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Appendix A: Kinetics of trapping and detrapping 

The rate at which hydrogen atoms are trapped per unit volume is defined as  
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where the part labelled (1)  on the right-hand side of this equation represents the number of 

hydrogen atoms in lattice sites per unit volume, (2)  is the probability of capturing an atom per 

second, and (3)  gives the probability that the atom can jump into a neighbouring empty trap 

site. The rate at which hydrogen atoms are detrapped per unit volume is likewise defined as  
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where (4)  is the number of hydrogen atoms in trap sites per unit volume, (5)  is the probability 

of releasing an atom per second, (6)  gives the probability of a neighbouring empty lattice site. 

The net rate of change of trapped population can be written as  

 t dT T L Ln NnN        (A.3) 

Substitution of (A.1) and (A.2) into (A.3) gives 
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and this can be re-written in the concise McNabb & Foster form  

 [ (1 ) (1 )]T L T T LA B        (A.5) 

where the constants A  and B  read  
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Equation (A.5) states that the net rate is T g   where g denotes the term in square brackets. 

It is shown here that the local equilibrium equation (3) is the limit of equation (A.5) when the 

vibration frequency    at finite T .  Consequently, 0g   and local equilibrium implies 

that  
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where the trap binding energy is .t dH E E    Now introduce the non-dimensional groups, 

as identified in Section 2.3, such that (A.3) can be re-written as  

exp (1 ) exp (1 ,
1

)T
L T T L

t tE H E

t N T T
   

       
       

   







  
      (A.8) 

where the non-dimensional frequency is 
2

0/L D   and the trapping activation energy is 

0/t tE E RT . 

Additional TDS full numerical simulations have been performed using (A.8) and (8), 

with the choice of parameters: 
4 ,10N   1 ,5H    0,tE   2 75,Q    0 610L

 , 0 1    

and selected values of  .  The predictions are given in Figure S1 along with the numerical 

solution to the diffusion equation (9) assuming local equilibrium.  It is concluded that, for   

over a very wide range of 
910 -

1510  (i.e. 
8 110  s   to 

14 110  s   for 
7 2 1

0   s10 mD    and 

mm1L  ), the finite trap kinetics play a negligible role:  local equilibrium is satisfied provided 
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  exceeds 610 . 

B: Analytical solution to reduced ODE in regime I  

Recall that, in Regime I, the traps are shallow and 0 1LK .  Additionally, if the trap density 

is sufficiently high that 1KN  , then the ODE (16) reduces to 
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where LD , K  and T  evolve with time t . The ODE (B.1) can be integrated explicitly from 

time 0  to t  by making the substitution  

    
11

(1 )y t
T

             (B.2) 

Introduce the notation / y
LD K e , where H Q    .  Then, integration of (B.1) gives  
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where ( 0) 1f t   , ( 0) 1y t    and the exponential integral Ei( ')y  is defined in the usual 

way by  
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Note that the non-dimensional flux J  is related directly to f  by 0
L LDJ f   upon 

making use of (14) and (15). Consequently, the maximum flux can be written as 

0
max xma LL fDJ   , and, upon writing max1y T   as the upper limit in (B.3), we obtain  
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A comparison of the numerical solution of the PDE (9) with the analytical solution (B.3) in 
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regime I is given in Figure S2, assuming 
0 610L

 , 2 75Q   , 0 1    and 
310N  .  The 

agreement is adequate. 

Figures 

 

Figure S1: Comparison of solutions of coupled diffusion equations with trap kinetics (8) and 

(A.8) for different values of normalised jump frequency   with the diffusion equation 

considering local equilibrium (9) for 2 75Q    kJ/mol. Trap kinetics solution is identical to 

local equilibrium solution except for very low (unphysical) jump frequency. 

 

Figure S2: Comparison of analytical (B.5) and numerical (9) solutions of TDS flux versus 

temperature in regime I ( 10H   ). The parameters used are 
0 610L

 , 2 75Q   , 0 1    

and 
310N  . A numerical solution for the TDS flux, with no maximum, is included for 

comparison: it is obtained at 
48 10N   . 


