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Application note 

TRES predicts transcription control in embryonic stem cells. 
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*
ABSTRACT 

Summary: Unraveling transcriptional circuits controlling embryonic 

stem cell maintenance and fate has great potential for improving our 

understanding of normal development as well as disease. To facili-

tate this, we have developed a novel web tool called ‘TRES’ that 

predicts the likely upstream regulators for a given gene list. This is 

achieved by integrating transcription factor (TF) binding events from 

187 ChIP-sequencing and ChIP-on-chip datasets in murine and 

human ES cells with over 1000 mammalian TF sequence motifs. 

Using 114 TF perturbation gene sets, as well as 115 co-expression 

clusters in ES cells, we validate the utility of this approach. 

Availability and implementation: TRES is freely available at 

http://www.tres.roslin.ed.ac.uk. 

Contact: Anagha.Joshi@roslin.ed.ac.uk. 

1 INTRODUCTION  

Embryonic stem (ES) cells have limitless self-renewal capability 

and the ability to differentiate into multiple cell types. This makes 

them a good model system to enhance our understanding of normal 

development, and also for potential clinical applications. They 

facilitate in vitro studies of early developmental events as well as 

differentiation into crucial cell types, such as hematopoietic or 

neuronal cells (Keller, 2005). Most importantly they have proven 

to be a highly valuable resource in regenerative medicine, where 

ES cells show great potential in tissue repair following disease or 

injury (Balber, 2011). These therapeutic applications have 

strengthened the push towards understanding how stem cells are 

programmed during self-renewal and differentiation.  

Transcription factors (TFs) are key players in driving cellular 

programming (Takahashi and Yamanaka, 2006). Many TFs have 

been identified with crucial roles in ES-cell biology (Young, 

2011), and their genome-wide putative targets have been mapped 

using ChIP-sequencing or ChIP-on-chip technology (Xu et al., 

2013).  Moreover, it is also now feasible to obtain binding se-

quence preferences for hundreds of mammalian TFs (Jolma et al., 

2013). To utilize the complementary information from both these 

resources to aid novel hypotheses generation, we have developed a 

web tool called ‘Transcription Regulation in Embyonic Stem 

Cells’, or TRES for short, to link gene sets to likely upstream 

regulators in ES cells. 

  
*To whom correspondence should be addressed.  

2 THE TRES PIPELINE 

Figure 1A shows a screenshot of the web tool where users can 
paste a query gene list (human or mouse) or upload it from a file. 
The gene list is interrogated against four databases and enrichment 
is calculated using the optimized methods for each database (see 
supplementary data for details). The output is displayed as a 
ranked list of TFs generated using rank aggregation of results from 
four databases as well as four tables each listing significantly 
associated TFs, the source database, the gene overlap and corrected 
P values sorted from lowest to highest within each database (Fig-
ure 1B). The results can also be emailed to the user when the cal-
culation is finished. The enrichment calculation protocols for the 
four databases are (supplementary information for full details): 

(1) Based on genome-wide binding patterns for 97 murine and 

49 human TFs (Martello et al., 2012; Dunham et al., 2012), 

the significance of overlap between each ChIP-sequencing 

dataset and the gene list is calculated using a weighted ap-

proach, which considers the number of binding events at 

each gene locus (Joshi et al., 2013). 

(2) Based on ChIP-on-chip data for 41 TFs (Xu et al., 2013), 

enrichment for each TF is calculated by assigning weights 

to genes proportional to the number of binding sites at a 

given gene locus normalized by gene length. 

(3) Based on 684 sequence motifs for mammalian TFs from 

the JASPAR database (Bryne et al., 2008), motif enrich-

ment is calculated using all genomic regions in a gene lo-

cus bound by at least one transcription factor from the 

ChIP-sequencing compendium (1) using Centrimo (Bailey 

and Machanick, 2012). 

(4) Based on binding sites for 550 human TFs determined us-

ing high-throughput SELEX and ChIP sequencing. (Jolma 

et al., 2013), motif enrichment is calculated using the same 

method as in (3). 

 
TRES analysis of cancer gene sets from MsigDB (Liberzon et 

al., 2011) associated Myc and E2F family members (Figure 1B, 
left) to genes up regulated in multiple cancers, such as breast, 
bladder, liver and lung. On the other hand, PRC complex 
components Ezh2, Ring1b and Suz12 (Figure 1B, right) were 
enriched in genes silenced by methylation across multiple cancer 
datasets (supplemetary table 1). 
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Fig.1. (A) Screenshot of the web tool with an option to either paste a user 

defined gene list or upload it from a file. (B) Top table of TRES output for 

two cancer gene sets from MsigDB. The results show Myc and E2F family 

members associated with genes up-regulated in cancer (left), and Ezh2, 

Suz12 and Ring1b associated with genes methylated in cancer (right). 

2.1 Perturbation gene sets: case study I 

To validate the TRES approach, we collected differentially ex-

pressed gene sets after deletion of 60 TFs (Xu et al., 2013) and 

after overexpression of 54 TFs (Nishiyama et al., 2009). If the 

perturbed TF was among the enriched TFs, it was considered a true 

positive. The TRES output for all perturbation datasets is provided 

on the website. 22 of the 35 TFs present in the TRES database 

were correctly associated with the differentially expressed gene 

sets after deletion of TFs, whereas 19 of 34 TFs were correctly 

associated with overexpression of TFs. The combination of four 

different information sources thus provides a much better coverage 

compared to any individual source at similar recall and precision 

values (Table 1).  

 

# Database type Deletion Overexpression 

1 ChIP sequencing 10 (0.50; 0.033) 5 (0.56; 0.065) 

2 ChIP-on-chip 14 (0.61; 0.10) 7 (0.70; 0.094) 

3 Jaspar motifs 13 (0.54; 0.015) 13 (0.59; 0.055) 

4 Jolma 2013 motifs 4 (0.29; 0.017) 9 (0.47; 0.061) 

5 All 22 (0.51; 0.023) 19 (0.58; 0.058) 

Table 1:The number of true positives (with corresponding recall and 

precision values in brackets) for each of the database type and all together 
(rows) and TF deletion or overexpression sets (columns). 

We performed motif enrichment by replacing ChIP-bound re-

gions with promoters (H3K4me3 peaks from (Xiao et al., 2012)) 

and promoters and enhancers (H3K4me3 or H3K4me1 or 

H3K27ac peaks from (Xiao et al., 2012)). Both performed much 

worse than ChIP-bound regions (data not shown). This shows that 

ChIP-bound regions provide the best repertoire of regulatory re-

gions for motif enrichment analysis. 

2.2 Co-expression clusters: case study II 

To investigate gene networks operating in ES cells, the FunGenES 

consortium analyzed the transcriptome of mouse ES cells in 67 

experimental conditions and created 115 co-expression clusters 

(Schulz et al., 2009). 70 of the 115 clusters were associated with 

one or more TFs as their putative regulators (results available on 

the website). Sp1 was associated with cluster 10 over-represented 

for `immune response` function using motif information. Cluster 

30, containing genes involved in the formation of the three embry-

onic germ layers during gastrulation, as well as cluster 15 involved 

in early mesoderm development, are preferentially bound by Ezh2 

and Suz12 transcription repressors in ES cells. Cluster 4, which 

consists mostly of genes associated with neuronal development and 

differentiation, is preferentially bound by Tfap2a.  

3 CONCLUSION 

As next generation sequencing technology evolves, more and more 

information is being generated about genome-wide TF-targets and 

motifs. These resources, however, still remain under-explored for 

hypothesis generation. We have combined predictions from four 

databases, using the most suited method for each data type, to 

associate likely upstream regulators. The TRES web tool can help 

to unravel potential regulatory mechanisms underlying cancer gene 

sets, thus enables investigations into the mechanisms responsible 

for the expression of gene sets with diagnostic or prognostic rele-

vance. A web-based implementation of TRES allows user-friendly 

access for the wider research community, and thus provides a 

substantial new addition to the bioinformatic toolbox for stem cell 

gene set analysis.  
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