Sequence Selective Formation of Synthetic H-Bonded Duplexes

Alexander E. Stross, Giulia Iadevaia, Diego Núñez-Villanueva, Christopher A. Hunter*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

Supporting information

Sy	ynthesis	S3
Sy	ynthesis of 6a	S4
Sy	ynthesis of 8	S6
Sy	ynthesis of 8a	S8
Sy	ynthesis of 10	S10
Sy	ynthesis of 11 (DDA)	S12
Sy	ynthesis of 12	S14
Sy	ynthesis of 13 (DAD)	S16
Sy	ynthesis of 14	S18
Sy	ynthesis of 15 (DAA)	S20
Sy	ynthesis of 16	S22
Sy	ynthesis of 17 (ADA)	S24
Sy	ynthesis of 18	S26
Sy	ynthesis of 19 (AAD)	S28
Sy	ynthesis of 20	S30
Sy	ynthesis of 21 (ADD)	S32
Bi	inding studies	S34
1	Data for titrations using AAD as host	S36
2	Data for titrations using DAD as host	S40
3	Data for titrations using ADD as host	S43
4	Data for titrations using AAA as host	S46
5	Data for titrations using DDA as host	S47
6	Data for titrations using ADA as host	S48
7	Data for titrations using DAA as host	S52
8	A•DD control titration experiment	S56
9	Dilution Experiments	S57
	Dilution of ADA	S57
	Dilution of AAA	S58
	Dilutionn of AAD	S59
	Dilutionn of ADD	S60
	Dilution of DDD	S61
М	lolecular mechanics calculations.	S62

Synthesis

All the reagents and materials used in the synthesis of the compounds described below were bought from commercial sources, without prior purification. Thin layer chromatography was carried out using with silica gel 60F (Merck) on aluminium. Flash chromatography was carried out on silica gel 40 – 60 μ m (BDH) or on an automated system (Combiflash Companion) using pre-packed cartridges of silica (50 μ PuriFlash® Column). All NMR spectroscopy was carried out on either a Bruker AVI250, AVI400, DPX400, AVIII400 or DRX500 spectrometer using the residual solvent as the internal standard. All chemical shifts (δ) are quoted in ppm and coupling constants given in Hz. Splitting patterns are given as follows: s (singlet), d (doublet), t (triplet), m (multiplet). FT-IR spectra were measured on a PerkinElmer Spectrum 100 spectrometer. ES+ was carried out on a Micromass Platform spectrometer. Reactions were carried out at ambient temperature unless otherwise stated.

Scheme 1 in the main text shows sequential acetal deprotection and reductive amination steps. The intermediate aldehydes were also isolated and characterized, and these compounds are assigned compound numbers based on the parent acetal in the experimental details of the synthesis below, i.e. aldehyde 6a is the compound obtained by deprotection of acetal 6.

Synthesis of compounds 1, 3, 4, 7, 22 and 23 has been previously reported in: Stross, A. E.; Iadevaia, G.; Hunter, C. A. *Chem. Sci.* 2016, 7, 94.

Synthesis of compound **2**, **5**, **9** and **24** has been previously reported in: Stross, A. E.; Iadevaia, G.; Hunter, C. A. *Chem. Sci.* **2016**, *7*, 5686

Synthesis of compound **6** has been previously reported in Núñez-Villanueva D.; Iadevaia G.; Stross A.E.; Jinks M.A.; Swain J.A.; Hunter C.A., *J. Am. Chem. Soc*, **2017**, *139*, 6654.

Synthesis of 6a

6 (2.07 g, 1.79 mmol, 1 equiv.) was dissolved in CHCl₃ (10 mL) and concentrated aqueous acid (10 mL) was added with stirring. After 2 days the mixture was neutralised using aqueous NaHCO₃ and the organic portion separated from the aqueous part. The aqueous layer was washed with CHCl₃ (3×10 mL) before all organic fractions were washed with brine (1×10 mL) dried (MgSO₄) and the solvent removed using a rotary evaporator to yield a bright yellow oil (2.10 g, 95%) requiring no further purification.

¹**H NMR (500 MHz, CDCl₃)**: $\delta_{\rm H} = 10.44$ (s, 1H), 8.10 (d, 2H, ${}^{3}J = 7.0$), 8.04 (dd, 1H, ${}^{3}J = 9.0, {}^{4}J = 3.0$), 7.07 – 7.02 (m, 4H), 6.91 (d, 1H, ${}^{4}J = 3.0$), 6.84 (d, 2H ${}^{3}J = 8.5$), 6.79 (d, 1H, ${}^{3}J = 9.0$), 6.74 (d, 2H, ${}^{3}J = 9.0$), 6.68 (dd, 1H, ${}^{3}J = 9.0, {}^{4}J = 3.0$), 6.56 (dd, 1H, ${}^{3}J = 9.0, {}^{4}J = 3.0$), 6.26 (d, 1H, ${}^{4}J = 3.0$), 4.49 – 4.42 (m, 6H), 4.14 (s, 2H), 3.94 – 3.87 (m, 4H), 3.78 (d, 2H, ${}^{3}J = 5.5$), 1.82 – 1.72 (m, 2H), 1.71 – 1.63 (m, 1H), 1.60 – 1.19 (m, 27H), 1.10 (d, 18H, ${}^{3}J = 7.5$), 1.01 – 0.83 (m, 18H);

¹³C NMR (101 MHz, CDCl₃): δ_C = 189.7, 161.5, 155.0, 154.6, 149.1, 142.5, 142.1, 141.3, 139.1, 138.5, 130.9, 128.4, 127.9, 125.5, 125.0, 124.2, 124.1, 123.0, 120.8, 120.0, 114.1, 113.0, 112.5, 112.0, 110.3, 110.2, 71.5, 71.4, 70.7, 55.4, 52.8, 50.4,

50.1, 39.6, 39.5, 39.2, 30.7, 30.6, 30.5, 29.1, 29.1, 29.0, 24.0, 24.0, 24.0, 23.0, 23.0, 17.9, 14.0, 12.6, 11.2, 11.2, 11.2;

HRMS (ES+): calculated for C₆₇H₉₉N₄O₈Si 1115.7232, found 1115.7229;

FT-IR (thin film): v_{max}/cm⁻¹ 2957, 2927, 2865, 1682, 1609, 1592, 1505, 1464, 1338, 1262, 1226, 1166.

Synthesis of 8

5 (0.51 g, 0.82 mmol, 1 equiv.) and **1** (0.69 g, 1.2 mmol, 1.5 equiv.) were dissolved in CHCl₃ (3 mL) and NaBH(OAc)₃ (0.49 g, 2.3 mmol, 2.8 equiv.) was added with stirring. After 4 days the reaction was quenched with saturated aqueous NaHCO₃ solution, and extracted into CHCl₃ (4×10 mL). All the organic fractions were washed with water (1×10 mL), brine (1×10 mL) and dried (MgSO₄) before the solvent removed with a rotary evaporator. The crude product was purified using flash chromatography on silica eluting with a gradient from 0% to 10% MeOH in a 1:1 mixture of EtOAc and hexane to yield a yellow oil (0.57 g, 59%).

¹**H NMR (500 MHz, CDCl₃)**: $\delta_{\rm H} = 8.12 - 8.03$ (m, 3H), 7.91 (d, 1H, ${}^{3}J = 3.0$), 7.07 – 6.98 (m, 4H), 6.84 (d, 1H, ${}^{3}J = 9.0$), 6.78 (d, 2H, ${}^{3}J = 8.5$), 6.75 (d, 1H, ${}^{4}J = 3.0$), 6.71 (d, 1H, ${}^{3}J = 9.0$), 6.59 (d, 1H, ${}^{3}J = 9.0$), 6.43 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.39 (d, 1H, ${}^{4}J = 3.0$), 6.34 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), (s, 1H), 4.47 (s, 2H), 4.45 (s, 2H), 4.44 (s, 2H), 4.23 (s, 2H), 3.96 (d, 2H, ${}^{3}J = 5.5$), 3.93 (s, 4H), 3.81 (d, 2H, ${}^{3}J = 5.5$), 3.77 (d, 2H, ${}^{3}J = 5.5$), 1.83 – 1.60 (m, 3H), 1.59 – 1.17 (m, 27H), 1.09 (d, 18H, ${}^{3}J = 7.5$), 0.99 – 0.84 (m, 18H);

¹³C NMR (101 MHz, CDCl₃): δ_C = 161.5, 154.8, 150.0, 149.1, 143.0, 141.2, 139.1, 138.6, 131.2, 127.7, 127.7, 127.4, 126.4, 124.6, 124.3, 122.9, 119.8, 113.5, 113.5,

113.3, 112.2, 111.8, 111.0, 110.7, 99.5, 71.7, 71.5, 70.7, 65.0, 54.6, 54.3, 50.8, 49.4, 39.6, 39.5, 39.2, 30.6, 30.5, 30.5, 29.1, 29.1, 29.0, 24.0, 23.9, 23.9, 23.1, 23.0, 23.0, 17.9, 14.1, 14.0, 12.6, 11.2, 11.1, 11.1;

HRMS (ES+): calculated for C₆₉H₁₀₃N₄O₉Si 1159.7494, found 1159.7478;

FT-IR (thin film): v_{max}/cm⁻¹ 3055, 2987, 2686, 2306, 1422, 1266, 1156.

Synthesis of 8a

8 (0.57 g, 0.49 mmol, 1 equiv.) was dissolved in CHCl₃ (5 mL) and concentrated aqueous acid (5 mL) was added with stirring. After 2 days the mixture was neutralised using aqueous NaHCO₃ and the organic portion separated from the aqueous part. The aqueous layer was washed with CHCl₃ (3×10 mL) before all organic fractions were washed with brine (1×10 mL) dried (MgSO₄) and the solvent removed using a rotary evaporator to yield a bright yellow oil (0.50 g, 91%) requiring no further purification.

¹**H** NMR (500 MHz, CDCl₃): $\delta_{\rm H} = 10.42$, (s, 1H), 8.08 (d, 2H, ${}^{3}J = 7.0$), 8.03 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 7.85 (d, 1H, ${}^{4}J = 3.0$), 7.08 (d, 2H, ${}^{3}J = 7.0$), 6.99 (d, 2H, ${}^{3}J = 8.5$), 6.96 (d, 1H, ${}^{4}J = 3.0$), 6.82 – 6.76 (m, 3H), 6.73 (d, 1H, ${}^{3}J = 9.0$), 6.64 (d, 1H, ${}^{3}J = 9.0$), 6.56 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.45 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.30 (d, 1H, ${}^{4}J = 3.0$), 4.49 (s, 2H), 4.45 (s, 2H), 4.43 (s, 2H), 4.29 (s, 2H), 3.92 (d, 2H, ${}^{3}J = 5.5$), 3.88 (d, 2H, ${}^{3}J = 5.5$), 3.79 (d, 2H, ${}^{3}J = 5.5$), 1.81 – 1.63 (m, 3H), 1.59 – 1.17 (m, 27H), 1.08 (d, 18H, ${}^{3}J = 7.5$), 1.02 – 0.83 (m, 18H);

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ = 190.2, 161.7, 155.2, 154.1, 150.2, 142.9, 141.4, 141.4, 139.3, 138.6, 130.7, 127.9, 127.5, 127.3, 125.2, 124.7, 124.4, 123.0, 120.3, 120.2, 113.9, 113.3, 112.5, 112.1, 110.7, 109.7, 71.8, 71.5, 70.9, 54.7, 54.4, 51.0,

49.6, 39.8, 39.7, 39.4, 30.9, 30.8, 30.7, 29.3, 29.3, 29.2, 24.2, 24.2, 24.2, 23.2, 23.2, 23.2, 23.2, 18.1, 14.3, 14.3, 14.3, 14.2, 12.8, 11.4, 11.4, 11.4;

HRMS (ES+): calculated for C₆₇H₉₈N₄O₈NaSi 1137.7052, found 1137.7024;

FT-IR (thin film): v_{max}/cm⁻¹ 3054, 2927, 2306, 1677,1507, 1422, 1266.

Synthesis of 10

7 (0.70 g, 0.55 mmol, 1 equiv.) and **2** (0.33 g, 0.82 mmol, 1.5 equiv.) were dissolved in CHCl₃ (4 mL) and NaBH(OAc)₃ (0.33 g, 1.5 mmol, 2.8 equiv.) was added with stirring. After 4 days the reaction was quenched with saturated aqueous NaHCO₃ solution, and extracted into CHCl₃ (4 × 10 mL). All the organic fractions were washed with water (1 × 10 mL), brine (1 × 10 mL) and dried (MgSO₄) before the solvent removed with a rotary evaporator. The crude product was purified using flash chromatography on silica eluting with a gradient from 5% to 100% EtOAc in hexane and then 10% MeOH in CHCl₃ to yield a pale yellow oil (0.32 g, 35%).

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H} = 8.04$ (d, 2H, ³J = 7.0), 8.00 (dd, 1H, ³J = 9.0, ⁴J = 3.0), 7.96 (d, 1H, ⁴J = 3.0), 7.04 – 6.99 (m, 4H), 6.95 (d, 2H, ³J = 8.5), 6.85 (d, 1H, ⁴J = 3.0), 6.82 (d, 2H, ³J = 8.5), 6.79 – 6.76 (m, 3H), 6.75 – 6.69 (m, 3H), 6.61 (d, 1H, ³J = 9.0), 6.52 – 6.44 (m, 3H), 6.34 (dd, 1H, ³J = 9.0, ⁴J = 3.0), 6.25 (d, 1H, ⁴J = 3.0), 6.11 (s, 1H), 4.49 – 4.43 (m, 6H), 4.06 (s, 2H), 4.02 – 3.93 (m, 4H), 3.90 (s, 2H), 3.85 (d, 2H, ³J = 5.5), 3.82 – 3.75 (m, 6H), 1.78 – 1.62 (m, 4H), 1.56 – 1.19 (m, 38H), 1.14 – 1.07 (m, 36H), 0.97 – 0.85 (m, 24H); ¹³C NMR (101 MHz, CDCl₃): δ_C = 161.4, 154.9, 154.6, 150.0, 149.1, 148.4, 142.8, 142.7, 142.4, 141.3, 139.6, 138.8, 131.9, 131.1, 128.7, 128.2, 127.7, 127.5, 126.9, 125.8, 124.3, 124.1, 123.1, 119.9, 115.0, 113.6, 113.2, 112.8, 112.4, 112.3, 112.2, 111.4, 111.4, 110.3, 99.4, 71.8, 71.4, 70.8, 70.8, 65.1, 55.4, 54.5, 52.6, 50.8, 50.5, 50.2, 39.6, 39.6, 39.2, 30.7, 30.6, 30.5, 29.1, 29.1, 24.0, 23.9, 23.9, 23.1, 23.0, 23.0, 17.9, 17.9, 14.1, 12.7, 11.2, 11.1;

HRMS (ES+): calculated for C₁₀₀H₁₅₂N₅O₁₁Si₂ 1655.1027, found 1655.1080;

FT-IR (thin film): v_{max}/cm⁻¹ 2928, 2865, 1608, 1592, 1505, 1463, 1339, 1261, 1225.

Synthesis of 11 (DDA)

10 (0.097 g, 0.059 mmol, 1 equiv.) was dissolved in THF (3 mL) at 0 °C and TBAF (110 μ L, 0.11 mmol, 1.8 equiv.) was added with stirring. After 1 hour water (5 mL) was added and the aqueous mixture washed with diethyl ether (4 × 10 mL). All organic fractions were combined and washed with brine (1 × 10 mL) dried (MgSO₄) and the solvent removed with a rotary evaporator. The crude mixture was then purified via flash chromatography on silica eluting with a gradient from 0% to 5% of MeOH in CHCl₃ to yield a viscous pale yellow oil (0.064 g, 81%).

¹**H NMR (400 MHz, CDCl₃)**: $\delta_{\rm H}$ = 8.16 (dd, 1H, ³*J* = 9.0, ⁴*J* = 3.0), 8.11 – 8.06 (m, 3H), 6.99 (d, 1H, ³*J* = 7.0), 6.94 (d, 1H, ³*J* = 9.0), 6.88 (d, 2H, ³*J* = 8.5), 6.83 – 6.72 (m, 5H), 6.70 (d, 1H, ³*J* = 9.0), 6.71 – 6.64 (m, 3H), 6.62 (dd, 1H, ³*J* = 9.0, ⁴*J* = 3.0), 6.54 – 6.48 (m, 4H), 6.39 (dd, 1H, ³*J* = 9.0, ⁴*J* = 3.0), 6.24 (d, 1H, ⁴*J* = 3.0), 6.14 (s, 1H), 4.66 (s, 2H), 4.50 – 4.46 (m, 4H), 4.41 (s, 2H), 4.24 – 4.03 (m, 6H), 4.02 (d, 2H, ³*J* = 5.5), 3.87 – 3.81 (m, 4H), 3.77 (d, 2H, ³*J* = 5.5), 3.74 (s, 2H), 1.87 – 1.60 (m, 4H), 1.58 – 1.24 (m, 32H), 1.01 – 0.85 (m, 18H);

¹³C NMR (101 MHz, CDCl₃): δ_C = 162.0, 156.0, 155.3, 150.5, 149.1, 148.2, 143.6, 143.6, 142.4, 142.4, 141.7, 138.8, 130.7, 129.6, 129.3, 127.8, 127.7, 127.5, 125.8, 125.0, 124.5, 123.3, 116.0, 115.6, 115.4, 113.7, 113.3, 112.7, 112.7, 112.5, 112.1, 111.8, 110.7, 110.5, 100.1, 71.7, 71.6, 70.8, 70.7, 65.3, 55.6, 55.0, 54.0, 51.7, 51.5, 51.1, 39.9, 39.8, 39.7, 39.4, 31.0, 30.9, 30.8, 30.7, 29.4, 29.3, 29.3, 24.3, 24.2, 24.2, 24.1, 23.3, 23.2, 23.2, 14.3, 14.3, 11.5, 11.4, 11.4, 11.3;

HRMS (ES+): calculated for C₈₂H₁₁₂N₅O₁₁ 1342.8358, found 1342.8372;

FT-IR (thin film): v_{max}/cm⁻¹ 3052, 3007, 2961, 2930, 2873, 1505, 1468, 1382, 1340, 1264, 1225.

Synthesis of 12

6a (0.78 g, 0.70 mmol, 1 equiv.) and **1** (0.58 g, 1.1 mmol, 1.5 equiv.) were dissolved in CHCl₃ (5 mL) and NaBH(OAc)₃ (0.41 g, 2.0 mmol, 2.8 equiv.) was added with stirring. After 3 days the reaction was quenched with saturated aqueous NaHCO₃ solution, and extracted into CHCl₃ (4×10 mL). All the organic fractions were washed with water (1×10 mL), brine (1×10 mL) and dried (MgSO₄) before the solvent removed with a rotary evaporator. The crude product was purified using flash chromatography on silica eluting with a gradient from 0% to 50% EtOAc in hexane to yield a pale yellow oil (0.42 g, 36%).

¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H} = 8.07$ (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 8.01 - 7.97 (m, 3H), 7.03 - 6.98 (m, 4H), 6.86 (d, 2H, ${}^{3}J = 6.5$), 6.84 - 6.76 (m, 6H), 6.72 - 6.62 (m, 3H), 6.52 - 6.43 (m, 3H), 6.40 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.36 (d, 1H, ${}^{4}J = 3.0$), 6.14 (s, 1H), 4.46 (s, 2H), 4.44 (s, 2H), 4.43 (s, 2H), 4.40 (s, 2H), 4.18 (s, 2H), 3.97 (s, 2H), 3.93 - 3.89 (m, 6H), 3.83 - 3.77 (m, 4H), 3.75 (d, 2H, ${}^{3}J = 5.5$), 1.78 - 1.58 (m, 4H), 1.56 - 1.18 (m, 38H), 1.13 - 1.04 (m, 36H), 0.96 - 0.81 (m, 24H);

¹³C NMR (101 MHz, CDCl₃): δ_C = 161.7, 155.1, 154.9, 149.6, 149.4, 143.2, 142.8, 142.5, 141.5, 139.6, 139.0, 131.4, 131.1, 128.9, 128.3, 128.0, 127.5, 126.9, 126.9, 124.4, 123.4, 120.1, 120.0, 114.2, 113.9, 113.7, 113.4, 112.5, 112.5, 112.4, 112.2, 111.9, 110.5, 99.8, 72.0, 71.6, 71.1, 70.9, 65.2, 55.4, 54.6, 53.4, 51.3, 50.4, 49.8, 39.8, 39.7, 39.3, 30.9, 30.8, 30.7, 30.7, 29.3, 29.3, 29.2, 24.2, 24.2, 24.1, 24.1, 23.3, 23.2, 23.2, 18.1, 18.1, 14.3, 14.3, 14.3, 12.8, 11.4, 11.3, 11.3;

HRMS (ES+): calculated for C₁₀₀H₁₅₂N₅O₁₁Si₂ 1655.1027, found 1655.0964;

FT-IR (thin film): v_{max}/cm⁻¹ 2927, 2866, 1609, 1592, 1506, 1464, 1339, 1261, 1225.

Synthesis of 13 (DAD)

12 (0.10 g, 0.062 mmol, 1 equiv.) was dissolved in THF (3 mL) at 0 °C and TBAF (110 μ L, 0.11 mmol, 1.8 equiv.) was added with stirring. After 1 hour water (5 mL) was added and the aqueous mixture washed with diethyl ether (4 × 10 mL). All organic fractions were combined and washed with brine (1 × 10 mL) dried (MgSO₄) and the solvent removed with a rotary evaporator. The crude mixture was then purified via flash chromatography on silica eluting with a gradient from 0% to 5% of MeOH in DCM to yield the benzaldehyde derivative of expected product which is a viscous yellow oil (0.071 g, 85%).

¹**H** NMR (500 MHz, CDCl₃): $\delta_{\rm H}$ = 10.44 (s, 1H), 8.12 (dd, 1H, ${}^{3}J$ = 9.0, ${}^{4}J$ = 3.0), 8.01 (d, 1H, ${}^{4}J$ = 3.0), 7.96 (d, 2H, *J* = 7.0), 7.25 (d, 1H, ${}^{4}J$ = 3.0), 6.92 – 6.88 (m, 3H), 6.87 – 6.83 (m, 4H), 6.81 (d, 1H, ${}^{4}J$ = 3.0), 6.79 (d, 1H, ${}^{3}J$ = 9.0), 6.74 – 6.70 (m, 3H), 6.67 – 6.63 (m, 3H), 6.52 (dd, 1H, ${}^{3}J$ = 9.0, ${}^{4}J$ = 3.0), 6.43 (d, 1H, ${}^{4}J$ = 3.0), 6.39 (dd, 1H, ${}^{3}J$ = 9.0, ${}^{4}J$ = 3.0), 6.33 (d, 1H, ${}^{4}J$ = 3.0), 4.56 (s, 2H), 4.42 (s, 2H), 4.38 (s, 2H), 4.32 (s, 2H), 4.19 (s, 2H), 3.97 (d, 2H, ${}^{3}J$ = 5.5), 3.90 (s, 2H), 3.86 (d, 2H, ${}^{3}J$ = 5.5), 3.83 (d, 2H, ³*J* = 5.5), 3.71 (d, 2H, ³*J* = 5.5), 1.80 – 1.67 (m, 4H), 1.53 – 1.19 (m, 32H), 0.96 – 0.81 (m, 24H);

¹³C NMR (126 MHz, CDCl₃): δ_C = 190.5, 161.8, 155.4, 154.6, 149.6, 149.0, 143.8, 143.1, 142.6, 142.2, 141.4, 138.7, 130.0, 129.7, 128.7, 128.2, 127.6, 127.2, 126.2, 124.9, 124.4, 124.2, 123.1, 122.4, 115.8, 115.6, 113.8, 113.7, 113.0, 112.4, 112.3, 112.1, 111.5, 110.4, 71.4, 71.3, 70.8, 70.6, 55.5, 55.2, 53.3, 51.1, 51.0, 50.4, 39.6, 39.5, 39.2, 30.7, 30.6, 30.6, 30.5, 29.7, 29.1, 29.1, 29.0, 24.0, 24.0, 23.9, 23.1, 23.0, 23.0, 14.1, 14.0, 11.2, 11.2, 11.1;

HRMS (ES+): calculated for C₈₂H₁₁₂N₅O₁₁ 1342.8358, found 1342.8336;

FT-IR (thin film): v_{max}/cm⁻¹ 2959, 2928, 2871, 2856, 1680, 1666, 1613, 1592, 1505, 1465, 1340, 1263, 1225, 1165.

Synthesis of 14

6a (0.77 g, 0.69 mmol, 1 equiv.) and **2** (0.41 g, 1.0 mmol, 1.5 equiv.) were dissolved in CHCl₃ (5 mL) and NaBH(OAc)₃ (0.41 g, 1.9 mmol, 2.8 equiv.) was added with stirring. After 4 days the reaction was quenched with saturated aqueous NaHCO₃ solution, and extracted into CHCl₃ (4×10 mL). All the organic fractions were washed with water (1×10 mL), brine (1×10 mL) and dried (MgSO₄) before the solvent removed with a rotary evaporator. The crude product was purified using flash chromatography on silica eluting with a gradient from 0% to 10% EtOH in diethyl ether and then 2% to 10% EtOH in CHCl₃ to yield a pale yellow oil (0.31 g, 28%).

¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H} = 8.09 - 8.04$ (m, 3H), 8.02 (d, 2H, ${}^{3}J = 7.0$), 7.95 (d, 1H, ${}^{4}J = 3.0$), 7.05 (d, 2H, ${}^{3}J = 7.0$), 6.98 (d, 2H, ${}^{3}J = 8.5$), 6.91 (d, 2H, ${}^{3}J = 7.0$), 6.86 (d, 1H, ${}^{3}J = 9.0$), 6.80 (d, 1H, ${}^{4}J = 3.0$), 6.77 (d, 2H, ${}^{3}J = 8.5$), 6.73 - 6.66 (m, 3H), 6.51 - 6.39 (m, 4H), 6.26 (d, 1H, ${}^{4}J = 3.0$), 6.08 (s, 1H), 4.46 (s, 2H), 4.45 (s, 2H), 4.43 (s, 2H), 4.41 (s, 2H), 4.09 (s, 2H), 4.01 - 3.92 (m, 8H), 3.82 - 3.77 (m, 4H), 3.75 (d, 2H, ${}^{3}J = 5.5$), 1.81 - 1.60 (m, 4H), 1.56 - 1.17 (m, 35H), 1.08 (d, 18H, ${}^{3}J = 7.0$), 0.97 - 0.80 (m, 24H);

¹³C NMR (101 MHz, CDCl₃): δ_C = 161.6, 155.0, 150.2, 149.4, 149.2, 142.6, 142.1, 142.1, 141.3, 139.3, 139.0, 138.8, 130.8, 128.6, 128.1, 126.8, 126.5, 126.3, 124.3, 124.2, 123.1, 119.9, 114.8, 113.6, 113.6, 113.4, 112.6, 112.4, 112.3, 112.0, 110.3, 99.3, 71.8, 71.5, 70.9, 70.8, 65.1, 55.2, 53.4, 53.1, 51.2, 50.3, 50.1, 39.5, 39.2, 30.6, 30.5, 29.1, 29.1, 29.0, 24.0, 24.0, 23.9, 23.0, 23.0, 23.0, 17.9, 14.1, 14.0, 12.6, 11.2, 11.1;

HRMS (ES+): calculated for C₉₀H₁₃₁N₆O₁₁Si 1499.9645, found 1499.9701;

FT-IR (thin film): v_{max}/cm⁻¹ 2958, 2927, 2868, 1592, 1506, 1339, 1263.

Synthesis of 15 (DAA)

14 (0.078 g, 0.052 mmol, 1 equiv.) was dissolved in THF (3 mL) at 0 °C and TBAF (47 μ L, 0.047 mmol, 0.9 equiv.) was added with stirring. After 1 hour water (5 mL) was added and the aqueous mixture washed with diethyl ether (4 × 10 mL). All organic fractions were combined and washed with brine (1 × 10 mL) dried (MgSO₄) and the solvent removed with a rotary evaporator. The crude mixture was then purified via flash chromatography on silica eluting with a gradient from 0% to 10% of MeOH in DCM to yield the benzaldehyde derivative of expected product which is a viscous yellow oil (0.057 g, 82%).

¹**H NMR (500 MHz, CDCl₃)**: $\delta_{\rm H} = 10.46$ (s, 1H), 8.13 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 8.08 (d, 2H, ${}^{3}J = 6.5$), 7.99 (d, 1H, ${}^{4}J = 3.0$), 7.90 (d, 2H, ${}^{3}J = 6.5$ Hz), 7.11 (d, 1H, ${}^{4}J = 3.0$), 7.01 (d, 2H, ${}^{3}J = 6.5$), 6.93 – 6.87 (m, 4H), 6.84 – 6.78 (m, 2H), 6.76 – 6.64 (m, 5H), 6.59 (dd, 1H ${}^{4}J = 9.0$, ${}^{4}J = 3.0$), 6.47 (d, 1H, ${}^{4}J = 3.0$), 6.42 – 6.38 (m, 1H), 6.24 (d, 1H, ${}^{4}J = 3.0$), 4.56 (s, 2H), 4.43 (s, 2H), 4.40 (s, 2H), 4.34 (s, 2H), 4.20 (s, 2H), 3.98 (d, 2H, ${}^{3}J = 5.5$), 3.93 – 3.88 (m, 4H), 3.80 (d, 2H, J = 5.5), 3.71 (d, 2H, ${}^{3}J = 5.5$), 1.83 – 1.64 (m, 4H), 1.52 – 1.17 (m, 32H), 0.98 – 0.80 (m, 24H); ¹³C NMR (101 MHz, CDCl₃): δ_C = 190.0, 161.8, 155.9, 155.1, 149.5, 149.0, 142.6, 142.3, 141.4, 140.3, 139.9, 138.9, 138.8, 129.4, 128.6, 127.6, 126.2, 125.9, 125.0, 124.5, 123.9, 123.0, 121.7, 115.8, 114.1, 113.9, 113.7, 112.6, 112.3, 111.7, 111.5, 110.4, 71.4, 71.4, 70.8, 70.6, 55.3, 53.7, 52.7, 51.5, 51.0, 50.9, 39.5, 39.2, 30.6, 30.6, 30.5, 29.7, 29.1, 29.1, 29.0, 24.0, 23.0, 23.0, 14.1, 11.2, 11.1;

HRMS (ES+): calculated for C₈₁H₁₁₁N₆O₁₁ 1343.8311, found 1343.8279;

FT-IR (thin film): v_{max}/cm⁻¹ 2957, 2925, 2855, 1682, 1612, 1503, 1339, 1226, 1167, 1019.

Synthesis of 16

8a (0.51 g, 0.46 mmol, 1 equiv.) and **2** (0.36 g, 0.91 mmol, 2 equiv.) were dissolved in CHCl₃ (3 mL) and NaBH(OAc)₃ (0.27 g, 1.3 mmol, 2.8 equiv.) was added with stirring. After 3 days the reaction was quenched with saturated aqueous NaHCO₃ solution, and extracted into CHCl₃ (4×10 mL). All the organic fractions were washed with water (1×10 mL), brine (1×10 mL) and dried (MgSO₄) before the solvent removed with a rotary evaporator. The crude product was purified using flash chromatography on silica eluting with a gradient from 0% to 10% EtOH in EtOAC to yield a pale yellow oil (0.38 g, 56%).

¹**H** NMR (400 MHz, CDCl₃): $\delta_{\rm H} = 8.03$ (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 8.00 (d, 2H, ${}^{3}J = 7.0$), 7.92 (d, 2H, ${}^{3}J = 7.0$), 7.89 (d, 1H, ${}^{4}J = 3.0$), 6.99 (d, 2H, ${}^{3}J = 7.0$), 6.92 (d, 2H, ${}^{3}J = 8.5$), 6.88 (d, 2H, ${}^{3}J = 7.0$), 6.84 – 6.77 (m, 4H), 6.68 (d, 1H, ${}^{3}J = 9.0$), 6.67 (d, 1H, ${}^{3}J = 9.0$), 6.58 (d, 1H, ${}^{3}J = 9.0$), 6.44 – 6.37 (m, 2H), 6.32 (d, 1H, ${}^{4}J = 3.0$), 6.26 – 6.21 (m, 2H), 6.02 (s, 1H), 4.47 – 4.40 (m, 6H), 4.33 (s, 2H), 4.04 (s, 2H), 3.96 – 3.85 (m, 8H), 3.78 (d, 2H, ${}^{3}J = 5.5$), 3.75 – 3.71 (m, 4H), 1.75 – 1.59 (m, 4H), 1.51 – 1.16 (m, 35H), 1.06 (d, 18H, ${}^{3}J = 7.5$), 0.94 – 0.78 (m, 24H);

¹³C NMR (101 MHz, CDCl₃): δ_C = 161.7, 154.9, 150.1, 150.0, 148.6, 142.6, 142.3, 141.4, 141.3, 139.8, 139.1, 139.0, 138.6, 131.6, 128.0, 127.9, 127.8, 127.0, 126.1, 124.8, 124.5, 124.4, 123.2, 120.2, 114.9, 113.8, 113.5, 112.6, 112.5, 112.3, 112.3, 112.2, 111.2, 110.8, 99.5, 72.0, 71.7, 70.9, 65.2, 54.8, 54.5, 53.2, 51.3, 50.8, 50.6, 39.8, 39.6, 39.3, 30.8, 30.8, 30.6, 29.3, 29.2, 29.2, 24.2, 24.1, 24.0, 23.2, 23.2, 23.2, 23.1, 18.1, 14.3, 14.2, 14.2, 12.8, 11.4, 11.3, 11.3, 11.2;

HRMS (ES+): calculated for C₉₀H₁₃₁N₆O₁₁Si 1499.9645, found 1499.9578;

FT-IR (thin film): v_{max}/cm⁻¹ 2962, 2929, 2867, 1612, 1593, 1507, 1479, 1466, 1340, 1263.

Synthesis of 17 (ADA)

16 (0.11 g, 0.073 mmol, 1 equiv.) was dissolved in THF (3 mL) at 0 °C and TBAF (66 μ L, 0.66 mmol, 0.9 equiv.) was added with stirring. After 1 hour water (5 mL) was added and the aqueous mixture washed with diethyl ether (4 × 10 mL). All organic fractions were combined and washed with brine (1 × 10 mL) dried (MgSO₄) and the solvent removed with a rotary evaporator. The crude mixture was then purified via flash chromatography on silica eluting with a gradient from 0% to 10% of MeOH in DCM to yield a viscous yellow oil (0.088 g, 89%).

¹**H NMR (500 MHz, CDCl₃)**: $\delta_{\rm H} = 8.11 - 8.06$ (m, 3H), 8.04 (d, 2H, ${}^{3}J = 7.0$), 7.96 (d, 1H, ${}^{4}J = 3.0$), 7.09 (d, 2H, ${}^{3}J = 7.0$), 6.99 (d, 2H, ${}^{3}J = 7.0$), 6.93 - 6.88 (m, 3H), 6.86 (d, 1H, ${}^{3}J = 9.0$), 6.80 (d, 2H, ${}^{3}J = 8.5$), 6.77 (d, 1H, ${}^{3}J = 9.0$), 6.73 (d, 1H, ${}^{3}J = 9.0$), 6.65 (d, 1H, ${}^{3}J = 9.0$), 6.52 - 6.44 (m, 3H), 6.37 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.29, (d, 1H, ${}^{4}J = 3.0$), 6.10 (s, 1H), 4.51 (s, 2H), 4.49 (s, 2H), 4.47 (s, 2H), 4.43 (s, 2H), 4.10 (s, 2H), 4.07 - 3.91 (m, 8H), 3.85 - 3.78 (m, 6H), 1.82 - 1.65 (m, 4H), 1.56 - 1.23 (m, 32H), 0.99 - 0.84 (m, 24H).

¹³C NMR (101 MHz, CDCl₃): δ_C = 161.6, 156.1, 150.2, 149.8, 148.6, 142.8, 142.2, 141.7, 141.3, 141.2, 139.6, 138.9, 138.8, 129.7, 128.3, 127.7, 126.7, 125.8, 124.7, 124.5, 124.5, 123.1, 115.9, 115.3, 113.6, 113.5, 113.2, 112.6, 112.2, 112.1, 112.0, 111.8, 110.6, 99.4, 71.8, 71.5, 70.7, 70.7, 65.1, 55.2, 54.3, 53.2, 51.7, 51.0, 50.6, 39.6, 39.5, 39.5, 39.2, 30.7, 30.7, 30.5, 29.1, 29.1, 29.1, 29.1, 24.1, 24.0, 23.9, 23.1, 23.1, 23.1, 23.1, 23.0, 14.1, 14.1, 11.2, 11.2, 11.2, 11.1;

HRMS (ES+): calculated for C₈₁H₁₁₁N₆O₁₁ 1343.8311, found 1343.8309;

FT-IR (thin film): v_{max}/cm⁻¹ 2956, 2927, 2856, 1682, 1612, 1593, 1504, 1464, 1339, 1265, 1225, 1165,

Synthesis of 18

9a (0.37 g, 0.38 mmol, 1 equiv.) and **1** (0.31 g, 0.76 mmol, 2 equiv.) were dissolved in CHCl₃ (3 mL) and NaBH(OAc)₃ (0.23 g, 1.1 mmol, 2.8 equiv.) was added with stirring. After 3 days the reaction was quenched with saturated aqueous NaHCO₃ solution, and extracted into CHCl₃ (4×10 mL). All the organic fractions were washed with water (1×10 mL), brine (1×10 mL) and dried (MgSO₄) before the solvent removed with a rotary evaporator. The crude product was purified using flash chromatography on silica eluting with a gradient from 0% to 10% MeOH in a 1:1 mixture of EtOAc and CHCl₃ to yield a pale yellow oil (0.11 g, 18%).

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H} = 8.10$ (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 8.03 (d, 2H, ${}^{3}J = 6.5$), 7.99 (d, 2H, ${}^{3}J = 6.5$), 7.93 (d, 1H, ${}^{4}J = 3.0$), 7.01 (d, 2H, ${}^{3}J = 8.5$), 6.89 – 6.94 (m, 4H), 6.88 (d, 1H, ${}^{3}J = 9.0$), 6.82 (d, 1H, ${}^{4}J = 3.0$), 6.77 (d, 2H, ${}^{3}J = 8.5$), 6.62 – 6.72 (m, 3H), 6.49 (dd, 1H, ${}^{3}J = 9$, ${}^{4}J = 3$), 6.45 (dd, 1H, ${}^{3}J = 9$, ${}^{4}J = 3$), 6.39 (d, 1H, ${}^{4}J = 3.0$), 6.35 (d, 1H, ${}^{4}J = 3.0$), 6.31 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.09 (s, 1H), 4.47 (s, 4H), 4.40 (s, 2H), 4.34 (s, 2H), 4.22 (s, 2H), 4.03 (s, 2H), 3.93 (d, 2H, ${}^{3}J = 5.5$), 3.90 (s, 4H), 3.82 (d, 2H, ${}^{3}J = 5.5$), 3.73 – 3.79 (m, 4H), 1.61 – 1.80 (m, 4H), 1.17 – 1.53 (m, 32H), 1.04 – 1.11 (m, 21H), 0.82 – 0.95 (m, 24H);

¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ = 161.81, 155.00,150.14, 149.66, 149.45, 143.18, 142.21, 141.47, 141.37, 139.17, 139.10, 138.50, 131.32, 128.02, 127.81, 127.19, 126.88, 124.88, 124.49, 124.39, 123.29, 120.03, 114.41, 113.86, 113.78, 113.08, 112.76, 112.64, 112.45, 111.96, 110.81, 99.72, 72.04, 71.79, 71.09, 70.89, 68.14, 65.20, 55.08, 54.46, 53.51, 51.24, 50.90, 49.73, 39.74, 39.69, 39.62, 39.32, 30.83, 30.80, 30.66, 29.31, 29.24, 29.22, 29.17, 24.18, 24.09, 24.02, 23.22, 23.18, 23.14, 18.08, 14.27, 14.24, 12.80, 11.37, 11.34, 11.28;

HRMS (ES+): calculated for C₉₀H₁₃₁N₆O₁₁Si 1499.9645, found 1499.9613;

FT-IR (thin film): v_{max}/cm⁻¹ 3020, 2400, 1521, 1425, 1265, 1217, 909.

Synthesis of 19 (AAD)

18 (0.054 g, 0.036 mmol, 1 equiv.) was dissolved in THF (3 mL) at 0 °C and TBAF (32 μ L, 0.032 mmol, 0.9 equiv.) was added with stirring. After 1 hour water (5 mL) was added and the aqueous mixture washed with diethyl ether (4 × 10 mL). All organic fractions were combined and washed with brine (1 × 10 mL) dried (MgSO₄) and the solvent removed with a rotary evaporator. The crude mixture was then purified via flash chromatography on silica eluting with a gradient from 0% to 10% of MeOH in DCM to yield the benzaldehyde derivative of expected product which is a viscous yellow oil (0.041 g, 87%).

¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H} = 10.41$ (s, 1H), 8.10 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 8.04 (d, 2H, ${}^{3}J = 7.0$), 7.97 (d, 2H, ${}^{3}J = 7.0$), 7.92 (d, 1H, ${}^{4}J = 3.0$), 7.11 (d, 1H, ${}^{4}J = 3.0$), 7.00 (d, 2H, ${}^{3}J = 7.0$), 6.93 (d, 2H, ${}^{3}J = 8.5$), 6.90 – 6.85 (m, 3H), 6.80 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.76 (d, 1H, ${}^{3}J = 9.0$), 6.71 – 6.66 (m, 3H), 6.64 (d, 1H, ${}^{3}J = 9.0$), 6.45 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.34 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.32 – 6.28 (m, 2H), 4.48 (s, 2H), 4.42 (s, 2H), 4.39 (s, 2H), 4.34 (s, 2H), 4.21 (s, 2H), 4.01 (s, 2H), 3.94 (d, 2H, ${}^{3}J = 5.5$), 3.87 – 3.82 (m, 4H), 3,72 (d, 2H, ${}^{3}J = 5.5$), 1.78 – 1.58 (m, 4H), 1.54 – 1.19 (m, 32H), 0.96 – 0.80 (m, 24H);

¹³C NMR (126 MHz, CDCl₃): δ_C = 189.9, 161.7, 155.9, 154.5, 150.0, 149.3, 143.5, 142.2, 141.3, 141.1, 139.6, 139.5, 138.9, 138.9, 130.1, 128.5, 127.5, 127.3, 126.8, 124.9, 124.8, 124.4, 124.0, 123.0, 121.9, 115.7, 113.7, 113.2, 112.9, 112.5, 112.5, 112.3, 112.1, 111.9, 110.6, 71.6, 71.3, 70.8, 70.6, 56.6, 54.2, 52.5, 51.1, 50.5, 50.4, 39.6, 39.5, 39.4, 39.2, 30.7, 30.6, 30.5, 29.1, 29.1, 29.0, 29.0, 24.0, 24.0, 23.9, 23.1, 23.0, 23.0, 14.1, 14.0, 11.2, 11.2;

HRMS (ES+): calculated for C₇₉H₁₀₇N₆O₁₀ 1299.8049, found 1299.8041;

FT-IR (thin film): v_{max}/cm⁻¹ 3389, 2924, 2854, 1614, 1593, 1505, 1464, 1451, 1340, 1265, 1212, 1162, 1048.

Synthesis of 20

8a (0.33 g, 0.29 mmol, 1 equiv.) and **1** (0.32 g, 0.58 mmol, 2 equiv.) were dissolved in CHCl₃ (4 μ L) and NaBH(OAc)₃ (0.35 g, 1.64 mmol, 5.6 equiv.) was added with stirring. After 4 days the reaction was quenched with saturated aqueous NaHCO₃ solution, and extracted into CHCl₃ (4 × 10 mL). All the organic fractions were washed with water (1 × 10 mL), brine (1 × 10 mL) and dried (MgSO₄) before the solvent removed with a rotary evaporator. The crude product was purified using flash chromatography on silica eluting with a gradient from 0% to 10% EtOH in a 1:1 mixture of EtOAc and hexane to yield a pale yellow oil (0.19 g, 39%).

¹H NMR (500 MHz, CDCl₃): $\delta_{\rm H} = 8.04$ (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 7.96 – 7.92 (m, 3H), 6.98 – 6.92 (m, 4H), 6.88 – 6.83 (m, 3H), 6.79 (d, 2H, ${}^{3}J = 8.5$), 6.72 (d, 2H, ${}^{3}J = 8.5$), 6.67 (d, 2H, ${}^{3}J = 9.0$), 6.58 (d, 1H, ${}^{3}J = 9.0$), 6.50 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.42 – 6.37 (m, 2H), 6.33 (d, 1H, ${}^{4}J = 3.0$), 6.20 (dd, 1H, ${}^{3}J = 9.0$, ${}^{4}J = 3.0$), 6.08 (s, 1H), 4.46 (s, 2H), 4.44 (s, 2H), 4.43 (s, 2H), 4.30 (s, 2H), 4.09 (s, 2H), 4.04 (s, 2H), 3.92 – 3.83 (m, 6H), 3.80 (d, 2H, ${}^{3}J = 5.5$), 3.76 – 3.70 (m, 4H), 1.76 – 1.60 (m, 4H), 1.56 – 1.14 (m, 38H), 1.12 – 1.01 (m, 36H), 0.96 – 0.78 (m, 24H);

¹³C NMR (101 MHz, CDCl₃): δ_{C} = 161.7, 154.9, 154.8, 150.0, 149.1, 148.7, 143.4, 142.9, 141.5, 141.3, 139.1, 138.9, 131.6, 131.6, 128.1, 128.0, 127.9, 127.9, 127.4, 126.9, 124.8, 124.5, 123.3, 120.1, 119.9, 114.4, 114.0, 113.7, 112.5, 112.4, 112.3, 112.1, 111.7, 110.9, 110.8, 99.8, 72.1, 71.7, 71.0, 70.9, 65.1, 54.7, 54.5, 54.4(CH₂N), 51.5, 50.5, 49.8, 39.8, 39.7, 39.7, 39.4, 30.9, 30.8, 30.7, 29.3, 29.2, 24.2, 24.2, 24.1, 24.0, 23.3, 23.2, 23.2, 23.2, 18.1, 18.1, 14.3, 14.3, 14.2, 12.8, 12.8, 11.4, 11.4, 11.3, 11.3;

HRMS (ES+): calculated for C₁₀₀H₁₅₂N₅O₁₁Si₂ 1655.1027, found 1655.1057;

FT-IR (thin film): v_{max}/cm⁻¹ 2957, 2926, 2955, 1608, 1591, 1504, 1463, 1339, 1260, 1225, 1165.

Synthesis of 21 (ADD)

20 (0.091 g, 0.055 mmol, 1 equiv.) was dissolved in THF (3 mL) at 0 °C and TBAF (100 μ L, 0.10 mmol, 1.8 equiv.) was added with stirring. After 1 hour water (5 mL) was added and the aqueous mixture washed with diethyl ether (4 × 10 mL). All organic fractions were combined and washed with brine (1 × 10 mL) dried (MgSO₄) and the solvent removed with a rotary evaporator. The crude mixture was then purified via flash chromatography on silica eluting with a gradient from 0% to 5% of MeOH in CHCl₃ to yield a viscous yellow oil (0.071 g, 97%).

¹**H** NMR (500 MHz, CDCl₃): $\delta_{\rm H} = 8.17$ (dd, 1H, ³J = 9.0, ⁴J = 3.0), 8.12 (d, 2H, ³J = 6.5), 8.01 (d, 1H, ⁴J = 3.0), 7.00 (d, 2H, ³J = 6.5), 6.96 – 6.89 (m, 3H), 6.86 (d, 1H, ⁴J = 3.0), 6.80 – 6.66 (m, 7H), 6.58 (m, 3H), 6.49 – 6.39 (m, 3H), 6.36 (d, 1H, ³J = 3.0), 6.12 (s, 1H), 4.55 (s, 2H), 4.43 (s, 2H), 4.37 (s, 2H), 4.34 (s, 2H), 4.25 (s, 2H), 4.10 – 3.94 (m, 6H), 3.87 (s, 2H), 3.84 (d, 2H, ³J = 5.5), 3.82 – 3.75 (m, 4H), 1.85 – 1.61 (m, 4H), 1.59 – 1.21 (m, 32H), 1.02 – 0.80 (m, 24H);

¹³C NMR (126 MHz, CDCl₃): δ_C = 161.7, 155.6, 154.7, 149.9, 149.5, 148.2, 143.9, 143.5, 141.4, 141.3, 141.2, 138.7, 131.0, 129.5, 128.9, 128.4, 127.8, 127.7, 127.3,

125.5, 124.8, 124.7, 123.0, 116.2, 115.5, 114.9, 113.5, 113.3, 112.5, 112.3, 111.8, 111.5, 111.2, 110.6, 100.6, 71.7, 71.5, 70.7, 70.6, 65.1, 57.7, 54.1, 53.7, 51.1, 50.8, 49.6, 39.7, 39.5, 39.5, 39.2, 30.8, 30.6, 30.5, 29.2, 29.1, 29.1, 29.0, 24.1, 24.0, 23.9, 23.1, 23.0, 23.0, 14.2, 14.1, 14.1, 11.3, 11.1, 11.1;

HRMS (ES+): calculated for C₈₂H₁₁₂N₅O₁₁ 1342.8358, found 1342.8383;

FT-IR (thin film): v_{max}/cm⁻¹ 2957, 2928, 2871, 2859, 1613, 1593, 1505, 1464, 1380, 1340, 1265, 1224, 1167, 1079, 1029.

NMR Binding studies

All association constants were measured by ¹H NMR spectroscopy. One species, labelled the host, was dissolved in toluene- d_8 to a known concentration. A second species, labelled the guest, was dissolved in the host solution at a known concentration such that the concentration of the host was the same in both solutions. A known volume of host was added to an NMR tube and the spectrum was measured. Known volumes of guest solution were added to the NMR tube, and the spectrum was measured after each addition. The chemical shifts of the host were recorded as a function of guest concentration and analysed using purpose-written macros in Microsoft Excel® to fit the experimental data to the appropriate binding isotherm. Errors were calculated as two times the standard deviation from the average value from repetitions.

All of the 3-mers dimerise to some extent in toluene solution, but the measured self-association constants were used make sure that all titration experiments were carried out under conditions where dimerization did not compete to a significant extent with the formation of 1:1 complexes. Consider the AAD•ADA complex as an example. Table 1 of the main text shows that $\log K / M^{-1}$ for dimerization of AAD is 2.1, whereas for ADA, it is an order of magnitude lower, $\log K / M^{-1}$ is 2.9. Thus ADA was used as the host in this titration at a concentration of 0.1 mM, where host dimerization is negligible. AAD was used as the guest, and the maximum guest concentration reached in the course of the titration was 4 mM, where guest dimerization is not significant (less than 20%). The titration data therefore fit well to a 1:1 binding isotherm. It was also possible to fit the data to a more complex isotherm that allows for dimerization of both host and guest as well as formation of the 1:1 complex, but when this was done for the AAD•ADA complex, the value of $\log K / M^{-1}$ changed by less than 0.1, which is within the experimental error. Thus it was possible to obtain reliable 1:1 association constants by fitting the titration data to simple 1:1 binding isotherms.

Figure S1 Eight 3-mers with all the possible sequences of H-bond donor phenol (D) and H-bond acceptor N-oxide (A) groups.

1 Data for titrations using AAD as host

Figure S2 ¹H NMR spectrum of AAD (0.1 mM) 3-mer in toluene- d_8 and the signal labeling key.

Table S1 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S2 for the signal labeling key.

Host	Guest								Signal									
		Α	B	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Р	
AAD	DDA				0.09	0.13	0.05				0.04							
AAD	DDD	-0.04		0.02		0.14	0.06			0.04	0.03	0.01					0.03	
AAD	DAD	-0.01			0.07	0.22	0.06		.004		0.03		-0.07				0.02	
AAD	ADD	005	0.02		-0.30	0.24	0.02	0.30	0.20	-0.01	-0.20						0.02	
AAD	DAA	0.01	0.01			0.22	0.07	0.07	0.06		0.08				0.11			

Figure S3 ¹H NMR data for titration of **DDA** into **AAD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 2200\pm150$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S4 ¹H NMR data for titration of **DDD** into **AAD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 15400\pm8500$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit

Figure S5 ¹H NMR data for titration of **DAD** into **AAD** (0.1 mM) at 298 K in toluene-*d*₈. (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 6300\pm3000$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S6 ¹H NMR data for titration of **ADD** into **AAD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 8000\pm700 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S7 ¹H NMR data for titration of **DAA** into **AAD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 800\pm600$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

2 Data for titrations using DAD as host

Figure S8 ¹H NMR spectrum of DAD (0.1 mM) 3-mer in toluene- d_8 and the signal labeling key.

Table S2 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S8 for the signal labeling key.

Host	Guest	Signal															
		Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Р
DAD	AAA	0.06	0.07			06	0.07	0.18		0.06	0.29					0.02	
DAD	DDA	0.03							0.04		0.17					0.01	
DAD	DDD	-0.04			-0.08	0.03			0.02	0.04							

Figure S9 ¹H NMR data for titration of **AAA** into **DAD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 8400\pm600$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S10 ¹H NMR data for titration of **DDA** into **DAD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). Due to lack of material, this experiment was carried out once giving an association constant of K = 4200 M⁻¹

Figure S11 ¹H NMR data for titration of **DDD** into **DAD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). Due to lack of material, this experiment was carried out once giving an association constant of K = 1000 M⁻¹

3 Data for titrations using ADD as host

Figure S12 ¹H NMR spectrum of ADD (0.1 mM) 3-mer in toluene-d₈ and the signal labeling key.

Table S3 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S12 for the signal labeling key.

Host	Guest	Signal														
		Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0
ADD	AAA	-0.03			-0.02	0.20		-0.02	0.24		0.06				0.04	0.10
ADD	DDA	-0.02		0.05	-0.04	0.04			0.07							
ADD	DAD	-0.03		0.06	-0.04	0.05		0.01	0.06		0.02					0.05
ADD	DDD			0.05	-0.06				0.14	0.12						

Figure S13 ¹H NMR data for titration of **AAA** into **ADD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 1600\pm200 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S14 ¹H NMR data for titration of **DDA** into **ADD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). Due to lack of material, this experiment was carried out once giving an association constant of K = 1200 M⁻¹

Figure S15 ¹H NMR data for titration of **DAD** into **ADD** (0.1 mM) at 298 K in toluene-*d*₈. (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 2200\pm300 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S16 ¹H NMR data for titration of **DDD** into **ADD** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). Due to lack of material, this experiment was carried out once giving an association constant of K = 200 M⁻¹

4 Data for titrations using AAA as host

Figure S17 ¹H NMR spectrum of AAA (0.1 mM) 3-mer in toluene-d₈ and the signal labeling key.

Table S4 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S17 for the signal labeling key.

Figure S18 ¹H NMR data for titration of **DDA** into **AAA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). Due to lack of material, this experiment was carried out once giving an association constant of K = 2200 M⁻¹

5 Data for titrations using DDA as host

Figure S19 ¹H NMR spectrum of **AAA** (0.1 mM) 3-mer in toluene-d₈ and the signal labeling key.

Table S5 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S19 for the signal labeling key.

Figure S20 ¹H NMR data for titration of **AAA** into **DDA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). Due to lack of material, this experiment was carried out once giving an association constant of K = 1300 M⁻¹

6 Data for titrations using ADA as host

Figure S21 1 H NMR spectrum of ADA (0.1 mM) 3-mer in toluene-d₈ and the signal labeling key.

Table S6 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S21 for the signal labeling key.

Host	Guest		Signal														
		Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р
ADA	AAD					0.05			-0.08	0.08							
ADA	DAD	0.03		0.17		0.07	0.07	0.05	-0.22	0.08							
ADA	DDD							0.06	-0.15	0.08							
ADA	DDA	0.02		0.15	0.08		0.10	0.03	-0.09	0.07							
ADA	ADD	0.01		0.20	0.05	0.06			-0.24	0.10							

Figure S22 ¹H NMR data for titration of **AAD** into **ADA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 1000\pm700$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S23 ¹H NMR data for titration of **DAD** into **ADA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 25300 \pm 14000 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S24 ¹H NMR data for titration of **DDD** into **ADA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 14800\pm5000 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S25 ¹H NMR data for titration of **DDA** into **ADA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 4600\pm250$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S26 ¹H NMR data for titration of **ADD** into **ADA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 2300 \pm 100 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

7 Data for titrations using DAA as host

Figure S27 1 H NMR spectrum of DAA (0.1 mM) 3-mer in toluene-d₈ and the signal labeling key.

Table S7 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S27 for the signal labeling key.

Host	Guest								Signa	Signal									
		Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р		
DAA	DDD	-0.06			0.04	0.20		0.01	0.01	0.08	0.02								
DAA	ADD	-0.03			0.12		0.04	0.01											
DAA	ADA						0.01	0.03	0.06	0.20	0.04				0.04		0.02		
DAA	DDA	-0.01	0.02			0.22				0.23				0.29			0.02		
DAA	DAD	-0.01			0.10	0.26	0.03	0.03	0.05	0.20	0.03			0.30		0.05			
DAA	AAA		0.01					0.03			0.07								

Figure S28 ¹H NMR data for titration of **DDD** into **DAA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 10600 \pm 1700 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S29 ¹H NMR data for titration of **ADD** into **DAA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 1000\pm100 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S30 ¹H NMR data for titration of **ADA** into **DAA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 2600\pm300 \text{ M}^{-1}$ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S31 ¹H NMR data for titration of **DDA** into **DAA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 4150\pm900$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S32 ¹H NMR data for titration of **DAD** into **DAA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 8900\pm700$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Figure S33 ¹H NMR data for titration of **AAA** into **DAA** (0.1 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). Due to lack of material, this experiment was carried out once giving an association constant of K = 500 M⁻¹

8 A•DD control titration experiment

Figure S34 A•DD complex

Figure S35 ¹H NMR data for titration of **DD** into **A** (1.2 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of guest concentration (the lines represent the best fit to a 1:1 binding isotherm). The average association constant $K = 1650\pm150$ M⁻¹ was obtained as the result of two independent measurements and the error is reported as two times the standard deviation (95% confidence limit)

Table S8 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting titration data measured in toluene- d_8 at 298 K to a 1:1 binding isotherm. See Figure S35 for the signal labeling key.

9 Dilution Experiments

Dilution of ADA

Table S9 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting dilution data (57-0.03 mM) measured in toluene- d_8 at 298 K to a dimerisation isotherm. See Figure S21 for the signal labeling key.

Figure S36 ¹H NMR data for dilution of **ADA** (57-0.03 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of concentration (the lines represent the best fit to a dimerisation isotherm). Due to lack of material, this experiment was carried out once giving an association constant of $K = 800 \text{ M}^{-1}$

Dilution of AAA

Table S10 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting dilution data (8.6-0.07 mM) measured in toluene- d_8 at 298 K to a dimerisation isotherm. See Figure S17 for the signal labeling key.

Figure S37 ¹H NMR data for dilution of **AAA** (8.6-0.07 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of concentration (the lines represent the best fit to a dimerisation isotherm). Due to lack of material, this experiment was carried out once giving an association constant of $K = 43 \text{ M}^{-1}$

Dilution of AAD

Table S11 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting dilution data (34-0.05 mM) measured in toluene- d_8 at 298 K to a dimerisation isotherm. See Figure S2 for the signal labeling key.

Figure S38 ¹H NMR data for dilution of **AAD** (34-0.05 mM) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of concentration (the lines represent the best fit to a dimerisation isotherm). Due to lack of material, this experiment was carried out once giving an association constant of $K = 120 \text{ M}^{-1}$

Dilution of ADD

Table S12 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting dilution data (10-0.08mM) measured in toluene- d_8 at 298 K to a dimerisation isotherm. See Figure S12 for the signal labeling key.

Figure S39 ¹H NMR data for dilution of **ADD** (10-0.08) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of concentration (the lines represent the best fit to a dimerisation isotherm). Due to lack of material, this experiment was carried out once giving an association constant of $K = 190 \text{ M}^{-1}$

Dilution of DDD

Table S13 Complexation-induced changes in ¹H NMR chemical shift (ppm) obtained by fitting dilution data (10-0.08 mM) measured in toluene- d_8 at 298 K to a dimerisation isotherm.

Figure S40 ¹H NMR data for dilution of **DDD** (10-0.08) at 298 K in toluene- d_8 . (a) Example 500 MHz ¹H NMR spectra. (b) Plot of the change in chemical shift of the ¹H signal as a function of concentration (the lines represent the best fit to a dimerisation isotherm). Due to lack of material, this experiment was carried out once giving an association constant of $K = 4 \text{ M}^{-1}$

Molecular mechanics calculations.

General details

Molecular mechanics calculations were performed using MacroModel version 9.8 (Schrödinger Inc.).^{S1} All structures were minimized first and the minimized structures were then used as the starting molecular structures for all MacroModel conformational searches. The force field used was MMFFs as implemented in this software (CHCl₃ solvation). The charges were defined by the force field library and no cut off was used for non-covalent interactions. A Polak-Ribiere Conjugate Gradient (PRCG) was used and each minimisation was subjected to 10,000 iterations. The minima converged on a gradient with a threshold of 0.01. Conformational searches were performed from previously minimized structures using 10,000 steps. Images were created using PyMol.^{S2}

Duplex formation

Calculations were performed on simplified 3-mer duplexes in which the solubilising groups were changed to methyl groups and terminal groups were simplified to methyl and phenyl in order to reduce the computational cost. In the case of the complex of DD and 4-methylpyridine *N*-oxide shown in Fig. 6, the terminal groups were not simplified. In all cases, one terminal H-bond was fixed by constraining the distance between the phenol hydrogen and *N*-oxide oxygen to 2 ± 1 Å, and three different starting conformations were used in each case.

Folding

Calculations were performed on simplified 3-mers in which the solubilising groups were changed to methyl groups in order to reduce the computational cost.^{S1}

Figure S41. Lowest energy conformations calculated using molecular mechanics conformational searches (MMFFs force-field and CHCl₃ solvation implemented in Macromodel)^{S1} of DAA (a), AAD (b), DDA (c) and ADD (d) 3-mers (three letter code refers to the nitrobenzene to benzaldehyde sequence of donor, D, and acceptor, A, groups). The backbone is shown in grey, the H-bond donor recognition unit in blue and the H-bond acceptor unit in red. Benzaldehyde and nitrobenzene caps are shown in lines for clarity.

Figure S42. Two views of the superimposed backbones of DAA (blue) and DDA (grey) 3-mers. Recognition units as well as benzaldehyde and nitrobenzene caps have been omitted for clarity.

References

- [S1] MacroModel, version 9.8, Schrödinger, LLC, New York, NY, 2014.
- [S2] The PyMOL Molecular Graphics System, Version 1.6 Schrödinger, LLC.