
AIP/123-QED

Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value

representation

Matthew S. Church,1 Timothy J. H. Hele,1, 2 Gregory S. Ezra,1 and Nandini Ananth1, a)

1)Department of Chemistry and Chemical Biology, Cornell University, Ithaca,

New York, 14853, USA

2)Present address: Cavendish Laboratory, JJ Thomson Avenue,

Cambridge University, CB3 0HE, UK

(Dated: 12 November 2017)

We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a

semiclassical method for computing real-time correlation functions, to electronically

nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian in

order to treat electronic and nuclear degrees of freedom (dofs) within a consistent

dynamic framework. We introduce an efficient symplectic integration scheme, the

MInt algorithm, for numerical time-evolution of the phase space variables and Mon-

odromy matrix under the non-separable MMST Hamiltonian. We then calculate the

probability of transmission through a curve-crossing in model two-level systems and

show that in the quantum limit MQC-IVR is in good agreement with the exact quan-

tum results, whereas in the classical limit the method yields results in keeping with

classical limit approaches like the Linearized Semiclassical IVR. Finally, exploiting

the ability of MQC-IVR to quantize different dofs to different extents, we present

a detailed study of the extents to which quantizing the nuclear and electronic dofs

improves numerical convergence properties without significant loss of accuracy.

a)Electronic mail: na346@cornell.edu

1



I. INTRODUCTION

The development of theoretical methods for the simulation of electronically nonadiabatic

processes remains a central challenge in the effort to understand the mechanisms of pho-

tochemical reactions,1 charge transfer in complex chemical and biological systems,2–5 and

hot-electron generation via inelastic scattering.6,7

Over the past two decades, several methods for the simulation of nonadiabatic processes

have been developed including exact quantum time-propagation,8–10 the symmetrical quasi-

classical windowing method,11 mixed quantum-classical Liouville methods,12–14 and surface

hopping.15–22 In addition, approximate path-integral based methods such as ring polymer

molecular dynamics23–27 and centroid molecular dynamics28 have also been extended to

nonadiabatic systems.29–38 However, while exact quantum methods are limited to a small

number of degrees of freedom (dofs), the more approximate methods fail to capture nuclear

quantum coherence effects.

Semiclassical (SC) methods for the calculation of real-time correlation functions, like the

Double Herman-Kluk (DHK) Initial Value Representation (IVR),39–43 accurately describe

both electronic and nuclear coherence effects in nonadiabatic systems.44–49 Unfortunately,

much like exact quantum methods, the high computational cost of numerically converging

oscillatory integrals has limited these methods to low-dimensional systems. Efforts to mit-

igate the sign problem have led to the development of more approximate methods such as

the linearized (LSC)-IVR50–53 that fail to capture nuclear quantum coherence effects, and

various forward-backward (FB) methods that are either less accurate or computationally

expensive.54–62 The recently-introduced Mixed Quantum-Classical (MQC)-IVR method63,64

employs a modified Filinov filtration (MFF) scheme45,63–75 to damp the oscillatory phase

of the integrand and has been shown to improve numerical convergence without significant

loss of accuracy.63,64 Specifically, the filtering parameters employed in MQC-IVR modify the

extent to which a particular dof contributes to the overall phase of the integrand, effectively

controlling the ‘quantumness’ of that mode.64

In this paper we extend MQC-IVR to the simulation of nonadiabatic processes by us-

ing the Meyer-Miller-Stock-Thoss (MMST)76,77 mapping to obtain a continuous Cartesian

variable representation of both the electronic and nuclear dofs. We begin by introducing an

efficient symplectic integration scheme, the MInt algorithm, for classical trajectory propa-
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gation under the non-separable MMST Hamiltonian. We then calculate the transmission

probability using MQC-IVR in a series of model two-level systems with a single curve cross-

ing. We numerically demonstrate that in the limit of a weak filter MQC-IVR agrees well

with exact quantum results, and as the filter strength is increased MQC-IVR results start

to resemble classical limit methods like the LSC-IVR. We also undertake a systematic inves-

tigation of the balance between accuracy and efficiency achieved by quantizing the nuclear

and electronic dofs to different extents.

This paper is organized as follows. In section II we briefly review the MQC-IVR theory

and provide an overview of the MInt algorithm. Section III describes the model systems

studied here and section IV outlines simulation details. Results are discussed in Section V

and we present our conclusions in Section VI.

II. THEORY

A. MQC-IVR

The quantum real-time correlation function78,79 between two operators Â and B̂ is defined

as

CAB(t) = Tr
[
Âe

i
~ ĤtB̂e−

i
~ Ĥt

]
, (1)

where Ĥ is the system Hamiltonian. For the remainder of the paper we use atomic units

where ~ = 1. The MQC-IVR correlation function is derived by using the Herman-Kluk

(HK-IVR) approximation for the forward and backward time-evolution operators in Eq. (1),

followed by a change of variables, and an MFF of the resulting integrand. The final expres-

sion is given by64

CAB(t) =
1

(2π)2N

∫
dz0

∫
dz′0 ⟨z0|Â|z′0⟩

× ei[St(z0)−St(z′0)]Dt (z0, z
′
0; c,γ0,γt)

× ⟨z′t|B̂|zt⟩ e−
1
2
∆T

z0
c∆z0 , (2)

where z0 = (R0,x0,P0,p0) and z′0 = (R′
0,x

′
0,P

′
0,p

′
0) are a pair of initial phase space vec-

tors containing both nuclear (R,P) and electronic (x,p) variables associated with classical

trajectories of length t and action St(z0) and St(z
′
0), respectively. The full dimensionality of
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the system is given by N = F +G where F and G are the dimensionality of the electronic

and nuclear phase space vectors, respectively. The phase space displacement between the

trajectory pair at time zero is given by ∆z0 = z′0 − z0. The functional form of the pref-

actor, Dt (z0, z
′
0; c,γ0,γt), is provided in Appendix A. The coherent state wavefunctions in

momentum and position space are given by

⟨P̃p̃|zt⟩ =
(

1

det |γt|πN

) 1
4

e−
1
2
(P̃−Pt)Tγ

−1
t (P̃−Pt)−iP̃TRt

×e−
1
2
(p̃−pt)T(p̃−pt)−ip̃Txt (3)

and

⟨R̃x̃|zt⟩ =
(
det |γt|
πN

) 1
4

e−
1
2
(R̃−Rt)Tγt(R̃−Rt)+iPT

t (R̃−Rt)

×e−
1
2
(x̃−xt)T(x̃−xt)+ipT

t (x̃−xt) (4)

respectively, and the elements of the G×G diagonal width matrix, γt, determine the spread

of the nuclear coherent state in phase space at time t.

The extent of MFF is controlled by the elements of the 2N × 2N diagonal matrix of

Filinov parameters,

c =

cq O

O cρ

 , (5)

where the subscripts (q,ρ) represent the generalized positions and momenta of all N dofs,

and O is the null matrix. The ith diagonal element of the N×N matrices cρ and cq regulate

momentum and position displacements of the ith dof at time t = 0. In the limit cρ, cq → 0,

the MQC-IVR expression reduces to the standard DHK-IVR formulation of the real-time

correlation function and in the limit cρ, cq → ∞, trajectory displacements are constrained

to ∆z0 = 0, where 0 is the null vector, resulting in a classical average,

CAB(t) =
1

(2π)N

∫
dz0 ⟨z0|Â|z0⟩ ⟨zt|B̂|zt⟩ , (6)

the Husimi-IVR. By choosing intermediate values of the Filinov parameters for different

system modes it is possible to tune the quantumness of individual modes; an optimal choice

can significantly accelerate numerical convergence without loss of accuracy.
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B. MMST Hamiltonian and the MInt Algorithm

The MMST Hamiltonian76,77 for a general F -level system is given by

H =
1

2
PTµ−1P+

1

2
pTV(R)p

+
1

2
xTV(R)x− 1

2
Tr [V(R)] , (7)

where V(R) is the F × F diabatic electronic potential energy matrix and µ is the G × G

diagonal matrix of nuclear masses. The coupling between nuclear positions and the electronic

dofs in Eq. (7) makes it challenging to numerically time-evolve classical equations of motion

while preserving the symplectic property of Hamiltonian systems.

Here we introduce the MInt algorithm for time evolution under the MMST Hamiltonian

in Eq. (7) that exactly conserves total electronic probability (unitarity) and symplecticity

independently of time-step size. We provide a detailed study of this algorithm and its

properties in Appendix B.

First we establish our notation. Hamiltonian evolution is formally80

d

dt
z = J∇zH(z) (8)

where J is the structure matrix,

J =

O I

−I O

 , (9)

and I is the identity matrix. This is equivalent to use of the Poisson bracket, {·, H(z)}, since

for an arbitrary observable A,

d

dt
A =(∇zA)

Tdz

dt

=(∇zA)
TJ∇zH(z)

={A,H(z)}. (10)

In this notation, the Monodromy matrix is given by

M ≡ dzt
dz0

, (11)

such that the symplecticity criterion is80

MTJ−1M = J−1. (12)
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We note that this is a stronger condition than conservation of volume in phase space (Liou-

ville’s theorem) which only requires det |M| = 1.

To construct a symplectic method, we exploit the property that exact evolution under

a series of sub-Hamiltonians gives approximate evolution under the total Hamiltonian that

is exactly symplectic.80 This scheme is used to construct the conventional Velocity Verlet

algorithm and more complicated algorithms81 such as partitioning the potential energy into

fast and slowly-varying components.79,82 Here, we partition the Hamiltonian in Eq. (7) into

two sub-Hamiltonians,

H = H1 +H2, (13a)

H1 =
1

2
PTµ−1P, (13b)

H2 =
1

2
pTV(R)p+

1

2
xTV(R)x− 1

2
Tr [V(R)] . (13c)

We then define a flow map, ΦHi,t, corresponding to exact evolution [Eq. (8)] for timestep

t under Hamiltonian Hi. The flow map is simply a function which takes as input phase

space coordinates z, and returns the time-evolved values under a specified dynamics. In

this notation, exact evolution under the MMST Hamtiltonian is formally zt = ΦH,t(z0). We

define the MInt algorithm as an approximate flow map, ΨH,∆t, which is a series of exact

evolutions under the sub-Hamiltonians of Eq. (13b) and Eq. (13c),

ΨH,∆t := ΦH1,∆t/2 ◦ ΦH2,∆t ◦ ΦH1,∆t/2, (14)

where the circles represent the composition operation: f ◦g(z) := f(g(z)). In words, Eq. (14)

describes time evolution of the system under H1 for half a time step, under H2 for a full time

step, and under H1 again for half a time step. As each sub-evolution is symplectic, the total

evolution will also be symplectic.80 To confirm this, in Appendix E we prove symplecticity

directly by evaluating Eq. (12) for the MInt algorithm.

We note that while Liouvillians are commonly used to construct symplectic algorithms

and to discuss time-evolution in general, exact evolution under a series of Liouvillians is

not necessarily symplectic, unless each Liouvillian corresponds to exact evolution under a

Hamiltonian.79,83 For completeness the MInt algorithm is given in the Liouvillian formalism

in Appendix D, and compared against a recently-proposed algorithm for evolution under the

MMST Hamiltonian84 that is only symplectic in the limit of an infinitely small time step.
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Evolution under H1 is free particle motion,

Ṙk =
∂H1

∂Pk

=
Pk

µkk

, (15)

for the kth nuclear position coordinate, with all other variables fixed. Integrating Eq. (15)

for half a time step, ∆t/2, yields

Rk(∆t/2) = Rk(0) +
Pk(0)∆t

2µkk

. (16)

For evolution under H2,

ẋ =
∂H2

∂p
= V(R)p, (17a)

ṗ =− ∂H2

∂x
= −V(R)x, (17b)

Ṗk =− ∂H2

∂Rk

=− 1

2
(x− ip)TVk(R)(x+ ip)

+
1

2
Tr [Vk(R)] , (17c)

with R fixed, and we define the gradient Vk(R) := ∂
∂Rk

V(R). To solve Eq. (17) we note

that ẋ and ṗ are not dependent on P, but Ṗ is dependent on x and p. We can therefore

solve for x(t) and p(t), 0 ≤ t ≤ ∆t, and substitute this solution into Eq. (17c) to find P(∆t).

The motion of the electronic positions and momenta is therefore given by10,84

[x(∆t) + ip(∆t)] = e−iV(R)∆t[x(0) + ip(0)]. (18)

By substituting Eq. (18) into Eq. (17c) we obtain an expression for nuclear momentum

evolution:

Pk(∆t) = Pk(0)−
1

2

∫ ∆t

0

dt
{
[x(0)− ip(0)]Te+iV(R)tVk(R)e−iV(R)t[x(0) + ip(0)]− Tr[Vk(R)]

}
.

(19)

The above equation can be solved analytically, as discussed in Appendix B. We therefore

name the algorithm the MInt algorithm as the nuclear Momentum Integral over time in

Eq. (19) is solved exactly. In Appendix B we also show how evolution of the Monodromy

matrix under ΨH,∆t can be computed exactly. The evolution will be exactly symplectic,
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satisfying Eq. (12) for any time step (although for very large time steps the evolution may

become a poor approximation to exact evolution under H).

As discussed further in Appendix C, the MInt algorithm is symmetric and time-reversible,

both properties of exact Hamiltonian evolution. Like the Velocity Verlet algorithm, it

is second order in time step ∆t, and will therefore conserve energy with fluctuations of

O(∆t2) without drifting. The algorithm is also explicit and, being symplectic, automati-

cally satisfies Liouville’s theorem. In addition, as noted for exact evolution under the MMST

Hamiltonian,85 the MInt algorithm exactly conserves G := xTx+ pTp and is therefore uni-

tary, i.e. conserves total electronic probability,85

F∑
n=1

Pn =
1

2

F∑
n=1

x2n + p2n − 1, (20)

for any length of time step. It is also invariant to the overall phase (or angle) of the mapping

variables, i.e. the transformation

(x̃+ ip̃) = e−iθ(x+ ip) (21)

where θ is a scalar. We note that this algorithm immediately extends to Hamiltonians

containing a sum of Meyer-Miller-like terms such as the ring polymer Hamiltonians in Ref. 84.

III. MODEL SYSTEMS

We test MQC-IVR on previously-used model 2-level systems with one nuclear dof.46

Model 1 has diabatic electronic potential energy matrix elements given by

V11(R) = V0 (1 + tanh (α1R)) (22a)

V22(R) = V0 (1− tanh (α1R)) (22b)

V12(R) = ae−bR2

, (22c)

with V0 = 0.01, α1 = 1.6, a = 0.005, and b = 1.0. Model 2 is an asymmetric version of

model 1,

V11(R) = V1 (1 + tanh (α2R)) (23a)

V22(R) = V0 (1− tanh (α2R)) (23b)

V12(R) = ae−b(R+f)2 , (23c)
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FIG. 1. Elements of the diabatic electronic potential energy matrix for (a) model 1 and (b) model

2 are plotted as a function of the nuclear position: V11(R) (black), V22(R) (grey) and V12(R) (red).

with the same parameters as before and V1 = 0.04, α2 = 1.0, and f = 0.7. Plots of the

diabats and couplings for each model are provided in Fig. 1.

IV. SIMULATION DETAILS

We compute a real-time correlation function as defined in Eq. (2) for a system initially

in a nuclear coherent state occupying electronic state 1. Operator Â is defined as

Â = |ψi⟩ ⟨ψi| = |PiRi1102⟩ ⟨PiRi1102| , (24)

where (Pi, Ri) denotes the center of an initial nuclear coherent state. The subscripts of

(11, 02) label the electronic state while a 0 or 1 indicates a ground state or first excited

state configuration in the mapping variables corresponding to that state, respectively. The

corresponding initial position-space wavefunction is then given by

⟨Rx1x2|ψi⟩ =
(γ
π

) 1
4
e−

γ
2
(R−Ri)

2+iPi(R−Ri)

×
(
2

π

) 1
2

x1e
− 1

2
(x2

1+x2
2), (25)
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with Ri = −5.0, and the nuclear coherent state width parameter is γ = γ0 = γt = 0.25.

Simulations are performed with either large incident kinetic energy, 0.1, corresponding to

initial nuclear momentum Pi = 19.9, or low incident kinetic energy, 0.03, where Pi = 10.9.

The nuclear mass is 1980.

To compute the particle’s distribution of final translational momentum at long times, Pf ,

we define B̂ = δ(Pf − P̂ ). The MQC-IVR expression for this choice of operators is

C(Pf ) = lim
t→∞

1

(2π)6

∫
dz0

∫
dz′0 ⟨z0|ψi⟩ ⟨ψi|z′0⟩

× ei[St(z0)−St(z′0)]Dt (z0, z
′
0; c,γ0,γt)

× ⟨z′t|δ(Pf − P̂ )|zt⟩ e−
1
2
∆T

z0
c∆z0 . (26)

We choose a nuclear observable for operator B̂ rather than, say, electronic state populations

because classical limit SC-IVRs generally fail at describing nuclear quantum effects.46

For model 1, we sample the initial nuclear coordinates with the following correlated

sampling distribution,86

ωN(P0, R0, P
′
0, R

′
0) =| ⟨P̄0R̄0|PiRi⟩ |2

×e−
cP
2
∆2

P0e−
cR
2
∆2

R0 , (27)

where the bars represent mean variables [e.g. P̄0 = 1
2
(P ′

0 + P0)]. The initial coordinates of

oscillator 1 are sampled from

ω1(p10, x10, p
′
10, x

′
10) =| ⟨p10x10|11⟩ |2| ⟨p′10x′10|11⟩ |2

×e−
cp10
2

∆2
p10

− cx10
2

∆2
x10 , (28)

where the first subscript of the mapping variables indicates the electronic state and the

second subscript indicates the time. The initial coordinates of oscillator 2 are sampled from

ω2(p20, x20, p
′
20, x

′
20) =| ⟨p20x20|02⟩ |2| ⟨p′20x′20|02⟩ |2

×e−
cp20
2

∆2
p20

− cx20
2

∆2
x20 . (29)

For model 2, we use a different sampling scheme that proves more efficient,

ω(z0, z
′
0) = |⟨z0|ψi⟩ ⟨ψi|z′0⟩| e−

1
2
∆T

z0
c∆z0 . (30)
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The overlap of the coherent states with operator B̂ = δ(Pf − P̂ ) can be found by inserting

a momentum identity and using Eq. (3),

⟨z′t|δ(Pf − P̂ )|zt⟩ =
(

1

γπ

) 1
2

e−
γ
2
(Pf−P ′

t )
2

× e−
γ
2
(Pf−Pt)2eiPf (R

′
t−Rt) (31)

×
2∏

j=1

e−
1
4
(x′

jt−xjt)
2− 1

4
(p′jt−pjt)

2

e
i
2
(p′jt+pjt)(x

′
jt−xjt).

For both models we use a time step of ∆t = 1.5 a.u. and monitor energy conservation

with a tolerance parameter, ϵ = 10−4, such that

|1− E(0)/E(t)| < ϵ. (32)

With the MInt algorithm, we find that only ∼ 0.1% of trajectories violate this tolerance

in the model systems presented here and with the time step mentioned above. We use a

total simulation time of 3000 a.u. for the high energy simulations and 4000 a.u. for the low

energy simulations. We also track the phase of the prefactor in order to select the correct

branch of the complex square root. Exact quantum results are obtained by diagonalizing

the quantum mechanical Hamiltonian in the Discrete Variable Representation, followed by

time-evolution with a Chebyshev propagation algorithm.46,87

For all results presented below, we set the position and momentum filtering parameters

for a given dof to be equal: cq = cρ. Further, we take all electronic filtering parameters

to be equal, thus treating the two electronic states at the same level of quantization. For

clarity, in the rest of this paper, we use cnuc and cel to indicate the values used to filter the

nuclear and electronic dofs, respectively.

The SC-Corr code package,? developed in-house and available as open-source software,

was used to perform the calculations in this study.

V. RESULTS

Here we show the results of using Eq. (26) to compute the particle’s distribution of final

nuclear momentum after transmission through the curve crossing in models 1 and 2. The

MQC-IVR results obtained with model 1 and a high incident energy of 0.1 are shown in

Fig. 2. Fig. 3 contains MQC-IVR results obtained with model 2 and an incident energy of
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cnuc cel Ntraj max [ε(Pf )]

0.01 0.01 3.2× 109 3.7× 10−2

0.05 0.05 5.8× 108 1.1× 10−1

0.1 0.1 4.8× 108 1.9× 10−1

10.0 10.0 1.5× 106 4.1× 10−1

0.01 0.05 7.4× 108 5.1× 10−2

0.01 0.1 6.3× 108 8.4× 10−2

0.01 10.0 2.4× 107 2.8× 10−1

0.05 0.01 1.5× 109 1.1× 10−1

0.1 0.01 8.8× 108 1.6× 10−1

10.0 0.01 4.8× 108 3.7× 10−1

TABLE I. The number of trajectories required for graphical convergence, Ntraj, of each MQC-IVR

result in Fig. 2. Also listed is the absolute error relative to the exact quantum result, as averaged

over Pf .

0.1. Fig. 4 and Fig. 5 contain MQC-IVR results obtained with model 2 and a low incident

energy of 0.03. All panels show the exact quantum result as a solid black curve.

In Fig. 2(a), Fig. 3(a), Fig. 4(a) and Fig. 4(b), all dofs are equally quantized with c =

cnuc = cel. As expected, the quantum limit filtering strength (c = 0.01 shown in pink

in the first three figures mentioned) agrees well with the transmission peaks of the exact

quantum results, with slight reduction in peak amplitudes and slight broadening of peak

widths. The reflection peaks at Pf = −6.5 and Pf = −11.0 of Fig. 4(a) in this limit, though

noisier than the high-intensity transmission peaks, also agree well with the exact quantum

result, but with a slight over-estimation of each signal. Increasing the strength of the filter

(with c = 0.05 and c = 1.0 shown in blue and green respectively) in each model further

broadens peak widths and reduces peak amplitudes, but the discrete quantum peak structure

is retained in each case and significantly fewer trajectories are required for convergence, as

reported in Tables I-III. The deviation from exact quantum increases as we further increase

filtering strength and, as expected, the MQC-IVR result collapses to the Husimi-IVR result

[shown in black, dashed in Fig. 2(a), Fig. 3(a) and Fig. 4(b)] when the filter strength is

c ≥ 10 [shown in red in Fig. 2(a), Fig. 3(a) and Fig. 4(b)].
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FIG. 2. The distribution of final nuclear momentum with model 1 and an incident energy of

0.1. The exact quantum result (black, solid) is shown in each panel along with (a) the Husimi-

IVR (black, dashed) and MQC-IVR where each dof is treated with the same filtering strength:

c = 0.01 (pink), c = 0.05 (blue), c = 0.1 (green), and c = 10.0 (red); (b) the MQC-IVR results

where the nuclear filtering parameters are fixed near the quantum limit, cnuc = 0.01, and the

electronic filtering parameters are varied: cel = 0.05 (blue), cel = 0.1 (green), and cel = 10.0 (red);

(c) MQC-IVR results where the electronic filtering parameters are fixed near the quantum limit,

cel = 0.01, and the nuclear filtering parameters are varied: cnuc = 0.05 (blue), cnuc = 0.1 (green),

and cnuc = 10.0 (red).
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FIG. 3. The distribution of final nuclear momentum with model 2 and incident energy of 0.1. The

exact quantum result (black, solid) is shown in each panel along with (a) the Husimi-IVR (black,

dashed) and MQC-IVR where each dof is treated with the same filtering strength: c = 0.01 (pink),

c = 0.05 (blue), c = 0.1 (green), and c = 10.0 (red); (b) the MQC-IVR results where the nuclear

filtering parameters are fixed near the quantum limit, cnuc = 0.01, and the electronic filtering

parameters are varied from cel = 0.05 (blue) to cel = 0.1 (green) and cel = 10.0 (red); (c) MQC-

IVR results where the electronic filtering parameters are fixed in the quantum limit, cel = 0.01,

and the nuclear filtering parameters are varied from cnuc = 0.05 (blue) to cnuc = 0.1 (green) and

cnuc = 10.0 (red).
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FIG. 4. The final distribution of nuclear momentum with model 2 and an incident energy of 0.03.

In both panels the exact quantum result is shown in black along with MQC-IVR results in which

each dof is filtered equally: (a) c = 0.01 (pink) and c = 0.1 (blue); (b) c = 1.0 (green) and c = 10.0

(red).

We then present MQC-IVR results where the nuclear and electronic dofs are quantized

to different extents by varying cel and cnuc independently. In Fig. 2(b), Fig. 3(b), and

Fig. 5(a) we fix the nuclear dof in the quantum limit (cnuc = 0.01) and vary the tuning

strength associated with the electronic dofs between cel = 0.05 and cel = 10.0. Although the

quantum double peak structure is visible in all cases considered here, as we move towards the

classical limit (cel = 10.0 shown in red in each case) spurious peaks appear and relative peak

intensities change dramatically. We note that, unlike in Fig. 2(a), Fig. 3(a), and Fig. 4(b),

where the peaks merge to the mean-field Husimi-IVR result in the classical limit, the discrete

peak structure is still visible when only the electronic dofs are treated in the classical limit.

Next, in Fig. 2(c), Fig. 3(c), and Fig. 5(b) we treat the electronic dofs in the quantum

limit (cel = 0.01) and vary the extent of nuclear quantization from cnuc = 0.01 to cnuc = 10.0.

We find these results are very similar to those in Fig. 2(a), Fig. 3(a), Fig. 4(a), and Fig. 4(b)
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FIG. 5. The final distribution of nuclear momentum with model 2 and an incident energy of 0.03.

The exact quantum result is shown in black along with MQC-IVR results where (a) the nuclear

filtering parameters are fixed near the quantum limit, cnuc = 0.01, and the electronic dofs are

treated with cel = 1.0 (blue) and cel = 10.0 (red); (b) the electronic filtering parameters are fixed

near the quantum limit, cel = 0.01, and the nuclear dofs are treated with cnuc = 1.0 (blue) and

cnuc = 10.0 (red). The Husimi-IVR result (black, dashed) is also shown in panel (a).

where both electronic and nuclear dofs are equally quantized —the spurious peaks that

appear in the cases where the electron dofs are treated in the classical limit do not appear,

instead the peaks start to merge with larger cnuc. This gives rise to mean-field like behavior

where transmission probability is highest on an unphysical, average electronic surface.

As mentioned above, Tables I-III report the total number of trajectories required for

graphical convergence of each MQC-IVR result. Also reported in each table is the maximum

absolute error

ε(Pf ) = |CMQC(Pf )− CQM(Pf )| (33)

of each result across all values of Pf . This allows us to clearly identify parameter regimes

where the filtering results in improved convergence but little reduction in accuracy. For
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cnuc cel Ntraj max [ε(Pf )]

0.01 0.01 1.6× 109 5.7× 10−2

0.05 0.05 4.8× 108 1.1× 10−1

0.1 0.1 2.8× 108 2.3× 10−1

10.0 10.0 3.6× 106 3.1× 10−1

0.01 0.05 7.2× 108 5.5× 10−2

0.01 0.1 6.0× 108 6.3× 10−2

0.01 10.0 1.2× 108 2.4× 10−1

0.05 0.01 9.4× 108 5.5× 10−2

0.1 0.01 7.2× 108 9.0× 10−2

10.0 0.01 4.1× 108 2.9× 10−1

TABLE II. The number of trajectories required for graphical convergence, Ntraj, of each result in

Fig. 3. Also listed is the absolute error relative to the exact quantum result, as averaged over Pf .

the high energy simulations with models 1 and 2, an optimal choice of parameters may

be cnuc = 0.01 and cel = 0.05 or cel = 0.1 where the number of trajectories required for

convergence is on the order of 108 with maximum absolute error on the order of 10−2. More

trajectories are required in this parameter regime for the low energy simulation of model

2, due to the slower convergence of the reflection peaks, but the number of trajectories

required is nearly half that of the weakest filter (c = 0.01), and the maximum absolute error

only increases from 0.08 to 0.15. We hypothesize that since we are calculating a nuclear

observable here, it is necessary to quantize the nuclear dof to a greater extent than the

electronic dofs. This idea is further validated by an observation made in the original MQC-

IVR implementation63 for a model 2D adiabatic system of coupled oscillators. Specifically,

it was shown that when observing the position of the heavy (more classical mode) it was

sufficient to quantize just that mode and the accuracy of the resulting correlation function

was largely independent of the extent of quantization used to describe the lighter, unobserved

mode.63

Although Tables I-III show that the number of trajectories required to converge these low-

dimensional model systems is very large, we note that converging the correlation function

using quantum limit methods like the DHK-IVR is virtually impossible without MFF or

17



cnuc cel Ntraj max [ε(Pf )]

0.01 0.01 3.0× 109 8.0× 10−2

0.1 0.1 1.5× 109 3.5× 10−1

1.0 1.0 2.6× 108 5.7× 10−1

10.0 10.0 2.2× 106 7.5× 10−1

0.01 0.1 1.7× 109 1.5× 10−1

0.01 10.0 4.5× 107 4.2× 10−1

0.1 0.01 2.4× 109 2.9× 10−1

10.0 0.01 4.5× 108 6.3× 10−1

TABLE III. The number of trajectories required for graphical convergence, Ntraj, of each result in

Fig. 4 and Fig. 5. Also listed is the absolute error relative to the exact quantum result, as averaged

over Pf .

other approximations. We also emphasize that as we move to higher dimensional systems,

we expect the ability to treat a large number of modes in the classical limit will make the

MQC-IVR approach invaluable.

Finally, in Fig. 6 we provide numerical evidence of two important features of the MInt

algorithm: symplecticity and energy conservation. We also compare the performance of the

MInt algorithm to the non-symplectic, fourth order, Adams-Bashforth predictor-corrector

algorithm. Symplecticity is monitored by tracking the element of the matrix

δM(t) = MT
qqMρρ −MT

ρqMqρ − I (34)

with the greatest magnitude: a condition derived from Eq. (12). Our energy conservation

criterion is

δE(t) = 1− E(t)/E(0). (35)

In Fig. 6(a), we plot δM(t) along a single low-energy trajectory for model 2 generated using

the MInt algorithm, and in Fig. 6(b), we plot δE(t). The time range shown along the x-axis

corresponds to the time spent by the particle traversing the interaction region and each

colored curve represents a different choice of time step ranging from ∆t = 0.05 to ∆t = 6.0.

The largest element of δM(t) in Fig. 6(a) remains extremely small (< 10−12), even for long
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FIG. 6. A plot of (a) the largest element of δM(t) as a function of time as computed with the MInt

algorithm, (b) δE(t) as a function of time as computed with the MInt algorithm, and (c) δE(t)

as a function of time as computed with a non-symplectic Adams-Bashforth predictor-corrector

algorithm. Each color represents a different time step used: ∆t = 0.05 (cyan), 0.10 (orange), 0.75

(red), 1.5 (blue), 3.0 (green), 6.0 (purple).

times and very coarse time steps, demonstrating that the MInt algorithm is symplectic.

The fluctuations in δE(t) in Fig. 6(b) oscillate around the true value, and the amplitude of

the oscillations decrease with time step size: both characteristics of a symplectic algorithm.

Finally, in Fig. 6(c) we plot δE(t) for a trajectory with the same initial conditions generated

using the fourth order Adams-Bashforth predictor-corrector algorithm. As expected from a

non-symplectic integration scheme, the energy drifts away from the true value over time.
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VI. CONCLUSIONS

In this article we have successfully extended MQC-IVR to the description of nuclear

coherence effects in nonadiabatic systems. We have analyzed the effects of treating both

electronic and nuclear dofs under identical and different filtering strengths, and found that

there are parameter regimes in both cases which not only reduce computational expense

but also maintain a qualitatively accurate description of the transmission through a curve

crossing. We also introduced the MInt algorithm for exact symplectic evolution under the

MMST Hamiltonian, an important contribution to semiclassical simulations of nonadiabatic

processes.

In future work we plan to extend nonadiabatic MQC-IVR to multidimensional nona-

diabatic systems such as the NO scattering problem,6,7 as well as implement the MInt

(or similar) algorithm(s) in other nonadiabatic dynamics methods that employ the MMST

Hamiltonian.
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Appendix A: MQC-IVR Prefactor

The functional form of the prefactor is given by

Dt (z0, z
′
0; c,γ0,γt) = det(

1

2
γ−1
t G)

1
2

× det

[
1

2
(Mf

ρρ − iγtM
f
qρ)(G

−1 + I)(Mb
ρργt + iMb

ρq)

+ (γtM
f
qq + iMf

ρq)(
1

2
γ−1
0 + cρ)G

−1(Mb
ρργt + iMb

ρq)

+
1

2
(γtM

f
qq + iMf

ρq)(G
−1 + I)(Mb

qq − iMb
qργt)

+ (Mf
ρρ − iγtM

f
qρ)(

1

2
γ0 + cq)G

−1(Mb
qq − iMb

qργt)

] 1
2

,

with diagonal matrix G = (cq + γ0)cρ + cq(γ
−1
0 + cρ). We define elements of the un-

primed trajectory’s monodromy matrix as Mf
αβ = ∂αt

∂β0
and the primed trajectory’s backward

monodromy matrix as Mb
αβ =

∂α′
0

∂β′
t
. Note that the backward monodromy matrix is related

to its forward counterpart with the following identity,

Mb = (Mf ′)−1 =

 MfT′
ρρ −MfT′

qρ

−MfT′
ρq MfT′

qq

 ,

and Mf ′
αβ =

∂α′
t

∂β′
0
.

Appendix B: The MInt Algorithm

Here we describe the implementation of the MInt algorithm along with exact evolution

of the Monodromy matrix. To avoid computational difficulties with complex numbers the

formal evolution equations are rewritten such that the algorithm, when coded, is entirely real.

1. Evolution of positions and momenta

In the following we assume the diabatic electronic potential energy matrix to be real-

symmetric; the extension to Hermitian V(R) is straightforward.

Evolution of nuclear position is given in Eq. (16).
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To evolve the electronic positions and momenta in Eq. (18), we diagonalize the diabatic

matrix V giving eigenvectors S and a diagonal eigenvalue matrix Λ such that STVS = Λ,

where we drop the R dependence of V, S, and Λ for clarity. We then calculate

C =S cos(Λ∆t)ST (B1a)

D =S sin(−Λ∆t)ST (B1b)

such that

x(∆t) =Cx(0)−Dp(0) (B2a)

p(∆t) =Cp(0) +Dx(0). (B2b)

To solve Eq. (19), we insert SST = I identities and define

Wk := STVkS (B3)

to be the derivative of the potential in the adiabatic basis, giving

Pk(∆t) = Pk(0)−
1

2

∫ ∆t

0

dt
{
[x(0)− ip(0)]TSe+iΛtWke

−iΛtST[x(0) + ip(0)]− Tr[Vk(R)]
}
.

(B4)

As defined earlier we useVk(R) := ∂
∂Rk

V(R). We then integrate the elements of e+iΛtWke
−iΛt

term by term to give ∫ ∆t

0

dt e+iΛtWke
−iΛt = Γk + iΞk (B5)

where

(Γk)mn =

(Wk)mn ∆t m = n

1
λmn

sin(λmn∆t) (Wk)mn m ̸= n
(B6a)

(Ξk)mn =

0 m = n

1
λmn

[1− cos(λmn∆t)] (Wk)mn m ̸= n
(B6b)

where we use the shorthand λmn = (Λ)mm− (Λ)nn. Note that Γk is real and symmetric and

Ξk is real and skew-symmetric since by definition λmn = −λnm.
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We then rotate Γk and Ξk back to the diabatic basis, defining

Ek :=SΓkS
T, (B7a)

Fk :=SΞkS
T, (B7b)

where E is symmetric and F is skew-symmetric. Inserting this into Eq. (B4) we finally

obtain

Pk(∆t) =Pk(0)−
1

2

{
xT(0)Ekx(0) + pT(0)Ekp(0)

− 2xT(0)Fkp(0)− Tr [Vk] ∆t
}
. (B8)

2. Evolution of the monodromy matrix

From Eq. (11), the monodromy matrix in mapping variables is given as

M =


MRR MRx MRP MRp

MxR Mxx MxP Mxp

MPR MPx MPP MPp

MpR Mpx MpP Mpp

 (B9)

where

MXY =
∂X(t)

∂Y(0)
(B10)

for two arbitrary phase space variables X and Y.

a. Evolution under H1

Since evolution under H1 is linear, for evolution through ∆t/2 the diagonal elements of

M are unity,

MRP =
∆t

2µkk

(B11)

and all other elements of M are zero. The update to the monodromy matrix is therefore88

MRkX(∆t/2) = MRkX(0) +MPkX(0)
∆t

2µkk

(B12)

and all other elements are unchanged.
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b. Evolution under H2

We first observe that for the equations of motion in Eq. (17), MRR = MPP = I, and all

elements of MRx, MRP and MRp are zero.

The monodromy matrix elements concerning only the electronic variables can be obtained

from Eq. (B2a) and Eq. (B2b) at no extra computational cost,

Mxx(∆t) = C (B13a)

Mxp(∆t) = −D (B13b)

Mpx(∆t) = D (B13c)

Mpp(∆t) = C. (B13d)

We can similarly use Eq. (B8) to determine changes in nuclear momenta with respect to

initial electronic coordinates,

MPkx(∆t) = −
[
xT(0)Ek + pT(0)Fk

]
(B14a)

MPkp(∆t) = −
[
pT(0)Ek − xT(0)Fk

]
. (B14b)

Determining MxR and MpR requires finding the derivative of a matrix exponential. We use

Eq. (B2a) and Eq. (B2b) to give

MxRk
(∆t) = Ckx(0)−Dkp(0) (B15a)

MpRk
(∆t) = Ckp(0) +Dkx(0), (B15b)

where, similar to Appendix A of Ref. 89,

Ck :=
∂

∂Rk

C

=Sk cos(Λ∆t)ST − S sin(Λ∆t)Λk∆tS
T

+ [Sk cos(Λ∆t)ST]T, (B16a)

Dk :=
∂

∂Rk

D

=− Sk sin(Λ∆t)ST − S cos(Λ∆t)Λk∆tS
T

− [Sk sin(Λ∆t)ST]T, (B16b)

Sk :=
∂

∂Rk

S, (B16c)

Λk :=
∂

∂Rk

Λ. (B16d)
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For a system with two electronic states Sk and Λk can be determined algebraically, and

algorithms exist for finding these exactly for an arbitrary F -level system.90

We finally require MPR. Differentiating Eq. (B8) gives

MPkRj
=− 1

2

[
xTEjkx+ pTEjkp− 2xTFjkp

]
+

1

2
Tr [Vjk(R)]∆t, (B17)

where

Vjk :=
∂

∂Rj

Vk, (B18a)

Ejk :=
∂

∂Rj

Ek

=SjΓkS
T + SΓjkS

T + (SjΓkS
T)T, (B18b)

Fjk :=
∂

∂Rj

Fk

=SjΞkS
T + SΞjkS

T − (SjΞkS
T)T, (B18c)

and

(Γjk)mn :=
∂

∂Rj

(Γk)mn

=

 (Wjk)nm∆t m = n

1
λmn

sin(λmn∆t)
[
(Wjk)mn − λj,mn

λmn
(Wk)mn

]
+ 1

λmn
cos(λmn∆t)λj,mn∆t(Wk)mn m ̸= n

,

(B19a)

(Ξjk)mn :=
∂

∂Rj

(Ξk)mn

=

 0 m = n

1
λmn

[1− cos(λmn∆t)]
[
(Wjk)mn − λj,mn

λmn
(Wk)mn

]
+ 1

λmn
sin(λmn∆t)λj,mn∆t(Wk)mn m ̸= n

,

(B19b)

and

Wjk :=
∂

∂Rj

Wk

=ST
j VkS+ STVjkS+ (ST

j VkS)
T, (B20a)

λj,mn :=
∂

∂Rj

λmn = (Λj)mm − (Λj)nn. (B20b)
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Despite the apparent complexity of the monodromy matrix calculations, many terms can

be ‘recycled’ from previous operations, such as matrices S, C and D, etc. In addition, for a

two-level system SjΞkS
T is diagonal and therefore Fjk = SΞjkS

T.

3. Complete algorithm

The trajectory is initialized with given values of {R,x,P,p} and M(0) = I. Starred

items are only required if the monodromy matrix is also to be evaluated.

For each time step:

1. Evolve nuclear positions with Eq. (16) for ∆t/2.

2. ∗Evolve M for ∆t/2 using Eq. (B12).

3. Compute V and Vk ∀ k. Diagonalize V to find S and Λ.

4. Find C and D using Eq. (B1) and calculate x(t) and p(t) from Eq. (B2).

5. For each k, find Wk and from it Γk and Ξk using Eq. (B6). From these obtain Ek and

Fk ∀k using Eq. (B7). Therefore find P(t) from Eq. (B8).

6. ∗Find Vjk, Sj, and Λjk ∀ j, k.

7. ∗Populate Mxx, Mxp, Mpx, and Mpp from Eq. (B13) using the C and D from step 4.

8. ∗From Eq. (B14) find MPx and MPx using {Ek} and {Fk} from step 5.

9. ∗Find {Ck} and {Dk} from Eq. (B16) and therefore MxR and MpR from Eq. (B15).

10. ∗Find {Wjk} and {λj,mn} defined in Eq. (B20) and compute Γjk and Ξjk using

Eq. (B19). From these find {Ejk} and {Fjk} [Eq. (B18)] and compute MPR using

Eq. (B17).

11. ∗Evolve the monodromy matrix using the monodromy matrix for ΦH2,∆t obtained from

steps 6 to 10.

12. Repeat steps 1 and 2∗ for evolution step ΦH1,∆t/2.
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We note that a different flow map constructed by swapping H1 and H2 in Eq. (14) would

also result in a symplectic transformation, but the flow map defined in Eq. (14) requires

fewer mathematical operations.

Appendix C: Algorithm properties

A symmetric algorithm is formally defined as80

Ψ−∆t = Ψ−1
∆t . (C1)

To prove this, we use the property that exact evolution under any Hamiltonian is symmetric80

(Φ−1
t = Φ−t) and therefore

Ψ−1
H,∆t =Φ−1

∆t/2,H1
◦ Φ−1

∆t,H2
◦ Φ−1

∆t/2,H1

=Φ−∆t/2,H1 ◦ Φ−∆t,H2 ◦ Φ−∆t/2,H1

=ΨH,−∆t (C2)

as required.

Time reversibility is formally80

ΨH,∆t = ΣΨ−1
H,∆t(Σz) (C3)

where the involution Σ is

Σ =

I 0

0 −I

 . (C4)

Exact evolution under the MMST Hamiltonian is time reversible since H(R,x,P,p) =

H(R,x,−P,−p). This can be proven for ΨH,∆t since exact evolution under H1 and H2 is

time-reversible and therefore

ΣΨ−1
H,∆t(Σz) =Σ[Φ∆t/2,H1 ◦ Φ∆t,H2 ◦ Φ∆t/2,H1 ]

−1(Σz)

=ΣΦ−1
∆t/2,H1

◦ Φ−1
∆t,H2

◦ Φ−1
∆t/2,H1

(Σz)

=ΣΦ−1
∆t/2,H1

◦ Φ−1
∆t,H2

[ΣΦ∆t/2,H1(z)]

=ΣΦ−1
∆t/2,H1

[ΣΦ∆t,H2 ◦ Φ∆t/2,H1(z)]

=Φ∆t/2,H1 ◦ Φ∆t,H2 ◦ Φ∆t/2,H1(z)

=Ψ∆t(z). (C5)
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To show that the algorithm is second order, one can write out exact evolution under H in

powers of ∆t using the Liouvillian formalism and then compare to evolution under ΨH,∆t,

noting that terms differ at O(∆t3). More elegantly, since a method constructed by Hamilto-

nian splitting is exactly symplectic and at least first order,80 and that a symmetric method

has to be of even order,80 the algorithm must be (at least) second order accurate.

To prove that G := xTx + pTp is conserved, we note that it is unchanged by evolution

under H1, i.e. {G, H1} = 0 and for evolution under H2 we find {G, H2} = 2xTVp−2pTVx =

0 as V is symmetric.

Angle invariance is a direct consequence of unitarity.85 To show this explicitly one can

apply the transformation in Eq. (21) to Eq. (18) and then transform back, observing that

evolution of the electronic positions and momenta are unaffected. The evolution of nuclear

position in Eq. (16) is not directly dependent on the electronic variables and evolution of

nuclear momenta in Eq. (19) is invariant to the transformation in Eq. (21).

Since the MInt algorithm is Hamiltonian evolution discretized by a symplectic method,

there exists a modified Hamiltonian Ȟ whose energy the algorithm conserves exponentially

well over exponentially long time intervals.80 The modified Hamiltonian, which is timestep-

dependent, differs from the original Hamiltonian by the order of the algorithm,80 so for the

MInt algorithm

H(z)− Ȟ(z; ∆t) = O(∆t2) (C6)

and the MMST Hamiltonian H(z) will be conserved for exponentially long times with fluc-

tuations of O(∆t2).

Appendix D: Liouvillian formalism

The algorithm in Eq. (14) in the Liouvillian representation is equivalent to

ΨH,∆t = eL1∆t/2eL2∆teL1∆t/2 (D1)
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where

L1 ={·, H1}

=
∑
k

Pk

µkk

∂

∂Rk

, (D2a)

L2 ={·, H2}

=−
∑
k

{
1

2
(x− ip)TVk(R)(x+ ip)

− 1

2
Tr [Vk(R)]

}
∂

∂Pk

+ pTV∇x − xTV∇p. (D2b)

Note that each Liouvillian can be written as exact evolution under a Hamiltonian, and

we follow the conventions of Zwanzig83 and Ref. 80 by defining the Liouvillian without a

prefactor of i.

An alternative scheme has been suggested for evolution in mapping variables which (in

this notation) is84

Ψ̃H,∆t = eLel∆t/2eLP∆t/2eL1∆teLP∆t/2eLel∆t/2 (D3)

where L1 is defined in Eq. (D2a) and

Lel =+ pTV∇x − xTV∇p (D4a)

LP =−
∑
k

{
1

2
(x− ip)TVk(R)(x+ ip)

− 1

2
Tr [Vk(R)]

}
∂

∂Pk

. (D4b)

To compare these algorithms, we firstly note that the order of L1 and L2 in Eq. (D1) can

be swapped without compromising the formal properties of the algorithm. Therefore one

can define an alternative symplectic algorithm

Ψ̄H,∆t = eL2∆t/2eL1∆teL2∆t/2, (D5)

though this will be more computationally expensive than ΨH,∆t. We then note from

Eq. (D2b) and Eq. (D4) that

L2 ≡ Lel + LP. (D6)
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Consequently Ψ̃H,∆t is equivalent to making the approximation

eL2∆t/2 ≃ eLel∆t/2eLP∆t/2 (D7)

to the symplectic propagator Ψ̄H,∆t. We therefore call Ψ̄H,∆t the Split Liouvillian (SL)

algorithm since it splits eL2∆t/2 into eLel∆t/2eLP∆t/2 (and eLP∆t/2eLel∆t/2).

The approximation in Eq. (D7) is clearly exact in the ∆t→ 0 limit, and therefore Ψ̃H,∆t

will be symplectic in this limit. It will also conserve electronic probability exactly for any

time step like Ψ̄H,∆t and ΨH,∆t.

However, Lel and LP cannot in general be written as exact evolution under a Hamiltonian

[cf. Eq. (D2)] and we show in appendix E that the SL algorithm is not in general symplectic

for an arbitrary timestep.

Appendix E: Symplecticity properties of the MInt and SL algorithms

Here we confirm that the MInt algorithm is symplectic by explicitly evaluating Eq. (12)

for each step of the algorithm. We also show that the SL algorithm in Eq. (D3) is not, in

general, symplectic. For notational simplicity we present the results for one nuclear dof;

further nuclear dof merely add more indices.

We first note that evolution under an arbitrary series of symplectic steps is also symplectic,

since the monodromy matrix of the overall algorithm is the product of the monodromy

matrices of the individual steps, and symplecticity can therefore be proven by applying

Eq. (12) recursively. To prove that the MInt algorithm is symplectic it is therefore sufficient

to prove

MT
H1
J−1MH1 = J−1 (E1)

and

MT
H2
J−1MH2 = J−1 (E2)

where MH1 and MH2 are the monodromy matrices associated with evolution under H1 and

H2 respectively.
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1. Evolution under H1

The monodromy matrix (for evolution with timestep ∆t/2) is simply

MH1 =


1 0T ∆t/2m 0T

0 I 0 O

0 0T 1 0T

0 O 0 I

 . (E3)

Simple matrix multiplication shows that this satisfies Eq. (E1).

2. Evolution under H2

We firstly define

a =− pTE+ xTF (E4a)

b =− 1

2

[
xTE′x+ pTE′p− 2xTF′p

]
+

1

2
Tr [V′′] ∆t (E4b)

e =− xTE− pTF (E4c)

f =C′p+D′x (E4d)

g =C′x−D′p (E4e)

where the primes denote derivatives w.r.t. the nuclear coordinate, such that

MH2 =


1 0T 0 0T

g C 0 −D

b e 1 a

f D 0 C

 (E5)

and

MT
H2
J−1MH2 =


0 −e− gTD+ fTC −1 −a− gTC− fTD

−Cf + eT +Dg −CD+DC 0 −CC−DD

1 0 0 0

Df + aT +Cg +DD+CC 0 +DC−CD

 . (E6)
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We firstly note that CD − DC = O since these matrices have the same eigenvectors and

CC+DD = I. We then define

h :=−Cf + eT +Dg (E7a)

j :=Df + aT +Cg, (E7b)

such that Eq. (E6) reduces to

MT
H2
J−1MH2 =


0 −hT −1 −jT

h O 0 −I

1 0 0 0

j I 0 O

 . (E8)

To evaluate Eq. (E7) we define the matrices

A :=DC′ − E−CD′ (E9a)

B :=− (DD′ − F+CC′), (E9b)

such that

h ≡Ax+ Bp (E10a)

j ≡− Bx+ Ap. (E10b)

In order to prove Eq. (E2), we must prove h ≡ 0 and j ≡ 0 ∀ x,p, which requires proving

A ≡ O and B ≡ O. As we shall see, it is mathematically convenient to prove this in the

adiabatic basis, i.e. STAS ≡ O and STBS ≡ O.

We find

STAS =Λ′t− sin(Λ∆t)STS′ cos(Λ∆t)

+ cos(Λ∆t)STS′ sin(Λ∆t)− Γ (E11)

such that

(STAS)nm = Λ′
nnδnm∆t+ (STS′)nm sin(λmn∆t)− Γnm (E12)

To evaluate the W matrix in Γ, we find from Eq. (B3)

W =ST

(
∂

∂R
SΛST

)
S

=STS′Λ+Λ′ +ΛS′TS. (E13)
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We also use the property that the nonadiabatic derivative coupling matrix STS′ is antisym-

metric, i.e. because STS = I, S′TS+ STS′ = O, and therefore

Wnm =(STS′)nmλmn +Λ′
nnδnm. (E14)

Inserting this into Eq. (B6) we obtain

Γnm =

 Λ′
nn∆t n = m

−(STS′)nm sin(λnm∆t) n ̸= m
, (E15a)

Ξnm =

 0 n = m

[cos(λnm∆t)− 1] (STS′)nm n ̸= m
. (E15b)

Inserting Eq. (E15a) into Eq. (E12) shows that STAS ≡ O and therefore A ≡ O.

To prove that B = O, we find

(STBS)nm = −(STS′)nm[cos(λnm∆t)− 1] +Ξnm (E16)

since STS is skew-symmetric (see above) then the diagonal elements of this will vanish, and

the off-diagonal elements also vanish by Eq. (E15b), such that B ≡ O. Consequently h = 0

by Eq. (E10a) and j = 0 by Eq. (E10b), proving that evolution under H2 is symplectic.

Combining this with section E 1 proves that ΨH,∆t (the MInt algorithm) and Ψ̄H,∆t are

symplectic for any timestep, confirming our earlier statement of symplecticity which was

based upon contructing a method by Hamiltonian splitting.80

3. The SL algorithm

As noted above, the only difference between Ψ̄H,∆t (which we have just proven to be

symplectic) and the SL algorithm Ψ̃H,∆t is the approximation in Eq. (D7). We therefore seek

to determine whether successive evolution under Lel then LP is symplectic. The monodromy

matrix associated with nuclear momentum evolution (for timestep ∆t) is

MP =


1 0T 0 0T

0 1 0 0

b̃ −qTV′∆t 1 −pTV′∆t

0 0 0 1

 (E17)
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and the matrix associated with electronic evolution only is

Mel =


1 0T 0 0T

g C 0 −D

0 0T 1 0T

f D 0 C

 (E18)

where f and g are defined in Eq. (E4) and

b̃ := −1

2

(
xTV′′x+ pTV′′p− Tr [V′′]

)
. (E19)

We firstly note that det |MP| ≡ 1 and det |Mel| ≡ 1, which means that the SL algorithm

will satisfy Liouville’s theorem, a necessary but not sufficient criterion for symplecticity.

However,

MT
PJ

−1MP =


0 xTV′∆t −1 pTV′∆t

−V′x∆t O 0 −I

1 0T 0 0T

−V′p∆t I 0 O

 (E20)

so evolution under LP is not symplectic unless V′ = 0 (the diabatic matrix has no nuclear

dependence). Furthermore,

MT
elJ

−1Mel

=


0 −gTD+ fTC −1 −gTC− fTD

−Cf +Dg 0 0 −I

1 0 0 0

Df +Cg I 0 0



≡


0 e −1 a

−eT 0 0 −I

1 0 0 0

−aT I 0 0

 (E21)

where we have exploited Eq. (E7) and the earlier proofs that h ≡ 0 and j ≡ 0. In general

a ̸= 0 and e ̸= 0, so evolution under Lel is not symplectic.

We also consider combined evolution of both LP and Lel in order to compare the SL

and MInt algorithms on an equal footing and show that the combination of steps does not
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lead to cancellation of errors which restores symplecticity. We consider evolution under LP

followed by Lel (the fourth and fifth steps of the SL algorithm), since evolution under LP

first does not change the electronic dofs subsequently used in Mel and therefore leads to

simpler algebra. We find

MelMP =


1 0 0 0

g C 0 −D

b̃ −xTV′∆t 1 −pTV′∆t

f −D 0 C

 (E22)

comparison with Eq. (E5) leads us to define

ã :=− pTV′∆t (E23a)

ẽ :=− xTV′∆t (E23b)

such that

MelMP =


1 0 0 0

g C 0 −D

b̃ ẽ 1 ã

f −D 0 C

 (E24)

Comparison with section E 2 means that MT
PM

T
elJ

−1MelMP = J−1 if and only if ã ≡ a and

ẽ ≡ e, since the b̃ term cancels out. Expanding these conditions in coefficients of x and p

leads to the conditions

E
?
=V′∆t, (E25a)

F
?
=0. (E25b)

Evaluating these in the adiabatic basis (as above) gives

ST(E−V′∆t)S =Γ−W∆t, (E26a)

STFS =Ξ, (E26b)

and evaluating these elementwise in powers of ∆t gives

(Γ−W∆t)nm =

 0 n = m

−λ2
nm

3!
∆t3Wnm +O(∆t5) n ̸= m

, (E27a)

Ξnm =

 0 n = m

λnm

2!
∆t2Wnm +O(∆t4) n ̸= m

. (E27b)
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This means that (ẽ − e) and (ã − a) will be O(∆t2). The SL algorithm will therefore be

symplectic in the ∆t → 0 limit (as noted above) but for an arbitrary timestep will not be

symplectic. Consequently the energy is likely to drift, though the extent of the drift may be

small if the adiabatic states are closely separated and there is little off-diagonal coupling in

the adiabatic basis (i.e. λnmWnm∆t
2 ≪ 1). We also observe that the combination MelMP is

symplectic to one higher order in time to Mel or MP which from Eq. (E20) and Eq. (E21)

will be symplectic to O(∆t).
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