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RESPONSE TO REVIEWERS 
 
Reviewer 1: Insulin signaling is critical for multiple aspects of animal physiology. In adipocytes, insulin 
facilitates entry of glucose and de novo synthesis of lipid, and inhibits breakdown of fat, thus promoting storage 
of energy as fat. Because adipocyte insulin resistance has been associated with glucose intolerance, 
understanding the mechanism and regulation of insulin signaling in adipocytes is important. In this review, 
Guetin and colleagues review "Omics" approaches to study adipocyte insulin signaling pathway action in 
cellular time and space. The authors covered their and others' recent works and provided remaining questions 
in this field. Although it will be much more informative to introduce detailed modern technologies and limitations 
of single-or multi-Omics approaches using adipocytes, this study does go a long way in summarizing 
advantages of Multi-Omics approaches and our current understanding of adipocyte insulin signaling. For this 
reason, this study is highly significant and should be published in Trends in Biochemical Sciences. With this 
said, several (mostly minor) issues need to be addressed prior to publication. 
 
Major point. Although an overview of recent omics technologies is not a focus of this review, it would be very 
informative to have a brief introduction of omics types and methods for their integration across multiple omics 
layers. In addition, it would be helpful to provide current challenges including sample preparation, and 
considerations for the design of omics studies. 
 

Response: We thank the reviewer for the comments and we have now included an additional BOX 3 that 
focuses on phosphoproteomics and metabolomics workflows.   

 
Minor points. 

1. The nomenclature for protein should be in upper-case, for example, AKT not Akt. 
2. In Figure 1, an arrow on top of main figure should be removed. 
3. Box1 Figure legend: Abbreviations of insulin response (IR) and beta-adrenergic response (AR) 

should be revised, because IR and AR are more commonly used for insulin receptor and adrenergic 
receptor. 

4. Table 1: "Genetic disruption of mTORC2"-"GLU4" should be GLUT4. 

Response: We thank the reviewer for the comments. All these minor points have been addressed in the 
current version of the manuscript. 

Reviewer 2: The authors introduce basic knowledge about responses to insulin in adipocytes, especially about 
regulation from mTORC2/AKT signaling, GLUT4 translocation and metabolites. They summarized recent 
advances of this topic using omics measurements. They focused on phospho-proteomics and metabolomics 
including flux analysis in cultured cells. They further discussed the future perspective including extension of 
omics measurement to in vivo studies, and revealing the cause of insulin resistance in adipose tissue. 
 
This is a simple, very-written review for overviewing recent progresses of application of omics techniques to 
the research of insulin action in adipose tissues. I have only one minor comment that would improve the 
review. 

1. In Lines 187-198, the authors discussed the relationship between the TCA cycle and DNL. Several 
studies suggest that time-resolved data of metabolites, fluxes, and regulatory contributions in the 
TCA cycle can be classified into several clusters (45, 46 and 73, the same reference numbers in the 
manuscript). This would provide a novel insight into the TCA cycle and the description about this in 
the text is appreciated 

Response: We thank the reviewer for the comments. We have now expanded our discussion on how time-
resolved data has revealed insight into glucose metabolism via the TCA cycle after insulin stimulation (see 
lines 243-293).  

Response to Reviewers



Highlights 
 
1.  Advances in proteomics and phospho-proteomics is allowing analysis of insulin signaling 
dynamics at unprecedented detail. 
 
2.  Advances in metabolomics and stable isotope tracing is similarly allowing analysis of 
carbohydrate and lipid metabolism at unprecedented detail.    
 
3.  We discuss how integrating these two 'omics techniques is critical to elucidated adipocyte 
insulin action in health and disease. 
 
4.  Key future directions include advancing in vivo studies and overcoming the challenge of 
adipose tissue heterogeneity   

Highlights
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Abstract 

Insulin-stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 

translocation and directs glucose carbons into glycolysis, glycerol and TAG synthesis, and de 

novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, 

a worldwide health crisis. Thus, understanding the interplay between insulin signaling and 

central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, 

and metabolic homeostasis is critical. While classically viewed through the lens of individual 

enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate 

adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of 

the iceberg. Here we review how 'omics approaches are helping to elucidate adipocyte insulin 

action in cellular time and space. 

  

  

  

  

 

  

  



Interplay between insulin signaling and metabolism in adipocytes 

         Overweight and obesity affects nearly 2 billion people worldwide. Adipose tissue 

expands when energy intake exceeds energy expenditure, storing the excess nutrients in lipid 

droplets as inert triacylglycerols (TAGs) and thereby maintaining metabolic homeostasis. 

However, chronic overnutrition can overrun adipose tissue's protective capacity eventually 

leading to obesity-associated insulin resistance, toxic lipid accumulation in non-adipose 

tissues such as liver, and a myriad of other deadly comorbidities including type 2 diabetes and 

cancer. Similar pathologies develop in the absence of adipose tissue (i.e.  lipodystrophy)[1]. 

Thus, both adipose tissue function and amount are critical health metrics and understanding 

their biological basis is essential to combating the obesity epidemic. 

Insulin, a peptide hormone produced by pancreatic beta cells, is a critical regulator of 

adipocyte metabolism. In white adipocytes [Box1], insulin stimulates glucose uptake and de 

novo lipogenesis while suppressing lipolysis. The key mediator of intracellular insulin action is 

the protein kinase AKT [Figure 1A-C]. Impaired AKT phosphorylation is often, although not 

always, observed in insulin resistance where insulin-stimulated glucose transport is 

decreased[2]. However, whether defects in insulin signaling and decreased AKT activation are a 

primary cause of insulin resistance, or indeed a consequence (e.g. of insulin resistance-induced 

hyperinsulinemia), remains unclear (reviewed in [2,3]). 

Metabolites can also modulate insulin action. For example, glucose-derived metabolites 

have allosteric roles in glycolysis and regulation of ChREBP, a transcription factor that drives 

expression of glucose and lipid metabolism enzymes[4,5]. The nutrient sensing mTORC1 

pathway is also regulated by the availability of glycolytic metabolites and certain amino acids[6] 

[Figure 1B]. Additionally, AKT and mTORC2 can be influenced by post-translational 

modifications regulated by metabolism such as acetylation[7] and O-GlcNAcylation[8], and the 

insulin-responsive glucose transporter GLUT4 can be palmitoylated to promote maximal insulin 

response[9]. Signaling metabolites are altered in insulin resistance raising the possibility that 

metabolite-signaling is also central to the aetiology of insulin resistance. Here we review recent 

insights into adipocyte signaling and metabolism that have been enabled, in large part, by 

phosphoproteomics and metabolomics approaches. We suggest that integrated assessment of 

signaling, metabolism and gene expression will likely shed insight into the aetiology of adipocyte 

insulin resistance. 

The Insulin-regulated phosphoproteome in cultured adipocytes 

The full insulin signaling network and its temporal and spatial dynamics remained vague 

until 2013 when advances in mass spectrometry provided a glimpse of the protein 

phosphorylation complexity of insulin signaling in adipocytes[10]. Key advances in 

phosphopeptide enrichment[11], sample throughput, reproducibility and accuracy (e.g. 96-well 

plate workflows[12], use of metabolic/isobaric labeling[11,13], and in the instrumentation and 

analysis software itself (reviewed in [14])) allowed the description of insulin signaling with 

unprecedented depth in cultured 3T3-L1 adipocytes[10]. These studies revealed that 

approximately 20% of the adipocyte phosphoproteome is insulin-regulated within 20 minutes 
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post-stimulation[10,15]. In the largest study-to-date, this represents nearly 5,000 

phosphorylation events on over 2,000 proteins (approximately 1/3rd dephosphorylated and 2/3rd 

phosphorylated[10]). This is a staggering amount of new information on the adipocyte insulin-

signaling network, with the vast majority of these signaling events unstudied[14], and offers an 

exciting opportunity to increase our understanding of how insulin signaling modulates multiple 

cellular processes, including metabolism. 

Phosphoproteomic analysis has also been used recently to examine insulin signaling in 

cultured brown adipocytes, which regulate thermogenesis [Box 1][16,17]. Aligning temporal 

signaling information from cultured 3T3-L1 and brown adipocytes reveals that the insulin 

response is similar between the cell types, at least in culture, and this has provided additional 

insights into the topology of the insulin signaling network[16]. Signaling events proximal to the 

plasma membrane (PM), such as insulin receptor phosphorylation and AKT activation [Figure 

1A] occurred very early, within 15-30 seconds of insulin stimulation. Phosphorylation events 

occurring further downstream in the network (such as activation of mTORC1/S6K signaling 

[Figure 1B-C] and inactivation of PKA signaling, and phosphorylation events occurring at distal 

sub-cellular locations, such as in the nucleus), occurred later, within 2-5 minutes of insulin 

stimulation. This kinetic information allows novel signaling events to be more accurately mapped 

to specific sites within the signaling network and can be used to help predict kinase-substrate 

relationships. For example, AKT and S6K share the same linear consensus motif (R-X-R-X-X-

S/T), but incorporating temporal information distinguishes between AKT and S6K 

substrates[18]. 

Post-translational regulation of AKT 

         AKT2 is the most critical AKT isoform expressed in mature adipocytes [Box 2]. Despite 

years of study, AKT regulation is still not fully understood. AKT is activated at the PM by PDK1 

[Figure 1A] which phosphorylates AKT2 at Thr309 and mTORC2, which phosphorylates AKT2 

at Ser474[19]. In some settings, these phosphorylation events are linked, while in others they 

can occur independently[20]. AKT phosphorylation is widely used as an intracellular biomarker 

of insulin resistance. Therefore, understanding the exact regulation and function of these AKT 

phosphorylation events is critical. 

Recent phosphoproteomic approaches have shed additional light on the details of AKT 

and mTORC2 in adipocytes. In 3T3-L1 adipocytes, this includes identifying the mTORC2 

component SIN1 as an AKT substrate (Thr86) [Figure 1A][10]. AKT signaling to SIN1 may 

promote mTORC2 activity by forming a positive regulatory loop. In this model, AKT 

(phosphorylated at Thr309) then phosphorylates SIN1 to increase mTORC2 activity towards 

AKT Ser474[10,21] [Figure 1A]. Doubly phosphorylated AKT is biochemically maximally 

activated. Other regulatory loops include feedback from mTORC1/S6K to inhibit IRS proteins 

(reviewed in [6]) and mTORC2[22,23] and a feedback loop to IRS by AKT that lowers IRS 

abundance at the PM[24] [Figure 1B]. These examples are likely the tip of the iceberg in 

understanding signaling crosstalk and highlight how unbiased approaches illuminate novel 

mechanisms. 
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Interestingly, while mTORC2 is required for maximal AKT activation, genetic models of 

mTORC2 loss do not phenocopy AKT loss[25,26]. For example, deleting the essential mTORC2 

regulatory subunit Rictor does not have as strong an impact on AKT downstream signaling in 

white (WAT) and brown adipose tissue (BAT), as measured by more traditional approaches 

(e.g. immunoblotting with phospho-specific antibodies), despite profoundly impairing 

metabolism[17,26–29], nor does it cause adipose tissue lipoatrophy as observed when AKT1/2 

are deleted[30–32]. 

Proteomics and phospho-proteomic analysis of insulin signaling in cultured brown 

adipocytes lacking Rictor reveal only mild effects on the global insulin response, and that only a 

subgroup of AKT substrates show strong mTORC2-dependency[16,33]. The top scoring 

mTORC2-dependent AKT substrate in this model is ATP-citrate lyase (ACLY) [Figure 1C-D], 

which cleaves citrate to make acetyl-CoA and oxaloacetate in the first step of de novo lipid and 

cholesterol biosynthesis[16]. This raises the possibility that some AKT substrates are more 

dependent on mTORC2 than others. Similar observations have been made in 3T3-L1 

adipocytes using a different approach that directly inhibits AKT-S474 without impairing 

mTORC2[34,35] [Table 1]. However, in this model phospho-S474 loss shows ~50% AKT 

inhibition[16], possibly suggesting differences between cell types, experimental strategies, or 

compensatory mechanisms (summarized in [Table 1]). Nevertheless, these observations 

indicate that many unanswered questions exist regarding the role of mTORC2 in insulin and 

AKT signaling. 

In summary, applying phospho-proteomics is revealing the temporal and spatial 

organization of the insulin signaling network. Importantly, thousands of uncharacterized insulin-

regulated phosphorylation events remain unexplored. There are some limitations to current 

strategies, including the lack of subcellular resolution. For example, AKT may be activated at 

different locations in the cell, such as at the mitochondria-associated endoplasmic reticulum 

(ER) membranes[36] and in the nucleus[37], and whole-cell approaches cannot distinguish 

these or AKT activation mechanisms at these sites. The insulin dose, physiological nutrient 

levels in the medium, other circulating metabolites, beta-adrenergic signals, and/or 

communication from neighboring cells also likely impact the insulin response, and these have 

not yet been explored. The data discussed herein was also generated using cultured cells and 

translating these studies to in vivo insulin action is a critical next step[38,39]. 

Probing adipocyte metabolism using metabolomics 

         Insulin signaling increases glucose uptake into adipocytes through the translocation of 

the glucose transporter GLUT4 to the PM [Figure 1C-D]. This is thought to be largely controlled 

by AKT-mediated phosphorylation the Rab-GTPase activating protein TBC1D4/AS160, which 

then permits Rab-mediated translocation of GLUT4-containing vesicles to the cell surface 

(reviewed in[40]).  In addition to stimulating glucose uptake, insulin promotes glucose 

incorporation into lipids and glycogen (i.e. de novo lipogenesis and glycogen synthesis), free 

fatty acid uptake, and glycerol and TAG synthesis while simultaneously suppressing lipolysis 

[Figure 1C-D]. This promotes the safe storage of lipids in TAG droplets. Adipose tissues both 

maintain an abundant energy reserve and protect the body against toxic lipid accumulation in 

https://paperpile.com/c/1GZvLs/6iQmM+DwOc7
https://paperpile.com/c/1GZvLs/gMsc0+9yhNg+MInsV+DwOc7+knbCC
https://paperpile.com/c/1GZvLs/8tKv+EOmqy+wDair
https://paperpile.com/c/1GZvLs/sWgMo+KQ0Lm
https://paperpile.com/c/1GZvLs/sWgMo
https://paperpile.com/c/1GZvLs/sQd7Y+J2OJj
https://paperpile.com/c/1GZvLs/sWgMo
https://paperpile.com/c/1GZvLs/kQTPX
https://paperpile.com/c/1GZvLs/v6Efv
https://paperpile.com/c/1GZvLs/CcplJ+bNHav
https://paperpile.com/c/1GZvLs/opjdv


non-adipose tissues such as the liver [Box 1][41,42]. Although these basic tenets are well 

established, how individual metabolic pathways and intermediary metabolites function in normal 

and disease states is not well understood, especially in vivo. 

Glucose carbons as well as the carbon and nitrogen components of other circulating 

nutrients like amino acids and short and long chain fatty acids can be used in energy storage 

pathways, as building blocks for organelles, proteins, and nucleic acids, and as signaling and 

allosteric regulatory molecules. As an analytical profiling technique, metabolomics can identify 

and quantitate the metabolites present in a biological sample thereby providing a snapshot of a 

cell's or tissue's metabolic state. However, this only gives part of the picture because it does not 

reflect the consumption or production rates of individual metabolites. For this, stable isotope 

tracing (e.g. with 13C-labeled or other compounds) allows substrate metabolism to be followed 

over time providing a measure of the flow rate (or flux) of individual carbons through metabolic 

pathways as well as their destination[43]. 

Stable Isotope Tracing in 3T3-L1 adipocytes 

         Stable isotope tracing with 13C-glucose has been performed in 3T3-L1 adipocytes[44]. 

These studies suggest glucose is rapidly processed via glycolysis and also the pentose 

phosphate pathway (PPP)[44]. Temporal analysis of insulin-stimulated protein phosphorylation 

versus changes in glucose metabolism reveals that many insulin-regulated phosphorylation 

events on metabolic enzymes occur prior to increased glucose transport, and that lower 

glycolysis increases flux before upper glycolysis[45]. The implications are that insulin signaling 

prepares, or primes, metabolic pathways ahead of the glucose deluge by acting at multiple 

points beyond regulating GLUT4. This priming may drag glucose towards specific metabolic 

routes such as the PPP (to make NADPH for lipid synthesis)[44], the glycerol-3-phosphate (to 

make the backbone for TAG synthesis)[46], and de novo lipogenesis (DNL) pathway (discussed 

below). 

An interesting aspect of these and follow-up studies in 3T3-L1 cells[44,45,47] is that 

glucose-carbon flux through glycolysis and into the tricarboxylic acid (TCA) cycle can be 

classified into distinct metabolic regulatory clusters.  For example, insulin increases the 

concentration of upper glycolysis metabolites to reach a new steady state within the first 10 

minutes of stimulation, while lower glycolysis metabolites take nearly 4 times longer to reach 

equilibrium[44]. Nevertheless, glycolysis metabolites overall cluster together increasing in 

abundance with time, and in a manner in which glycolysis operates faster than the TCA cycle 

(evidenced by increased lactate production). Indeed, evidence from both adipose tissue and 

cultured adipocytes suggests that a substantial portion of glucose taken into the cell in response 

to insulin is converted to lactate[44,48,49], though the proportion may vary depending upon cell 

type (3T3-L1 versus primary adipocyte) and/or culture conditions[49]. Why insulin more strongly 

drives glycolytic flux than TCA cycle flux is unclear. Converting pyruvate to lactate via lactate 

dehydrogenase may be important to regenerate the NAD+ consumed during glycolysis. 

Increased glycolytic flux could also reflect an advantage for increased ATP generation by 

aerobic glycolysis, increased flux into the PPP for NADPH synthesis, increased carbon demand 

for synthesizing glycerol (to make TAGs), or a combination of these factors.  
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Pyruvate carbons derived from glucose can also enter the TCA cycle after conversion to 

acetyl-CoA and then citrate. Compared to glycolytic metabolites, the kinetics and extent of 

glucose-derived carbon enrichment in TCA cycle metabolites following insulin stimulation is 

more heterogeneous[44]. Malate and fumarate appear to cluster with glycolysis metabolites and 

have a higher total increase while citrate, isocitrate, and succinate levels initially drop prior to 

increasing but to an overall lower amount. The distinct clustering of these TCA metabolites, 

along with the isotopologue distributions (i.e. the patterns of labeled carbons within TCA 

metabolites) suggest glucose flux via the pyruvate anaplerosis pathway[44] [Figure 1D]. The 

initial decrease in citrate may also provide evidence supporting the priming effect of insulin. In 

anabolic conditions, citrate molecules are exported from the mitochondria for entry into the DNL 

pathway. Extra-mitochondrial citrate is cleaved by ATP-citrate lyase (ACLY) to form acetyl-CoA 

and oxaloacetate, and ACLY is regulated by insulin through post-translational and allosteric 

mechanisms (discussed below).  

         Acetyl-CoA is further carboxylated to form malonyl-CoA by acetyl-CoA carboxylase 

(ACC) committing it to lipid synthesis, and then assembled into lipids by fatty acid synthase 

(FASN) in the rate limiting step of DNL [Figure 1D]. Acetyl-CoA can also enter the mevalonate 

pathway leading to cholesterol and isoprenoid biosynthesis although this pathway has been less 

studied in adipocytes. The cytoplasmic oxaloacetate generated by ACLY is converted to malate, 

which can be decarboxylated to pyruvate by malic enzyme (ME) in the cytoplasm in an NADPH 

generating reaction or shuttled back into the mitochondria [Figure 1D]. Interestingly, cytoplasmic 

ME1 appears to be a main source of NADPH in certain models suggesting that pyruvate 

regeneration could be required for DNL[46,50]. Tracer experiments suggest that pyruvate can 

be converted to both oxaloacetate by pyruvate carboxylase, which is activated within 5 min of 

insulin stimulation[44], and acetyl-CoA via PDH, thereby allowing glucose to potentially operate 

as the sole or at least major carbon source for citrate production under insulin stimulation. 

Despite this key role for glucose in lipogenesis, the contribution of malonyl-CoA from 

non-glucose substrates is substantial and maintained independent of insulin status[46]. As 

indicated above, exporting citrate for DNL depletes TCA cycle intermediates and maintaining 

TCA cycle flux requires engagement of anerplerotic pathways, which can then contribute to 

acetyl-CoA for lipogenesis. Alternate carbon sources include branched-chain amino acids 

(BCAAs)[51,52], glutamine[50] and acetate[17,53,54]. In fact, BCAAs account for approximately 

30% of the lipogenic acetyl-coA in 3T3-L1 adipocytes[52] consistent with adipose tissue being a 

key site of BCAA metabolism[55]. Thus, while the emerging picture is one of inherent substrate 

flexibility, much more work is needed especially in vivo to establish the physiological relevance 

of glucose versus non-glucose substrates to adipose tissue metabolism. 

Insulin signaling to metabolism in 3T3-L1 adipocytes 

These above combined data support the notion that one of insulin's main functions is to 

coordinate the synthesis of lipids and their storage from glucose. It does so by targeting multiple 

steps beyond stimulating GLUT4 translocation to the plasma membrane, thereby priming certain 

metabolic pathways to establish a model of substrate-demand-driven metabolic fluxes. Apart for 

stimulating GLUT4 translocation, one of the earliest effectors linking insulin to glucose 
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metabolism via AKT was the glycogen synthase kinase (GSK) and glycogen synthase (GS), 

although glycogen is not thought to be a major site for glucose storage in adipocytes. AKT 

phosphorylates and inactivates GSK3, which leads to decreased phosphorylation of GS at 

several sites (Ser641, Ser645, Ser649 and Ser653) [Figure 1C]. Dephosphorylation, along with 

increasing concentrations of its allosteric activator glucose-6-phosphate, fully activates GS and 

re-routes glucose into glycogen[56]. 

Phosphoproteomic analysis in 3T3-L1 cells identified other potential substrates linking 

AKT signaling to metabolism including NADK, ABDH15, SLC1A3, and PFKFB3[10] [Figure 1C-

D]. Ser44 on NAD kinase (NADK) was identified as a high confidence AKT substrate by 

phosphoproteomic profiling in adipocytes[10]. NADK (Ser44/46/48) has now been described as 

a bona fide AKT substrate linking insulin stimulation to NADK-dependent increase in cellular 

NADP[57]. Stimulation of cytoplasmic NADK by insulin may increase NADPH production to 

support adipocyte de novo lipogenesis, but this has yet to be formally tested. 

ABHD15 also undergoes insulin-dependent phosphorylation at several sites, including 

Thr142, Ser 146, Ser 304, Thr424, Ser 425, and Ser442[10]. ABHD15 is an α/β-hydrolase that 

interacts with PDE3B, and ABHD15 depletion impaired the suppression of PKA signaling and 

anti-lipolytic effects of insulin[58]. The role that ABHD15 phosphorylation plays in the regulation 

of lipolysis by insulin remains to be understood. 

SLC1A3 is a PM aspartate/glutamate transporter that undergoes insulin-dependent 

tyrosine phosphorylation at Tyr523[10]. Phosphorylation does not appear to alter transport 

activity or localization leaving its exact function unknown[59]. PFKFB3 catalyzes the formation 

of fructose-2,6-BP to allosterically activate PFK1, a rate-limiting step of glycolysis. PFKFB3 is 

one of the most highly regulated insulin-dependent phosphoproteins in adipocytes (Ser461, 

Ser467;[10]). Phosphorylation reportedly increases PFKFB3 activity to promote glycolysis[60] 

and it is tempting to speculate that PFKFB3 phosphorylation acts in concert with other 

regulatory mechanisms such as insulin-stimulated HK2[36,61] and PFK2[62] activity, although 

this has not been studied in adipocytes. Interestingly, PFK2 was also identified as an insulin 

stimulated phosphorylation substrate uniquely sensitive to mTORC2 suggesting it may be co-

regulated with phospho-ACLY to coordinate glucose to lipid fluxes[17]. These observations 

provide a glimpse at how global phosphoproteomics is revealing mechanisms linking insulin to 

metabolic control. Going forward it will be critical to extend these studies to primary cells, in vivo 

models, and other types of adipocytes. 

A key question relating to the regulation of adipocyte metabolism by insulin signaling is 

the relative contribution of these phosphorylation sites and other regulatory mechanisms like 

allostery. To address this, Ohno et al. integrated data from time-resolved phospho-proteomics 

and metabolomics experiments to study the major regulatory mechanisms in adipocyte glucose 

metabolism (termed trans-omics network analysis)[47]. Their model predicted that 

TBC1D4/AS160-S595 phosphorylation is the sole phosphorylation event critical for insulin-

regulated glucose metabolism (through GLUT4 translocation), that DNL is regulated by 

allosteric mechanisms acting in part on ACLY, and that most glycolytic reactions are regulated 

by the amounts of substrates and products. The authors suggest that insulin only regulates a 
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few key steps of glucose metabolism, namely glucose uptake. In contrast, direct experimental 

analysis of protein phosphorylation suggests a key role for insulin-stimulated ACLY 

phosphorylation in regulating ACLY activity in brown adipocytes, particularly during 

differentiation[17]. Future studies will need to refine these models in the context of primary cells, 

in vivo modeling, and adipocyte heterogeneity.  

Metabolic Flux in Brown Adipocytes 

         Understanding metabolic fluxes in brown adipose tissue (BAT) is of interest given its 

therapeutic potential as a nutrient sink (Box 1). The major brown fat fuels are lipids and glucose 

and measuring glucose uptake by FDG-PET-CT is currently the best indicator of brown fat in 

humans[63]. Brown adipocytes are highly insulin sensitive cells, but they also respond to 

norepinephrine (NE) released by the sympathetic nervous system following cold exposure. 

Insulin and NE/beta-adrenergic signaling typically work opposite each other; for example, insulin 

signaling is active during anabolic states such as after feeding, while NE is critical during 

fasting. However, this relationship is more complex in highly innervated BAT in which anabolic 

and catabolic metabolism cooperate to drive the energy demanding process of adaptive 

thermogenesis[31,64,65]. 

During cold adaptation, uptake of glucose and lipids into BAT increases 

substantially[65]. Active brown adipocytes consume relatively large amounts of glucose and 

fatty acids, but exactly how these substrates are utilized varies with the degree and duration of 

cold exposure[31,65]. Although studies to-date have not focused on insulin, metabolomics and 

stable isotope tracing studies are revealing insight into BAT glucose fluxes upon cold 

adaptation[65]. Moreover, recent reports suggest that oxidation of TCA intermediates such as 

succinate can increase reactive oxygen species that may stimulate UCP1 activity[66]. BAT can 

also store glucose as glycogen and lipids in TAG lipid droplets, which are rapidly accessible 

during acute cold exposure. 

The extent to which glucose is oxidized by the TCA cycle in BAT has been unclear. 

Recent in vivo isotope tracing studies with 13C-glucose in mice reveal that a significant portion of 

the glucose taken up by cold adapted BAT has additional functions beyond directly fueling the 

TCA cycle. For example, during cold adaptation glucose flows into the PPP and DNL pathways, 

the former possibly providing NADPH to support lipid synthesis[65,67]. Glucose also rapidly 

fluxes (within 15 minutes of glucose uptake) into acetyl-carnitines, which are the precursors to 

lipid oxidation, suggesting the de novo synthesized lipids may be rapidly rerouted to the 

mitochondria and oxidized[65,68–70]. These studies highlight a less-appreciated feature of 

adaptive thermogenesis in which cold stimulation simultaneously activates lipid synthesis and 

oxidation[65]. Why this futile anabolic-catabolic lipid cycle occurs is not known. 

         How insulin signaling contributes to BAT metabolic fluxes may also vary with the degree 

and duration of cold exposure. For example, AKT phosphorylation is higher in the BAT of ad 

libitum fed mice living in a mild cold environment (22°C) compared to thermoneutrality (30°C). 

However, adaptation to colder temperatures (6°C) lowers BAT AKT phosphorylation despite 

increasing glucose uptake[25,31,65]. This may reflect more rapid nutrient consumption and thus 
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a lowering of circulating insulin under these conditions. Transcriptomics analysis further shows 

that colder temperatures result in higher expression of genes that encode glycolysis regulators 

suggesting transcriptional regulation of glucose metabolism may become more important during 

cold adaptation. Glucose uptake in brown fat is also additionally driven by the GLUT1 

transporter, which is responsive to both beta-adrenergic and insulin stimuli[71], although GLUT1 

is less insulin-responsive than GLUT4[34]. The interplay between signaling pathways and 

metabolic fluxes in BAT, and the full spectrum of BAT metabolic substrates and their 

intracellular fates, is just beginning to be explored. 

Integrating hormone and metabolite signaling 

When considering insulin action from a systems perspective, one frontier is deciphering 

the interplay between hormone signaling and metabolic fluxes, both acutely in healthy 

individuals, such as in response to a rise in blood glucose levels, and in states of chronic 

overnutrition like obesity and insulin resistance, in which epigenetic and transcriptomic changes 

can alter a cells metabolic flexibility. Within this context, one goal is to identify the key nodes 

that can directly respond to both insulin-signaling and metabolite availability (nutrient sensing). 

One critical node linking hormone, metabolic, and transcriptional events is ACLY and its 

product acetyl-CoA. Acetyl-CoA is both a lipid and cholesterol precursor, but also the substrate 

for protein acetylation, which can regulate enzyme activity and most famously epigenetic control 

of gene expression. ACLY is the main source of nuclear-cytoplasmic acetyl-CoA especially from 

glucose and it is also an early target of insulin-stimulated AKT phosphorylation (at 

Ser455)[17,53,72] [Figure 1D and 2]. ACLY can also be allosterically regulated by 

phosphorylated sugars such as fructose 6-P[73] and this may play a role in ACLY activation 

following insulin stimulation[47]. Moreover, ACLY phosphorylation by AKT-mTORC2 signaling in 

brown adipocytes not only promotes acetyl-CoA availability and de novo lipogenesis, but also 

transcriptional expression of glucose transporters and DNL enzymes. During brown adipocyte 

differentiation, this is essential for establishing the epigenetic state required for induction of 

PPAR-gamma and the brown adipogenic program[17]. In primary subcutaneous white 

preadipocytes, this circuit is not required for PPAR-gamma induction, but it is required for 

establishing the transcriptional program for lipid synthesis[26], thus there may be some tissue-

specific differences regarding development. 

The insulin signaling pathway also directly targets kinases with roles in energy or 

nutrient sensing, such as AMP-dependent kinase (AMPK) and mTORC1. AMPK and mTORC1 

are often reciprocally active, with insulin signaling promoting mTORC1 activity [Figure 1B-C, 

Figure 2]. AMPK is activated under times of energetic stress, when AMP levels rise (reviewed 

in[74]) and acts to attenuate energy-consuming processes such as DNL while promoting 

energy-producing processes like β-oxidation. The role of AMPK activity in adipose tissue biology 

and metabolism is not as clearly defined as in other tissues like muscle[75], although recent 

studies have implicated AMPK in promoting BAT-mediated thermogenesis and the browning of 

WAT[76]. In terms of insulin signaling to AMPK, there is substantial crosstalk between AMPK 

and the insulin-activated kinases AKT and mTORC1, where AKT[77] and mTORC1-

mediated[78] phosphorylation of AMPK lowers AMPK activity. Further, since insulin signaling is 
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most active postprandially, metabolic signaling to AMPK via the AMP/ADP:ATP ratio or 

decreased lipolysis derived fatty acids[79] would be expected to decrease AMPK activity. 

Together, these mechanisms lead to lower AMPK activity when insulin signaling is active.     

mTORC1 integrates metabolite and insulin signaling [Figure 2]. Moreover, most of the 

insulin-stimulated phosphoproteome is mTOR-dependent in mouse embryonic fibroblasts 

(MEFs) and Human embryonic kidney (HEK)-293E cells[80,81]. mTORC1 activity is controlled 

via the heterotrimeric TSC complex and two distinct small GTPases, the Rag GTPases that 

regulate mTORC1 subcellular localization, and Rheb GTPases that control mTORC1 kinase 

activity. AKT phosphorylates the mTORC1 component PRAS40 and promotes Rheb activity 

through TSC (explained in detail in[82]). Through a distinct pathway, mTORC1 is regulated by 

the intracellular availability of the amino acids leucine, arginine, methionine[83,84] as well as the 

glycolytic intermediate dihydroxyacetone phosphate (DHAP)[85] [Figure 1B], which act through 

the Rag GTPases. AMPK phosphorylates the TSC complex at sites distinct from AKT and 

stimulates its GAP activity towards Rheb to inhibit mTORC1[86]. 

Knockout of Raptor, an essential mTORC1 subunit, in adipose tissue causes 

lipodystrophy consistent with mTORC1 regulating adipocyte lipid storage capacity[87,88]. 

mTORC1 is also reported to regulate DNL through SREBP1[19,89]. Although the role of amino 

acids as mTORC1 signals is well established in cultured cell models, the significance of amino 

acid sensing in adipose tissues is not understood. This warrants investigation given the high use 

of branched chain amino acids in adipocytes for DNL, the  strong link between high circulating 

branched chain amino acids (e.g., leucine, a mTORC1 regulation) and insulin resistance in 

obesity[90]. 

Other examples of signaling metabolites that are likely important in adipocytes (though 

currently understudied) include how ATP and long chain fatty acyl-CoA inhibits lactate 

dehydrogenase A[91] and how glucose-derived metabolites activate CHREBP, a transcriptional 

activator of the DNL program [Figure 2]. There may also be a link between glycolysis/PPP 

activity and insulin signal transduction since the PPP by-product γ-6-Phosphogluconolactone 

modulates phosphatase activity[92] and inhibition of glycolysis (by targeting PFKFB3) blunted 

insulin signaling[93]. The significance of these protein modifications or PPP/glycolysis-insulin 

signaling crosstalk in the regulation of adipocyte signaling and metabolism also remain unclear. 

Covalent post translational modifications of proteins by metabolites that may be linked to 

changes in cellular metabolism, such as acetylation[94], O-GlcNacylation[95], and 

glycosylation[96], are also gaining attention due to their potential to modify enzymatic activity 

and link substrate availability to metabolic changes. Thus, integrating post-translational 

modification mapping data beyond phosphorylation with transcriptomics and metabolic flux 

studies will be required to fully understand how metabolism is regulated coordinately by 

hormones and nutrient availability. 

Concluding remarks  

         Combining phosphoproteomics and metabolomics, as well as transcriptomics is a 

powerful way to understand how adipocytes sense and respond to blood glucose and insulin 
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levels. To date, much of the work is cell culture-based, and while cell culture models are 

revealing novel regulatory mechanisms, in vivo studies will be required to understand 

physiological relevance. Although translating phosphoproteomics and metabolomics to in vivo 

models presents additional challenges, the approach is increasing in feasibility. For example, 

phosphoproteomic workflows have already yielded deep coverage of insulin[97] or exercise[98] 

signaling networks in the liver and muscle, respectively, and there are increasing examples of 

studies utilizing tracers in vivo to study glucose and amino acid metabolism[65]. Additional 

technologies are now coming online that may allow determination of spatial regulation of the 

proteome[99], phosphoproteome[100] and metabolome[101], and at the single cell level at least 

for some technologies[102]. MADLI-MS imaging is one exciting example in metabolomics[103]. 

Applying these techniques in both genetic and disease models, in combination with emerging 

single cell technologies, is an exciting prospect set to unravel adipocyte insulin signaling and 

metabolic regulation on unprecedented levels (see also Outstanding Questions). 
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BOX1 Types of adipocytes 

White adipocytes function as long term energy storage depots and critical endocrine 

organs (reviewed in[104], Box 1 Figure 1, left). White adipose tissues (WATs) are typically 

classified as being subcutaneous white adipose tissue (SWAT) or visceral white adipose tissue 

(VWAT), the abundance of which can vary widely between individuals and populations. 

Importantly, SWAT and VWAT are not metabolically equivalent as excess VWAT is typically 

associated with poor metabolic outcomes while excess SWAT is often correlated with better 

health[105,106]. Brown adipocytes are functionally and morphologically different adipocytes that 

exist in anatomically distinct brown adipose tissue (BAT) depots [Box 1 Figure 1, right]. One of 

their most important functions is thermogenesis. The abundance of BAT in humans positively 

associates with metabolic health and resistance to obesity[63,107]. Active brown adipocytes 

contain multilocular lipid droplets, more mitochondria than white adipocytes, and express 

uncoupling protein-1 (UCP-1), which drives non-shivering thermogenesis (NST) by dissipating 

chemical energy as heat.  Some white adipocytes can also adopt brown adipocyte 

characteristics under certain conditions[108] [Box 1 Figure 1, middle]. These brown-in-white 

(brite), inducible brown, or beige adipocytes mainly appear in subcutaneous fat depots in mice 

(but also in some visceral depots such as the peri-renal WAT)[30,109,110], express UCP1, and 

can contribute to whole body energy expenditure. The formation of brite/beige adipocytes, also 

called the browning of WAT, can occur with prolonged cold exposure or other metabolic 

stresses such as in cancer cachexia[111] or following severe burns[112] suggesting additional 

or alternative roles for these cells. 
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BOX 2 AKT isoforms activation, substrate specificity and selective insulin resistance. 

AKT exists in three isoforms encoded by three different genes. Knockout studies 

suggest that AKT1 plays a major role in cell growth and survival, while AKT2  functions primarily 

in metabolism, and AKT3  acts in the brain/ central nervous system (CNS). Although AKT1 

plays a key role in adipocyte differentiation, AKT2 is the predominant isoform in mature 

adipocytes and is the major mediator of AKT signaling. Each isoform undergoes 

phosphorylation-mediated activation at a threonine within the T-loop and HM domain. These 

sites are T308 and S473 in AKT1, T309 and S474 in AKT2 and T305 and S472 in AKT3. 

Phosphorylation of the T308 site is required for AKT activation[34,35,113–115], but the role of 

phosphorylation of S473 in the hydrophobic motif in the c-terminus in AKT kinase activation has 

been the subject of several recent studies (Table 1).       

Selective insulin resistance, a pathophysiological state where certain aspects of insulin 

signaling are impaired more than others has been described in adipocytes[2]. What might 

explain this selectivity? One possibility is that insulin-regulated processes are differentially 

sensitive to insulin or AKT activation[116,117]. Although the phosphorylation status of AKT may 

regulate AKT substrate specificity (Table 1), AKT subcellular localization[118] can also affect 

substrate interactions.  One possibility is that the selectivity of insulin resistance may result from 

the cellular conditions conspiring to discourage AKT activity towards specific substrates or 

acting at least initially on selective downstream pathways like GLUT4 translocation or ACLY 

activity rather than on AKT itself.  However, the degree of selectivity in insulin/AKT signaling in 

insulin resistance is not yet understood, in part because there are no global data on insulin 

signaling in insulin resistance adipocytes or in adipose tissue. 
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BOX 3 Considerations for using omic’s approaches. 

Phosphoproteomics 

Phosphoproteomics is concerned with identifying and quantifying protein 

phosphorylation at a global scale.  Such unbiased approaches have revealed the remarkable 

extent of the phosphoproteome and insight into insulin signaling dynamics [10].  

Phosphoproteomics encompasses 1) solubilization of proteins within a sample; 2) removal of 

contaminants such as detergents or lipids (e.g. protein precipitation); 3) proteolytic digestion 

(typically with trypsin and Lys-C); 4) phosphopeptide enrichment (e.g. using titanium dioxide or 

antibodies); 5) peptide desalting; 6) analysis by liquid chromatography tandem mass 

spectrometry (LC-MS/MS); 7) database searching and data analysis (see [12]). The output is 

typically a list of phosphopeptides with information on the exact site of phosphorylation within 

the peptide as well abundance information which will depend on the quantification strategies 

used in the study (i.e. label-free quantification (LFQ), metabolic labeling, isobaric tags)[119]. 

Each of these steps will require optimizing for the specific sample being analyzed. For example, 

removal of lipids is an important consideration for studies in adipose tissue. 

Phosphoproteomic study design often includes ‘unstimulated’ (e.g. saline) and 

‘stimulated’ (e.g. insulin) arms because these analyses generally aim to understand how cells 

and tissues respond to acute stimulus (e.g. insulin). Protein phosphorylation is highly dynamic, 

so samples need to be snap frozen or processed within seconds to ensure protein 

phosphorylation stability. Phosphorylation is also sensitive to stress and time of day and all of 

these variables should be as tightly controlled as possible. 

Metabolomics 

The main tool used in metabolomics is a mass spectrometer, with chromatographic 

separation usually via Liquid Chromatography (LC-MS) or Gas Chromatography (GC-MS). The 

mass-to-charge ratio (m/z) of a metabolite combined with retention time on the column and 

signal intensity is used to infer the metabolite’s identity and abundance. Metabolomics 

strategies can be targeted, in which specific metabolites are studied usually in comparison to a 

standard, or non-targeted/unbiased[120]. In addition to choosing the appropriate profiling 

strategies, careful consideration should be given to diet or nutrient conditions and to rapidly 

quenching metabolic reactions during cell/tissue harvest.  

Metabolomics workflows can provide a metabolic profile in a sample, which is a 

snapshot of the amounts of different metabolites at a single time point or condition. To study 

pathway activity or metabolic flux, stable isotope tracing must be used. Stable isotope tracing 

substitutes a tracer metabolite labeled with a rare stable isotope such as carbon-13 instead of 

the more abundant carbon-12 isotope [121]. By sampling at different time points after 

administering the tracer, one can infer the rate at which the tracer is metabolized in a pathway 

by measuring the incorporation and distribution of carbon-13 isotopes. 
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Figure Legends 

Figure 1. Insulin signaling via AKT and sites of metabolic regulation by insulin signaling 

in adipocytes. A, Schematic of full AKT activation via a positive feedback loop involving AKT-

mediated activation of mTORC2. Canonical AKT activation occurs when PI3K phosphorylates 

phosphatidylinositol 4,5-bisphosphate (PIP2) to generate phosphatidylinositol (3,4,5) 

trisphosphate (PIP3) at the plasma membrane (PM), to which AKT binds via its pleckstrin 

homology (PH) domain. This co-localizes AKT with its upstream activators PDK1 and mTORC2 

B, Three reported negative feedback loops control AKT activation by targeting upstream 

signaling intermediates. C, Insulin signalling targets a number for cellular processes, including 

metabolic processes such as lipid and glucose metabolism, via AKT and its substrates (DNL; de 

novo lipogenesis). D, Schematic of insulin signaling to glucose and lipid metabolism. Insulin-

stimulated glucose transport is increased by the delivery of the glucose transporter GLUT4 to 

the PM. Metabolic enzymes and transporters that undergo insulin-regulated changes in 

phosphorylation are highlighted (yellow star); these may act as key integration points of 

signaling and metabolism. 

Figure 2. Crosstalk between signaling, metabolism and gene expression in adipocytes. A, 

AKT-mediated phosphorylation of TSC2 and PRAS40 activates mTORC1 in the, AKT-mediated 

phosphorylation of TSC2 and PRAS40 activates mTORC1 in the presence of amino acids. 

mTORC1 signals to activate the transcription factor SREBP1. B, AKT-mediated phosphorylation 

of ACLY leads to increased cytosolic acetyl-CoA for de novo lipogenesis (DNL). Cytosolic 

acetyl-CoA is used for acetyl-Lysine synthesis as a substrate for histone acetylation. C, AKT-

mediated phosphorylation of TBC1D4 is required for GLUT4 translocation, increasing glucose 

uptake. Increased glycolytic and TBC1D4 is required for GLUT4 translocation, increasing 

glucose uptake. Increased glycolytic and pentose phosphate pathway (PPP) intermediates bind 

and activate the transcription factor ChREBP. 

 BOX 1 Figure: Morphological and functional differences between adipocyte cells. 

Comparison of the morphological and functions differences between adipocyte subtypes. 

Abbreviations: Uncoupling protein 1 (UCP1), de novo lipogenesis (DNL), insulin response (Ins. 

Resp.), beta-adrenergic response (Adren. Resp.). 

  

  

  



Table 1. Studies of AKT-S473 phosphorylation in relevant to adipocyte AKT activity 

Model Author, 

Year 

Model 

System 

AKT 

isoform 

Method for 

preventing 

AKT 473/474 

phosphorylat

ion 

Method(s) for 

assessing 

AKT activity? 

Key 

findings 

regarding 

role of S473 

in AKT 

activity 

Pros and 

cons of 

approach 

IN 

VITRO 

Alessi, 

1996[114] 

Overexpresse

d AKT; HEK 

cells; insulin 

and IGF1 

stimulation 

AKT1 S473-->A473 Immunoprecipitat

ed AKT, in vitro 

kinase assay - 

GSK peptide 

S473A 

lowered AKT 

activity by 

~90% 

Highly 

controlled 

conditions; 

may not 

replicate 

intracellular 

environment 

Balasuriy

a, 2018 

and 

2020[113,

122] 

Recombinant 

AKT 

AKT1 Phosphorylation 

of AKT1 by 

PDPK1 at T308 

in vitro 

In vitro kinase 

assay - GSK 

peptide (2018) or 

AKT substrate 

peptides (2020) 

AKT1 pT308, 

pS473 ~ 3.5-

fold more 

active than 

AKT1 pT308. 

NOTE: Loss of 

pS473 did not 

affect all AKT 

substrate 

peptides 

similarly. 

  

Chu, 

2020[123] 

Recombinant 

AKT 

(semisyntheti

c) 

AKT1 Phosphorylation 

of AKT1 by 

PDPK1 at T308 

in vitro 

In vitro kinase 

assay - GSK 

peptide 

Kcat for AKT1 

pT308, pS473 

~ 19-fold 

greater than 

AKT1 pT308 
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Chemica

l- 

genetics 

/ MK-

resistant 

AKT 

Beg, 

2017[34] 

MK-resistant 

(W80A) AKT2 

overexpressio

n; 3T3-L1 

adipocytes; 

insulin 

stimulation 

AKT2 MK-resistant 

AKT2 WT and 

S474A. 

Expressed in 

fibroblasts prior 

to differentiation 

into adipocytes 

Insulin-stimulated 

GLUT4, GLUT1 

and TfR 

translocation 

Insulin-

stimulated 

GLUT1 

translocation 

to the PM 

sensitive to 

loss of AKT2 

pS474. GLUT4 

and TfR 

unaffected. 

Assesses 

effect of 

specific AKT 

mutants in 

cells without 

interference 

from 

endogenous 

AKT; MK2206 

may have off-

target effects; 

long term 

expression of 

AKT 

constructs 

may lead to 

adaptive 

responses in 

cells 

Kearney, 

2019[35] 

MK-resistant 

(W80A) AKT2 

overexpressio

n; 3T3-L1 

adipocytes; 

insulin 

stimulation 

AKT2 MK-resistant 

AKT2 WT and 

S474A. 

Expressed in 

fibroblasts prior 

to differentiation 

into adipocytes 

Insulin-stimulated 

AKT substrate 

phosphorylation 

(Western blot), 

FOXO nuclear 

exclusion, protein 

synthesis, 

GLUT4 

translocation/ 

glucose transport 

and GLUT1 

translocation. 

Preventing 

pS474 lowered 

all responses 

by ~50%, 

except insulin-

stimulated 

GLUT1 

translocation 

which was 

more impaired. 

Genetic 

disrupti

on of 

mTORC

2 

Kumar, 

2010[29] 

Tissue 

specific KO 

mice -  

adipocyte 

rictor KO, 

aP2-cre 

  

Not 

specific - 

AKT2 is 

predomina

nt isoform 

in 

adipocytes

. 

Rictor KO in 

adipose tissue 

Insulin-stimulated 

AKT substrate 

phosphorylation 

(Western blot), 

glucose 

transport, GLUT4 

translocation and 

anti-lipolysis 

No effect on 

GSK3 

phosphorylatio

n, but impaired 

insulin-

stimulated 

phosphorylatio

n of TBC1D4 

and FOXO3A 

glucose 

uptake, 

GLUT4 

translocation 

and anti-

lipolysis. 

Specific 

analysis of 

role of 

mTORC2 in 

AKT 

signaling; 

ablation of 

mTORC2 

prevents 

phosphorylati

on at other 

mTORC2 

sites such as 

T450 

(reportedly 

involved in 

AKT 

stability)[124]; 

may not be 

specific to 

S473 as 
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Tang, 

2016[27] 

Tissue 

specific KO 

mice -  

adipocyte 

rictor KO, 

AdipoQ-cre 

Rictor KO in 

adipose tissue 

Insulin-stimulated 

AKT substrate 

phosphorylation 

(Western blot) 

Specific 

impairment in 

p-AKT1S1/ 

PRAS40 in 

response to 

insulin. Other 

AKT 

substrates 

tested not 

affected by 

Rictor loss. 

mTORC2 

reported to 

phosphorylate 

alternate C-

terminal 

residues 

which have 

been shown 

to activate 

AKT[123]; 

long term loss 

of mTORC2 

may lead to 

compensatory 

mechanisms 

Martinez- 

Calejman, 

2020[17] 

Inducible 

Rictor KO 

precursor 

brown 

adipocytes 

Rictor KO in 

precursor and 

mature brown 

adipocytes 

Insulin-stimulated 

AKT substrate 

phosphorylation 

(targeted 

phosphoproteomi

cs and Western 

blot) 

ACYL (S455), 

PFKFB2 

(S486, S489) 

and BAD 

(S155) 

sensitive to 

Rictor loss. 

Other AKT 

substrates 

tested not 

affected. 

Entwisle, 

2020[16] 

MEFs 

differentiated 

into brown 

adipocytes 

Induced Rictor 

KO after 

adipocyte 

differentiation 

Insulin-stimulated 

AKT substrate 

phosphorylation 

(phosphoproteom

ics time course) 

Global 

dampening of  

insulin 

signaling. 

Specific 

insulin-

regulated 

phosphosites 

more sensitive 

to Rictor loss 

than others 

(e.g. ACLY). 

  

 

  

  

https://paperpile.com/c/1GZvLs/gMsc0
https://paperpile.com/c/1GZvLs/zO0Sh
https://paperpile.com/c/1GZvLs/MInsV
https://paperpile.com/c/1GZvLs/sWgMo


Glossary 

Insulin: Peptide hormone secreted by pancreatic beta cells in response to elevated blood 

glucose. Activates signal transduction in target tissues via binding to the insulin receptor.  

Insulin resistance: impaired response of one or more tissues to normal concentrations of 

insulin. Results in elevated insulin requirements to maintain glycaemia. 

Stable isotope tracing: method for quantifying the metabolism of specific metabolites. This 

method uses metabolites that have one or more stable isotopes with a different mass to the 

most abundant natural occurring isotopes (e.g. 13C, 15N, 18O) incorporated. 

Anerplerotic pathways: metabolic pathways that replenish TCA cycle intermediates. 

Transcriptomics: study of the sum of all RNA transcripts in sample (e.g. tissue) under specific 

physiological conditions. 

Lipodystrophy: Condition characterized by a lack of, or dysfunctional, adipose tissue. 

Thermogenesis: dissipation of energy through heat production. In adipocytes expressing UCP1 

(e.g. brown or beige adipocytes), oxidative phosphorylation is uncoupled from ATP production 

leading to heat production.  
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Outstanding Questions 
 

 How is insulin signaling and metabolism integrated in cellular time and space? 'Omics 
analyses performed over time can unbiasedly reveal phosphorylation kinetics and 
metabolic fluxes, but do not provide details on subcellular localization. Understanding 
how signaling and metabolism are compartmentalized in cells and how signals are 
communicated across membranes is an important frontier.   

 

 How flexible are adipocytes in their use of carbon and nitrogen sources? The 
substrates available for use in metabolic pathways may vary widely with diet, 
environment, or stress (e.g. hypoxia in obesity). As in vivo techniques advance it will be 
important to resolve how adipocyte metabolism works across a variety of diet, strain, 
and environmental conditions. 

 

 What is the role of adipose tissue heterogeneity and organ metabolite sharing?  
Adipose tissues contain many different types of cells--even individual adipocytes within 
the same depot can vary metabolically. Moreover, adipose tissues work in concert with 
other organs. It will be important to understand how heterogenous cell populations 
within a single tissue work together, and how adipose tissues work with other organs to 
maintain metabolic homeostasis.       

 

 What causes adipose tissue insulin resistance?  Part of the challenge in answering this 
question is the extensive crosstalk between signaling, metabolism, and gene expression. 
For example, changes in metabolism can alter signaling responses and gene expression, 
raising the possibility that a primary defect in metabolism could drive insulin resistance. 
Disentangling this complex crosstalk is essential to understanding the molecular 
pathology of insulin resistance. 

 

 What are the critical signaling metabolites in adipocytes? Numerous examples of 
metabolites functioning as signaling molecules exist but understanding the full spectrum 
protein-metabolite interactions and their roles in insulin signaling and metabolic disease 
is in its infancy.  

Outstanding Questions


