a
b

WT-VISUAL
VISUAL-CC (4dai)

smx14, 5-VISUAL

Wallner et al., 2017

Relative expression

Supplementary Fig. 1| smxl4 smxl5 mutants suppressed CC differentiation in VISUAL-CC
a, Schematic of the VISUAL differentiation process in the WT and smx/4 smxI5. The smx/4 smx/5 double mutants were known to inhibit phloem differentiation in VISUAL. b, SUC2 expression at 4d after VISUAL-CC induction in the WT and $s m x / 4$ smx/5. Asterisks indicate significant differences using the Student's t-test (* $P<0.05, \mathrm{n}=3$).
pSUC2:ELUC

Time after CC induction (h)

Supplementary Fig. 2| Raw data from time-course analysis of pSUC2:ELUC plants

An example of $p S U C 2: E L U C$ signals from individual samples is shown. Vertical axis indicates photon counts per second detected by the luminometer. Samples were classified based on LUC intensity.

Supplementary Fig. 3| Characterization and molecular function of VC genes

a, Schematic of the selection process used to identify VISUAL-CC inducible genes. Expression levels of vascular-specific genes were determined using VISUAL-CC microarray data. b, Expression patterns of VC genes in the root stele obtained from a transcriptome dataset ${ }^{14}$. Mean values from Fig. 2A are shown. c, Functional classification of VC genes and VPP genes. Enrichment scores were calculated using David (https://david.ncifcrf.gov/). Transporter-related genes are over-represented in this category.

Supplementary Fig. 4 | Statistical differences in expression levels of CC-related genes among the S, M, and V samples
Expression levels of CEPR, FTIP1, MYR1, NaKR1, and SULTR2:1 were confirmed using qRT-PCR and compared statistically among the S3-5, M3-5, and V3-5 samples. Relative expression levels were calculated when the expression in S3 was set to 1. Statistical differences between samples are indicated by different letters (ANOVA, Tukey-Kramer method; $n=3$; error bars indicate SD).

Supplementary Fig. 5 | Correlation analysis in microarray data between the S and M samples
a, VC genes (67) vs VX genes (137) b, VC genes (67) vs VS genes (218) c, VC genes (67) vs bikinin-suppressed genes (113). The Pearson correlation coefficient and P-value are marked above the chart. Error bars indicate SD.
a

b

Supplementary Fig. 6| Statistical differences in expression levels between the S and M samples
a, Expression levels of SUC2 (as CC), SAPL (also as CC), SEOR1 (as SE), APL (as CC+SE), and IRX3 (XY) were quantified using qRT-PCR and compared statistically between the S and M samples. Asterisks indicate significant differences using the Student's t-test (** $P<0.005$; ${ }^{*} P<0.05$). b, Expression levels of GSK3 activity-dependent genes were quantified using qRT-PCR and compared statistically in the S and M samples. Asterisks indicate significant differences determined using the Student's t-test (** P < 0.005 ; * $P<0.05$).

Supplementary Fig. 7| Auxin has only marginal effects on the formation of the SE-CC complex

a, Time-course of $p S U C 2: E L U C$ signal intensities in VISUAL-CC cultures containing different concentrations of auxin (mg / L). b and \mathbf{c}, Expression levels of SUC2 (b) and SEOR1 (c) in VISUALCC samples from cultures containing different concentrations of auxin. There are no significant differences (ANOVA, Tukey-Kramer method; $\mathrm{n}=6$; error bars indicate SD).

BR biosynthesis-related genes
 (negatively regulated by bikinin)

Supplementary Fig. 8| Heat map of expression levels of BR biosynthesisrelated genes in S and M samples.
The upper panel shows a heat map of expression levels of 6 BR biosynthesisrelated genes, which are downregulated by bikinin, in S and M samples. The lower panel indicates the mean value for each sample.
a

b

Supplementary Fig. 9| Expression pattern of GSK3s in VISUAL and VISUAL-CC transcriptome data
a, Normalized expression levels of procambium (AtHB8), xylem (IRX3), phloem SE (CALS7) and SKI/II GSK3 subgroup genes in VISUAL transcriptome data. Error bars indicate SD ($\mathrm{n}=3$). b, Normalized expression levels of procambium (AtHB8), xylem (IRX3), phloem SE (CALS7) and SKI/II GSK3 subgroup genes in VISUAL-CC transcriptome data.

Supplementary Fig. 10| Effect of brassinolide treatment on phloem development
a, Toluidine blue-stained transverse sections of mocktreated (DMSO) and bikinin-treated hypocotyls. SE: white empty cell; CC: dense purple cell. b, SE/CC ratios (\%) in the WT treated with none (control), 100 nM BL, and 1000 nM BL were calculated from toluidine blue-stained sections ($\mathrm{n}=11-14$). Numbers of individuals are marked. Scale bars: $10 \mu \mathrm{~m}$.

Supplementary Fig. 11| Transverse sections of bes1 bzr1 mutants
Toluidine blue-stained transverse sections for 11-day-old hypocotyls of WT, bes1-D bzr1-D (gain-of-function), and bes1-1 bzr1-2 (loss-of-function) mutant plants. Scale bars: $50 \mu \mathrm{~m}$.

AGI code Description (based on TAIR)

```
At1g01470 Late embryogenesis abundant protein (LEA14)
    At1g10380 Putative membrane lipoprotein
    At1g12090 extensin-like protein (ELP)
    At1g13380 Protein of unknown function (DUF1218) (DUF1218)
    At1g13590 phytosulfokine 1 precursor (PSK1)
    At1g22710 sucrose-proton symporter 2 (SUC2)
    At1g49310 transmembrane protein
    At1g49500 transcription initiation factor TFIID subunit 1b-like protein
    At1g59740 NRT1/ PTR FAMILY 4.3
    At1g59960 NAD(P)-linked oxidoreductase superfamily protein
    At1g68740 PHO1;H1
    At1g76130 alpha-amylase-like 2 (AMY2)
    At1g77380 amino acid permease 3 (AAP3)
    At2g02020 NRT1/ PTR FAMILY 8.4
    At2g02130 low-molecular-weight cysteine-rich 68 (LCR68)
    At2g04160 Subtilisin-like serine endopeptidase family protein (AIR3)
    At2g19590 ACC oxidase 1 (ACO1)
    At2g22860 phytosulfokine 2 precursor (PSK2)
    At2g30070 potassium transporter 1 (KT1)
    At2g37130 Peroxidase superfamily protein
    At2g44380 Cysteine/Histidine-rich C1 domain family protein
    At2g46690 SMALL AUXIN UPREGULATED RNA 32 (SAUR32)
    At3g09260 BGLU23
    At3g12730 SAPL
    At3g12750 zinc transporter 1 precursor (ZIP1)
    At3g14560 hypothetical protein
    At3g14840 LYSM RLK1-INTERACTING KINASE 1 (LIK1)
    At3g15950 DNA topoisomerase-related
    At3g16450 JACALIN-RELATED LECTIN 33 (JAL33)
    At3g16460 JACALIN-RELATED LECTIN 34 (JAL34)
    At3g20370 TRAF-like family protein
    At3g21770 Peroxidase superfamily protein
    At3g23050 indole-3-acetic acid 7 (IAA7)
    At3g60720 plasmodesmata-located protein 8 (PDLP8)
    At3g63110 isopentenyltransferase 3 (IPT3)
    At4g12470 azelaic acid induced 1 (AZI1)
    At4g12550 Auxin-Induced in Root cultures 1 (AIR1)
    At4g14465 AT-hook motif nuclear-localized protein 20 (AHL20)
    At4g15660 GRXS8
```

```
At4g15690 GRXS5
At4g19840 phloem protein 2-A1 (PP2-A1)
At4g21960 Peroxidase superfamily protein
At4g27410 NAC (No Apical Meristem) domain transcriptional regulator superfamily protein (RD26)
At4g32290 Core-2/I-branching beta-1,6-N-acetylglucosaminyltransferase family protein
At4g32870 Polyketide cyclase/dehydrase and lipid transport superfamily protein
At4g35480 RING-H2 finger A3B (RHA3B)
At4g36410 ubiquitin-conjugating enzyme 17 (UBC17)
At4g37540 LOB domain-containing protein 39 (LBD39)
At5g01210 HXXXD-type acyl-transferase family protein
At5g01840 ovate family protein 1 (OFP1)
At5g02260 expansin A9 (EXPA9)
At5g02600 NaKR1
At5g07010 sulfotransferase 2A (ST2A)
At5g18240 myb-related protein 1 (MYR1)
At5g23820 MD2-RELATED LIPID RECOGNITION 3 (ML3)
At5g24800 BASIC LEUCINE ZIPPER 9 (BZIP9)
At5g26260 TRAF-like family protein
At5g26280 TRAF-like family protein
At5g28770 BASIC LEUCINE ZIPPER 63 (BZIP63)
At5g43380 type one serine/threonine protein phosphatase 6 (TOPP6)
At5g43580 UNUSUAL SERINE PROTEASE INHIBITOR (UPI)
At5g49660 CEPR1 / XIP1
At5g54130 Calcium-binding endonuclease/exonuclease/phosphatase family
At5g59080 hypothetical protein
At5g63710 Leucine-rich repeat protein kinase family protein
At5g64120 Peroxidase superfamily protein
At5g65970 Seven transmembrane MLO family protein (MLO10)
```


Supplementary Table 2

Primers used in this study for qRT-PCR

name	sequence (5'-3')
CPD-L	AACCCTTGGAGATGGCAGA
CPD-R	GTAACCGGGACATAGCCTTG
DWF4-L	TTCTCGTTATGACCAACCTAATCTC
DWF4-R	AGGATGACGCTCCGTTGTT
UBQ14-L	TCCGGATCAGCAGAGGTT
UBQ14-R	TCTGGATGTTGTAGTCAGCAAGA
APL-L	TGGATATTCAGCGCAACGTA
APL-R	TGCACTTCCATTTGCATCTC
SUC2-L	TAGCCATTGTCGTCCCTCA
SUC2-R	CCACCACCGAATAGTTCGTC
IRX3-L	TGACATGAATGGTGACGTAGC
IRX3-R	CATCAAATGCTCCTTATCACCTT
SEOR1-L	AAGACACCAACGCCTCCA
SEOR1-R	CGATAGCATAGGAGACACTATCAAGA
CALS7-L	GCAGTAATGGAACTCCCTGAGA
CALS7-R	GGCTGAATGGAATCTTGGTC
SAPL-L	AGAGCCATCTCCAGAAGTTCA
SAPL-R	CCTTCGAAGATCCAACATGG
TCH4-L	GCTCAACAAAGGATGAGATGG
TCH4-R	CCTCTTCGCATCCGTACAAT
BR60x2-L	CCCATGGAGATGGATGGA
BR60x2-R	CTTTCCAGGGCAAAGCCTA
SULTR2:1-L	AACGATCTCATGGCTGGTTTA
SULTR2:1-R	TTGCATAACCAATGCTCTGC
NaKR1-L	GCTCAGTTTTGGCCTGAGATT
NaKR1-R	GTGGTGAATCAGCCAGTCCT
CEPR1-L	TATGGCTGGCACCTATGGTT
CEPR1R	GATCGTTGCTTTGGACGAGT
FTIP1-L	GCGCAAGATGTTGAGCCTA
FTIP1-R	TTGTACTTTAACGAAAGCTTGAGG
MYR1-L	GAAGTAGACGAAAGTCACAGTGAGAG
MYR1-R	GGCATCACTTATGGGTAAGTTCA

