
Large-scale inference and
imputation for multi-tissue gene

expression

Ramon Viñas Torné

Department of Computer Science
University of Cambridge

This thesis is submitted for the degree of Doctor of Philosophy

Churchill College September 2023





Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except as declared in the Preface and specified
in the text. It is not substantially the same as any that I have submitted, or am
concurrently submitting, for a degree or diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in
the Preface and specified in the text. I further state that no substantial part of my
dissertation has already been submitted, or is being concurrently submitted, for any
such degree, diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the
text. This dissertation does not exceed the prescribed limit of 60 000 words.

Ramon Viñas Torné
September 2023



Abstract

Large-scale inference and imputation for multi-tissue gene expression
Ramon Viñas Torné

Integrating molecular information across tissues and cell types is essential for
understanding the coordinated biological mechanisms that drive disease and characterise
homoeostasis. Effective multi-tissue omics integration promises a system-wide view of
human physiology, with potential to shed light on intra- and multi-tissue molecular
phenomena, but faces many complexities arising from the intricacies of biomedical data.
This integration problem challenges single-tissue and conventional techniques for omics
analysis, often unable to model a variable number of tissues with sufficient statistical
strength, necessitating the development of scalable, non-linear, and flexible methods.

This dissertation develops inference and imputation methods for the analysis of
gene expression data, an immensely rich and complex biomedical data modality, en-
abling integration across multiple tissues. The imputation task can strongly influence
downstream applications, including performing differential expression analysis, deter-
mining co-expression networks, and characterising cross-tissue associations. Inferring
tissue-specific gene expression may also play a fundamental role in clinical settings,
where gene expression is often profiled in accessible tissues such as whole blood. Due
to the fact that gene expression is highly context-specific, imputation methods may
facilitate the prediction of gene expression in inaccessible tissues, with applications in
diagnosing and monitoring pathophysiological conditions.

The modelling approaches presented throughout the thesis address four important
methodological problems. The first work introduces a flexible generative model for
the in-silico generation of realistic gene expression data across multiple tissues and
conditions, which may reveal tissue- and disease-specific differential expression patterns
and may be useful for data augmentation. The second study proposes two deep learning
methods to study whether the complete transcriptome of a tissue can be inferred from
the expression of a minimal subset of genes, with potential application in the selection
of tissue-specific biomarkers and the integration of large-scale biorepositories. The
third work presents a novel method, hypergraph factorisation, for the joint imputation
of multi-tissue and cell-type gene expression, providing a system-wide view of human
physiology. The fourth study proposes a graph representation learning approach that
leverages spatial information to improve the reconstruction of tissue architectures from
spatial transcriptomic data. Collectively, this thesis develops flexible and powerful
computational approaches for the analysis of tissue-specific gene expression data.
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Glossary

Biological process Coordinated process that occurs within an organism, cell, or
tissue, that is fundamental for the well-functioning of the organism.

Cell Basic building block of life that carries out specialised functions to sustain vital
processes, e.g. producing energy and transporting oxygen. Every cell is composed
of different organelles.

Cell-type Class of cells with certain morphological or phenotypical features.

DNA Deoxyribonucleic acid. A double-stranded molecule made of 4 types of nu-
cleotides (adenine: A, guanine: G, cytosine: C, thymine: T) that encodes genetic
information.

eQTL Expression quantitative trait locus. Variation in the genome that is associated
with a particular gene expression trait.

Gene Segment of DNA that may encode instructions to produce proteins and may
determine different traits of the organism.

Gene expression Process by which genetic information encoded in the DNA is
transformed into functional molecules that carry out vital functions.

Gene regulation Broad range of mechanisms that take place in cells to increase or
decrease the production of certain gene products.

Genome Complete set of genetic information in an organism.

Molecular function Event involving molecules that occurs at a molecular level.

mRNA Messenger RNA. RNA molecule that transports genetic information from the
DNA into the ribosomes, where proteins are manufactured.



10 Glossary

Nucleus Organelle of eukaryotic cells that contains the DNA of the cell.

Omics data Biological information generated from high-throughput techniques such
as RNA-sequencing (e.g. transcriptomics). Different types of omics focus on
different types of molecules.

Organ Collection of tissues that form a functional unit of the organism that carries
out a high-level function, e.g. heart and lungs.

Organelle Structure or compartment of a cell that performs essential tasks like the
generation of energy to power biochemical reactions.

Organism Living entity composed of one (unicellular organism) or more cells (multi-
cellular organism).

Phenotype Observable trait or characteristic of an organism.

Protein Large and complex molecules that carry out a broad range of essential
functions within cells and organisms.

QTL Quantitative trait locus. Variation in the genome that is associated with a
particular phenotype.

RNA Ribonucleic acid. A single-stranded molecule made of 4 types of nucleotides
(adenine: A, guanine: G, cytosine: C, uracil: U) that encodes genetic information.

RNA-seq RNA sequencing. Technique that quantifies transcript abundances in single
cells and tissues.

Tissue Group of cells that work together to perform a specific function within an
organism.

Transcript Copy of a certain fragment of the DNA in the form of RNA.

Transcriptome Complete set of transcripts in a particular biological sample (e.g. cell
or tissue).

Transcriptomic data Transcriptomic data measures transcript abundances, allowing
the study of gene expression and gene regulation in tissues and single cells.



Chapter 1

Introduction

High-throughput technologies such as RNA sequencing allow us to characterise the
biological processes and molecular functions of single cells and tissues in living organisms.
This provides a high-resolution picture of molecular states in health and in disease.
The resulting omics data — which quantifies different biological molecules in a cell or
tissue — is vastly rich and entangled, challenging our ability to discern the patterns
underlying the complexities of biology. To address these difficulties, computational
and statistical methods can help us make sense of the large amounts of omics data
that could otherwise not be processed by the human mind, with potential to unravel
the molecular foundations of life.

The analysis of omics data presents numerous challenges for computational ap-
proaches which have yet to find successful solutions across datasets and tasks [1]. These
challenges revolve around the intricacies of biomedical data (e.g. high dimensionality,
redundant features, and noise), experimental settings (e.g. invasive sampling pro-
cesses and technical confounders), and post-hoc analyses (e.g. interpretability and
context-specificity). As such, there is a growing need for robust approaches capable of
imputing missing or unreliable values [2]; integrating heterogeneous omics data across
modalities [3, 4], tissues [2, 5], experimental settings [6], and species [7]; dealing with
high-dimensional data in combination with a scarce number of labelled samples [8];
and interpreting methods to derive novel biological insights [9]. Further methodological
efforts may therefore allow us to identify meaningful patterns from omics data, with
important applications in drug discovery, medical diagnosis, and precision medicine.

In this dissertation, we introduce computational methods for the analysis of high-
throughput transcriptomic data — which measures the expression levels of genes within
a cell or tissue — and focus on its tissue-specificity. Understanding gene expression
in a context-dependent manner is important because the same genome may generate
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uniquely distinct phenotypes in different tissues and cell types [10, 11], allowing them
to carry out specialised functions (e.g. production of insulin in the B cells of the
pancreas [10]). Thus, characterising biological processes and molecular functions in a
context-specific manner might help us elucidate the molecular origins of complex traits
with improved resolution.

A central theme of this thesis is the imputation of transcriptomic data: can we
infer tissue-specific gene expression as a function of collected molecular information,
phenotypes, or demographic covariates? This problem can powerfully influence down-
stream applications, including performing differential expression analysis, identifying
regulatory mechanisms, determining co-expression networks, and enabling drug target
discovery [5]. Inferring tissue-specific gene expression may be important in clinical
scenarios, where molecular information is often measured in easy-to-acquire tissues
such as whole blood (due to their ease of collection), with applications in diagnosing
and monitoring pathophysiological conditions. However, gene expression is tissue and
cell-type specific [5, 12], limiting the utility of a proxy tissue. Imputation methods
may therefore facilitate the prediction of gene expression in difficult-to-acquire tissues,
opening the door to a fine-grained characterisation of molecular events.

Throughout the dissertation, we address several challenges of modelling tissue-
specific transcriptomic data. We first investigate to what extent we can generate
realistic gene expression data in-silico, which may be useful for data augmentation
purposes [13] and may shed light on tissue- and disease-specific differential expression
[14]. We then study whether the full transcriptome can be reconstructed from a
minimal subset of genes, addressing the missing data problem within a single tissue.
This is particularly important because missing data can adversely affect downstream
analyses [2, 15] and imputation methods might facilitate the integration of large-
scale transcriptomic biorepositories [2]. Next, we present a novel methodology for
multi-tissue gene expression imputation, enabling the imputation of gene expression
in uncollected tissues (e.g. inaccessible tissues such as heart) from a variable number
of reference tissues (e.g. accessible tissues like whole blood) of the same individual
[5]. In contrast to existing methods, our approach offers a system-wide view of human
physiology, incorporating inductive biases to exploit the shared regulatory architecture
of tissues and genes. Finally, we build on recent advances in spatial transcriptomic
methodologies to analyse the spatial organisation of cells within a tissue, characterising
cellular heterogeneity. We propose a spatial deconvolution model that incorporates
spatio-relational inductive biases and facilitates an effective spatial reconstruction of
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tissue architectures [16]. Altogether, our work offers versatile tools for the analysis of
tissue-specific transcriptomic data with a broad range of downstream applications.

1.1 Research questions and contributions
In this thesis, we study the problem of modelling tissue-specific gene expression. We
address several challenges that include the in-silico generation of realistic transcriptomic
data, the intra- and multi-tissue imputation of gene expression, and the cell-type
deconvolution of spatial transcriptomics. In particular, we pose the following research
questions:

• Research question 1: Can we generate realistic tissue-specific gene expression
data in-silico?

Synthetically generated gene expression data is often used for data augmentation and
for benchmarking gene expression analysis algorithms, but existing simulators have
been criticised because they fail to emulate key properties of gene expression [17].
The problem of generating transcriptomics data is accompanied by the challenging
task of assessing its degree of realism — unlike for images, we do not have an
intuitive understanding of high-dimensional gene expression.

In Chapter 3, we develop a generative model of transcriptomic data based on
Wasserstein generative adversarial networks with gradient penalty [18]. We inves-
tigate to what extent the synthetically-generated data preserves key properties of
gene expression, including tissue- and cancer-specificity as well as clustering and
correlation patterns, and propose novel metrics to evaluate its degree of realism. We
also study the application of the proposed method to identify candidate biomarkers
for different cancer types.

• Research question 2: To what extent can the expression of a subset of genes be
used to recover the full transcriptome of a tissue?

Genes that participate in similar biological processes or that have shared molecular
function are likely to have similar expression profiles [19], prompting the question
of gene expression prediction from a minimal subset of genes. Gene expression
measurements may also suffer from unreliable values because some regions of the
genome are extremely challenging to interrogate due to high genomic complexity or
sequence homology [20], highlighting the need for accurate imputation.
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In Chapter 4, we introduce two deep learning methods for gene expression imputa-
tion and study their performance on transcriptomic data from a large number of
tissues. We compare the proposed methods with existing imputation approaches
and evaluate their predictive performance and runtime on the most comprehensive
human transcriptome resource available. We further investigate the cross-study
generalisation across varying levels of missingness.

• Research question 3: Can we impute gene expression of inaccessible tissues as a
function of the transcriptome measured at multiple accessible tissues?

Due to the invasiveness of the sampling process, gene expression is usually measured
independently in easy-to-acquire tissues such as whole blood [12, 21], leading to an
incomplete picture of an individual’s physiological state and necessitating effective
multi-tissue integration tools. Computational models that exploit multi-tissue
patterns could therefore be used to impute the transcriptomes of uncollected tissues
(e.g. inaccessible tissues like heart [22]), with potential to elucidate the biological
mechanisms regulating a diverse range of developmental and physiological processes.

In Chapter 5, we present a parameter-efficient graph representation learning
approach for multi-tissue gene expression imputation. The proposed approach
supports a variable number of collected tissues per individual and imposes inductive
biases to leverage the shared regulatory architecture of tissues and genes. We study
imputation performance using a single reference tissue (whole blood) and multiple
reference tissues (accessible tissues). We utilise the fully-imputed dataset to detect
regulatory genetic variations (eQTLs) and assess their replicability on independent
tissue-specific datasets.

• Research question 4: Can we characterise spatial cell-type heterogeneity in tissues
using spatial transcriptomic data?

Analysing the spatial organisation of cells within a tissue can shed light on fundamen-
tal biological processes, including intercellular communication [23] and organogenesis
[24], and mechanisms of diseases like cancer, diabetes, and autoimmune disorders [25–
27]. Computational approaches have been developed to infer fine-grained cell-type
compositions across locations, but they frequently treat neighbouring spots indepen-
dently of each other, raising the question of whether accounting for neighbourhood
information can yield improved reconstruction of tissue architectures.

In Chapter 6, we study whether incorporating spatio-relational inductive biases
leads to enhanced cell-type mapping in spatial transcriptomic data. We build on the
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observation that neighboring spots tend to exhibit similar cell-type compositions to
extend a state-of-the-art spatial deconvolution model. We conduct extensive ablation
experiments to investigate whether this approach attains improved performance
over spatial-agnostic baselines.

Table 1.1 Summary of chapter contents. We use bulk, single-cell, and spatial transcrip-
tomics datasets in different chapters of the dissertation. We propose several methods
that can be categorised into single-tissue (i.e. operating on a single tissue sample at
a time) vs multi-tissue (i.e. operating on multiple collected tissues of an individual);
and generative, self-supervised, deep learning, and graph neural network methods.
The proposed approaches enable different downstream applications on tissue-specific
gene expression, including simulation of new samples, imputation, deconvolution, and
expression Quantitative Trait Loci (eQTL) mapping.

Data Method characteristics Analysis

Chapter 3 • • • • • • • • •
Chapter 4 • • • • • • • • •
Chapter 5 • • • • • • • • • • • • • • •
Chapter 6 • • • • • • • • •
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We categorise the main topics of each chapter and research question in terms of
the transcriptomic data types, developed methods, and downstream analyses in Table
1.1. In addition to the main contributions summarised above, Chapter 2 covers the
background materials, that is, basic notions of gene expression and RNA sequencing,
different statistical methods for gene expression analysis used throughout the thesis,
probabilistic models of gene expression, and two widely-used unsupervised learning
techniques. Finally, Chapter 7 provides a conclusion, outlining the main developments
of the thesis and future directions. Figure 1.1 shows a graphical overview of the thesis.
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Fig. 1.1 Thesis outline. Chapter 2 introduces the background material, including
statistical and probabilistic methods for gene expression analysis. Chapter 3 presents
a generative method for simulating gene expression data in-silico. Chapter 4 studies
the problem of intra-tissue imputation, wherein the whole-genome gene expression
data is reconstructed from a subset of genes. Chapter 5 introduces a method for
jointly modelling gene expression collected from a variable number of tissues of a given
individual. Chapter 6 investigates the use of spatio-relational inductive biases for
cell-type deconvolution in spatial transcriptomics data. Chapter 7 summarises the
main contributions of the dissertation.
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Chapter 2

Background

2.1 Gene expression
Gene expression analysis is a central theme of this dissertation. In this section, we
review the central dogma of molecular biology and the gene expression process. We
then present the landscape of omics modalities that enable the study of the central
dogma of molecular biology in different layers, including transcriptomics. We also
provide an overview of RNA sequencing (RNA-seq), which offers a snapshot of the
transcriptome in a biological sample, and discuss some of the main nuisance factors of
RNA-seq data.

2.1.1 Central dogma of molecular biology
Gene expression is the process of manufacturing functional molecules, e.g. proteins,
from the genetic information encoded in the DNA. These molecules carry out all the
functions necessary for life and include, for instance, the enzymes that metabolise
nutrients or the DNA polymerases that are responsible for DNA duplication when the
cell divides [41]. The flow of genetic information from DNA to functional proteins is
often known as the central dogma of molecular biology and, for eukaryotic cells, consists
of two main steps: transcription and translation.

Transcription The information encoded in the DNA is transcribed into a newly
assembled fragment of RNA known as messenger RNA (mRNA). During transcription,
an enzyme known as RNA polymerase matches the DNA nucleotides of a gene with
their complementaries (A → U ; T → A; C ↔ G), yielding precursor mRNA (pre-
mRNA). Then, the introns (noncoding sequences) are removed through a process called
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Fig. 2.1 Eukaryotic gene expression. Source: Khan academy [40]

RNA splicing, producing mature mRNA that can be used to synthesise new proteins.
Importantly, alternative splicing can occur, that is, the same pre-mRNA molecule can
be spliced into several types of mRNA fragments that code for different proteins.

Translation After transcription, mature mRNA leaves the nucleus of the cell and
travels through the cytoplasm to organelles called ribosomes, where translation takes
place. During translation, each codon or triplet of bases in mRNA is matched with
the complementary anticodon from transfer RNA (tRNA). These tRNA molecules are
physically attached to a specific amino acid according to the genetic code, a dictionary
matching each mRNA codon with one of the 20 amino acids. The beginning of the
mRNA is known as the untranslated region (UTR) and contains a ribosome-binding
site [41] before the start codon (AUG), which triggers the start of the process. As
translation progresses, the ribosome assembles the resulting amino acids sequentially
into a growing polypeptide chain. This is known as the elongation phase. Once the stop
codon is found, the ribosome stops translating and the polypeptide chain is released.
Finally, the polypeptide folds into a 3D shape and becomes a functional protein.
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2.1.2 Multi-omics
High-throughput technologies provide insights into the inner workings of a cell. They
can measure molecular information that underlies cellular states and communication
networks in diverse tissues and conditions [42]. These high-resolution omics data span
multiple molecular layers, each viewing the central dogma of molecular biology from a
different perspective:

• Genomics reveals the genotypes or DNA sequences of individuals. This allows
to identify genetic variants associated with diseases or responses to treatments
[43] through what is known as genome-wide association studies (GWAS). Cur-
rently, with next generation sequencing (NGS) the whole human genome can be
sequenced within a single day [44].

• Epigenomics characterises reversible modifications of DNA such as DNA
methylation, chromatin accessibility, and histone modifications [43]. Epigenetic
modifications play a fundamental role in regulation of gene expression, e.g. by
activating or repressing the transcription of genes, and establishing cellular
phenotypes [42]. They are often tissue-specific and can sometimes be linked to
pathologies such as cancer [45], cardiovascular diseases [43], and neurodegenerative
disorders, including Alzheimer’s and Parkinson’s disease [46]. Epigenomics traits
such as chromatin accessibility can be measured with technologies such as single-
cell ATAC-seq (scATAC-seq).

• Transcriptomics measures the abundance of mRNA, allowing to quantify the
activity levels of genes across the entire genome. Currently, RNA abundance
can be measured with high resolution through RNA sequencing (RNA-seq).
Nowadays, this technology works at single-cell level and allows to understand
the heterogeneity of cell types in different tissues [43] as well as the spatial
organisation of cells [47].

• Proteomics measures protein abundance and how proteins interact with each
other, yielding protein-protein interaction networks. It is also possible to de-
tect interactions between proteins and nucleic acids via a technique known as
chromatin immunoprecipitation sequencing (ChIP-seq) [43].

• Metabolomics quantifies the amount of metabolites or small molecules, e.g.
amino acids and carbohydrates, among others [43]. This type of omics data can
be used to understand the physiology of the cell because it provides snapshots
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about the end products of cellular processes. Metabolomics can be measured via
mass spectrometry.

In this dissertation, we mainly focus on transcriptomics, which has generated large-
scale databases, including tissue banks [48] and cell atlases [49], and is arguably the
most widespread omics modality.

Paired omics modalities In recent years, we have experienced rapid development
of experimental technologies for the joint profiling of multiple modalities from the same
single cell. For example, we can now use CITE-seq to measure the cell transcriptome
and protein levels on the cell surface [50]. Similarly, sci-CAR simultaneously profiles
chromatin accessibility and mRNA within single cells [4]. These techniques have
potential to uncover biological phenomena that cannot be gleaned from a single
modality, including the causal mechanisms of gene regulation. Thus, computational
approaches that integrate these modalities may allow us to bridge the gaps between
steps of the central dogma of molecular biology.

2.1.3 RNA sequencing
The development of next-generation sequencing (NGS) technologies has brought about
accurate readings of nucleotide sequences, including DNA and RNA molecules, in
a massively parallel way (i.e. allowing to sequence hundreds to thousands of genes
simultaneously). RNA sequencing (RNA-seq) builds on NGS to quantify transcript
levels in single cells and tissues, unravelling a broad range of downstream applications
such as differential expression analysis, characterisation of co-expression networks, and
interpretation of the functional elements of the genome [51].

Measuring transcript levels In general, the RNA sequencing process consists of
the following steps:

1. Isolate the RNA molecules from the biological sample of interest, such as tissues
(bulk RNA-seq) or cells (single-cell RNA-seq), and break them down into small
fragments, usually between 200 and 500 bases long [51]. Single-cell RNA-seq
profiles gene expression in a single cell (usually encapsulated into separate droplets
[52]), while bulk RNA-seq provides the average gene expression profile of an
entire population of cells (e.g. in a tissue).
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2. Synthesise complementary DNA (cDNA) molecules — which are more stable
than RNA molecules — through a reaction involving reverse transcriptase, an
enzyme that transcribes single-stranded RNA into double-stranded DNA.

3. Add sequencing adapters or barcodes for sample identification. This allows the
sequencing machine to recognise the fragments and facilitates sequencing different
samples at the same time (i.e. different samples use different adapters).

4. Amplify the labelled cDNA fragments, usually through a technique known as
polymerase chain reaction.

5. Massively parallel sequencing. The cDNA fragments are simultaneously read
by the sequencing machine, yielding millions of reads. There exist multiple
high-throughput sequencing platforms, including Illumina [53] and PacBio [54],
each with its own advantages and shortcomings.

6. Align the reads to a reference genome and quantify the number of reads mapping
to every transcript. This step generates a tabular dataset where each entry
denotes transcript abundance (i.e. read counts) in a certain sample.

Short-read vs long-read sequencing Most sequencing methods can be classified
into short-read and long-read sequencing. Short-read sequencing methods generate
high numbers of short reads, resulting in multiple copies of DNA fragments with low
per-base error rates and allowing massive parallelization at low cost. In contrast,
long-read sequencing methods produce much longer fragments (typically several
kilobases long), allowing to capture complex regions with continuous, uninterrupted
reads [55]. In this thesis, we use high-throughput short-read sequencing data.

Correcting for sequencing biases The resulting RNA-seq dataset is susceptible
to sequencing biases and nuisance factors, which may hinder downstream applications,
necessitating further processing steps. For example, different samples may exhibit
differences in the total number of reads, i.e. sequencing depth, and longer genes are
expected to have higher read counts [56–58]. Various approaches have been proposed
to alleviate these issues, including normalisation via Reads Per Kilobase per Million
(RPKM) and Transcripts Per Million (TPM). RPKM adjusts the number of reads
by dividing by the product of the gene length (in kilobases) and the total number of
million reads [56, 57]. Transcripts Per Million further normalises RPKMs so that the
total counts per sample is a million — this facilitates comparison across samples. More
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advanced techniques such as Trimmed Mean of M-values (TMM) clip off the most
highly variable genes to calculate a normalisation factor [59] that is more robust to
technical factors (e.g. sample contamination).

Batch effects Comparing samples collected under different experimental conditions
is problematic because technical sources of variation may act as confounders for true
biological differences. This problem is often referred to as batch effects and, if left
unaddressed, may hinder downstream analyses and lead to invalid conclusions. To
mitigate this issue, there exist several computational approaches, including ComBat
[60], Mutual Nearest Neighbours [61], and Scanorama [6]. ComBat [60] introduces an
empirical Bayes framework to adjust the location and scale of the gene expression data,
reducing differences between technical batches. Mutual Nearest Neighbours (MNN) [61]
finds mutually similar cells across experimental batches and applies a correction vector
based on their expression differences to perform batch effect correction. Scanorama [6]
is a similar non-linear technique that successively merges multiple single-cell RNA-seq
into a single dataset. Unfortunately, batch correction methods are often susceptible to
a plethora of issues, including overcorrection [62] and introduction of spurious group
differences [63], and to date there is no definitive solution for this problem.

Bulk, single-cell, and spatial transcriptomics In general, gene expression can
be measured from single cells (scRNA-seq) or from an entire population of cells (bulk
RNA-seq), i.e. bulk RNA-seq produces a mixture of the transcriptome profiles of the
material under study (e.g. a tissue). On the one hand, bulk RNA-seq is suitable
for studying high-level relationships and differences between biological entities (e.g.
tissues) and conditions (e.g. disease states or treatments). On the other hand, single-
cell RNA-seq is useful to investigate the fine-grained biology and cellular heterogeneity
of single cells [64]. Spatial transcriptomics is another recently developed technique —
named Method of the Year 2020 [65]— that profiles gene expression in situ, allowing
characterisation of the cellular organisation of tissues, with potential to reveal cellular
interactions [66] and identify spatially informative genes [67].

Technical artefacts in single-cell RNA-seq Single-cell RNA-seq is inherently
noisy and presents several challenges arising from the sequencing process. Single-cell
datasets tend to be notoriously sparse, with the fraction of zeroes being often as high as
90% [68], i.e. for a given cell, many genes do not have any mapped reads [1]. These zeros
can be attributed to either true absence of expression (biological zeros) or technical
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noise (artificial zeros), leading to a phenomenon often known as dropout. This artificial
zero-inflation event may occur at several points of the sequencing pipeline and may be
caused by mRNA degradation after cell lysis (i.e. when the cell membrane is broken to
extract the mRNA), limited efficiency in capturing and converting mRNA molecules
into cDNA, or low sequencing depth, among others [69, 70]. In practice, dropouts might
hinder downstream analyses on scRNA-seq and generalisation to different sequencing
protocols [71]. To alleviate this issue, several statistical approaches have been developed
to impute missing values, including MAGIC [72], which denoises the count matrix
by sharing information across similar cells, and scImpute [71], which simultaneously
identifies and imputes likely dropout events.

Another technical artefact observed in scRNA-seq is referred to as doublets, where
two cells are wrongly captured within the same droplet. In subsequent analyses, this
event can potentially lead to the inaccurate identification of rare cell-types with inter-
mediate transcriptome profiles [69]. To overcome this problem, computational methods
such as DoubletFinder [73] and Scrublet [74] have been developed. DoubletFinder pre-
dicts doublets from the gene expression features, while Scrublet [74] simulates doublets
from the data and utilises a nearest neighbour classifier for detection of droplet events.

2.2 Statistical methods for gene expression analysis
In this section, we review standard statistical methods for gene expression analysis,
including differential expression analysis, enrichment analyses, and eQTL discovery.
We employ some of these techniques in downstream analyses later in the dissertation.

2.2.1 Differential expression analysis
Differential expression analysis aims to identify genes that exhibit statistically different
expression patterns in two or more distinct groups of samples. Using statistical testing,
we want to determine whether an observed difference in read counts is statistically
significant, i.e. whether it is greater than expected just due to natural random variation
[75]. Knowledge about the differentially expressed genes can offer valuable insights
into the biological processes underlying the conditions of interest.

To perform differential expression analysis, most established methods [75, 76]
employ negative binomial regression (Section 2.3.2) to model the data, followed by a
statistical test to evaluate differences in the relative transcript abundances between to
conditions. In particular, edgeR [76, 77] models the expression xij of gene j in sample
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i as:

xij ∼ NB(xi+λkj, αj),

where NB is the Negative Binomial distribution (Section 2.3.2), xi+ is the library size
of sample i (i.e. the total sample counts), λkj are the relative expression values of
gene j in the experimental group k to which sample i belongs, and αj is a dispersion
parameter that controls the amount of over-dispersion. The dispersion parameter αj

can be specific to every gene or common across all genes [77], i.e. αj = α for all j,
which may be useful in low sample size settings. The model is optimised via conditional
maximum likelihood estimation (Section 2.3.1).

To assess the significance of the differential expression for a gene j across two
conditions k1 and k2, we test the null hypothesis H0 : λk1j = λk2j against the two-sided
alternative H1 : λk1j ̸= λk2j [77, 75] and adjust for multiple-testing.

Overall, in the case of large sample sizes, differential expression could be assessed via
non-parametric methods such as permutation tests. However, statistical methodologies
such as edgeR [76] or DESeq [75] allow identifying differentially expressed genes in
settings where the number of samples per condition (i.e. replicates) is limited [75].

2.2.2 Pathway enrichment analysis
Given a list of genes, e.g. genes that are differentially expressed across two conditions,
we may want to understand whether they are related to a certain biological pathway.
A pathway is a series of molecular interactions that are related to a certain function,
for example, cell signaling. Understanding what pathways are active is important for
the biological interpretation of gene expression data — pathway enrichment analysis
provides mechanistic insights into the possible underlying biology [78] and allows
biologists to formulate hypotheses.

There exist several databases of gene sets that describe the genes involved in a broad
range of different biological processes, molecular functions, and cellular components.
For example, the Gene Ontology knowledge base [79, 80] is one of the largest sources
of information on evidence-supported gene functions [80]. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) is another reference database of biological pathways that
relate genes to specific high-level functions, including pathways, drugs, and diseases
[81, 82].

Over-representation analysis (ORA) is a widely-used technique that addresses the
challenge of mapping lists of genes to known biological pathways. To achieve this, ORA
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first counts the number of pathway-specific genes present in a given gene list for every
biological pathway. It then repeats this process for a background list of genes (e.g.
collection of all genes), followed by a statistical test to determine whether the pathway
genes are over- or under-represented in the gene list relative to the background. There
are several choices for the statistical tests, e.g. tests based on the hypergeometric and
binomial distributions. For example, the hypergeometric distribution describes the
probability of k successes (i.e. genes belonging to a pathway) in n trials (i.e. number of
genes in the gene list) in a population of size N (i.e. total number of background genes)
that contains K success states (i.e. number of pathway-related genes in the background
list of genes). Through the hypergeometric test, we can calculate over-representation
p-values as the probability of k or more successes (i.e. genes belonging to the pathway)
in n draws (i.e. number of genes in the gene list). We can then compute False Discovery
Rate (FDR) values to account for multiple testing.

ORA techniques are limited in that 1) they potentially require setting a manual
threshold on the gene list, 2) they ignore the magnitude and gene ranks of the gene
list, 3) they assume that genes are independent of each other, and 4) they assume
pathways are independent of each other [78]. Nonetheless, they constitute a simple
and useful tool to generate biological insights that is independent of the sequencing
methodology (i.e. they only require a list of genes as well as the background) and
are therefore widely applicable. Gene Ontology over-representation analysis has been
broadly used to characterise the biological functions of groups of genes, including the
recent application of identifying the major cell processes of the proteins interacting
with SARS-CoV-2 [83].

Studying the biological pathways enriched for different gene sets In
Chapter 3, we use Gene Ontology over-representation analysis to relate gene clusters
to known biological pathways on data from the RNAseqDB database [84]. We also
generate gene expression data in-silico, apply clustering to identify gene clusters,
and assess whether the same pathways are enriched in gene clusters of the generated
data. In Chapter 4, we apply over-representation analysis to uncover the enriched
KEGG pathways underlying the best-imputed genes. Similarly, in Chapter 5 we
employ over-representation analysis to identify Gene Ontology terms enriched for the
best-imputed genes in brain tissues using gene expression from the oesophagogastric
junction, which may shed light on the biology of the brain-gut axis.
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2.2.3 Gene set enrichment analysis
Gene set enrichment analysis (GSEA) [85] is an approach to interpreting gene ex-
pression data that overcomes some of the limitations of over-representation analysis
techniques. After differential expression analysis, the resulting list of statistically
significant differentially expressed genes might be empty (e.g. if the measurement noise
is large relative to the biological variance [85]) or the statistically significant genes may
be functionally unrelated. GSEA addresses these issues by considering the entire list
of ranked genes, removing the need for a threshold, and studying whether members of
a gene set tend to fall in one of the extremes of the ranked list.

Given a ranked gene list and a gene set that we want to test, the GSEA algorithm
consists of 3 main steps [85]. First, it calculates a running sum or enrichment score (ES)
by descending the sorted list of genes, increasing the score whenever a gene belongs to
the gene set and decreasing the score otherwise. The maximum value of the running
sum is used as the test statistic. Second, a p-value is calculated through a permutation
test, by randomly permuting the class labels (in case of differential expression analysis)
or the ranked list of genes. For instance, we can permute the ranked list of genes,
calculate the running sum, and calculate a p-value by comparing the maximum ES of
our hypothesis versus the ES of these randomly-permuted lists. Finally, when multiple
gene sets are studied, we calculate the False Discovery Rate (FDR) to account for
multiple testing.

After running the GSEA algorithm, we can get further insights into the important
genes by analysing the so-called leading-edge subset, that is, genes from the gene set
that occur before the point where the enrichment score is maximum. These are the
genes responsible for the enrichment signal [85].

Interpreting model weights in post-hoc analysis In Chapter 5 we use Gene
Set Enrichment Analysis to determine the extent to which our model captures known
biological pathways. We apply GSEA to the learnt per-gene parameters (ranked
by magnitude) and identify a large number of statistically significant enrichments.
Interestingly, these analyses show that our multi-tissue gene expression model puts
strong emphasis on genes related to signaling pathways, which characterise cell
communication, and genes related to transcription factors that control tissue-specific
gene expression of many target genes.
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2.2.4 eQTL mapping
Gene expression is the intermediate step between the genetic information encoded in
our DNA and proteins, which carry out fundamental cellular functions. Expression
Quantitative Trait Loci (eQTL) studies aim to elucidate genomic variations, e.g.
single-nucleotide polymorphisms (SNPs), that are significantly associated with gene
expression [86]. Among other applications, eQTL analysis can reveal variants affecting
gene regulation and their influence on complex human diseases [87].

eQTL mapping is an approach to identifying genomic variants associated with gene
expression (eQTLs). In eQTL mapping studies, the genetic factors associated with
gene expression can be classified into proximal or cis-eQTLs, eQTLs in the vicinity
of the target genes, and distal or trans-eQTLs, eQTLs found in distant regions of the
genome [87]. There are several approaches for detecting eQTLs, including methods that
perform separate tests for every transcript-SNP pair [86] and methods that attempt
to identify groups of SNPs [88]. In the most simple form, detecting eQTLs involves
fitting a linear regression model for every gene-SNP pair:

y = α + βs+ γc + ϵ ϵ ∼ N (0, σ2),

where y is the gene expression of the target gene; s is the encoded SNP; c are covariates
that allow accounting for clinical variables (e.g. age and sex); α, β and γ are learnable
parameters; and ϵ is some random additive noise. The SNP s is encoded as 0, 1,
or 2 according to the frequency of the minor allele [86]. Alleles are the possible
SNP variations in a particular position of the genome and can be classified into 1)
homozygous (two copies of the same allele) vs heterozygous (two different alleles) and
2) major (most common allele in the population) vs minor (less common allele in the
population).

After fitting the linear model, we can calculate a statistic (e.g. t-statistic) to test
the null hypothesis that the slope β is equal to 0 (i.e. no association between the SNP
and the gene expression of the target gene), followed by the calculation of p-values
and correction for multiple hypothesis testing (e.g. by calculating the False Discovery
Rate). A SNP is then said to be an eQTL for a particular target gene if we are able to
reject the null hypothesis.

Discovering new tissue-specific eQTLs In Chapter 5, we apply eQTL mapping
to uncover a large number of previously undetected tissue-specific eQTLs.
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2.3 Probabilistic modelling of gene expression
In this section, we introduce concepts related to probabilistic models, which are
paramount for modelling gene expression. We also examine the probability distributions
frequently used to capture the characteristics of transcriptomic data.

2.3.1 Probabilistic models
Probabilistic models allow us to express our beliefs and uncertainties about different
phenomena. They are characterised by probability distributions that describe the
relationship between different random variables, e.g. how likely is it that it will
rain today given that the atmospheric pressure is low? Probability distributions
can be employed to make predictions of a certain event happening given a series of
observations (supervised scenario) and infer hidden variables governing the observed
data (unsupervised scenario), among others.

Supervised scenario In the supervised setting, we assume we are given some
observations x and we want to infer a response variable y. We can model the relationship
between the two variables using a conditional model pθ(y|x) with parameters θ. This
conditional distribution assigns a probability — or density, in case of a continuous
outcome — to every possible value of y given the observations x, allowing us to
estimate the most likely response as well as the probability of alternative outcomes.
Given a dataset D = {(xi,yi)}n

i=1 with n observations, conditional models are usually
optimised by maximising the conditional likelihood:

θ∗ = arg max
θ

n∏
i=1

pθ(yi|xi) = arg max
θ

n∑
i=1

log pθ(yi|xi)

In other words, the goal is to find the parameters of the model that maximise the
conditional likelihood of our data. Importantly, this encodes the assumption that
samples are independent and identically distributed, that is, all samples follow the
same probability distribution and are mutually independent.

Unsupervised scenario In the unsupervised setting, we assume that the given
observations x depend on some latent, unobserved variables z. The joint probability
distribution of the obervations and latent variables can be written as:

pθ(x, z) = pθ(x|z)pθ(z),
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where pθ(x|z) is the likelihood of the observations given the latent variables and pθ(z)
is known as the prior and captures our prior belief on the marginal distribution of the
latent variables. This model also belongs to the category of generative models — given
the learnt parameters θ we can generate new observations from the joint distribution by
first sampling from the prior pθ(z) and then from the conditional distribution pθ(x|z).
To learn the parameters θ of the model, we can maximise the marginal likelihood pθ(x)
of the observed data:

θ∗ = arg max
θ

n∏
i=1

pθ(xi) = arg max
θ

n∏
i=1

∫
pθ(xi, z)dz,

For a given observation xi, we may also infer the posterior distribution over the latent
variables:

pθ(zi|xi) = pθ(xi, zi)∫
pθ(xi, z)dz

Unfortunately, the integral
∫
pθ(xi, z)dz in these equations is often computationally

intractable because the integration is performed over all possible values of the multivari-
ate latent variables. Some notable exceptions include Factor Analysis and Probabilistic
Principal Component Analysis [89], where the marginal likelihood can be calculated
in closed-form. In cases where integrating is unfeasible, various algorithms, such
as variational inference (Section 2.4.1), can be used to approximate the marginal
likelihood.

2.3.2 Probability distributions for gene expression data
To model gene expression data, we consider several distributions that might be suitable
depending on the type of data (e.g. bulk or single-cell RNA-seq) and the processing
techniques applied (e.g. inverse-normal transformed vs raw read counts).

Normal distribution The Normal (or Gaussian) distribution is a fundamental
probability distribution for modelling continuous data. This distribution, characterised
by a symmetric bell-shaped curve, is ubiquitous in nature — it is commonly used to
model many real-world phenomena including biological traits and measurement errors.
It is particularly important because of the central limit theorem, which states that the
average of a large number of independent and identically distributed random variables
tends to follow a Normal distribution.
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The Normal distribution N (µ, σ2) is parameterised by a mean parameter µ ∈ R, the
expected value, and a dispersion parameter σ2 ∈ R>0, the variance of the distribution.
The probability density function (PDF) of the Normal distribution is given by:

fNormal(x;µ, σ) = 1
σ

√
2π
e

− 1
2

(
x−µ

σ

)2

The Normal PDF is often used as a likelihood function for regression tasks. It is
tightly connected to the mean squared error MSE(θ) = 1

n

∑n
i=1

(
yi −gθ(xi)

)2
commonly

used to optimise a broad range of regression models gθ (e.g. non-linear neural networks).
In particular, if we assume a probabilistic model pθ(y|x) = N (µ = gθ(x), σ2) with a
Normal likelihood and fixed variance σ2, we can see that maximising the likelihood
of the data D = {(xi, yi)}n

i=1 under the conditional model pθ(y|x) is equivalent to
minimising the MSE:

arg max
θ

n∏
i=1

pθ(yi|xi) = arg max
θ

n∑
i=1

log pθ(yi|xi) = arg min
θ

n∑
i

(
yi − gθ(xi)

)2
,

where the last equality follows from the definition of the Normal PDF.
The Normal distribution has been widely used to model gene expression data,

particularly for quantifying differential expression patterns [90, 91], inferring cell-type
composition in bulk gene expression [92, 93], and modelling latent sources of variation
[94, 95].

Gamma distribution The Gamma distribution is a continuous probability distri-
bution that, intuitively, models the wait time until the k-th event occurs for a given
rate of occurrence. It is parameterised by a shape parameter k ∈ R>0, controlling the
spread of the distribution (i.e. the more events, the longer the wait time), and a scale
parameter θ ∈ R>0 (inverse of the occurrence rate). The probability density function
of the Gamma distribution is:

fGamma(x; k, θ) = xk−1e−x/θ

θkΓ(k) ,

where Γ(k) =
∫∞

0 tk−1e−tdt is the gamma function and corresponds to the factorial
Γ(n) = (n− 1)! for all positive integers n ∈ N>0.

When k = 1, the Gamma distribution reduces to the exponential distribution,
which models the distribution of time between two events occurring at a constant
average rate. This distribution has broad applications in Bayesian statistics and serves
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as the conjugate prior for many probability distributions including Normal, Poisson,
and exponential distributions. For example, in Cell2location [96], a framework to infer
the cell-type composition of spatial transcriptomic spots, the Gamma distribution is
used as a prior for the per-spot cell-type abundances.

Poisson distribution The Poisson distribution models the probability of an event
happening a certain number of times k in a fixed interval of time or space. It is a
discrete probability distribution that has been broadly used to model the occurrence
of rare events, including the number of RNA molecules observed for a certain gene in a
pool of transcripts.

The Poisson distribution is parameterised by λ ∈ R≥0, the average rate of occur-
rences within a fixed interval, which also corresponds to the mean and variance of the
distribution. The probability mass function (PMF) of the Poisson distribution is:

fPoisson(x;λ) = λxe−λ

x!

In the bioinformatics literature, the Poisson distribution has been used to capture
the per-gene variation across technical replicates [97], identify differentially expressed
genes [97, 76, 98], and cluster of RNA-seq data [99, 100], among others.

A limitation of the standard Poisson distribution is that it assumes that the mean
and variance are the same, rendering the distribution inappropriate in the case of over-
(or under-) dispersion. This is often the case for RNA-seq data, e.g. when the variance
of a particular gene is larger than its mean. To address this challenge, the negative
Binomial distribution allows adjusting the variance independently of the mean.

Negative binomial distribution The negative binomial (NB) distribution gener-
alises the Poisson distribution by introducing an additional parameter with increased
flexibility to model over-dispersed data. Intuitively, the negative binomial distribution
models the number of independent Bernoulli trials, each with a probability of success
p ∈ [0, 1], needed until reaching a fixed number of r ∈ N>0 successes. The PMF of the
negative binomial distribution is:

fNB(x; r, p) =
(
x+ r − 1

x

)
(1 − p)xpr,

where
(

x+r−1
k

)
= (x+r−1)!

(r−1)!x! is the binomial coefficient representing the number of ways in
which k failures can be chosen from a total of x+ r− 1 trials (the last trial is always a
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success). The second and third factors (1 − p)kpr capture the probability of observing
k failures and r successes in any given order. The mean of the distribution is r(1−p)

p

and the variance is r(1−p)
p2 .

By using the gamma function Γ(z) =
∫∞

0 tz−1e−tdt, which corresponds to the
factorials Γ(n) = (n− 1)! for all positive integers n ∈ N>0, we can extend the negative
binomial PMF to positive real-valued r ∈ R>0 parameters:

fNB(x; r, p) = Γ(x+ r)
x!Γ(r) (1 − p)xpr

This is particularly useful for regression models, e.g. gradient-based methods, that
attempt to approximate the distribution’s parameters from the observed data. In
particular, it is common to reparameterise the negative binomial PMF in terms of the
mean µ and dispersion (or shape) α parameters [101]:

fNB(x;µ, α) = Γ(x+ α−1)
x!Γ(α−1)

(
µ

α−1 + µ

)x( α−1

α−1 + µ

)α−1

,

where µ = r(1−p)
p

and α = 1
r
. The mean of the distribution now corresponds to µ and

the variance is µ+ αµ2. The parameter α therefore controls the over-dispersion levels
and the Poisson distribution arises as a special case of negative binomial when α → 0
(i.e. no over-dispersion).

The negative binomial distribution can alternatively be viewed as a mixture of Pois-
son distributions with different means, also known as the Gamma-Poisson distribution.
In this case, we use a Poisson distribution Poisson(λ) where the rate parameter λ is
a random variable that follows a Gamma distribution Γ(k, θ) with shape parameter
k = α−1 and scale θ = p

1−p
. This is intuitively appealing for modelling RNA-seq counts

because the transcripts of different genes may occur at different rates.
The negative binomial distribution is most commonly used to model bulk gene

expression datasets because it is flexible enough to account for over-dispersed genes. It
has been employed for differential expression analysis [76, 102], feature selection [103],
and gene expression normalisation [59, 58, 104], among others.

Zero-inflated negative binomial Single-cell RNA-seq data is characterised by its
sparsity, i.e. the fraction of zeroes is often as high as 90% and many genes do not
have any mapped reads [68, 1]. The abundance of zeros can be explained by several
factors, including technical factors such as limited capture efficiency and low sequencing
depth. This hinders our ability to distinguish between actual biological zeros and
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technical artefacts. For single-cell RNA-seq data, the negative binomial distribution is
not flexible enough to model the excess of zeros.

To alleviate this problem, we can model the data as a mixture of two distributions
— the first distribution produces zeros (i.e. zero-inflation) and the second produces
the actual counts (i.e. via negative binomial distribution). The zero-inflated negative
binomial (ZINB) achieves this by introducing an additional parameter π ∈ [0, 1] that
captures the probability of inflation or probability of a technical zero (also known as
dropout probability). The zero-inflated negative binomial PMF is:

fZINB(x; r, p, π) =

π + (1 − π)fNB(x; r, p), if x = 0
(1 − π)fNB(x; r, p), otherwise

This PMF accounts for the chance of a zero being a technical zero — if x = 0, then
it’s a technical zero with probability π and biological zero with probability 1 − π. The
mean of the distribution is now (1 − π) r(1−p)

p
and the variance is (1 − π) r(1−p)(1+rπ−rπp)

p2 .
The zero-inflated negative binomial distribution is therefore an excellent choice for
modelling single-cell RNA-seq and is used as the preferred likelihood function in the
latest single-cell RNA-seq analysis methods, including single-cell variational inference
(scVI) [94], deep count autoencoders (DCA) [105], and zero-inflated negative binomial-
based wanted variation extraction (ZINB-WaVE) [106].

Separating measurement and expression models Observed RNA-seq counts
reflect both true gene expression (biological variation) and measurement error (tech-
nical variation). Distinguishing between these two sources of variation may improve
clarity on the underlying method assumptions [107]. Sarkar A. and Stephens M.
[107] propose a clear separation between (1) an expression model, which describes the
variation of true expression counts, and (2) a measurement model, which describes
the discrepancy between the observed and true RNA-seq counts. For example, the ob-
served expression levels xij of gene j in cell i may be modelled as xij ∼ Poisson(xi+λij),
where xi+ are the total cell counts (or library size) and λij is the true expression
modelled as λij ∼ gj(·). The distribution of the expression model gj can be chosen
based on our assumptions — e.g., using a Gamma distribution for gj leads to a
negative binomial observation model.
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2.4 Unsupervised learning with generative models
Generative models are a class of statistical models that allow to discover latent,
unobserved variables that drive the data generation process. In this section we describe
two families of generative models, variational autoencoders and generative adversarial
networks, as well as extensions of these families that are relevant to this dissertation.

2.4.1 Variational inference and variational autoencoders
Variational inference Variational inference is a technique that allows approximating
the posterior distribution over the latent variables describing the data, which is often
computationally intractable. Formally, let x and z be two random variables representing
the observed and latent variables, respectively. Let pθ and qϕ be two probability density
functions with parameters θ and ϕ. The ELBO loss LELBO is defined as:

LELBO = Eqϕ(z)[log pθ(x, z) − log qϕ(z)] = Eqϕ(z)[log pθ(x|z)] − KL
(
qϕ(z)||pθ(z)

)
,

where KL is the Kullback-Leibler divergence or relative entropy.
The ELBO loss can be derived by introducing a variational distribution qϕ(z) and

a lower bound on the log-likelihood pθ(x) based on Jensen’s inequality (Supplementary
Information A). We can approximate the ELBO and gradients with respect to the
parameters θ and ϕ via Monte Carlo estimates (i.e., by drawing several random samples
from qϕ(z)). Optimising θ and ϕ via stochastic gradient descent on the ELBO is often
known as stochastic variational inference.

Variational autoencoders Variational autoencoders (VAEs) are a class of amortised
variational inference methods for learning deep latent representations [108, 109]. The
term amortised refers to the fact that the same set of parameters is used to approximate
the posterior for all data points. They consist of two coupled models that support
each other [109]. One model, the encoder or recognition model qϕ(z|x), approximates
the posterior over the latent variables given the observed variables. The other model,
the decoder or generative model pθ(x|z), estimates the conditional probability of the
observed variables given the latent variables. Similar to standard variational inference,
VAEs work by maximising the evidence lower bound (ELBO):

LELBO = Eqϕ(z|x)[log pθ(x|z)] − KL
(
qϕ(z|x)||pθ(z)

)
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The main difference is that the variational distribution qϕ(z|x) is now conditioned on
the observed data, allowing us to learn a mapping between data points and latent
variables. Intuitively, the first term measures the reconstruction error, whereas the
second term is a regulariser that encourages the variational distribution q to be close
to a predetermined prior distribution over the latent variables (e.g. typically an
isotropic normal distribution). To balance the encoder’s capacity versus the degree
of disentanglement, β-VAEs [110] introduce an hyperparameter β that weighs the
regularisation strength (i.e. second term of the ELBO).

When we optimise the ELBO loss, backpropagation is not possible by default because
the gradients cannot flow through the sampling operation involved in computing the
expectation with respect to the variational distribution qϕ(z|x). To overcome this issue,
VAEs employ the reparameterisation trick [108, 109], which consists of externalising
the randomness of the sampling z ∼ qϕ(z|x) by reparameterising the latent variable
as a deterministic and differentiable function of ϕ. For example, suppose that qϕ(z|x)
takes the form of a normal distribution N (µ, diag(σ2)), where µ and σ depend on ϕ.
Then, we can sample a new variable ϵ ∼ N (0, I) and compute z = µ + ϵ⊙σ, rendering
the sampling operation differentiable with respect to ϕ.

2.4.2 Generative adversarial networks
Generative Adversarial Networks (GANs) are a framework for estimating
generative models via an adversarial process [111]. They are often described as a
two-player game in which both players are encouraged to improve. One player, the
generator, creates samples that are intended to be indistinguishable from those coming
from a certain target data distribution. The other player, the critic, learns to determine
whether samples come from the adversarial distribution (adversarial samples) or the
data distribution (real samples). Figure 2.2 shows the basic idea of GANs.

These two players are represented by Dω(x) and Gθ(z), where z is randomly sampled
from a fixed noise distribution pz (e.g. an isotropic Gaussian with unit variance) and
Dω(x) indicates the probability of x coming from the data distribution, e.g. x ∼ pr,
as opposed to being generated by the generator, e.g. x = Gθ(z). These functions are
differentiable with respect to their parameters ω and θ, and in the GAN framework
they are represented by neural networks. The model is optimised via the following
minimax game [111]:

min
θ

max
ω

E
x∼pr

[logDω(x)] + E
z∼pz

[1 − logDω(Gθ(z))]
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p(x is real)

Dω(x)Critic

xfakexreal

Gθ(z) Generator

z ∼ pz Noise prior

Fig. 2.2 Generative Adversarial Network framework. The generator Gθ(z) receives a
vector z sampled from a noise prior distribution pz, and generates a synthetic sample
xfake. The critic Dω(x) (also known as discriminator) tries to distinguish real samples
from fake samples, producing the probability of x coming from the real data distribution.
The competition between the two players drives the game and makes both players
increasingly better.

The minimax game can also be described via two loss functions JD(ω, θ) and
JG(ω, θ) that are minimised adversarially with respect to ω and θ, respectively:

JD(ω, θ) = − E
x∼pr

[logDω(x)] − E
z∼pz

[1 − logDω(Gθ(z))]

JG(ω, θ) = E
z∼pz

[1 − logDω(Gθ(z))]

Intuitively, the game combines the cross-entropy losses for both the real and the
adversarial data. In other words, the first term of JD(ω, θ) penalises Dω for labelling
real data as synthetic, while the second term of JD(ω, θ) penalises Dω for classifying
synthetic data as real. The solution to this game (ω, θ) is a local minima corresponding
to a Nash equilibrium [112].

Although this approach is theoretically sound, in practice it has some problems
with gradient-based methods, because when the critic successfully rejects adversarial
samples the generator’s cost function JG(ω, θ) saturates and its gradients become too
weak [111]. For this reason, it is more common to define the generator’s cost as:

JG(ω, θ) = − E
z∼pz

[logDω(Gθ(z))] (2.1)
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For this cost function, the generator’s gradients are strong when the critic is not
fooled by the generator’s samples.

Conditional GANs Conditional GANs are a simple extension of the GAN framework
to approximate conditional distributions [113]. Conditional GANs include the covariates
y that we wish to condition on as input to both the critic and generator. The minimax
game is then defined as:

min
θ

max
ω

E
(x,y)∼pr

[
logDω(x,y) + E

z∼pz

[1 − logDω(Gθ(z,y),y)]
]

We can then fix the covariates y and sample from Gθ(z,y) to obtain synthetic samples
from a desired class y.

Wasserstein GANs One limitation of traditional GANs is that they are really hard
to train. Concretely, [114] showed that when we use the generator’s cost from Equation
2.1, the norm of the generator’s gradient rapidly increases as the critic gets closer to
optimality, resulting in unstable gradient updates. Another widely known problem of
GANs is mode collapse, wherein the generator learns to produce samples from a small
set of modes that seem plausible to the critic.

Wasserstein GANs (WGANs) address these issues by introducing a cost function
based on the Earth Mover’s distance [115], making the gradients smoother everywhere
and allowing us to train the critic until optimality at each training iteration (as opposed
to balancing the generator and critic’s capacity). This improves the stability of training
and has been seen to reduce mode collapse drastically [115]. In contrast to traditional
GANs, the output of the critic [115] is unbounded.

Formally, WGANs optimise the following minimax game based on the Earth Mover’s
distance and the Kantorovich-Rubinstein duality [116]:

min
θ

max
ω

E
x∼pr

[Dω(x)] − E
z∼pz

[Dω(Gθ(z))]

subject to ||Dω(xi) −Dω(xj)|| ≤ ||xi − xj|| ∀xi,xj ∈ Rn,
(2.2)

where the constraint enforces the critic Dω to be 1-Lipschitz, that is, the norm of the
critic’s gradient with respect to x must be at most 1 everywhere. To enforce this
constraint, WGAN clips the weights of the critic, forcing them to lie within a predefined
range (e.g. [−0.01, 0.01]).
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Wasserstein GANs with gradient penalty The solution of using weight clipping
to enforce the 1-Lipschitz constraint is not ideal. When the clipping hyperparameter is
too large, it may become hard to optimise the critic until optimality [115]. Conversely,
when the hyperparameter is too small, this solution might lead to vanishing gradients
[115]. This often prevents the model from converging and, as a result, the generated
samples have poor quality [18].

To alleviate this issue, [18] introduce a way to enforce the 1-Lipschitz constrain
by penalising the norm of the critic’s gradient, giving raise to WGANs with gradient
penalty (WGAN-GPs). Formally, WGAN-GPs solve the minimax problem described
in Equation 2.2 as follows:

min
θ

max
ω

E
x∼pr

[Dω(x)] − E
z∼pz

[Dω(Gθ(z))] − λ E
x̃∼px̃

(
||∇x̃Dω(x̃)||2 − 1

)2
,

where λ is a user-definable hyperparameter and the samples x̃ from the distribution px̃

are random points along straight lines that connect pairs of real and adversarial samples,
that is, x̃ = αx + (1 − α)x̂ where x is real, x̂ is synthetic, and α ∼ U(0, 1). Intuitively,
since enforcing the 1-Lipschitz constraint everywhere is intractable (Equation 2.2), the
gradient penalty term is a relaxed version of the constraint that experimentally results
in good performance [18].



Chapter 3

In-silico generation of tissue-specific
gene expression

Over the last two and a half decades, the emergence of technologies such as spotted
microarrays [117], Affymetrix microarrays [118], and RNA-seq [119] has enabled the
expression level of thousands of genes from a biological sample to be simultaneously
measured, but datasets of an appropriate size are often unavailable. In these cases,
synthetically generated data is often used to benchmark gene expression analysis
algorithms. An important example of this is evaluating algorithms that reverse engineer
gene regulatory networks (GRNs) from transcriptomics data [120–122]. Benchmarking
the performance of these methods is challenging because we often lack well-understood
biological networks to use as gold standards. As a result, the current approach is to
generate synthetic transcriptomic datasets from well-characterised networks [123, 124].
However, current simulators have been criticised because they fail to emulate key
properties of gene expression data [17], suggesting that GRN reconstruction algorithms
that perform well on synthetic datasets might not necessarily generalise well on real
data.

In this chapter, we study the problem of generating realistic transcriptomics data
in-silico. This is a challenging task because biological systems are highly complex and
it is not clear how biological elements interact with each other. Moreover, it is difficult
to determine to what extent the expression data generated by a simulator is realistic

— unlike in other domains such as image generation, wherein one can qualitatively
assess whether an image is realistic, we do not have an intuitive understanding of

The research presented in this chapter has been conducted in collaboration with Helena A. Terré,
Kevin Bryson, and Pietro Liò
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high-dimensional expression data. To generate gene expression in-silico, we develop a
model based on a Wasserstein generative adversarial network with gradient penalty
(WGAN-GP; [18]). In contrast to existing gene expression simulators such as SynTReN
[123] or GeneNetWeaver (GNW; [124]), our model learns to approximate the expression
manifold in a data-driven way and does not require the underlying GRN as input.
Furthermore, our approach integrates sample covariates such as age, sex, and tissue
type (global determinants of gene expression; [125]) to account for their non-linear
effects.

As a first case study, we investigate to what extent the proposed framework preserves
statistical properties of GRNs. To that end, we develop a transcriptomics simulator
for the E. coli bacterium, which has the largest amount of experimentally validated
regulatory interactions of any organism [126]. We show that our model conserves
several gene expression properties significantly better than widely used simulators
such as SynTReN or GeneNetWeaver. In particular, we introduce several correlation-
based metrics to assess the quality of the synthetic data and find that SynTReN and
GeneNetWeaver poorly preserve correlations between transcription factors and target
genes. This is undesirable and has important implications on the assessment of the
ability of GRN reconstruction algorithms to generalise to real data.

As a second case study, we examine whether our approach can be used to generate
realistic human gene expression data. We train our model on human RNA-seq data
from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA)
and produce data that preserves the tissue and cancer-specific properties of transcrip-
tomics data. Moreover, we observe that the synthetic data conserves gene clusters
and ontologies both at local and global scales, suggesting that the model learns to
approximate the gene expression manifold in a biologically meaningful way. Finally, we
propose a tool that leverages the in-silico simulator to find candidate causal biomarkers
for a variety of cancer types.

3.1 Methodology
In this section, we introduce our approach to generating realistic gene expression
data. We use script letters to denote sets (e.g. D), upper-case bold symbols to denote
matrices or random variables (e.g. X) and lower-case bold symbols to denote column
vectors (e.g. x or q̄j). The rest of the symbols (e.g. q̄jk, G, or f) denote scalar values
or functions.
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3.1.1 Problem formulation
Consider a dataset D = {(x, r,q)} of samples from an unknown distribution px,r,q,
where x ∈ Rn represents a vector of gene expression values; n is the number of genes; and
r ∈ Rk and q ∈ Nc are vectors of k quantitative (e.g. age) and c categorical covariates
(e.g. tissue type or gender), respectively. Our goal is to produce realistic gene expression
samples by modelling the conditional probability distribution p(X = x|R = r,Q = q).
By modelling this distribution, we can sample data for different conditions and quantify
the uncertainty of the generated expression values.

3.1.2 Adversarial model
Our method builds on a Wasserstein GAN with gradient penalty (WGAN-GP; [127, 18]).
Similar to Generative Adversarial Networks (GAN; [111]), WGAN-GPs estimate a
generative model via an adversarial process driven by the competition between two
players, the generator and the critic.

Generator The generator aims at producing samples from the conditional p(X|R,Q).
Formally, we define the generator as a function Gθ : Ru × Rk × Nc → Rn parametrised
by θ that generates gene expression values x̂ as follows:

x̂ = Gθ(z, r,q), (3.1)

where z ∈ Ru is a vector sampled from a fixed noise distribution pz and u is a
user-definable hyperparameter.

Critic The critic takes gene expression samples x̄ from two input streams (the
generator and the data distribution) and attempts to distinguish the true input source.
Formally, the critic is a function Dω : Rn × Rk × Nc → R parametrised by ω that we
define as follows:

ȳ = Dω(x̄, r,q),

where the output ȳ is an unbounded scalar that quantifies the degree of realism of
an input sample x̄ given the covariates r and q (e.g. high values correspond to real
samples and low values correspond to fake samples).

Optimisation We optimise the generator and the critic adversarially. Following
[127], we train the generator Gθ and the critic Dω to solve the following minimax game
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based on the Wasserstein distance:

min
θ

max
ω

E
x,r,q∼px,r,q

[
Dω(x, r,q) − E

z∼pz
[Dω(x̂, r,q)]

]
subject to ||Dω(xi, r,q) −Dω(xj, r,q)|| ≤ ||xi − xj||

∀xi,xj ∈ Rn, r ∈ Rk,q ∈ Nc,

(3.2)

where x̂ is defined as in Equation 3.1 and the constraint enforces the critic Dω to be
1-Lipschitz, that is, the norm of the critic’s gradient with respect to x must be at most
1 everywhere.

Let {(xi, ri,qi)}k
i=1 be a mini-batch of k independent samples from the training

dataset D. Let {z1, z2, ..., zk} be a set of k vectors sampled independently from the
noise distribution pz and let us define the synthetic samples corresponding to the
mini-batch as x̂i = Gθ(zi, ri,qi) for each i in [1, 2, ..., k]. We solve the minimax problem
described in Equation 3.2 by interleaving mini-batch gradient updates for the generator
and the critic, optimising the following problems:

Generator: min
θ

−1
k

k∑
i=1

Dω

(
x̂i, ri,qi

)

Critic: min
ω

1
k

k∑
i=1

Dω

(
x̂i, ri,qi

)
−Dω(xi, ri,qi)

+λ
k

k∑
i=1

(
||∇x̃i

Dω(x̃i, ri,qi)||2 − 1
)2
,

(3.3)

where λ is a user-definable hyperparameter and each x̃i is a random point along the
straight line that connects xi and x̂i, that is, x̃i = αixi + (1 − αi)x̂i with αi ∼ U(0, 1).
Intuitively, since enforcing the 1-Lipschitz constraint everywhere (Equation 3.2) is
intractable [128], the second term of the critic problem is a relaxed version of the
constraint that penalises the gradient norm along points in the straight lines that
connect real and synthetic samples [18].

Architecture Figure 3.1 shows the architecture of both players. The generator G
receives a noise vector z as input (green box) as well as sample covariates r and q
(orange boxes) and produces a vector x̂ of synthetic expression values (red box). The
critic D takes either a real gene expression sample x (blue box) or a synthetic sample
x̂ (red box), in addition to sample covariates r and q, and attempts to distinguish
whether the input sample is real or fake. For both players, we use word embeddings
[129] to model the sample covariates (light green boxes), a distinctive feature that
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allows to learn distributed, dense representations for the different tissue types and,
more generally, for all the categorical covariates q ∈ Nc.

Formally, let qj be a categorical covariate (e.g. tissue type) with vocabulary size vj ,
that is, qj ∈ {1, 2, ..., vj}, where each value in the vocabulary {1, 2, ..., vj} represents a
different category (e.g. lung or kidney). Let q̄j ∈ {0, 1}vj be a one-hot vector such that
q̄jk = 1 if qj = k and q̄jk = 0 otherwise. Let dj be the dimensionality of the embeddings
for covariate j. We obtain a vector of embeddings ej ∈ Rdj as follows:

ej = Wjq̄j,

where each Wj ∈ Rdj×vj is a matrix of learnable weights. Essentially, this operation
describes a lookup search in a dictionary with vj entries, where each entry contains a
learnable dj-dimensional vector of embeddings that characterises each of the possible
values that qj can take. To obtain a global collection of embeddings e, we concatenate
all the vectors ej for each categorical covariate j:

e =
∥∥∥∥c

j=1
ej,

where c is the number of categorical covariates and ∥ represents the concatenation
operator. We then use the learnable embeddings e in downstream tasks.

In terms of the player’s architecture, we model both the generator G and critic D
as neural networks that leverage independent instances eG and eD of the categorical
embeddings for their corresponding downstream tasks. Specifically, we model the two
players as follows:

Gθ(z, r,q) = MLP(z∥r∥eG) Dω(x̄, r,q) = MLP(x̄∥r∥eD),

where MLP denotes a multilayer perceptron.

3.1.3 Evaluation metrics
Assessing to what extent simulators are able to generate realistic datasets is a challenging
task since we often lack reliable gold standards. Furthermore, unlike for other domains
such as image generation, wherein one can empirically assess whether an image is
realistic, we do not have an intuitive understanding of high-dimensional transcriptomics
data. In order to evaluate the quality of the synthetic data, in this section we propose
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Fig. 3.1 Architecture of our model. The generator receives a noise vector z, and
categorical (e.g. tissue type; q) and numerical (e.g. age; r) covariates, and outputs a
vector of synthetic expression values (x̂). The critic receives gene expression values
from two input streams (real, blue; and synthetic, red) along with the numerical r
and categorical q covariates, and produces an unbounded scalar ȳ that quantifies the
degree of realism of the input samples from the two input streams. A characteristic
feature of our architecture is the use of word embeddings eG and eD (green boxes) to
learn distributed representations of the categorical covariates for both the generator
and the critic.
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various quality assessment measures that summarise several statistical properties of
gene expression.

We first define a similarity coefficient based on the Pearson’s correlation coefficient,
which we later use to implement the proposed metrics. Let A be a n× n symmetric
matrix holding the pairwise distances between all genes. In order to measure how
faithfully this matrix preserves the pairwise distances with respect to another n× n

distance matrix B, we define the Pearson’s correlation coefficient between the elements
in the upper-diagonal of A and B:

γ(A,B) =
n−1∑
i=1

n∑
j=i+1

(
Ai,j − µ(A)

σ(A)

)(
Bi,j − µ(B)

σ(B)

)
,

where, for a given n× n matrix G, µ(G) and σ(G) are defined as:

µ(G) = 2
n(n− 1)

n−1∑
i=1

n∑
j=i+1

Gi,j

σ(G) =
√√√√ 2
n(n− 1)

n−1∑
i=1

n∑
j=i+1

(Gi,j − µ(G))2

General metrics

We first define generic metrics that can be used for any dataset.

Distance between real and artificial distance matrices (Sdist) Let X ∈ Rm1×n

and Z ∈ Rm2×n be two matrices containing m1 real and m2 synthetic observations for
n genes, respectively. For a given distance function d, we define two n × n distance
matrices DX and DZ as:

DX
i,j = d(col(X, i), col(X, j)) DZ

i,j = d(col(Z, i), col(Z, j)), (3.4)

where col(X, i) is the i-th column of matrix X. Throughout the remainder of the
chapter we use the Pearson’s dissimilarity coefficient as the distance function d.

The coefficient Sdist = γ(DX ,DZ) measures whether the pairwise distances between
genes from the real data are correlated with those from the synthetic data.

Distance between real and artificial dendrograms (Sdend) Let C : Rn×n →
Rn×n be a function that performs agglomerative hierachical clustering according to a
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given linkage function, taking a n×n distance matrix as input and returning the n×n

distance matrix of the resulting dendrogram. Intuitively, each element (i, j) in the
dendrogrammatic distance matrices measures the distance between the two outermost
clusters that separate genes i and j.

The coefficient Sdend = γ(C(DX), C(DZ)) measures the structural similarity be-
tween the dendrograms, giving a score close to 1 when the real and artificial dendro-
grams have a similar structure. Consequently, this metric encourages the synthetic
distribution to preserve the relationships among groups of genes that are found in
the real distribution. Importantly, this coefficient does not necessarily correlate with
γ(DX ,DZ) (Supplementary Information B.1).

GRN-specific metrics

The following metrics make use of an a priori known GRN to evaluate statistical
properties of gene regulatory interactions.

Weighted sum of TF-TG similarity coefficients (STF−TG) Let G be a function
returning the set of indices of the target genes (TGs) that are regulated by a given
transcription factor (TF). For a given dataset D and a TF f , let rD

f be a vector of
distances between the expressions of f and the expressions of its target genes:

rD
f =

(
d(col(D, f), col(D, g)) : g ∈ G(f)

)⊤
,

where d is an arbitrary distance measure. If the synthetic dataset Z is realistic with
respect to the real dataset X, the vectors rX

f and rZ
f will be similar for each TF f in a

set of transcription factors F . Let wf be a coefficient associated with the importance
of TF f (e.g. we choose wf = |G(f)|). We summarise this information as follows:

STF−TG(X,Z) = 1∑
f∈F wf

∑
f∈F

wf · υ(rX
f , rZ

f ),

where υ(rX
f , rZ

f ) is the cosine similarity between vectors rX
f and rZ

f . The coefficient
STF−TG(X,Z) measures whether the TF-TG dependencies in the synthetic data resem-
ble those from the real data.

Weighted sum of TG-TG similarity coefficients (STG−TG) Similarly, we define
a coefficient STG−TG to measure whether the expression of TGs regulated by the same
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TF in synthetic data conforms well with the analog expressions in real data:

STG−TG(X,Z) = 1∑
f∈F wf

∑
f∈F

wf

∑
g∈G(f)

υ(qX
f,g,qZ

f,g),

where, for a given matrix G, qG
f,g is the vector of distances between gene g and all the

genes regulated by f (excluding g):

qG
f,g =

(
d(col(G, g), col(G, i)) : i ∈ (G(f) − {g})

)⊤

3.2 Results
Here we assess the quality of the synthetic data produced by our generative model.
We compared our approach to existing simulators of gene expression, including
GeneNetWeaver [124] and SynTReN [123], evaluating several properties of gene expres-
sion using an E. coli dataset. We then studied the ability of our approach to produce
tissue-specific gene expression for several cancer and healthy human tissues.

3.2.1 E. coli evaluation
To analyse to what extent the proposed generative model is able to preserve statistical
properties of gene regulatory interactions, we introduce a first case study that leverages
E. coli transcriptomics data from the M3D database [130]. We chose this bacterium
because it has a relatively simple genome (∼4,400 genes) and its gene expression
mechanisms are well understood [131] and characterised by the RegulonDB database
[126]. In particular, we selected a meaningful subset of E. coli genes whose expression is
directly or indirectly regulated by the master regulator cAMP receptor protein (CRP).

Many Microbe Microarrays Database We downloaded E. coli single-channel
Affymetrix microarray data from the Many Microbe Microarrays Database (M3D; [130]).
From the 7459 available probes, we excluded those corresponding to intergenic regions
and controls, resulting in a dataset of 907 samples and 4297 features. These probes
were uniformly normalised by [130] using log-scale robust multi-array average (RMA;
[118]) to reduce batch effects and make the samples comparable across conditions. To
scale the data, we applied z-score normalisation for every gene.

RegulonDB The gene regulatory network of E. coli is one of the most well-
characterised transcriptional networks of a single cell. RegulonDB [126] is a database
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that integrates biological knowledge about the transcriptional regulatory mechanisms
of E. coli. The database gathers information from multiple biological studies to recon-
struct the structure of the E. coli gene regulatory network. We leveraged information
from RegulonDB to select the subnetwork of genes corresponding to the cAMP re-
ceptor protein (CRP) regulatory hierarchy, allowing us to study whether regulatory
associations are preserved in the in-silico-generated data.

CRP hierarchy To reduce the dimensionality of the dataset and enable learning
from a scarce number of samples, we performed breadth-first search on the RegulonDB
interactions to select a meaningful subset of genes whose expression is directly or
indirectly regulated by cAMP receptor protein (CRP). We broke loops by removing
non-tree edges as we built the hierarchy. The cAMP receptor protein, which regulates
global patterns of transcription in response to carbon availability, is one of the best
characterised global transcriptional regulators in E. coli [131].

Baselines We compared our approaches with other existing methods: SynTReN
[123] and GeneNetWeaver (GNW; [124]). Given a gene regulatory network, these
two methods model regulatory interactions with ordinary and stochastic differential
equations based on Michaelis-Menten and Hill kinetics. These two models have been
widely used to produce synthetic gene expression data from gene regulatory networks
with the purpose of benchmarking network inference algorithms, but they have been
previously criticised because they fail to emulate key properties of gene expression [17].
For example, [17] showed that clustering genes according to gene expression yields
clusters that are significantly different to those of real data, and that the correlations
between transcription factors and target genes are poorly preserved.

We generated a gene expression dataset of 680 samples using our generative model,
SynTReN, and GNW. For SynTReN and GNW, we created a network with 1076 nodes
(without background nodes; e.g. external nodes that regulate the expression of genes
in the network) corresponding to the CRP hierarchy. In both cases, we selected the
configuration that optimises the Sdist score. For SynTReN, this corresponded to a
biological noise level of 0.8 out of 1 and an experimental noise level of 0 (Supplementary
Information B.2). For GNW, the best coefficient for the noise term of the stochastic
differential equations was 0.1 (Supplementary Information B.3).

Statistical properties of regulatory interactions Table 3.1 shows a quantitative
comparison of the three methods. We determined an approximate lower bound on the
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Table 3.1 Quantitative assessment of the generated data with results for a random and
a real (M3D train) simulators.

Simulator Sdist Sdend STF−TG STG−TG

Random 0.0000 -0.0002 0.2299 -0.0132
Real 0.9109 0.5197 0.9143 0.9467

SynTReN 0.0449 0.0444 0.2134 0.2594
GNW 0.0587 0.0223 0.1838 0.1930
GAN 0.8145 0.3872 0.8386 0.8734

metrics by randomly generating gene expression data following a uniform distribution
U(0, 1). We determined an approximate upper bound by using the real E. coli gene
expression samples in the train dataset. The proposed model closely approximated the
upper bound in every metric, outperforming SynTReN and GNW by a large margin. In
fact, SynTReN and GNW performed similarly to the random simulator. We attribute
this to the fact that SynTReN and GNW rely exclusively on the source GRNs to
produce synthetic data. In contrast, our proposed WGAN-GP model leverages real
expression data to optimise a generative model in an unsupervised manner without
requiring information on the regulatory interactions. In Supplementary Information
B.4, we further analysed differences between the three simulators in terms of the
distributions proposed by [17]. Overall, our results show that the synthetic data
faithfully preserves key properties of gene expression, such as correlations between
the expression of transcription factors and their target genes, and demonstrate the
generality and application of the method in bacterial populations.

3.2.2 Generating tissue-specific human transcriptomic data
We introduce a second case study to analyse the ability of the proposed method to
generate human RNA-seq data from a broad range of cancer and normal tissue types.
Specifically, we combined data from GTEx and TCGA, two reference resources for
the scientific community that have generated a comprehensive collection of human
transcriptome data in a diverse set of tissues and cancer types.

The Genotype-Tissue Expression dataset The Genotype-Tissue Expression
(GTEx) dataset collected transcriptomics data of multiple tissues from around 838
human donors [12] (healthy individuals). The biospecimen repository includes model
systems such as whole blood and Epstein Barr virus (EBV) transformed lymphocytes;
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central nervous system tissues from 13 brain regions; and a wide diversity of other
primary tissues from non-diseased individuals.

The Cancer Genome Atlas The Cancer Genome Atlas (TCGA) is a public database
that aims to increase the understanding of the genetic basis of a wide range of cancers.
The biospecimen repository includes high-throughput genomic data from diseased and
matched healthy samples spanning 33 cancer types [132].

Data integration We specifically selected samples from 15 common tissues in GTEx
and TCGA, namely lung, breast, kidney, thyroid, colon, stomach, prostate, salivary,
liver, esophagus muscularis, esophagus mucosa, esophagus gastrointestinal, bladder,
uterus, and cervix. To unify the data and correct for batch effects, we followed
the pipeline described by [84]. After integrating the data, our dataset consisted of
9147 samples and 18154 genes. We trained our WGAN-GP model on the combined
RNAseqDB [84] (GTEx+TCGA) dataset and sampled a synthetic dataset that matched
the test set both in number of samples (2287) and proportions of tissue and cancer
types.

Correlation and cluster analysis Figure 3.2 shows the pairwise correlations and
dendrograms for 14 important cancer driver genes with high mutation frequency [133].
For this subset of genes, our model closely matched the correlation and clustering
expression patterns of the real data. To evaluate the clustering quality at a larger scale,
we applied k-means to both the test and the generated expression datasets (Figure 3.3).
We observed a bijective mapping between real and synthetic gene clusters. In other
words, for each real cluster, there was a synthetic cluster that shared the majority
of genes (and vice-versa). We further performed over-representation analysis with
GOfuncR [134]. We noted that similar Gene Ontology terms were enriched for each
matching pair of gene clusters. Using the real test set as the reference dataset, we
computed the metrics from Section 3.1.3. We quantified Sdist at 0.920 out of 0.947
and Sdend at 0.215 out of 0.222, where the bounds were approximate and given by the
metrics applied to the train set. These results suggest that the generated data retains
local and global co-expression patterns.

Over-representation analysis We review the intuitions behind over-
representation analysis in Chapter 2 (Section 2.2.2).
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Fig. 3.2 Correlation matrices and dendrograms for a subset of 14 cancer driver genes
with high mutation frequency [133]. (a, b, c) Correlation matrices computed using
the 2287 test set (unseen during training), 6860 train set, and 2287 in-silico generated
samples from the test set, respectively. For the synthetic data, the distribution
of gene correlations was slightly flatter (Supplementary Information B.4). (d, e, f)
Dendrograms obtained by performing hierachical clustering with complete linkage on
the same datasets. Our in-silico generated data closely matched the expression patterns
in terms of gene correlations and clusters.

Tissue and cancer-specific gene expression traits Next, we tested whether the
synthetic data accounts for tissue-specific and cancer-specific traits of gene expression.
We generated a gene expression dataset matching the statistics of the train set (i.e.
size and proportions of tissue and cancer types) and used the synthetic data to train a
multilayer perceptron (MLP; 2 hidden layers of 64 units with ReLU activations) to
perform tissue and cancer type classification. For tissue type classification (15 tissues),
the scores for the MLP trained on the synthetic data were AUC = 0.9884 ± 0.0010
and F1 = 0.9222 ± 0.0040 (real test set; averaged over 5 runs). The same figures for
the MLP trained on real data were AUC = 0.9986 ± 0.0003 and F1 = 0.9860 ± 0.0007.
For cancer-normal binary classification, the scores were AUC = 0.9992 ± 0.0001 and
F1 = 0.9893±0.0009 for the MLP trained on synthetic data, and AUC = 0.9997±0.0001
and F1 = 0.9939 ± 0.0005 for the MLP trained on real data. We then analysed the
expression manifold using UMAP [135] and observed a complete overlap of the real
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Fig. 3.3 Cluster analysis on the real and synthetic expression datasets. We performed
k-means clustering with k=10 clusters on the test (real) and generated datasets. Blue
and orange nodes represent real and synthetic clusters, respectively. The value of each
node corresponds to the number of genes in that cluster. We matched real and synthetic
clusters according to the number of shared genes and displayed the number of matching
genes in the edge labels for the top associations. The width of each edge is proportional
to the number of shared genes. We further performed an over-representation test using
GOfuncR [134] with a family-wise error rate (FWER) threshold of 0.05. We show the
enriched Gene Ontology terms next to the corresponding cluster and highlight in bold
those that are common between each top matching pair of clusters (see Supplementary
Information B.5 for a detailed list of the enriched Gene Ontology terms). These results
suggest that gene clusters and enriched biological processes were similar at a global
scale.

and synthetic samples (Figure 3.4). The UMAP representation revealed strong clusters
of gene expression data across a variety of normal and cancer tissues. Overall, these
results show that our method can emulate tissue- and disease-specific traits of gene
expression.

Candidate causal biomarkers of cancer types Our model allows producing gene
expression data for synthetic individuals across different tissues and cancer types. The
gene expression data of each donor is fully determined by a latent vector and a set
of covariates (e.g. tissue-type and cancer-type). If we clamp the latent variable and
covariates to a fixed value, we can then use the generator to produce gene expression
data for the same counterfactual individual with and without cancer. Changes in gene
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Fig. 3.4 UMAP representation of RNA-seq data across 15 tissue types for both normal
and cancer, combining data from the test set (2287 samples) and synthetic data (2287
samples). The first plot is colored by tissues, the second indicates which samples are
carcinogenic, and the third distinguishes samples between real and synthetic. Our
generative model can produce realistic data for different tissues and diseases.

expression will then be associated with the cancer factor, as all other latent variables
and covariates are kept constant across counterfactual samples. This cannot be done
for the real transcriptomics data because we do not have access to counterfactuals
and, therefore, changes in gene expression between healthy and cancer donors might
be associated with a large number of confounders in addition to cancer. Other works
have explored this idea in the context of image editing [136–138].

To rank the genes according to their sensitivity to cancer in our model, we generated
pairs of counterfactual gene expression values in several tissues. For each pair of
measurements, we fixed all the latent variables to the same state and produced healthy
and cancerous gene expression. We then computed the differential expression values and
averaged the results across 1000 runs, obtaining differential gene expression signatures
for each cancer type. Finally, we ranked the genes separately for each cancer type and
reported the resulting ranking in Table 3.2, along with literature references for each
reported gene. The resulting candidate genes warrant further investigations because
their expression changes were associated with cancer in an unconfounded way, i.e. all
the other determinants of expression in the model were kept fixed. Importantly, the
gene ranking is sensitive to the ability of our model to estimate the joint probability
distribution of gene expression conditioned on the covariates.
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Table 3.2 Candidate causal biomarkers for different cancer types. To generate these
results, we clamped the WGAN-GP latent variables and covariates to a fixed value
and used the generator to produce counterfactual healthy and cancer gene expression
for each individual. We then computed differential expression values and averaged the
results across 1000 runs, obtaining cancer-type-specific signatures. We finally ranked
genes separately for each cancer type and included supporting references for the top
genes. Importantly, these results are sensitive to the ability of our model to estimate
the probability distribution of gene expression conditioned on the covariates.

Cancer-type Sign Top 5 genes References

Colon

+ WNK4 [139, 140]
+ TMEM35 [141, 142]
+ AGR3 [143, 144]
– NSA2
+ TOMM34 [145–147]

Breast

+ RP11-318A15.7
+ KLF2 [148, 149]
+ PCDH19 [150, 151]
+ VIP [152–154]
+ CYP2U1 [155, 156]

Thyroid

– MCM3 [157, 158]
– SYK [159]
+ TBCCD1 [160, 161]
+ ZBBX
+ MESDC1 [162, 163]

Prostate

+ MTRNR2L8 [164]
+ FAM204A
+ CASP3 [165–167]
– HABP2 [168, 169]
+ PIF1 [170]

3.3 Discussion
In this chapter, we implemented a simulator based on a Wasserstein Generative Ad-
versarial Network with gradient penalty [18]. We studied the problem of generating
realistic transcriptomics data and analysed several statistical properties of gene expres-
sion in two case studies: E. coli microarray data and human RNA-seq data across a
broad range of tissue and cancer types.

For the first case study, we compared the ability of our simulator to preserve gene
expression properties related to the underlying gene regulatory network of the organism,
e.g. E. coli. Importantly, we noted that two widely used simulators, SynTReN and
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GeneNetWeaver (GNW), poorly preserve correlation properties of gene expression,
such as TF-TG and TG-TG correlations. This has important implications on the
benchmarks of algorithms that reverse engineer the GRN from transcriptomics data.
In particular, if these correlations are not well-preserved, it is not possible to guarantee
the generalisability of such algorithms to real data. We showed that the data produced
by our model is highly realistic according to these metrics, outperforming SynTReN
and GNW by a large margin.

For the second case study, we trained our model on a dataset that combines RNA-
seq data from the GTEx and TCGA projects. Our analysis showed that the proposed
approach preserves correlation and clustering properties, suggesting that the model
learns to approximate the gene expression manifold in a biologically meaningful way.
Furthermore, our model seems to capture tissue- and cancer-specific properties of
transcriptomic data. Finally, we proposed a tool based on the simulator that might
be employed by researchers to explore candidate cancer driver genes, with potential
application in biomarker discovery.





Chapter 4

Intra-tissue imputation of gene
expression

High-throughput profiling of the transcriptome has revolutionised discovery methods
in the biological sciences. The resulting gene expression measurements can be used to
uncover disease mechanisms [171–173], propose novel drug targets [174, 175], provide a
basis for comparative genomics [176, 177], and motivate a wide range of fundamental
biological problems. In parallel, methods that learn to represent the expression
manifold can improve our mechanistic understanding of complex traits, with potential
methodological and technological applications, including organs-on-chips [178] and
synthetic biology [179], and the integration of heterogeneous transcriptomics datasets.

A question of fundamental biological significance is to what extent the expression
of a subset of genes can be used to recover the full transcriptome with minimal
reconstruction error. Genes that participate in similar biological processes or that have
shared molecular function are likely to have similar expression profiles [19], prompting
the question of gene expression prediction from a minimal subset of genes. Moreover,
gene expression measurements may suffer from unreliable values because some regions
of the genome are extremely challenging to interrogate due to high genomic complexity
or sequence homology [20], further highlighting the need for accurate imputation.
Moreover, most gene expression studies continue to be performed with specimens
derived from peripheral blood or a convenient surrogate (e.g., lymphoblastoid cell lines;
LCLs) due to the difficulty of collecting some tissues. However, gene expression may
be tissue or cell-type specific, potentially limiting the utility of a proxy tissue.

The research presented in this chapter has been conducted in collaboration with Tiago Azevedo,
Eric R. Gamazon, and Pietro Liò
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The missing data problem can adversely affect downstream gene expression analysis.
The simple approach of excluding samples with missing data from the analysis can
lead to a substantial loss in statistical power. Dimensionality reduction approaches
such as principal component analysis (PCA) and singular value decomposition (SVD)
[180] cannot be applied to gene expression data with missing values without a previous
imputation step. Clustering methods, a mainstay of genomics, such as k-means and
hierarchical clustering may become unstable even with a few missing values [181].

To address these challenges, we develop two deep learning approaches to gene
expression imputation: Generative Adversarial Imputation Networks for GTEx (GAIN-
GTEx) and Pseudo-Mask Imputer (PMI). In both cases, we present an architecture
that recovers missing expression data for multiple tissue types under different levels of
missingness. In contrast to existing linear methods for deconfounding gene expression
[182], our methods integrate covariates (global determinants of gene expression; [125])
to account for their non-linear effects. In particular, a characteristic feature of our
architectures is the use of word embeddings [129] to learn rich and distributed rep-
resentations for the tissue types and other covariates. To enlarge the possibility and
scale of a study’s expression data (e.g., by including samples from highly inaccessible
tissues), we train our model on RNA-Seq data from the Genotype-Tissue Expression
(GTEx) project [48, 183], a reference resource (v8) that has generated a comprehensive
collection of human transcriptome data in a diverse set of tissues.

We show that the proposed approaches compare favourably to several standard and
state-of-the-art imputation methods in terms of predictive performance and runtime.
In performance comparison on the protein-coding genes, GAIN-GTEx outperforms all
the other methods in in-place imputation while PMI displays the highest performance
in inductive imputation. Furthermore, we demonstrate that our methods are highly
applicable across diverse tissues and varying levels of missingness. Finally, to analyse
the cross-study relevance of our approach, we perform imputation on gene expression
data from The Cancer Genome Atlas (TCGA; [132]) and show that our approach is
robust when applied to independent RNA-Seq data. Our code is publicly available at:
https://github.com/rvinas/GTEx-imputation

4.1 Methodology
In this section, we introduce two deep learning approaches for gene expression imputa-
tion with broad applicability, allowing us to investigate their strengths and weaknesses
in several realistic scenarios. Throughout the remainder of the chapter, we use script

https://github.com/rvinas/GTEx-imputation
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letters to denote sets (e.g., D), upper-case bold symbols to denote matrices or random
variables (e.g., X), and lower-case bold symbols to denote column vectors (e.g., x or
q̄j). The rest of the symbols (e.g., q̄jk, G, or f) denote scalar values or functions.

4.1.1 Problem formulation
Consider a dataset D = {(x̃,m, r,q)}, where x̃ ∈ Rn represents a vector of gene
expression values with missing components; m ∈ {0, 1}n is a mask indicating which
components of the original vector of expression values x are missing or observed; n
is the number of genes; and q ∈ Nc and r ∈ Rk are vectors of c categorical (e.g.,
tissue type or sex) and k quantitative covariates (e.g., age), respectively. Our goal is
to recover the original gene expression vector x ∈ Rn by modelling the conditional
probability distribution p(X = x|X̃ = x̃,M = m,R = r,Q = q), where the upper-case
symbols denote the corresponding random variables.

4.1.2 Pseudo-mask imputation
We first introduce a novel imputation method named Pseudo-Mask Imputer (PMI).

Formulation Let x̃ = m ⊙ x ∈ Rn be a vector of gene expression values whose
missing components are indicated by a mask vector m ∈ {0, 1}n. Our model is a
function f : Rn × {0, 1}n × Rk × Nc → Rn that imputes the missing expression values
(1 − m) ⊙ x as follows:

x̄ = f(x̃,m, r,q).

Here ⊙ denotes element-wise multiplication. The recovered vector of gene expression
values is then given by m ⊙ x̃ + (1 − m) ⊙ x̄.

Optimisation We optimise the model to maximise the imputation performance on
a dynamic subset of observed, pseudo-missing components. In particular, we first
generate a pseudo-mask m̃ as follows:

m̃ = m ⊙ b b ∼ B(1, p) p ∼ U(α, β),

where b ∈ {0, 1}n is a vector sampled from a Bernoulli distribution B and α ∈ [0, 1] and
β ∈ [α, 1] are hyperparameters that parameterise a uniform distribution U . Using the
pseudo-mask m̃, we split the observed expression values into a set of pseudo-observed
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Algorithm 1: Training algorithm
Input: Input dataset D = {(x,m, r,q)}, batch size B, hyperparameters α and
β

• Initialise parameters of the model f

while not convergence criteria reached do

• Sample mini-batch:
{(x(i),m(i), r(i),q(i))}B

i=1 ∼ D

• Sample pseudo-mask for each example of the mini-batch:
p(i) ∼ U(α, β)
b(i) ∼ B(1, p(i))
m̃(i) = m(i) ⊙ b(i)

• Split components into pseudo-observed and pseudo-missing:
x̃(i) = x(i) ⊙ m̃(i)

ỹ(i) = x(i) ⊙ m(i) ⊙ (1 − m̃(i))

• Impute pseudo-missing components:
x̄(i) = f(x̃(i), m̃(i), r(i),q(i))

• Optimise the model by descending its stochastic gradient:
∇ 1

B

∑B
i=1 L(x̄(i), ỹ(i),m(i), m̃(i))

end

components x̃ and a set of pseudo-missing components ỹ:

x̃ = x ⊙ m̃ ỹ = x ⊙ m ⊙ (1 − m̃),

The imputed components are then given by x̄ = f(x̃, m̃, r,q). We optimise our
model to minimise the mean squared error between the ground truth and the imputed
pseudo-missing components:

L(x̄, ỹ,m, m̃) = 1
Z

(
m ⊙ (1 − m̃)

)⊤
(x̄ − ỹ)2,

where Z =
(
m ⊙ (1 − m̃)

)⊤(
m ⊙ (1 − m̃)

)
is a normalisation term. We summarise

our training algorithm in Algorithm 2.
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Importantly, the pseudo-mask mechanism generates different sets of pseudo-observed
components for each input example, effectively increasing the number of training
samples. Specifically, the hyperparameters α and β control the fraction of pseudo-
observed and pseudo-missing components through the probability p ∼ U(α, β). On
one hand, a low probability p yields sparse pseudo-observed vectors x̂, resulting in
fast convergence but high bias. On the other hand, a high probability p yields denser
pseudo-observed vectors x̂, resulting in low bias but slower convergence. At inference
time, p is set to 1 and the pseudo-mask m̃ is equal to the input mask m.

Architecture We model the imputer f as a neural network. We first describe
how we use word embeddings, a distinctive feature that allows learning rich, dense
representations for the different tissue types and, more generally, for all the covariates
q ∈ Nc.

Formally, let qj be a categorical covariate (e.g., tissue type) with vocabulary size vj ,
that is, qj ∈ {1, 2, ..., vj}, where each value in the vocabulary {1, 2, ..., vj} represents a
different category (e.g., whole blood or kidney). Let q̄j ∈ {0, 1}vj be a one-hot vector
such that q̄jk = 1 if qj = k and q̄jk = 0 otherwise. Let dj be the dimensionality of the
embeddings for covariate j. We obtain a vector of embeddings ej ∈ Rdj as follows:

ej = q̄⊤
j Wj, (4.1)

where each Wj ∈ Rvj×dj is a matrix of learnable weights. Essentially, this operation
describes a lookup search in a dictionary with vj entries, where each entry contains a
learnable dj-dimensional vector of embeddings that characterise each of the possible
values that qj can take. To obtain a global collection of embeddings e, we concatenate
all the vectors ej for each categorical covariate j:

e =
∥∥∥∥c

j=1
ej, (4.2)

where c is the number of categorical covariates and ∥ represents the concatenation
operator. We then use the learnable embeddings e in downstream tasks.

In terms of the architecture, we model f as follows:

f(x̃,m, r,q) = MLP(x̃∥m∥r∥e),

where MLP denotes a multilayer perceptron and x̃ = x ⊙ m ∈ Rn is the masked gene
expression. Figure 4.1 shows the architecture of the model.
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Pseudo-Mask Imputer

x1 x2 . . . xn 0 1 . . . 1
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0 1 . . . 0
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x⊙ m̃
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0 x2 . . . 0 r1 . . . rk q1 . . . qc
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⊤
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Fig. 4.1 Architecture of the Pseudo-Mask Imputer (PMI). The imputer receives gene
expression values x̃ with components missing according to a mask m, and categorical
(e.g., tissue type; q) and numerical (e.g., age; r) covariates, and outputs the imputed
values x̄. The observed components of the imputer’s output are then replaced by the
observed values in x̃, yielding the imputed sample x̂. The pseudo-mask mechanism
masks out some of the observed components, which are then recovered at the output.
Our architecture is flexible and supports inputs with different missing patterns.
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4.1.3 Generative Adversarial Imputation Networks
The second method, which we call GAIN-GTEx, is based on Generative Adversarial
Imputation Nets (GAIN; [184]). Generative Adversarial Networks have previously
been used to synthesise transcriptomics in-silico [185, 14], but to our knowledge their
applicability to gene expression imputation had not been studied prior to this work.
Similar to generative adversarial networks (GANs; [186]), GAIN estimates a generative
model via an adversarial process driven by the competition between two players, the
generator and the discriminator.

Generator The generator aims at recovering missing data from partial gene expres-
sion observations, producing samples from the conditional p(X|X̃,M,R,Q). Formally,
we define the generator as a function G : Rn × Rn × {0, 1}n × Rk × Nc → Rn that
imputes expression values as follows:

x̄ = G(x ⊙ m, z ⊙ (1 − m),m, r,q),

where z ∈ Rn is a vector sampled from a fixed noise distribution. Similar to GAIN, we
mask the n-dimensional noise vector as z ⊙ (1 − m), encouraging a bijective association
between noise components and genes. Before passing the output x̄ to the discriminator,
we replace the prediction for the non-missing components by the original, observed
expression values:

x̂ = m ⊙ x̃ + (1 − m) ⊙ x̄

Discriminator The discriminator (also known as critic) takes the imputed samples
x̂ and attempts to distinguish whether the expression value of each gene has been
observed or produced by the generator. This is in contrast to the original GAN
discriminator, which receives information from two input streams (generator and data
distribution) and attempts to distinguish the true input source.

Formally, the discriminator is a function D : Rn ×Rn ×Rk ×Nc → Rn that outputs
the probabilities ŷ ∈ Rn:

ŷ = D(x̂,h, r,q),

where the i-th component ŷi is the probability of gene i being observed (as opposed
to being imputed by the generator) for each i ∈ {1, . . . , n} and the vector h ∈ Rn

corresponds to the hint mechanism described in [184], which provides theoretical guar-
antees on the uniqueness of the global minimum for the estimation of P (X|X̃,M,R,Q).
Concretely, the role of the hint vector h is to leak some information about the mask m
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to the discriminator. Similar to GAIN, we define the hint h as follows:

h = b ⊙ m + 1
2(1 − b) b ∼ B(1, p) p ∼ U(α, β), (4.3)

where b ∈ {0, 1}n is a binary vector that controls the amount of information from the
mask m revealed to the discriminator. In contrast to GAIN, which discloses all but one
components of the mask, we sample b from a Bernoulli distribution parametrised by a
random probability p ∼ U(α, β), where α ∈ [0, 1] and β ∈ [α, 1] are hyperparameters.
This accounts for a high number of genes n and allows us to trade off the number of
mask components that are revealed to the discriminator.

Optimisation Similarly to GAN and GAIN, we optimise the generator and discrim-
inator adversarially, interleaving gradient updates for the discriminator and generator.

The discriminator aims at determining whether genes have been observed or imputed
based on the imputed vector x̂, the covariates q and r, and the hint vector h. Since the
hint vector h readily provides partial information about the ground truth m (Equation
4.3), we penalise D only for genes i ∈ {1, 2, ..., n} such that hi = 0.5, that is, genes
whose corresponding mask value is unavailable to the discriminator. We achieve this
via the following loss function LD : {0, 1}n × Rn × {0, 1}n → R:

LD(m, ŷ,b) = −1
Z

(1 − b)⊤
(
m ⊙ log ŷ + (1 − m) ⊙ (1 − log ŷ)

)
,

where Z = 1 + (1 − b)⊤(1 − b) is a normalisation term. The only difference with
respect to the binary cross entropy loss function is the dot product involving (1 − b),
which we employ to ignore genes whose mask has been leaked to the discriminator
through h.

The generator aims at implicitly estimating p(X|X̃,M,R,Q). Therefore, its role
is not only to impute the expression corresponding to missing genes, but also to
reconstruct the expression of the observed inputs. Similar to GAIN, in order to account
for this and encourage a realistic imputation function, we use the following loss function
LG : {0, 1}n × Rn × Rn × Rn × {0, 1}n → R for the generator:

LG(m,x, x̄, ŷ,b) = −1
Z1

(
(1 − b) ⊙ (1 − m)

)⊤
log ŷ + λ

Z2
m⊤(x − x̄)2, (4.4)

where Z1 = 1 + (1 − b)⊤(1 − b) and Z2 = m⊤m are normalisation terms, and λ > 0
is a hyperparameter. Intuitively, the first term in Equation 4.4 corresponds to the
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adversarial loss, whereas the mean squared error (MSE) term accounts for the loss that
the generator incurs in the reconstruction of the observed gene expression values.

Architecture We model the discriminator D and the generator G using neural
networks. Similar to PMI, D and G leverage independent instances eG and eD of
the categorical embeddings described in Equation 4.2. Specifically, we model the two
players as follows:

G(x̃, z̃,m, r,q) = MLP(x̃∥z̃∥m∥r∥eG) D(x̂,h, r,q) = MLP(x̂∥h∥r∥eD),

where MLP denotes a multilayer perceptron and x̃ = x⊙m ∈ Rn and z̃ = z⊙(1−m) ∈
Rn are the masked gene expression and noise input vectors, respectively. Figure 4.2
shows the architecture of both players.

Implementation For both PMI and GAIN-GTEx, we included the donor’s age as
numerical covariate in r and the tissue type, sex and cohort as categorical covariates in
q. We normalised the numerical variables via the standard score. For each categorical
variable qj ∈ {1, 2, ..., vj}, we used the rule of thumb dj = ⌊√

vj⌋ + 1 to set all the
dimensions of the categorical embeddings. We used ReLU activations for each hidden
layer in the MLP architectures of both PMI and GAIN (Equations 4.1.2 and 4.1.3).

We trained both models using the Adam optimiser [187]. We used batch normalisa-
tion [188] in the hidden layers of the MLPs, which yielded a significant speed-up to
the training convergence according to our experiments. We used early stopping with
a patience of 30. We present the rest of hyperparameters for each model, case study,
and imputation scenario in Supplementary Information C.

4.1.4 Materials
Dataset The GTEx dataset is a public genomic resource of genetic effects on the
transcriptome across a broad collection of human tissues, enabling linking of these
regulatory mechanisms to trait and disease associations [12]. We downloaded the data
from the GTEx portal and discarded underrepresented tissues (n=5), namely bladder,
cervix (ectocervix, endocervix), fallopian tube, and kidney (medulla), yielding a dataset
of 15,201 RNA-Seq samples collected from 49 tissues of 838 unique donors. We selected
genes based on expression thresholds of ≥ 0.1 transcripts per kilobase million (TPM) in
≥ 20% of samples and ≥ 6 reads (unnormalised) in ≥ 20% of samples. We also selected
the intersection of all the protein-coding genes among the 49 GTEx tissues tissues,
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Generative Adversarial Imputation Networks

x1 x2 . . . xn 0 1 . . . 0 z1 z2 . . . zn

Mask
x⊙m

Mask
z⊙ (1 −m)

0 x2 . . . 0 z1 0 . . . zn q1 . . . qc

r1 . . . rk
Concat∥ e1 . . . ec

Embed
q̄
⊤
j Wj

. . .

1 1 . . . 0 . . .

Hint
b⊙m + 1

2
(1 − b) . . .

0 1 . . . 0.5
Out

x̃ + (1 −m)⊙ x̄
x̂1 x̂2

. . . x̂n

Concat∥ e1 . . . ec
Embed
q̄
⊤
j Wj

. . .

. . .

ŷ1 ŷ2 . . . ŷn . . .

x

m z

x̃ z̃

q

r

eG

b

h

x̂

eD

ŷ
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Fig. 4.2 Architecture of Generative Adversarial Imputation Networks for GTEx (GAIN-
GTEx). The generator takes gene expression values x̃ with missing components
according to a mask m, random noise z, and categorical (e.g., tissue type; q) and
numerical (e.g., age; r) covariates, and outputs the imputed values x̄. The observed
components of the generator’s output are then replaced by the actual observed expres-
sion values x̃, yielding the imputed sample x̂. We simultaneously train a discriminator
that receives x̂, the sample covariates q and r, and the hint vector h — which provides
partial information about the ground truth m — and produces the output ŷ, whose
i-th component ŷi represents the probability of gene i being observed as opposed to
being imputed by the generator.
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yielding 12,557 unique genes. In addition to the expression data, we leveraged metadata
about the sample donors, including sex, age, and cohort (post-mortem, surgical or
organ donor).

Standardisation A large proportion of gene expression data in public repositories
contains normalised values. Imputing the relative expression levels (in normalised
data) vs absolute levels (in non-normalised data) is biologically meaningful and allows
straightforward interpretation, with important applications, e.g., differential expres-
sion analysis (between disease individuals and controls) that is robust to expression
outliers. To this end, following the standard GTEx processing pipeline for eQTL dis-
covery (https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl),
we normalised the read counts across samples using the trimmed mean of M values
(TMM) method [59] and applied an inverse normal transformation to the expression
values for each gene. We further normalised the expression data via the standard score,
so that the standardised expression values have mean 0 and standard deviation 1 for
each gene across all samples.

Training, validation, and test splits To prevent any leakage of information
between the training and test sets, we enforced all samples from the same donor
to be within the same set. Concretely, we first flipped the GTEx donor identifiers
(e.g., 111CU-1826 is flipped to 6281-UC111), we then sorted the reversed identifiers in
alphabetical order, and we finally selected a suitable split point, forcing the two sets
to be disjoint. After splitting the data, the training set, which we used to train the
model, consisted of ∼ 60% of the total samples. The validation set, which we used to
optimise the method, consisted of ∼ 20% of the total samples. The test set, on which
we evaluated the final performance, contained the remaining ∼ 20% of the data.

4.2 Results
We benchmarked all the baseline methods, including PMI and GAIN-GTEx, on two case
studies and two imputation scenarios. In this section, we first present the benchmarking
details. We then compare the performance of several imputation baselines on the two
case studies and imputation scenarios. We finally study imputation generalisation of
the proposed methods across missing rates and independent datasets.

https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl
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4.2.1 Benchmarking details
Case studies To study the scalability of different imputation methods across the
number of input variables, we considered the following case studies:

1. Protein-coding genes. As a first case study, we selected the intersection of all the
protein-coding genes among the 49 GTEx tissues, resulting in a set of 12,557
unique genes. This case study is challenging for imputation methods that are
not scalable across the number of input variables (i.e. genes).

2. Genes in the Alzheimer’s disease pathway. We selected a subset of 273 genes
from the Alzheimer’s disease pathway extracted from the Kyoto Encyclopedia
of Genes and Genomes (KEGG; [81]). This case study allows us to benchmark
imputation methods that do not scale well with the number of variables.

Imputation scenarios We considered two realistic imputation scenarios:

1. In-place imputation. Our goal is to impute the missing values of a dataset
D = {(m ⊙ x,m, r,q)} without access to the ground truth missing values
(1 − m) ⊙ x. Importantly, for this scenario we assumed that the data is missing
completely at random (MCAR; [189]), that is, the missingness does not depend
on any of the observed nor unobserved variables.

2. Inductive imputation. Given a training dataset Dtrain = {(x,1, r,q)} where
all expression values x ∈ Rn are observed, our goal is to impute the missing
expression values of an independent test dataset Dtest = {(x̃,m, r,q)}. Methods
trained in inductive mode (e.g., on comprehensive datasets such as GTEx) can
be used to perform imputation on small, independent datasets where the small
number of samples is insufficient to train a model in in-place mode.

Baseline methods We compared PMI and GAIN-GTEx to several baseline methods:

• Standard imputation methods. We considered two simple gene expression imputa-
tion approaches: blood surrogate and median imputation. The use of blood, an
easily accessible tissue, as a surrogate for difficult-to-acquire tissues is done in
studies of biomarker discovery, diagnostics, and eQTLs, and in the development
of model systems [190, 173]. For blood surrogate imputation, we imputed missing
gene expression values in any given tissue with the corresponding values in whole
blood for the same donor. For median imputation, we imputed missing values
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with the median of the observed tissue-specific gene expression computed across
donors.

• k-Nearest Neighbours. The k-Nearest Neighbours (k-NN) algorithm is an efficient
method that is commonly used for imputation [191]. Here, we leveraged k-NN as
a baseline for different values of k. This model estimates the missing values of a
sample based on the values of the missing components in the k closest samples.

• State-of-the-art methods. We considered two state-of-the-art imputation methods:
Multivariate Imputation by Chained Equations (MICE; [192]) and MissForest
[193]. MICE leverages chained equations to create multiple imputations of missing
data. The hyperparameters of MICE include the minimum/maximum possible
imputed value for each component and the maximum number of imputation
rounds. MissForest [193] is a non-parametric imputation method based on random
forests trained on observed values to impute the missing values. Among others,
the hyperparameters of MissForest include the number of trees in the forest and
the number of features to consider when looking for the optimal split.

4.2.2 Imputation results

Table 4.1 Gene expression imputation performance with a missing rate of 50% across 3
runs (complete set of protein-coding genes). We did not report the R2 scores for MICE
and MissForest, because the runtime is longer than 7 days. GAIN-MSE-GTEx is a
simplification of GAIN-GTEx optimised exclusively via the mean squared error term
of the generator. Overall, GAIN-GTEx outperformed all the other methods in in-place
imputation while PMI displayed the highest performance in inductive imputation.

Scenario 1: In-place imputation
Method R2 Runtime (hours)
MICE − −
MissForest − −
Blood surrogate −0.693 ± 0.000 0.000 ± 0.000
Median imputation 0.000 ± 0.000 0.001 ± 0.000
1-NN imputation 0.179 ± 0.000 1.616 ± 0.004
5-NN imputation 0.461 ± 0.000 2.224 ± 0.107
10-NN imputation 0.468 ± 0.000 2.140 ± 0.035
GAIN-MSE-GTEx 0.637 ± 0.005 0.199 ± 0.074
GAIN-GTEx 0.638 ± 0.007 0.625 ± 0.294
PMI 0.479 ± 0.003 0.241 ± 0.024

Scenario 2: Inductive imputation
R2 Runtime (hours)
− −
− −

−0.952 ± 0.000 0.000 ± 0.000
−0.009 ± 0.000 0.001 ± 0.000
0.203 ± 0.000 0.985 ± 0.003
0.482 ± 0.000 1.441 ± 0.096
0.495 ± 0.000 1.711 ± 0.160
0.638 ± 0.003 0.456 ± 0.053
0.636 ± 0.001 1.199 ± 0.157

0.707 ± 0.001 0.244 ± 0.019
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Table 4.2 Gene expression imputation performance with a missing rate of 50% across 3
runs (for a subset of 273 genes from the Alzheimer’s disease pathway).

Scenario 1: In-place imputation
Method R2 Runtime (hours)
MICE 0.574 ± 0.001 2.062 ± 0.335
MissForest (1 tree) −0.147 ± 0.002 0.145 ± 0.002
MissForest (10 trees) 0.458 ± 0.001 0.839 ± 0.176
MissForest (20 trees) 0.478 ± 0.000 1.836 ± 0.068
MissForest (100 trees) 0.493 ± 0.000 6.438 ± 0.498
Blood surrogate −0.698 ± 0.002 0.000 ± 0.000
Median imputation 0.001 ± 0.000 0.000 ± 0.000
1-NN imputation 0.186 ± 0.001 0.037 ± 0.001
GAIN-MSE-GTEx 0.519 ± 0.001 0.038 ± 0.002
GAIN-GTEx 0.533 ± 0.001 0.139 ± 0.041
PMI 0.536 ± 0.001 0.048 ± 0.002

Scenario 2: Inductive imputation
R2 Runtime (hours)

0.569 ± 0.001 2.252 ± 0.096
−0.042 ± 0.003 0.575 ± 0.167
0.514 ± 0.001 3.220 ± 0.371
0.540 ± 0.000 4.842 ± 0.495
0.561 ± 0.001 16.186 ± 1.709

−0.971 ± 0.002 0.000 ± 0.000
−0.009 ± 0.000 0.000 ± 0.000
0.301 ± 0.000 0.021 ± 0.001
0.533 ± 0.001 0.045 ± 0.004
0.527 ± 0.003 0.569 ± 0.017

0.630 ± 0.011 0.037 ± 0.002

Method comparison We randomly masked out 50% of the values and studied the
imputation performance of the baseline methods using two sets of genes: the complete
set of protein-coding genes (Table 4.1) and genes from the Alzheimer’s disease pathway
(Table 4.2). We reported the per-gene coefficient of determination (R2) between the
predicted and ground-truth gene expression. This metric ranges from −∞ to 1 and
corresponds to the ratio of explained variance to the total variance. Negative scores
indicate that the model predictions are worse than those of a baseline model that
predicts the mean of the data. We averaged the results across 3 runs, each with different
random masks.

Overall, GAIN-GTEx and PMI achieved comparable or superior imputation results
compared to state-of-the-art imputation methods, i.e. MICE and MissForest, with
substantially reduced runtime. In the case study of protein-coding genes, we halted the
execution of MICE and MissForest after 7 days running on our server (CPU: Intel(R)
Xeon(R) Processor E5-2630 v4. RAM: 125GB). The exceedingly long runtime of these
methods highlights their poor scalability with the number of variables (i.e. genes),
rendering them unfeasible in high-dimensional data regimes (e.g. gene expression
datasets). In terms of imputation performance, GAIN-GTEx outperformed all the
other methods (R2 = 0.638 ± 0.007) under the in-place imputation mode (Table 4.1;
Scenario 1), while PMI showed the best overall performance (R2 = 0.707 ± 0.001)
among all baseline methods (Table 4.1; Scenario 2) under the inductive imputation
mode. In the case study involving genes from the Alzheimer’s disease pathway, MICE
attained the best imputation results (R2 = 0.574 ± 0.001) in the in-place imputation
mode (Table 4.2; Scenario 1), followed by PMI (R2 = 0.536 ± 0.001) and GAIN-GTEx
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Fig. 4.3 R2 imputation scores per GTEx tissue with a missing rate of 50% (PMI;
inductive mode). Each box shows the distribution of the per-gene R2 scores in the
extended test set. The colour of each box represents the number of training samples of
the corresponding tissue.

(R2 = 0.533 ± 0.001). In inductive mode, PMI substantially outperformed all the
other baselines (R2 = 0.630 ± 0.011) by a wide margin. In all case studies, we noted
that GAIN-MSE-GTEx, a simplification of GAIN-GTEx optimised exclusively via
the mean squared error term of the generator, performed reasonably well relative to
GAIN-GTEx, suggesting that the mean squared error term of the loss function was
driving the learning (Supplementary Information C.1).

Tissue-specific results We analysed the imputation performance across all 49
GTEx tissues (Figure 4.3). To obtain these results, we generated random masks
with a missing rate of 50% for the test set, performed imputation using PMI, and
plotted the distribution of 12,557 gene R2 scores for each tissue. We observed that
EBV-transformed lymphocytes, an accessible and renewable resource for functional
genomics, were a notable outlier in imputation performance, consistent with studies
about the transcriptional effect of EBV infection on the suitability of the cell lines
as a model system for primary tissues [194]. Mean R2 scores in the individual tissues
ranged from ∼ 0.5 (Epstein Barr virus-transformed lymphocytes; EBV) to ∼ 0.78
(small intestine). Aside from the EBV-transformed lymphocytes, we noted that kidney
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Fig. 4.4 UMAP visualisation of the tissue embeddings from the generator. Colours
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corner.

cortex, the tissue with the smallest sample size, had the highest variability in R2 with
an interquartile range of Q3 −Q1 = 0.30.

We then examined the tissue representations learnt by the models (Figure 4.4).
Specifically, we plotted a UMAP representation [195] of the learnt tissue embeddings
Wj ∈ R8 from the generator of GAIN-GTEx (Equation 4.1), where j indexes the
tissue dimension. Strikingly, the tissue representations showed strong clustering of
biologically-related tissues, including the central nervous system (i.e., the 13 brain
regions), the gastrointestinal system (e.g., the esophageal and colonic tissues), and
the female reproductive tissues (i.e., uterus, vagina, and ovary). The clustering
properties were robust across UMAP runs and could be similarly appreciated using
other dimensionality reduction algorithms such as tSNE [196].

Cross-study results across missing rates To evaluate the cross-study relevance
and generalisability of PMI and GAIN-GTEx, we leveraged the model trained on
GTEx to perform imputation on The Cancer Genome Atlas (TCGA) gene expression
data in acute myeloid leukemia (TCGA LAML; [197]), breast cancer (TCGA BRCA;
[198]), and lung adenocarcinoma (TCGA LUAD; [199]). For each TCGA tissue and
its non-diseased test counterpart on GTEx, we assessed imputation quality (Table
4.3) as well as the performance across varying missing rates (Figure 4.5). Prediction
performance improved monotonically as we decreased the missing rate. Altogether,
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PMI and GTEx-GAIN were robust to gene expression from multiple diseases in different
tissues, with inferior yet stable performance on cancer expression data from TCGA,
lending themselves to being used as tools to extend independent transcriptomic studies.

Table 4.3 Cross-study results for GAIN-GTEx and PMI trained on GTEx (inductive
mode). We report the R2 scores on data from 3 TCGA cancer types and their healthy
counterpart on GTEx for a missing rate of 50%.

GAIN-GTEx
Tissue R2

TCGA LAML 0.386 ± 0.057
TCGA BRCA 0.408 ± 0.023
TCGA LUAD 0.439 ± 0.034
GTEx Whole blood 0.678 ± 0.031
GTEx Breast 0.724 ± 0.036
GTEx Lung 0.713 ± 0.033

PMI
Tissue R2

TCGA LAML 0.394 ± 0.065
TCGA BRCA 0.427 ± 0.023
TCGA LUAD 0.451 ± 0.050
GTEx Whole blood 0.709 ± 0.034
GTEx Breast 0.751 ± 0.039
GTEx Lung 0.744 ± 0.035

Imputation results on genes from the Alzheimer’s disease pathway We
studied the per-gene imputation quality of 273 genes in the Alzheimer’s disease pathway
(Figure 4.6). Alzheimer’s disease is characterised by the presence of amyloid plaques in
the brain featuring amyloid-beta peptides, with various pathophysiological consequences
on cellular processes. The pathway consists of genes that are involved in a number
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of processes, including neuronal apoptosis, autophagy deficits, mitochondrial defect,
and neurodegeneration. We observed that several genes in the pathway (e.g., PSMB6,
COX6C, PSMD7, PSMA2, PSMD14, SDHB, TUBB1, TUBA8, FZD9, LPL, KIF5C,
TUBB4A, TUBB2B, APOE) exhibited different distributions between brain and non-
brain tissue types and the best highly imputed genes were enriched in known gene sets
(Supplementary Information C.6).
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Fig. 4.6 Per-gene imputation R2 scores on genes from the Alzheimer’s disease pathway.
Each point represents the average R2 score in a tissue type. We note that some
genes in the pathway (e.g., PSMB6, COX6C, PSMD7, PSMA2, PSMD14, SDHB,
TUBB1, TUBA8, FZD9, LPL, KIF5C, TUBB4A, TUBB2B, APOE) exhibited different
distributions between brain and non-brain tissue types.

4.3 Discussion
We developed two imputation approaches to gene expression, facilitating the recon-
struction of a high-dimensional molecular trait that is central to disease biology and
drug target discovery. The proposed methods, which we called Pseudo-Mask Imputer
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(PMI) and GAIN-GTEx, were able to approximate the gene expression manifold from
incomplete gene expression data and relevant covariates (potential global determinants
of expression) and impute missing expression values. A characteristic feature of our
architectures is the use of word embeddings, which enabled to learn distributed repre-
sentations of the tissue types (Figure 4.4). Importantly, this allowed to condition the
imputation algorithms on factors that drive gene expression, endowing the architectures
with the ability to represent them in a biologically meaningful way.

We leveraged the most comprehensive human transcriptome resource available
(GTEx), allowing us to test the performance of our method in a broad collection of
tissues (Figure 4.3). The biospecimen repository includes commonly used surrogate
tissues (whole blood and EBV transformed lymphocytes), central nervous system tissues
from 13 brain regions, and a wide diversity of other primary tissues from non-diseased
individuals. In particular, EBV-transformed lymphocytes, an accessible and renewable
resource for functional genomics, were a notable outlier in imputation performance.
This is perhaps not surprising, consistent with studies about the transcriptional effect
of EBV infection on the suitability of the cell lines as a model system for primary
tissues [194]. Interestingly, biologically similar tissues exhibited similar R2 scores
(Supplementary Information C.6).

The proposed approaches compared favourably to several existing imputation
methods in terms of imputation performance and runtime (Table 4.1). We observed
that standard approaches such as leveraging the expression of missing genes from
a surrogate blood tissue yielded negative R2 values and therefore did not perform
well. Median imputation, although easy to implement, had limited predictive power.
Imputation methods based on k-Nearest Neighbours were computationally feasible and
yielded solid but poorer R2 scores. In terms of state-of-the-art methods, MICE and
MissForest were computationally prohibitive given the high dimensionality of the data
and we halted their execution after running our experiments for 7 days. In particular,
we performed an empirical study of the scalability of both methods (Supplementary
Information C.2 and C.3) and observed that the runtime increases very rapidly with
the number of genes. To alleviate this issue, we compared PMI and GAIN-GTEx
with these methods on a subset of 273 genes from the Alzheimer’s disease pathway
(Table 4.2). Under the in-place imputation scenario (Alzheimer’s disease pathway),
MICE performed better than PMI, GAIN-GTEx, and MissForest (100 trees). Under
the inductive imputation setting, PMI outperformed all the other methods by a large
margin.
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In terms of the comparison between PMI and GAIN-GTEx, our experiments suggest
that the latter is generally harder to optimise (Supplementary Information C.1). In
particular, GAIN resembles a deep autoencoder in that the supervised loss penalises
the reconstruction error of the observed components. While this is a natural choice,
autoencoder-like architectures are considerably sensitive to the user-definable bottleneck
dimension. On one hand, a small number of units results in under-fitting. On the other
hand, an excessively big bottleneck dimension allows the neural network to trivially
copy-paste the observed components. In contrast, the loss function of PMI does not
penalise the reconstruction error for the pseudo-observed components (e.g., the loss
function of PMI penalises the prediction error of the pseudo-missing components,
which are not provided as input at training time). Together with the fact that the
pseudo-mask mechanism dynamically enlarges the training size, this subtlety allows
training considerably bigger networks without over-fitting. Finally, we observed that a
simplification of GAIN-GTEx, GAIN-MSE-GTEx, performed similarly well, suggesting
that the mean squared error term of the generator’s loss function is driving the learning
process. In Supplementary Information C, we discuss our empirical findings about
the adversarial loss of GAIN. For the purpose of reproducibility, as the gains of the
adversarial loss appear to be small or negligible given our observations, we recommend
training GAIN-GTEx without the adversarial term.

To evaluate the cross-study relevance of our method, we applied the trained models
derived from GTEx (inductive mode) to perform imputation on The Cancer Genome
Atlas gene expression data in acute myeloid leukemia, lung adenocarcinoma, and breast
cancer. In addition to technical artifacts (e.g., batch effects), generalising to this data
is highly challenging because the expression is largely driven by features of the disease
such as chromosomal abnormalities, genomic instabilities, large-scale mutations, and
epigenetic changes [200, 201]. Our results show that, despite these challenges, the
methods were robust to gene expression from multiple diseases in different tissues (Table
4.3), lending themselves to being used as tools to extend independent transcriptomic
studies. Next, we evaluated the imputation performance of PMI and GAIN-GTEx for a
range of values for the missing rate (Figure 4.5 and Supplementary Information C). We
noted that the performance was stable and that the greater the proportion of missing
values, the lower the prediction performance. Finally, we analysed the imputation
performance across genes from the Alzheimer’s disease pathway (Figure 4.6) and across
all genes (Supplementary Information C.6). The best-imputed genes were non-random
and, indeed, clustered in some known pathways.
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Broader Impact The study of the transcriptome is fundamental to our understand-
ing of cellular and pathophysiological processes. High-dimensional gene expression
data contain information relevant to a wide range of applications, including disease
diagnosis [202], drug development [203], and evolutionary inference [177]. Thus,
accurate and robust methods for imputation of gene expression have the enormous
potential to enhance our molecular understanding of complex diseases, inform the
search for novel drugs, and provide key insights into evolutionary processes. Here, we
developed a methodology that attains state-of-the art performance in several scenarios
in terms of imputation quality and execution time. Our analysis showed that the
use of blood as a surrogate for difficult-to-acquire tissues, as commonly practised in
biomedical research, may lead to substantially degraded performance, with important
implications for biomarker discovery and therapeutic development. Our method
generalises to gene expression in a disease class which has shown considerable health
outcome disparities across population groups in terms of morbidity and mortality.
Future algorithmic developments therefore hold promise for more effective detection,
diagnosis, and treatment [204] and for improved implementation in clinical medicine
[205]. Increased availability of transcriptomes in diverse human populations to enlarge
our training data (a well-known and critical ethical challenge) should lead to further
gains (i.e., decreased biases in results and reduced health disparities) [206]. This
work has the potential to catalyse research into the application of deep learning to
molecular reconstruction of cellular states and downstream gene mapping of complex
traits [207, 171].

Conclusion In this work, we developed two methods for gene expression imputation,
which we named PMI and GAIN-GTEx. To increase the applicability of the proposed
methods, we trained them on RNA-Seq data from the Genotype-Tissue Expression
project, a reference resource that has generated a comprehensive collection of tran-
scriptomes in a diverse set of tissues. A characteristic feature of our architectures is
the use of word embeddings to learn distributed representations for the tissue types.
Our approaches compared favourably to several standard and state-of-the-art impu-
tation methods in terms of predictive performance and runtime, and generalised to
transcriptomics data from 3 cancer types of the The Cancer Genome Atlas. PMI and
GAIN-GTEx show optimal performance among the methods in inductive and in-place
imputation, respectively, on the protein-coding genes. This work can facilitate the
straightforward integration and cost-effective repurposing of large-scale RNA biorepos-
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itories into genomic studies of disease, with high applicability across diverse tissue
types.



Chapter 5

Multi-tissue imputation of gene
expression

Sequencing technologies have enabled profiling the transcriptome at tissue and
single-cell resolutions, with great potential to unveil intra- and multi-tissue molecular
phenomena such as cell signalling and disease mechanisms. Due to the invasiveness of
the sampling process, gene expression is usually measured independently in easy-to-
acquire tissues, leading to an incomplete picture of an individual’s physiological state
and necessitating effective multi-tissue integration methodologies.

A question of fundamental biological significance is to what extent the transcrip-
tomes of difficult-to-acquire tissues and cell types can be inferred from those of accessible
ones [21, 12]. Due to their ease of collection, accessible tissues such as whole blood
could have great utility for diagnosis and monitoring of pathophysiological conditions
through metabolites, signalling molecules, and other biomarkers, including possible
transcriptome-level associations [208]. Moreover, all human somatic cells share the
same genetic information, which may regulate expression in a context-dependent and
temporal manner, partially explaining tissue- and cell-type-specific gene expression
variation. Computational models that exploit these patterns could therefore be used
to impute the transcriptomes of uncollected cell types and tissues, with potential to
elucidate the biological mechanisms regulating a diverse range of developmental and
physiological processes.

Multi-tissue imputation is a central problem in transcriptomics with broad implica-
tions for fundamental biological research and translational science. The methodological

The research presented in this chapter has been conducted in collaboration with Chaitanya K.
Joshi, Dobrik Georgiev, Phillip Lin, Bianca Dumitrascu, Eric R. Gamazon, and Pietro Liò
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Fig. 5.1 Overview of the multi-tissue gene expression imputation problem. HYFA
processes gene expression from a variable number of collected tissues (e.g. accessible
tissues) and infers the transcriptomes of uncollected tissues.

problem can powerfully influence downstream applications, including performing differ-
ential expression analysis, identifying regulatory mechanisms, determining co-expression
networks, and enabling drug target discovery. In practice, in experimental follow-up
or clinical application, the task includes the special case of determining a good proxy
or easily-assayed system for causal tissues and cell types. Multi-tissue integration
methods can also be applied to harmonise large collections of RNA-seq datasets from
diverse institutions, consortia, and studies [209] — each potentially affected by technical
artefacts — and to characterise gene expression co-regulation across tissues. Recon-
struction of unmeasured gene expression across a broad collection of tissues and cell
types from available reference transcriptome panels may expand our understanding of
the molecular origins of complex traits and of their context specificity.

Several methods have traditionally been employed to impute uncollected gene
expression. Leveraging a surrogate tissue has been widely used in studies of biomarker
discovery, diagnostics, and expression Quantitative Trait Loci (eQTLs), and in the
development of model systems [210–212, 173, 190]. Nonetheless, gene expression is
known to be tissue and cell-type specific, limiting the utility of a proxy tissue. Other
related studies impute tissue-specific gene expression from genetic information [207].
Wang et al. [213] propose a mixed-effects model to infer uncollected data in multiple
tissues from eQTLs. Sul et al. [214] introduce a model termed Meta-Tissue that
aggregates information from multiple tissues to increase statistical power of eQTL
detection. However, these approaches do not model the complex non-linear relationships
between measured and unmeasured gene expression traits among tissues and cell types,
and individual-level genetic information (such as at eQTLs) is subject to privacy
concerns and often unavailable.
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Computationally, multi-tissue transcriptome imputation is challenging because the
data dimensionality scales rapidly with the number of genes and tissues, often leading
to overparameterised models. TEEBoT [21] addresses this issue by employing principal
component analysis (PCA) — a non-parametric dimensionality reduction method —
to project the data into a low-dimensional manifold, followed by linear regression to
predict target gene expression from the principal components. However, this technique
does not account for non-linear effects and can only handle a single reference tissue, i.e.
whole blood. Approaches such as standard multilayer perceptrons can exploit non-linear
patterns, but are massively overparameterised and computationally infeasible.

To address these challenges, we present HYFA (Hypergraph Factorisation), a
parameter-efficient graph representation learning approach for joint multi-tissue and
cell-type gene expression imputation. HYFA represents multi-tissue gene expression in
a hypergraph of individuals, metagenes, and tissues, and learns factorised representa-
tions via a specialised message passing neural network operating on the hypergraph.
In contrast to existing methods, HYFA supports a variable number of reference tis-
sues, increasing the statistical power over single-tissue approaches, and incorporates
inductive biases to exploit the shared regulatory architecture of tissues and genes. In
performance comparison, HYFA attains improved performance over TEEBoT and
standard imputation methods across a broad range of tissues from the Genotype-
Tissue Expression (GTEx) project (v8) [12]. Through transfer learning on a paired
single-nucleus RNA-seq dataset (GTEx-v9) [215], we further demonstrate the ability
of HYFA to resolve cell-type signatures — average gene expression across cells for
a given cell-type, tissue, and individual — from bulk gene expression. Thus, HYFA
may provide a unifying transcriptomic methodology for multi-tissue imputation and
cell-type deconvolution. In post-imputation analysis, application of eQTL mapping
on the fully-imputed GTEx data yields a substantial increase in number of detected
replicable eQTLs. HYFA is publicly available at https://github.com/rvinas/HYFA.

5.1 Methodology

5.1.1 Problem formulation
Suppose we have a transcriptomics dataset of N individuals/donors, T tissues, and
G genes. For each individual i ∈ {1, ..., N}, let Xi ∈ RT ×G be the gene expression
values in T tissues and define the donor’s demographic information by ui ∈ RC , where
C is the number of covariates. Denote by x

(k)
i the k-th entry of Xi, corresponding to

https://github.com/rvinas/HYFA
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the expression values of donor i measured in tissue k. For a given donor i, let T (i)
represent the collection of tissues with measured expression values. These sets might
vary across individuals. Let X̃i ∈ (R ∪ {∗})T ×G be the measured gene expression
values, where ∗ denotes unobserved, so that x̃

(k)
i = x

(k)
i if k ∈ T (i) and x̃

(k)
i = ∗

otherwise. Our goal is to infer the uncollected values in X̃i by modelling the distribution
p(X = Xi|X̃ = X̃i,U = ui).

5.1.2 Multi-tissue model
An important challenge of modelling multi-tissue gene expression is that a different set
of tissues might be collected for each individual. Moreover, the data dimensionality
scales rapidly with the total number of tissues and genes. To address these problems,
we represent the data in a hypergraph and develop a parameter-efficient neural network
that operates on this hypergraph. Throughout, we make use of the concept of metagenes
[216, 217]. Each metagene characterises certain gene expression patterns and is defined
as a positive linear combination of multiple genes [216, 217].

Hypergraph representation

We represent the data in a hypergraph consisting of three types of nodes: donor, tissue,
and metagene nodes.

Mathematically, we define a hypergraph G = {Vd ∪ Vm ∪ Vt, E}, where Vd is a set of
donor nodes, Vm is a set of metagene nodes, Vt is a set of tissue nodes, and E is a set of
multi-attributed hyperedges. Each hyperedge connects an individual i with a metagene
j and a tissue k if k ∈ T (i), where T (i) are the collected tissues of individual i. The
set of all hyperedges is defined as E = {(i, j, k, e(k)

ij ) | (i, j, k) ∈ Vd × Vm × Vt, k ∈ T (i)},
where e

(k)
ij are hyperedge attributes that describe characteristics of the interacting

nodes, i.e. features of metagene j in tissue k for individual i.
The hypergraph representation allows representing data in a flexible way, general-

ising the bipartite graph representation from [218]. On the one hand, using a single
metagene results in a bipartite graph where each edge connects an individual i with a
tissue k. In this case, the edge attributes e

(k)
i1 are derived from the gene expression

x
(k)
i of individual i in tissue k. On the other hand, using multiple metagenes leads

to a hypergraph where each individual i is connected to tissue k through multiple
hyperedges. For example, it is possible to construct a hypergraph where genes and
metagenes are related by a one-to-one correspondence, with hyperedge attributes
e

(k)
ij derived directly from expression x

(k)
ij . The number of metagenes thus controls a
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Fig. 5.2 Workflow of HYFA. The model receives as input a variable number of gene
expression samples x

(k)
i corresponding to the collected tissues k ∈ T (i) of a given individ-

ual i. The samples x
(k)
i are fed through an encoder that computes low-dimensional rep-

resentations e
(k)
ij for each metagene j ∈ 1..M . A metagene is a latent, low-dimensional

representation that captures certain gene expression patterns of the high-dimensional
input sample. These representations are then used as hyperedge features in a message
passing neural network that operates on a hypergraph. In the hypergraph represen-
tation, each hyperedge labelled with e

(k)
ij connects an individual i with metagene j

and tissue k if tissue k was collected for individual i, i.e. k ∈ T (i). Through message
passing, HYFA learns factorised representations of individual, tissue, and metagene
nodes. To infer the gene expression of an uncollected tissue u of individual i, the
corresponding factorised representations are fed through a multilayer perceptron (MLP)
that predicts low-dimensional features e

(u)
ij for each metagene j ∈ 1..M . HYFA finally

processes these latent representations through a decoder that recovers the uncollected
gene expression sample x̂

(u)
ij .

spectrum of hypergraph representations and, as we shall see, can help alleviate the
inherent over-squashing problem of graph neural networks.

Message passing neural network

Given the hypergraph representation of the multi-tissue transcriptomics dataset, we
now present a parameter-efficient graph neural network to learn donor, metagene, and
tissue embeddings, and infer the expression values of the unmeasured tissues. We
start by computing hyperedge attributes from the multi-tissue expression data. Then,
we initialise the embeddings of all nodes in the hypergraph, construct the message
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passing neural network, and define an inference model that builds on the latent node
representations obtained via message passing.

Computing hyperedge attributes We first reduce the dimensionality of the
measured transcriptomics values. For every individual i and measured tissue k, we
project the corresponding gene expression values x

(k)
i into low-dimensional metagene

representations e
(k)
ij :

e
(k)
ij = ReLU(Wjx

(k)
i ) ∀j ∈ 1..M, (5.1)

where M , the number of metagenes, is a user-definable hyperparameter and
Wj∀j ∈ 1..M are learnable parameters. In addition to characterising groups of
functionally similar genes, employing metagenes reduces the number of messages being
aggregated for each node, addressing the over-squashing problem of graph neural
networks (Supplementary Information D.2).

Initial node embeddings We initialise the node features of the individual Vp, meta-
gene Vm, and tissue Vt partitions with learnable parameters and available information.
For metagene and tissue nodes, we use learnable embeddings as initial node values.
The idea is that these weights, which will be approximated through gradient descent,
should summarise relevant properties of each metagene and tissue. We initialise the
node features of each individual with the available demographic information ui of each
individual i (we use age and sex). We encode sex as a binary value and age as a float
normalised by 100 (e.g. age 30 is encoded as 0.30). Importantly, this formulation
allows transfer learning between sets of distinct donors.

Message passing layer We develop a custom graph neural network (GNN) layer to
compute latent donor embeddings by passing messages along the hypergraph. At each
layer of the GNN, we perform message passing to iteratively refine the individual node
embeddings. We do not update the tissue and metagene embeddings during message
passing, in a similar vein as knowledge graph embeddings [219], because their node
embeddings already consist of learnable weights that are updated through gradient
descent. Sending messages to these nodes would also introduce a dependency between
individual nodes and tissue and metagene features (and, by transitivity, dependencies
between individuals). However, if we foresee that unseen entities will be present at
test time (e.g. new tissue types), our approach can be extended by initialising their
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node features with constant values and introducing node-type-specific message passing
equations.

Mathematically, let {hd
1, ...,h

d
N}, {hm

1 , ..,h
m
M}, and {ht

1, ..,h
t
T } be the donor, meta-

gene, and tissue node embeddings, respectively. At each layer of the GNN, we compute
refined individual embeddings {ĥd

1, ..., ĥ
d
N} as follows:

ĥd
i = ϕh(hd

i ,mi)

mi =
M∑

j=1

∑
k∈T (i)

ϕa(hm
j ,h

t
k,mijk)

mijk = ϕe(hd
i ,h

m
j ,h

t
k, e

(k)
ij ),

(5.2)

where the functions ϕe and ϕh are edge and node operations that we model as multilayer
perceptrons (MLP), and ϕa is a function that determines the aggregation behavior. In
its simplest form, choosing ϕa(hm

j ,h
t
k,mijk) = 1

M |T (i)|mijk results in average aggrega-
tion. We analyse the time complexity of the message passing layer in Supplementary
Information D.1. Optionally, we can stack several message passing layers to increase
the expressivity of the model.

The architecture is flexible and may be extended as follows:

• Incorporation of information about the individual embeddings hd
i into the aggre-

gation mechanism ϕa.

• Incorporation of target tissue embeddings ht
u, for a given target tissue u, into

the aggregation mechanism ϕa.

• Update hyperedge attributes e
(k)
ij at every layer.

Aggregation mechanism In practice, the proposed hypergraph neural network
suffers from a bottleneck. In the aggregation step, the number of messages being
aggregated is M |T (i)| for each individual i. In the worst case, when all genes are used
as metagenes (i.e. M = G; it is estimated that humans have around G ≈ 25, 000 protein-
coding genes), this leads to serious over-squashing — large amounts of information are
compressed into fixed-length vectors [220]. Fortunately, choosing a small number of
metagenes reduces the dimensionality of the original transcriptomics values which in
turn alleviates the over-squashing and scalability problems (Supplementary Information
B). To further attenuate over-squashing, we propose an attention-based aggregation
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mechanism ϕa that weighs metagenes according to their relevance in each tissue:

ϕa(hm
j ,h

t
k,mijk) = αjkmijk

αjk =
exp e(hm

j ,h
t
k)∑

v exp e(hm
v ,h

t
k)

e(hm
j ,h

t
k) = a⊤LeakyReLU

(
W[hm

j ||ht
k]
)
,

where || is the concatenation operation and a and W are learnable parameters. The
proposed attention mechanism, which closely follows the neighbour aggregation method
of graph attention networks [221, 222], computes dynamic weighting coefficients that
prioritise messages coming from important metagenes. Optionally, we can leverage
multiple heads [223] to learn multiple modes of interaction and increase the expressivity
of the model.

Hypergraph model The hypergraph model, which we define as f , computes latent
individual embeddings ĥd

i from incomplete multi-tissue expression profiles as ĥd
i =

f(X̃i,ui).

5.1.3 Downstream imputation tasks
The resulting donor representations ĥd

i summarise information about a variable number
of tissue types collected for donor i, in addition to demographic information. We
leverage these embeddings for two downstream tasks: inference of gene expression in
uncollected tissues and prediction of cell-type signatures.

Inference of gene expression in uncollected tissues

Predicting the transcriptomic measurements x̂
(k)
i of a tissue k (e.g. uncollected) is

achieved by first recovering the latent metagene values ê
(k)
ij for all metagenes j ∈ 1..M ,

a hyperedge-level prediction task, and then decoding the gene expression values from
the predicted metagene representations ê

(k)
ij with an appropriate probabilistic model.

Prediction of hyperedge attributes To predict the latent metagene attributes
ê

(k)
ij for all j ∈ 1..M , we employ a multilayer perceptron that operates on the factorised

metagene hm
j and tissue representations ht

k as well as the latent variables ĥd
i of

individual i:

ê
(k)
ij = MLP(ĥd

i ,h
m
j ,h

t
k),
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where the MLP is shared for all combinations of metagenes, individuals, and tissues.

Negative binomial imputation model For raw count data, we use a negative
binomial likelihood. To decode the gene expression values for a tissue k of individual i,
we define the following probabilistic model p(x(k)

i |ĥd
i ,ui, k):

p(x(k)
i |ĥd

i ,ui, k) =
G∏
j

p(x(k)
ij |ĥd

i ,ui, j, k)

p(x(k)
ij |ĥd

i ,ui, j, k) = NB(x(k)
ij ;µ(k)

ij , θ
(k)
ij ),

where NB is a negative binomial distribution. The mean µ
(k)
ij and dispersion θ

(k)
ij

parameters of this distribution are computed as follows:

µ
(k)
i = l

(k)
i s

(k)
i

s
(k)
i = softmax

(
Wsê

(k)
i + bs

)
θ

(k)
i = exp

(
Wθê

(k)
i + bθ

)
ê

(k)
i = MLP

(∥∥∥M

j=1
ê

(k)
ij

)
,

where s(k)
i are mean gene-wise proportions; Ws, Wθ, bs, and bθ are learnable parameters;

and l
(k)
i is the library size, which is modelled with a log-normal distribution

log l(k)
i ∼ N (l(k)

i ; ν(k)
i , ω

(k)
i )

ν
(k)
i = Wν ê

(k)
i + bν

ω
(k)
i = exp

(
Wωê

(k)
i + bω

)
,

where Wν , Wω, bν , and bω are learnable parameters. Optionally, we can use the
observed library size.

Gaussian imputation model For normalised gene expression data (i.e. inverse
normal transformed data), we use the following Gaussian likelihood:

p(x(k)
i |ĥd

i ,ui, k) =
G∏
j

p(x(k)
ij |ĥd

i ,ui, j, k)

p(x(k)
ij |ĥd

i ,ui, j, k) = N (x(k)
ij ;µ(k)

ij , σ
2(k)

ij ),
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where the mean µ
(k)
ij and standard deviation σ

(k)
ij are computed as follows:

µ
(k)
i = Wµê

(k)
i + bµ

σ
(k)
i = softplus

(
Wσê

(k)
i + bσ

)
ê

(k)
i = MLP

(∥∥∥M

j=1
ê

(k)
ij

)
,

where Wµ, Wσ, bµ, and bσ are learnable parameters and softplus(x) = log
(
1+exp(x)

)
.

Optimisation We optimise the model to maximise the imputation performance on
a dynamic subset of observed tissues, that is, tissues that are masked out at train
time, similar to Chapter 4 [2]. For each individual i, we randomly select a subset
C ⊂ T (i) of pseudo-observed tissues and treat the remaining tissues U = T (i) − C as
unobserved (pseudo-missing). We then compute the individual embeddings ĥd

i using
the gene expression of pseudo-observed tissues C and minimise the loss:

L(X̃i,ui, C,U) = − 1
|U|

∑
k∈U

log p(x(k)
i |ĥd

i ,ui, k),

which corresponds to the average negative log-likelihood across pseudo-missing tissues.
Importantly, the pseudo-mask mechanism generates different sets of pseudo-missing
tissues for each individual, effectively enlarging the number of training examples and
regularising our model. We report the hyperparameters in Supplementary Information
D.2 and summarise the training algorithm in Supplementary Information D.4. HYFA
can also be optimised via variational inference (Supplementary Information D.5).

Inference of gene expression from uncollected tissues At test time, we infer
the gene expression values x̂

(v)
i of an uncollected tissue v from a given donor i via

the mean, i.e. x̂
(v)
i = µ

(v)
i . Alternatively, we can draw random samples from the

conditional predictive distribution p(x(k)
i |ĥd

i ,ui, k).

Prediction of cell-type signatures

We next consider the problem of imputing cell-type signatures in a tissue of interest.
We define a cell-type signature as the sum of gene expression profiles across cells of a
given cell-type in a certain tissue. Formally, let x

(k,q)
i be the gene expression signature

of cell-type q in a tissue of interest k of individual i. Our goal is to infer x
(k,q)
i from

the multi-tissue gene expression measurements X̃i. To achieve this, we first compute



5.1 Methodology 81

the hyperedge features of a hypergraph consisting of 4-node hyperedges and then infer
the corresponding signatures with a zero-inflated model.

Prediction of hyperedge attributes We consider a hypergraph where each hyper-
edge groups an individual, a tissue, a metagene, and a cell-type node. For all metagenes
j ∈ 1..M , we compute latent hyperedge attributes ê

(k,q)
ij for a cell-type q in a tissue of

interest k of individual i as follows:

ê
(k,q)
ij = MLP(ĥd

i ,h
m
j ,h

t
k,h

c
q),

where hc
q are parameters specific to each unique cell-type q and the MLP is shared for

all combinations of metagenes, individuals, tissues, and cell-types.

Zero-inflated model We employ the following probabilistic model:

p(x(k,q)
i |ĥd

i ,ui, k, q) =
G∏
j

p(x(k,q)
ij |ĥd

i ,ui, j, k, q)

p(x(k,q)
i |ĥd

i ,ui, j, k, q) = ZINB(x(k,q)
ij ;µ(k,q)

ij , θ
(k,q)
ij , π

(k,q)
ij ),

where ZINB is a zero-inflated negative binomial distribution. The mean µ(k,q)
ij , dispersion

θ
(k,q)
ij , and dropout probability π(k,q)

ij parameters are computed as:

µ
(k,q)
i = n

(k,q)
i l

(k,q)
i softmax

(
Wsê

(k,q)
i + bs

)
θ

(k,q)
i = exp

(
Wθê

(k,q)
i + bθ

)
π

(k,q)
i = σ(Wπê

(k,q)
i + bπ),

where Ws, Wθ, Wπ, bs, bθ, and bπ are learnable parameters; n(k,q)
i is the number of

cells in the signature, and l(k,q)
i is their average library size. At train time, we set n(k,q)

i

to match the ground truth number of cells. At test time, the number of cells n(k,q)
i is

user-definable. We model the average library size l(k,q)
i with a log-normal distribution

log l(k,q)
i ∼ N (l(k,q)

i ; ν(k,q)
i , ω

(k,q)
i )

ν
(k,q)
i = Wν ê

(k,q)
i + bν

ω
(k,q)
i = exp

(
Wωê

(k,q)
i + bω

)
,

where Wν , Wω, bν , and bω are learnable parameters. Optionally, we can use the
observed library size.
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Optimisation Single-cell transcriptomic studies typically measure single-cell gene
expression for a limited number of individuals, tissues, and cell-types, so aggregating
single-cell profiles per individual, tissue, and cell-type often results in small sample sizes.
To address this challenge, we apply transfer learning by pre-training the hypergraph
model f on the multi-tissue imputation task and then fine-tuning the parameters of the
signature inference module on the cell-type signature profiles. Concretely, we minimise
the loss:

L(x(k,q)
i , X̃i,ui, k, q) = − log p(x(k,q)

i |ĥd
i ,ui, k, q),

which corresponds to the negative log-likelihood of the observed cell-type signatures.

Inference of uncollected gene expression To infer the signature of a cell-type
q in a certain tissue v of interest, we first compute the latent individual embeddings
ĥd

i from the multi-tissue profiles X̃i and then compute the mean of the distribution
p(x(k,q)

i |ĥd
i ,ui, k, q) as µ

(k,q)
i (1 − π

(k,q)
i ). Alternatively, we can draw random samples

from that distribution.

5.1.4 Related work
Gene expression imputation methods A standard approach for imputation of
uncollected transcriptomics values is to use a proxy tissue (e.g. whole blood) as a
surrogate [210]. However, gene expression is known to be tissue and cell-type specific,
limiting the effectiveness of this technique. Other related studies infer tissue-specific
gene expression from genetic information. [213] propose a mixed-effects model to infer
uncollected data in multiple tissues from expression quantitative trait loci (eQTLs).
[214] introduce a model termed Meta-Tissue that aggregates information from multiple
tissues to increase statistical power of eQTL detection. Nonetheless, these approaches
do not model the complex relationships between measured and unmeasured gene
expression traits among tissues and cell types, and individual-level genetic information
(such as at eQTLs) is often unavailable and subject to privacy concerns. Instead,
recent closely related work relies on linear factor analysis and dimensionality reduction
techniques. TEEBoT (Tissue Expression Estimation using Blood Transcriptome)
[21] projects gene expression from a single reference tissue (i.e. whole blood) into a
low-dimensional space via principal component analysis (PCA), followed by linear
regression to impute uncollected values. HYFA allows a departure from the linearity
assumption of TEEBoT and also handles a variable number of reference tissues.
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Knowledge graph embedding techniques Our framework leverages ideas from
knowledge graph embedding techniques by using learnable embeddings for biological
entities (i.e. tissues, cell-types, and metagenes). Since the advent of word embeddings
[224], several approaches have emerged to learn vector representations of entities
and relations in knowledge graphs [219, 225–227]. TransE [219] represents entities
as low-dimensional vectors and relationships as translations in the embedding space,
and optimises parameters through an energy-based objective. TransH [225] extends
the TransE framework by projecting the entity embeddings into relation-specific
hyperplanes. ComplEx [226] utilises complex vectors that capture antisymmetric entity
relations. ConvE [227] models interactions between input entities and relations through
convolutional and fully-connected layers. Despite all the recent advances, knowledge
graph embeddings have been understudied for modelling higher-order structures (i.e.
hyperedges). Moreover, while these methods are capable of link prediction, they are
limited to a transductive setting, where the full set of entities (e.g. individuals) must
be known at train time [228].

Graph representation learning Graph neural networks remedy this problem by
leveraging the structure and properties of graphs to compute node features, allowing
to handle unseen entities at inference time (e.g. individuals). Graph neural networks
operating on hypergraphs have recently started to flourish, with approaches such
as HEAT [229] and rxn-hypergraph [230] attaining state-of-the-art results in tasks
involving higher-order relationships, such as source code [229] and chemical reactions
[230]. In terms of graph-based imputation methods, the closest approach to our
framework is GRAPE [218]. GRAPE represents tabular data as a bipartite graph,
where observations and features are two types of nodes, and the observed feature values
are attributed edges between the nodes [218]. Imputation of missing features then
corresponds to an edge-level prediction task. HYFA subsumes GRAPE’s bigraph in
that our hypergraph becomes a bipartite graph when a single metagene is employed.
This allows for a trade-off between feature granularity and over-squashing, which
happens when information from a large receptive field is compressed into fixed-length
node vectors [220]. In terms of message passing, HYFA distinguishes between dynamic
nodes (udpated during message passing) and static nodes (with learnable node features
that are not updated during message passing), eliminating the dependency of tissue and
metagene representations on donor features and, by transitivity, undesired dependencies
between inviduals. HYFA is thus a hybrid and flexible approach that combines features
from knowledge graph embedding and graph representation learning techniques.
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Single-cell variational inference Our framework is related to single-cell varia-
tional inference (scVI) [94] in that it can also be optimised via variational inference
(Supplementary Information D.5), e.g. via a (zero-inflated) negative binomial likeli-
hood, treating the individual representations as latent variables. In contrast to scVI,
however, HYFA offers features to handle a variable number of reference tissues. It also
incorporates inductive biases to reuse knowledge across tissues, allowing the model to
scale to larger multi-tissue samples.

5.1.5 eQTL mapping
The breadth of tissues in the GTEx (v8) collection enables us to comprehensively
evaluate the extent to which eQTL discovery could be improved through the HYFA-
imputed transcriptome data. We map eQTLs that act in cis to the target gene
(cis-eQTLs), using all SNPs within ± 1 Mb of the transcription start site of each gene.
For the imputed and the original (incomplete) datasets, we consider SNPs significantly
associated with gene expression, at a false discovery rate ≤ 0.10. We apply the same
GTEx eQTL mapping pipeline, as previously described [48], to the imputed and original
datasets to quantify the gain in eQTL discovery from the HYFA-imputed dataset.

eQTL mapping In Chapter 2 (Section 2.2.4), we review a standard eQTL mapping
approach.

5.1.6 GTEx bulk and single-nucleus RNA-seq data processing
The GTEx dataset is a public resource that has generated a broad collection of gene
expression data collected from a diverse set of human tissues [12]. We downloaded the
data from the GTEx portal. After the processing step, the GTEx-v8 dataset consisted
of 15197 samples (49 tissues, 834 donors) and 12557 genes. The dataset was randomly
split into 500 train, 167 validation, and 167 test donors. Each donor had an average of
18.22 collected tissues. The processing steps are described below.

Normalised bulk transcriptomics (GTEx-v8) Following the GTEx eQTL discov-
ery pipeline (https://github.com/broadinstitute/gtex-pipeline/tree/master/
qtl), we processed the data as follows:

1. Discard underrepresented tissues (n=5), namely bladder, cervix (ectocervix,
endocervix), fallopian tube, and kidney (medulla). Discard donors with only one
collected tissue (n=4).

https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl
https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl
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2. Select set of overlapping genes across all tissues. Select genes based on expression
thresholds of ≥ 0.1 transcripts per kilobase million (TPM) in ≥ 20% of samples
and ≥ 6 reads (unnormalised) in ≥ 20% of samples.

3. Normalise read counts across samples using the trimmed mean of M values
(TMM) method [59].

4. Apply inverse normal transformation to the expression values for each gene.

Cell-type signatures from a paired snRNA-seq dataset (GTEx-v9) We
downloaded paired snRNA-seq data for 16 GTEx individuals [215] collected in 8 GTEx
tissues, namely skeletal muscle, breast, esophagus (mucosa, muscularis), heart, lung,
prostate, and skin. We split these individuals into train, validation, and test donors
according to the GTEx-v8 split. We processed the data as follows:

1. Select set of overlapping genes between bulk RNA-seq (GTEx-v9) and paired
snRNA-seq dataset [215].

2. Select top 3000 variable genes using the function pp.highly_variable_genes
from the Scanpy library [231] with flavour setting seurat_v3 [232].

3. Discard underrepresented cell-types occurring in less than 10 tissue-individual
combinations.

4. Aggregate (i.e. sum) read counts by individual, tissue, and (broad) cell-type. This
resulted in a dataset of 226 unique signatures, of which 135 belong to matching
GTEx-v8 individuals.

5.2 Results
Hypergraph factorisation (HYFA) We developed HYFA, a framework for in-
ferring the transcriptomes of unmeasured tissues and cell-types from bulk expression
collected in a variable number of reference tissues (Figure 5.2).

HYFA receives as input gene expression measurements collected from a set of
reference tissues, as well as demographic information, and outputs gene expression
values in a tissue of interest (e.g. uncollected). The first step of the workflow is to project
the input gene expression into low-dimensional metagene representations [216, 217]
for every collected tissue. Each metagene summarises abstract properties of groups of
genes, e.g. sets of genes that tend to be expressed together [233], that are relevant for
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Fig. 5.3 Analysis of cross-tissue relationships. Colors are assigned to conform to the
GTEx Consortium conventions. (a) UMAP representation of the tissue embeddings
learnt by HYFA. Note that human body systems cluster in the embedding space
(e.g. digestive system: stomach, small intestine, colon, esophagus; and central nervous
system). (b) Network of tissues depicting the predictability of target tissues with HYFA
using the average per-sample Pearson ρ correlation coefficients. The dimension of each
node is proportional to its degree. Edges from reference to target tissues indicate an
average Pearson correlation coefficient ρ > 0.5. Interestingly, central nervous system
tissues strongly correlate with several non-brain tissues such as gastrointestinal tissues.

the imputation task. In a second step, HYFA employs a custom message passing neural
network [234] that operates on a 3-uniform hypergraph, yielding factorised individual,
tissue, and metagene representations. Lastly, HYFA infers latent metagene values for
the target tissue — a hyperedge-level prediction task — and maps these representations
back to the original gene expression space. Through higher-order hyperedges (e.g.
4-uniform hypergraph), HYFA can also incorporate cell-type information and infer
finer-grained cell-type-specific gene expression.

Altogether, HYFA offers features to reuse knowledge across tissues and genes,
capture non-linear cross-tissue patterns of gene expression, learn rich representations
of biological entities, and account for variable numbers of reference tissues.

Characterisation of cross-tissue relationships Characterising cross-tissue rela-
tionships at the transcriptome level can help elucidate coordinated gene regulation and
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expression, a fundamental phenomenon with direct implications on health homeostasis,
disease mechanisms, and comorbidities [235–237].

We trained HYFA on bulk gene expression from the GTEx project (GTEx-v8) [12]
and assessed the cross-tissue gene expression predictability —measured by the Pearson
correlation between the observed and the predicted gene expression across individuals—
and quality of tissue embeddings (Figure 5.3). Application of Uniform Manifold
Approximation and Projection (UMAP) [238] on the learnt tissue representations
revealed strong clustering of biologically-related tissues (Figure 5.3a), including the
gastrointestinal system (e.g. esophageal, stomach, colonic, and intestinal tissues), the
female reproductive tissues (i.e. uterus, vagina, and ovary), and the central nervous
system (i.e. the 13 brain tissues). The clustering properties were robust across UMAP
runs and could be similarly appreciated using other dimensionality reduction algorithms
such as t-distributed Stochastic Neighbor Embedding (t-SNE) [239].

For every pair of reference and target tissues in GTEx, we then computed the
Pearson correlation coefficient ρ between the predicted and actual gene expression,
averaged the scores across individuals, and used a cutoff of ρ > 0.5 to depict the top
pairwise associations (Figure 5.3b and Supplementary Information D.8). We observed
connections between most GTEx tissues and whole blood, which suggests that blood-
derived gene expression is highly informative of (patho)physiological processes in other
tissues [240]. Notably, brain tissues and the pituitary gland were strongly associated
with several tissues (ρ > 0.5), including gastrointestinal tissues (e.g. esophagus,
stomach, and colon), the adrenal gland, and skeletal muscle, which may account for
known disease comorbidities.
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Fig. 5.5 Prediction performance from
whole-blood gene expression (n=2424
samples from 167 test GTEx donors).

Imputation of gene expression from
whole blood transcriptome Knowledge
about tissue-specific patterns of gene expres-
sion can increase our understanding of disease
biology, facilitate the development of diag-
nostic tools, and improve patient subtyping
[241, 21], but most tissues are inaccessible or
difficult to acquire.

To address this challenge, we studied to
what extent HYFA can recover tissue-specific
gene expression from whole-blood transcrip-
tomic measurements (Figures 5.4 and 5.5).
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Fig. 5.4 Performance comparison across gene expression imputation methods. Per-tissue
comparison between HYFA and TEEBoT when using whole-blood and as reference.
HYFA achieved superior Pearson correlation in 25 out of 48 target tissues when a
single tissue was used as reference. We employed a two-sided Mann-Whitney-Wilcoxon
tests to compute p-values (*: 1e-2 < p ≤ 5e-2, **: 1e-3 < p ≤ 1e-2, ***: 1e-4 < p
≤ 1e-3, ****: p ≤ 1e-4). Boxes show quartiles, centerlines correspond to the median,
and whiskers depict the distribution range (1.5 times the interquartile range). Outliers
outside of the whiskers are shown as distinct points. The top axis indicates the total
number n of independent individuals for every target tissue.

For each test individual with measured whole-blood gene expression, we predicted
tissue-specific gene expression in the remaining collected tissues of the individual.
We evaluated performance using the Pearson correlation ρ between the inferred gene
expression and the ground-truth samples. We observed strong prediction performance
for esophageal tissues (muscularis: ρ = 0.49, gastro: ρ = 0.46, mucosa: ρ = 0.36),
heart tissues (left ventricle: ρ = 0.48, atrial: ρ = 0.46), and lung (ρ = 0.47), while
Epstein Barr virus-transformed lymphocytes (ρ = 0.06), an accessible and renewable
resource for functional genomics, was a notable outlier. We compared our method with
the following baselines:

• Mean imputation: Replaces missing values with the feature averages.

• Blood surrogate: Utilises expression in blood as a proxy for the target tissue.

• k-Nearest Neighbours (kNN): Imputes missing features with the average of
measured values across the k nearest observations (k=20).

• TEEBoT without single-nucleotide polymorphism information [21]:
Projects the high-dimensional blood expression data into a low-dimensional
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space through principal component analysis (30 components; 75-80% explained
variance) and then performs linear regression to predict the gene expression of
the target tissue.

• HYFA (all): Employs information from all collected tissues of the individual.

Overall, TEEBoT and HYFA attained comparable scores when a single tissue (i.e. whole
blood) was used as reference and both methods outperformed standard imputation
approaches (mean imputation, blood surrogate, and k nearest neighbours; Figure 5.5).

The blood-imputed gene expression also predicted disease-relevant genes in hard-to-
access central nervous system (Supplementary Information D.10). These include APP,
PSEN1, and PSEN2, i.e. the causal genes for autosomal dominant forms of early-onset
Alzheimer’s disease [242], and Alzheimer’s disease genetic risk factors such as APOE
[243]. We noted that the per-gene prediction scores followed smooth distributions
(Supplementary Information D.9).
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Fig. 5.6 Prediction performance from
accessible tissues as reference (n=675
samples from 167 test GTEx donors).

Multiple reference tissues improve per-
formance We hypothesised that using mul-
tiple tissues as reference would improve down-
stream imputation performance. To evaluate
this, we selected individuals with measured
gene expression both at the target tissue and
4 reference accessible tissues (whole blood,
skin sun-exposed, skin not sun-exposed, and
adipose subcutaneous) and employed HYFA
to impute target expression values (Figures
5.6 and 5.7, and Supplementary Information
D.12). We discarded target tissues with less
than 25 test individuals.

Relative to using whole blood in isolation, using all accessible tissues as reference
resulted in improved performance for 32 out of 38 target tissues (Supplementary
Information D.11). This particularly boosted imputation performance for esophageal
tissues (muscularis: ∆ρ = 0.068, gastro: ∆ρ = 0.061, mucosa: ∆ρ = 0.048), colonic
tissues (transverse: ∆ρ = 0.065, sigmoid: ∆ρ = 0.056), and artery tibial (∆ρ = 0.079).
In contrast, performance for the pituitary gland (∆ρ = −0.011), lung (∆ρ = −0.003),
and stomach (∆ρ = −0.002) remained stable or dropped slightly. Moreover, the
performance gap between HYFA and TEEBoT (trained on the set of complete multi-
tissue samples) widened relative to the single-tissue scenario (Figures 5.6 and 5.7) —



90 Multi-tissue imputation of gene expression

47 37 33 28 48 33 30 37 42 28 32 27 34 31 32 38 32 34 32 35 37 33 27 55 37 42 26 57 48 27 45 25 40 36 36 29 31 47

Ad
ipo

se 
Vis

cer
al 

Omen
tum

Ad
ren

al 
Glan

d

Arte
ry 

Ao
rta

Arte
ry 

Coro
na

ry

Arte
ry 

Tib
ial

Brai
n C

au
da

te

Brai
n C

ere
be

llar

Brai
n C

ere
be

llum

Brai
n C

ort
ex

Brai
n F

ron
tal

 Cort
ex

Brai
n H

ipp
oca

mpu
s

Brai
n H

yp
oth

ala
mus

Brai
n N

ucl
eu

s

Brai
n P

uta
men

Brea
st 

Mam
mary

 Tis
sue

Cells
 Cult

ure
d

Cells
 EB

V

Colo
n S

igm
oid

Colo
n T

ran
sve

rse

Eso
ph

ag
us 

Gast
ro

Eso
ph

ag
us 

Muco
sa

Eso
ph

ag
us 

Musc
ula

ris

Hea
rt A

tria
l

Hea
rt L

 Ve
nt

Liv
er

Lun
g

Mino
r S

aliv
ary

Musc
le 

Ske
let

al

Nerv
e T

ibia
l
Ova

ry

Pan
cre

as

Pit
uit

ary

Pro
sta

te

Sm
all 

Int
est

ine
Sp

lee
n

Sto
machTes

tis

Th
yro

id

0.5

0.0

0.5

1.0

Pe
ar

so
n 

co
rre

la
tio

n *
* *** **** * * ** ** ** ****** *

****
* ****** *

***** * ** *** * ** **

Prediction performance with accessible tissues as source tissues (whole blood, skin, and adipose subcutaneous)

TEEBoT HYFA (accessible)

Fig. 5.7 Per-tissue comparison between HYFA and TEEBoT when using all accessible
tissues (whole blood, skin sun exposed, skin not sun exposed, and adipose subcutaneous)
as reference. HYFA achieved superior Pearson correlation in all target tissues when
multiple reference tissues were considered. For underrepresented target tissues (less
than 25 individuals with source and target tissues in the test set), we considered
all the validation and test individuals (translucent bars). We employed a two-sided
Mann-Whitney-Wilcoxon tests to compute p-values (*: 1e-2 < p ≤ 5e-2, **: 1e-3 < p
≤ 1e-2, ***: 1e-4 < p ≤ 1e-3, ****: p ≤ 1e-4). Outliers outside of the whiskers are
shown as distinct points. The top axis indicates the total number n of independent
individuals for every target tissue.

HYFA obtained better performance in all target tissues, with statistically significant
improvements in 26 out of 38 tissues (two-sided Mann-Whitney-Wilcoxon p-value <
0.05). We attribute the improved scores to HYFA’s ability to process a variable number
of reference tissues, reuse knowledge across tissues, and capture non-linear patterns.

Inference of cell-type signatures We next investigated the potential of HYFA
to predict cell-type-specific signatures — average gene expression across cells from a
given cell-type — in a given tissue of interest. We first selected GTEx donors with
collected bulk (v8) and single-nucleus RNA-seq profiles (v9). Next, we trained HYFA
to infer cell-type signatures from the multi-tissue bulk expression profiles. We evaluated
performance using the observed (Figure 5.8) and inferred library sizes (Supplementary
Information D.17). To attenuate the small data size problem, we applied transfer
learning on the model trained for the multi-tissue imputation task.

We observed strong prediction performance (Pearson correlation ρ between log
ground truth and log predicted signatures) for vascular endothelial cells (heart: ρ = 0.84;
breast: ρ = 0.88, esophagus muscularis: ρ = 0.68) and fibroblasts (heart: ρ = 0.84;
breast: ρ = 0.89, esophagus muscularis: ρ = 0.70). Strikingly, HYFA recovered the cell-
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Fig. 5.8 Prediction of cell-type signatures. HYFA imputes individual- and tissue-specific
cell-type signatures from bulk multi-tissue gene expression. The scatter plots depict the
Pearson correlation ρ between the logarithmised ground truth and predicted signatures
for N unseen individuals. The model never observes skeletal muscle signatures at
transfer time. To infer the signatures, we used the observed library size l(k,q)

i and
number of cells n(k,q)

i .
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type profiles of tissues that were never observed in the train set with high correlation
(Figure 4 and Supplementary Information K), e.g. skeletal muscle (vascular endothelial
cells: ρ = 0.79, fibroblasts: ρ = 0.77, pericytes/SMC: ρ = 0.68), demonstrating the
benefits of the factorised tissue representations.

Overall, our results highlight the potential of HYFA to impute unknown cell-type
signatures even for tissues that were not considered in the original single-cell study.
In the future, as single-cell RNA-seq datasets become larger in number of individuals,
we hypothesise that the resolution of HYFA’s inferred signatures will increase, with
possible benefits in terms of downstream analyses. Our analyses point to promising
downstream applications as single-cell RNA-seq datasets become larger in number of
individuals (Supplementary Information D.19), including deconvolution and cell-type
specific eQTL mapping.

eQTL mapping The breadth of tissues in the GTEx (v8) collection enables us
to comprehensively evaluate the extent to which eQTL discovery could be improved
through the HYFA-imputed transcriptome data. We map eQTLs that act in cis to
the target gene (cis-eQTLs), using all SNPs within ± 1 Mb of the transcription start
site of each gene. For the imputed and the original (incomplete) datasets, we consider
SNPs significantly associated with gene expression, at a false discovery rate ≤ 0.10.
We apply the same GTEx eQTL mapping pipeline, as previously described [48], to
the imputed and original datasets to quantify the gain in eQTL discovery from the
HYFA-imputed dataset. In Chapter 2 (Section 2.2.4), we review the intuition behind
eQTL mapping.

Multi-tissue imputation improves eQTL detection Gene expression acts as
an intermediate molecular trait between DNA and phenotype and, therefore, genetic
mapping of genome-wide gene expression can shed light on the genetic architecture and
molecular basis of complex traits. The GTEx project has enabled the identification
of numerous genetic associations with gene expression across a broad collection of
tissues [12], also known as expression Quantitative Trait Loci (eQTLs) [248]. However,
eQTL datasets are characterised by small sample sizes, especially for difficult-to-acquire
tissues and cell types, reducing the statistical power to detect eQTLs [249].

To address this problem, we employed HYFA to impute the transcript levels of every
uncollected tissue for each individual in GTEx, yielding a complete gene expression
dataset of 834 individuals and 49 tissues. We then performed eQTL mapping on the
original and imputed datasets and observed a substantial gain in the number of unique
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Fig. 5.9 HYFA’s imputed data improves expression Quantitative Trait Loci (eQTL)
discovery. (a) Number of unique genes with detected eQTLs (FDR < 0.1) on observed
(circle) and full (observed plus imputed; rhombus) GTEx data. Note logarithmic scale
of y-axis. The eQTLs were mapped using MatrixEQTL [86, 48] assuming additive
genotype effect on gene expression. MatrixEQTL conducts a test for each SNP-gene
pair and makes adjustments for multiple comparisons by computing the Benjamini-
Hochberg FDR [244]. (b) Fold increase in number of unique genes with mapped eQTLs
(y-axis) versus observed sample size (x-axis).
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a b

Fig. 5.10 HYFA recovers replicable and experimentally validated expression Quanti-
tative Trait Loci (eQTLs). (a) Histogram of replication p-values among the HYFA-
identified cis-eQTLs for whole blood (left) and brain prefrontal cortex (right). For
replication, we used the independent eQTLGen Consortium (n > 30, 000; [245]) and
PsychENCODE (n = 1, 866; [246]) eQTL datasets, respectively. (b) Quantile-quantile
plot showing the causal variants’ association with gene expression in blood (left) and
brain frontal cortex (right) in the HYFA-derived dataset using experimentally validated
causal variant data from the application of Massively Parallel Reporter Assay [247].
All statistical tests were two-sided. HYFA’s imputed data substantially increases the
number of identified associations with high replicability and significant enrichment of
causal regulatory variants.

genes with detected eQTLs, the so-called eGenes (Figure 5.9). Notably, this metric
increased for tissues with low sample size (Spearman correlation coefficient ρ = −0.83)

— which are most likely to benefit from borrowing information across tissues with shared
regulatory architecture. Kidney cortex displayed the largest gain in number of eGenes
(from 215 to 12,557), while there was no increase observed for whole blood.

To assess the quality of the identified eQTLs from HYFA imputation, we conducted
systematic replication analyses of 1) the whole blood eQTL-eGene pairs, using the
eQTLGen blood transcriptome dataset in more than 30,000 individuals [245] and 2)
the frontal cortex eQTL-eGene pairs, using the PsychENCODE pre-frontal cortex
transcriptome dataset in 1,866 individuals [246]. For each tissue, we quantified the
replication rate for eQTL-eGene pairs using the π1 statistic [250]. Notably, we found a
highly significant enrichment for low replication p-values among the HYFA-derived
eQTL-eGene pairs (Figure 5.10), demonstrating strong reproducibility of the results.
The replication rate π1 was 0.80 for whole blood and 0.96 for frontal cortex. We also
evaluated the extent to which the HYFA imputation captured regulatory variants that
directly modulate gene expression using experimentally validated causal variants from
Massively Parallel Reporter Assay [247]. Notably, among the causal regulatory variants
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from this experimental assay, we found a highly significant enrichment for low p-values
among the HYFA-identified eQTLs in blood and in frontal cortex (Figure 5.10).

Thus, HYFA imputation enabled identification of biologically meaningful, replicable
eQTL hits in the respective tissues. Our results generate a large catalog of new
tissue-specific eQTLs, with potential to enhance our understanding of how regulatory
variation mediates variation in complex traits, including disease susceptibility.
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Fig. 5.11 Top predicted genes in multiple brain regions with the oesophagogastric
junction as the reference tissue. (a) Top predicted genes in multiple brain regions
with the oesophagogastric junction as the reference tissue, ranked by average Pearson
correlation. (b) Common genes in the top 1000 predicted genes for each brain tissue.
(c) Enriched GO terms of the top shared genes at the interesection. The top predicted
genes were enriched in signalling pathways (FDR < 0.05), consistent with studies
reporting that gut microbes communicate to the central nervous system through
endocrine and immune mechanisms. These results depict the cross-tissue associations
and highlight the potential connection between the elements of the oesophagogastric
junction and the ciliary neurotrophic factor, which has been linked to the survival of
neurons [251] and the control of body weight [252].

Brain-gut axis The brain-gut axis is a bidirectional communication system of
signalling pathways linking the central and enteric nervous systems. We investigated
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the extent to which the transcriptomes of tissues from the gastrointestinal system are
predictive of gene expression in brain tissues.

We selected all the unseen individuals with simultaneous measurements in gastroin-
testinal tissues (i.e. oesophagogastric junction) and brain tissues (i.e. frontal cortex,
hippocampus, and anterior cingulate) and employed HYFA to predict the expression
values of brain tissues (Figure 5.11). We observed a small number of individuals with
measurements in both brain and non-brain tissues (Supplementary Information D.7).
After ranking the genes according to their prediction scores and selecting the top 1000
genes for each brain tissue (Venn diagram; Figure 5.11b), we found considerable overlap
between the 3 brain tissues (153 common genes in the intersection).

We then used Enrichr [253] with the gene sets GO_Biological_Process_2021 and
GO_Molecular_Function_2021 to identify the enriched Gene Ontology (GO; [79])
terms for the shared genes at the intersection (Figure 5.11c). Overall, the top predicted
genes were enriched in multiple signalling-related terms (e.g. cytokine receptor activity
and interleukin-1 receptor activity). This aligns with studies that highlight that gut
microbes communicate with the central nervous system through endocrine and immune
signalling mechanisms [254]. Genes in the intersection were also notably enriched in
the ciliary neurotrophic factor receptor activity (molecular function), which plays an
important role in the survival of neurons [251], the development of the enteric nervous
system [255], and the control of body weight [252]. Moreover, our results suggest an
association with the Receptor for Advanced Glycation Endproducts (RAGE), which
has been linked to inflammation-related pathological states such as vascular disease,
diabetes, and neurodegeneration [256].

HYFA-learned metagenes capture known biological pathways A key feature
of HYFA is that it reuses knowledge across tissues and metagenes, allowing to exploit
shared regulatory patterns. We explored whether HYFA’s inductive biases encourage
learning biologically relevant metagenes. To determine the extent to which metagene-
factors relate to known biological pathways, we applied Gene Set Enrichment Analysis
(GSEA) [85] to the gene loadings of HYFA’s encoder. Similar to [257], for a given
query gene set, we calculated the maximum running sum of enrichment scores by
descending the sorted list of gene loadings for every metagene and factor. We then
computed pathway enrichment p-values through a permutation test and employed the
Benjamini-Hochberg method to correct for multiple testing independently for every
metagene-factor.
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Fig. 5.12 Pathway enrichment analysis of metagene factors (next page).
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Fig. 5.12 (previous page) Pathway enrichment analysis of metagene factors. (a)
Manhattan plot of the GSEA results on the metagenes (n=50) and factors (n=98)
learned by HYFA. The x-axis represents metagenes (colored bins) and every offset
within the bin corresponds to a different factor. The y-axis is the –log q-value (FDR)
from the GSEA permutation test, corrected for multiple testing via the Benjamini-
Hochberg procedure. We identified 18683 statistically significant enrichments (FDR <
0.05) of KEGG biological processes across all metagenes and factors. (b) Total number
of enriched terms for each type of pathway. (c) FDR for pathways of neurodegeneration.
For every pathway and metagene, we selected the factor with lowest FDR and depicted
statistically significant values (FDR < 0.05). Point sizes are proportional to − log
FDR values. Metagene 11 (factor 95) had the lowest FDR for both Amyotropic Lateral
Sclerosis (ALS) and Alzheimer’s Disease. (d) UMAP of latent values of metagene 11
for all spinal cord (ALS: orange) and brain cortex (Alzheimer’s disease or Dementia:
orange) GTEx samples. (e) Leading edge subsets of top-15 enriched gene sets for factor
95 of metagene 11. (f, g) Enrichment plots for Amyotropic Lateral Sclerosis (f) and
Alzheimer’s disease gene sets (g).

In total, we identified 18683 statistically significant enrichments (FDR < 0.05) of
KEGG biological processes ([82]; 320 gene sets; Figure 6) across all HYFA metagenes
(n=50) and factors (n=98). Among the enriched terms, 2109 corresponded to signalling
pathways and 1300 to pathways of neurodegeneration. We observed considerable
overlap between several metagenes in terms of biologically related pathways, e.g. factor
95 of metagene 11 had the lowest FDR for both Alzheimer’s disease (FDR < 0.001)
and Amyotrophic Lateral Sclerosis (FDR < 0.001) pathways. Enrichment analysis of
TRRUST [258] transcription factors (TFs; Supplementary Information D.13) further
identified important regulators (Figure 5.13) including GATA1 (known to regulate the
development of red blood cells [259]), SPI1 (which controls hematopoietic cell fate
[260]), CEBPs (which play an important role in the differentiation of a range of cell
types and the control of tissue-specific gene expression; [261, 262]), and STAT1 (a
member of the STAT family that drives the expression of many target genes [263]).

We also observed that the learnt HYFA factors recapitulate synergistic effects
among the enriched TFs (Figure 5.14 and Supplementary Information D.13). For
example, GATA1 and SPI1, which were simultaneously enriched in 7 factors (FDR <
0.05), functionally antagonise each other through physical interaction [264]. Similarly,
IRF1 induces STAT1 activation via phosphorylation [263, 265] and both TFs were
enriched in 10 factors (FDR < 0.05), aligning with our enrichment analyses of GO
Biological Process terms (Supplementary Information D.14). We observed highly
specific HYFA factor - TF associations, e.g. GATA1 was enriched (FDR < 0.05) in
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factor 69 of 28 out of 50 metagenes (Figure 5.15). Altogether, our analyses suggest
that HYFA-learned metagenes and factors are amenable to biological interpretation
and capture information about known regulators of tissue-specific gene expression.

Pathway enrichment analysis Similar to [257], we employ Gene Set Enrichment
Analysis (GSEA) [85] to relate HYFA’s metagene factors to known biological pathways.
This is advantageous to over-representation analysis (Chapter 2, section 2.2.3), which
requires selecting an arbitrary cutoff to select enriched genes. GSEA, instead,
computes a running sum of enrichment scores by descending a sorted gene list
[85, 257].
We apply GSEA to the gene loadings in HYFA’s encoder. Specifically, let Wj ∈ RF ×G

be the gene loadings for metagene j, where F is the number of factors (i.e. number of
hyperedge attributes) and G is the number of genes (Equation 5.1). For every factor
in Wj , we employ blitzGSEA [266] to calculate the running sum of enrichment scores
by descending the gene list sorted by the factor’s gene loadings. The enrichment
score for a query gene set is the maximum difference between phit(S, i) and pmiss(S, i)
[257], where phit(S, i) is the proportion of genes in S weighted by their gene loadings
up to gene index i in the sorted list [257]. We then calculate pathway enrichment
p-values through a permutation test (with n=100 trials) by randomly shuffling the
gene list. We use the Benjamini-Hochberg method to correct for multiple testing.
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Fig. 5.13 Top enriched transcription factors (TFs), ranked by the total num-
ber of metagene-factors in which the TFs were enriched (FDR < 0.05). For
every metagene (n=50) and factor (n=98), we performed Gene Set Enrichment
Analysis using the corresponding gene loadings of HYFA’s encoder and TF gene
sets from the TRRUST database of transcription factors (Enrichr library: TR-
RUST_Transcription_Factors_2019.
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Fig. 5.14 Circos plot of the top 9 enriched TFs (outer layer). The angular size is
proportional to the number of enrichments. The second layer (bar plot) depicts the
factor IDs where the TF was enriched, ranging from 0 (lowest bar) to 98 (higher bar).
The third layer shows the corresponding metagene IDs (blue dots) of the enriched
metagene-factors, increasing monotonically within the same factor. The edges in the
middle connect TFs whenever they are both enriched in the same factor (FDR < 0.05).
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5.3 Discussion
Effective multi-tissue omics integration promises a system-wide view of human phys-
iology, with potential to shed light on intra- and multi-tissue molecular phenomena.
Such an approach challenges single-tissue and conventional integration techniques —
often unable to model a variable number of tissues with sufficient statistical strength —
necessitating the development of scalable, non-linear, and flexible methods. Here we
developed HYFA (Hypergraph Factorisation), a parameter-efficient approach for joint
multi-tissue and cell-type gene expression imputation that imposes strong inductive
biases to learn entity-independent relational semantics and demonstrates excellent
imputation capabilities.

We performed extensive benchmarks on data from the Genotype-Tissue Expression
project (GTEx; [12]; v8 and v9), the most comprehensive human transcriptome
resource available, and evaluated imputation performance over a broad collection of
tissues and cell types. In addition to standard transcriptome imputation approaches,
we compared our method with TEEBoT [21], a linear method that predicts target
gene expression from the principal components of the reference expression. In the
single-tissue reference scenario, HYFA and TEEBoT attained comparable imputation
performance, outperforming standard methods. In the multi-tissue reference scenario,
HYFA consistently outperformed TEEBoT and standard approaches in all target
tissues, demonstrating HYFA’s capabilities to borrow non-linear information across a
variable number of tissues and exploit shared molecular patterns.

In addition to imputing tissue-level transcriptomics, we investigated the ability
of HYFA to predict cell-type-level gene expression from multi-tissue bulk expression
measurements. Through transfer learning, we trained HYFA to infer cell-type signatures
from a cohort of single-nucleus RNA-seq [215] with matching GTEx-v8 donors. The
inferred cell-type signatures exhibited a strong correlation with the ground truth
despite the low sample size, indicating that HYFA’s latent representations are rich
and amenable to knowledge transfer. Strikingly, HYFA also recovered cell-type profiles
from tissues that were never observed at transfer time, pointing to HYFA’s ability to
leverage gene expression programs underlying cell-type identity [267] even in tissues
that were not considered in the original study [215]. HYFA may also be used to
impute the expression of disease-related genes in a tissue of interest (Supplementary
Information D.15).

In post-imputation analysis, we studied whether the imputed data improves eQTL
discovery. We employed HYFA to impute the gene expression levels of every uncol-
lected tissue in GTEx-v8, yielding a complete dataset, and performed eQTL mapping.
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Compared to the original dataset, we observed a substantial gain in number of genes
with detected eQTLs, with kidney cortex showing the largest gain. The increase was
highest for tissues with low sample sizes, which are the ones expected to benefit the
most from knowledge sharing across tissues. Notably, HYFA’s detected eQTLs with
their target eGenes could be replicated using independent, single-tissue transcriptome
datasets that focus on depth, including the blood eQTLGen [245] and the brain frontal
cortex PsychENCODE [246] datasets. Moreover, we found a significant enrichment
for experimentally validated causal variants from the Massively Parallel Reporter
Assay ([247]) dataset. Our results uncover a large number of previously undetected
tissue-specific eQTLs and highlight the ability of HYFA to exploit shared regulatory
information across tissues.

Lastly, HYFA can provide insights on coordinated gene regulation and expression
mechanisms across tissues. We analysed to what extent tissues from the gastrointestinal
system are informative of gene expression in brain tissues — an important question that
may shed light on the biology of the brain-gut axis — and identified enriched biological
processes and molecular functions. Through Gene Set Enrichment Analysis [85], we
observed, among the HYFA-learned metagenes, a substantial amount of enriched
pathways, transcription factors, and known regulators of biological processes, opening
the door to biological interpretations. Future work might also seek to impose stronger
inductive bias to ensure that metagenes are identifiable and robust to batch effects.

We believe that HYFA, as a versatile graph representation learning framework, pro-
vides a novel methodology for effective integration of large-scale multi-tissue biorepos-
itories. The hypergraph factorisation framework is flexible (it supports k-uniform
hypergraphs of arbitrary node types) and may find application beyond computational
genomics.



Chapter 6

Neighbourhood-aware mapping of
tissue architectures in spatial
transcriptomics

Analysing the spatial organisation of cells within a tissue can shed light on fundamen-
tal biological processes, including intercellular communication [23] and organogenesis
[24], and mechanisms of diseases like cancer, diabetes, and autoimmune disorders [25–
27]. Spatial transcriptomics technologies have recently enabled gene expression profiling
in situ, but they often lack single-cell resolution, impeding fine-grained characterisation
of cellular heterogeneity and effective reconstruction of tissue architectures.

Computational approaches for cell-type deconvolution in spatial transcriptomics
offer a scalable solution to these challenges. These strategies often identify resident cell
types from the RNA sequencing of dissociated single cells, yielding cell-type-specific
gene expression signatures, and then infer the cell-type composition of every profiled
spot [269–271]. A cutting-edge method in this family is Cell2Location [96], a Bayesian
deconvolution approach that captures cell-type relationships through a hierarchical
model and handles technical sources of variation like differences in mRNA detection
sensitivity. Despite numerous benefits, however, existing deconvolution approaches
treat spots independently of each other.

In this chapter, we investigate whether incorporating spatio-relational information
leads to improved cell-type mapping. Building on the observation that neighbouring
spots often exhibit similar cell-type compositions (Figure 6.1), we extend Cell2Location

The research presented in this chapter has been conducted in collaboration with Paul Scherer
(equal contribution), Nikola Simidjievski, Mateja Jamnik, and Pietro Liò
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Fig. 6.1 Jensen-Shannon distance of cell-type proportions by spot distance in Xenium
dataset (breast cancer, convolved spots of size 50µm). Closer spots tend to exhibit
similar cell-type composition.
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Fig. 6.2 Neighbourhood enrichment analysis on the Xenium dataset (breast cancer).
The color legend is given by the y-axis of the neighbourhood heatmap. (left) Spatial
transcriptomics data colored by cell-type. (right) Neighbourhood enrichment z-scores
(red and blue indicate enrichment and depletion in the neighbourhood of nearest
neighbours, respectively). Cells from the same cell-type tend to co-locate (e.g. breast
cancer cells). Immune cells — including T cells, B cells, and macrophages — work in
conjunction to modulate the anti-cancer immune response [268]. Utilising relational
inductive biases could therefore enhance the effectiveness of spatial deconvolution
models, thereby improving the characterisation of tumor microenvironments at different
stages of cancer progression.
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(C2L) to incorporate spatial inductive biases. Our approach, named GNN-C2L, prop-
agates learnable messages on the proximity graph of spot transcripts, effectively
leveraging the spatial relationships between spots and exploiting the co-location of
cell-types (Figure 6.2). We conduct an extensive ablation study on synthetic and
real spatial transcriptomics datasets and show improved deconvolution performance
of GNN-C2L over spatial-agnostic variants. Altogether, our work leverages proximal
inductive biases to facilitate an enhanced reconstruction of tissue architectures. Our
code is publicly available at: https://github.com/paulmorio/GNN-C2L

6.1 Methodology

6.1.1 Problem formulation
Problem formulation Let D ∈ RS×G denote a count matrix of RNA reads captured
at S spots for G genes, using one or multiple batches (e.g. 10x Visium slides or Slide-seq
pucks). Let ds,g be the entry of this matrix with the number of reads for gene g in spot
s. Let C ∈ RF ×G denote a matrix of F reference cell-type signatures for the same set
of G genes (e.g. these signatures can be obtained from dissociated single-cell RNA-seq).
Denote by cf,g the expression of gene g in signature f . Given the count matrix D and
cell-type signatures C, our goal is to infer the cell-type composition X ∈ RS×F of
every spot.

6.1.2 Cell-type deconvolution with Cell2location
Cell2Location Our relational approach builds on Cell2Location [96], which models
the per-spot read counts D as Negative Binomial (NB) distributed:

ds,g ∼ NB(µs,g, αe,g),

where αe,g is an experiment- and gene-specific over-dispersion parameter and the
unobserved expression rate µs,g is modelled as a linear function of the reference cell-type
signatures cf,g:

µs,g =
(
mg ·

∑
f

ws,fcf,g + se,g

)
· ys,

where ws,f corresponds to the abundance of cell-type f at location s, mg is a scaling
parameter specific to gene g, se,g is an experiment- and gene-specific additive shift,

https://github.com/paulmorio/GNN-C2L
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and ys is the detection sensitivity at spot s. Cell2location further places a hierarchical
prior on ws,f to borrow statistical strength across groups of cell-types [96]. The priors
on the model’s parameters are described in full detail in the supplementary materials
of [96].

6.1.3 Incorporating spatio-relational inductive biases

Proximity graph of spotsSpatial transcriptomics on a tissue slice Spatial mapping of cell types 

+

Fig. 6.3 Overview of the GNN-C2L framework. We develop a method that resolves the
cell-type composition of every spot in a spatial transcriptomics dataset. In contrast to
existing methods, GNN-C2L leverages spatial information through a proximity graph
of spots. The right figure depicts the resolved cell-type abundances of three arbitrary
cell-types on a Visium dataset [96] as predicted by our method. Figure credits: Paul
Scherer, edited with permission.

GNN-C2L We propose a hierarchical model for cell-type composition inference that
incorporates proximal relationships between spots. Let N (s) be the set of neighbour
indices for spot s. This set of neighbours can be adapted to various spatial arrangements
(e.g. hexagonal neighbourhoods for 10X Visium data) and k-hop neighbourhoods.
To account for the neighbourhood information, we introduce a latent variable γs,f

representing the neighbour-aware cell-type abundances:

γs,f ∼ Gamma(κs,f , 1)
κs = ψ

(
ws, {{wj | j ∈ N (s)}}

)
,

where the shape parameter κs,f depends on the latent variables ws and {{wj | j ∈
N (s)}} of spot s and its neighbours through a transformation ψ(·). Unlike Cell2Location,
this effectively adds graphical dependencies between the neighbour-informed variables
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γs,f and the latent variables ws,f . Importantly, computing γs,f as a function of ws

allows capturing cell-type co-location patterns.
We then compute mean parameter µs,g of the Negative Binomial NB(µs,g, αe,g)

likelihood using the neighbour-aware cell-type abundances γs,f :

µs,g =
(
mg ·

∑
f

γs,fcf,g + se,g

)
· ys

For all parameters, we utilise the validated hierarchical priors and hyperpriors of
Cell2Location [96].

Incorporating spatial inductive biases The form of ψ(·) determines the induc-
tive biases of the model. In this study, we construct a proximity graph of spatially
localised spots, i.e. we consider physically adjacent spots, allowing for different spatial
arrangements (e.g. hexagonal neighbourhoods for 10X Visium data) and k-hop neigh-
bourhoods. We consider several graph neural network architectures for ψ(·), starting
with simple graph convolutional network [272] to validate whether homophily (brought
about by feature propagation) is a useful inductive bias, and introducing other GNN
operators to allow for a more expressive use of the available spatio-relational data.
We also consider a standard multi-layer perceptron as a baseline to assess whether
performance changes can be attributed to similarly parametrised spatial-agnostic
transformations. We next describe the alternatives for ψ in greater detail.

MLP-C2L As a spatial-agnostic control, we model ψ(·) with an MLP, i.e. κs =
MLP(ws), using a softplus activation function. This model does not utilise any spatial
relationships between the spots and, alongside Cell2Location, serves as a control for
our hypothesis.

SGC-C2L We construct a GNN-C2L variant using Simple Graph Convolutional
(SGC) layers [272, 273]. Let ds = |N (s)| be the node degree of spot s. A SGC layer
computes the neighbour-aware features κs using a weighted average of the latent
variables ws in the local neighbourhood:

κs = Linear(hs)

hs = 1
ds + 1ws +

∑
j∈N (s)

1√
(ds + 1)(dj + 1)

wj

The feature propagation mechanism biases the representations κs of neighbouring
spots to become more similar to each other, using a degree-normalised adjacency
matrix with self-loops. Thus, this simple MLP extension encourages homophilous
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latent cell-type distributions. Optionally, we can apply an activation function after the
linear transformation and stack several SGC layers to expand the receptive field.

GAT-C2L We increase the expressivity of ψ(·) by utilising graph attention net-
works, specifically GATv2 [221]. Unlike the constant, degree-dependant neighbouring
contribution in the SGC-C2L model, the GATv2-C2L variant employs a learnable
attention mechanism with increased control of contribution strengths, allowing to
capture both homophilic and cell-type co-location patterns:

κs = αs,sϕ(ws) +
∑

j∈N (s)
αs,jϕ(wj),

where ϕ is an MLP with a softplus activation function. We define the attention
coefficient αs,j as:

αs,j = exp e(ws,wj)∑
k∈N (s)∪{s} exp e(ws,wk)

e(ws,wj) = aT LeakyReLU(W [ws||wj]),

where || is the concatenation operation and a and W are learnable parameters shared
across spots, allowing the neural network to mix signals over the different cell types.

Training and inference We approximate the model parameters through variational
inference. For every latent variable, we use a univariate normal distribution to approxi-
mate the posterior and utilise a softplus activation to ensure a positivity. Minimisation
of the ELBO jointly trains the parameters of the model (and the incorporated GNNs)
as well as the variational distribution. After optimisation, we estimate the cell-type
abundances of every spot s by averaging γs,f over 1000 samples of the variational
distribution.

6.1.4 Experimental setup
We study whether incorporating spatial relationships via graph neural networks leads
to enhanced cell-type mapping.

Datasets To quantitatively benchmark the baselines, we utilised a synthetic dataset
introduced in Cell2Location [96] for which we knew the true cell-type abundances of
each spot. The construction of this dataset is detailed extensively in [96]. Moreover,
we evaluated the methods using two real datasets, MPOA [274] and Xenium (breast
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cancer) [275], that have single-cell resolution (yet fewer genes are profiled). To simulate
real spots, we divided the tissues into squared spots of size 100µm and summed the
expression of all cells within every square. For the Xenium and MPOA datasets, we
constructed the cell-type signatures by averaging the read counts of all cells from every
given cell-type.

Hyperparameter settings We used the same hyperparameters for every baseline
where applicable. We set the hidden dimensions of each layer to 64 and used a single
GNN layer (i.e. 1-hop receptive field). We conducted an ablation study using more
graph layers in Supplementary Information E. We minimised the variational lower
bound using Adam [187] with learning rate of 0.001 for 25,000 epochs in all datasets.

Evaluation metrics For all datasets we assessed performance using the average
Pearson R correlation, Jensen-Shannon Divergence (JSD), and the area under precision-
recall curve (AUPRC) (macro-averaged over cell-types) between the ground-truth and
inferred cell-type proportions. We computed Pearson R over the flat ground-truth and
inferred cell-type proportions. We calculated the Jensen-Shannon Divergence between
the per-spot ground-truth and inferred cell-type proportions. We binarised the true
cell abundance matrix to show which cell types were present in which locations, and
then used the inferred cell-type proportions to compute the AUPRC.

6.2 Results and discussion
We benchmark spatial-agnostic (Cell2location, GNN-C2L MLP) and spatial-aware GNN-
C2L (SGC, GAT) baselines on simulated and semi-simulated (MPOA and Xenium)
spatial transcriptomics data (Table 6.1).

Results on simulated dataset We studied deconvolution performance on the
synthetic data over: 1) ALL: all cell types, 2) ubiquitious high cell abundance (UHCA):
3 high-abundance cell types spatially distributed in uniform manner across the tissue,
3) ubiquitious low cell abundance (ULCA): 5 low-abundance cell types spatially
distributed in uniform manner across the tissue, 4) regional high cell abundance
(RHCA): 9 cell types with local distribution patterns, i.e. cell types cluster in specific
locations with high abundance and exhibit 0 abundance elsewhere, 5) regional low cell
abundance (RLCA): 32 low-abundance cell types that have local distribution patterns.
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Table 6.1 Average Pearson R, Avg. Jensen Shannon divergence (JSD), and AUPRC
scores and standard deviation of 5 seeded runs of each model over all spots. For the
synthetic dataset, scores for subcategories of cell types exhibiting distinct cell abundance
patterns are also provided. Bold numbers indicate best-performing method for each
category of cell types being evaluated for each metric. Overall, the GNN-C2L spatial-
aware variants attained equal or superior deconvolution scores than spatial-agnostic
baselines. Table credit: Paul Scherer.

Simulated Semi-simulated
Method ALL UHCA ULCA RHCA RLCA MPOA Xenium Metric

Cell2location 0.683 ± 0.002 0.882 ± 0.001 0.519 ± 0.007 0.836 ± 0.004 0.422 ± 0.003 0.929 ± 0.001 0.928 ± 0.002

R
GNN-C2L (MLP) 0.672 ± 0.024 0.866 ± 0.008 0.661 ± 0.021 0.865 ± 0.007 0.404 ± 0.040 0.920 ± 0.005 0.929 ± 0.000
GNN-C2L (SGC) 0.699 ± 0.023 0.876 ± 0.008 0.708 ± 0.020 0.883 ± 0.006 0.439 ± 0.041 0.936 ± 0.001 0.928 ± 0.000
GNN-C2L (GAT) 0.737 ± 0.013 0.885 ± 0.018 0.695 ± 0.032 0.888 ± 0.004 0.492 ± 0.032 0.936 ± 0.001 0.928 ± 0.000

Cell2location 0.468 ± 0.001 0.202 ± 0.002 0.496 ± 0.001 0.421 ± 0.002 0.509 ± 0.001 0.204 ± 0.001 0.213 ± 0.005

Avg. JSDGNN-C2L (MLP) 0.457 ± 0.006 0.230 ± 0.012 0.473 ± 0.007 0.387 ± 0.006 0.503 ± 0.009 0.199 ± 0.004 0.211 ± 0.001
GNN-C2L (SGC) 0.446 ± 0.006 0.224 ± 0.011 0.460 ± 0.007 0.368 ± 0.005 0.493 ± 0.009 0.189 ± 0.001 0.211 ± 0.001
GNN-C2L (GAT) 0.435 ± 0.003 0.209 ± 0.021 0.458 ± 0.014 0.369 ± 0.001 0.482 ± 0.006 0.188 ± 0.001 0.212 ± 0.000

Cell2location 0.591 ± 0.003 0.932 ± 0.006 0.477 ± 0.005 0.783 ± 0.003 0.591 ± 0.003 0.956 ± 0.001 0.873 ± 0.003

AUPRCGNN-C2L (MLP) 0.675 ± 0.002 0.963 ± 0.006 0.590 ± 0.004 0.804 ± 0.004 0.675 ± 0.002 0.951 ± 0.001 0.883 ± 0.001
GNN-C2L (SGC) 0.719 ± 0.002 0.977 ± 0.004 0.646 ± 0.006 0.861 ± 0.001 0.719 ± 0.002 0.955 ± 0.000 0.884 ± 0.000
GNN-C2L (GAT) 0.722 ± 0.002 0.978 ± 0.004 0.664 ± 0.004 0.858 ± 0.003 0.722 ± 0.002 0.952 ± 0.001 0.884 ± 0.000

Overall, GNN-C2L consistently outperformed the spatial-agnostic baselines on the
synthetic data (Table 6.1). We observed a marked increase in performance through the
utilisation of proximal relations across different metrics and subtasks. Spatial-aware
baselines achieved the best scores in 13 out of 15 cases, especially for cell types with
low cell abundance (ULCA and RLCA). The performance difference was particularly
apparent from the overall scores of the MLP variant of GNN-C2L (ALL R: 0.672±0.024,
JSD: 0.457 ± 0.006, AUPRC: 0.675 ± 0.002) and GNN-C2L SGC (ALL R: 0.699 ± 0.023,
JSD: 0.446 ± 0.006, AUPRC: 0.719 ± 0.002) — both baselines utilised the same amount
of learnable parameters, yet only GNN-C2L (SGC) propagates information across
spots. It is also worth noting that using additional parameters may result in degraded
performance, i.e. compared to Cell2Location (ALL R : 0.683±0.002), GNN-C2L (MLP)
attained reduced Pearson R correlation and increased variance (ALL R : 0.672 ± 0.024).
Altogether, our results highlight the superior ability of GNN-C2L to perform cell-type
deconvolution.

Results on semi-simulated datasets In performance comparison on the semi-
simulated datasets (MPOA and Xenium), the spatial-aware GNN-C2L variants achieved
equal or better deconvolution performance than the spatial-agnostic baselines (Table
6.1). On MPOA, all baselines performed well — it is worth noting that this is
a considerably smaller dataset with larger spot sizes (per-spot average of 18 cells)
compared to the synthetic (∼9 cells per spot) and Xenium (∼10 cells per spot) datasets.
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This may have an effect on the specificity of the transcript readings as well as the
usefulness of local information considering the size of micro-architectures in the tissue.
We observed that GAT-C2L had the best scores in 2 out of 3 metrics (R: 0.492 ± 0.032,
JSD: 0.188±0.001), while Cell2Location was superior in terms of AUPRC (0.956±0.001).
In the Xenium dataset, all baselines attained comparable results (e.g. Cell2location
R: 0.928 ± 0.000, GAT R: 0.928 ± 0.000; Cell2location AUPRC: 0.873 ± 0.003, MLP
AUPRC: 0.883 ± 0.001, SGC AUPRC: 0.884 ± 0.000).

Conclusion In this chapter, we introduced an approach for spatial cell-type deconvo-
lution. Our method (GNN-C2L), builds on Cell2Location [96] to predict the per-spot
cell-type composition in spatial transcriptomic datasets lacking single-cell resolution.
In contrast to Cell2Location (spatial-agnostic), GNN-C2L incorporates inductive biases
to predict neighbourhood-aware cell-type abundances at every spot, which enables
capturing homophilic and cell-type co-location patterns. In performance comparison,
GNN-C2L achieved comparable or improved deconvolution performance on simulated
and semi-simulated datasets with ground-truth information. Collectively, our results
suggest that spatial deconvolution can benefit from spatio-relational inductive biases,
with potential for an enhanced reconstruction of tissue architectures.

Broader impact Characterising molecular information in the spatial domain can
greatly enhance our understanding about cell-cell communication and coordination to
attain high-level functions within a tissue (e.g. brain function [276]) and fight diseases
(e.g. the role of immune cells in cancer [268]). As spatial technologies continue to
develop, computational approaches for modelling spatial transcriptomics will likely
find application in clinical diagnosis and personalised treatment of diseases [277].
From a modelling standpoint, leveraging proximity networks of cells, as done in this
chapter through spatio-relational inductive biases, might allow us to uncover spatially
sensitive biomarkers and detect disease-specific signaling events [278], potentially
leading to improved diagnosis, prognosis, and treatments.





Chapter 7

Conclusions

In this thesis, we have developed computational methods for modelling gene expression
data, focusing on its tissue-specificity and enabling several downstream applications.
These include the generation of transcriptomic data in-silico, gene expression impu-
tation from a subset of measured genes and across multiple collected tissues, and
characterisation of tissue architectures using spatial transcriptomics. This chapter
summarises the main contributions of the dissertation and highlights further avenues
for future work in this domain.

7.1 Summary of contributions
The main contributions of the dissertation are:

• In Chapter 3, we developed a generative model of transcriptomic data based on
Wasserstein generative adversarial networks with gradient penalty (WGAN-GP) [18].
We studied the degree of realism of the in-silico generated data in two transcriptomic
datasets, including an Escherichia coli (E. coli) dataset (an organism for which
regulatory interactions are well-characterised) and a multi-tissue expression dataset
consisting of healthy and cancer samples. We evaluated several key properties of
gene expression (e.g. clustering patterns and regulatory interactions) and found
that, in contrast to existing simulators of gene expression, WGAN-GP faithfully
preserved these patterns. We further utilised this method to generate tissue-specific
gene expression data of the synthetic individuals in two conditions (healthy and
cancer) and recapitulated several cancer biomarkers through a sensitivity analysis.

• In Chapter 4, we introduced two computational models for the imputation of gene
expression within a single tissue, studying whether the full transcriptome can be
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recovered from smaller subsets of genes with minimal reconstruction error. The
first method, pseudo-mask imputation (PMI), is a self-supervised technique that
dynamically imputes the expression of a subset of pseudo-missing genes as a function
of the remaining observed genes. The second model, GAIN-GTEx, is based on
generative adversarial imputation networks [184]. We benchmarked performance
in two case studies (protein-coding genes and genes from the Alzheimer’s disease
pathway) and two imputation scenarios (inductive and in-place imputation) across
a broad collection of tissues. We showed that the proposed approaches compared
favourably to standard and state-of-the-art imputation techniques, both in terms of
imputation performance and runtime. We also evaluated the imputation capabilities
on transcriptomic data from 3 independent cancer datasets and observed strong
generalisation across varying levels of missingness.

• In Chapter 5, we presented Hypergraph Factorisation (HYFA), a parameter-efficient
graph representation learning approach for multi-tissue gene expression imputation.
HYFA imputes tissue-specific gene expression via a specialised graph neural network
operating on a hypergraph of individuals, metagenes, and tissues. HYFA is genotype-
agnostic, supports a variable number of collected tissues per individual, and imposes
strong inductive biases to leverage the shared regulatory architecture of tissues.
In performance comparison, HYFA achieved superior performance over existing
transcriptome imputation methods, especially when multiple reference tissues were
available. Through transfer learning on a paired single-nucleus RNA-seq (snRNA-
seq) dataset, we further showed that HYFA can resolve cell-type signatures from
bulk gene expression, highlighting the method’s ability to leverage gene expression
programs underlying cell-type identity, even in tissues that were never observed
in the training set. Using Gene Set Enrichment Analysis, we found that the
metagenes learned by HYFA capture information about known biological pathways.
Notably, the HYFA-imputed dataset generated a large catalog of new tissue-specific
expression Quantitative Trait Loci (eQTLs). HYFA’s detected eQTLs could also be
replicated in independent datasets and were enriched for experimentally-validated
causal variants.

• In Chapter 6, we studied the spatial deconvolution problem. Given a spatial
transcriptomic dataset where gene expression is profiled in-situ but not at single-
cell resolution, the goal is to infer cell-type abundances at each spatial location
of the tissue. Several techniques have been proposed to address this problem
[269–271, 96], but existing approaches treat neighbouring spots independently
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of each other. To address this limitation, we extended the Cell2location [96]
methodology by incorporating spatio-relational inductive biases that allow estimation
of cell-type abundances in a neighbour-aware manner. Our approach, named GNN-
C2L, propagates learnable messages on the proximity graph of spots, effectively
leveraging the spatial relationships between spots and exploiting the co-location
of cell-types. We conducted an extensive ablation study on synthetic and real
spatial transcriptomics datasets and showed improved deconvolution performance
of GNN-C2L over spatial-agnostic variants. We believe that accounting for spatial
inductive biases may facilitate an enhanced reconstruction of tissue architectures.

7.2 Future work
The rapid technical advances and declining costs of sequencing technologies will
generate an unprecedented amount of omics data across multiple tissues and cell-
types, accompanied by novel methodological problems and opportunities. Some of
the broad methodological challenges include integrating heterogeneous omics data
across modalities [3, 4], tissues [2, 5], experimental settings [6], and species [7]; dealing
with high-dimensional data in combination with a scarce number of labelled samples
[8]; imputing missing or unreliable values [2]; identifying causal relationships rather
than mere statistical associations [279]; generalising under distribution shifts [280];
ensuring algorithmic fairness [281]; validating and benchmarking computational tools
in a systematic way [1]; and interpreting deep learning models [9]. In particular, some
promising avenues for further research and innovations are:

• Transcriptome-wide association studies. Genome-wide association studies
(GWAS) have identified thousands of genetic variants associated with complex traits,
including mental disorders like Alzheimer’s disease [282] and physical diseases like
coronary artery disease [283]. GWAS can predict disease susceptibility based on
rare mutations and may soon be used in clinical settings [284, 285], but inferring
causal variants is complicated from GWAS studies alone [279, 285]. Transcriptome-
wide association studies (TWAS) aim to narrow down the large pool of genomic
variants identified in GWAS by considering the individuals’ transcriptomes, which
constitute the intermediate step between their genetic information and complex
traits. TWAS first trains a model that predicts expression from the genotype on a
reference dataset (e.g. GTEx), then applies the model to individuals of the GWAS
cohort, and finally identifies associations between the predicted expression and
the phenotype [279]. However, one of the main issues of TWAS studies is tissue
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bias — where the TWAS tissue is not mechanistically related to the complex trait
[279], e.g. due to a low-sample size of the mechanistically related tissue. In this
case, multi-tissue gene expression imputation approaches such as HYFA [5], which
leverage the shared regulatory architecture of tissues, may be used to impute the
uncollected samples in the tissue of interest.

• Predicting the effect of genetic perturbations. Reasoning about causal
relationships requires going beyond traditional statistics. In the standard statistical
framework, the joint probability distribution from which the data is drawn is
assumed to be static, that is, the conditions under which the data is generated do
not vary across observations. While this allows us to describe associations between
genes, it fails to capture dynamic properties of the world, such as how the behavior
of a particular gene changes when an unexpected agent intervenes another gene.
This latter case concerns a causal relationship that cannot be described merely as a
conditional probability distribution. The difference between the static and dynamic
scenario corresponds to the basic distinction of causality [286]. Recent advances
in gene editing techniques (e.g. CRISPR [287]) have enabled the generation of
interventional transcriptomic data [288] with broad applications. Methods that can
predict the transcriptional effect of genetic perturbations may play a pivotal role
in the elucidation of tissue- and cell-type-specific gene regulatory interactions, the
discovery of disease mechanisms, and the development of personalised drugs [289].

• Personalised medicine and digital twins in healthcare. Our ability to
measure the molecular characteristics of an individual opens the door to promising
applications in personalised medicine [290], that is, the diagnosis, prevention, and
treatment of diseases in a way that is optimally tailored to each individual. As
multi-omic technologies become cheaper and more scalable, collecting longitudinal
omics information will allow monitoring of the physiological state of individuals [290]
and characterising dysregulated processes [291]. Methods that integrate molecular
and physiological information may give rise to the first generation of digital twins
in healthcare, providing a system-wide view of human physiology across multiple
organs [5] and scales [31]. This may allow experimenting with multiple personalised
therapies and predicting disease trajectories in a minimally invasive and cost-effective
way [31]. Alternatively, integration of omics datasets with large perturbational
datasets [292] could enable personalised treatment recommendations based on the
individuals’ molecular characteristics.
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• Single-cell data integration and foundation methods. Global efforts such as
the human cell atlas [49] and the mouse cell atlas [293] have created comprehensive
maps of cells under different conditions and in multiple tissues and organisms. These
efforts can increase our understanding of cell biology [7] and life’s most fundamental
principles [49], but demand novel methodological advances. Single-cell data is known
to be substantially noisy and susceptible to batch effects, and technical sources
of variation may act as confounders for the true biological signal, limiting our
ability to identify population-level differences. Furthermore, independent studies
might profile different sets of genes in different cell populations, which complicates
downstream analyses. Thus, flexible methods that can integrate single-cell data
across different gene sets [294], experimental settings [6], omics modalities [295],
and species [7] will facilitate the joint analysis of millions of cells, with potential to
characterise biological processes [49], unravel regulatory networks across genes [294]
and omics layers [295], discover novel cell-types [296], and accelerate the discovery
of therapeutic targets [294].
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Supplementary Information A

Generative models

A.1 ELBO derivation
To derive the ELBO, we first expand the log likelihood via the marginalisation rule
and introduce an auxiliary, variational distribution qϕ:

log pθ(x) = log
∑

z
pθ(x, z)

= log
∑

z

qϕ(z|x)
qϕ(z|x)pθ(x, z)

= logEqϕ(z|x)

[
pθ(x, z)
qϕ(z|x)

]

Since the logarithm is a concave function, we can use the Jensen’s inequality
log(E[·]) ≥ E[log(·)] [297] to move the logarithm inward, obtaining the evidence lower
bound LELBO:

log pθ(x) ≥ Eqϕ(z|x)

[
log pθ(x, z)

qϕ(z|x)

]
= LELBO

Finally, we rewrite the ELBO in its standard form as follows:

LELBO = Eqϕ(z|x)

[
log pθ(x|z)pθ(z)

qϕ(z|x)

]

= Eqϕ(z|x)[log pθ(x|z)] − Eqϕ(z|x)

[
log qϕ(z|x)

pθ(z)

]
= Eqϕ(z|x)[log pθ(x|z)] − KL

(
qϕ(z|x)||pθ(z)

)
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A.2 Generative adversarial imputation nets
An interesting adaptation of the GAN framework that I studied for the purpose of
imputing missing data are Generative Adversarial Imputation Nets (GAINs; [184]).
In this framework, the generator imputes the missing components of the input based
on the observed values, while the discriminator takes imputed samples as input and
attempts to distinguish whether each component has been observed or produced by
the generator. This is in contrast to the original GAN discriminator, which receives
information from two input streams (generator and data distribution) and attempts to
distinguish the true input source.

The generator aims at implicitly estimating the distribution Px|x̃,m, representing
the probability of x given a binary mask of missing components m and a noisy view of
x, which we denote as x̃, wherein the missing components have been masked out (e.g.
x̃ = x ⊙ m). Therefore, its role is not only to impute missing components, but also to
reconstruct the observed inputs. Let n be the number of input variables. Formally, the
generator is a function Gθ : Rn ×Rn × {0, 1}n → Rn that produces a vector of imputed
values x̄ as follows:

x̄ = Gθ(x ⊙ m, z ⊙ (1 − m),m),

where the noise vector z is masked as z⊙(1−m) to encourage a bijective association
between noise components and input variables. Before passing the output x̄ to the
discriminator, [184] replace the prediction for the non-missing components by the
original, observed values:

x̂ = m ⊙ x̃ + (1 − m) ⊙ x̄

The discriminator takes the imputed samples x̂ and attempts to distinguish whether
the expression value of each gene has been observed or produced by the generator.
Formally, the discriminator is a function Dω : Rn × Rn → [0, 1]n that outputs the
probabilities ŷ of each value being observed as opposed to being imputed by the
generator:

ŷ = Dω(x̂,h)

Here, the vector h ∈ Rn corresponds to the hint mechanism described in [184],
which provides theoretical guarantees on the uniqueness of the global minimum for
the estimation of Px|x̃,m. Concretely, the role of the hint vector h is to leak some
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information about the mask m to the discriminator. The hint h is defined as follows:

h = b ⊙ m + 1
2(1 − b) b ∼ B(1, p), (A.1)

where b ∈ {0, 1}n is a binary vector sampled from a Bernoulli distribution B(1, p) with
probability p, which controls the amount of information from the mask m revealed to
the discriminator. The model is optimised via the following minimax game:

min
θ

max
ω

E
x,m∼Pr,b∼B(1,p),z∼Pz

[
m⊤ log ŷ + (1 − m)⊤ log

(
1 − ŷ

)]





Supplementary Information B

In-silico generation of tissue-specific
gene expression

B.1 Example dendrogrammatic distances
The coefficient γ(C(DX), C(DZ)) does not necessarily correlate well with γ(DX ,DZ).
Consider for example the distance matrices:

DX =


0 2 10
2 0 3
10 3 0

 DZ =


0 3 10
3 0 2
10 2 0

 (B.1)

The dendrogrammatic distance matrices C(DX) and C(DZ) resulting from agglomera-
tive hierarchical clustering with complete linkage are:

C(DX) =


0 2 10
2 0 10
10 10 0

 C(DZ) =


0 10 10
10 0 2
10 2 0

 (B.2)

And the coefficients γ(DX ,DZ) = 0.97 and γ(C(DX), C(DZ)) = −0.5 are substan-
tially different. Figure B.1 illustrates these dendrograms.

B.2 SynTReN validation scores
We selected the noise hyperparameters that optimise the Sdist score on the train set.
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0 1 2
(a) Dendrogram for
C(DX)

0 1 2
(b) Dendrogram for
C(DZ)

Fig. B.1 Dendrograms resulting from agglomerative hierachical clustering with complete
linkage for the distance matrices DX and DZ defined in equation B.1. Note that
γ(DX ,DZ) = 0.97, but γ(C(DX), C(DZ)) = −0.5 because the dendrograms’ structures
are substantially different.

B.3 GeneNetWeaver validation scores
We produced multifactorial experiments using the default settings for the DREAM4
network inference challenge (http://gnw.sourceforge.net/dreamchallenge.html).
We selected the noise term that optimise the Sdist score on the train set.

http://gnw.sourceforge.net/dreamchallenge.html
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Table B.1 Validation scores for different configurations of the SynTReN noise hyperpa-
rameters

Biological noise Experimental noise Sdist Sdend STF−TG STG−TG
0.0 0.0 0.0370 0.0221 0.1705 0.2438
0.0 0.1 0.0364 0.0239 0.1794 0.2433
0.0 0.2 0.0351 0.0281 0.1910 0.2430
0.0 0.5 0.0300 0.0307 0.2131 0.2312
0.0 0.8 0.0267 0.0273 0.2158 0.2101
0.1 0.0 0.0384 0.0330 0.1842 0.2531
0.1 0.1 0.0379 0.0312 0.1888 0.2522
0.1 0.2 0.0363 0.0263 0.1967 0.2507
0.1 0.5 0.0311 0.0286 0.2129 0.2373
0.1 0.8 0.0276 0.0238 0.2166 0.2156
0.2 0.0 0.0399 0.0315 0.1963 0.2666
0.2 0.1 0.0394 0.0363 0.1984 0.2653
0.2 0.2 0.0381 0.0313 0.2027 0.2626
0.2 0.5 0.0332 0.0323 0.2126 0.2472
0.2 0.8 0.0295 0.0287 0.2155 0.2247
0.5 0.0 0.0448 0.0492 0.2035 0.2842
0.5 0.1 0.0447 0.0446 0.2043 0.2831
0.5 0.2 0.0441 0.0422 0.2060 0.2803
0.5 0.5 0.0411 0.0440 0.2118 0.2654
0.8 0.0 0.0498 0.0536 0.2001 0.2784
0.8 0.1 0.0498 0.0475 0.2000 0.2779
0.8 0.2 0.0495 0.0504 0.2007 0.2764
0.8 0.5 0.0476 0.0495 0.2049 0.2669
0.8 0.8 0.0449 0.0417 0.2116 0.2521

Table B.2 Validation scores for different configurations of the GNW noise hyperparam-
eter

Noise term Sdist Sdend STF−TG STG−TG
0 0.0569 0.0344 0.1591 0.1876

0.05 0.0605 0.0329 0.1596 0.1929
0.1 0.0645 0.0236 0.1828 0.2068
0.2 0.0508 0.0309 0.2112 0.2036
0.5 0.0454 0.0211 0.1953 0.1851
0.8 0.0298 0.0087 0.2147 0.1394
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B.4 Supplementary figures

Fig. B.2 Clustering E. coli gene expression data for the E. coli M3D dataset (CRP
hierarchy).

Fig. B.3 Clustering E. coli gene expression data for the dataset generated with the
GAN on the CRP hierarchy.
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Fig. B.4 Distribution of gene intensities.

Fig. B.5 Distribution of gene expression ranges.

Fig. B.6 Background distribution of the Pearson’s correlation coefficients between all
pair of genes for SynTReN, GNW, and GAN.
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Fig. B.7 Histogram of TF-TG interactions. It shows to what extent TF-TG pairs are
enriched (> 0) or depleted (< 0) with respect to the background distribution.

Fig. B.8 Histogram of TF-TG interactions (including SynTReN and GNW). It shows
to what extent TF-TG pairs are enriched (> 0) or depleted (< 0) with respect to the
background distribution.
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Fig. B.9 Histogram of TG-TG interactions. It shows to what extent TG-TG pairs are
enriched (> 0) or depleted (< 0) with respect to the background distribution.

Fig. B.10 Histogram of TG-TG interactions (including SynTReN and GNW). It shows
to what extent TG-TG pairs are enriched (> 0) or depleted (< 0) with respect to the
background distribution.
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Fig. B.11 Histograms of the TF activity (including SynTReN and GNW). They are
formed by computing the fraction of samples in which TF targets exhibit rank differences
with respect to other non TF targets, according to a two-sided Mann-Whitney rank
test. These tests are corrected with the Benjamini-Hochberg’s procedure in order to
account for multiple testing and reduce the false discovery rate.

Fig. B.12 Background distribution of sample correlations. This plot allows us to check
whether “mode collapse” occurs. Mode collapse is a well-known problem of GANs
where the generator outputs samples from a few, limited set of modes that are realistic
to the critic. In the extreme case, the generator would always output the same sample
and therefore all the sample pairwise correlations would be close to one.
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B.5 Table of enriched Gene Ontology terms per
cluster

The following table shows the enriched Gene Ontology terms for each pair of matching
clusters in Figure 3. For each cluster, we show the enriched terms with a family-wise
error rate (FWER) smaller than 0.05. Gene Ontology terms highlighted in bold have a
FWER < 0.05 in both matching clusters. We used the R package GOfuncR [134].
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Supplementary Information C

Intra-tissue imputation of gene
expression

C.1 Observations about GAIN’s adversarial loss
We implemented the adversarial loss of Generative Adversarial Imputation Networks
(GAIN) as described in the GAIN paper [184]. Our implementation can be found
at: https://github.com/rvinas/GAIN-GTEx. Our results show that the effects of
the adversarial loss on the R2 imputation scores are small or negligible. We have
investigated this issue in great detail and our observations are the following:

• One hypothesis is that the dimensionality of the gene expression data might be
too high for GAIN. This was also discussed in a Github issue (https://github.
com/jsyoon0823/GAIN/issues/9). For the Alzheimer’s disease pathway case
study (273 genes) and the in-place scenario, including the adversarial term seems
to yield a small improvement in the R2 scores. Nonetheless, the scores are fairly
similar for the other scenarios.

• The weights for the adversarial and mean squared error (MSE) terms might not
be properly adjusted. However, when we set the MSE weight to 0, the model
failed to converge and the R2 results were very poor. Without the MSE loss,
the training was unstable in all our experiments. Additionally, as described in a
Github issue (https://github.com/jsyoon0823/GAIN/issues/8), decreasing
the weight of the MSE term (e.g., from 1 to 0.1) leads to slower convergence.

• The adversarial loss might be incompatible with certain features of the model or
hyperparameter configurations. However, different hyperparameters (including

https://github.com/rvinas/GAIN-GTEx
https://github.com/jsyoon0823/GAIN/issues/9
https://github.com/jsyoon0823/GAIN/issues/9
https://github.com/jsyoon0823/GAIN/issues/8
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batch normalisation, dropout, and number of hidden units per layer) led to a
similar performance with and without adversarial loss.

• The discriminator and generator might need to be well balanced, that is, the
discriminator might require more gradient updates to learn useful representations
of the data. This idea was also discussed in a Github issue (https://github.
com/jsyoon0823/GAIN/issues/17), where it is also argued that the model is
very sensitive to different hyperparameter configurations. However, after several
experiments (e.g., we trained the discriminator more often than the generator),
we did not observe significant improvements relative to using the MSE loss
exclusively.

For the purpose of reproducibility, as the gains of the adversarial loss appear to
be small or negligible given our observations, we recommend training GAIN-GTEx
without the adversarial term.

C.2 Scalability analysis for MissForest
Figures C.1 and C.2 show the runtime of a single iteration of the MissForest algorithm
[193] as we vary the number of samples and genes. We fixed the number of trees to 3
and the maximum depth per tree to 3.

Figure C.3 shows the runtime of MissForest for a subset as we vary the number of
estimators (trees). Importantly, we selected a subset of 273 genes from the Alzheimer’s
disease pathway and kept all samples.

We kept all the non-specified hyperparameters to their default values. Our imple-
mentation is based on Python 3.7.6 and the library missingpy. We ran the algorithm
with 10 concurrent jobs.

C.3 Scalability analysis for MICE
Figures C.4 and C.5 show the runtime of a single iteration of the MICE algorithm
[192] as we vary the number of genes and samples.

We kept all the non-specified hyperparameters to their default values. Our im-
plementation is based on Python 3.7.6 and the library sklearn [298], in particular
sklearn.impute.IterativeImputer.

https://github.com/jsyoon0823/GAIN/issues/17
https://github.com/jsyoon0823/GAIN/issues/17
missingpy
sklearn
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
sklearn.impute.IterativeImputer
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Fig. C.1 Runtime of a single iteration of the MissForest algorithm [193] as we vary the
number of samples.
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Fig. C.2 Runtime of a single iteration of the MissForest algorithm [193] as we vary the
number of genes.
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Fig. C.3 Runtime of MissForest algorithm [193] as we vary the number of trees. We
ran the algorithm using all the samples on a subset of 273 trees from the Alzheimer’s
disease pathway.
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Fig. C.4 Runtime of a single iteration of the MICE algorithm [192] as we vary the
number of genes.
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Fig. C.5 Runtime of a single iteration of the MICE algorithm [192] as we vary the
number of samples.

All genes Alzheimer
PMI In-place Inductive In-place Inductive
Alpha α 0.5 0.5 0.6 0.5
Beta β 0.9 0.5 0.9 0.5
Learning rate 0.0001 0.0001 0.001 0.001
Dropout probability 0 0.2 0 0.2
Number of layers 2 1 3 2
Hidden dimensionality per-layer 1366 3072 1383 1531

C.4 PMI hyperparameters
Figure C.6 shows the validation MSE for different configurations of hyperparameters of
PMI. We optimise the model using wandb [299]. We report the selected hyperparameters
for each scenario in the following table:

C.5 GAIN hyperparameters
Figure C.7 shows the validation MSE for different configurations of hyperparameters
of GAIN-GTEx. We optimise the model using wandb [299]. We report the selected
hyperparameters for each scenario in the following table:

wandb
wandb
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Fig. C.6 Exploration of the hyperparameter space for PIM on the subset of genes
from the Alzheimer’s disease pathway (in-place mode). The score axis shows the mean
squared error on an independent validation set.

Fig. C.7 Exploration of the hyperparameter space for GTEx-GAIN on the subset of
genes from the Alzheimer’s disease pathway (inductive mode). The score axis shows
the mean squared error on an independent validation set. In our experimentation we
note that the model is fairly sensitive to the dimensionality of the hidden layers. On
one hand, a small value leads to underfitting. On the other hand, a large value allows
the model to trivially copy-paste the expression of the observed components.
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All genes Alzheimer
GAIN-GTEx In-place Inductive In-place Inductive
Learning rate 0.001 0.001 0.001 0.001
Dropout probability 0 0.2 0.4 0.4
Number of layers 1 4 3 3
Hidden dimensionality per layer 2403 1902 296 296

Regarding the output activation of GAIN, we leverage a linear and a sigmoid
activation functions for the generator and discriminator, respectively. The linear
activation ensures that the range of the output expression is unrestricted. We model
both the generator and discriminator as MLPs with 4 hidden layers (2403 units each).
In terms of the hyperparameter λ to trade off the adversarial and reconstruction losses
of the generator, we find that setting λ = 1 yields good results in all settings.

Mask and hint generation. At training time, for each training example, we
sample the mask vector m from a Bernoulli distribution B(1, p) parameterised by a
random probability p = 0.5. To generate the hint vector h, we sample b from B(1, p),
where p = 0.5.

C.6 Supplementary figures
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Fig. C.8 PMI R2 imputation scores per tissue across missing rate for 3 TCGA cancer
types and their healthy counterpart in GTEx. The shaded area represents one standard
deviation of the per-gene R2 scores in the corresponding tissue. The greater the rate
of missingness, the lower the performance.
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Fig. C.9 Per-gene imputation R2 scores. We rank all the genes according to the average
R2 imputation scores across tissue types. We select the top 30 and last 30 genes.
Interestingly, most of the best imputed genes are RPLs (L ribosomal proteins), which
are known to be well conserved both evolutionarily and across tissue types.
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Fig. C.10 Top enriched KEGG pathways for over-representation analysis of the top 100
best-imputed genes. Interestingly, we note that most of the best-imputed genes are
RPLs (L ribosomal proteins), which are generally well-conserved evolutionarily and
across tissue types.
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Fig. C.11 Heatmap of the gene-pathway associations for the top 100 imputed genes
and the enriched KEGG pathways. Interestingly, we note that most of the best-
imputed genes are RPLs (L ribosomal proteins), which are generally well-conserved
evolutionarily and across tissue types.
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Fig. C.12 Network generated from the per-tissue R2 scores (PMI; Alzheimer Pathway).
For each pair of tissue types, we compute the Pearson’s correlation coefficient between
the tissue-specific vectors of per-gene R2 scores. We then filter out the edges whose
correlation is lower than an arbitrary threshold. This plot shows that the R2 scores
carry information about the tissue type and that the same genes in similar tissue types
have similar R2 scores.
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Multi-tissue imputation of gene
expression

D.1 HYFA’s computational complexity
Let N be the number of individuals, T the total number of tissues, and M the number
of metagenes. If we consider a 3-uniform hypergraph of individuals, tissues, and
metagenes, the number of nodes is O(N + T + M) and the number of hyperedges
is O(N ∗ T ∗ M). The time complexity of every step of HYFA’s message passing
computation (Methods) for a single head is:

• Message computation: O((N ∗ T ∗M) ∗ d′ ∗ d)

• Attention mechanism (assuming hidden dimension d′ of attention mechanism):

– Messages to individual nodes: O(T ∗M ∗ d′ ∗ d)
– Messages to tissue nodes (optional): O(N ∗M ∗ d′ ∗ d)
– Messages to metagene nodes (optional): O(N ∗ T ∗ d′ ∗ d)

• Message aggregation: O((N ∗ T ∗M) ∗ d′)

• Updating node features: O((N + T +M) ∗ d′ ∗ d)

where d is the number of input features and d′ is the number of output features. As a
result, the time complexity of a single hypergraph layer is O((N ∗ T ∗M +N + T +
D) ∗ d′ ∗ d).
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D.2 Ablation of architecture
We ablate the impact of two key architectural components of HYFA: (1) representating
multi-tissue gene expression as a hypergraph of individuals, metagenes, and tissues;
and (2) the design of a specialised hypergraph message passing neural network layer
with attentional aggregation.

Number of metagenes In Supplementary Figure D.1, we plot the validation loss
and correlation coefficient vs. the number of metagenes for both attentional (GAT)
and standard message passing (MPNN). The attentional model (GAT) refers to HYFA
with an attention-based aggregation mechanism (Chapter 5), while the message passing
model (MPNN) refers to HYFA with simple average aggregation (i.e. mean across
all incoming messages). For each number of metagenes, we ran hyperparameter
optimisation with wandb [299] to obtain the loss and Pearson correlation coefficient
ρ for the best performing model (we ran sweeps with a maximum of 100 runs). For
fair comparison across runs, validation metrics were computed for a fixed subset of
target tissues: ‘Lung’, ‘Pancreas’, ‘Heart_Atrial’, and ‘Esophagus_Muscularis’. The
hyperparameter values considered for ablation studies are available in Supplementary
Table D.3.

As noted in Chapter 5, modulating the number of metagenes controls the growth of
the receptive field for each node in the hypergraph and helps alleviate over-squashing.
Setting very low number of metagenes is computationally fast during training and
inference but may compress fine-grained information (e.g. setting metagenes to 1
results in a bipartite graph of individuals and tissues), while a very high number of
metagenes preserves fine-grained relationships between genes, tissues, and individuals
but may become computationally intractable. Supplementary Figure D.1 shows that
there is a ‘sweet spot’ for the number of metagenes between 50-100 that leads to
optimal performance. Additionally, as shown in Supplementary Figure D.1d, using
200 or more metagenes can consume upwards of 20 GB of GPU memory (or more,
depending on other hyperparameters), which makes training and hyperparameter
tuning expensive/intractable on academic GPUs.

For our best performing model using 50 metagenes, the average iteration time to
perform a forward pass for the optimal minibatch size of 63 is 119.72 ms during training
and 61.70 ms during inference. The average GPU usage for the same are 6.8 GB and
3.3 GB, respectively. Metrics are computed on a single NVIDIA RTX 8000 GPU (48
GB) and 16 core CPU, averaged across 80 minibatches per model.
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Hypergraph message passing architecture Supplementary Table D.1 summarises
results for the best performing GAT and MPNN, demonstrating that the specialised
hypergraph attentional aggregation brings notable gains in imputation performance.
This is consistent with the observation that, through the attention mechanism, the
model can prioritise certain messages from others, alleviating the over-squashing
problem. As a naïve baseline, we also show results for a structure-agnostic model which
does not perform any message passing and simply predicts the hyperedge attributes via
an MLP. Supplementary Table D.2, in addition, shows an ablation of the demographic
covariates. The inductive bias of reusing knowledge across tissues and metagenes via
message passing seem critical for gene expression imputation.

Table D.1 Ablation study of hypergraph message passing design. A specialised hyper-
graph attentional aggregation brings significant gains in imputation performance over
standard message passing as well as a naïve structure-agnostic baseline.

GNN Layer Val. Loss ↓ Val. Correlation ↑
Structure-agnostic MLP 0.9719 0.0396

Message Passing (MPNN) 0.7488 0.4499
Attentional (GAT) 0.7393 0.4614

Table D.2 Ablation study of demographic covariates. Demographic covariates have a
small impact on the overall validation performance.

Demographic covariates Val. Loss ↓ Val. Correlation ↑
Demographic covariates 0.7393 0.4614

Randomly shuffled covariates 0.7479 0.4527
Without demographic covariates 0.7414 0.4587



186 Multi-tissue imputation of gene expression

a

0 50 100 150 200
# Meta Genes

0.735

0.740

0.745

0.750

0.755

0.760

0.765

0.770

0.775

Va
l. 

Lo
ss

Layer
GAT
MPNN

b

0 50 100 150 200
# Meta Genes

0.430

0.435

0.440

0.445

0.450

0.455

0.460

0.465

0.470

0.475

Va
l. 

Rh
o

Layer
GAT
MPNN

c

0 100 200 300 400 500
# Meta Genes

0

200

400

600

800

1000

1200

Ite
ra

tio
n 

Ti
m

e 
(m

s)

Mode
Training
Evaluation

d

0 100 200 300 400 500
# Meta Genes

10

20

30

40

GP
U 

Us
ag

e 
(G

B)

Mode
Training
Evaluation

Fig. D.1 Impact of number of metagenes in hypergraph representations vs. (a, b)
model performance and (c, d) scalability. (a, b) There is a ‘sweet spot’ for the
number of metagenes between 50-100 that leads to optimal performance for both
attentional (GAT) and standard message passing (MPNN). Curves are estimated via a
polynomial regression with order 2. (c, d) Impact of number of metagenes in hypergraph
representations vs. model scalability in terms of average minibatch iteration time and
GPU usage (batch size = 63). Training and hyperparameter tuning for models with
upwards of 200 metagenes becomes intractable on academic GPUs. Bands denote 99%
confidence interval and the centre of the error bands corresponds to the mean. Figure
credit: Chaitanya Joshi.
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Table D.3 Hyperparameter values considered for ablation studies. We used wandb
[299] to run Bayesian hyperparameter search over the variables and ranges considered.
Note that with the Attentional GAT layer, the total dimension of the message mijk is
multiplied by the number of attention heads (here, 28 × 28 = 784).

Hyperparameter Values Considered Best Value
GNN Layer { GAT, MPNN } GAT

Num. Metagenes 10 – 200 50
Num. Message Passing Layers 1 – 3 2

Num. MLP Layers (within GNN) 1 – 2 1
Num. MLP Layers (Prediction head) 1 – 2 2
Num. Attention Heads (GAT only) 4 – 32 28

Dimension of Donor Emb. hd 16 – 128 71
Dimension of Metagene Emb. hm 16 – 128 48

Dimension of Tissue Emb. ht 16 – 128 120
Dimension of Hyperedge Attr. eij 16 – 128 98

Dimension of Message mijk 16 – 128 28
Learning Rate 0.0001 – 0.005 0.00045

Batch Size 16 – 64 63
Dropout 0.0 – 0.5 0.17385

Normalisation { BatchNorm, LayerNorm, None } BatchNorm
Activation Function { ReLU, Swish } Swish
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D.3 Connection with maximum likelihood
Let xobs be a random variable denoting the observed data (e.g. multi-tissue gene
expression with missing values corresponding to uncollected tissues). Our optimisation
procedure (Methods) splits xobs into pseudo-observed x̂obs and pseudo-missing x̂mis

values, that is, xobs = (x̂obs, x̂mis). The log-likelihood of the observed data then
corresponds to:

log p(xobs) = log p(x̂obs, x̂mis) = log p(x̂mis|x̂obs) + log p(x̂obs)

and log p(x̂mis|x̂obs) is precisely the quantity that our loss function is maximising
through the pseudo-mask mechanism (Methods).

D.4 Training algorithm
Optimisation. We minimise the mean squared error L between the normalised,
ground-truth gene expression x

(u)
i and the imputed values x̂

(u)
i :

L(x(u)
i , x̂

(u)
i ) = 1

G

(
x

(u)
i − x̂

(u)
i

)⊤(
x

(u)
i − x̂

(u)
i

)
where G is the number of genes. At train time, for any given individual, we

dynamically mask out the expression values of a measured tissue type at random and
treat them as uncollected, i.e. the ground truth. Algorithm 2 summarises the training
algorithm.

Algorithm 2: Training algorithm
Input: Input dataset {X (i), T (i)}N

i=1, model f
while not convergence criteria reached do

Sample mini-batch B of individuals
foreach individual i in mini-batch B do

Choose collected tissues C and uncollected tissue u:
u ∼ T (i), C = T (i) − {u}

Predict gene expression of proxy uncollected tissue u:
x̂

(u)
i = f(u, {x

(k)
i |k ∈ C})

end
Optimise the model by descending its stochastic gradient:

∇ 1
|B|
∑

i∈B L(x(u)
i , x̂

(u)
i )

end
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D.5 Training HYFA via variational inference
HYFA can alternatively be trained via variational inference by introducing a variational
distribution q(Z|X̃,U) = ∏N

i q(zi|X̃i,ui), where zi is a latent variable that explains
the high-dimensional, multi-tissue gene expression data.

Parameters of inference model Given the updated donor representations ĥp
i , we

compute the parameters of the inference model q(zi|X̃i,ui) = N (zi; µi, diag(σ2
i )) as

follows:

µi = fµ(X̃i,ui; ϕ) = MLP(ĥp
i ) log σi = fσ(X̃i,ui; ϕ) = MLP(ĥp

i ),

where MLP denotes a multilayer perceptron.

Parameters of generative model Assuming a Gaussian likelihood, for a given sam-
ple zi ∼ q(zi|X̃i,ui), we compute the parameters of the generative model p(x(k)

i |zi,ui, k)
as follows:

p(x(k)
i |zi,ui, k) =

G∏
j

p(x(k)
ij |zi,ui, j, k) p(x(k)

ij |zi,ui, j, k) = N (x(k)
ij ;µ(k)

ij , σ
2(k)

ij ),

where the mean µ
(k)
ij and standard deviation σ

(k)
ij are computed as follows:

µ
(k)
i = Wµê

(k)
i + bµ

σ
(k)
i = softplus

(
Wσê

(k)
i + bσ

)
ê

(k)
i = MLP

(∥∥∥M

j=1
ê

(k)
ij

)
ê

(k)
ij = MLP(zi,h

m
j ,h

t
k),

where Wµ, Wσ, bµ, and bσ are learnable parameters and softplus(x) = log
(
1+exp(x)

)
.

Optimisation We maximise the evidence lower bound on the data log-likelihood:

log p(X̃|U) ≥ Eq(Z|X̃,U)[log p(X̃|Z,U) + log p(Z|U) − log q(Z|X̃,U)]
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where the prior p(Z|U) is a factorised normal distribution conditioned on demographic
information:

p(Z|U) =
N∏
i

p(zi|ui) p(zi|ui) = N (zi; µ′
i, diag(σ′2

i )),

with parameters µ′
i = MLPµ′(ui) and log σ′

i = MLPσ′(ui). Importantly, leveraging
a factorised prior conditioned on auxiliary variables guarantees identifiability under
certain conditions [300].

Inference of uncollected gene expression measurements We infer the gene
expression values x̂

(v)
i of an uncollected tissue v from a given donor i as follows:

x̂
(v)
ij = Eq(zi|X̃i,ui)

[
E

p(x(v)
ij |zi,ui,j,v)

[
x

(v)
ij

]]

In other words, given the multi-tissue gene expression X̃i and demographic infor-
mation ui, we compute the expectation of the target gene expression x̂

(v)
i over the

inference and generative models.

D.6 Data missingness assumption
By employing maximum likelihood inference on the observed data (Supplementary
Information D.3), HYFA assumes that the data (i.e. tissues) are Missing At Random
(MAR; [189]), that is, the missingness mechanism is independent of the unobserved
data. Training HYFA via variational inference (Supplementary Information D.5) also
necessitates the MAR assumption which, similar to [301], arises from maximising
the log-likelihood of the observed data through the Evidence Lower Bound (ELBO).
The MAR assumption is less restrictive than the Missing At Completely at Random
(MCAR) assumption — the missingness pattern is independent of the observed and
unobserved data — of other methods such as mean imputation and GAIN [184].

HYFA does not support data Missing Not At Random (MNAR), where the miss-
ingness mechanism depends on the unobserved data, i.e. the probability of being
missing depends on unknown reasons [302]. To handle this scenario, we would need
to model the joint distribution p(X̃,R) of the observed data X̃ and the missingness
mechanism R, that is, the missingness mechanism would be nonignorable and would
need to be explicitly modelled. This could be achieved through selection modeling [303],
which factorises the joint distribution as p(X̃,R) = p(R|X̃)p(X̃), or pattern-mixture
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models [304], which decompose the joint as p(X̃,R) = p(X̃)p(X̃|R). In general, it
is impossible to test if MAR holds in a dataset [305], but the impact of incorrectly
assuming MAR is often minor [306].
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Fig. D.3 Donor overlap between brain and gastrointestinal tissues.
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D.8 Per-gene prediction scores
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Fig. D.4 Summary of per-gene prediction scores. (a) Network of tissues depicting
the predictability of target tissues with HYFA using the average per-gene Pearson
ρ correlation coefficients. Edges from reference to target tissues indicate an average
per-gene ρ > 0.4. The dimension of each node is proportional to its degree. (b)
Distribution of per-gene Pearson correlation coefficients in 6 target tissues (source
tissue: whole blood). We attribute the unimodality of the distributions to the fact
that the data was inverse Normal transformed (Methods).
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D.9 Whole blood to lung predictions

a

b

Fig. D.5 Whole blood to lung predictions for unseen individuals. (a) Average and
standard deviation of per-gene expression in lung versus prediction performance (predic-
tion performance (Pearson correlation between predicted and ground truth expression;
whole blood to lung). The per-gene predictions were uncorrelated with the averages and
variances of the per-gene expression in the target tissue (average: ρ = 0.07, variance:
ρ = 0.06). (b) Best and worst predicted lung genes (NUDT16 : ρ = 0.85; GALNT4 :
ρ = −0.08; n=166).
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D.10 Prediction scores on Alzheimer’s disease genes
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Fig. D.6 Top predicted Alzheimer’s disease-relevant genes in multiple brain regions, with
whole blood as reference tissue. (a) Pearson correlation coefficient of top 20 predicted
genes from the Alzheimer’s disease pathway (KEGG), ranked by average correlation.
(b, c, d) Average per-gene expression (x-axis) versus prediction performance (Pearson
correlation between predicted and ground truth expression) in (b) cerebellum, (c)
cortex, and (d) hippocampus. HYFA exhibits strong prediction performance for several
Alzheimer’s disease-relevant genes including APOE (cortex ρ = 0.536, cerebellum:
ρ = 0.502), APP (cortex ρ = 0.524), PSEN1 (cerebellum: ρ = 0.459), and PSEN2
(cortex: ρ = 0.590, cerebellum: ρ = 559, hippocampus: ρ = 0.403). In cerebellum,
PSEN1 (ρ = 0.459), PSEN2 (ρ = 0.559), and APOE (ρ = 0.502) attained above
expected performances (average ρ = 0.448). APP (ρ = 0.524), PSEN2 (ρ = 0.590), and
APOE (ρ = 0.536) surpassed the expected correlation in cortex (average ρ = 0.443).
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D.11 Prediction scores for different accessible tis-
sues as reference

93 37 65 28 93 33 30 37 42 28 32 27 34 31 66 71 32 66 60

Ad
ipo

se 
Vis

cer
al 

Omen
tum

Ad
ren

al 
Glan

d

Arte
ry 

Ao
rta

Arte
ry 

Coro
na

ry

Arte
ry 

Tib
ial

Brai
n C

au
da

te

Brai
n C

ere
be

llar

Brai
n C

ere
be

llum

Brai
n C

ort
ex

Brai
n F

ron
tal

 Cort
ex

Brai
n H

ipp
oca

mpu
s

Brai
n H

yp
oth

ala
mus

Brai
n N

ucl
eu

s

Brai
n P

uta
men

Brea
st 

Mam
mary

 Tis
sue

Cells
 Cult

ure
d

Cells
 EB

V

Colo
n S

igm
oid

Colo
n T

ran
sve

rse

0.5
0.0
0.5

Pe
ar

so
n 

co
rre

la
tio

n Prediction performance with accessible tissues as source

64 79 73 67 55 37 78 26 113 95 27 45 50 40 36 36 53 61 94

Eso
ph

ag
us 

Gast
ro

Eso
ph

ag
us 

Muco
sa

Eso
ph

ag
us 

Musc
ula

ris

Hea
rt A

tria
l

Hea
rt L

 Ve
nt

Liv
er

Lun
g

Mino
r S

aliv
ary

Musc
le 

Ske
let

al

Nerv
e T

ibia
l

Ova
ry

Pan
cre

as

Pit
uit

ary

Pro
sta

te

Sm
all 

Int
est

ine
Sp

lee
n

Sto
mach Tes

tis

Th
yro

id

0.5
0.0
0.5

Pe
ar

so
n 

co
rre

la
tio

n Prediction performance with accessible tissues as source

Whole Blood Skin Sun Epsd Skin Not Sun Epsd Adipose Subcutaneous Accessible All

Fig. D.7 Prediction scores for different accessible tissues as reference. For each target
tissue, we predicted the expression values based on accessible tissues (whole blood, skin
sun exposed, skin not sun exposed, and adipose subcutaneous). We report the Pearson
correlation coefficient between the predicted values and the actual gene expression
values. For any given target tissue, we used the same set of individuals to evaluate
performance, namely individuals in the validation and test sets with collected gene
expression measurements in all the corresponding tissues. Target tissues represented
by less than 25 test individuals were discarded. HYFA attains the best performance in
32 out of 38 tissues when all accessible tissues are simultaneously used as reference.
Boxes show quartiles, centerlines correspond to the median, and whiskers depict the
distribution range (1.5 times the interquartile range). Outliers outside of the whiskers
are shown as distinct points. The top axis indicates the total number of samples for
every target tissue.
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Fig. D.8 Performance comparison with per-gene metrics (next page).
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Fig. D.8 (previous page) Performance comparison across gene expression imputation
methods with per-gene metrics (n=12,557 genes; individuals are sampling units). (a, b)
Per-tissue comparison between HYFA and TEEBoT when using (a) whole-blood and
(b) all accessible tissues (whole blood, skin sun-exposed, skin not sun-exposed, and
adipose subcutaneous) as reference. We discarded target tissues represented by less
than 25 test individuals. HYFA achieved superior Pearson correlation in (a) 25 out of
48 target tissues when a single tissue was used as reference and (b) all target tissues
when multiple reference tissues were considered. For underrepresented target tissues
(less than 25 individuals with source and target tissues in the test set), we considered
all the validation and test individuals (translucent bars). (c, d) Prediction performance
from (c) whole-blood gene expression and (d) accessible tissues as reference. Boxes show
quartiles and whiskers depict the distribution range (1.5 times the interquartile range).
Mean imputation replaces missing values with per-feature averages. Blood surrogate
utilises gene expression in whole blood as a proxy for the target tissue. k-Nearest
Neighbours (kNN) imputes missing features with the average of measured values across
the k nearest observations (k=20). TEEBoT projects reference gene expression into
a low-dimensional space with principal component analysis (PCA; 30 components),
followed by linear regression to predict target values. HYFA (all) employs information
from all collected tissues. Boxes show quartiles, centerlines correspond to the median,
and whiskers depict the distribution range (1.5 times the interquartile range). Outliers
outside of the whiskers are shown as distinct points. The top axis indicates the total
number of samples for every target tissue.



D.13 Transcription factor enrichment analysis 199

D.13 Transcription factor enrichment analysis
We applied Gene Set Enrichment Analysis (GSEA) [85] to the gene loadings of HYFA’s
encoder (Methods). Similar to [257], for a given query gene set, we calculated the
maximum running sum of enrichment scores by descending the sorted list of gene
loadings for every metagene and factor. We then computed pathway enrichment
p-values through a permutation test and employed the Benjamini-Hochberg method
to correct for multiple testing. In total, we identified 554 statistically significant
enrichments (FDR < 0.05) of TRRUST transcription factors ([258]; Extended Data
Figure 6) across all HYFA metagenes (n=50) and factors (n=98).

Among the enriched transcription factors (TFs), we identified important regulators
including GATA1 (known to regulate proliferation of immature red blood cells, respon-
sible for delivering oxygen to body tissues [259]), SPI1 (which controls hematopoietic
cell fate; [260]), CEBP TFs (which play an important role in tissue-specific gene
expression; [261]), and STAT1, a member of the STAT protein family that drives the
expression of many genes [263]. We further observed that the learnt HYFA factors
recapitulate synergistic effects among the enriched TFs. For example, GATA1 and
SPI1 appear to functionally antagonise each other through physical interaction [307]
and were simultaneously enriched in 7 factors (FDR < 0.05; Extended Data Figure
6b). Similarly, IRF1 induces STAT1 activation via phosphorylation [263, 265] and they
were enriched together in 10 factors (FDR < 0.05; Extended Data Figure 6b).

D.14 Gene Ontology Biological Process enrichment
analysis

We applied Gene Set Enrichment Analysis (GSEA) [85] to the gene loadings of HYFA’s
encoder (Methods), using gene sets from the Gene Ontology (GO Biological Process;
[79]; version of 2021; 6036 gene sets). In total, we identified 9557 statistically significant
enrichments (FDR < 0.05) of GO Biological Process terms across all HYFA metagenes
(n=50) and factors (n=98), of which 874 corresponded to signaling pathways (Extended
Data Figures 7 and 8). Among these, the Type-I Interferon Signaling pathway was
enriched the most (GO:0060337; FDR < 0.05 in 308/874 enrichments) followed by
Interferon-Gamma-Mediated signaling pathway (GO:0060333; FDR < 0.05 in 202/874
enrichments). Type I interferons (IFNs) are a family of cytokines that bind to a
common cell-surface receptor (type I IFN receptor) and activate a variety of signaling
cascades. In particular, IFNs are known to turn on STAT (signal transducer and
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activator of transcription) complexes, which control the transcription of a large number
of target genes [308]. STAT1 (a member of the STAT protein family that plays an
important role in regulating the expression of many genes [263]) and IRF1 (a member
of the interferon regulatory transcription factor that activates STAT1 among other
targets) were highly enriched in our TF enrichment analysis (Extended Data Figure 6).



D.14 Gene Ontology Biological Process enrichment analysis 201

a
TY

PE
 I 

IN
TE

RF
ER

ON
 S

IG
NA

LI
NG

 P
AT

HW
AY

 (G
O:

00
60

33
7)

IN
TE

RF
ER

ON
-G

AM
M

A-
M

ED
IA

TE
D 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

60
33

3)
NI

K/
NF

-K
AP

PA
B 

SI
GN

AL
IN

G 
(G

O:
00

38
06

1)
IN

TE
RL

EU
KI

N-
1-

M
ED

IA
TE

D 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
70

49
8)

IN
NA

TE
 IM

M
UN

E 
RE

SP
ON

SE
 A

CT
IV

AT
IN

G 
CE

LL
 S

UR
FA

CE
 R

EC
EP

TO
R 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

02
22

0)
ST

IM
UL

AT
OR

Y 
C-

TY
PE

 L
EC

TI
N 

RE
CE

PT
OR

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

02
22

3)
FC

-E
PS

ILO
N 

RE
CE

PT
OR

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

38
09

5)
PA

TT
ER

N 
RE

CO
GN

IT
IO

N 
RE

CE
PT

OR
 S

IG
NA

LI
NG

 P
AT

HW
AY

 (G
O:

00
02

22
1)

W
NT

 S
IG

NA
LI

NG
 P

AT
HW

AY
, P

LA
NA

R 
CE

LL
 P

OL
AR

IT
Y 

PA
TH

W
AY

 (G
O:

00
60

07
1)

RE
GU

LA
TI

ON
 O

F 
EP

ID
ER

M
AL

 G
RO

W
TH

 FA
CT

OR
 R

EC
EP

TO
R 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

42
05

8)
FC

 R
EC

EP
TO

R 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
38

09
3)

RE
GU

LA
TI

ON
 O

F 
NI

K/
NF

-K
AP

PA
B 

SI
GN

AL
IN

G 
(G

O:
19

01
22

2)
FC

-G
AM

M
A 

RE
CE

PT
OR

 S
IG

NA
LI

NG
 P

AT
HW

AY
 IN

VO
LV

ED
 IN

 P
HA

GO
CY

TO
SI

S 
(G

O:
00

38
09

6)
FC

-G
AM

M
A 

RE
CE

PT
OR

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

38
09

4)
FC

 R
EC

EP
TO

R 
M

ED
IA

TE
D 

ST
IM

UL
AT

OR
Y 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

02
43

1)
TO

LL
-L

IK
E 

RE
CE

PT
OR

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

02
22

4)
NO

TC
H 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

07
21

9)
PO

SI
TI

VE
 R

EG
UL

AT
IO

N 
OF

 P
HO

SP
HA

TI
DY

LI
NO

SI
TO

L 
3-

KI
NA

SE
 S

IG
NA

LI
NG

 (G
O:

00
14

06
8)

NE
GA

TI
VE

 R
EG

UL
AT

IO
N 

OF
 IN

TR
IN

SI
C 

AP
OP

TO
TI

C 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

20
01

24
3)

PO
SI

TI
VE

 R
EG

UL
AT

IO
N 

OF
 C

AN
ON

IC
AL

 W
NT

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

90
26

3)
TU

M
OR

 N
EC

RO
SI

S 
FA

CT
OR

-M
ED

IA
TE

D 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
33

20
9)

NE
GA

TI
VE

 R
EG

UL
AT

IO
N 

OF
 E

XT
RI

NS
IC

 A
PO

PT
OT

IC
 S

IG
NA

LI
NG

 P
AT

HW
AY

 (G
O:

20
01

23
7)

NE
GA

TI
VE

 R
EG

UL
AT

IO
N 

OF
 T

RA
NS

M
EM

BR
AN

E 
RE

CE
PT

OR
 P

RO
TE

IN
 S

ER
IN

E/
TH

RE
ON

IN
E 

KI
NA

SE
 S

IG
NA

LI
NG

 P
AT

HW
AY

 (G
O:

00
90

10
1)

NE
GA

TI
VE

 R
EG

UL
AT

IO
N 

OF
 T

RA
NS

FO
RM

IN
G 

GR
OW

TH
 FA

CT
OR

 B
ET

A 
RE

CE
PT

OR
 S

IG
NA

LI
NG

 P
AT

HW
AY

 (G
O:

00
30

51
2)

RE
GU

LA
TI

ON
 O

F 
EX

TR
IN

SI
C 

AP
OP

TO
TI

C 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

20
01

23
6)

RE
GU

LA
TI

ON
 O

F 
BM

P 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
30

51
0)

PO
SI

TI
VE

 R
EG

UL
AT

IO
N 

OF
 A

PO
PT

OT
IC

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
20

01
23

5)
CA

NO
NI

CA
L 

W
NT

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

60
07

0)
RE

GU
LA

TI
ON

 O
F 

RH
O 

PR
OT

EI
N 

SI
GN

AL
 T

RA
NS

DU
CT

IO
N 

(G
O:

00
35

02
3)

CA
LC

IU
M

-M
ED

IA
TE

D 
SI

GN
AL

IN
G 

(G
O:

00
19

72
2)

AD
EN

YL
AT

E 
CY

CL
AS

E-
AC

TI
VA

TI
NG

 G
 P

RO
TE

IN
-C

OU
PL

ED
 R

EC
EP

TO
R 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

07
18

9)
NO

N-
CA

NO
NI

CA
L 

W
NT

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

35
56

7)
DN

A 
DA

M
AG

E 
RE

SP
ON

SE
, S

IG
NA

L 
TR

AN
SD

UC
TI

ON
 B

Y 
P5

3 
CL

AS
S 

M
ED

IA
TO

R 
RE

SU
LT

IN
G 

IN
 C

EL
L 

CY
CL

E 
AR

RE
ST

 (G
O:

00
06

97
7)

IN
TE

GR
IN

-M
ED

IA
TE

D 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
07

22
9)

RE
GU

LA
TI

ON
 O

F 
TR

AN
SF

OR
M

IN
G 

GR
OW

TH
 FA

CT
OR

 B
ET

A 
RE

CE
PT

OR
 S

IG
NA

LI
NG

 P
AT

HW
AY

 (G
O:

00
17

01
5)

AD
EN

YL
AT

E 
CY

CL
AS

E-
M

OD
UL

AT
IN

G 
G 

PR
OT

EI
N-

CO
UP

LE
D 

RE
CE

PT
OR

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

07
18

8)
RE

GU
LA

TI
ON

 O
F 

TO
R 

SI
GN

AL
IN

G 
(G

O:
00

32
00

6)
EP

HR
IN

 R
EC

EP
TO

R 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
48

01
3)

FI
BR

OB
LA

ST
 G

RO
W

TH
 FA

CT
OR

 R
EC

EP
TO

R 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
08

54
3)

RE
GU

LA
TI

ON
 O

F 
NO

TC
H 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

08
59

3)
EN

ZY
M

E 
LI

NK
ED

 R
EC

EP
TO

R 
PR

OT
EI

N 
SI

GN
AL

IN
G 

PA
TH

W
AY

 (G
O:

00
07

16
7)

VA
SC

UL
AR

 E
ND

OT
HE

LI
AL

 G
RO

W
TH

 FA
CT

OR
 R

EC
EP

TO
R 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

48
01

0)
RE

GU
LA

TI
ON

 O
F 

W
NT

 S
IG

NA
LI

NG
 P

AT
HW

AY
 (G

O:
00

30
11

1)
RH

O 
PR

OT
EI

N 
SI

GN
AL

 T
RA

NS
DU

CT
IO

N 
(G

O:
00

07
26

6)
M

IT
OT

IC
 D

NA
 D

AM
AG

E 
CH

EC
KP

OI
NT

 S
IG

NA
LI

NG
 (G

O:
00

44
77

3)
RE

GU
LA

TI
ON

 O
F 

SM
AL

L 
GT

PA
SE

 M
ED

IA
TE

D 
SI

GN
AL

 T
RA

NS
DU

CT
IO

N 
(G

O:
00

51
05

6)
AN

TE
RO

GR
AD

E 
TR

AN
S-

SY
NA

PT
IC

 S
IG

NA
LI

NG
 (G

O:
00

98
91

6)
TR

AN
SF

OR
M

IN
G 

GR
OW

TH
 FA

CT
OR

 B
ET

A 
RE

CE
PT

OR
 S

IG
NA

LI
NG

 P
AT

HW
AY

 (G
O:

00
07

17
9)

EX
TR

IN
SI

C 
AP

OP
TO

TI
C 

SI
GN

AL
IN

G 
PA

TH
W

AY
 (G

O:
00

97
19

1)
RE

GU
LA

TI
ON

 O
F 

PH
OS

PH
AT

ID
YL

IN
OS

IT
OL

 3
-K

IN
AS

E 
SI

GN
AL

IN
G 

(G
O:

00
14

06
6)

0

50

100

150

200

250

300

co
un

t

Number of enrichments per GO term

b

0.0 0.2 0.4 0.6 0.8 1.0
FDR

0

2

4

6

8

10

12

Co
un

t

Factor 18
TYPE I INTERFERON SIGNALING PATHWAY (GO:0060337)

c

0.0 0.2 0.4 0.6 0.8 1.0
FDR

0

5

10

15

20

Co
un

t

Factor 3
TYPE I INTERFERON SIGNALING PATHWAY (GO:0060337)

Fig. D.9 GO Biological Process enrichment analysis of metagene-factors (next page).
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Fig. D.9 GO Biological Process enrichment analysis of metagene-factors. For every
metagene (n=50) and factor (n=98), we performed Gene Set Enrichment Analy-
sis using the corresponding gene loadings of HYFA’s encoder (Methods) and Gene
Ontology gene sets (GO Biological Process; [79]; version of 2021) (Enrichr library:
GO_Biological_Process_2021 ). (a) Top enriched signaling GO terms, ranked by the
total number of metagene-factors in which the terms were enriched (FDR < 0.05). (b,
c) FDR distribution of the Type-I Interferon signaling pathway in factor 18 (FDR <
0.05 in 12/50 metagenes) and an arbitrary factor (enriched in 0/50 metagenes). (d)
FDR for signaling pathways. For every pathway and factor, we selected the metagene
with lowest FDR and depicted statistically significant values (FDR < 0.05). Point
sizes are inversely proportional to the FDR values. Type I interferons (IFNs), a family
of cytokines that activate a variety of signaling cascades, were the most enriched. We
also detected the simultaneous enrichment of interferon IRF1 and STAT1 (a member
of the STAT protein family that drives the expression of many target genes [263]) in
10 factors (FDR < 0.05; Extended Data Figure ??b), consistent with these results.
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D.15 HYFA captures differential expression pat-
terns of kidney cancer

We trained HYFA on gene expression data from The Cancer Genome Atlas (TCGA;
[309]) processed with the RNAseqDB pipeline [310]. We used HYFA to infer gene
expression in kidney tumor sites from the transcriptome measured at the normal tissue
adjacent to the tumor (NAT). The NAT tissue is often used as a control in cancer
studies, but these regions commonly have phenotypic and morphologic differences
with respect to healthy tissue [311]. Genes identified through differential expression
analysis on the imputed data overlapped with those detected from the ground truth
data (Supplementary Figure D.10). Several of the top differentially expressed genes
were predicted with high Pearson correlation (SPAG4: ρ = 0.631, BBC3: ρ = 0.630,
SCARB1: ρ = 0.593). Overall, HYFA’s imputed gene expression profiles captured
differential expression patterns of kidney cancer.
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Fig. D.10 HYFA’s imputed data captures different expression patterns in kidney cancer
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Fig. D.10 HYFA’s imputed data captures different expression patterns in kidney cancer.
We imputed kidney cancer transcriptome (n=47 test samples) from the gene expression
measured at the normal tissue adjacent to the tumor (NAT). We employed a Wilcoxon
rank-sum test to rank differentially expressed kidney cancer genes (Scanpy function
scanpy.tl.rank_genes_groups). We used all the kidney NAT samples as the control
group (n=117 control samples). (a, b) Top 25 differentially expressed genes in (a) the
imputed data and (b) the real data. (c, d) Average kidney-tumor log-expression profiles
of top 25 differentially expressed genes in (c) imputed data and (d) ground truth. The
dot sizes are proportional to the number of samples where the gene was expressed. (e)
Prediction performance of top 25 differentially expressed genes measured by Pearson
correlation. Genes are colored by log-adjusted Benjamini-Hochberg’s p-value. Overall,
HYFA’s imputed profiles captured differential expression patterns of kidney cancer.
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D.16 GTEx-v9 train/test splits
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Fig. D.11 Number of train (left semi-circle) and test (right semi-circle) signatures
per tissue and cell-type. Each signature corresponds to the aggregated tissue- and
cell-type-specific scRNA-seq counts for a given individual. For any combination of
tissue and cell-type, there are no more than 2 individual-specific signatures in the
same set. Blank semi-circles indicate zero signatures. Note that some signatures (e.g.
cell-types in skeletal muscle) are only present in the test set.

D.17 GTEx-v9 predictions with inferred library
sizes
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Fig. D.12 Prediction of cell-type signatures. HYFA imputes individual- and tissue-
specific cell-type signatures from bulk multi-tissue gene expression. The scatter plots
depict the Pearson correlation ρ between the logarithmised ground truth and predicted
signatures for N unseen individuals. To predict the signatures, we inferred the library
sizes l(k,q)

i and used the observed number of cells n(k,q)
i (Methods).
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D.18 Baseline for cell-type signature inference (GTEx-
v9)

As a baseline for the cell-type signature inference task, we implemented the following
approach:

1. Apply Principal Component Analysis (PCA) to the entire GTEx-v8 bulk tran-
scriptomics dataset (K = 30 components), yielding a low-dimensional dataset
X̃i ∈ R|T (i)|×K for every individual i.

2. For every target cell-type signature x
(t,c)
i of cell-type c, tissue t, and individual i,

select the bulk sample x̃t
i from X̃i matching the individual i and tissue t of the

signature.

3. Fit the linear model:

x
(t,c)
i = W1x̃

(t)
i + W2ec + b + ϵ

(t,c)
i ,

where W1, W2, and b are learnable parameters, ec is a one-hot vector (1 for
cell-type c and 0 otherwise), and ϵ

(t,c)
i is the error term. The signatures x

(t,c)
i are

normalised by the library size.

4. Predict the unseen cell-type signatures using the learnt model.

Supplementary Table D.4 shows the Pearson correlation between the inferred
and ground truth signatures for this baseline as well as the fine-tuned HYFA model
(Methods). In summary, we observed that both methods attained comparable results -
the baseline achieved a mean Pearson correlation of 0.679 ± 0.012 (mean ± standard
error; baseline) and 0.693 ± 0.021 (mean ± standard error; fine-tuned HYFA) across
signatures. In contrast to this baseline, HYFA is able to utilise information from
multiple source tissues. However, HYFA’s encoder does not have a priori knowledge
about the target tissue, potentially leading to information loss. In the future, HYFA’s
encoder may be extended to extract information specifically relevant for the target
tissue and cell types of interest.
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Table D.4 Prediction performance on the unseen cell-type signatures measured by
Pearson correlation between the log ground truth and log predicted signatures. Baseline
corresponds to a method that infers the signatures from the dimensionality-reduced
bulk expression measured in the target tissue of the matching individual. For both
methods, we used the observed library sizes (i.e. the total counts between the predicted
and inferred signatures match).

Tissue Cell-type Baseline HYFA (fine-tuned)

Breast

Adipocyte 0.657 0.749
Endothelial cell (lymphatic) 0.786 0.840
Endothelial cell (vascular) 0.774 0.879

Fibroblast 0.820 0.894
Immune (DC/macrophage) 0.791 0.834

Pericyte/SMC 0.767 0.806

Esophagus muscularis

Adipocyte 0.524 0.348
Endothelial cell (lymphatic) 0.672 0.660
Endothelial cell (vascular) 0.681 0.683

Fibroblast 0.667 0.702
Immune (B cell) 0.634 0.501

Immune (DC/macrophage) 0.686 0.806
Immune (NK cell) 0.734 0.714
Immune (T cell) 0.700 0.716

Immune (mast cell) 0.632 0.607
Pericyte/SMC 0.707 0.661

Heart

Adipocyte 0.729 0.711
Endothelial cell (lymphatic) 0.739 0.821
Endothelial cell (vascular) 0.707 0.842

Fibroblast 0.682 0.841
Immune (B cell) 0.640 0.530

Immune (DC/macrophage) 0.714 0.836
Immune (NK cell) 0.765 0.788
Immune (T cell) 0.751 0.805

Immune (mast cell) 0.627 0.572
Pericyte/SMC 0.718 0.782

Skeletal muscle

Adipocyte 0.636 0.549
Endothelial cell (lymphatic) 0.709 0.711
Endothelial cell (vascular) 0.734 0.788

Fibroblast 0.645 0.772
Immune (DC/macrophage) 0.696 0.770

Immune (NK cell) 0.684 0.676
Immune (T cell) 0.685 0.714

Immune (mast cell) 0.586 0.530
Pericyte/SMC 0.707 0.680

Skin

Adipocyte 0.581 0.573
Endothelial cell (vascular) 0.579 0.587

Fibroblast 0.561 0.518
Immune (DC/macrophage) 0.488 0.422

Pericyte/SMC 0.583 0.484
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D.19 Cell-type inference in MSK SPECTRUM
We used HYFA to infer cell-type signatures in the MSK SPECTRUM dataset. We
downloaded the MSK SPECTRUM data from https://cellxgene.cziscience.com/
collections/4796c91c-9d8f-4692-be43-347b1727f9d8 [312]. We selected the top
3000 highly variable genes using the Scanpy function sc.pp.highly_variable_genes
and aggregated the single-cell RNA-seq profiles by individual, tissue, and cell-type.
After discarding signatures represented by less than 50 cells, we arrived at 1226
individual- tissue- and cell-type-specific signatures from 41 individuals (24 train, 8
validation, 9 test). For a certain individual, we trained HYFA to predict the cell-type
signatures of a target tissue as a function of all the available signatures in the remaining
tissues. We performed message passing on a 4-uniform hypergraph with individual,
tissue, cell-type, and metagene nodes. We optimised the zero-inflated negative binomial
likelihood of the target signatures using the observed library size (Chapter 5).

Overall, HYFA attained strong prediction scores (Pearson correlation between
log ground truth and log predicted signatures) and captured cell-type-specific gene
expression patterns. HYFA-inferred signatures had a strong correlation with the ground
truth in most tissues (Supplementary Table D.5) — including transverse colon (average
ρ = 0.91), intestine (average ρ = 0.86) and left ovary (average ρ = 0.88) — and cell
types — including monocytes (average ρ = 0.86), T cells (average ρ = 0.90), and
plasma cells (average ρ = 0.80). Mast cells exhibited comparatively lower correlation
(average ρ = 0.76). To study whether HYFA captures cell-type specific gene expression
patterns, we identified differentially expressed genes from the real signatures using a
Wilcoxon rank-sum test (Scanpy function scanpy.tl.rank_genes_groups) and then
examined the expression of these genes in the inferred signatures (Supplementary
Figure D.13). Remarkably, HYFA recovered expression of the main marker genes with
high specificity.

Finally, we studied whether the individual- tissue- and cell-type-specific signatures
inferred by HYFA can be used to deconvolve pseudo-bulk gene expression. For every
unseen individual and tissue, we created pseudo-bulk samples by aggregating the
read counts of all cells in the given tissue. Next, we selected all genes that were both
differentially-expressed (Wilcoxon rank-sum adjusted p-value < 0.05) and well-predicted
(R2 > 0.7) in the validation set. We then used linear regression (without intercept) to
infer the cell-type proportions using (a) the real individual- tissue- cell-type specific
signatures, (b) random signatures (i.e. random permutations of the real signatures), and
(c) HYFA’s inferred signatures. We also considered a uniform baseline (i.e. all cell-types
have equal probability). We assessed performance using the mean absolute deviation

https://cellxgene.cziscience.com/collections/4796c91c-9d8f-4692-be43-347b1727f9d8
https://cellxgene.cziscience.com/collections/4796c91c-9d8f-4692-be43-347b1727f9d8
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Table D.5 Cell-type signature imputation performance in the MSK SPECTRUM
dataset, measured by Pearson correlation between the log ground truth and log
predicted signatures, with number of individuals in parenthesis.

Tissue B T dendritic endothelial epithelial fibroblast mast monocyte plasma
abdomen 0.84 (5) 0.92 (5) 0.88 (5) 0.90 (5) 0.88 (5) 0.89 (5) 0.71 (5) 0.94 (5) 0.82 (5)

abdominal wall 0.80 (1) 0.91 (1) 0.93 (1) 0.83 (1) 0.85 (1) 0.89 (1) — (0) 0.90 (1) 0.86 (1)
adnexa of uterus 0.80 (18) 0.91 (18) 0.88 (17) 0.92 (18) 0.88 (18) 0.92 (18) 0.78 (18) 0.94 (18) 0.79 (18)

ascitic fluid 0.83 (25) 0.90 (25) 0.89 (25) 0.47 (6) 0.76 (21) 0.86 (17) 0.52 (13) 0.91 (25) 0.81 (25)
caecum 0.86 (1) 0.91 (1) 0.87 (1) 0.93 (1) 0.88 (1) 0.94 (1) 0.86 (1) 0.95 (1) 0.88 (1)

diaphragm 0.84 (3) 0.92 (3) 0.91 (3) 0.92 (3) 0.90 (3) 0.93 (3) 0.79 (3) 0.94 (3) 0.83 (3)
fallopian tube 0.88 (2) 0.73 (3) 0.90 (2) 0.89 (3) 0.88 (3) 0.89 (3) 0.81 (2) 0.78 (3) 0.78 (3)

intestine 0.86 (9) 0.91 (10) 0.89 (9) 0.90 (11) 0.87 (11) 0.92 (11) 0.73 (9) 0.93 (10) 0.80 (9)
large intestine 0.80 (2) 0.91 (2) 0.67 (2) 0.89 (2) 0.86 (2) 0.91 (2) 0.76 (2) 0.93 (2) 0.74 (2)

left ovary 0.84 (9) 0.92 (9) 0.90 (9) 0.92 (9) 0.88 (9) 0.93 (9) 0.82 (7) 0.95 (9) 0.83 (9)
liver 0.80 (1) 0.90 (1) 0.85 (1) 0.91 (1) 0.90 (1) 0.92 (1) 0.77 (1) 0.94 (1) 0.50 (1)

lymph node 0.88 (2) 0.89 (2) 0.87 (2) 0.88 (2) 0.85 (2) 0.81 (2) 0.68 (2) 0.94 (2) 0.82 (2)
omentum 0.84 (34) 0.90 (34) 0.89 (32) 0.92 (34) 0.87 (34) 0.91 (35) 0.76 (32) 0.93 (34) 0.83 (33)

paracolic gutter 0.87 (1) 0.93 (1) 0.91 (1) 0.94 (1) 0.88 (1) 0.95 (1) 0.84 (1) 0.94 (1) 0.89 (1)
parietal peritoneum 0.87 (1) 0.94 (1) 0.91 (1) 0.94 (1) 0.90 (1) 0.94 (1) 0.89 (1) 0.95 (1) 0.89 (1)

peritoneum 0.84 (14) 0.92 (14) 0.89 (14) 0.87 (12) 0.83 (14) 0.89 (13) 0.79 (11) 0.94 (14) 0.83 (14)
right ovary 0.82 (11) 0.91 (12) 0.88 (10) 0.89 (11) 0.86 (11) 0.86 (12) 0.83 (8) 0.93 (12) 0.79 (10)

transverse colon 0.88 (1) 0.93 (1) 0.92 (1) 0.94 (1) 0.89 (1) 0.93 (1) 0.85 (1) 0.94 (1) 0.90 (1)
urinary bladder 0.36 (1) 0.86 (1) — (0) 0.88 (1) 0.88 (1) 0.89 (1) 0.60 (1) 0.91 (1) 0.76 (1)

(mAD) between the inferred and ground-truth cell-type proportions (Supplementary
Figure D.14). Overall, deconvolution using HYFA’s inferred signatures was better than
(a) the random signatures and (d) the uniform baselines. In general the per-cell-type
absolute deviation scores associated to HYFA’s signatures were lower than those of the
uniform baseline, with exception to mast cells (mAD= 0.14), consistent with the lower
prediction scores for that cell type. Performance using the ground truth signatures was
close to perfect. In the future, as single-cell RNA-seq datasets become larger in number
of individuals, we expect the resolution of HYFA’s inferred signatures to increase, with
potential benefits in terms of downstream analysis including deconvolution or cell-type
specific eQTL mapping.
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Fig. D.13 Dot plot showing gene expression of top 3 differentially-expressed markers
detected from the real signatures. (a) Average gene expression in real signatures. (b)
Average gene expression in inferred signatures. Overall, HYFA recovered the main
differentially-expressed markers with high specificity.
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Fig. D.14 Deconvolution performance. We used linear regression to infer cell-type
proportions from pseudo-bulk gene expression samples using the real individual- tissue-
cell-type specific signatures, random signatures (i.e. random permutations of the
real signatures), and HYFA’s inferred signatures. (a) Absolute deviation between
the inferred and ground-truth proportions for every cell-type. Boxes show quartiles,
centerlines correspond to the median, and whiskers depict the distribution range (1.5
times the interquartile range). Outliers outside of the whiskers are shown as distinct
points. The top axis indicates the total number n of independent samples for every
cell type. (b) Deconvolution of a pseudo-bulk gene expression sample. For HYFA’s
signatures, the inferred mast cell fraction is larger than expected, consistent with the
fact that prediction performance is lower for this cell type.
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E.1 Ablation on the number of GNN layers
We studied deconvolution performance of GNN-C2L model variants across different
number of layers using the the synthetic dataset from [96] (Tables E.1, E.2, and E.3).
We noted that results were generally optimal when using 1-3 layers. The performance
dropped for 3+ layers, potentially due the oversmoothing and oversquashing phe-
nomenons [220] which makes it difficult for GNNs to incorporate information from
distant neighbours as the aggregation of messages into fixed size vectors, creating an
information bottleneck. The optimal number of GNN layers might depend on the
tissue architecture, topology of neighbourhood graph, and spot resolution.
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Table E.1 Average Pearson R correlation and standard deviation of 5 seeded runs of each
model over all spots. Correlation values for subcategories of cell types exhibiting distinct
cell abundance patterns are also provided. Bold numbers indicate best performing
method for each category of cell types being evaluated. Table credit: Paul Scherer.

Methods ALL UHCA ULCA RHCA RLCA
SGC-C2L1 0.699 ± 0.023 0.876 ± 0.008 0.708 ± 0.020 0.883 ± 0.006 0.439 ± 0.041
SGC-C2L2 0.711 ± 0.036 0.890 ± 0.015 0.682 ± 0.027 0.878 ± 0.01 0.458 ± 0.050
SGC-C2L3 0.684 ± 0.063 0.897 ± 0.019 0.689 ± 0.030 0.883 ± 0.006 0.421 ± 0.086
SGC-C2L4 0.704 ± 0.025 0.883 ± 0.022 0.673 ± 0.043 0.881 ± 0.009 0.445 ± 0.043
SGC-C2L5 0.701 ± 0.016 0.884 ± 0.015 0.665 ± 0.032 0.882 ± 0.007 0.443 ± 0.034
SGC-C2L6 0.701 ± 0.016 0.884 ± 0.015 0.665 ± 0.032 0.882 ± 0.007 0.443 ± 0.034
GAT-C2L1 0.737 ± 0.013 0.885 ± 0.018 0.695 ± 0.032 0.888 ± 0.004 0.492 ± 0.032
GAT-C2L2 0.722 ± 0.022 0.879 ± 0.020 0.710 ± 0.042 0.889 ± 0.004 0.473 ± 0.029
GAT-C2L3 0.679 ± 0.039 0.872 ± 0.021 0.723 ± 0.016 0.887 ± 0.007 0.425 ± 0.052
GAT-C2L4 0.709 ± 0.047 0.878 ± 0.016 0.695 ± 0.024 0.883 ± 0.004 0.474 ± 0.070
GAT-C2L5 0.713 ± 0.050 0.857 ± 0.015 0.698 ± 0.027 0.878 ± 0.009 0.478 ± 0.082
GAT-C2L6 0.715 ± 0.050 0.858 ± 0.016 0.699 ± 0.025 0.878 ± 0.009 0.480 ± 0.082

Table E.2 Average of average Jensen-Shannon divergence (JSD) along with standard
deviation of 5 seeded runs of each model. JSD values for subcategories of cell types
exhibiting distinct cell abundance patterns are also provided. Bold numbers indicate
best performing method for each category of cell types being evaluated. Table credit:
Paul Scherer.

Methods ALL UHCA ULCA RHCA RLCA
SGC-C2L1 0.446 ± 0.006 0.224 ± 0.011 0.460 ± 0.007 0.368 ± 0.005 0.493 ± 0.009
SGC-C2L2 0.443 ± 0.007 0.208 ± 0.021 0.467 ± 0.010 0.371 ± 0.009 0.489 ± 0.007
SGC-C2L3 0.447 ± 0.011 0.199 ± 0.017 0.463 ± 0.006 0.369 ± 0.007 0.499 ± 0.015
SGC-C2L4 0.448 ± 0.006 0.216 ± 0.019 0.472 ± 0.014 0.375 ± 0.008 0.494 ± 0.009
SGC-C2L5 0.448 ± 0.005 0.207 ± 0.022 0.473 ± 0.010 0.375 ± 0.007 0.493 ± 0.008
SGC-C2L6 0.448 ± 0.005 0.207 ± 0.022 0.473 ± 0.010 0.375 ± 0.007 0.493 ± 0.008
GAT-C2L1 0.435 ± 0.003 0.209 ± 0.021 0.458 ± 0.014 0.369 ± 0.001 0.482 ± 0.006
GAT-C2L2 0.438 ± 0.006 0.223 ± 0.017 0.458 ± 0.014 0.363 ± 0.002 0.486 ± 0.005
GAT-C2L3 0.447 ± 0.008 0.222 ± 0.025 0.450 ± 0.009 0.356 ± 0.004 0.496 ± 0.011
GAT-C2L4 0.441 ± 0.010 0.215 ± 0.018 0.452 ± 0.010 0.358 ± 0.004 0.487 ± 0.013
GAT-C2L5 0.445 ± 0.015 0.243 ± 0.017 0.448 ± 0.009 0.362 ± 0.007 0.492 ± 0.020
GAT-C2L6 0.444 ± 0.015 0.242 ± 0.017 0.448 ± 0.009 0.362 ± 0.007 0.491 ± 0.020
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Table E.3 Average AUPRC scores and standard deviation of 5 seeded runs of each
model over all spots. Scores for subcategories of cell types exhibiting distinct cell
abundance patterns are also provided. Bold numbers indicate best performing method
for each category of cell types being evaluated. Table credit: Paul Scherer.

Methods ALL UHCA ULCA RHCA RLCA
SGC-C2L1 0.719 ± 0.002 0.977 ± 0.004 0.646 ± 0.006 0.861 ± 0.001 0.719 ± 0.002
SGC-C2L2 0.716 ± 0.003 0.978 ± 0.001 0.644 ± 0.006 0.860 ± 0.001 0.716 ± 0.003
SGC-C2L3 0.710 ± 0.002 0.979 ± 0.002 0.649 ± 0.005 0.852 ± 0.001 0.710 ± 0.002
SGC-C2L4 0.701 ± 0.004 0.972 ± 0.003 0.639 ± 0.007 0.845 ± 0.005 0.701 ± 0.004
SGC-C2L5 0.701 ± 0.007 0.975 ± 0.003 0.633 ± 0.009 0.848 ± 0.005 0.701 ± 0.007
SGC-C2L6 0.701 ± 0.007 0.975 ± 0.003 0.633 ± 0.009 0.848 ± 0.005 0.701 ± 0.007
GAT-C2L1 0.722 ± 0.002 0.978 ± 0.004 0.664 ± 0.004 0.858 ± 0.003 0.722 ± 0.002
GAT-C2L2 0.726 ± 0.001 0.977 ± 0.003 0.665 ± 0.007 0.865 ± 0.001 0.726 ± 0.001
GAT-C2L3 0.721 ± 0.003 0.970 ± 0.003 0.679 ± 0.006 0.870 ± 0.002 0.721 ± 0.003
GAT-C2L4 0.710 ± 0.003 0.968 ± 0.002 0.670 ± 0.006 0.867 ± 0.001 0.710 ± 0.003
GAT-C2L5 0.700 ± 0.002 0.959 ± 0.001 0.652 ± 0.010 0.865 ± 0.001 0.700 ± 0.002
GAT-C2L6 0.702 ± 0.003 0.961 ± 0.003 0.652 ± 0.009 0.865 ± 0.001 0.702 ± 0.003
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