
Behavioral/Cognitive

Representational Similarity Analysis Reveals Commonalities
and Differences in the Semantic Processing of Words and
Objects
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Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic represen-
tations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which
meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study
investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual
word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to
identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both.
Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal
gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in
ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and
modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded
correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS
being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest
that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the
visual input, whereas the functional role of LpMTG differs for words and objects.

Introduction
To what extent are conceptual representations coded in a se-
mantic system common to both words and objects? Although
several regions have been identified in multimodal semantic
processing, suggesting their relevance to a common semantic
system [e.g., left angular gyrus (LAG), fusiform cortex, and
lateral and anterior temporal regions; Warrington and Shal-
lice, 1984; Vandenberghe et al., 1996; Bright et al., 2004;
Shinkareva et al., 2011], the computational properties of these
regions remain poorly understood. This raises the issue of
whether regions process the same kinds of semantic represen-
tations for both words and objects (indicative of truly amodal
semantic processing) or are involved in different kinds of pro-
cessing depending on stimulus modality. Here we report an
fMRI study designed to determine both the commonalties and
the differences in the computations subserved for objects and
words by different neural regions.

Recently, classifier-based decoding methods have been suc-
cessfully used to identify regions involved in cross-modal pro-
cessing by training on data from one modality and testing against
data from the other modality (Meyer et al., 2010; Shinkareva et
al., 2011; Akama et al., 2012; Simanova et al., 2012; Fairhall and
Caramazza, 2013). Although cross-modal classification can re-
veal invariance across stimulus modality, additional approaches
are needed to fully characterize both the similarities and differ-
ences across modalities. For example, a region may be involved in
semantic processing for both words and objects but as part of
different word and object processing networks; therefore, the
underlying computations in that region may differ across modal-
ity. Furthermore, similar semantic representations may be coded
in different regions for each modality. Classification methods are
unsuitable for investigating such possibilities, because they de-
pend on spatial and functional isomorphisms between training
and testing data.

We use representational similarity analysis (RSA) and search-
light mapping (Kriegeskorte et al., 2006, 2008), which tests how
well predicted similarities between stimuli are reflected in the
similarities of multivoxel activation patterns to the same stimuli.
This allows for a flexible form of pattern analysis, in which the
representational dissimilarity matrices (RDMs) for activation
within a region may remain the same across modalities, even
when the underlying activation profiles of individual voxels dif-
fer. Because of this “dissimilarity trick” (Kriegeskorte and Kievit,
2013), RSA is well suited to cross-modal data (even datasets from
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different species or imaging modalities; Kriegeskorte et al., 2008).
Furthermore, RSA can capture the dissimilarity structure of in-
dividual stimuli, as well as distinguish stimulus classes. We use
RSA in complementary model- and data-driven analyses, allow-
ing us to characterize the semantic system in several ways. For
model-driven RSA, neural dissimilarity patterns are tested
against visual and semantic stimulus models, identifying regions
in which representational content reflects visual and semantic
processing. The data-driven analysis involves clustering search-
light RDMs: RDMs coding for similar representational content
will cluster together, regardless of their modality or location. Un-
like cross-modal classification, this method can identify repre-
sentational invariance across regions as well as across modalities.
Thus, model- and data-driven RSA permits us to develop a com-
prehensive picture of both the commonalities and differences in
semantic processing for words and objects.

Materials and Methods
Subjects. Fourteen right-handed native British English speakers (four
male; median age, 22 years; range, 19 –25 years), with normal or
corrected-to-normal vision and free of neurological or language disor-
ders, volunteered to take part in the study. All subjects gave informed
consent. The study was approved by the Cambridge Psychology Research
Ethics Committee.

Stimuli. The study used a total of 60 concepts presented as both pic-
tures and words. Stimuli were 10 concrete object pictures (and corre-
sponding nouns) from each of six common semantic categories: (1)
animals (all land mammals); (2) clothing; (3) insects; (4) tools; (5) veg-
etables; and (6) vehicles. Pictures were 460 � 460 pixel jpeg images with
the object presented against a white background, presented at 7.5° visual
angle. To ensure that all of the presented stimuli could be identified
reliably at the category level, 10 participants who did not take part in the
fMRI study took part in a pretest that included a larger set of items and
categories. Pretest participants were instructed to name the category
membership of the object (“say the kind of thing that each object is”) as
in the main fMRI study (see below). We determined the two most com-
mon acceptable category responses for items in each category (e.g.,
“clothes” and “clothing” for the clothing category, “transport” and “ve-
hicle” for the vehicle category). The 60 experimental items were consis-
tently given one of these two most common category names (93.2% of
pretest responses). Although the experiment did not require basic-level
naming, we excluded pictures that were known to be difficult to identify
at the basic level, based on name agreement data from a previous behav-
ioral study (Taylor et al., 2012). The 56 pictures in common with the
previous study had high name agreement (average of 85.3%), indicating
that stimuli were consistently identified at the basic level.

The items in each of the six categories were also matched on a range of
lexical and visual variables. All six categories were matched on the lemma
frequency and the number of phonemes in the word [CELEX; (Baayen et
al., 1993)], the familiarity of the concept, and the exemplarity of the
concept (from behavioral pretests with separate subjects; ANOVAs, all
p � 0.33). We calculated two measures of visual complexity: (1) the
compressed jpeg file size (Székely and Bates, 2000; Bates et al., 2003); and
(2) the number of pixels composing the object (Snodgrass and Corwin,
1988; Taylor et al., 2012). Given the inherent visual differences between
tools and animals, with animals tending to be more visually complex, we
did not attempt to match all categories for visual complexity; instead, we
matched pairs of nonliving categories to living categories (following
Moss et al., 2005). In particular, for both file size and number of object
pixels, animals were matched to vehicles (t tests, both p � 0.86), and tools
were matched to vegetables (both p � 0.14), thus avoiding confounding
visual complexity with semantic domain.

Procedure. The stimuli were presented in four scanning sessions, with
word stimuli presented in the first two sessions and object stimuli pre-
sented in the second two sessions. Words were always presented before
objects to reduce the likelihood of eliciting the visual image of the object
when seeing the word. Each trial consisted of a centrally presented fixa-

tion cross on a white background for 500 ms, followed by the stimulus for
500 ms, followed by a blank screen lasting between 2 and 12 s (timings
defined using optseq; http://surfer.nmr.mgh.harvard.edu/optseq/). The
mean duration of the intertrial intervals (blank screen) was 3567 ms.
Participants were instructed to name the category of the words and ob-
jects (“say the kind of thing that each object is”). Each of the four blocks
contained three separate runs, with all 60 items presented once in each
run and with a blank screen lasting 20 s between runs. Each run lasted
274 s. The order of items was randomized within each run, subject to the
constraint that no pair of stimuli occurred consecutively in more than
two of the six runs for any participant (to avoid colinearity in the BOLD
response for item regressors across runs). Independent pseudorandom-
izations were created for each participant. The presentation and timing
of stimuli was controlled using E-prime 2 (Psychology Software Tools).

fMRI data acquisition. Participants were scanned on a 3 T Tim Trio
(Siemens) at the Medical Research Council Cognition and Brain Sciences
Unit (Cambridge, UK). fMRI data in the four functional scanning ses-
sions were collected using a gradient-echo echo-planar imaging (EPI)
sequence (acquisition time, 2000 ms; TR, 2000 ms; TE, 30 ms; flip angle,
78°; matrix size, 64 � 64; resolution, 3 � 3 mm; 32 slices in descending
order; 3 mm thick, with 0.75 mm slice gap). Each of the four functional
scanning sessions lasted 890 s. We also acquired T1-weighted MPRAGE
scans (1 mm isotropic resolution) from each participant.

fMRI preprocessing. Preprocessing was performed with SPM8
(Wellcome Institute of Cognitive Neurology, London, UK; www.fil.
ion.ucl.ac.uk). Preprocessing involved slice-time correction and spatial
realignment of all EPI images in each session to the first image in the first
session (excluding four initial lead-in images, which were removed from
each session). Images were not spatially normalized or smoothed, in
order to take advantage of high-spatial-frequency pattern information
within each participants’ data in the RSAs (Kriegeskorte et al., 2006). The
preprocessed images for each participant were analyzed using the general
linear model (GLM), with words and pictures analyzed separately. Both
analyses used separate regressors for each concept (i.e., 60 stimulus re-
gressors). Also included were six head motion regressors for each session,
a regressor for the difference in the global mean for the two sessions, and
13 regressors for each session, based on the basis functions of a discrete
cosine transform, to capture low-frequency trends (minimum fre-
quency, 1⁄128 Hz). To ensure maximal coverage of the anterior temporal
lobes, the SPM implicit masking threshold was set to 10% of the mean
signal over all voxels in the brain (compared with a default SPM masking
threshold of 80%). From this GLM analysis, we obtained a single
�-image for each word and picture. To create a gray-matter mask for
each subject, the structural image was coregistered to the functional data
and was segmented and normalized to Montreal Neurological Institute
(MNI) space using unified segmentation normalization as implemented
in SPM8. For each subject, the native space gray-matter probabilistic
map was resliced to the functional data and thresholded at one-third to
create a binary gray-matter mask for use in RSA searchlight mapping (see
below).

RSAs. RSA was used to identify the representational content of multi-
variate activation patterns across the cortex. RSA involves computing a
second-order correlation (typically Spearman’s correlation) between
model RDMs and activation-pattern RDMs (Kriegeskorte et al., 2006,
2008; Mur et al., 2009). Model RDMs exemplify the similarity between
items as predicted by a computational model or some hypothesis about
how the stimulus space is structured, whereas activation-pattern RDMs
are computed for a (typically spatially contiguous) set of voxels using
some dissimilarity function (typically 1 � Pearson’s correlation across
voxels). In this way, RSA permits testing of predictions against the data in
a manner that abstracts away from the underlying representational sub-
strate (i.e., stimulus attributes in the case of a model and voxel values in
the case of fMRI data).

We constructed several model RDMs based on visual and semantic
properties of the 60 stimuli. For low-level visual information, we used
RDMs based on image silhouettes, which are known to be highly predic-
tive of activation patterns in early visual cortex (Kriegeskorte et al., 2008).
Image bitmaps were binarized (pixels in object � 1; white background
pixels � 0), and distances were computed between them using 1-Jaccard
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similarity (Fig. 1A). To create silhouette mod-
els for the words in the same way as for the
pictures, we constructed a continuous edge
outlining each word, preserving ascender and
descender information (Fig. 1B). Silhouette
distance between words was calculated with re-
spect to these edge outlines as 1-Jaccard simi-
larity, in the same way as computed for objects.
The semantic category structure was coded by
an RDM in which pairs of items from the same
category were similar and pairs of items from
different categories were dissimilar (Fig. 1C).
These model RDMs were compared with acti-
vation RDMs using a standard multivariate
searchlight technique (spherical searchlights;
radius, 10 mm) across all gray-matter voxels
for each participant, producing a Spearman’s correlation map for each
subject and model. The RSA was performed using the MRC-CBU RSA
toolbox (revision 103) for MATLAB (http://www.mrc-cbu.cam.ac.
uk/methods-and-resources/toolboxes) and custom MATLAB scripts.
For group random-effects analyses, the Spearman’s correlation maps for
each participant were Fisher transformed, normalized to standard MNI
space, and spatially smoothed with a 10 mm FWHM Gaussian kernel. To
ensure optimal control of type I error, group-level random-effects anal-
yses were conducted by permutation testing with the SnPM toolbox
(Nichols and Holmes, 2002; http://go.warwick.ac.uk/tenichols/snpm).
Variance smoothing of 10 mm FWHM and 10,000 permutations were
used in these analyses. We report voxel-level familywise error (FWE)
corrected p values � 0.05 (one-sample pseudo-t statistic). For visualiza-
tion, the volumetric statistically thresholded maps were mapped onto the
PALS-B12 surface atlas in CARET version 5.6.

Standard RSA allows us to compare similarity of activation patterns to
similarity patterns predicted by a computational model of the stimuli.
Because we are interested here in the commonalities and differences in
word and object processing, we examine the relationship between word
and picture representations directly as well as through the prism of their
respective relationships to predicted model structures. Indeed, compar-
ing correlations with model RDMs for words and pictures is not suffi-
cient to determine commonality in representations for words and
pictures: activation RDMs for words and pictures may both be correlated
with a given model RDM yet may not be strongly correlated with each
other. Therefore, following the standard RSA with visual and semantic
model RDMs, we also conducted a data-driven version of RSA in which
activation RDMs drawn from one modality were tested against the inde-
pendent data in the other modality using searchlight mapping. This al-
lows us to investigate whether representational content from a given
region in one modality predicts the representational content of the same
region (or, indeed, a different region) in the other modality.

Representational cluster analyses. We also developed a custom analysis,
which we call representational cluster analysis (RCA), which allows us to
determine and visualize the representational similarities across the entire
set of activation patterns for the two presentation modalities (Fig. 2).
Intuitively, the goal of this cluster analysis is to partition the searchlight
spheres centered at every voxel from the word and picture data into
groups with similar activation RDMs. RDMs reflecting a particular kind
of representational content should all be similar and therefore cluster
together. For example, voxels in the picture data that are sensitive to
object shape should have similar RDMs and thus cluster together. Con-
nolly et al. (2012) used a similar approach to cluster RDMs within a single
modality, with the goal of creating functional ROIs for subsequent anal-
yses. Of particular interest to us are cases in which clusters contain voxels
from both modalities, reflecting representational content that occurs for
both words and pictures. Critically, this analysis method is blind with
respect to whether the voxels showing common representational content
are spatially corresponding; the question of whether shared representa-
tional content is found in corresponding regions in the two modalities
or in different regions is determined from the data via the clustering. This
can be contrasted with cross-modal classifier-based methods, which pre-

suppose that common representational content is only found in correspond-
ing voxels across modalities.

To ensure maximal overlap in RDMs across subjects, activation RDMs
were calculated over the whole brain (rather than within the subject-
specific gray-matter masks used in the standard RSA). We combined
activation RDMs across subjects by mapping each subject’s activation
RDMs into the standard MNI space. RDMs at each voxel coordinate in
MNI space were then averaged across subjects (excluding any voxels for
which data from one or more participants was missing), for the word and
picture data separately, and a cortical mask [based on the Automated
Anatomical Labeling Atlas (Tzourio-Mazoyer et al., 2002)] was applied.
The resulting 72,483 RDMs (36,236 for words and 36,247 for pictures)
were reshaped to vectors. To reduce redundancy in the 1770-
dimensional vectors and to speed clustering, these vectors were reduced
to 200 dimensions through singular value decomposition (SVD). The
SVD transformation preserves almost all information about distances in
the original high-dimensional space (Pearson’s correlation between Eu-
clidean distances in original space and Euclidean distances in 200-
dimensional space, r � 0.98). The reduced vectors were entered into a
k-means cluster analysis, undertaken with the SciKit-Learn package (Pe-
dregosa et al., 2011) in Python. Euclidean distance was used as the
second-order comparison metric in clustering (as required by the
k-means algorithm), and the best clustering solution from 200 runs with
different cluster centroid seeds was saved for each cluster analysis. Sepa-
rate cluster analyses were performed for every number of clusters from 2
to 28, and the optimal number of clusters was selected on the basis of the
proportion of variance explained by each cluster solution (see Results).
Finally, maps depicting the membership of RDMs in clusters were cre-
ated on the basis of the MNI voxel coordinates of the RDMs.

Results
RSA results
Participants were very accurate at providing appropriate category
labels for each stimulus (97.9% of responses), indicating that they
understood the task and processed the stimuli semantically. In
the RSA searchlight mapping, visual silhouette and semantic
model RDMs were tested against the word and picture data sep-
arately. Figure 3 presents the results for the picture data. The
visual silhouette RDM showed significant correlations with early
visual cortex, consistent with previous results using similar
model RDMs in RSA (Kriegeskorte et al., 2008). The semantic
category RDM correlated significantly with activation patterns
extensively throughout left temporal cortex, with peak effects in
the left posterior middle temporal gyrus (LpMTG), extending
into lateral occipital cortex (LOC), the inferior parietal lobule
(LAG and the posterior supramarginal gyrus), and the left intra-
parietal sulcus (LIPS), as well as left posterior superior temporal
gyrus (STG), lateral and medial fusiform, lingual gyrus, and me-
dial occipital cortex (Table 1). More anteriorly, the cluster ex-
tended into the precentral and postcentral gyrii, middle frontal
gyrus (MFG), and left inferior frontal gyrus (LIFG; BA 44),

Figure 1. The three model RDMs used for RSA. A, Object visual silhouette model, in which distances are calculated with respect
to overlap of object silhouettes, such as that depicted for the example of hammer (red line depicts silhouette outline). B, Word
visual silhouette model, with distances calculated with respect to word outlines. C, Semantic category model.
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whereas a smaller cluster also included left middle frontal cortex,
extending into BA 45. Right-hemisphere effects were weaker and
lesser in extent than those found on the left. The strongest corre-
lation was found in a cluster spanning the precentral, postcentral,
and supramarginal gyrii. Contralateral to the strongest effects in
the left hemisphere, there were significant correlations in right
fusiform, right posterior MTG, and right precuneus. Significant
correlations were also found in posterior cingulate and superior
medial frontal cortex.

Figure 4 presents the results for the word data in which the
visual silhouette model correlated significantly with a single cluster
in the left occipital pole. The semantic category RDM correlated
significantly with activation patterns extensively throughout left
temporal cortex, with a peak effect in the left inferior parietal lobule
(Table 2). This large cluster included most of the AG and the LIPS
and extended into left posterior supermarginal gyrus, left STG
(LSTG), and LMTG. This cluster also extended anteriorly over por-
tions of the left postcentral gyrus, precentral gyrus, and MFG and
into LIFG (BA 45). In the right hemisphere, activation was also
found in postcentral gyrus, precentral gyrus, and MFG, BA 45, and
in small areas of the superior frontal gyrus and the inferior parietal
lobule. Significant correlation was also found in the precuneus and
posterior cingulate.

The RSAs revealed extensive left-hemisphere effects of seman-
tic category for both modalities (Fig. 5). The clearest difference in
the two sets of results is the absence of word effects in the fusiform
and most of LOC. Effects for words extend more anteriorly into
MTG and STG and show more widespread effects in left frontal

cortex. Overall, however, the pattern is one of considerable over-
lap for the semantic model for words and pictures, including
LpMTG, left anterior LOC, LAG, and LIPS.

To characterize the relationships between semantic represen-
tations in different regions, both within and across modality, we
next examined the representational content in the areas corre-
sponding to the peak semantic category RSA effects for words and
pictures, which were found in the LIPL (the lateral bank of the
LIPS) and LpMTG, respectively (Tables 1, 2). In total, we ex-
tracted four average activation RDMs, from the two peak loca-
tions in both the word and picture data, and examined the
correlations between RDMs across modality (Fig. 6B). For the
LIPS peak, there was a significant correlation between the word
and picture RDMs (Spearman’s � � 0.207, p � 0.002; p values
from a permutation test with 10,000 permutations of RDM row/
column labels, Bonferroni-corrected for the six pairwise RDM
comparisons), indicating invariance of the representational pro-
file of this voxel across words and pictures. However, for the
LpMTG peak, the word and picture RDMs were not significantly
correlated (Spearman’s � � 0.078, p � 0.540; Bonferroni-
corrected), although LpMTG shows sensitivity to semantic cat-
egory information for both words and pictures (Fig. 5).
Interestingly, there is a significant cross-modal, cross-region cor-
relation: patterns in LpMTG for pictures are similar to patterns in
LIPS for words (Spearman’s � � 0.216, p � 0.003; Bonferroni-
corrected).

We next used the peak activation RDMs to conduct a cross-
modal seed voxel correlation analysis (Fig. 6A,C) that aims to

Figure 2. Analyzing commonalities and differences of word and picture processing by clustering of RDMs. RDMs for each voxel searchlight sphere are aligned in standard space and averaged
across participants. The resulting 72,483 RDMs are reduced to 200-dimensional vectors by SVD. These vectors in 200-dimensional space are repeatedly clustered by k-means clustering to obtain an
optimal number of clusters (see Materials and Methods). (Note that clustering is visually illustrated with a dendrogram here, although k-means clustering is not hierarchical). RDMs which are similar,
and thus reflect commonality in the underlying multivoxel patterns, will tend to cluster together. Some kinds of patterns may be specific to a single modality, with all cluster members being RDMs
drawn from one or the other modality. For example, RDMs from early visual cortex for the picture data may all reflect low-level visual information in the object images and thus cluster together
(Cluster 1, red), but it is unlikely that any RDMs from the word data will reflect low-level visual information in the picture silhouettes. Other clusters may contain RDMs from both modalities, reflecting
pattern information that is invariant with respect to the mode of presentation (e.g., clusters 2 and 3). Clusters spanning modalities may include RDMs from corresponding cortical regions for the two
modalities (e.g., Cluster 3, blue), reflecting activation patterns that are unaffected by the mode of presentation (e.g., activation associated with the verbal response, which was the same for words
and pictures). Other clusters spanning modality may include RDMs from non-overlapping cortical regions (e.g., Cluster 2, green), reflecting similar representational content being processed in
different areas across modalities.
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identify regions with modality-invariant
semantic processing. The goal of this anal-
ysis is to examine whether the representa-
tional content of a region maximally
sensitive to semantic category in one mo-
dality predicts the representational con-
tent of the same region in the other
modality. For this analysis, both the se-
mantic peak RDM from the picture data,
located in LpMTG, and the semantic peak
RDM from the word data, located in
LIPL/LIPS, were treated as predictor
RDMs and correlated with the activation
data from the other independent dataset,
using the same standard searchlight map-
ping RSA method that we used with the
semantic category and visual silhouette
models. This analysis can be regarded as a
multivoxel pattern analysis (MVPA)
searchlight mapping analog of �-series cor-
relation (Rissman et al., 2004), in which
the set of item pair correlations calculated
within a searchlight sphere replaces the
univariate �-series of a voxel. The results
of this analysis corroborated the peak
voxel analyses described above, revealing
differences in word and picture semantic
processing. The LpMTG RDM from the
picture data yielded a significant cluster in
the analysis on the word dataset, centered
on the LIPL with peak located in superior
LAG, extending into superior anterior oc-
cipital cortex, the LIPS, and marginally
into the left superior parietal lobule
(LSPL) (Fig. 6A). Two smaller clusters
were located in left MFG. Interestingly, there were no effects in
the LpMTG region in the word data, although the seed RDM
comes from this region in the picture data. We used the same
approach for the analysis of the picture data, using the LIPS peak
semantic RDM from the word data as the predictor RDM (Fig.
6C). The peak effect was in LpMTG, in a cluster extending into
inferior left LOC and posterior left inferior temporal gyrus. No-
tably, this cluster did not extend to many of the regions showing
significant semantic category effects for pictures, including much
of the AG, the fusiform, and more anteriorly along the MTG. A
second cluster is centered on left superior occipital cortex and the
LIPS, extending marginally into the adjacent cortex in LIPL and
LSPL. This cluster has a high degree of overlap with the dorsal
areas showing semantic category effects for both words and pic-
tures (Fig. 5) and the significant effect of the picture RDM seed in
the word data (Fig. 6A), indicating that the LIPS contains repre-
sentations that are relatively consistent across the two stimulus
modalities. Furthermore, the LIPS seed did not show significant
effects in ventral motor cortex, suggesting that the invariance of
LIPS cannot be accounted for by the common verbal response for
words and pictures.

RCA results
RCA partitions activation RDMs, across both the picture and
word data, into clusters that show similar patterns of representa-
tional content. Of particular interest are clusters spanning the
two datasets, which indicate common representations found in
both modalities. Areas belonging to such cross-modal clusters

need not be the same as those regions showing significant corre-
lations with the semantic model for both words and pictures
identified above because (1) word and picture RDMs may be
correlated with each other even if they are not correlated with the
semantic model, and (2) word and picture RDMs may be corre-
lated with the semantic model but not with each other. Further-
more, unlike classification-based approaches that rely on training

Figure 3. Significant effects in RSA on picture data ( pFWE � 0.05). A, Results for the visual silhouette model. B, Results for the
semantic category model. L, Left; R, right.

Table 1. MNI coordinates, significance levels, and anatomical regions for peak RSA
searchlight effects for the semantic category model for pictures

Region Cluster extent pFWE-corr Pseudo-t x y z

Left hemisphere
LpMTG 3143 0.0001 8.47 �48 �64 6

Left fusiform 0.0004 7.91 �27 �49 �9
Left superior middle occipital 0.0007 7.35 �27 �73 29
Left inferior middle occipital 0.0015 6.77 �36 �88 6
Left postcentral 0.0053 5.95 �51 �10 36
Left calcarine 0.0086 5.66 �6 �58 10
LIPL 0.0126 5.43 �36 �43 44

Left middle frontal 97 0.022 5.07 �36 32 32
LIFG (BA45) 0.0274 4.89 �45 38 10

Right hemisphere
Right postcentral 258 0.0012 6.89 60 �16 36
Right posterior cingulate 73 0.0058 5.91 12 �28 44
Right superior frontal 50 0.0077 5.75 21 44 40
Right inferior temporal 92 0.01 5.58 48 �61 �5
Right superior medial frontal 146 0.0116 5.5 0 35 40
Right calcarine 73 0.0128 5.41 12 �85 6

Effects in clusters with extent �20 voxels not shown.
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and testing on spatially corresponding voxels across modalities
(Shinkareva et al., 2011; Fairhall and Caramazza, 2013), cluster-
ing allows us to identify and visualize more general forms of
correspondence across modalities, such as cases in which differ-
ent areas in the two modalities code for the same representational
content.

k-Means clustering solutions were generated for all values of
k (i.e., number of clusters) between 2 and 28, and the proportion
variance explained by each solution was recorded. The k � 10

cluster solution was selected for addi-
tional analysis on the basis of the scree test
(Cattell, 1966) and because 10 clusters
explain 80% of the variance in the RDM
space (however, note that similar clus-
tering results are found with similar
numbers of clusters).

Three of the 10 clusters span both
word and picture data and show interest-
ing patterns of similarity and difference in
the representational topology for the
two modalities (Fig. 7). Cluster 1 includes
almost identical areas of cortex for both
modalities, centered bilaterally on ventral
sensorimotor cortex associated with
speech-articulation representations (Guen-
ther et al., 2006; Bouchard et al., 2013).
Because participants’ verbal category re-
sponses for each concept tended to be the
same regardless of whether the concept was
presented as word or picture, the consis-
tency of this cluster across modalities likely
reflects the common similarity structure
associated with articulatory feature infor-
mation corresponding to these verbal re-
sponses. Cluster 2 also includes areas of
bilateral sensorimotor cortex for both
words and pictures, in voxels surrounding
cluster 1 (because the k-means algorithm
uses Euclidean distance as the RDM com-
parison metric, clusters must be similar in
terms of the magnitude of RDM values as
well as their pattern similarity; for this rea-
son, clusters tend to form bands of cortex
reflecting similar overall magnitude as well

as similar multivariate patterns). However, in other areas, member-
ship in cluster 2 differs for words and pictures. For words, cluster 2 is
found in left supramarginal gyrus, LIPS, and the supplementary mo-
tor area, bilaterally. For the picture data, cluster 2 is found in the
fusiform, bilaterally, as well as LOC bilaterally, but not in left
supramarginal gyrus or LIPS. In other words, there are voxels
in bilateral fusiform and LOC for pictures for which the dis-
similarity structure is closer to the dissimilarity structure of
left supramarginal and LIPS for words than to the dissimilarity
structure found in the fusiform and LOC for words. Cluster 3
is a larger cluster that again includes many of the regions that
were significant in the RSAs with the semantic category model.
In particular, cluster 3 includes voxels from the left and right
fusiform, occipital cortex, superior and inferior parietal lob-
ules, and bilateral sensorimotor cortex, in both modalities.

Although the LpMTG and LAG showed significant correla-
tions with the semantic category RDM for both modalities (Fig.
5), the cluster analysis reveals differences in the activation RDMs
of these regions for words and pictures. Voxels in LpMTG and
LAG are not members of any of the three cross-modal clusters,
despite LpMTG and LAG showing strong semantic category sen-
sitivity in both modalities. This is consistent with the cross-modal
comparison of peak semantic effects (Fig. 6), which revealed no
significant correlation between the LpMTG RDM for words and
the LpMTG RDM for pictures. The cluster analysis also supports
our seed-based data-driven RSA, in which the peak LIPS RDM
for words showed significant effects in LpMTG and inferior an-
terior left LOC for pictures. This pattern is similar to the pattern

Figure 4. Significant effects in RSA on word data. A, Results for the visual silhouette model. B, Results for the semantic category
model. L, Left; R, right.

Table 2. MNI coordinates, significance levels, and anatomical regions for peak RSA
searchlight effects for the semantic category model for words

Region Cluster extent pFWE-corr Pseudo-t x y z

Left hemisphere
LIPL 1957 0.0001 7.86 �36 �52 48

LMTG 0.0008 7.25 �57 �43 2
Left precentral 0.001 6.68 �54 �7 32
LpMTG 0.0041 5.87 �48 �67 18
Left middle frontal 0.0055 5.67 �36 23 44
LIFG (BA 45) 0.0113 5.29 �45 29 21
Left precentral 0.0117 5.27 �39 �4 48

L posterior cingulate 127 0.0145 5.11 �6 �52 32
Left calcarine 0.0329 4.59 �6 �61 14

Right hemisphere
Right IFG (BA45) 61 0.0184 4.97 51 26 21
Right precentral 72 0.0191 4.95 54 2 36
Right superior frontal 55 0.0202 4.9 21 44 40
RIPL 32 0.0295 4.67 51 �46 48

Effects in clusters with extent �20 voxels not shown. RIPL, Right inferior parietal lobule.
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of cross-modal cluster membership ob-
served for cluster 2. Furthermore, the
cluster analysis shows that LIPS belongs to
cross-modal clusters, but LpMTG does
not. Finally, the region of cluster 2 mem-
bership in LIPS in the word data has a high
degree of overlap with the dorsal areas
showing semantic category effects for
both words and pictures (Fig. 5) and the
significant effect of the word RDM seed in
the picture data (Fig. 6C). Together, these
findings again indicate that the LIPS pro-
cesses representations that are relatively
invariant to stimulus modality. Therefore,
the cluster analysis reveals subtle differ-
ences in the representational topology of
regions involved in the semantic process-
ing of words and pictures, with LOC vox-
els for pictures clustering with LIPS voxels
for words and the absence of cross-modal
clustering in LpMTG and LAG. This latter
result is particularly surprising given that
these regions had high sensitivity to semantic category for both
modalities.

Finally, we checked whether the cross-modal differences re-
vealed by the RCA were also present when RDMs are compared
with metrics other than Euclidean distance (used in the k-means
clustering algorithm). We constructed the full 72,483 � 72,483
second-order dissimilarity matrix of all the RDMs that had been
entered into the cluster analysis (using 1 � Spearman’s correla-
tion as the second-order dissimilarity measure, as is conventional
in RSA). We then interrogated this matrix to find the cross-modal
pair of voxels that had the lowest dissimilarity of all voxels drawn
from the two modalities. These maximally similar points were in
areas very highly sensitive to semantic category, at MNI coordi-
nate (�30, �52, 40) in the word data (in the LIPS just medial to
the peak semantic category effect for words) and (�45, �67, �5)
in the picture data (in anterior inferior left LOC). This again
demonstrates commonality of representational structure for
LIPS for words and the left temporo-occipital region for pictures,
corroborating our interpretation of cluster 2 in the RCA analysis
and demonstrating that the cross-modal differences revealed by
the RCA are present regardless of whether RDMs are compared
with Euclidean distance (as used in the k-means clustering
algorithm) or Spearman’s correlation (as conventionally used
in RSA).

Discussion
In this study, we used complementary model-based and model-
free RSA to determine the extent to which a common semantic
system is evoked by words and objects. This entailed both iden-
tifying regions sensitive to semantic category information in the
two modalities and elucidating potential differences between
them. The semantic category model showed extensive left-
lateralized effects in both modalities, with considerable overlap,
most notably in LpMTG, LAG, and LIPS. Model-free RSA using
word and picture seed RDMs taken from the LpMTG and LIPS
showed that the LpMTG RDM from the object data correlated with
the LIPS in the word data rather than the LpMTG in the word
data, indicating substantial differences in LpMTG representa-
tional content across modalities. The seed-based analysis was ex-
tended to the whole brain with RCA, which describes the
representational topography across the brain for both datasets. This

revealed complex relationships between regions across modalities.
First, we found cross-modal, cross-regional clustering, with repre-
sentations in LIPS for words and LOC for objects clustering together,
consistent with the seed-based RSA analyses. Furthermore, LpMTG
was not included in the three clusters that spanned modalities, indi-
cating that representations computed in LpMTG were relatively mo-
dality specific, again consistent with the seed-based analyses and
indicative of differences in LpMTG across modalities. Together,
these results suggest that LpMTG, LAG, and LIPS are sensitive to
semantic processing for both words and objects; however, although
representations in LIPS are relatively invariant across modality, rep-
resentations in LpMTG differ, a key finding made possible by
combining model- and data-driven RSA approaches.

Previous characterizations of the semantic system have typi-
cally focused on identifying regions involved in amodal seman-
tics rather than on the specific computations performed by
different regions. The multi-modal regions we identified include
many regions known to be engaged in semantic processing for
words and objects separately (for overviews, see Martin, 2007;
Binder et al., 2009). Moreover, the overlapping semantic category
effects in LpMTG, LAG, LIPS, and the posterior cingulate are
broadly consistent with univariate and classifier-based MVPA
decoding methods targeting multi-modal invariance (Chee et al.,
2000; Shinkareva et al., 2011; Visser et al., 2012; Fairhall and
Caramazza, 2013). However, the lack of second-order correla-
tion and clustering of representations for words and objects in
LpMTG, despite the involvement of this region in semantic pro-
cessing for both modalities, supports a more differentiated ac-
count in which the functional role of LpMTG in the two
modalities is quite different, with spatially overlapping but dis-
tinct processing within LpMTG giving rise to different multivoxel
patterns for words and objects.

Our LpMTG effects for semantic category in the object data
are in an area known to be selective to manipulable manmade
objects, in particular tools (Mahon et al., 2007), and LpMTG may
be critical to understanding specific aspects of the meaning of an
object, such as motion information associated with the object
(Chao et al., 1999; Beauchamp et al., 2003). The LpMTG and
LAG have strong functional connectivity with ventral temporal
cortex and may function as part of a distributed semantic net-
work that integrates visual form characteristics of viewed objects

Figure 5. Significant RSA results with the semantic RDM for words, pictures, and their overlap. L, Left; R, right.
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Figure 6. Cross-modal seed voxel correlation analysis. The RDMs from each subject at the location of the peak semantic effects for words and pictures are extracted and averaged, and the four
resulting RDMs are cross-correlated [Spearman’s � (r); B]. The 10 rows and columns corresponding to each of the six semantic categories are labeled (An, animal; (Figure legend continues.)
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with information about object motion
and use (Mahon et al., 2007). Thus, mul-
tivoxel patterns in LpMTG for objects
may be dependent on visual object pro-
cessing in the ventral stream, which is ab-
sent for words. For words, the role of the
LpMTG in semantics may relate to sepa-
rate processes of lexical access, such as
mapping between word forms and mean-
ing representations (Badre et al., 2005;
Lau et al., 2008). A wealth of neuroimag-
ing evidence implicates LpMTG and LAG
in semantic retrieval of lexical representa-
tions as part of a left-lateralized language
network, for both spoken and written
words (Dronkers et al., 2004; Vigneau et
al., 2006; Humphries et al., 2007; Tyler
and Marslen-Wilson, 2008; Binder et al.,
2009; Tyler et al., 2013). On this account,
LpMTG is differentially engaged in pro-
cesses of object motion understanding and
lexical–semantic activation for objects and
words, respectively, as part of separable ob-
ject processing and lexical access networks.
Critically, this predicts LpMTG involve-
ment in semantic processing for both mo-
dalities but with the multivoxel patterns
differing across modalities, as observed
in our study. This finding has important
consequences for research investigating
modality-invariant semantics, because it
demonstrates that identifying regions in-
volved in both word and picture processing
is insufficient to claim that they form part of
a common amodal semantic network.

Complementary to representational
differentiation for LpMTG, we found
relatively invariant representations in a
region centered on the lateral bank of the
LIPS, with significant semantic category
correlation for both words and pictures
(Fig. 5), cross-modal correlation of word
and picture RDMs (Fig. 6B), and cross-
modal cluster membership (Fig. 7). The
LIPS is part of the dorsal visual processing stream, with strong
connectivity to early visual cortex and sensitivity to visuospatial
information (Felleman and Van Essen, 1991; Rizzolatti and Ma-
telli, 2003). However, recent neuroimaging evidence has elabo-
rated on the functional role of the IPS, implicating it in semantic
processing that is independent of perceptual input. In particular,
the IPS has been implicated in tasks that are semantically de-
manding or require access to particular feature or category infor-
mation (Cristescu et al., 2006; Noonan et al., 2013). In a meta-

analysis of 53 fMRI studies, primarily using written words as
stimuli, Noonan et al. (2013) identified a dorsal angular gyrus
(dAG)/IPS region as a key part of network underpinning seman-
tic control processes, responsible for the retrieval of specific se-
mantic information given a particular task or context. This region
is highly overlapping with our LIPS region, with its peak lying just
anterior to the cross-modal LIPS voxels identified by RCA (Fig.
7). On the assumption that the IPS plays a key role in targeted
feature retrieval and that the category judgment task requires
access to particular kinds of feature information (i.e., taxonomic
information or other semantic features diagnostic of category),
then the representational invariance of LIPS suggests that the
semantic feature information required for making category judg-
ments does not differ as a function of stimulus modality.

What kinds of semantic feature information may be relevant
to semantic category judgments? Related to its function in goal-
directed action understanding, the dAG/LIPS has often been
identified as an important region in the semantic (as opposed to
visual or motor-related) representation of tools, in particular in-

4

(Figure legend continued.) Cl, clothing; In, insect; To, tool; Vg, vegetable; Vh, vehicle). *p �
0.05, **p � 0.01, and ***p � 0.001, significance levels estimated from a permutation test
with 10,000 permutations of the 60 RDM row/column labels and Bonferroni-corrected for six
comparisons. A, Results of RSA on the word data, using the semantic peak RDM from the picture
data located in LpMTG [Pic RDM at Pic Peak (LpMTG)], as the predictor RDM. B, Results of RSA on
the picture data, using the semantic peak RDM from the word data located in LIPL/LIPS [Word
RDM at Word Peak (LIPS)], as the predictor RDM. RSA statistical procedures and thresholding as
in Figures 3 and 4. L, Left; R, right.

Figure 7. Results of the RCA. The three clusters that cluster together RDMs from both modalities are shown. Non-colored
regions belong to clusters specific to a single modality (for details, see Results). L, Left; R, right; SMA, supplementary motor area.
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formation about their function and use (Creem-Regehr and Lee,
2005; Creem-Regehr et al., 2007; Mahon et al., 2007, 2010; Valy-
ear et al., 2007; Hoeren et al., 2013). Therefore, one interpretation
of our results is that the retrieval of functional information via the
LIPS is important for identifying an item as a tool, regardless of
whether the input is a word or a picture. This view is consistent
with research with congenitally blind people suggesting that the
semantic representation of tools in LIPL and LIPS does not ex-
plicitly depend on processing visual information (Mahon et al.,
2010). On this account, information processed by LIPS is feature-
type specific (i.e., functional information) but stimulus-modality
independent. However, the extent to which LIPS is involved in
general semantic control processes or access of specific functional
information about tools must remain a question for future re-
search. The novel contribution of our results is to show that
similar representations are computed in LIPS for both words and
objects.

Could LIPS representational invariance be explained by the
common verbal response across modalities? Although possible,
we feel that this interpretation of the results is unlikely. First, LIPS
is not typically implicated in speech production. Second, the
common verbal response works against one of our key findings:
lexical activation of category nouns could be hypothesized to
involve LMTG, but we actually find that representations in
LMTG are uncorrelated across modality.

Notably absent in our data are semantic effects in anterior
temporal cortex (ATC). Although theories differ, ATC is often
associated with the processing of amodal or heteromodal seman-
tic representations that are abstracted away from stimulus mo-
dality (Taylor et al., 2006; Bright et al., 2007; Patterson et al., 2007;
Binney et al., 2010; Holland and Lambon Ralph, 2010; Visser et
al., 2012). However, a critical factor in our experiment is that the
task required access to category-level rather than item-specific
information. Various studies have shown that ATC is critically
involved in the access of information about individual objects
(Tyler et al., 2004, 2013; Moss et al., 2005; Clarke et al., 2011), as
well as specific people and places (Tranel, 2006; Drane et al.,
2009).

In this study, we used analyses of multivoxel pattern informa-
tion to identify both similarities and differences in the semantic
processing of words and objects. Data-driven RSA methods re-
vealed key differences in the representational topography across
stimulus modalities, even in regions that were sensitive to seman-
tic category representations in both modalities. Specifically, Lp-
MTG reflects semantic information across modalities, but this
information takes a modality-specific form, whereas the results
for LIPS suggest that it is involved in modality-invariant targeted
retrieval of task-relevant semantic feature information. These re-
sults go beyond identifying individual regions involved in amodal
processing and show how the computational properties of a re-
gion vary as a function of the network in which it is engaged.
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