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Abstract 

Imprinting is a type of learning by which an animal restricts its social preferences to an object after 

exposure to that object. Filial imprinting occurs shortly after birth or hatching and sexual imprinting, 

around the onset of sexual maturity; both have sensitive periods. This review is concerned mainly 

with filial imprinting. Filial imprinting in the domestic chick is an effective experimental system for 

investigating mechanisms underlying learning and memory. Extensive evidence implicates a 

restricted part of the chick forebrain, the intermediate and medial mesopallium (IMM), as a memory 

store for visual imprinting. After imprinting to a visual stimulus, neuronal responsiveness in IMM is 

specifically biased towards the imprinting stimulus. Both this bias and the strength of imprinting 

measured behaviourally depend on uninterrupted sleep shortly after training. 



When learning-related changes in IMM are lateralised they occur predominantly or completely on 

the left side. Ablation experiments indicate that the left IMM is responsible for long-term storage of 

information about the imprinting stimulus; the right side is also a store but additionally is necessary 

for extra storage outside IMM, in a region necessary for flexible use of information acquired through 

imprinting. 

Auditory imprinting gives rise to biochemical, neuroanatomical and electrophysiological changes in 

the medio-rostral nidopallium/mesopallium, anterior to IMM. Auditory imprinting has not been 

shown to produce learning-related changes in IMM. 

Imprinting may be facilitated by predispositions. Similar predispositions for faces and biological 

motion occur in domestic chicks and human infants. 

 

 

This review will focus on filial imprinting, a phenomenon known since antiquity. It is characterised by 

an animal following and establishing a social attachment to an object early in life as a result of being 

exposed to that object. In natural circumstances that object is usually a parent. However, this is not 

necessarily the case and artificial objects can be powerful imprinting stimuli. Imprinting is most 

readily observed in precocial animals; that is, those which are relatively mature and mobile soon 

after birth or hatching. Accordingly, much research on imprinting has been conducted on domestic 

chicks and ducklings. Filial imprinting has, however, also been described in the blackbird, which is 

altricial1, and in many other vertebrate species2. Comprehensive reviews of the imprinting literature 

have been published2-7, as have accounts of work on the underlying neural mechanisms4, 8-11. I will 

concentrate mainly on imprinting research published after the last of these reviews, but will refer to 

earlier papers as the need arises. Unless otherwise stated, the term "imprinting" will refer to filial 

imprinting. 

BOX 1 near here 

An essential feature of imprinting is recognition: the identification of a stimulus that has previously 

been experienced (Mandler 1980; Brown and Aggleton 2001); see BOX 1. When an animal becomes 

imprinted to an object it learns characteristics of that object. The animal’s social preferences, 

measured behaviourally, then give information about the learning that has occurred. In natural 

circumstances it is likely that the learning leading to a filial bond is complex. For example, there is 

the possibility of perceptual learning when the animal is not interacting with the imprinting stimulus 

and additionally of operant conditioning when it can. It is clear, however, that interaction with the 

stimulus is not necessary for the formation of a filial bond. Many laboratory studies have therefore 

simplified investigation by preventing such interaction. 

There has been much enquiry as to what type of learning is involved in imprinting. Salzen and 

Sluckin12 and Sluckin2 proposed a form of perceptual learning whilst others13 have suggested that 

one component of the imprinting stimulus (such as movement) elicits approach as an unconditional 

stimulus and another component (such as colour) is a conditional stimulus that comes to elicit 

approach through classical conditioning (see 7, 14, 15 for critical discussion of these viewpoints). 

Bateson16 has argued that recognition memory is central to imprinting in the young animal and that 



the same process may continue to function throughout the animal’s life; such memory may 

represent a broad class of processes responsible for the formation of neural representations of the 

external world. 

Connectionist models of imprinting drawing on behavioural and neurobiological data have been 

developed8, 17-19, and implemented as artificial neural networks20, 21. 

 

THE SENSITIVE PERIOD FOR IMPRINTING 

Imprinting is a characteristic of the young animal and is a means by which kin may be recognised in 

early life. The very survival of a hatchling may depend on recognising and keeping close to a parent, 

because social attachment to an unrelated animal, even a conspecific, may result in the young 

animal being attacked. Imprinting can be the means by which a sufficiently precise identification of a 

particular parent is made: Johnson and Horn22 have shown that domestic chicks,after several hours 

of exposure, acquire a preference for an individual adult hen over a novel individual. A neural 

correlate of this recognition process has been described23. Later in life, when the animal attains its 

adult appearance, sexual imprinting is a means by which potential mates may be selected; litter/nest 

mates (which normally are closely related) may be recognised and avoided, as may animals that do 

not resemble those litter mates sufficiently to be likely productive breeding partners. In contrast, 

animals differing only slightly from litter mates are commonly sexually attractive24. Recognition of 

familiar animals may thus be an important determinant of optimal outbreeding. There are times in 

the life of the animal when imprinting is particularly important and sensitive periods for both filial 

and sexual imprinting have been demonstrated25, 26. 

During the first few days after hatching, domestic chicks will explore a wide range of objects and 

typically narrow their social preferences, usually to a parent or siblings. As chicks develop social 

attachments, their attention is diverted from novel objects and eventually they become fearful of 

novelty. Imprinting – the acquisition of a preference for a familiar object - thus limits the acquisition 

of new preferences, not least because the consequent aversion to novelty restricts the chicks’ 

experience of new objects. There is thus a sensitive period for filial imprinting that can be curtailed 

by the imprinting process itself27. Domestic chicks deprived of visual experience at hatching will 

follow and become imprinted to visual stimuli if they are allowed sight of their environment within 

about three days of hatching. However, if they are kept in darkness a day or so longer, when now 

allowed visual experience they will vigorously avoid most objects if not everything they see, and 

strongly prefer a dark environment. This dramatic example of the sensitive period was noted by 

Spalding28, who concluded that the sudden development of this strong aversion in chicks “could not 

have been the effect of experience; it must have resulted wholly from changes in their own 

organization”. It is however possible that the chicks had, in effect, imprinted to darkness and 

avoided all visual stimuli simply because such stimuli were novel. See 26 for a discussion of the nature 

and biological significance of behavioural sensitive periods. 

The sensitive period for filial imprinting can be extended pharmacologically. Treating domestic chicks 

with the anaesthetic mixture ketamine/xylazine 10 h after hatching permitted the chicks, when 

exposed to a model of a hen ~ 8 days later, to acquire a preference for the hen over an alternative 

artificial stimulus (a red box); chicks exposed at the same time to the red box did not develop a 



preference for either of the two stimuli but the results were interpreted as an extension of the 

sensitive period for imprinting rather than as a non-specific predisposition to approach the hen; this 

was because the preference for the hen was specific to the hen-trained group rather than occurring 

in all chicks, which would be the expected outcome for a predisposition29, 30. Ketamine is an inhibitor 

of the N-methyl-D-aspartate (NMDA) class of glutamate neurotransmitter receptors, although a not 

particularly specific one. The more specific NMDA receptor inhibitor MK-801 had a very similar effect 

on the hen-trained chicks30, more closely implicating NMDA receptors in maintenance of the 

sensitive period. Yamaguchi et al31 have shown that the length of the sensitive period for imprinting 

in domestic chicks can be extended to at least eight days by injection of the thyroid hormone 3,5,3’-

triiodothyronine (T3) on days 1-4 post-hatch. The efficacy of training with an imprinting stimulus can 

be enhanced by administration of T3, or impaired by inhibiting the production of T3 from its precursor 

thyroxine. The study suggests that T3, the endogenous level of which rises around the time of 

hatching, initiates the sensitive period for imprinting and exerts a critical influence on the animal’s 

capacity for memory formation during the sensitive period and thereafter. 

It is not clear to what extent pharmacological modification of the sensitive period acts by affecting 

the relative attractiveness of familiar and novel objects, or acts on a developmental programme that 

is independent of experience. It would perhaps be surprising if such developmental programmes did 

not exist, and indeed the success of imprinting is correlated with developmental age32, 33. Drawing on 

evidence from other systems, there are many candidate mechanisms for developmental control of a 

sensitive period34, 35  but in this particular instance knowledge is, as yet, incomplete.  

 

NEURAL MECHANISMS OF VISUAL IMPRINTING 

A considerable amount is known about the neural mechanisms underlying filial imprinting to a visual 

or auditory stimulus in the domestic chick. A restricted region within the forebrain has been found to 

be critical for imprinting on a visual stimulus. Originally known as the intermediate and medial part 

of the hyperstriatum ventrale (IMHV)8, it is now termed the intermediate and medial mesopallium 

(IMM)36. Bilateral ablation of the IMM before exposure to an imprinting stimulus (‘training’) 

prevents imprinting37. Bilateral ablation of this region < 3 h after training renders chicks amnesic for 

the imprinting stimulus38. The evidence for the special role of the IMM in imprinting, indicating that 

it is a site of memory for information about the imprinting stimulus, has been reviewed 

comprehensively by Horn8. 

 

Biochemical and neuroanatomical studies 

A number of biochemical changes indicative of synaptic modification in the IMM occur as a result of 

training with an imprinting stimulus. Imprinting training gives rise to an increase in the mean profile 

length of postsynaptic densities of axospinous (putatively excitatory) synapses in the IMM39, 40. There 

is also an increase in the numerical density of NMDA receptors in the IMM that is specifically related 

to the strength of chicks’ learning about the imprinting stimulus, inferred from behavioural 

measurements41. Although a change in a measure in the IMM following imprinting training is 

consistent with that change having a role in learning, the change does not by itself necessarily imply 



such a role. A set of criteria have been developed that need to be satisfied before a given 

measurement (such as NMDA receptor binding) is accepted as probably having a role in learning41-43. 

These criteria are based on a regression model44 with the measurement in question (e.g. number of 

neuronal nuclei immunopositive for the activity marker Fos) as the response variable. A linear model 

is fitted, which includes: a measurement of the strength of learning; other variables that might 

influence the response (such as locomotor activity); and experimental factors such as training 

condition and brain region. One may then determine which components of the model are significant 

and thus associated with the response. 

A common measure of strength of learning is the preference score, derived from a preference test 

conducted after a chick has been trained with an imprinting stimulus. In the preference test, the 

chick is exposed sequentially to the imprinting (training) stimulus and to an alternative stimulus 

which the chick has not previously seen. The preference score is then: 

100 x approach to imprinting stimulus 

(approach to imprinting stimulus + approach to alternative stimulus) 

A chick that is strongly imprinted has a preference score near 100 and one that is not imprinted has 

a preference score near 50.  

Figure 1 near here 

The following steps are taken to interpret a putative learning-related response (cf Figure 1). 

1. Determine whether the response and preference score are significantly associated. Partial 

correlation analysis can usefully supplement a  regression model when it is necessary to 

correct for effects of covariates such as locomotor activity. Where an association 

between response and preference score is found, a linear fit is usually sufficient (see e.g. 
43) but sometimes other simple functions are appropriate45. 

2. The regression model may be used to find the response corresponding to any chosen value 

of preference score (Figure 1). The response when preference score is 50 (no 

imprinting/learning) is compared with the mean value of untrained chicks. A finding of 

no significant difference implies that side-effects of the training procedure occurring 

independently of learning (vocalisation, arousal, locomotor activity, sensory stimulation, 

stress, etc) do not influence the response unlesslearning has occurred. If the response 

value predicted by preference score 50 differs significantly from the mean value of 

untrained chicks in either direction, the implication is that side-effects of training 

contribute to the response in the absence of learning. 

3. The value of the response predicted when the preference score is the maximum preference 

score attained (indicative of strong learning), is compared with the mean value of 

untrained chicks (Figure 1). One may thus ask whether the response has changed 

sufficiently at the maximum measureable level of learning for the corresponding 

response to be significantly different from the untrained value. 

4. An alternative to using preference score in the model is to substitute a factor in which 

trained chicks are separated into good learners and poor learners on the basis of 

preference score. One then compares the mean values of good and poor learners with 



each other, and separately with the mean value of untrained chicks. In this approach, 

the strength of learning is estimated with a discrete rather than a continuous measure. 

5. An association between the response and preference score is not necessarily the result of a 

causal relationship. It could simply be that chicks hatched with a higher level of the 

response measure are able to learn better, without the response being affected by 

learning at all. If this hypothesis were true (call it the ‘predispositions’ hypothesis), the 

sample variances of the trained and the untrained groups of chicks would each be 

estimates of the same population variance. Then if a significant association were found 

between the response and preference score, whether continuously measured or 

expressed in terms of good and poor learners, the residual variance after fitting the 

preference score term should be significantly lower than the variance of the untrained 

chicks. This is simply to say that a significant term in the regression model (a significant 

association between response and preference score) necessarily reduces the residual 

variance significantly. The predispositions hypothesis therefore makes a prediction 

which, by analysing residual variance in the regression model, permits this hypothesis to 

be distinguished from the alternative hypothesis, which is that the response is changed 

as a result of learning42, 43. 

 

Application of the above procedures has implicated a number of biochemical changes in the IMM as 

having a role in memory for the imprinting stimulus. Much of this information, including the time- 

courses of the changes, has been summarised by Horn11 

Figure 2 near here 

Further information has since become available which, together with earlier results, is summarised 

in Figure 2. Also shown in Figure 2 is the timecourse of learning-related changes after training, which 

evidently progress from early rapid functional changes to more trophic, and thus presumably longer-

lasting, changes approximately one day after training. 

The protein kinase C (PKC) substrate myrisoylated alanine-rich C kinase substrate (MARCKS) resides, 

in its unphosphorylated form, in the plasma membrane. There it is likely to bind and crosslink actin 

filaments, and sequester phosphatidylinositol-4,5-bisphosphate. Upon phosphorylation by PKC, 

MARCKS translocates to the cytosol, possibly causing reorganisation of actin filaments and adjusting 

the interaction between pathways controlled by PKC and calcium/calmodulin–dependent protein 

kinase II (CaMKII)46. A further role of MARCKS is suggested by the observation that a peptide derived 

from the MARCKS effector domain inhibits nicotinic acetylcholine receptors in brain tissue47. There 

is, in the IMM, a learning-related increase in MARCKS phosphorylation about 3.5 h after the start of 

training48; about 1-5 h after the start of training, an increase in MARCKS mRNA expression occurs in 

good learners relative to poor learners49. The amount of MARCKS protein in the IMM is increased in 

a learning-related manner about 24 h after training50, at a time when levels of clathrin51, neuronal 

cell adhesion molecules (NCAMs)52 and amyloid precursor protein (APP)50 have also been found to 

be increased in the IMM in a learning-related manner11. Solomonia et al53 enquired whether the 

increase in amount of MARCKS protein at 24 h occurred in the unphosphorylated, membrane-bound 

form or the phosphorylated, cytosolic form. In the IMM only the amount of the unphosphorylated, 

membrane-bound fraction was associated with learning. No significant effects were observed in the 

posterior pole of the nidopallium (PPN), a control area employed in previous studies of biochemical 



changes following imprinting11, where no learning-related changes have been found. Solomonia et 

al53 suggested that the change in MARCKS at 24 h might stabilise relatively short-term modification 

of actin filament organisation resulting from the earlier change in MARCKS phosphorylation. 

MARCKS was one of the proteins implicated by Solomonia et al50 using subtractive hybridisation to 

identify systematically the molecules in the IMM which, like clathrin and NCAMs, have been 

implicated in memory for the imprinting stimulus ~ 24 h after training. More than 50 partial cDNA 

clones were identified corresponding to genes that were up- or down-regulated in good learners 

rather than poor learners. Five further proteins were selected for detailed investigation to 

determine whether the amounts of these proteins changed in a learning-related manner. These 

proteins were: amyloid precursor protein (APP) (see above); subunits I (CO -I) and II (CO-II) of the 

mitochondrial enzyme cytochrome c oxidase; α-fodrin; and the chaperone protein HSP90. Amyloid 

precursor protein has been implicated in synaptic plasticity54; the cytochrome c oxidase subunits 

were chosen because of the essential role of this enzyme in oxidative metabolism; α-fodrin was 

chosen because it had previously been implicated in synaptic plasticity55, 56 and HSP90 because it is 

widely distributed in neurons57 and may be involved in the recycling of synaptic vesicles58. Training 

exerted differential effects on these proteins. There was a negative correlation between preference 

score and α-fodrin in the left IMM but no significant effect in the other regions studied (right IMM, 

left and right PPN). No significant experimental effects or correlations were observed for HSP90 in 

any region. However, the amount of CO-I changed with preference score in a learning-related 

manner in the left IMM59 and amount of CO-II less strongly so in the same brain region. In addition 

to these effects, a strong correlation that was not dependent on training was found in the left IMM 

between levels of CO-I and CO-II. There was no such correlation in the three other brain regions 

studied (right IMM, left and right PPN). 

In eukaryotic cells cytochrome c oxidase is assembled in the inner mitochondrial membrane. 

Subunits CO-I and CO-II, encoded in mitochondrial DNA, occur in equal amounts in the fully 

assembled enzyme60. The amounts of the two subunits might therefore be expected to be correlated 

in any one brain region and this was found to be so in the left IMM59. However, such close 

correspondence was not the case in the other three brain regions studied. Because the genes 

encoding CO-I and CO-II are adjacent to each other in the genome and are transcribed together, a 

lack of association is unlikely to be due to dissociation of expression of the two genes. In contrast, 

assembly of subunits, cofactors and metal ions into the enzyme complex, and stabilization of the 

enzyme pre-complex, involve many factors. Solomonia et al59 have suggested that, at the time of 

training within the sensitive period for imprinting, enzyme assembly is particularly efficient in the 

left IMM but much less so in the other three regions. CO-I and CO-II subunits would then be 

efficiently incorporated into the enzyme complex in the left IMM, giving a greater ratio of combined 

to uncombined subunits than in other brain regions. In those other regions, a greater proportion of 

subunits would remain unincorporated for longer and be correspondingly more vulnerable to 

degradation. Variability in the rate of degradation of the CO-I and CO-II subunits could account for 

the lack of correlation between their levels in the right IMM and left and right PPN. Solomonia et al59 

suggested that the molecular mechanisms necessary for the coordinated assembly of cytochrome c 

oxidase may be precociously developed in the left IMM compared with other brain regions, enabling 

it to function efficiently as a memory store shortly after hatching. 



Assay by cDNA microarray has shown imprinting to be followed by the up- or down-regulation of 

many genes ~ 3 h after training. Expression of microtubule-associated protein 2 (MAP2) is 

particularly strongly up-regulated61. This elevation was found in imprinted chicks but not in light-

reared or dark-reared controls62. Specific suppression of this elevation by RNA interference also 

impaired imprinting63. 

Training with an imprinting stimulus for 1 h leads to a learning-related up-regulation in the IMM of 

immunoreactivity for Fos, the protein product of the immediate-early gene c-fos43. The extent of the 

increase in strongly imprinted chicks is similar irrespective of whether the chicks are trained for 1 h 

or 15 min64. The learning-related increase in c-fos expression is thus likely to be triggered early in the 

imprinting process65. A powerful tool for the study of the expression of this and other genes is the 

introduction of the relevant DNA into the IMM by electroporation66. Using this technique coupled 

with bioluminescence imaging, Yamaguchi et al67 confirmed that c-fos expression in the IMM 

increased with preference score and approach activity and that the expression of two further 

immediate-early genes (zenk and Arc/Arg3.1) was also up-regulated in imprinted chicks relative to 

dark-reared controls. 

A pathway by which visual information might reach the IMM during imprinting has been described 

by Nakamori et al68, who suggest that visual information from the thalamofugal pathway enters the 

IHA region of the visual wulst in the forebrain (the homologue of the mammalian primary visual 

cortex) and then passes to the hyperpallium dorsale before entering the IMM. 

 

Electrophysiological studies 

Chicks can be strongly imprinted to a rotating, internally illuminated red box or blue cylinder by 

exposure to either of these stimuli for two hours; see Bolhuis et al69 for descriptions of the 

imprinting stimuli. Visual imprinting is particularly powerful if, during training, the visual stimulus is 

accompanied by a recording of the maternal call of a hen70. It can be demonstrated that training has 

caused the chick to learn about visual features of the stimulus by testing the chick’s preference in 

the absence of the maternal call. In untrained chicks, 10-20% of neurons in the IMM were found to 

show a significant change in firing rate in response to either visual stimulus alone (i.e. with no 

maternal call). In trained chicks with high preference scores, the percentage of neurons in the IMM 

specifically responsive to the visual imprinting stimulus rose to more than double the untrained 

value, in both the left IMM71 and the right IMM72. Some evidence was found for differences in the 

electrophysiological behaviour of the two sides of the IMM. For example, responsiveness to the 

novel stimulus was significantly reduced in the right IMM of the trained chicks but not in the left73. 

Horn et al74 studied the time course of neuronal responsiveness in the IMM during and after 

imprinting. After one or two hours’ training there was a significant increase in number of neurons 

responsive to the imprinting stimulus (IS). This proportion then decreased before rising again to 

approximately three times the baseline value by the end of the experiment, approximately 24 h after 

the start of training. Individual neurons that had become responsive to the imprinting stimulus 

showed temporal fluctuation in their responsiveness to the IS. Many neurons, having acquired a 

strong responsiveness to the IS after one hour’s training, lost it again after training for a second 

hour. The results prompted the authors to predict that the same neurons would regain their 

responsiveness to the IS by the end of the experiment the following day, approximately 24 h after 



the start of training. This prediction was found to be correct by Jackson et al75, measured the 

responsiveness of these neurons to the training and novel stimuli during and after training up to 

19.5 h after the start of training. They found that the responsiveness of IMM neurons to the IS did 

indeed wax and wane. Moreover, as predicted by Horn et al74, responsiveness to the IS was found to 

return almost completely by the end of the experiment. Jackson et al75 also found that for IS-

responsiveness to be retained it was necessary for chicks to be able to sleep without interruption 

during a six-hour period shortly after training (named Session 1 in Fig 2). If, during this period, chicks 

were prevented from sleeping continuously by slowly turning the running wheel through one 

revolution for one minute at random times once every 30 min, not only was responsiveness to the IS 

eventually lost but at the same time the chicks appeared amnesic for the imprinting stimulus (Figure 

3). These effects were observed despite the fact that the chicks disturbed during Session 1 were 

rested during Session 2, a six-hour period between 12.5 and 18.5 h after the start of training (Figure 

3). Provided that chicks were rested during Session 1, a high level of neuronal responsiveness to the 

imprinting stimulus returned, irrespective of whether chicks were disturbed during Session 275 or 

rested during Session 274. 74Taken together, the results indicate that a certain amount of undisturbed 

sleep during Session 1 is essential for both stabilization of specific neuronal responsiveness to the 

imprinting stimulus and for memory of the stimulus. Analysis of the electroencephalogram (EEG) 

recorded from the IMM showed a significant increase in the proportion of energy in the 4-6 Hz (low 

frequency theta) band 2, 3 and 4 h after the start of Session 1, restricted to the group of chicks that 

remained undisturbed during this period. It is not yet known whether this increase in low frequency 

theta activity occurred during sleep or while the animals were awake. These results provide an 

opportunity in further work to investigate the neural mechanisms whereby sleep enhances memory 

consolidation76. Moreover, the results suggest that sleep-dependent memory consolidation involves 

a phase during which neuronal responsiveness, and therefore possibly synaptic efficacy, shows 

marked instability for several hours. 

Figure 3 near here 

As noted above, imprinting to a visual stimulus is particularly strong if this stimulus is accompanied 

by the maternal call of a hen during training. Approximately 24 h after the start of training, neuronal 

responsiveness in the IMM to the visual component of the stimulus alone is increased. An increase 

was also found in the proportion of neurons responsive both to the compound training stimulus (i.e. 

simultaneous presentation of the visual training stimulus and the maternal call) and to the visual 

stimulus when presented alone. In contrast, the proportion of IMM neurons responding to the 

compound stimulus but not the visual component alone decreased, evidently due to a decrease in 

responsiveness to the auditory component77. Interestingly, neuronal responsiveness to a compound 

stimulus comprising the familiar visual component and a novel maternal call was found by Town and 

McCabe78 to be increased. When chicks themselves (with their vocalisations) were used as 

imprinting stimuli, neuronal responsiveness in the IMM to the familiar chicks with vocalisations was 

reduced relative to responsiveness to unfamiliar chicks with vocalisations23. Social rearing of chicks 

in groups, presumably leading to their becoming imprinted to each other, reduced their mean 

preference for an artificial stimulus (a red box or a blue cylinder) to which they had previously been 

imprinted. Neuronal responsiveness in the IMM to the familiar artificial stimulus was also reduced 

by social rearing79. There are thus parallels between the social preferences formed through 

imprinting and neuronal activity in the IMM. The effects appear complex and there is evidence for 

disparity in the processing of information acquired via different modalities. 



 

AUDITORY IMPRINTING 

Domestic chicks will develop a preference for the maternal call of a hen and for rhythmic tone 

stimuli after exposure to either of these types of stimulus. Neural changes following imprinting to 

tone stimuli have been detected in the medio-rostral nidopallium/mesopallium (MNM; formerly the 

medio-rostral neostriatum/hyperstriatum ventrale or MNH), and include increased uptake of 2-

fluorodeoxyglucose, reduction in numerical density of synapses, and changes in glutamate release 

and electrophysiological activity80-82. 82Evidently memory processing after training involves different 

brain regions, depending on the modality employed for the imprinting procedure. 

 

LATERALISATION 

It has long been clear that there is a hemispheric asymmetry in the processing of information 

following imprinting training8, 73. Rogers et al83 have demonstrated an asymmetry in visual pathways 

in the recently-hatched chick, which is dependent on asymmetrical visual stimulation of the two 

eyes during the last few days of incubation. However, the functional asymmetries demonstrated 

after imprinting and described above and in Figure 2 arise in the absence of such stimulation. Which 

is not to say that additional symmetries cannot be induced experimentally. When asymmetric visual 

stimulation is applied from day 19 of incubation (hatching occurs on day 21), functional 

reorganization of the nervous system occurs: illumination of either the left or right eye and occlusion 

of the opposite eye followed by visual imprinting causes the forebrain hemisphere ipsilateral to the 

illuminated eye to become critical for imprinting84.  

Hemispheric asymmetry of learning-induced changes in the brain of the chick may be very marked, 

as in the case of the effect of imprinting training on the numerical density of NMDA receptors in the 

IMM; in this case, no significant effect of training was observed in the right IMM whilst there was a 

strong learning-related effect on the left side and a significant interaction between side and training 

coondition41. In other cases, the asymmetry is less marked45 but if there is evidence for an 

asymmetry, the predominant effect of imprinting is on the left side of the IMM. For some 

measurements, no asymmetry has been found, for example in the expression of Fos-like 

immunoreactivity after imprinting training for one hour43. Moreover, the right and left sides of the 

IMM both display prolonged increases in neuronal responsiveness to the imprinting stimulus after 

training. However, in so far as one particular measurement, be it Fos expression or 

electrophysiological responsiveness, displays only one aspect of the processes in the IMM, 

asymmetries may still exist: for example the left and right sides might contain the same number of 

affected cells, but the proportions of excitatory and inhibitory neurons on the two sides may differ, 

as may the ways in which neurons are interconnected. 

Hemispheric asymmetry in the IMM is very important in the processing of information following 

imprinting. The mean length of the postsynaptic density of axospinous synapses in the left IMM 

increases after training, consistent with long-term storage of information about the imprinting 

stimulus in the left IMM. No such morphological change was observed in the right IMM40. 



Figure 4 near here 

The finding of a change in synaptic morphology prompted a series of ablation experiments to 

determine the roles of the two sides of the IMM. The results indicated that the left IMM has a 

storage function whereas the right IMM, as well as being a store, is necessary for retention to be 

sustained by a supplementary storage area outside the IMM, termed S’, over a period lasting several 

hours after the end of training73. See Figure 4 for an explanation of these experiments. 

Both the IMM and S’ can sustain retention, but S’ also has a mediational function. That is, it permits 

information acquired through imprinting to affect subsequent associative learning. If chicks are 

exposed to two imprinting stimuli sequentially in close temporal juxtaposition, say 15 s apart 

(“mixed training”), they subsequently learn to discriminate between the two stimuli more slowly 

than if the exposure to the two stimuli is respectively in two consecutive blocks separated by more 

than 30 min (“separate training”)85, 86. 85By lesioning the IMM at different times after the end of 

training, Honey et al86 prepared chicks that either had the left IMM intact and no S’ (lesion right IMM 

< 1 h after the end of training; cf Figure 5), or no IMM and S’ intact (lesion IMM bilaterally 4-6 h after 

training; cf Figure 5). Chicks with mixed training learned the visual discrimination more slowly than 

separately trained chicks, only when storage in S’ was allowed to occur. That is, only those chicks in 

which retention was sustained by S’ behaved in the same way as intact chicks; if S’ was not active, 

mixed training did not affect the rate of discrimination learning. It was suggested that chicks with 

mixed training and operational S’ had classified the two stimuli together and that this was the reason 

for the interference with acquisition of the visual discrimination task86. If S’ is required for the 

classification together of two imprinting stimuli presented in close temporal sequence, it may be 

essential for the process whereby a chick, by being exposed to different views of a mother hen in 

close temporal juxtaposition, learns that these views are in fact different versions of the same object 

and thus warrant the same response, namely approach and filial behaviour87. 

Figure 5 near here 

Further evidence of functional lateralization has arisen from reports of asymmetrical use of sensory 

pathways during and after imprinting, and from experimental restriction of sensory input to one side 

of the brain. These approaches are particularly informative in the study of avian behaviour because 

of birds’ completely crossed optic chiasm: the output of each eye projects to the opposite side of the 

brain. By studying the use of the right and left eye in defined experimental situations, and by 

patching one eye to restrict visual input to the other, one may gain insight into the functions of the 

left and right ‘eye systems’, which include the visual pathways emanating from the right and left 

thalamus and optic tectum respectively. The eye predominantly used by chicks exposed to an 

imprinting stimulus changes as the chicks become familiar with the stimulus88, suggesting changes in 

the mode of processing as imprinting progresses. Subsequent monocular occlusion indicated that 

the right and left eye systems perform different functions: chicks with the right eye patched, and 

thus using the left eye system, could discriminate between familiar and unfamiliar chicks. Chicks 

using the right eye system did not discriminate between familiar and novel objects unless the 

distinction between them was particularly marked89. Recognition behaviour was found to be 

influenced by sex (male chicks preferred novel individuals and females preferred familiar individuals) 

and time: predominant use switches between the left- and right-eye systems at different times after 

learning, suggesting distributed storage of information between brain hemispheres and temporal 



constraints on access by one hemisphere to the contents of the other during consolidation90; see 

Rogers91 for a general review. 

 

PREDISPOSITIONS 

Although imprinting is characterised by learning, preferences for particular stimuli may occur in a 

young animal that has had no previous experience of these stimuli. Such preferences are called 

predispositions and can bias the animal’s behaviour in such a way as to make imprinting more 

effective. For example, domestic chicks  exposed to mild stress (e.g. handling) during the second day 

of life, were found to develop a preference for the head region of an adult fowl, duck or polecat8 

relative to an artificial red stimulus that by itself elicits vigorous approach. This predisposition, unlike 

recognition memory arising from imprinting, is not abolished by bilateral ablation of the IMM92 and 

is intensified by androgen treatment93. There is a sensitive period for the induction of the 

predisposition by mild stress and the predisposition is sensitive to degradation of adrenergic 

transmission by the drug DSP494, 95. In the presence of mild stress, such as might be caused by 

isolation from the mother hen, the predisposition evidently directs the chick’s attention to objects 

roughly resembling an adult conspecific, facilitating imprinting to that individual. This phenomenon 

may have adaptive value where the chick would otherwise continue in isolation, whereupon its 

chances of survival may be slim96. A similar predisposition for crudely specified faces has been found 

in human neonates96, and the chick appears to be a good animal model of the human system. 

Accordingly, the predisposition in the chick has been shown to be for a simple representation of a 

chick’s face, a visual stimulus closely analogous to the stimulus configuration for which a 

predisposition occurs in human subjects97-99. A further predisposition has been described in chicks 

for dot patterns on a visual display exhibiting biological motion (e.g. resembling walking), over 

matched dot patterns that do not move in a biologically meaningful way100. Most human babies also 

prefer such stimuli101102. When exposed to images of two objects, one evidently self-propelled by 

seeming to cause the motion of the other, chicks preferentially imprint to the ‘self-propelled’ 

object103. Such results indicate that features characteristic of living, as opposed to inanimate, objects 

contribute significantly to the potency of an imprinting stimulus. 

 

BOX 1 

The memory underlying imprinting strikingly resembles recognition memory studied in human and 

non-human animals:- 

(i) Memory encoding requires no additional stimulus to act associatively as a reinforcer or 

unconditional stimulus2, 104. 

(ii) The memory can be used flexibly, not only to reproduce behaviour acquired during training, 

but also to influence more versatile behaviour. For example, sequential exposure to two different 

imprinting stimuli in close temporal juxtaposition can modify the rate at which the chicks 

subsequently learn to discriminate between the same two stimuli, an effect interpreted as being due 

to the chicks classifying the stimuli together85, 86. The suggestion is that new representations are 



established after the rapidly juxtaposed exposure, which can subsequently be utilised in novel 

situations. Flexible use of recognition memory in normal human subjects may be demonstrated by 

the learning of paired associates, such as several pairs of unique playing cards; normal subjects can 

easily reproduce the pairings from a cluster of all the test cards presented simultaneously in random 

positions. In contrast, amnesic subjects, i.e. with severely impaired recognition memory, can learn 

the card pairings but are unable to use this information flexibly to reproduce the pairings from the 

random cluster105. 

(iii) Acquisition and retention of the memory is selectively abolished by lesions that have no 

effect on other types of learning such as simple conditioning38, 106, 107. 

It is not yet clear whether memory arising from imprinting can be fractionated into components 

corresponding to recollection and familiarity, this having been proposed as a characteristic of 

recognition memory108. 

 

Conclusion 

Imprinting has been studied extensively, from the perspectives of ethology, experimental 

psychology, behavioural ecology and neuroscience. It continues to contribute to all of these 

disciplines and has proved particularly productive in the study of the neural mechanisms of learning 

and memory. A complete understanding of imprinting will require information from many lines of 

enquiry: it seems likely that behavioural observations, evolutionary considerations, learning theory 

and the analysis of neural mechanisms will be required, including the many complementary 

experimental approaches that have become available in each field. A major challenge is that of 

finding the appropriate level of analysis in each contributing discipline. An ethogram needs to be 

sufficiently detailed to be useful and yet beyond a certain level, extra detail can be unhelpful. 

Microarray technology can investigate gene expression systematically across the genome, yet 

combine the statistical problems of bioinformatics with those of the observer of behaviour and 

hypotheses amenable to decisive testing can prove elusive. There are of course ways of simplifying 

the problems: experience suggests which behavioural measurements are likely to yield the most 

useful information, and which genes are likely to yield the best insights into synaptic function. 

Anatomical localisation of neural systems within the forebrain facilitates interpretation of the effects 

of localised drug injection and normal brain function is remarkably resilient to the introduction of 

microelectrode probes. Multidisciplinary analysis of imprinting therefore has a promising future. 

Benefits of the multi-disciplinary study of imprinting have arisen at several different levels of 

experimental analysis, some of them unexpected: the lesion experiments designed to investigate 

hemispheric asymmetry in the IMM37, 38, 109, 110 were prompted by the demonstration of hemispheric 

asymmetry in synaptic morphology following imprinting39, 40. These lesion experiments led to the 

discovery of a predisposition to prefer faces96-99 and demonstrated the existence of a brain region S', 

which is necessary for the flexible use of information acquired through imprinting86. Neurobiological 

analyses thus illuminated issues that had arisen in the ethological literature and behavioural results 

reciprocally raised problems that required a mechanistic explanation. Such experiments exemplify 

the advantages of giving serendipity a chance. 



It is possible that an understanding of the neural mechanisms underlying imprinting and related 

phenomena, such as behavioural sensitive periods, predispositions and the role of sleep in memory 

consolidation will facilitate understanding of these processes at a fundamental level, across a range 

of species. A number of important questions arise: why do the structure and connectivity of the 

avian and mammalian forebrains36 differ so markedly, and yet evidently have similar functions? 

What are the definitive properties of recognition memory? How does sleep act to consolidate 

memory? What controls the duration of a sensitive period? It is possible that imprinting, occurring as 

it does in both birds and mammals, will contribute to the solutions of these problems and possibly 

help show for which functions the avian and mammalian systems of neuroanatomical and functional 

organisation are optimized. It would be surprising if the ways in which neuronal networks subserve 

memory differ greatly between species. Finally, the practical advantages of imprinting in the chick 

for the analysis of learning and memory (developing [and thus plastic] central nervous system; rich 

behavioural repertoire; ease of obtaining large sample sizes; no feeding necessary for several days 

post-hatch) make it a particularly attractive system for elucidating mechanisms of behaviour and the 

modification of behaviour by experience. 
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Figure captions 

Figure 1 

Plot illustrating learning-relatedness of a physiological measurement in the brain after imprinting. 

Data are taken from ref 43, in which the number of Fos-positive nuclei (square root- transformed to 

normalize the data) are plotted against preference score, a measure of preference for the imprinting 

stimulus and thus of the strength of imprinting/learning. Nuclei were counted in a standard sampling 



frame placed over the IMM region in a histological section. Each point represents data from one 

chick. The least squares regression line has been fitted. The lower horizontal dashed line estimates 

the value of the ordinate corresponding to the ‘no preference’ score of 50 (characteristic of chicks 

showing no learning). This estimate was not significantly different from the mean value for untrained 

chicks, which is represented by the open circle (the error bars represent + 1 SEM, n = 16). The upper 

horizontal dashed line gives the estimated value of the ordinate corresponding to the maximum 

preference score attained in the experiment (characteristic of strongly imprinted chicks). This 

estimate was significantly greater than the mean value for untrained chicks. The estimates shown by 

the horizontal dashed lines are based on interpolation of the regression line. The thick bars on the Y 

axis depict + one standard error of each estimated value. 

 

Figure 2 

Summary of learning-related biochemical changes in the IMM and the times after the end of 

imprinting training at which they were detected. In some cases the changes were lateralised and 

when this was the case, the learning-related effect was always stronger in the left IMM. An effect is 

reported as lateralised if either (i) there was a significant interaction between the side of the IMM 

and strength of learning (measured either by regression of the biochemical change on preference 

score, or by a difference between good and poor learners); or (ii) there was a significant effect of 

training on one side of the IMM but not on the other. 

 

Figure 3 

a, mean proportions of neurons + SEM in the IMM of domestic chicks that were responsive to a 

visual imprinting stimulus (IS - a red box), plotted against time since the start of the experiment75. 

Chicks were exposed to the IS for two one-hour periods, denoted by Train1 and Train2. Neuronal 

responsiveness to the IS was tested by neuronal tests NT1 – NT4. Chicks remained in running wheels 

throughout the experiment. Filled squares represent data from chicks (Rest-First group) that were 

allowed to rest in darkness during the six-hour period labelled ‘Session 1’. Open circles represent 

data from chicks (Disturbed-First group) that were prevented from sleeping continuously during 

Session 1 by a single revolution of the running wheel (duration one minute) delivered at random 

every 30 min during Session 1. During Session 2, which was also six hours in duration, the Rest-First 

chicks were disturbed as described above and the Disturbed-First chicks were allowed to rest. At test 

NT4, neuronal responsiveness to the IS in the Rest-First group had risen significantly to a maximum 

value that was significantly higher than neuronal responsiveness to the IS in the Disturbed-First 

group; in this latter group, the responsiveness had collapsed at NT4. The high level of responsiveness 

in the Rest-First group was due to the fact that this group was rested during Session 1 rather than 

disturbed during Session 2, since a high level of responsiveness at NT4 was also found if chicks were 

rested during Session 274. 

b, neuronal responsiveness to a novel stimulus (a blue cylinder) in the Rest-First and Disturbed-First 

groups that contributed data to panel A. In both groups, only approximately 10% of neurons in the 

IMM responded to the imprinting stimulus during all of the neuronal tests NT1 – NT4. 



c, mean preference scores + SEM for the Rest-First and Disturbed-First chicks measured at the end of 

the experiment. The Rest-First chicks had a preference score significantly (P = 0.03) greater than 50, 

indicating that they had become imprinted. In contrast, the Disturbed-First chicks had a mean 

preference score that was not significantly different from the ‘no preference’ level of 50. 

Disturbance during Session 1, as well as causing a drastic reduction of neuronal responsiveness to 

the imprinting stimulus at NT4 (panel A, filled squares), also reduced the mean preference score to a 

level at which no evidence of memory for the imprinting stimulus remained.  

Modified from reference 75. 

Figure 4 

Summary of the results of experiments38, 109 in which the IMM was ablated either unilaterally or 

bilaterally after imprinting training. Lesions in the IMM are represented as oval shaded areas and the 

left and right forebrain hemispheres are denoted by “L” and “R” respectively. “Result 1” gives the 

result of a preference test following IMM ablation under general anaesthesia < 3 h after training. 

“Result 2” is derived from a preference test after ablation under general anaesthesia ~ 24 h after 

training. a, bilateral ablation of the IMM < 3 h after training results in amnesia for the imprinting 

stimulus. b, ablation of first the right IMM and then the left IMM gives amnesia after the second 

lesion. c, in contrast, ablation of the left and right IMM in the reverse order results in retention of 

the preference acquired through imprinting. d, if both the left and the right IMM are intact for ~ 24 h 

after training, the preference acquired through imprinting is retained after subsequent ablation. In 

summary, if the right IMM is intact for a sufficient time after training, storage of information about 

the imprinting stimulus occurs outside the IMM, in a region termed S’. If the right IMM is lesioned < 

3 h after training, retention is dependent on the remaining left IMM and there is no evidence of S’ 

being functional. 

 

Figure 5 

Experiment demonstrating the mediational function of region S’ in the chick brain. On Day 1, all 

chicks received a total of 100 presentations of imprinting stimulus A and 100 presentations of 

imprinting stimulus B during two 53-min sessions of imprinting training. In the Mixed training 

condition, both sessions contained 50 presentations of each of the stimuli, A and B, in a quasi-

random order. For chicks in the Separate training condition, one session contained 100 

presentations of A and the remaining session contained 100 presentations of B. For half of these 

chicks, A was presented in Session 1 and B in Session 2; for the remaining chicks, B was presented in 

Session 1 and A in Session 2. Chicks then received lesions, either unilaterally in the right IMM < 1 h 

after training (Group R-IMM, preventing storage in S’) or bilaterally in the IMM 4 – 6 h after training 

(Group B-IMM, allowing storage in S’). On the next day, all chicks received visual discrimination 

training in which they were rewarded for approaching stimulus A. Chicks in Group B-IMM receiving 

Mixed training (framed) learned the discrimination significantly slower than the other three groups, 

whose acquisition rates did not differ significantly from each other. Thus, learning during the Mixed 

training session impaired subsequent discrimination learning if S’ remained intact. This impairment 

was interpreted as S’ mediating the classification together of A and B following mixed training and 

thereby interfering with the acquisition of a discrimination between A and B. From Honey et al86. 
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Time after end of training (h) 

1  Changes in: neuronal activity; gene expression; kinase activation and activity.  

Increased Fos expression in neurons immunopositive for GABA, taurine and 

parvalbumin but not calbindin (i.e. a sub-set of inhibitory neurons)43, 64, 65, 111 

Increased CaMKII autophosphorylation45 

Increased MARCKS phosphorylation (lateralised)48 

Increased expression of MARCKS mRNA49 

Increased phosphorylation of AMPA receptors (lateralized)117 

 

1 and 3.5 Change in: releasable neurotransmitter pool. 

Increased calcium-dependent, potassium-stimulated release of GABA and taurine 

(lateralised)112, 113 

 3-3.5  Change in: morphology of putative excitatory synapses. 

Increased size of postsynaptic density of axospinous neurons (lateralised)39, 40 

 7-8  Change in: glutamate receptor number. 

Increased NMDA receptor number (lateralised)41, 114 

 10  Change in: releasable neurotransmitter pool; receptor subunit mRNA. 

Increased calcium-dependent, potassium-stimulated release of GABA and taurine 

(lateralised)112, 113 

  Down-regulation of GABAA receptor γ4 subunit mRNA
115

 

22-25  Changes in: synaptic morphology; vesicle endocytosis; neural cell adhesion; cell-cell 

signalling; cytoskeleton; oxidative phosphorylation. 

Increased size of postsynaptic density of axospinous synapses (lateralised)40 

Increased amount of: 

Clathrin heavy chain protein (lateralised)51 

Neural cell adhesion molecules (lateralised)116 

  Non-phosphorylated (membrane-bound) MARCKS (lateralised)50, 53 

  Amyloid precursor protein (lateralised)50 

  Cytochrome c oxidase subunits I and II (lateralised)59 
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   Day 1           Day 2      

   Imprinting training  Lesion       Discrimination training, A vs B 

   Session 1 Session 2 

 

Group R-IMM (S’ ABSENT during discrimination training on Day 2) 

Mixed training A,B,B,A… B,A,A,B…   

       Lesion right IMM < 1 h after training   Reward approach to A only  

Separate training A,A,A,A… B,B,B,B…   

                        or B,B,B,B… A,A,A,A…         

 

Group Bil-IMM (S’ PRESENT during discrimination training on Day 2) 

Mixed training A,B,B,A… B,A,A,B…   

       Lesion IMM bilaterally 4 – 6 h after training  Reward approach to A only  

Separate training A,A,A,A… B,B,B,B…   

                        or B,B,B,B… A,A,A,A… 

 

 


