stack of M2-branes. The decay rate of the vacuum is

P ∝ exp(−Γeff|inst) , Γeff|inst =
4π2l2

κ2

(

1
√

1− κ2/6l2a2
− 1

)

, (2.15)

with a =
√

|λ|A/B. Note that the deformation parameter a drives the theory from the

regime of marginal stability at a = κ/
√
6l to total instability at a → ∞.
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3 Abelian gauge fields

This is the first instance where we encounter standard electric-magnetic duality in the
bulk of asymptotically AdS4. We have the freedom to identify the leading or subleading
terms in the gauge field as the source or the operator of the boundary theory. This is the
“generalized electric-magnetic duality”. But for gauge fields we can also choose between
“electric” and “magnetic” boundary conditions. This choice corresponds to adding a
marginal, abelian AB-type Chern-Simons term on the boundary [1, 13].

We will first discuss regular bulk instanton solutions. These are special because they
provide exact solutions of the coupled gravity-matter field equations whilst allowing for
non-trivial dynamics of the gauge field at the boundary [4]. Instantons are regular self-
dual solutions F = ∗F of the Euclidean field equations. The regularity condition in
the interior relates the boundary value of the electric field to the boundary value of the
transverse part of the gauge field:

Ei(p) = − 1

g2
|p|Ai(p) . (3.1)

The on-shell effective action now gives the generating functional of the boundary theory:

W [A] = −1

2

∫

d3xAi(x)Ei(x) =
1

2g2

∫

d3p |p|Ai(p)Ai(−p) . (3.2)

The partition function is purely a functional of Ai, which is interpreted as a source in
the CFT. The above is consistent with a Dirichlet choice of boundary conditions where
δAi = 0 at the boundary. However, gauge fields in AdS4 admit a more general choice
of boundary conditions, for instance those corresponding to bulk instantons. To get a
variational problem that generates instanton boundary conditions we need to modify the
action by a boundary Chern-Simons term: SCS = θ

8π2

∫

d3x ǫijkAi∂jAk. The boundary
conditions are now modified to

✷
1/2 Ai +

θg2

4π2
ǫijk∂jAk = 0 . (3.3)

For θ = ±4π2/g2, this gives regular bulk instanton solutions. As noticed in [4], this is the
equation of motion for a topologically massive spin-1 particle in three dimensions [14, 15],
with mass m ∼ ✷

1/2. Any regular, self-dual solution satisfies (3.3) with the corresponding
value of the theta angle [4].

To discuss S-duality, we go back to generic solutions of the Dirichlet boundary problem.
Holographically, Ai is a source that couples to a conserved current of dimension 2. The
two-point function of this current is computed to give the familiar result, plus a parity-
breaking term that comes from the theta angle:

〈Ji(p)Jj(−p)〉 = 1

g2
|p|Πij +

iθ

4π2
ǫijkpk . (3.4)

Πij is the projector onto transverse vectors. For simplicity we set g = 1 and θ = 0, the
general case being discussed in [2, 4].
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The conserved current Ji is equal to the boundary value of the electric field. The
bulk equations have electric-magnetic invariance which interchanges the boundary values
of the electric and magnetic fields: Bi ↔ ±Ei. However, the boundary terms are not
invariant; the Dirichlet and Neumann boundary problems get interchanged [1].

Having seen the Dirichlet problem, let us now discuss the dual Neumann quantization
scheme. Now the electric field is held fixed at the boundary whereas the magnetic field
is fluctuating. Hence, the path integral formulation includes an integral over boundary
configurations of the gauge field Ai(x) up to gauge transformations. The holographic
interpretation of this is that the electric field corresponds to a dual source, and Ai to an
operator. There is a subtlety though. Ai itself cannot be the dual operator because it
has dimension 1 and is below the unitarity bound. However, we can construct from it
a dual current J̃ = ∗dA with dimension 2 [2, 4]. This current corresponds to the bulk
magnetic field. It is conserved and lies on the marginal line of the unitarity bound, hence
its correlators correspond to a unitary theory, the DBT. Further, since the electric field
is conserved, it can be written in terms of a 1-form J = ∗dÃ. This 1-form is the one that
is now fixed, and is identified with the dual background field [1].

In summary, bulk electric-magnetic duality interchanges A ↔ ±Ã on the boundary.
The Dirichlet problem corresponds to fixing the gauge field on the boundary, with the
electric field corresponding to a dimension-2 current. In the Neumann problem, the
magnetic field corresponds to the dual current J̃ = B whereas the dual gauge field is the
source. The dual generating functional is W̃ [Ã] = 1

2

∫

d3x ÃiBi. Both theories are related

by a Legendre transform with an AB-type Chern-Simons term −
∫

A ∧ dÃ [1, 4].
The embedding of this model in eleven-dimensional supergravity was discussed in [4, 5].

4 Gravity and M-theory holography

Gravity is known to exhibit similar electric-magnetic properties to the ones discussed here
[16]4. Whereas we will discuss the implications for duality in the CFT elsewhere [17], we
will give some new results here. Despite some profound differences with the lower spin
cases, there is evidence that duality in the CFT works in a similar way for gravity. Namely,
not only do we have the possibility to choose between leading and subleading terms in the
graviton expansion, but we also can choose between “electric” and “magnetic” boundary
conditions. The latter corresponds to adding a gravitational Chern-Simons term on the
boundary.

We observe a pattern in the M-theory compactifications. Firstly, the three-dimensional
boundary theories do not exhibit the decoupling of massive modes that we observe in four-
dimensional YM theories. Namely, the theories related by “double-trace” deformations
correspond to fixed-points which appear to have very similar operator content, in contrast
with YM theories where the weak and strong coupling limits have very different content.
Secondly, the Chern-Simons terms in the boundary should correspond to parity anomalies
of three-dimensional theories. One may conjecture that the structure of three-dimensional
theories is a hologram of the structure of the full M-theory. Namely, we expect that full

4See also [9] and references in [4].
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blown M-theory is duality invariant, however only after its full spectrum is taken into
account. This duality, which is a generalization of electric-magnetic duality, is broken at
the level of 11-dimensional supergavity, but we see a sign of it in the boundary conditions.

To end we will make some remarks on the generalization of the results in the previous
section to the gravitational field. We will consider instanton configurations where the
Weyl tensor is self-dual. It can be shown [17] that the stress-energy tensor of in that case
is given by the Cotton tensor,

〈Tij〉 =
ℓ2

8πGN
Cij , (4.1)

computed with respect to a representative of the conformal class of boundary metrics
g(0)ij = gij(r = 0, x) obtained from the bulk (for notation, see [18]). Recall that the
Cotton tensor is symmetric, traceless, and conserved. According to [18] the above is a
boundary condition for the third derivative of the rescaled metric gij(r, x), g(3). This
result is generic and does not depend on a particular choice of asymptotics g(0) for the
bulk metric. Expanding around an AdS4 background, gij(r, x) = δij + hij(r, x), we look
for regular instantons. Using the results in [19], one can show that regularity imposes

h(3)ij =
1

3
✷

3/2h(0)ij , (4.2)

and we have projected onto the transverse, traceless part of the graviton. Combining both
conditions above, we get that regular bulk instantons satisfy

✷h(0)ij = α ǫikl✷
1/2∂kh(0)jl + (i ↔ j) . (4.3)

This is a non-trivial differential equation for the boundary metric that generalizes the
self-dual boundary conditions of the scalar and the U(1) case (3.3). We stress that any
self-dual, regular bulk solution expanded about AdS4 satisfies the above condition (4.3).
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