
Raft Refloated: Do We Have Consensus?

Heidi Howard Malte Schwarzkopf Anil Madhavapeddy Jon Crowcroft
University of Cambridge Computer Laboratory

first.last@cl.cam.ac.uk

ABSTRACT
The Paxos algorithm is famously difficult to reason about and even
more so to implement, despite having been synonymous with dis-
tributed consensus for over a decade. The recently proposed Raft
protocol lays claim to being a new, understandable consensus algo-
rithm, improving on Paxos without making compromises in perfor-
mance or correctness.

In this study, we repeat the Raft authors’ performance analysis.
We developed a clean-slate implementation of the Raft protocol and
built an event-driven simulation framework for prototyping it on
experimental topologies. We propose several optimizations to the
Raft protocol and demonstrate their effectiveness under contention.
Finally, we empirically validate the correctness of the Raft protocol
invariants and evaluate Raft’s understandability claims.

1. INTRODUCTION
Much contemporary systems research is notoriously difficult to

reproduce [7], despite taking place in an era of open data, open ac-
cess and open source. In addition to obstacles common across all
areas of Computer Science, reproducing systems research also faces
the challenge of having to replicate experimental setups. How-
ever, replication of research—or indeed its transfer to production
environments—can also be hampered by another factor: the under-
standability of the research described.

A prime example of an area in which reproduction of research
suffers from this problem is distributed consensus—i.e. protocols
that allow nodes in an unreliable distributed system to agree on
an ordering of events. The inherent complexity of such protocols
hampers their understandability, and complex configuration makes
it challenging to replicate experimental setups exactly.

The “gold standard” algorithm in distributed consensus is the
Paxos protocol. Lamport’s original description of it [14], although
highly cited, is notoriously difficult to understand. Moreover, while
Lamport went on to sketch approaches to Multi-Paxos based on
consecutive runs of Paxos, its under-specification has led to diver-
gent interpretations and implementations. This has led to much
work that frames the protocol in simpler terms [15, 28] or opti-
mized it for practical systems [16, 17, 21]. A few implementations
of Paxos exist [2, 3] and are used in industry systems, but hardly
any implementations are publicly available.

Raft [26] is a new distributed consensus protocol that was de-
signed to address these problems. Its authors argue that Raft is
superior to Lamport’s Multi-Paxos protocol as it enhances under-
standability while maintaining performance and correctness. If this
is true, practical reproduction of Raft and its performance evalu-

Copyright is held by the authors

ation ought to be far easier than with Multi-Paxos. Our study in
this paper evaluates the claims about Raft made by its designers.
Is it indeed easily understandable, and can the encouraging perfor-
mance and correctness results presented by Ongaro and Ousterhout
be independently confirmed?

In the endeavour to answer this question, we re-implemented
Raft in a functional programming language (OCaml) and repeat the
performance evaluation from the original Raft paper [26] using our
independent implementation. Disparity between the original and
replicated setups, in combination with lack of detailed descriptions
of experimental setups in academic publications, can hamper un-
dertakings like ours. We indeed encountered this problem in our
efforts, and document our use of a flexibly configurable simulation
environment in response to this challenge.

Finally, we also review our experience of independently repro-
ducing the results of a recent research project that used modern
tools and techniques to disseminate its research artifacts. We com-
ment on the impact that the choices of tools and support by the
original authors can have on the success of a reproduction effort.

In summary, in this paper we make the following contributions:

1. We build a clean slate implementation of the Raft consensus
algorithm (§2), to test the understandability of the protocol
(§4.5).

2. We use our experience to describe the protocol in detail in our
own words, explicitly dealing with the protocol’s subtleties
(§3.1).

3. We develop an event-driven distributed systems simulator and
test it using our Raft consensus implementation (§3.2; simu-
lator architecture is shown in Figure 1).

4. To calibrate our analysis, we simulate the experiment behind
Figure 14 in the original paper and extend the authors’ anal-
ysis to suggest optimizations to the protocol (§4).

5. To test our implementation’s correctness, we model Raft nodes
as non-deterministic finite state automata in Statecall Policy
Language (SPL) [19, 20] and validate over 100,000 simula-
tions traces against this model (§4.4).

6. We extend this analysis to our trace checker, which uses the
simulator’s holistic view of the cluster to validate the proto-
col’s safety guarantees (§4.4).

7. We close with a recapitulation of our experience of practi-
cally reproducing a recent piece of systems research and con-
trast our findings with those of previous endeavours (§6).



Simulator

Real time
Simulation

Discrete
Simulation

JS Visualiser Trace Checker

Trace Analysis
& Data collection

Consensus
Module

SPL Safety
Monitor

State Machine

Network & Node
Failure

Simulator

Event Queue

Node States

Figure 1: Overall architecture of our simulator.

When the work started in September 2013, Raft was gaining pop-
ularity with developers and a dozen implementations of the protocol
in various languages and at different stages of development existed.
However, at the time, the Raft paper was yet to be published in a
peer-reviewed venue and therefore there was no formal follow-up
literature to validate the authors claims.

Nevertheless, the Raft authors had already met many of the re-
quirements for good reproducibility (§5): they provided an open-
source reference implementation1 under the permissive ISC license
and made the draft paper available online before formal publica-
tion. Furthermore, they also made the teaching material for the pro-
tocol, used to analyse the understandability of the algorithm against
Multi-Paxos, freely available. All of these factors contributed to the
success of our efforts (see §6).

2. BACKGROUND
In this section, we give an informal description of the Raft con-

sensus algorithm. We refer the reader to the original paper [26] for
the authors’ description of the protocol and the associated correct-
ness proofs. Readers who are familiar with Raft may skip directly
to the next section, but should take note of one minor difference in
terminology. While Ongaro and Ousterhout use the term election
timer to refer to the time a follower waits until starting an election
and do not name the other timing parameters, we refer to the pa-
rameters in a finer-grained fashion as follower timeout, candidate
timeout, leader timeout and client timeout.

Distributed consensus is typically framed in the context of a repli-
cated state machine (Figure 2), drawing a clear distinction between
the state machine (a fault-tolerant application), the replicated log
and the consensus module (handled by the consensus protocol like
Multi-Paxos or Raft).

This perspective on distributed consensus mimics real-world ap-
plications: ZooKeeper [12]—currently the most popular open-source
consensus application—and Chubby [3]—a fault-tolerant, distributed
1http://github.com/logcabin/logcabin

Client

Consensus
Module

Client

Consensus
Module

Consensus
Module

Log

State Machine

Consensus
Module

Log

State Machine

Consensus
Module

Log

State Machine

Network

Figure 2: Components of the replicated state machine approach.

locking mechanism used by applications such as the Google Filesys-
tem [9] and BigTable [5]—both use the replicated state machine
approach [4].

2.1 Assumptions
Raft consensus operates under the same set of assumptions as

Multi-Paxos. The vast literature on Multi-Paxos details techniques
to reduce these assumptions in specific contexts, but here we only
consider classic Multi-Paxos. Its fundamental assumptions are as
follows:

1. the distributed system is asynchronous, i.e. no upper bound
exists for the message delays or the time taken to perform
computation, and we cannot assume global clock synchro-
nization;

2. network communication between nodes is unreliable, includ-
ing the possibility of network delay, partitions, packet loss,
duplication and re-ordering;

3. Byzantine failures [27] cannot occur; and

4. clients of the application using the protocol must commu-
nicate with the cluster via the current leader, and it is their
responsibility to determine which node is currently leader.

Furthermore, Raft makes the following implementation assump-
tions, some of which can be relaxed with further engineering effort:

1. the protocol has access to infinitely large, monotonically in-
creasing values;

2. the state machines running on each node all start in the same
state and respond deterministically to client operations;

3. nodes have access to infinite persistent storage that cannot be
corrupted, and any write to persistent storage will be com-
pleted before crashing (i.e. using write-ahead logging); and

4. nodes are statically configured with a knowledge of all other
nodes in the cluster, that is, cluster membership cannot change
dynamically.



Follower Candidate Leader

starts up/
recovers

times out,
starts election

times out,
restarts election

receives votes from
majority of nodes

discovers
leader

discovers node with higher term

Figure 3: State transition model for Raft leader election.

The latter two points can be relaxed by extending Raft: log com-
paction [24] helps support Raft on limited storage and a dynamic
membership extension [23, 26] has been proposed by Ongaro and
Ousterhout. Both of these extensions are beyond the scope of this
paper, however.

2.2 Approach
The clients interact with the replicated state machine via com-

mands. These commands are given to the consensus module, which
determines whether it is possible to commit the command to the
replicated state machine and does so if possible. Once a com-
mand has been committed, the consensus protocol guarantees that
the command is eventually committed on every live state machine
and that it is committed in the same order. This provides linearis-
able semantics to the client: each command from the client appears
to execute instantaneously, exactly once, at some point between its
invocation and positive response.

In the pursuit of understandability and in contrast to similar algo-
rithms such as Viewstamped Replication [18, 22], Raft uses strong
leadership, which extends the ideas of leader-driven consensus by
adding the following conditions:

1. all message passing between system nodes is initiated by a
leader (or a node attempting to become leader). The proto-
col specification makes this explicit by modelling communi-
cations as RPCs, differentiating between distinctly active or
passive node roles;

2. clients are external to the system and must contact the leader
directly to communicate with the system; and

3. for a system to be available, it is necessary (but not suffi-
cient) for a leader to have been elected. If the system is in
the process of electing a leader, it is unavailable, even if all
nodes are up.

2.3 Protocol Details
Each node has a consensus module, which is always operating in

one of the following modes:

• Follower: A passive node which only responds to RPCs and
does not initiate any communication.

• Candidate: An active node which is attempting to become a
Leader. It initiates a request for votes from other nodes (the
RequestVote RPC).

• Leader: An active node which is currently leading the clus-
ter. This node handles requests from clients to interact with
the replicated state machine (via AppendEntries RPCs).

1 2 3 4 5 6 7

1
x←3

1
y←9

2
x←2

3
x←0

3
y←7

3
x←5

3
x←4

1
x←3

1
y←9

2
x←2

3
x←0

1
x←3

1
y←9

2
x←2

3
x←0

3
y←7

3
x←5

3
x←4

1
x←3

1
x←3

1
y←9

2
x←2

3
x←0

3
y←7

3
x←5

log index

leader L3

followers

committed entries

Figure 4: Example logs for a cluster of five nodes. Li denotes the
leader for term i, while black bars indicate the commit threshold.

Since Raft cannot assume global clock synchronization, global
partial ordering on events is achieved with a monotonically increas-
ing value, known as a term. Each node stores its perspective of the
term in persistent storage. A node’s term is only updated when it
starts (or restarts) an election, or when it learns from another node
that its term is out of date. All messages include the source node’s
term. The receiving node checks it, with two possible outcomes: if
the receiver’s term is larger, a negative response is sent, while if the
receiver’s term is smaller than or equal to the source’s, its term is
updated before parsing the message.

2.3.1 Leader Election
On start-up or recovery from a failure, a node becomes a follower

and waits to be contacted by the leader, which broadcasts regular
empty AppendEntries RPCs. A node operating as a follower will
continue to be in follower state indefinitely unless it neither hears
from a current leader, or it grants a vote to a candidate (details be-
low). If neither of these occur within its follower timeout, the fol-
lower node transitions to a candidate.

On becoming a candidate, a node increments its term, votes for
itself, starts its candidate timeout and sends a RequestVote RPC to
all other nodes. Figure 3 shows the non-deterministic finite automa-
ton (NFA) for Raft, in which there are three possible outcomes of
this election. The candidate either (i) receives a strict majority of
votes and becomes leader for the term, or (ii) fails to receive enough
votes and restarts the election, or (iii) learns that its term is out of
date and steps down. A follower only votes for one node per term.
The vote is stored on non-volatile storage and the term increases
monotonically such that at most one node becomes leader per term.

2.3.2 Log Replication
Once a node has established itself as a leader, it can service re-

quests for the replicated state machines. Clients contact the leader
with commands to be committed. On receipt, the leader assigns a
term and index to the command. This uniquely identifies the com-
mand in the nodes’ logs. The leader then tries to replicate the com-
mand to the logs of a strict majority of nodes. If successful, the
command is committed, applied to the state machine of the leader



1 1
x←3

1
!y

2 1
x←3

1
!y

3 1
x←3

1
!y

1
y←9

1 2 3log index

L1

no
de

s

(a) y ← 9 arrives at leader.

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
x←3

1
!y

1
y←9

1
y←9

1 2 3

L1

(b) y ← 9 is replicated.

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1 2 3

L1

(c) Leader commits.

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1
x←3

1
!y

1
y←9

1 2 3

L1

(d) Commit is replicated.

Figure 5: Example of a simple, failure free commit: node 1 commits y ← 9 in term 1 at index 3.

and the result returned to the client.
Figure 4 shows an example set of logs where each row represents

the log of a node, each column denotes the index into the log and
each log entry contains the command and its associated term (de-
noted by entry colour). The state machine is a key-value store and
the possible commands are add (e.g. x ← 5 associates 5 with key
x) and find (e.g. !y returns the value associated with the key y). In
Figure 4, the first node is leader and has committed the first six en-
tries in the log as they have been replicated on a majority of nodes.
Nodes 2 and 4 may have failed or had their messages lost/delayed
in the network. Therefore, their logs have fallen behind.

Consider a case where no nodes fail and all communication is re-
liable. We can safely assume that all nodes are in the same term and
all logs are identical. The leader broadcasts AppendEntries RPCs,
which includes the log entry that the leader is trying to replicate.
Each node adds the entry to its log and replies with success. The
leader then applies the command to its state machine, updates its
commit index and returns the result to the client. In the next Ap-
pendEntries message, the leader informs all the other nodes of its
updated commit index. The nodes apply the command to their state
machines and update their commit index in turn. This process is
shown in Figure 5.

In this example of a simple commit, all nodes’ logs are identical
to start with, their commit indexes are 2, and node 1 is the term 1
leader. In Figure 5a, node 1 receives the command y ← 9 from the
consensus module and appends it to its log. Node 1 then dispatches
AppendEntries RPCs to nodes 2 and 3. These are successful, so
node 2 and 3 add y ← 9 to their logs, as shown in Figure 5b. In
Figure 5c, node 1 hears of this success, it updates its commit index
(denoted by a thick black line) from 2 to 3, applies the command
to its state machine and replies to the client. A later AppendEntries
from node 1 updates the commit indexes of nodes 2 and 3 from 2 to
3, as shown in Figure 5d.

Now, consider the case that some messages have been lost or
nodes have failed and recovered, leaving some logs incomplete. It
is the responsibility of the leader to fix this by replicating its log to
all other nodes. When a follower receives an AppendEntries RPC,
it contains the log index and term associated with the previous en-
try. If this does not match the last entry in the log, the node sends
an unsuccessful response to the leader. The leader is now aware
that the follower’s log is inconsistent and needs to be updated. The
leader decrements the previous log index and term associated with
that node. The leader keeps dispatching the AppendEntries RPC,
adding entries to the log until the follower node replies with suc-
cess and is therefore up to date.

Each node keeps its log in persistent storage, including a history
of all commands and their associated terms. Each node also has
a commit index, which represents the most recent command to be
applied to the replicated state machine. When the commit index is
updated, the node passes all commands between the new and old
commit index to the local application state machine.

2.3.3 Safety and Extra Conditions
To ensure safety, the above description must be augmented with

several extra conditions. Since the leader duplicates its log to all
other logs, this log must include all previously committed entries.
To achieve this, Raft imposes further constraints on the protocol
detailed so far. First, a node will only grant a vote to another node if
its log is at least as up-to-date as the other node’s (defined as either
having a last entry with a higher term or, if terms are equal, a longer
log), this is later referred to as the extra condition on leadership.

The leader is responsible for replicating its log to all other nodes,
including committing entries from the current and previous terms.
In the protocol as described so far, however, it is possible to commit
an entry from a previous term, for a node without this entry to be
elected leader and to overwrite the already-committed entry.

For instance, in Figure 6a, node 1 is the term 4 leader, node 2 is
a follower and node 3 has failed. As leader, node 1 is responsible
for replicating its log to the other nodes. In this case, this means
replicating !y at index 2 from term 2. Node 1 successfully appends
!y to the log of node 2. Figure 6b then shows that since the entry is
now replicated onto two of three nodes, node 1 commits !y at index
2 from term 2 by updating its commit index (denoted by the thick
black line) from 2 to 3. The leader, node 1, then fails and node 3
recovers. Figure 6c shows the result of the leader election which is
held: node 3 wins in term 5 (since the leader’s term must be strictly
greater than 4). Node 1 quickly recovers and follows the current
leader (node 3 in term 5). Since, as before, the leader is responsible
for replicating its log to the other nodes, node 3 replicates its log to
nodes 1 and 2.

Finally, in Figure 6d, this ends up being inconsistent with !y at
index 2, which was already previously committed by node 1. This is
an impossible state and node 1 and 3 can now never agree. Raft ad-
dresses this problem by restricting the leader to only commit entries
from any previous term if the same leader has already successfully
replicated an entry from the current term. This is later referred to
as the “extra condition on commitment”.

The Raft protocol provides linearisable semantics [10], guaran-
teeing that a command is committed between the first time it is dis-
patched and the first successful response. The protocol, however,
does not guarantee a particular interleaving of client requests—but



1 1
x←3

2
!y

2 1
x←3

3 1
x←3

3
y←2

3
x←1

3
!x

1 2 3 4log index

no
de

s

L4

(a) Node 3 fails and node 1 is leader.

1
x←3

2
!y

1
x←3

1
x←3

3
y←2

3
x←1

3
!x

2
!y

1 2 3 4

L4

(b) Node 1 commits !y.

1
x←3

2
!y

1
x←3

3
y←2

3
x←1

3
!x

1
x←3

2
!y

1 2 3 4

L5

(c) Node 3 is the new leader.

1
x←3

3
y←2

3
x←1

3
!x

1
x←3

3
y←2

3
x←1

3
!x

1
x←3

3
y←2

3
x←1

3
!x

1 2 3 4

L5

(d) !y is overwritten at node 1.

Figure 6: Example of Leader Completeness violation, without the extra condition on commitment. The entry !y at index 2, term 2 is
committed by node 1 (the leader in term 4) but later overwritten by node 3 (the leader in term 5). Grey logs correspond to failed nodes.

it does guarantee that all state machines will see commands in the
same order. It also assumes that if a client does not receive a re-
sponse to a request within its client timeout or the response is nega-
tive, it will retry the request until successful. To provide linearisable
semantics, Raft must ensure that each command is applied to each
state machine at most once. To ensure this, each client command
has an associated serial number. Each consensus module caches
the last serial number processed from each client and each response
given. If a consensus module is given the same command twice,
then the second time it simply returns the cached response.

The protocol does not allow “false positives”, i.e. claiming that a
command has been committed when it in fact has not. However, the
protocol may give false negatives, claiming that a command has not
been committed when in fact it has. To accommodate this, the client
semantics specify that each client must retry a command until it has
been successfully committed (see above). Each client may have at
most one command outstanding at a time and commands must be
dispatched in serial number order.

The Raft authors claim that the protocol described provides the
guarantees listed below to a distributed consensus implementation.

Election Safety: at most one leader can be elected in a given
term.
Leader Append-Only: a leader never overwrites or deletes
entries in its log; it only appends new entries.
Log Matching: if two logs contain an entry with the same
index and term, then the logs are identical in all entries up to
and including the given index.
Leader Completeness: if a log entry is committed in a given
term, then that entry will be present in the logs of the leaders
for all higher-numbered terms.
State Machine Safety: if a node has applied a log entry at a
given index to its state machine, no other node will ever apply
a different log entry for the same index.

We check the correctness of these conditions for our implemen-
tation in §4.4.

3. IMPLEMENTATION
While the Raft algorithm is well-described, its utility as an easily

understandable and reproducible consensus algorithm can only be
tested by experiment. We therefore built a clean-slate implemen-
tation of the consensus algorithm from the description provided in

the paper and associated teaching materials [25]. Using a modular
OCaml-based approach, we: (i) separated the Raft protocol’s state
transitions; and (ii) built domain-specific frontends such as a trace
checker and simulation framework (see Figure 1).

3.1 Functional Protocol Implementation
As we are aiming to validate Raft’s safety guarantees, we im-

plemented the protocol with a small functional core that is strictly
limited to states laid out in the protocol. We chose OCaml as the
implementation language for reproduction (as compared to the orig-
inal implementation’s C++) due to its static typing and powerful
module system. The core protocol implementation is pure and does
not include any side-effecting code, and uses algebraic data types
to restrict the behaviour of the protocol to its own safety criteria.
Where the static type system was insufficient, we made liberal use
of assertion checks to restrict run-time behaviour.

Raft’s state transition models (such as Figure 3) are encoded in
Statecall Policy Language (SPL) [19, 20]. SPL is a first order im-
perative language for specifying non-deterministic finite state au-
tomata (NFA). We chose to use SPL due to its ability to be com-
piled to either Promela, for model checking in SPIN, or to OCaml,
to act as a safety monitor at run-time. Alternatives to SPL include
using systems such as MoDist [31] that model-check protocol im-
plementations directly, or encoding the model directly in Promela,
as has been recently done for Paxos [8].

3.2 Event-driven Simulation
In order to evaluate our Raft protocol implementation across a

range of diverse network environments, we also built a message-
level network simulation framework in OCaml. Beyond evaluat-
ing the performance of the protocol, we can also use our simula-
tion traces to catch subtle bugs in our implementation or the pro-
tocol specification. Since such issues may only occur very rarely
(e.g. once in 10,000 protocol runs), a fast simulator offers the unique
opportunity to address them via simulation trace analysis. Further-
more, we can use our simulator’s holistic view of the cluster to en-
sure that all nodes’ perspectives of the distributed system are con-
sistent with respect to the protocol. To meet these domain-specific
requirements, we designed our own simulation framework, instead
of opting for traditional event-driven network simulators like ns3
or OMNeT++ [30].

We reason about the protocol in terms of events which cause the
nodes of the cluster to transition between states in NFAs such as
that in Figure 3. These events are all either temporal (e.g. the pro-
tocol’s timers) or spatial (e.g. receiving RPCs from other nodes or



0 50 100 150 200 250 300 350 400
Time to elect leader [ms]

0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

Original (Ongaro and Ousterhout)

12–24 ms
25–50 ms
50–100 ms
100–200 ms
150–300 ms

(a) Varying T in follower timeout ranges (T, 2T ).

75 150 300 1000 3000 10000
Time to elect leader [ms, log10 scale]

0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

Original (Ongaro and Ousterhout)

12–24 ms
25–50 ms
50–100 ms
100–200 ms
150–300 ms

(b) Varying non-determinism in follower timeout.

Figure 7: Authors’ original results: cumulative distribution function (CDF) of time to elect a leader; follower timeout ranges in legends.

0 50 100 150 200 250 300 350 400
Time to elect leader [ms]

0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

Reproduction

12–24 ms
25–50 ms
50–100 ms
100–200 ms
150–300 ms

(a) Varying T in follower timeout ranges (T, 2T ).

75 150 300 1000 3000 10000
Time to elect leader [ms, log10 scale]

0

20

40

60

80

100
C

um
ul

at
iv

e
pe

rc
en

t
Reproduction

12–24 ms
25–50 ms
50–100 ms
100–200 ms
150–300 ms

(b) Varying non-determinism in follower timeout.

Figure 8: Reproduction results: cumulative distribution function (CDF) of time to elect a leader; follower timeout ranges in legends.

clients). This perspective lends itself to event-driven simulation,
where events are held in a global priority queue and applied se-
quentially to the nodes’ states. Each event in the queue holds in-
formation as to which node it operates on, the time it operates and
the operation itself, which results in new state for the node and new
events to be added to the queue.

Our simulator supports two modes of operation, Discrete Event
Simulation (DES) and Real-time Event Simulation (RES). This al-
lows us to vary the trade-off between simulation accuracy and time.
Event-driven simulation, particularly DES, allows us to rapidly it-
erate over the vast state space of simulation parameters to evaluate
performance and detect rarely occurring safety violations.

4. RESULTS
We now review the results of the original performance evalua-

tion (§4.1) and compare them against our results (§4.2). We sug-
gest optimizations to the protocol based on explorations using our
simulator (§4.3) and evaluate Raft’s safety guarantees (§4.4).

4.1 Original Results
The Raft authors’ performance analysis considers the time taken

to replicate a log entry in a typical case and the worst case time
to establish a new leader after a leader failure. For the former, the
authors highlight that this will, in the typical case, take one round
trip time to half the nodes in the cluster and can be optimized further
with batching. For the latter, the authors measure the time taken to
elect a new leader after the previous leader fails in a realistic worst
case. In the following, we will focus on the latter experiment.

Figure 7 reprints the results from Ongaro and Ousterhout’s eval-
uation of the duration of a Raft leader election.2 The raw results
were not publicly available, but the authors were happy to provide
the data for us.

Likewise, the experimental set-up was not described in the pa-
per in sufficient detail to reproduce it, but the authors were happy
to provide details on request and they are now documented pub-
2Reproduced with permission from the USENIX ATC paper [26,
Fig. 15] and Ongaro’s PhD thesis [23, Fig. 10.2].



licly [23]. The original experimental set-up used the authors’ Log-
Cabin C++11 implementation of Raft, across five idle machines
connected via a 1Gb/s Ethernet switch, with an average broadcast
time of 15ms.

The authors aimed to generate the worst-case scenario for leader
election. Two nodes were ineligible for leadership due to the extra
condition on leadership (see §2.3.3). This simulates two of the five
nodes having recently recovered from a failure, thus having their
log not yet up to date. Hence, they will not receive votes from
the other nodes. Furthermore, the setup also encouraged split votes
by broadcasting heartbeat AppendEntries RPCs before inducing a
crash in the leader node.

The follower and candidate timeouts were taken from a uniform
distribution, with the bounds shown in the legends in Figure 7.
The leader timeout was set to half the lower bound of the fol-
lower/candidate timeout. Figure 7 shows cumulative distribution
functions (CDFs) of the time between the crash of an old leader
and a new leader being established. Figure 7a varies the timeout
from T to 2T , for different values of T . Figure 7b represents the
time taken to establish a leader when the follower timeout has vary-
ing degrees of non-determinism, with the minimal follower timeout
fixed at 150ms.

4.2 Our Simulation Results
We used the information about Ongaro and Ousterhout’s exper-

imental setup to calibrate our simulation parameters (such as the
packet delay distribution and the number of nodes). The time taken
to elect a new leader is sufficiently short that we can assume the
absence of node failures during the election. As the original exper-
iments used TCP/IP for RPCs, we did not need to simulate packet
loss. Instead, we use a long tail for packet delay.

Our results from simulating the authors’ experimental set-up are
shown in Figure 8. Each curve represents 10,000 traces from the
discrete event simulation running at nanosecond granularity. We
observe that our simulation generally took longer to establish a
leader than the authors’ measurements in the case of high con-
tention. Otherwise, the results are very similar.

By contrast to the results shown, our early results greatly dif-
fered from the authors’ original results. Our early experiments
showed that making some nodes ineligible for leadership due to
the log consistency requirements does not actually reflect the worst
case. Though reducing the number of eligible nodes increases the
average time until the first node times out, it also reduces the con-
tention for leadership. Therefore, it does not in fact simulate the
worst case (which requires high contention)—hence our initial ex-
periments did not make any of the nodes ineligible for leadership.

Furthermore, since we were simulating the worst case behaviour,
we always dispatched AppendEntries RPCs from the leader just be-
fore crashing, unlike the Raft authors. Since doing so resets the fol-
lower timeouts, the authors’ results were reduced by∼ U(0, T

2
), as

otherwise AppendEntries RPCs are dispatched every T
2

, where T is
the lower limit of the follower timeout range.

Following consultation with the authors, it emerged that we had
used different experimental setups. At the time of performing this
evaluation, the Raft paper under-specified the experimental setup
used, but emphasised that it was a “worst-case scenario”. This has
since been clarified in the paper before its publication.

After observing that the stepping in the curves changed in com-
parison with the authors’ results, we experimented with different
simulation granularities, but observed no significant difference be-
tween the levels of granularity tested (with the exception of using

Follower timeout (ms)
150–300 150–200 150–155

Original version 10.8 14.6 108.2
Fixed reduction 10.9 15.0 53.0
Exponential backoff 11.1 13.9 87.9
Combined 11.7 14.1 48.6

Table 1: Mean number of packets to elect a leader.

millisecond granularity for the 150–151ms case, as expected). De-
spite this, we chose to proceed with experiments at nanosecond
granularity due to a marginal improvement in results and negligi-
ble increase in computation time.

4.3 Proposed Optimizations
We were then able to use our framework to rapidly prototype op-

timizations to the protocol by virtue of having calibrated our simu-
lation by replicating the authors’ original experimental setup. This
section details three such examples.

Different Follower and Candidate Timers. The authors’ guid-
ance for setting the protocol’s timers is summarized below.

broadcast time� candidate timeout� MTBF
candidate timeout = follower timeout ∼ U(T, 2T )

leader timeout = T
2

They suggest T=150ms as a suitable parameter for the protocol and
results with this value can be seen in Figure 7. Our hypothesis,
however, was that the time taken to elect a leader in a highly con-
tested environment is significantly improved by not simply setting
the candidate timer to the same range as the follower timer. As
the authors use the same timer range for candidates and follow-
ers, they are waiting a minimum of 150ms (and up to twice that)
before restarting an election. This is despite the fact that, on av-
erage, a node receives all of its responses within 15ms. Figure 9a
instead sets the minimum candidateTimeout to µ + 2σ. Assum-
ing broadcastTime ∼ N(µ, σ), this is sufficient 95% of the time.
We can see that in a highly contested environment (the 150–155ms
case), 95% of the time leaders are established within 281ms (Fig-
ure 9a), compared to 1330ms without the optimization (Figure 8b).

Binary Exponential Backoff. We further hypothesised that we
might improve the time taken to elect a leader by introducing a
binary exponential backoff for candidates that have been rejected
by a majority of replicas. Figure 9b shows the improvement in
leader election time gained by enabling binary exponential backoff
and Figure 9c shows the effect of combining both optimizations.
Both optimizations performed considerably better than the original
implementation in isolation, but the combined optimizations per-
formed slightly worse than the fixed reduction optimization alone.

Figure 10 shows the number of packets sent to elect a leader in
the 150–200ms case without any optimization. The minimum num-
ber of packets is six, representing a single node dispatching Appen-
dEntries RPC to the other four nodes and receiving votes from the
first two. The plot clusters around multiples of eight: traces under
eight represent the first node timing out and winning the election,
traces between 8 and 16 represent two nodes timing out before a
leader is elected.

We were concerned that the reduction in time to elect leader
might come at the cost of increasing the network load by running
additional elections. Table 1 demonstrates that this is not the case:
we observe a marginal increase in the low contention cases and a
significant reduction in the highly contended cases.



100 150 200 250 300 350 400
Time to elect leader [ms]

0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

12–24 ms
25–50 ms
50–100 ms
100–200 ms
150–300 ms

(a) Candidate timeout set to X ∼ U(23, 46).

100 150 200 250 300 350 400
Time to elect leader [ms]

0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

12–24 ms
25–50 ms
50–100 ms
100–200 ms
150–300 ms

(b) Binary exponential backoff for candidate timeout.

100 150 200 250 300 350 400
Time to elect leader [ms]

0

20

40

60

80

100

C
um

ul
at

iv
e

pe
rc

en
t

12–24 ms
25–50 ms
50–100 ms
100–200 ms
150–300 ms

(c) Combining both optimizations from (a) and (b).

Figure 9: Investigating the impact of alternative candidate time-
outs, while keeping the range of follower timeouts fixed. The fol-
lower timeouts in milliseconds are shown in the legends.

8 16 24 32 40 48 56 64
Number of packets to elect leader

0%

5%

10%

15%

20%

25%

30%

35%

P
ro

ba
bi

lit
y

Figure 10: Distribution of the number of packets to elect a leader.

Client Timeout Disaggregation. As expected, the vast major-
ity of client commands were committed with a latency of approx-
imately BroadcastTime + RTT, where RTT refers to the round trip
time between the client and the leader. A small minority of com-
mands took considerably longer, most commonly representing leader
failure and subsequent election of a new leader. A significant over-
head was observed by clients waiting for responses from failed
nodes during leader discovery. Unlike the other RPCs used by Raft,
the client commit timer, which is used by clients to retransmit re-
quests to nodes, is much higher than the RTT. This is because the
client must wait while the leader replicates the client command to
the cluster nodes. Introducing a ClientCommit leader acknowledge-
ment would allow us to split this into two distinct timers, where first
is just above RTT and handles retransmitting normal ClientCommit
requests, while the second is used after the client has received a
leader acknowledgement and is much higher to allow for time to
replicate the request.

4.4 Correctness
We checked each of our thousands of simulation traces for cor-

rectness of the Raft safety guarantees using the SPL safety monitor
and extensive assertion checking. At no point were the authors’
claims about the safety guarantees violated.

However, we did observe permanent livelock in some of our sim-
ulation traces, caused by the interaction between the extra condition
on commitment (detailed in §2.3.3) and our placement of the client
request cache. We recommend that if a client request is blocked
by the extra condition on commitment, the leader should create a
no-op entry in its log and replicate this across the cluster. We refer
the reader to our technical report [11] for a detailed analysis of this
issue.

4.5 Understandability
Raft’s goal of developing an understandable consensus algorithm

addresses a clear need in the distributed systems community. In our
experience, Raft’s high level ideas were easy to grasp—more so
than with Paxos. However, the protocol still has many subtleties,
particularly regarding the handling of client requests. The iterative
protocol description modularizes and isolates the different aspects
of the protocol for understandability by a reader, but this in our ex-
perience hinders implementation as it introduces unexpected inter-



action between components (see previous section). As with Paxos,
the brevity of the original paper also leaves many implementation
decisions to the reader.

Some of these omissions, including detailed documentation of
the more subtle aspects of the protocol and an analysis of the au-
thors’ design decisions, are rectified in Ongaro’s PhD thesis on
Raft [23]. However, this only became available towards the end
of our effort. Despite this, we believe that Raft has achieved its
goal of being a “more understandable” consensus algorithm than
Paxos.

5. EXPERIENCE SUMMARY
Simulating experimental setups proved more challenging than

expected, as the nature of functional programming and simulation
forced us to be highly specific about otherwise implicit parameters.
The simulator provides an overwhelming number of configuration
parameters and we had great difficulties choosing a suitable statis-
tical distribution for simulating packet delay. Simulation is inher-
ently limited to approximating behaviour.

In addition, our effort was complicated by the regular revisions to
the draft of the Raft draft paper. It would have helped us keep track
if an explicit “change log” had been available although the original
research was still ongoing at the time.

Our approach effectively separates a functional core protocol im-
plementation from language and domain-specific considerations.
Event-driven simulation allows us to assess the claims about a sys-
tem with minimal infrastructure and overhead. Readers can easily
reproduce our results: each simulator configuration file offers com-
plete formal documentation of the experiment setup investigated.

Our take-aways from this work are perhaps best summarized as
follows:

1. Modelling protocol state transitions: the Statecall Policy
Language allows researchers to model their protocol and com-
pile this model for validation in the SPIN model checker and
to an OCaml runtime safety model, ensuring that the imple-
mentation is consistent with the verified model.

2. Simulation front end: building systems with interfaces for
simulations is worthwhile. Doing so not only aids debugging
and testing, but simulation configuration files provide a for-
mal specification of experimental set-ups.

3. Coordinating a community around a project: Raft is an
excellent example of a research project encouraging repro-
duction. In particular, Ongaro and Ousterhout’s Raft mailing
list and the project webpage, with its directory of implemen-
tations, resources and talks which can be contributed to di-
rectly via git pull requests, are highly useful.

More generally, reproducibility of systems research is a topic that
receives recurring interest. Collberg et al. [7] recently surveyed the
reproducibility of 613 papers from top systems venues. They were
only able to set up reproduction environments based on the authors’
code in fewer than 25% of cases, and consequently proposed a spec-
ification sharing syntax for inclusion in paper headers at submission
and publication time. Although such specifications would certainly
be an improvement over the current situation, the specifications are
necessarily static. Yet, reproducibility can change over time: for ex-
ample, this project benefited from improved reproducibility of Raft
as the popularity of the protocol increased.

Broad studies of reproducibility like Collberg et al.’s necessarily
apply somewhat crude heuristics to publications (as done similarly

in efforts by Kovacevic [13] and Vadewalle [29]). By contrast, our
work is an in-depth analysis of Raft. In a similar vein, Clark et
al. performed an in-depth analysis to reproduce the Xen hypervi-
sor paper’s results [6]. Both approaches have their own merits and
limitations.

Platforms for disseminating research artifacts such as the Exe-
cutable Paper Grand Challenge3 have been largely ignored by the
wider community. This may be because the community has, in
some cases, evolved its own channels for distributing research ar-
tifacts and encouraging reproducibility. For example, during the
course of this project, a strong community has emerged around
Raft, with over 40 different implementations in languages rang-
ing from C++, Erlang and Java to Clojure, Ruby and other OCaml
implementations.4 The most popular implementation, go-raft,
is the foundation of the service discovery and locking services in
CoreOS [1].

6. CONCLUSIONS
We have shown that the Raft consensus algorithm meets its goal

of being an understandable, easily implementable consensus proto-
col. In a well-understood network environment, the Raft protocol
behaves admirably, provided that suitable protocol parameters such
as follower timeouts and leadership discovery methods have been
chosen. Reproducing the performance results proved more chal-
lenging than expected, but support from the authors made it possi-
ble for us to not only validate the results, but also to recommend a
number of optimizations to the protocol.

As our results demonstrate, our simulator is a good approxima-
tion to Raft’s behaviour. It is also a useful tool for anyone planning
to deploy Raft to rapidly evaluate a range of protocol configurations
on a specific network environment.

Our source code is available as open-source software under a
MIT license at:
https://github.com/heidi-ann/ocaml-raftwith tag
v1.0, and can be installed via the OPAM package manager as
raft-sim.1.0. The datasets used are also available at:
https://github.com/heidi-ann/ocaml-raft-data,
also tagged as v1.0.

There are many future directions for this simulation framework
that we hope to develop further. There are many experimental pa-
rameters to explore such as packet loss, cluster scale, heterogenous
nodes, dynamic network topologies. The Promela automata ex-
ported from SPL could also be model checked with more temporal
assertions to guide the configuration of the simulation into unex-
plored parameter spaces.

7. ACKNOWLEDGEMENTS
We would like to thank Ionel Gog, Diego Ongaro, David Sheets

and Matthew Huxtable for their feedback on this paper. Some of
the authors were supported by Horizon Digital Economy Research,
RCUK grant EP/G065802/1, and a portion was sponsored by the
Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-11-C-
0249. The views, opinions, and/or findings contained in this report
are those of the authors and should not be interpreted as represent-
ing the official views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the Department of
Defense.

3http://www.executablepapers.com
4http://github.com/mfp/oraft



References
[1] CoreOS website. http://coreos.com. Accessed on

02/09/2014.

[2] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and
P. Li. Paxos replicated state machines as the basis of a high-
performance data store. In Proceedings of the 8th USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI), 2011.

[3] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI), pages
335–350, 2006.

[4] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: An engineering perspective. In Proceedings of the
26th ACM Symposium on Principles of Distributed Comput-
ing (PODC), pages 398–407, 2007.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
BigTable: A distributed storage system for structured data.
ACM Transactions on Computer Systems (TOCS), 26(2):4,
2008.

[6] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J. N. Matthews. Xen and the art of repeated
research. In Proceedings of the USENIX Annual Technical
Conference, pages 135–144, 2004.

[7] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi,
and A. M. Warren. Measuring reproducibility in computer
systems. Technical report, University of Arizona, 2014.

[8] G. Delzanno, M. Tatarek, and R. Traverso. Model Checking
Paxos in Spin. ArXiv e-prints, Aug. 2014.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. ACM SIGOPS Operating Systems Review, 37(5):29–
43, 2003.

[10] M. P. Herlihy and J. M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems, 12(3):463–492, 1990.

[11] H. Howard. ARC: Analysis of Raft Consensus. Technical
Report UCAM-CL-TR-857, University of Cambridge, Com-
puter Laboratory, July 2014.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
wait-free coordination for internet-scale systems. In Pro-
ceedings of the 2010 USENIX Annual Technical Conference
(USENIX ATC), volume 8, pages 145–158, 2010.

[13] J. Kovacevic. How to encourage and publish reproducible re-
search. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, volume 4, pages
1273–1276, April 2007.

[14] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[15] L. Lamport. Paxos made simple. ACM SIGACT News 32.4,
pages 18–25vi, 2001.

[16] L. Lamport. Fast Paxos. Distributed Computing, 19(2):79–
103, 2006.

[17] L. Lamport and M. Massa. Cheap Paxos. In Proceedings
of the International Conference on Dependable Systems and
Networks, pages 307–314, 2004.

[18] B. Liskov and J. Cowling. Viewstamped replication revisited.
Technical Report MIT-CSAIL-TR-2012-021, MIT Computer
Science and Artificial Intelligence Laboratory, 2012.

[19] A. Madhavapeddy. Creating high-performance statically
type-safe network applications. PhD thesis, University of
Cambridge, 2006.

[20] A. Madhavapeddy. Combining static model checking with
dynamic enforcement using the statecall policy language. In
Proceedings of the 11th International Conference on Formal
Engineering Methods: Formal Methods and Software Engi-
neering, pages 446–465, 2009.

[21] D. Mazieres. Paxos made practical. http://www.scs.
stanford.edu/~dm/home/papers/paxos.pdf.
Accessed on 02/09/2014.

[22] B. M. Oki and B. H. Liskov. Viewstamped replication: A new
primary copy method to support highly-available distributed
systems. In Proceedings of the 7th annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 8–17,
1988.

[23] D. Ongaro. Consensus: Bridging Theory and Practice. PhD
thesis, Stanford University, 2014.

[24] D. Ongaro and J. Ousterhout. In search of an understand-
able consensus algorithm (extended version). http://
ramcloud.stanford.edu/raft.pdf. Accessed on
13/09/2014.

[25] D. Ongaro and J. Ousterhout. Raft: A consensus algorithm
for replicated logs (user study). http://www.youtube.
com/watch?v=YbZ3zDzDnrw. Accessed on 02/09/2014.

[26] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the USENIX Annual
Technical Conference, 2014.

[27] M. Pease, R. Shostak, and L. Lamport. Reaching agree-
ment in the presence of faults. Journal of the ACM (JACM),
27(2):228–234, 1980.

[28] R. Van Renesse. Paxos made moderately complex.
http://www.cs.cornell.edu/courses/cs7412/
2011sp/paxos.pdf, 2011. Accessed on 02/09/2014.

[29] P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible
research in signal processing. Signal Processing Magazine,
IEEE, 26(3):37–47, 2009.

[30] A. Varga et al. The OMNeT++ discrete event simulation sys-
tem. In Proceedings of the European Simulation Multiconfer-
ence, volume 9, page 185, 2001.

[31] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,
F. Long, L. Zhang, and L. Zhou. Modist: Transparent model
checking of unmodified distributed systems. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 213–228, 2009.


