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Abstract
Inverse probability of censoring weighting is a popular approach to handling dropout in longitudinal studies. However,

inverse probability-of-censoring weighted estimators (IPCWEs) can be inefficient and unstable if the weights are esti-

mated by maximum likelihood. To alleviate these problems, calibrated IPCWEs have been proposed, which use calibrated

weights that directly optimize covariate balance in finite samples rather than the weights from maximum likelihood.

However, the existing calibrated IPCWEs are all based on the unverifiable assumption of sequential ignorability and sen-

sitivity analysis strategies under non-ignorable dropout are lacking. In this paper, we fill this gap by developing an approach

to sensitivity analysis for calibrated IPCWEs under non-ignorable dropout. A simple technique is proposed to speed up

the computation of bootstrap and jackknife confidence intervals and thus facilitate sensitivity analyses. We evaluate the

finite-sample performance of the proposed methods using simulations and apply our methods to data from an inter-

national inception cohort study of systemic lupus erythematosus. An R Markdown tutorial to demonstrate the implemen-

tation of the proposed methods is provided.
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1 Introduction

1.1 Inverse probability-of-censoring weighting and covariate balancing weights
Inverse probability-of-censoring weighting (IPCW) is a popular approach to handling the dropout that is ubiquitous in
longitudinal studies.1,2 Under the assumption of sequential ignorability, inverse probability-of-censoring weights are
usually obtained by specifying a parametric model for the dropout process and estimating its parameters using
maximum likelihood estimation (MLE). However, it is well known that inverse probability-of-censoring weighted
estimators (IPCWEs) using weights estimated by MLE can be inefficient and unstable, especially when the
dropout model is misspecified.3–5

Covariate balancing weight (CBW) methods have been proposed as a way of improving the performance of
inverse probability weighted estimators in the setting where the aim is to estimate the causal effect of a binary
point treatment (e.g.6–10). Empirical and theoretical studies have shown that CBW methods reduce the mean
squared errors (MSEs) of the inverse probability weighted estimators under both correct and incorrect model speci-
fications.11 Recently, CBW methods have been developed to improve IPCWEs. Han12 proposes a calibration
approach for IPCWEs when the aim is to estimate the mean of an outcome measured at the end of a longitudinal
study. The calibration restrictions proposed by him aim to balance, at each follow-up visit, the predicted outcome
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from each of a set of models for the expected outcome given the history of a set of time-varying covariates. If one of
the models for predicting the outcome is correctly specified, the IPCWE using calibrated weights is consistent. To
improve the inverse probability weighted estimators in marginal structural models,1 Yiu and Su proposed to jointly
calibrate inverse probability of treatment and censoring weights.13 They extended the ‘covariate association elimin-
ating weights’ method in Yiu and Su14 to the ignorable dropout setting and provided a coherent framework for deriv-
ing calibration restrictions in longitudinal studies. Unlike the approach of Han12, that of Yiu and Su13 can handle
repeatedly measured outcomes.

A limitation of the existing calibrated IPCWEs is that they are based on the unverifiable assumption of sequential ignor-
ability, that is, the assumption that the probability of dropout between any two consecutive visits (say visit j − 1 and visit j) is
independent of future outcomes given the data that have been observed up to visit j − 1. In practice, it is desirable to assess the
sensitivity of conclusions from the IPCWEs to violations of this sequential ignorability assumption. For IPCWEs without
calibration, sensitivity analysis approaches under non-ignorable dropout have been developed. For example, Rotnitzky
et al.15 described how to fit a marginal model for a repeatedly measured outcome in a longitudinal study when the probability
of dropout between visits j − 1 and j may depend on the potentially unobserved outcome at visit j (and possibly also the out-
comes at later visits). Their method involves specifying a ‘selection function’, which characterizes the residual dependence of
the probability of dropout between visits j − 1 and j on the outcome at visit j (and possibly later visits) after conditioning on
the observed covariates and outcomes up to visit j − 1. This selection function involves a sensitivity parameter (or a vector of
parameters) that describes the strength of the residual dependence. By varying this sensitivity parameter over a range of plaus-
ible values, the sensitivity of the substantive conclusions to deviations from sequential ignorability can be assessed. Other
examples of methods using such selection functions include Scharfstein et al., Vansteelandt et al., and Wen and
Seaman.16–18

To address the aforementioned limitation, in this paper, we propose a sensitivity analysis approach for calibrated
IPCWEs under non-ignorable dropout. Building upon the calibration approach of Yiu and Su,13 we incorporate a selection
function with sensitivity parameters into the model used for estimating an initial set of inverse probability-of-censoring
weights before calibration. Then we calibrate these initial weights by balancing the distributions of observed covariates
after weighting with the observed covariate distributions in the target population in the absence of dropout. Although con-
fidence intervals (CIs) for our calibrated IPCWEs can be based on nonparametric bootstrap (or jackknife if the sample size
is small), it is time-consuming to repeat the whole process for each value of the sensitivity parameter(s) and each bootstrap
sample. We therefore propose a simple technique to speed up the computation of the bootstrap/jackknife CIs and evaluate
its performance using simulations.

1.2 Motivating example: Cerebrovascular events and health-related quality of life in
patients with systemic lupus erythematosus
This work was motivated by a study of the impact of cerebrovascular events (CerVEs) on health-related quality of
life (HRQoL) in patients with systemic lupus erythematosus (SLE).19 Neuropsychiatric (NP) events are frequent in
patients with SLE, a chronic autoimmune disease that affects multiple organ systems. CerVEs (e.g. stroke and tran-
sient ischaemia) are the fourth most frequent NP event in SLE and are usually attributable to SLE. Regardless of
attribution, NP events are associated with a negative impact on HRQoL in both cross-sectional and longitudinal
studies. In a recent study conducted by the Systemic Lupus International Collaborating Clinics (SLICC) group, it
was found that CerVEs were associated with a significant and sustained reduction in patient self-reported
HRQoL even after adjusting for other factors predicting HRQoL.19 This finding was based on data from the
SLICC inception cohort, where 1826 SLE patients were enrolled within 15 months of their SLE diagnosis
between October 1999 and December 2011 and followed up annually thereafter at 36 academic medical centres
from 12 countries.

The analysis reported in Hanly et al.19 was based on the generalized estimating equation (GEE) approach with the
AR(1) working correlation structure, and the variation in the length of follow-up in the SLICC cohort was not taken
into account. In fact, by the study cut-off date of 10 December 2015, the number of annual assessments per patient
varied from 1 to 18; the mean follow-up time was 6.6 years and the standard deviation was 4.1 years. Specifically,
46% of the SLICC patients had their latest annual assessment visit more than 2 years before the study cut-off date.
These patients may have dropped out of the study. Since the current HRQoL of a patient is likely to be associated
with his/her probability of dropping out of the study, there could be non-ignorable missingness in the longitudinal
HRQoL data of the SLICC cohort. This motivates us to re-analyze the SLICC HRQoL data, taking into account pos-
sibly non-ignorable dropout in this cohort.
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2 Methods

2.1 Notation, setting and assumptions
We consider a study in which n independent patients are enrolled at baseline (denoted by visit 0) and then followed up over
time at scheduled visits 1, . . . , T . Note that in Section 4.2 we shall extend our proposed method to allow individuals to
have different maximum numbers of follow-up visits (i.e. T = Ti), for example, due to administrative censoring as a
result of staggered entry to the SLICC cohort. We also assume that the visiting times are non-informative, that is, scheduled
by the study design rather than initiated by patients. Note that GEE-based methods in general (including the proposed
method) can be biased when the visiting times depend on the outcomes (see Pullenayegum and Lin20).

Let V i denote baseline covariates (e.g. demographics) recorded for the ith patient at enrolment. Let X ij and Yij denote the
values of, respectively, a p × 1 vector of time-varying covariates and a longitudinal outcome for the ith patient at his/her
scheduled jth visit (visit j, j = 0, 1, . . . , T ). Let Rij be the indicator of whether the ith patient remains in the study at the
time of visit j. Thus when Rij = 0, Yij is missing and X ij could be missing. We assume that Ri0 = 1 (i.e. baseline visit
assessments are complete for all patients) and Ri,j−1 = 0 ⇒ Rij = 0 (monotone missingness due to dropout).

For simplicity, in this paper, we focus on linear models for E(Yij ∣ X ij), but the proposed method can be straightfor-
wardly applied to generalized linear models.21 Specifically, our interest is in estimating the parameters of an outcome
model

E(Yij ∣ X ij) = μij = XT
ijβ, j = 0, . . . , T , (1)

where β is a p × 1 vector of regression parameters. To achieve this, we make the ‘non-future dependence’ assumption for
the dropout process, that is, pr(Rij = 1 ∣ Yij, . . . , YiT , H i,j−1, Ri,j−1 = 1) = pr(Rij = 1 ∣ Yij, H i,j−1, Ri,j−1 = 1) for
j = 1, . . . , T , where H i,j−1 includes baseline covariates V i, previous outcome history Y i0, . . . , Y i,j−1, and time-varying
covariates X i0, . . . , X iT . H i,j−1 can also include other prognostic variables of the outcome that are measured before
visit j and could have influenced the dropout process. In addition, we make the positivity assumption that if
f (Yij, H i,j−1, Ri,j−1 = 1) > 0 then pr(Rij = 1 ∣ Yij, H i,j−1, Ri,j−1 = 1) > 0.

2.2 Inverse probability-of-censoring weighting under non-ignorable dropout
The first step in our method is to specify the model that will be used to estimate an initial set of inverse
probability-of-censoring weights under non-ignorable dropout. In Section 2.3, we shall describe how these initial
weights are calibrated.

Let pr(Rij = 1 ∣ Yij, H i,j−1, Ri,j−1 = 1) = πj(Yij, H i,j−1; α, γ), j = 1, . . . , T and assume that

logit{πj(Yij, H i,j−1; α, γ)} = h(H i,j−1; α)+ q(H i,j−1, Yij; γ), (2)

where q(H i,j−1, Yij; γ) is a known selection function with a known sensitivity parameter vector γ, and h(H i,j−1; α) is a func-
tion ofH i,j−1 with unknown parameter α. Note that h(H i,j−1; α) can only depend on X ij, . . . , X iT if they are fully observed
(i.e. they continue to be observed after dropout). In the analysis of the SLICC cohort data reported in Section 4, we assume
that

logit{πj(Yij, H i,j−1; α, γ)} = α0 + VT
i αv + XT

i,j−1αx + αyYi,j−1 + γYij. (3)

Here γ characterizes the residual dependence of the probability of observing Yij on the value of Yij after adjusting for the

observed data up to visit j − 1. X i,j−1 includes j − 1 and (j − 1)2, and so the probability of dropout on the logit scale is a
quadratic function of the visit number. α = (α0, αv, αx, αy) is the parameter vector to be estimated.

If q(H i,j−1, Yij; γ) = 0, then the dropout process is sequentially ignorable. Standard logistic regression can then be used
to estimate α. However, when q(H i,j−1, Yij; γ) ≠ 0, standard logistic regression cannot be applied, because it will involve
the missing Yij. Following Wen and Seaman,18 for a fixed value of γ, we estimate α by solving the following estimating
equations ∑n

i=1

∑T
j=1

ϕ(H i,j−1)Ri,j−1
Rij

πj(Yij, H i,j−1; α, γ)
− 1

{ }
= 0, (4)

where ϕ(H i,j−1) is a vector of functionals of H i,j−1 (including 1) and has the same dimension as α. Equation (4) are
unbiased estimating equations because pr(Rij = 1 ∣ Yij, H i,j−1, Ri,j−1 = 1) = πj(Yij, H i,j−1; α, γ) implies that the expect-

ation of { Rij

πj(Yij , H i,j−1; α, γ)
− 1} given Ri,j−1 = 1 is zero.
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In the SLICC data example, we use ϕ(H i,j−1) = (1, VT
i , X

T
i,j−1, Yi,j−1). Note that when Rij = 0,

Rij/πj(Yij, H i,j−1; α, γ) = 0 for all values of Yij and H i,j−1 (given the positivity assumption). Thus solving (4) does not
involve the missing value of Yij.

The Newton-Raphson algorithm can be applied to solve (4). Let α̂ be the estimator of α obtained by solving (4). Wen
and Seaman18 proved that α̂ is consistent if the dropout model (2) is correctly specified and the selection function, including
the sensitivity parameter, is correctly chosen. Given α̂ and γ, the inverse probability-of-censoring weights can be obtained
by calculating

Wij(α̂, γ) =
∏j

k=1

1/πj(Yik , H i,k−1; α̂, γ).

For convenience, we call these weights the ‘MLE weights’, even though (4) are not the score equations for α. With the
MLE weights, the following estimating equations can be used to consistently estimate β,∑n

i=1

U i(β) =
∑n
i=1

∑T
j=0

∂μij
∂β

( )
Wij(α̂, γ)Rij(Yij − μij) = 0, (5)

where at baseline visits Wi0(α̂, γ) = 1. In this paper, we use the MLE weights as the initial weights.

2.3 Calibrating inverse probability-of-censoring weights under non-ignorable dropout
The purpose of IPCW is to create a representative sample of the target population (i.e. the study population at baseline) in
the absence of dropout. As an alternative to the MLE approach, the calibration approach12,13 aims to create a representative
sample of the target population by balancing the distributions of observed covariates after weighting with those in the target
population. Specifically, weights are obtained by calibrating/adjusting the initial set of inverse probability-of-censoring
weights (i.e. the MLE weights) such that moment conditions of observed covariates (i.e. calibration restrictions) are sat-
isfied in the finite sample.

2.3.1 Calibration restrictions
Let WC

ij (λ) denote the calibrated weights, where λ is a r × 1 parameter vector to be estimated. Note that we use the super-
script C to indicate that the weights are calibrated. Following Yiu and Su,13 we use the following calibration restrictions∑T

j=1

(T − j + 1)
∑n
i=1

RijW
C
ij (λ)− Ri,j−1W

C
i,j−1(λ)

{ }
H̃ i,j−1 = 0, (6)

where H̃ i,j−1 is a r × 1 vector of functionals ofH i,j−1 including 1. The term
∑n

i=1 {RijWC
ij (λ)− Ri,j−1WC

i,j−1(λ)}H̃ i,j−1 in (6)

can be interpreted as the covariate balance summary of H̃ i,j−1 between the weighted uncensored observations at visit j and
the weighted uncensored observations at visit j − 1.

The restrictions in (6) are equivalent to∑n
i=1

∑T
j=1

RijW
C
ij (λ) (T − j + 1)H̃ i,j−1 − (T − j)H̃ ij

{ }
=

∑n
i=1

TH̃ i0. (7)

Since H̃ i,j−1 (j = 1, . . . , T ) includes 1, (7) implies
∑n

i=1

∑T
j=1 RijWC

ij (λ) = nT , which means that the total number of
follow-up ‘observations’ after weighting is equal to nT , the total number of follow-up observations there would have

been if no dropout had occurred. If H̃ i,j−1 includes baseline covariates V i, (7) implies
∑n

i=1

∑T
j=1 RijWC

ij (λ)V i =∑n
i=1 TV i, that is, the weighted average of V i over all follow-up visits for all patients is equal to the sample average

of V i. If H̃ i,j−1 includes an indicator for visit, I(j = k) (k = 1, . . . , T ), and an interaction between this visit indicator
and V i, that is, I (j = k)V i, then (7) implies

∑n
i=1 RikWC

ik (λ) = n and
∑n

i=1 RikWC
ik (λ)V i =

∑n
i=1 V i for k = 1, . . . , T .

That is, at each follow-up visit, the sample size after weighting is n and the weighted average of V i is equal to the

sample average of V i. If interactions between visit indicators and time-varying covariates are included in H̃ i,j−1, then
the time-varying covariates will be balanced separately at each follow-up visit.

Imposing calibration restrictions of baseline and time-varying covariates separately at each follow-up visit will ensure
that covariate distributions are exactly balanced such that a representative sample of the target population is created at each
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follow-up visit. This is important since the parameters of interest are the regression coefficients of time-varying covariates
in the outcome model (1). However, the number of restrictions will then be proportional to the number of follow-up visits,
which will result in a large number of restrictions if there are many baseline and time-varying covariates. In this case, we
recommend including the interactions between j (treated as a continuous variable instead of binary indicators) and the cov-
ariates in H̃ i,j−1 to provide some parsimony in the calibration restrictions.

In this paper, we consider calibrated weights of the form

WC
ij (λ) = Wij(α̂, γ) exp λT (T − j + 1)H̃ i,j−1 − (T − j)H̃ ij

{ }[ ]
.

Although other forms of calibrated weights are possible (e.g. see Han12), this particular choice is appealing because solving
(7) is then equivalent to minimizing a convex function of λ13; see details in Section 2.3.2.

It is easy to see that if we replace WC
ij (λ) with the true inverse probability-of-censoring weights

W ∗
ij = 1/

∏ j
k=1 pr(Rik = 1 ∣ Yik , H i,k−1, Ri,k−1 = 1), then the population version of (7)

E
∑T
j=1

RijW
∗
ij (T − j + 1)H̃ i,j−1 − (T − j)H̃ ij

{ }[ ]
= TE(H̃ i0). (8)

is satisfied. Therefore, as long as the model (2) for estimating the initial set of weights is correctly specified, the calibrated
weights will converge to the true weights, and thus replacing the MLE weights in (5) with the calibrated weights will not
affect the consistency of the IPCWE obtained.

2.3.2 Implementation
The calibrated weights WC

ij (λ) are calculated by finding the value of λ that solves (7), or equivalently by minimizing∑n
i=1

∑T
j=1

RijW
C
ij (λ)−

∑n
i=1

TλTH̃ i0. (9)

Note that the function in (9) is convex in λ, which ensures that the solution to (7) is unique and can be found efficiently.
We solve (7) directly by using the R package nleqslv.22 For the SLICC data example reported in Section 4, it took less
than 1 second to obtain the calibrated weights with 25 calibration restrictions on a Linux machine with a 3.80 GHz CPU
and 64 GB memory.

2.4 Confidence intervals
2.4.1 Bootstrap and jackknife confidence intervals
Whether using the MLE weights or calibrated weights, CIs can be obtained by nonparametric bootstrap. Specifically, B
bootstrap samples are generated by resampling patients in the observed data with replacement. For each bootstrap
sample, the MLE weights and calibrated weights are estimated following the methods described in Sections 2.2 and
2.3. β̂b (b = 1, . . . , B) is calculated by solving the estimating equation

∑n
i=1 U i( βb) = 0 for the bth bootstrap sample.

The bootstrap CIs are then constructed by applying the percentile method to β̂b (b = 1, . . . , B).23

For small samples, jackknife is an alternative to bootstrap for obtaining the variance of the IPCWE and constructing CIs.
In particular, jackknife can be useful when there are convergence issues for estimating the MLE weights because the
Newton–Raphson algorithm for solving (4) breaks down due to ill-conditioned matrices in a particular bootstrap
sample. Specifically, we will leave out the ith patient’s data in the ith jackknife sample. The weight estimation and esti-
mation of β are then repeated for the ith jackknife sample. Let β̂Jk,i (i = 1, . . . , n) denote the ith jackknife estimate of
the kth element of β. We calculate the jackknife standard error of the kth element of β as

1

n(n− 1)

∑n
i=1

( β̂ J
k,i − �β

J
k )

2,

where �β
J
k = ∑n

i=1 β̂
J
k,i/n. 95% Wald CIs are then constructed using the jackknife standard errors.

The procedures for constructing bootstrap and jackknife CIs are straightforward. However, because the MLE weights
need to be estimated and then calibrated for each bootstrap/jackknife sample, repeating this whole process is time-
consuming. On top of this, in sensitivity analyses, we need to vary the values of the sensitivity parameter γ and repeat
the estimation, calibration and bootstrapping for each fixed value of γ. Therefore, it is desirable to speed up the computation
for constructing bootstrap/jackknife CIs when using calibrated weights.

Su et al. 5



In this paper, we propose to use the MLE weights estimated from the original data as the initial weights and then to
implement the calibration using the restrictions based on the bootstrap/jackknife sample. This avoids calculating the
MLE weights for every bootstrap/jackknife sample. Optimizing covariate balance in finite samples helps to eliminate
chance imbalances24,25 and thus reduce the estimation error and variance of inverse probability weighted estimators of
treatment effects, as shown in many empirical studies.7,8,14 Similarly, calibration by covariate balancing can improve
the efficiency of the IPCWEs.9,12 Since calibration will eliminate chance imbalances in bootstrap/jackknife samples regard-
less of the initial weights, fixing the initial weights at those estimated from the original data should have minimal impact on
the variance and bootstrap/jackknife CIs. In the next section, we will conduct simulation studies to investigate whether
re-estimating the initial weights affects the performance of the bootstrap and jackknife CIs with calibrated weights.

2.4.2 Confidence intervals based on sandwich variance estimators
CIs could also be obtained by using a sandwich estimator of the variance of the regression parameters given the estimated
weights, that is

∑n
i=1

∂U i(β̂)

∂βT

{ }−1 ∑n
i=1

U i(β̂)U i(β̂)
T

{ } ∑n
i=1

∂U i(β̂)

∂βT

{ }−1

,

where β̂ are estimates of β by applying the MLE weights or calibrated weights in (5). However, since the uncertainty of the
estimated weights is not accounted for, it is expected that such CIs will be conservative, compared to those based on non-
parametric bootstrap. This is because true asymptotic variances are actually greater when true weights are used than when
they are estimated. Therefore, ignoring uncertainty in calibrated weights causes over-estimation of variances.2 For IPCWEs
without calibration, Rotnitzky et al.15 provided an alternative sandwich variance estimator, which accommodates the
uncertainty due to estimating the parameters in the dropout model. For IPCWEs with calibration, it would be quite com-
plicated to incorporate the uncertainty in the calibrated weights into sandwich variance estimators, because this uncertainty
comes from both the estimation of the initial weights and the calibration. This warrants further research.

3 Simulation
In this section, we conduct two simulation studies to assess the performance of the proposed methods in finite samples. In
the first simulation study, we assess the performance of the IPCWEs using calibrated weights when dropout is non-
ignorable and compare this with the performance of IPCWEs using the MLE weights. In the second simulation study,
we evaluate the performance of 95% CIs calculated using non-parametric bootstrap, jackknife or the sandwich variance
estimators, when either the MLE weights or calibrated weights are used.

3.1 Data generating mechanism
The design of the simulation studies is adapted from the simulation settings in Kang and Schafer.3 The data generating
mechanism for a patient is summarized in Table 1. Note that T = 8. We omit the subscript i for patients for clearer pres-
entation. Our aim is to estimate the regression parameters β0 and β1 for the mean of the longitudinal outcome E(Yj) = β0 +
β1 j ( j = 0, . . . , 8). The true values of β0 and β1 are 210 and −2, respectively.

In this set-up, there are four baseline covariates V = {V1, V2, V3, V4}, which affect the probability of dropping out of
the study and E(Yj). In addition, the previous outcome Y j−1 and the current outcome Yj at visit j could affect the discrete-
time hazard of dropout between visits j − 1 and j. The dependence on Yj is characterized by the parameter γ. If γ = 0, the
dropout process is sequentially ignorable. Correlation between the observations of the longitudinal outcome is induced by a
patient-level random effect U . Data from each patient are generated independently. We simulate 2000 data sets with dif-
ferent sample sizes (n = 200, 500, 1000, 2000). Approximately 38% and 43% of the data are missing when dropout is
sequentially ignorable (γ = 0) and non-ignorable (γ = 1), respectively.

3.2 Performance of the IPCWEs under non-ignorable dropout
3.2.1 Setup
In this section, we evaluate the performance of the IPCWEs using the MLE weights and calibrated weights under both
correct and incorrect model specifications when the dropout process is non-ignorable (i.e. γ ≠ 0). We consider two
types of model misspecification here. The first is to assume that the dropout process is sequentially ignorable (i.e.
γ = 0) and so the outcome Yj at visit j is not included in the logistic model for estimating the MLE weights. Note that
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these MLE weights are also used as the initial weights for calibration. The second is functional form model misspecification
in the dropout model caused by including transformations Z = {Z1, Z2, Z3, Z4} of V = {V1, V2, V3, V4} in the model,
rather than V itself (see Table 1).

We will investigate the impact of combinations of both types of misspecification in the simulations. When Yj is included
in the dropout model, we use the true value for the sensitivity parameter γ when the correct covariates V and Y j−1 are
included. When the transformed covariates Z are instead included, we fix γ at its limiting value calculated by fitting a
dropout model with the transformed covariates, Y j−1 and Yj to a huge data set (sample size n = 1.28 × 108).

When Yj is included, we estimate the MLE weights and calibrated weights using the methods described in Section
2. When Yj is omitted, we estimate the MLE weights by fitting a standard logistic regression model for the discrete-time
hazard of dropout by maximum likelihood and then apply the calibration. In addition, following Cao et al.,26 we scale the
MLE weights so that they sum to nT , the total number of follow-up observations in the absence of dropout. This scaling is
expected to improve the stability of the IPCWE by prohibiting extremely large weights. Note that the baseline visits have
weights of ones (i.e. no weighting is applied).

In total, we will evaluate the performance of the IPCWEs for (β0, β1) using three sets of weights, (a) the unscaled MLE
weights, (b) the scaled MLE weights and (c) calibrated weights, under the following scenarios:

1. Selection function γYj omitted, correct covariates V and previous outcome Y j−1 included;
2. Selection function γYj omitted, transformed covariates Z and previous outcome Y j−1 included;
3. Selection function γYj included, correct covariates V and previous outcome Y j−1 included;
4. Selection function γYj included, transformed covariates Z and previous outcome Y j−1 included.

For covariates in calibrated restrictions, we include the visit number j (treated as a continuous variable), the baseline
covariates (V or Z), the previous outcome Y j−1, and their interactions with the visit number j. For comparison, we also
perform the analysis that uses the complete data and the naïve analysis that uses the observed data without weighting.

3.2.2 Results
Table 2 summarizes the results of the first simulation study. When γYj is omitted and only baseline covariates (either in
correct forms or in transformations) and Y j−1 are included, the IPCWEs using the MLE weights and calibrated weights
all have non-negligible biases. The IPCWEs using the MLE weights sometimes have similar or smaller biases than the
IPCWEs using calibrated weights, but their root MSEs are much larger than those of the IPCWEs using calibrated
weights. This is possibly because large positive and negative differences from the true parameter values can be cancelled
out when averaging across samples to quantify the empirical bias but would manifest by the magnitude of MSEs. In terms
of MSEs, the IPCWEs with calibrated weights are all smaller than their counterparts with the MLE weights. This is not
surprising in view of the theoretical findings in Tan11 on the impact of calibration by covariate balancing on reducing
the MSEs of inverse probability weighted estimators. The IPCWEs using scaled MLE weights have smaller MSEs than
the IPCWEs using unscaled MLE weights, especially when transformed covariates are included.

Table 1. Data generating mechanism for the simulations.

Baseline ( j = 0) and follow-up visits (j = 1, . . . , 8, T = 8)

Baseline covariates: V1, V2, V3, V4 i.i.d
∼ N(0, 1)

Random effect: U i.i.d
∼ N(0, 100)

Outcome: Yj = 210−2j+ 27.4V1 + 13.7V2 + 13.7V3 + 13.7V4 + U + ϵ j
ϵ j ∼ N(0, 100)

Dropout: R0 = 1

Rj ∣ R j−1 = 1 ∼ Bernoulli(πj)
logit(π j) = 2− V1 + 0.5V2 − 0.25V3 − 0.1V4 + 0.2Y∗j−1 + γY∗j ,
where Y∗ = (Y − 210)/35.

Sequentially ignorable: γ = 0

Sequentially non-ignorable: γ = 1

Transformed covariates: Z1 = exp (V1/2)
Z2 = V2/{1+ exp (V1)}+ 10

Z3 = (V1V3/25+ 0.6)3

Z4 = (V2 + V4 + 20)2
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When the selection function γYj is included, the IPCWEs with correct covariates and calibrated weights have both
smaller biases and smaller MSEs than their counterparts with the MLE weights. It is noteworthy that the IPCWEs
with the MLE weights still have a moderate amount of finite sample bias even when the dropout model has been cor-
rectly specified, although their biases and MSEs decrease as the sample size increases. This is perhaps due to the rela-
tively extreme specification of the dropout model (adapted from the simulation set-up in Kang and Schafer3), which
causes the MLE weights to have large variability. The IPCWEs with calibrated weights also have a small amount of
bias, but for β0 the magnitude of bias is comparable to the analysis using the complete data, and for β1 the bias is
decreasing as the sample size increases. On the other hand, with transformed covariates (and hence model misspeci-
fication), the MSEs of the IPCWEs of β1 using the MLE weights increase as the sample size increases. This happens
possibly because the probability that a simulated dataset contains an extreme MLE weight increases as the sample size
increases; see Robins et al.27 (pp. 553–4) for more details. In contrast, the IPCWEs with calibrated weights do not
exhibit this undesirable property and show more robustness to the functional form misspecification in the set-up of
the first simulation study.

Table 2. Bias, empirical standard deviation (SD) and root mean squared error (MSE) for IPCWEs of (β0, β1) in the first simulation study

when dropout is sequentially non-ignorable. MLE weights: unscaled MLE weights; SMLE weights: scaled MLE weights; CMLE weights:

calibrated weights. The naïve analysis without weighting and the analysis based on complete data are also presented.

n = 200 n = 500 n = 1000 n = 2000

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

Yj not included, Y j−1 included
Correct covariates
MLE β0 −0.43 3.80 3.83 −0.22 2.58 2.59 −0.28 1.88 1.91 −0.14 1.53 1.54

β1 0.76 0.97 1.24 0.60 0.86 1.05 0.59 0.62 0.85 0.52 0.65 0.83

SMLE β0 −0.45 3.76 3.79 −0.24 2.56 2.57 −0.29 1.86 1.89 −0.15 1.50 1.51

β1 0.77 0.96 1.23 0.60 0.85 1.04 0.59 0.61 0.85 0.52 0.65 0.83

CMLE β0 0.30 2.74 2.76 0.23 1.75 1.77 0.18 1.23 1.24 0.20 0.90 0.92

β1 0.36 0.31 0.47 0.34 0.22 0.41 0.33 0.16 0.37 0.33 0.13 0.35

Transformed covariates
MLE β0 −1.04 4.81 4.92 −0.73 5.18 5.23 −0.48 4.97 4.99 −0.49 5.15 5.18

β1 0.47 1.55 1.62 0.11 1.80 1.80 -0.09 2.03 2.03 −0.15 2.38 2.38

SMLE β0 −1.06 4.63 4.75 −0.75 4.52 4.58 −0.56 4.26 4.29 −0.53 4.34 4.37

β1 0.47 1.55 1.62 0.11 1.74 1.74 -0.08 1.95 1.95 −0.14 2.30 2.31

CMLE β0 0.18 2.80 2.81 0.12 1.84 1.84 0.11 1.37 1.38 0.13 1.25 1.26

β1 0.37 0.49 0.61 0.23 0.37 0.44 0.11 0.40 0.41 0.04 0.60 0.60

Y j−1 included, γYj included with fixed γ
Correct covariates
MLE β0 −0.69 3.76 3.82 −0.44 2.83 2.87 −0.50 2.09 2.15 −0.31 1.88 1.90

β1 0.54 1.04 1.17 0.31 1.04 1.09 0.28 0.76 0.81 0.16 0.84 0.86

SMLE β0 −0.72 3.75 3.82 −0.48 2.78 2.82 −0.52 2.06 2.12 −0.32 1.83 1.86

β1 0.54 1.04 1.17 0.32 1.03 1.07 0.28 0.75 0.80 0.16 0.84 0.85

CMLE β0 −0.03 2.77 2.77 −0.08 1.78 1.78 −0.12 1.25 1.25 −0.08 0.92 0.93

β1 0.16 0.34 0.38 0.11 0.24 0.27 0.08 0.19 0.21 0.06 0.16 0.17

Transformed covariates
MLE β0 −0.98 4.28 4.39 −0.71 3.84 3.91 −0.63 3.83 3.88 −0.74 4.41 4.47

β1 0.35 1.46 1.50 0.03 1.63 1.63 −0.14 1.81 1.81 −0.16 2.12 2.12

SMLE β0 −1.04 4.22 4.34 −0.77 3.68 3.75 −0.68 3.59 3.66 −0.77 3.95 4.02

β1 0.36 1.45 1.49 0.03 1.60 1.60 −0.13 1.76 1.77 −0.15 2.05 2.06

CMLE β0 −0.03 2.77 2.77 −0.05 1.81 1.81 −0.06 1.29 1.29 −0.01 0.98 0.98

β1 0.16 0.48 0.50 −0.01 0.37 0.37 −0.15 0.35 0.38 −0.25 0.32 0.41

Naïve analysis
β0 1.31 2.77 3.07 1.26 1.75 2.16 1.19 1.25 1.73 1.24 0.89 1.53

β1 2.14 0.51 2.20 2.15 0.32 2.17 2.16 0.23 2.17 2.15 0.16 2.16

Complete data
β0 0.05 2.66 2.66 −0.00 1.68 1.68 −0.07 1.19 1.19 −0.03 0.86 0.87

β1 −0.00 0.09 0.09 −0.00 0.06 0.06 0.00 0.04 0.04 0.00 0.03 0.03
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3.2.3 Summary
In all scenarios of the first simulation study, the IPCWEs with calibrated weights perform uniformly better in terms of
MSEs than the IPCWEs with the MLE weights. When the rate of missingness is high (43%), the dropout model is correctly
specified (i.e. with correct selection function and correct covariates) and sample sizes are larger (n = 1000, 2000),
the IPCWEs with calibrated weights still have MSEs that are not very far from the MSEs of the estimators based on
the complete data, demonstrating the remarkable gain in efficiency that can be achieved by calibrating IPCWEs.

3.3 Coverage of 95% confidence intervals based on bootstrap, jackknife or sandwich
variance estimator when the dropout process is sequentially ignorable
3.3.1 Setup
Since the first simulation study has demonstrated the better performance of the IPCWEs with calibrated weights under non-
ignorable dropout when the selection function and correct covariates are used, for simplicity, in the second simulation
study, we focus on the setting where the dropout process is sequentially ignorable (i.e. γ = 0) and correct baseline covari-
ates V and Y j−1 are included.

We will compare the empirical coverage probabilities of the following CIs:

1. Bootstrap CIs with calibrated weights, fixing the initial weights at those estimated from the original data.
2. Bootstrap CIs with calibrated weights, re-estimating the initial weights for each bootstrap sample.
3. Bootstrap CIs with unscaled MLE weights.
4. Bootstrap CIs with scaled (to sum to nT ) MLE weights.
5. For n = 200, 500, jackknife CIs with calibrated weights, fixing the initial weights at those estimated from the original

data.
6. For n = 200, 500, jackknife CIs with calibrated weights, re-estimating the initial weights for each jackknife sample.
7. For n = 200, 500, jackknife CIs with unscaled MLE weights.
8. For n = 200, 500, jackknife CIs with scaled MLE weights.
9. CIs based on sandwich variance estimator and unscaled MLE weights.
10. CIs based on sandwich variance estimator and scaled MLE weights.
11. CIs based on sandwich variance estimator and calibrated weights.

The MLE weights were calculated by fitting a standard logistic regression model for the dropout hazard given the correct
baseline covariates V and Y j−1. For bootstrap CIs (1)–(4), 500 bootstrap samples with replacement were generated, where
patients were resampling units, and the percentile method was used. For the smaller sample sizes n = 200, 500, we con-
structed jackknife CIs (5)–(8) by using the jackknife standard error. For CIs (9)–(11), based on the sandwich estimator of
the variance, we used the R package geepack to apply GEEs with the independence working correlation structure. The
empirical coverage probabilities of the 95% CIs were calculated as the proportions of simulations in which these CIs
include the true values of β0, β1.

3.3.2 Results
Table 3 presents the coverage probabilities of the 95% CIs based on non-parametric bootstrap, jackknife and sand-
wich estimator. The bootstrap CIs with calibrated weights all achieved better coverage than their counterparts with
the MLE weights, and their coverage is close to the 95% nominal level. This is regardless of whether or not the initial
weights were re-estimated for each bootstrap sample. This finding confirms that fixing the initial weights has
minimal impact on the coverage of the bootstrap CIs with calibrated weights. Overall, the bootstrap CIs with the
scaled MLE weights have slightly better coverage than their counterparts with unscaled weights, but the improve-
ment is minimal.

The poor coverage of the bootstrap CIs with the MLE weights might be explained by the moderate amount of finite
sample bias of the IPCWEs with the MLE weights. For example, as shown in the top part of Table 4, the IPCWEs
with the MLE weights showed a moderate amount of empirical bias, especially for β0, while the IPCWEs with calibrated
weights had negligible biases of similar magnitude to those from the analysis based on the complete data. On the other
hand, the maximum likelihood estimates of regression coefficient parameters in the dropout model appear to be unbiased,
as shown in the bottom part of Table 4. This suggests that the good performance of parameter estimators in the dropout
model does not necessarily translate to the good performance of IPCWEs for parameters in the outcome model.
Interestingly, the coverage of the bootstrap CIs of β0 with the MLE weights is even worse when the sample size increases.
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Table 3. Coverage probabilities (%) of 95% confidence intervals (CIs) based on non-parametric bootstrap, jackknife (only for

n = 200, 500) and sandwich variance estimator for (β0, β1) in the second simulation study when dropout is sequentially ignorable. MLE

weights: unscaled MLE weights; SMLE weights: scaled MLE weights; CMLE weights: calibrated weights.

n = 200 n = 500 n = 1000 n = 2000

Bootstrap, CMLE weights, fixing initial weights β0 94.3 94.0 94.7 94.7

β1 94.7 94.6 95.0 95.0

Bootstrap, CMLE weights, re-estimating initial weights β0 94.3 93.8 95.0 94.5

β1 94.7 94.5 95.5 93.9

Bootstrap, MLE weights β0 86.5 74.5 61.6 44.0

β1 91.2 91.4 92.3 90.8

Bootstrap, SMLE weights β0 86.8 75.9 64.3 46.5

β1 92.0 92.5 93.1 92.2

Jackknife, CMLE weights, fixing initial weights β0 94.7 94.7

β1 95.0 95.4

Jackknife, CMLE weights, re-estimating initial weights β0 94.3 94.2

β1 93.2 93.8

Jackknife, MLE weights β0 96.3 96.2

β1 95.5 94.2

Jackknife, SMLE weights β0 95.7 95.5

β1 95.0 93.7

Sandwich variance estimator, MLE weights β0 94.6 93.7 94.0 94.8

β1 92.3 90.5 89.9 88.4

Sandwich variance estimator, SMLE weights β0 94.7 93.8 94.0 94.8

β1 92.4 90.5 89.8 88.5

Sandwich variance estimator, CMLE weights β0 97.5 98.2 98.1 98.5

β1 100.0 100.0 99.9 100.0

Table 4. Top: Bias, empirical standard deviation (SD) and root mean squared error (MSE) for IPCWEs of β0 and β1 in the second

simulation study. MLE weights: unscaled MLE weights; SMLE weights: scaled MLE weights; CMLE weights: calibrated weights. The naïve

analysis without weighting and the analysis based on complete data (‘COMP’) are also presented. Bottom: Bias, empirical standard

deviation (SD) and root mean squared error (MSE) of the intercept (‘Int.’) and regression coefficients of baseline covariates and the

previous outcome in fitted logistic models for dropout.

n = 200 n = 500 n = 1000 n = 2000

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

MLE β0 0.32 3.44 3.45 0.25 2.38 2.40 0.13 2.00 2.00 0.11 1.47 1.47

β1 −0.22 0.91 0.93 −0.14 0.77 0.78 −0.09 0.71 0.72 −0.07 0.54 0.54

SMLE β0 0.34 3.41 3.43 0.26 2.35 2.37 0.14 1.94 1.94 0.12 1.44 1.44

β1 −0.22 0.90 0.93 −0.14 0.76 0.77 −0.09 0.70 0.71 −0.07 0.53 0.53

CMLE β0 −0.03 2.76 2.76 0.02 1.77 1.77 −0.03 1.24 1.24 0.01 0.89 0.89

β1 0.02 0.27 0.28 0.01 0.19 0.19 0.01 0.14 0.14 0.00 0.11 0.11

Naïve β0 −0.83 2.82 2.94 −0.83 1.78 1.96 −0.87 1.27 1.53 −0.83 0.89 1.22

β1 −1.44 0.46 1.51 −1.45 0.30 1.48 −1.45 0.21 1.46 −1.45 0.15 1.46

COMP β0 −0.02 2.70 2.70 0.01 1.72 1.72 −0.03 1.21 1.21 0.01 0.87 0.87

β1 0.00 0.09 0.09 −0.00 0.06 0.06 0.00 0.04 0.04 −0.00 0.03 0.03

Int. 0.00 0.12 0.12 0.00 0.07 0.07 0.00 0.05 0.05 0.00 0.04 0.04

V1 −0.03 0.23 0.23 −0.01 0.15 0.15 −0.01 0.10 0.10 −0.00 0.07 0.07

V2 0.01 0.14 0.14 0.00 0.09 0.09 0.00 0.06 0.06 0.00 0.04 0.04

V3 −0.01 0.14 0.14 −0.00 0.09 0.09 −0.00 0.06 0.06 −0.00 0.04 0.04

V4 −0.01 0.14 0.14 −0.00 0.09 0.09 −0.00 0.06 0.06 −0.00 0.04 0.04

Y j−1 0.02 0.24 0.24 0.01 0.15 0.15 0.00 0.11 0.11 0.00 0.08 0.08
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This might be due to one or more extreme MLE weights being more likely to occur in bootstrap samples when the sample
size is larger (e.g. n = 2000).

The coverage of the jackknife CIs is similar with different sets of weights. This might be because extreme MLE weights
are less likely to occur in jackknife samples, as only one patient’s data are removed in each jackknife sample.

For β0, CIs based on the sandwich estimator and the MLE weights have better coverage than the bootstrap CIs
using the MLE weights. But for β1, CIs based on the sandwich estimator and the MLE weights have slightly
poorer coverage than the bootstrap CIs using the MLE weights. In contrast, CIs based on the sandwich estimator
and calibrated weights are very conservative, with 97.5− 100% coverage. This is because the uncertainty of cali-
brated weights is ignored.

3.3.3 Summary
The bootstrap CIs using the MLE weights performed poorly in this simulation study, while the jackknife CIs and CIs
based on sandwich variance estimator using the MLE weights performed better, possibly because they were less
likely to be impacted by extreme MLE weights generated during re-sampling. Bootstrap and jackknife CIs using cali-
brated weights performed well, but CIs based on the sandwich estimator using calibrated weights were conservative.
There was essentially no difference in terms of coverage when the initial weights were re-estimated or not re-estimated
for each bootstrap/jackknife sample. Therefore, for computational efficiency, it is reasonable to fix the initial weights
when constructing bootstrap/jackknife CIs with calibrated weights, especially if the model for estimating the initial
weights is complex and slow to fit.

4 Analysis of the SLICC cohort data

4.1 The longitudinal outcome, covariates and secondary sources of missing data
The outcome of interest in our analysis is the physical component summary (PCS) score from the SF-36 questionnaire
completed by the SLICC patients at their study assessment visits. The PCS includes four subscales of physical functioning
(10 items), role-physical (4 items), bodily pain (2 items), and general health (5 items), and is standardized to range between
0 and 100. Following Hanly et al.,19 we treat the PCS as a continuous variable. The main covariate of interest is patient’s
time-varying NP status at annual study assessments. This is a categorical variable with three levels, which are, in order of
increasing severity: (i) patient has not yet had an NP event; (ii) patient has had an NP event, but not yet a CerVE attributable
to SLE; and (iii) patient has had a CerVE attributable to SLE. See Hanly et al. 19 for the definition of CerVEs attributable to
SLE. We used (iii) as the reference category. Following Hanly et al.,19 other covariates for the outcome model include:
assessment visit number (including linear and quadratic terms); sex; age at SLE diagnosis; groups defined by race/ethni-
city/location; post-secondary education; the SLE Disease Activity Index 2000 (SLEDAI-2K) at the current assessment;
SLICC/ACR Damage Index (SDI) excluding the NP component at the current assessment; corticosteroids, antimalarials
and immuno-suppressant use since last assessment visit.

Besides the loss to follow-up, there were secondary sources of missing data which resulted in intermittent missing data
in the PCS and missing data in other covariates such as education, SLEDAI-2K and SDI. It was not uncommon for patients
to miss more than one annual assessment visit and then came back for later assessments, which resulted in a moderate
amount of intermittent missing data in the PCS (19.4% out of 12,889 assessment visits). When there was one intermittent
missing PCS value, the last observed value was carried forward; otherwise the patient was treated as having dropped out
immediately before the first of the two or more consecutive missed visits, and any subsequent visits were ignored. Missing
PCS and SLEDAI-2K values at enrolment (visit 0) were imputed as the patient’s values at the first follow-up visit (visit 1),
if these values were available; patients with missing PCS and SLEDAI-2K values at visits 0 and 1 were excluded from the
analysis. Other intermittent missing SLEDAI-2K values were imputed by ‘last observation carry forward’. In addition, we
categorized SDI values as 0, 1, 2, 3 and ≥ 4 and created a separate category for missing SDI. This is because SDI was only
available for recording after certain conditions were present for at least 6 months and therefore there were a lot of missing
SDI values at enrolment in patients who had only recently been diagnosed with SLE. For all other covariates, we used ‘last
observation carry forward’ to impute the missing values. Finally, we excluded 87 patients with missing education infor-
mation. This left 1574 patients in the analysis. We administratively censor the follow-up at the earliest of visit 10 and 10
December 2015. As a result, the maximum number of visits that the 1574 SLICC patients could potentially make before 10
December 2015 was 12,887, which is less than 1574 × 11 = 17,314. Of these 12,887 potential visits, 8901 had PCS values
that were either observed or imputed as described above.
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4.2 The dropout model and estimated weights
We first fit the dropout model of (3) using MLE and assuming that the dropout process is sequentially ignorable, that is, γ = 0.
The set of baseline covariates listed in Section 4.1 is included in this model. For the PCS and time-varying covariates (including
NP status, SLEDAI, SDI scores and medication use), the most recent value is used. All continuous variables are standardized.
Linear and quadratic effects of continuous variables are included in the model initially, but quadratic effects are removed if they
are not significantly associated with the dropout hazard. Table 5 presents the estimates, standard errors, 95% CIs and p-values of
Wald tests for regression coefficients in the fitted dropout model. Note that positive regression coefficient estimates indicate
smaller probabilities of dropping out. Dropout is significantly associated with race/location, antimalarial use, SDI scores, and
age at SLE diagnosis (borderline significant). Since SLE patients taking antimalarials usually have milder disease activities,
this might explain why these patients were more likely to remain in the study. By definition, patients with higher SDI scores
have had higher disease activities, which have led to permanent damage to various organs. Thus, it is not surprising that
these patients were less likely to remain in the study. There was a lot of variation across race/location groups in terms of
dropout hazards, which could partly relate to differences in disease severity across race/ethnicity groups and differences
across locations in disease management practices. However, after adjusting for the above covariates, the dropout hazard does
not appear to be associated with the previous PCS scores.

We used the fitted dropout model to obtain the initial weights and then applied the calibration procedure in Section 2.3.
To accommodate the administrative censoring due to staggered entry to the SLICC cohort, we slightly modify the calibra-
tion restrictions in (6) and (7) by replacing T with Ti, the maximum number of potential follow-up visits a patient could
make before the study end. To make a fair comparison, we scale the MLE weights to make

∑n
i=1

∑Ti
j=1

RijWC
ij (α̂, γ) =

∑n
i=1 Ti, while the baseline visits have weights of ones. Note that here we assume that the missingness

due to administrative censoring is completely at random, so that E(Yij ∣ X ij) = E(Yij ∣ X ij, Ti ≥ j). We first estimated the

Table 5. Fitted model for the dropout process in the SLICC data. LL: lower limit of 95% CI; UL: upper limit of 95% CI.

Estimate Std. Error LL UL p-value

Intercept 2.19 0.24 1.71 2.66 <0.01

Visit <0.01

(linear term) 1.23 0.49 0.27 2.18

(quadratic term) −0.45 0.54 −1.51 0.61

Male 0.03 0.12 −0.20 0.26 0.82

Age at SLE diagnosis 0.06

(linear term) 0.09 0.04 0.00 0.18

(quadratic term) −0.06 0.03 −0.12 −0.00

Post-secondary education (yes) 0.05 0.08 −0.10 0.20 0.51

Race/location groups (vs. EU/Canada Caucasian) <0.01

US Caucasian −1.56 0.11 −1.78 −1.35

Hispanic −1.06 0.12 −1.29 −0.83

US African −1.62 0.13 −1.87 −1.37

Other African 0.07 0.17 −0.26 0.39

Asian −0.42 0.12 −0.65 −0.18

Other races −0.69 0.19 −1.05 −0.33

Corticosteroids use (yes) 0.05 0.08 −0.12 0.21 0.57

Antimalarial use (yes) 0.17 0.08 0.02 0.33 0.03

Immuno-suppressant use (yes) 0.14 0.08 −0.02 0.30 0.09

SLEDAI 0.05 0.04 −0.02 0.12 0.19

SDI w/o NP 0.01

1 vs. 0 −0.22 0.11 −0.43 −0.00

2 vs. 0 0.05 0.15 −0.24 0.35

3 vs. 0 −0.38 0.20 −0.77 0.00

>=4 vs. 0 −0.69 0.22 −1.12 −0.25

NA vs. 0 −0.11 0.12 −0.35 0.12

NP status 0.47

Other NP w/o CerVE vs. CerVE 0.15 0.20 −0.24 0.55

No NP vs. CerVE 0.07 0.20 −0.32 0.46

PCS at the previous visit 0.03 0.04 −0.04 0.11 0.39
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calibrated weights by including all variables listed in Table 5 in the calibration restrictions. In addition, we obtained cali-
bration weights by further adding the interactions between the visit number and baseline and time-varying covariates, as
recommended in Section 2.3 and implemented in the simulation studies. The results for the outcome model and the sen-
sitivity analysis were very similar for the two sets of calibrated weights. Therefore here we only present the results from
applying the first set of calibrated weights.

Figure 1 presents the violin plots of the unscaled MLE weights, scaled MLE weights and calibrated weights for the
follow-up visits, as well as the scatterplot of the scaled MLE weights and calibrated weights. The minimum/maximum
values of the unscaled MLE weights, scaled MLE weights and calibrated weights are 1.058/19.663, 0.942/17.508 and
0.616/11.514, respectively. It is clear from Figure 1 that the calibrated weights are less variable than the MLE weights.
Overall, these weights appear to be not very extreme, which suggests that the positivity assumption is likely to hold.

Figure 1. Violin plots and scatterplot of the MLE weights (MLE: unscaled MLE weights; SMLE: scaled MLE weights) and calibrated

weights assuming sequential ignorability of the dropout process in the SLICC data.

Table 6. Demographics summaries in the target population (Target) and the weighted samples using the unscaled MLE weights (MLE),

scaled MLE weights (SMLE) and calibrated weights (CMLE) in the SLICC data analysis.

Target MLE SMLE CMLE

Gender (number of observations

before study cut-off)

Female 11524 12794.99 11546.33 11524

Male 1363 1484.25 1340.67 1363

Race/location (number of observations

before study cut-off)

EU/Canada Caucasian 4609 5153.05 4651.06 4609

US Caucasian 1778 1907.95 1722.55 1778

Hispanic 1785 2031.99 1832.45 1785

US African 1121 1183.01 1068.61 1121

Other African 987 1104.38 996.62 987

Asian 2105 2354.79 2124.59 2105

Other 502 544.06 491.13 502

Age at SLE diagnosis

Mean 34.67 34.57 34.57 34.67

Standard deviation 13.30 13.27 13.27 13.30
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Table 6 presents the summaries of the demographic variables in the target population and the weighted samples using
the unscaled MLE weights, scaled MLE weights and calibrated weights. It is apparent that calibrated weights exactly
balance the distributions of all the demographic variables in the target population and the weighted samples, but the
MLE weights only seem to balance age at SLE diagnosis well.

4.3 Results for the outcome model
Columns 1–9 in Table 7 present the point estimates and bootstrap SEs of regression coefficients for the naïve analysis
without weighting, and IPCWEs using the MLE weights and calibrated weights assuming sequential ignorability. For

Figure 2. Estimated regression coefficients and 95% bootstrap confidence intervals for the SLICC data. Top left panel: changes of

mean physical summary score (PCS) from baseline to visit 5. Top right panel: effect of corticosteroids use on PCS. Bottom panels: the

long-term effect of the occurrence of cerebrovascular (CerVE) events or any other neuropsychiatric (NP) events on PCS. Dotted line:

results from calibrated weights; solid lines: results from scaled MLE weights. The estimated effects with 95% CI covering zero and not

covering zero are in grey and black, respectively. γ is the coefficient of the current longitudinal outcome in the dropout model, that is,

the sensitivity parameter. For sensitivity analysis, we allow γ to vary from one to four times of the coefficient estimate of the previous

outcome Y j−1 in the dropout model assuming sequential ignorability.
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estimators with calibrated weights we note that the bootstrap SEs with and without recalculating the initial weights are
almost identical.

We focus on the main effect of interest, the ‘NP status’ effect. The effect of ‘other NP events without CerVEs’ vs.
‘CerVEs’ was increased when IPCW was applied, compared with the naïve analysis. This increase was most prominent
when IPCW with calibrated weights was used. The effect of ‘No NP’ vs. ‘CerVEs’ was similar across different estimators.
Nevertheless, the overall conclusions about the effects of ‘NP status’ remain the same: patients who had any previous NP
events had lower PCS scores on average than patients who did not have any previous NP events. There is no evidence that
the PCS scores differed between patients with any SLE-attributable CerVEs and patients with other NP events but without
SLE-attributable CerVEs. In addition, there were fairly large changes in estimates of the effects of visit, race/location
groups and corticosteroids use. For example, the negative effect of corticosteroids use on PCS was increased by one
SE more when IPCW with calibrated weights was applied compared with the naïve analysis, which suggests stronger evi-
dence for the negative association between corticosteroids use and patients’ HRQoL.

4.4 Sensitivity analysis
For sensitivity analysis, we let γ vary from one to four times the estimated coefficient of the previous PCS (0.03) in the
dropout model assuming sequential ignorability. That is, γ = 0.03, 0.06, 0.09, 0.12. This choice to restrict to positive γ
is based on the belief that patients with higher PCS scores were more likely to remain in the study. Columns 10–16 of
Table 7 present the point estimates and SEs of IPCWEs when γ = 0.03. It would be clearer to use graphics for assessing
the sensitivity of the point estimates and 95% bootstrap CIs to the value of γ. In Figure 2, we plot the estimates and CIs for
the effects of visit (represented by the change in mean PCS from baseline to visit 5), corticosteroids use and NP status
obtained from the naïve analysis and from the IPCWEs assuming different values of γ. For estimators with calibrated
weights, the bootstrap CIs by re-estimating and fixing the initial weights are almost identical. Here we only present the
result with initial weights re-estimated.

The reduced visit effect in the analyses with IPCW is obvious compared with the naïve analysis. This is expected
because patients with higher PCS are more likely to remain in the study. As discussed above, there are slight differences
between estimated NP status effects from the IPCWEs using MLE weights and those using the calibrated weights.
However, the main conclusions about the effect of NP status on PCS are similar across different analyses with IPCW
and consistent with the findings in Hanly et al.19

5 Conclusion and discussion
In this paper, we have proposed a sensitivity analysis approach for IPCWEs with calibrated weights under non-ignorable
dropout. Simulation studies showed that IPCWEs using calibrated weights performed uniformly better than IPCWEs using
weights estimated by maximum likelihood, including in settings with model misspecification. It was also shown that boot-
strap and jackknife CIs based on calibrated weights performed well, but CIs based on the sandwich variance estimator and
calibrated weights were conservative. Using the simple technique of fixing the initial set of weights before calibration to
those from the original data made no difference to the coverage of bootstrap/jackknife CIs. This is particularly useful to
speed up the computation when conducting sensitivity analyses since the analysis needs to be repeated for each set of
values considered for the sensitivity parameters. The computational efficiency of the proposed sensitivity analysis
approach, together with the better performance of the calibrated IPCWEs, will hopefully promote more widespread use
of IPCW in practice.

The proposed methods can be extended to handle intermittent missingness. Vansteelandt et al.17 and Wen and Seaman18

have described sensitivity analysis approaches for non-monotone missingness using inverse probability weights without
calibration. Their models can be used to estimate the initial weights before calibration. Then the calibration restriction
in equation (6) can be modified to ∑n

i=1

∑T
j=1

RijW
C
ij (λ)− 1

{ }
ϕj(Oi,j−1) = 0, (10)

where Rij is the indicator of whether the outcome is observed at visit j for patient i, Oi,j−1 =
(V i, X i0, Yi0, Ri1, Ri1X i1, Ri1Yi1, . . . , Ri,j−1, Ri,j−1X i,j−1, Ri,j−1Yi,j−1) and ϕj(Oi,j−1) is a function of Oi,j−1 that has the
same dimension of λ. This modified calibration restriction is very similar to the existing balancing conditions proposed
for handling missingness in the cross-sectional settings,9 except that it is now aggregated over time.
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In our simulation studies, we have demonstrated the better performance of the IPCWEs with calibrated weights than the
IPCWEs with the MLE weights when the dropout model is misspecified. However, it would be interesting to investigate
whether steps to reduce the risk of model misspecification when estimating the initial weights might improve the calibrated
IPCWEs. Data adaptive methods are useful for this purpose. In addition, they might help to stabilize the calibrated weights,
in light of the recently established connection between minimum dispersion approximate balance weights and penalized
estimation of propensity scores using LASSO.28 In future research, we will explore the method of sieves29 for estimating
the initial weights because it allows flexible data-adaptive estimation but retains the usual root-n consistency under regu-
larity conditions and the validity of bootstrap/jackknife CIs.
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