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We show that a single change in the derivation of the linearized semiclassical-initial value representation
(LSC-IVR or ‘classical Wigner approximation’) results in a classical dynamics which conserves the quantum
Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum
time-correlation function in terms of the normal modes of a free ring-polymer (i.e. a discrete imaginary-time
Feynman path), taking the limit that the number of polymer beadsN →∞, such that the lowest normal-mode
frequencies take their ‘Matsubara’ values. The change we propose is to truncate the quantum Liouvillian, not
explicitly in powers of ~2 at ~0 (which gives back the standard LSC-IVR approximation), but in the normal-
mode derivatives corresponding to the lowest Matsubara frequencies. The resulting ‘Matsubara’ dynamics is
inherently classical (since all terms O(~2) disappear from the Matsubara Liouvillian in the limit N →∞), and
conserves the quantum Boltzmann distribution because the Matsubara Hamiltonian is symmetric with respect
to imaginary-time translation. Numerical tests show that the Matsubara approximation to the quantum
time-correlation function converges with respect to the number of modes, and gives better agreement than
LSC-IVR with the exact quantum result. Matsubara dynamics is too computationally expensive to be applied
to complex systems, but its further approximation may lead to practical methods.

I. INTRODUCTION

Dynamical properties at thermal equilibrium are of
central importance to chemical physics.1,2 Sometimes
these properties can be simulated adequately by entirely
classical means. But there are plenty of cases, e.g.
the spectrum of liquid water,3–5 hydrogen-diffusion on
metals,6,7 and proton/hydride-transfer reactions,8–13 for
which one needs to evaluate time-correlation functions of
the form

1

Z
CAB(t) =

1

Z
Tr
[
e−βĤÂeiĤt/~B̂e−iĤt/~

]
(1)

(where Z is the partition function,14 β ≡ 1/kBT , Tr in-
dicates a complete sum over states, and the other nota-
tion is defined in Sec. II). Such time-correlation functions
are already approximate, since they employ the quan-

tum Boltzmann distribution e−βĤ/Z in place of the ex-
act quantum-exchange statistics; but this approximation
is usually adequate (since the thermal wavelength is typi-
cally much smaller than the separations between identical
particles). What is less well understood is the extent to
which such functions can be further approximated by re-
placing the exact quantum dynamics by classical dynam-
ics (whilst retaining the quantum Boltzmann statistics).
The standard way to make this approximation is to

use the linearized semiclassical-initial value representa-
tion (LSC-IVR, sometimes called the ‘classical Wigner’
approximation),3,15–27 in which the quantum Liouvillian
is expanded as a power series in ~

2, then truncated at ~0.
Miller15,16 and later Shi and Geva17 showed that this ap-
proximation is equivalent to linearizing the displacement
between forward and backward Feynman paths in the
exact quantum time-propagation, which removes the co-
herences, thus making the dynamics classical. The LSC-
IVR retains the Boltzmann quantum statistics inside a

Wigner transform,26 is exact in the zero-time, harmonic
and high-temperature limits, and has been developed into
a practical method by several authors.19–23 However, it
has a serious drawback: the classical dynamics does not
in general preserve the quantum Boltzmann distribution,
and thus the quality of the statistics deteriorates over
time.

A number of methods have been developed to get
round this problem, all of which appear to some extent to
be ad hoc. Some of these methods are obtained by replac-
ing the plain Newtonian dynamics in the LSC-IVR by an
effective (classical) dynamics which preserves the Boltz-
mann distribution.28–30 Others, such as the popular cen-
troid molecular dynamics (CMD)31,32 and ring-polymer
molecular dynamics (RPMD),5,7–9,33–53 are more heuris-
tic (and still not fully understood) but have the advan-
tage that they can be implemented directly in classi-
cal molecular dynamics codes. An intriguing property
of CMD and RPMD is that, for some model systems
(e.g. the one-dimensional quartic oscillator32,33), these
methods give better agreement than LSC-IVR with the
exact quantum result, even though, like LSC-IVR, they
completely neglect real-time quantum coherence.

This last point suggests that the failure of LSC-IVR to
preserve the quantum Boltzmann distribution may arise,
not from its neglect of quantum coherence, but from its
inclusion of ‘rogue’ components in the classical dynamics.
The present paper develops a theory that supports this
speculation. We isolate a core, Boltzmann-conserving,
classical dynamics, which we call ‘Matsubara dynamics’
(for reasons to be made clear). Matsubara dynamics is
far too expensive to be used as a practical method, but
is likely to prove useful in understanding methods such
as CMD and RPMD, and perhaps in developing new ap-
proximate methods.

The paper is structured as follows. Section II gives key
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background material including the well known ‘Moyal se-
ries’ derivation of the LSC-IVR. Section III re-expresses
the standard results of Sec. II in terms of ‘ring-polymer’
coordinates, involving points along the imaginary-time
path-integrals that describe the quantum Boltzmann
statistics. Section IV gives the new results, showing that
smooth Fourier-transformed combinations of the ring-
polymer coordinates lead to an inherently classical dy-
namics which is quantum-Boltzmann-conserving. Section
V reports numerical tests on one-dimensional models.
Section VI concludes the article.

II. BACKGROUND THEORY

We start by defining the terms and notation to be used
in classical and quantum Boltzmann time-correlation
functions (IIA and IIB), and by writing out the standard
Moyal-series derivation of the LSC-IVR (IIC).

A. Classical correlation functions

Without loss of generality, we can consider an F -
dimensional Cartesian system with position coordinates
q ≡ q1, . . . , qF , momenta p, mass m and Hamiltonian

H(p,q) =
p2

2m
+ V (q) (2)

The thermal time-correlation function between observ-
ables A(p,q), B(p,q) is then

cAB(t) =
1

(2π~)N

∫
dp

∫
dq e−βH(p,q)

×A(p,q)B(pt,qt) (3)

where
∫
dp ≡

∫∞

−∞
dp1 . . .

∫∞

−∞
dpF (and similarly for q),

and pt ≡ pt(p,q, t) and qt ≡ qt(p,q, t) are the momenta
and positions after the classical dynamics has evolved for
a time t.
Alternatively, we can express B(pt,qt) as a function

of the initial phase-space coordinates (p,q):

B(pt,qt) ≡ B[pt(p,q, t),qt(p,q, t)] ≡ B(p,q, t) (4)

such that

cAB(t) =
1

(2π~)N

∫
dp

∫
dq e−βH(p,q)

×A(p,q)B(p,q, t)

=
1

(2π~)N

∫
dp

∫
dq e−βH(p,q)

×A(p,q)eLF tB(p,q, 0) (5)

where the (classical) Liouvillian LF is54

LF =
1

m
p · ∇q − V (q)

←−∇q ·
−→∇p (6)

with

∇q =




∂
∂q1
...
∂

∂qF


 (7)

and the arrows indicate the direction in which the deriva-
tive operator is applied (and the backward arrow indi-
cates that the derivative is taken only of V (q)—not of
any terms that may precede V (q) in any integral). Equa-
tion (9) is less practical than Eq. (4) (which propagates
individual trajectories rather than the distribution func-
tion B(p,q, t)) but is better for comparison with the ex-
act quantum expression.
An essential property of the dynamics is that it pre-

serves the (classical) Boltzmann distribution, which fol-
lows because H(p,q) is a constant of the motion. As a
result, we can rearrange Eq. (9) as

cAB(t) =
1

(2π~)N

∫
dp

∫
dq e−βH(p,q)

×
[
e−LF tA(p,q)

]
B(p,q, 0) (8)

showing that cAB(t) satisfies

cAB(t) = cBA(−t) (9)

which is the detailed balance condition.

B. Quantum correlation functions

For clarity of presentation, we will derive the results in
Secs. III and IV for a one-dimensional quantum system
with Hamiltonian Ĥ = T̂ + V̂ , kinetic energy operator
T̂ = p̂2/2m, potential energy operator V̂ = V (q̂), posi-
tion and momentum operators q̂, p̂, and mass m. How-
ever, the results we derive in Secs. III and IV are appli-
cable immediately to systems with any number of dimen-
sions (see Sec. IV.D).
The simplest form of quantum-Boltzmann time-

correlation function is that given in Eq. (1), but CAB(t)
is difficult to relate to the classical time-correlation func-
tion cAB(t), because it does not satisfy Eq. (14) and is not
in general real. We therefore use the Kubo-transformed
time-correlation function33

CAB(t) = Tr
[
Kβ(Â) eiĤt/~B̂e−iĤt/~

]
(10)

with

Kβ(Â) =
1

β

∫ β

0

dλ e−λĤÂe−(β−λ)Ĥ (11)

This function gives an equivalent description of the dy-
namics to CAB(t), to which it is related by a simple
Fourier-transform formula.33
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It is easy to show (by noting that e−λĤ and e−iĤt/~

commute in Eq. (16)) that CAB(t) satisfies the detailed
balance relation

CAB(t) = CBA(−t) (12)

This relation also ensures that CAB(t) is real (since re-
versing the order of operators in the trace gives CAB(t) =
C∗

BA(−t)).
The t = 0 limit of CAB(t) can be expressed33 in terms

of a classical Boltzmann distribution over an extended
phase space of ‘ring-polymers’.55–58 When Â and B̂ are
functions A(q̂) and B(q̂) of the position operator q̂, the
ring-polymer expression is

CAB(0) = lim
N→∞

1

(2π~)N

∫
dp

∫
dq

×A(q)B(q)e−βNHN (p,q) (13)

where βN = β/N ,
∫
dp ≡

∫∞

−∞
dp1 . . .

∫∞

−∞
dpN and simi-

larly for
∫
dq, and

A(q) =
1

N

N∑

i=1

A(qi), B(q) =
1

N

N∑

i=1

B(qi) (14)

RN (p,q) =TN (p,q) + UN (q) (15)

TN (p,q) =
p2

2m
+

m

2(βN~)2

N∑

i=1

(qi+1 − qi)
2 (16)

UN (q) =

N∑

i=1

V (qi) (17)

Similar expressions can be obtained when Â and B̂ de-
pend on the momentum operator (by inserting position-
momentum Fourier-transforms). To avoid confusion, we
emphasise that Eq. (19) is exact at t = 0, and that we do
not assume that the ring-polymer Hamiltonian RN (p,q)
generates the dynamics at t > 0.

C. The LSC-IVR approximation

1. The Wigner-Moyal series

To derive the LSC-IVR approximation to CAB(t), we
follow ref. 26, expanding the exact quantum Liouvillian
in powers of ~2. We start by rewriting Eq. (15) as

CAB(t) =

∫ ∞

−∞

dq

∫ ∞

−∞

d∆

× 〈q −∆/2|Kβ(Â)|q +∆/2〉
× 〈q +∆/2|eiĤt/~B̂e−iĤt/~|q −∆/2〉 (18)

then insert the momentum identity

δ(∆−∆′) =
1

2π~

∫ ∞

−∞

dp eip(∆−∆′)/~ (19)

to obtain

CAB(t) =
1

2π~

∫ ∞

−∞

dq

∫ ∞

−∞

dp

× [Kβ(Â)]W(p, q) [B̂(t)]W(p, q) (20)

where the Wigner transforms of Â and B̂ are given by

[Kβ(Â)]W(p, q) =

∫ ∞

−∞

d∆eip∆/~

× 〈q −∆/2|Kβ(Â)|q +∆/2〉 (21)

and

[B̂(t)]W(p, q) =

∫ ∞

−∞

d∆ eip∆/~

× 〈q −∆/2|eiĤt/~B̂e−iĤt/~|q +∆/2〉.
(22)

(and note that we will often suppress the (p, q) depen-

dence of [Kβ(Â)]W and [B̂(t)]W).
We then differentiate Eq. (29) with respect to t,

dCAB(t)

dt
=

1

2π~

∫ ∞

−∞

dq

∫ ∞

−∞

dp

× [Kβ(Â)]W

[
i

~
[Ĥ, B̂(t)]

]

W

(23)

and expand the potential-energy operator in the commu-
tator in powers of ∆ to obtain

[
i

~
[Ĥ, B̂(t)]

]

W

=

∫ ∞

−∞

d∆ eip∆/~

× ℓ̂〈q −∆/2|B̂(t)|q +∆/2〉 (24)

with

ℓ̂ =
i~

m

∂

∂q

∂

∂∆
− 2i

~

∞∑

λ=1,odd

1

λ!

∂λV (q)

∂qλ

(
∆

2

)λ

(25)

Noting that each power of ∆ can be generated by an
application of −i~∂/∂p, we then obtain

dCAB(t)

dt
=

1

2π~

∫ ∞

−∞

dq

∫ ∞

−∞

dp

× [Kβ(Â)]W L̂[B̂(t)]W (26)

with

L̂ =
p

m

∂

∂q
−

∞∑

λ=1,odd

1

λ!

(
i~

2

)λ−1
∂λV (q)

∂qλ
∂λ

∂pλ
(27)

This is the Moyal expansion of the quantum Liouvillian in
powers of ~2. If all terms are included in the series, then
the application of L̂ generates the exact quantum dynam-
ics (as is easily proved by working backwards through the
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derivation just given). A compact representation of L̂,
which will be useful later on is,

L̂ =
p

m

∂

∂q
− V (q)

2

~
sin

(←−
∂

∂q

~

2

−→
∂

∂p

)
. (28)

where the arrows are defined in the same way as in
Eq. (10)

2. Approximating the dynamics

To obtain the LSC-IVR one notes that Eq. (41) can be
written

L̂ =L+O(~2) (29)

where L is the classical Liouvillian

L =
p

m

∂

∂q
− ∂V

∂q

∂

∂p
(30)

and then truncates L̂ at ~0. The LSC-IVR thus amounts
to replacing the quantum dynamics by classical dynam-
ics, such that CAB(t) is approximated by

CW
AB(t) =

∫ ∞

−∞

dq

∫ ∞

−∞

dp

× [Kβ(Â)]W(p, q) eLt[B̂(0)]W(p, q) (31)

or equivalently

CW
AB(t) =

∫ ∞

−∞

dq

∫ ∞

−∞

dp

× [Kβ(Â)]W(p, q) [B̂(0)]W(pt, qt) (32)

where (pt, qt) are the (classical) position and momentum
at time t of a trajectory initiated at (p, q) at t = 0.
Physical insight into the LSC-IVR is obtained by go-

ing back to Eq. (38), and noting that truncating L̂ at

~
0 is equivalent to truncating l̂ at ∆. Since ∆ is the

difference between the origin of a forward path that ter-
minates at z (at time t) and the terminus of a backward
path that originates at z, it follows that truncating at
∆ is equivalent to linearizing the difference between the
forward and backward Feynman paths at each time-step.
Hence the neglect of terms O(~2) is valid if the forward
and backward paths are very close together, in which
case there are no coherence effects, and the dynamics be-
comes classical. The LSC-IVR is thus exact at t = 0
(where the paths become infinitessimally short), in the

harmonic limit (where the are no terms O(~2) in L̂), and
in the high temperature limit (where fluctuations in ∆
efficiently dephase).59

Despite these positive features, LSC-IVR suffers from
the major drawback of not preserving the quantum Boltz-
mann distribution (except in one of the special limits just
mentioned), since in general

L[e−βĤ ]W 6= 0 (33)

As a result,

CW
AB(t) 6= CW

BA(−t) (34)

i.e. the LSC-IVR does not satisfy detailed balance. In
the following Sections we will investigate why this is so.

III. RING-POLYMER COORDINATES

We now recast the standard expressions of Sec. II in
terms of ring-polymer coordinates. No new approxima-
tions are obtained, but the ring-polymer versions of these
expressions are needed for use in Sec. IV, where they will
be used to derive the quantum-Boltzmann-conserving
‘Matsubara’ dynamics.

A. Ring-polymer representation of

Kubo-transformed time-correlation functions

1. Exact quantum time-correlation function

Following ref. 48 (see also refs. 17 and 41), we define
the ring-polymer quantum time-correlation function to
be

C
[N ]
AB(t) =

∫
dq

∫
d∆

∫
dz A(q)B(z)

×
N∏

l=1

〈ql−1 −∆l−1/2|e−βN Ĥ |ql +∆l/2〉

× 〈ql +∆l/2|e−iĤt/~|zl〉
× 〈zl|eiĤt/~|ql −∆l/2〉 (35)

where the functions A(q) and B(z) (with z in place of
q) are defined in Eq. (20) (and we have assumed that

Â and B̂ are functions of position operators to simplify
the algebra—see Sec. IVD). It is easy to show (by noting
that N−1 of all the forward-backward propagators are
identities, and that the sums in A(q) and B(z) become
integrals in the limit N →∞) that

CAB(t) = lim
N→∞

C
[N ]
AB(t) (36)

In other words, Eq. (54) in the limit N → ∞ is just
an alternative way of writing out the standard Kubo-
transformed time-correlation function CAB(t). The ad-
vantage of Eq. (54) is that it emphasises the symmetry of
the entire path-integral expression with respect to cyclic
permutations of the coordinates ql → ql+1 (see Fig. 1);
this symmetry is otherwise hidden in the conventional
expression for CAB(t) [Eq. (15)].
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2. Ring-polymer representation of the

LSC-IVR

It is straightforward to derive the LSC-IVR approx-
imation from Eq. (54) by generalizing the steps in

Sec. IIC. We insert an identity

δ(∆l −∆′
l) =

1

2π~

∫ ∞

−∞

dpl e
ipl(∆l−∆′

l
)/~ (37)

C
[N ]
AB(t) =

1

(2π~)N

∫
dq

∫
dp
[
e−βĤÂ

]

N
(p,q)

[
B̂(t)

]

N
(p,q) (38)

where

[
e−βĤÂ

]

N
(p,q) =

∫
d∆ A(q)

N∏

l=1

〈ql−1 −∆l−1/2|e−βN Ĥ |ql +∆l/2〉eipl∆l/~ (39)

and

[
B̂(t)

]

N
(p,q) =

∫
d∆

∫
dz B(z)

N∏

l=1

〈ql −∆l/2|e−iĤt/~|zl〉〈zl|eiĤt/~|ql +∆l/2〉eipl∆l/~ (40)

are generalized Wigner transforms (and we will often sup-
press the dependence on (p,q) in what follows). Note
that [·]N and [·]N have different forms: [·]N is a sum of
products of one-dimensional Wigner transforms, whereas
[·]N is more complicated, with each product coupling
variables in l and l+ 1.60 Note that since we have speci-
fied that B̂ is a function of just the position operator (in
order to simplify the algebra—see Sec. IVD), it follows
that

[
B̂(0)

]

N
(p,q) = B(q) (41)

The next step is to obtain the ring-polymer representa-
tion of the (exact) quantum Liouvillian, which involves
a straightforward generalization of Eqs. (35)-(41). We

differentiate C
[N ]
AB(t) with respect to t, obtain a sum of

N Heisenberg time-derivatives, and expand each mem-
ber in powers of ∆l to obtain an N -fold generalization of
Eqs. (37) and (38). On replacing powers of ∆l by powers
of −i~∂/∂pl, we obtain

dC
[N ]
AB

dt
(t) =

1

(2π~)N

∫
dq

∫
dp

×
[
e−βĤÂ

]

N
L̂N

[
B̂(t)

]

N
(42)

where

L̂N =
N∑

l=1

pl
m

∂

∂ql
− V (ql)

2

~
sin

(←−
∂

∂ql

~

2

−→
∂

∂pl

)
. (43)

and the arrow notation is as used in Eq. (10). We can
write this expression more compactly in terms of UN (q)

in Eq. (23) as

L̂N =
1

m
p · ∇q − UN (q)

2

~
sin

(
~

2

←−∇q ·
−→∇p

)
. (44)

(since all mixed derivatives of UN (q) are zero).
Following Sec. IIC, we then truncate the exact Liou-

villian at ~0 such that

L̂N =LN +O(~2) (45)

with

LN =

N∑

l=1

pl
m

∂

∂ql
− ∂V (ql)

∂ql

∂

∂pl
(46)

The ring-polymer version of LSC-IVR thus approximates
the exact dynamics by the classical dynamics of N inde-
pendent particles, each initiated at a phase-space point
(pl, ql). The ring-polymer LSC-IVR time-correlation
function is

C
W[N ]
AB (t) =

1

(2π~)N

∫
dq

∫
dp

×
[
e−βĤÂ

]

N
eLN t

[
B̂(0)

]

N

=
1

(2π~)N

∫
dq

∫
dp

×
[
e−βĤÂ

]

N

[
B̂(0)

]

N
(pt,qt) (47)

where
[
B̂(0)

]

N
(pt,qt) indicates that this Wigner trans-

form takes its t = 0 form, but is expressed as a function
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of the momenta and positions (pt,qt) of the N indepen-
dent particles at time t. It is easy show (by noting that
one can integrate out N−1 of the pl) that

C
[W]
AB (t) = lim

N→∞
C

W[N ]
AB (t) (48)

i.e. that the truncation of L̂N at ~
0 gives the standard

LSC-IVR approximation in the limit N → ∞ (as would
be expected, since we have approximated the exact quan-
tum Kubo time-correlation function of Eqs. (54) and (55)
by truncating the quantum Liouvillian at ~0).

B. Normal mode coordinates

1. Definition

The advantage of ring-polymer coordinates is that we
can now transform to sets of global coordinates describing
collective motion of the individual coordinates (pl, ql,∆l).
The choice of global coordinates is not unique. We will
find it convenient to use the normal modes of a free-
ring-polymer,36,47 namely the linear combinations of ql
that diagonalize TN (p,q) of Eq. (22). These are simply
discrete Fourier transforms, which for odd N (which we
will assume, to simplify the algebra61), are

Qn =

N∑

l=1

Tlnql, n = 0,±1, . . . ,±(N − 1)/2 (49)

where

Tln =





N−1/2 n = 0√
2/N sin(2πln/N) n = 1, . . . , (N − 1)/2√
2/N cos(2πln/N) n = −1, . . . ,−(N − 1)/2

(50)

and similarly for Pn in terms of pl, and Dn in terms of
∆l. The associated normal frequencies take the form

ωn =
2

βN~
sin
(nπ
N

)
(51)

such that the ring-polymer expression for CAB(0)
[Eq. (19)] can be rewritten as

CAB(0) = lim
N→∞

1

(2π~)N

∫
dP

∫
dQ

×A(Q)B(Q)e−βNRN (P,Q) (52)

where the normal-mode expression for the ring-polymer
Hamiltonian RN (P,Q) is

RN (P,Q) =




(N−1)/2∑

n=−(N−1)/2

P 2
n

2m
+

m

2
ω2
nQ

2
n


+ UN (Q)

(53)

and A(Q), B(Q) and UN (Q) are obtained by making the
substitution

ql =

(N−1)/2∑

n=−(N−1)/2

TlnQn (54)

into A(q), B(q) and UN (q) of Eqs. (20)-(23). Note the
definition of the sign of ωn in Eq. (74), which results in
somewhat neater expressions later on. Note also that
RN (P,Q) will not be used to generate the dynamics in
any of the expressions derived below which, like the dy-
namics of Sec. IIIA, will involve N independent particles
unconnected by springs.

2. Time-correlation functions

It is straightforward to convert Eq. (57) into normal
mode coordinates using the orthogonal transformations
in Eq. (78), to obtain

C
[N ]
AB(t) =

1

(2π~)N

∫
dP

∫
dQ

×
[
e−βĤÂ

]

N
(P,Q)

[
B̂(t)

]

N
(P,Q) (55)

where

∫
dP ≡

(N−1)/2∏

n=−(N−1)/2

∫ ∞

−∞

dPn (56)

and
∫
dQ is similarly defined. The generalized Wigner

transforms in Eq. (80) are obtained using Eq. (78) to
substitute (P,Q,D) for (p,q,∆) in Eqs. (58) and (59),
and thus contain products of exp(iPnDn/~) in place of
exp(ipl∆l/~). At t = 0, one obtains

[
B̂(0)

]

N
(P,Q) = B(Q) (57)

where B(Q) is obtained by substituting Q for q in B(q)
of Eq. (20).
The (exact) quantum dynamics is described by

dC
[N ]
AB

dt
(t) =

1

(2π~)N

∫
dP

∫
dQ

×
[
e−βĤÂ

]

N
L̂N

[
B̂(t)

]

N
(58)

where the Liouvillian L̂N is obtained by expressing L̂N

of Eq. (66) in terms of normal modes, which gives

L̂N =
1

m
P · ∇Q − UN (Q)

2

~
sin

(
~

2

←−∇Q ·
−→∇P

)
. (59)

in which UN (Q) is obtained by substituting Q for q in
UN (q) of Eq. (23).

6



As in Sec. IIIA, the LSC-IVR dynamics is obtained by
truncating L̂N at ~0 to give

LN =

(N−1)/2∑

n=−(N−1)/2

Pn

m

∂

∂Qn
− ∂UN (Q)

∂Qn

∂

∂Pn
(60)

after which one obtains C
W[N ]
AB (t) in terms of normal

modes, which gives the (standard) LSC-IVR result in the
limit N → ∞, according to Eq. (71). Hence all we have
done in Eqs. (80)-(86) is re-express the results of Sec. IIIA
in terms of normal mode coordinates. The advantages of
doing this will become clear shortly.

C. Matsubara modes

We now consider the M lowest frequency ring-polymer
normal modes in the limit N → ∞, such that M ≪ N .
The frequencies ωn tend to the values

ω̃n = lim
N→∞

ωn =
2nπ

β~
, |n| ≤ (M − 1)/2 (61)

which are often referred to as the ‘Matsubara
frequencies’,62 and so we will refer to these M modes
in the limit N → ∞ as the ‘Matsubara modes’. The
Matsubara modes have the special property that any su-
perposition of them produces a distribution of the coor-
dinates ql which is a smooth and differentiable function
of imaginary time τ , such that

ql = q(τ), τ = βN~ l, l = 1, . . . , N (62)

(see Appendix A). Hence distributions made up of super-
positions of the Matsubara modes resemble the sketch in
Fig. 2. We will often write the Matsubara modes using
the notation

Q̃n = lim
N→∞

Qn√
N

, n = 0,±1, . . . ,±(M − 1)/2 (63)

(and similarly for P̃n, D̃n). The extra factor of N−1/2

ensures that Q̃n scales as N0 and converges in the limit

N → ∞; e.g. Q̃0 is the centroid (centre of mass) of
the smooth distribution q(τ). We will refer to the other
N −M normal modes as the ‘non-Matsubara modes’. In
general, these modes give rise to jagged (i.e. non-smooth,
non-differentiable with respect to τ) distributions of ql
(see Fig. 2).63

Matsubara modes have a long history57,58,64,65 in path-
integral descriptions of equilibrium properties, since they
give rise to an alternative ring-polymer expression for
CAB(0). If we define

C
[M ]
AB (0) =

αM

2π~

∫
dP̃

∫
dQ̃ A(Q̃)B(Q̃)e−βR̃M (P̃,Q̃)

(64)

with

R̃M (P̃, Q̃) =




(M−1)/2∑

n=−(M−1)/2

P̃ 2
n

2m
+

m

2
ω̃2
nQ̃

2
n


+ ŨM (Q̃)

(65)

ŨM (Q̃) = lim
N→∞

1

N

N∑

l=1

V




(M−1)/2∑

n=−(M−1)/2

Tln

√
NQ̃n




(66)

αM =~
(1−M) [(M − 1)/2]!2 (67)

then

CAB(0) = lim
M→∞
M≪N

C
[M ]
AB (0) (68)

where this limit indicates that M is allowed to tend to
infinity, subject to the condition that it is always much

smaller than N , such that the Q̃ remain Matsubara
modes. In practice, a good approximation to the ex-
act result is reached once ω̃(M−1)/2 exceeds the highest
frequency in the potential V (q). Equation (90) is seldom
used nowadays to compute static properties, because the
convergence with respect to M is typically slower than
the convergence of Eq. (19) with respect to N .65

However, Eq. (90) tells us something interesting: The
Boltzmann factor ensures that only smooth distributions
of (p,q) survive in CAB(t) at t = 0; but at t > 0,
the force terms in LN [Eq. (86)] will, in general, mix in
an increasing proportion of non-smooth, non-Matsubara
modes, so that the distributions of (p,q) become increas-
ingly jagged as time evolves. The rate at which this mix-
ing occurs depends on the anharmonicity of the potential
V (q). In the special case that V (q) is harmonic, there is
no coupling between different normal modes, so the dis-
tributions in (p,q) remain smooth for all time. In other
words, smooth distributions in (p,q) are found in two of
the limits (zero-time and harmonic) in which the LSC-
IVR is known to be exact.

IV. MATSUBARA DYNAMICS

A. Definition

The results of Sec. IIIC suggest that there may be a
connection between smoothness in imaginary time and
classical dynamics. We now investigate what happens if
we constrain an initially smooth function of phase space
coordinates (p,q) to remain smooth for all (real) times

t > 0. We take the (exact) quantum Liouvillian L̂N , and
instead of truncating at ~0 as in Eq. (86) (which gives the
LSC-IVR), we retain all powers of ~2, take the N → ∞
limit, and split L̂N into

lim
N→∞

L̂N = LM + lim
N→∞

L̂error(N,M) (69)
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where the ‘Matsubara Liouvillian’

LM = lim
N→∞

(M−1)/2∑

n=−(M−1)/2

Pn

m

∂

∂Qn

− UN (Q)
2

~
sin




(M−1)/2∑

n=−(M−1)/2

~

2

←−
∂

∂Qn

−→
∂

∂Pn


 (70)

contains all terms in which the derivatives involve only

the Matsubara modes, and L̂error(N,M) contains the rest
of the terms (given in Appendix B). We then discard

L̂error(N,M), approximating L̂N by LM . We will re-
fer to the (approximate) dynamics generated by LM as
‘Matsubara dynamics’. By construction, Matsubara dy-
namics ensures that a distribution of (p,q) which is a
smooth and differentiable function of τ at t = 0 will re-
main so for all t > 0.
The time-correlation function corresponding to Mat-

subara dynamics is

C
[M ]
AB (t) = lim

N→∞

1

(2π~)N

∫
dP

∫
dQ

×
[
e−βĤÂ

]

N
eLM t

[
B̂(0)

]

N
(71)

We can obtain an explicit form for C
[M ]
AB (t) by taking the

same limit as in Eq. (94), allowing M to tend to infinity,
subject to M ≪ N , which gives (see Appendix C)

CMats
AB (t) = lim

M→∞
M≪N

C
[M ]
AB (t) (72)

where

C
[M ]
AB (t) =

αM

2π~

∫
dP̃

∫
dQ̃ A(Q̃)e−β[H̃M (P̃,Q̃)−iθM (P̃,Q̃)]

× eLM tB(Q̃) (73)

in which the Matsubara Hamiltonian is

H̃M (P̃, Q̃) =
P̃2

2m
+ ŨM (Q̃) (74)

and the phase factor is

θM (P̃, Q̃) =

(M−1)/2∑

n=−(M−1)/2

P̃nω̃nQ̃−n (75)

with αM , ω̃n, P̃ and Q̃ defined in Sec. IIIC. Note that, in
deriving these equations (in Appendix C), we have not

proved that C
[M ]
AB (t) converges with M for t > 0 (only

that the form of Eqs. (102)-(104) converges with M).
We test this convergence numerically in Sec. V.
Thus when the exact dynamics is approximated by

Matsubara dynamics, the quantum Boltzmann distribu-
tion takes the simple form of a classical Boltzmann dis-
tribution multiplied by a phase factor. At t = 0, one

may analytically continue the phase factor (by making
Pn → Pn − imωnQ−n) to recover the ring-polymer dis-
tribution in Eq. (90). However, it is not known whether
this analytic continuation is valid at t > 0 (except for
the special case of the harmonic oscillator), and hence
the most general form of quantum Boltzmann distribu-
tion (in the space of Matsubara modes) is the one given
in Eq. (102).

B. Matsubara dynamics is classical

We now rewrite LM in terms of (P̃, Q̃), to make ex-
plicit its dependence on N , and we also assume that M
is sufficiently large that Eq. (102) holds, allowing us to

replace UN (Q)/N by ŨM (Q̃). This gives

LM = lim
N→∞

1

m
P̃ · ∇

Q̃
− ŨM (Q̃)

2N

~
sin

(
~

2N

←−∇
Q̃
· −→∇

P̃

)
.

(76)

In other words, the Moyal series in Matsubara space66 is
an expansion in terms of (~/N)2, rather than ~

2. Now,
it is well known27 that the smallness of ~ cannot in gen-
eral be used to justify truncating the (standard LSC-
IVR) Moyal series of Eq. (41) at ~0, since at least one of
the Wigner transforms in the time-correlation function
[Eq. (29)] contains derivatives that scale as ~

−1. How-
ever, it is easy to show that the derivatives of all terms
in the integral in Eq. (102) scale as N0. As a result, it
follows that all derivatives higher than first order in LM

vanish in the limit N →∞, with the result that

LM =

(M−1)/2∑

n=−(M−1)/2

P̃n

m

∂

∂Q̃n

− ∂ŨM (Q̃)

∂Q̃n

∂

∂P̃n

(77)

In other words, Matsubara dynamics is classical.
This is a surprising result, which needs to be inter-

preted with caution. It does not mean that the depen-
dence of B(Q) on the Matsubara modes evolves classi-
cally in the exact quantum dynamics, since the exact
Liouvillian L̂N contains derivative terms that couple the
Matsubara modes with the non-Matsubara modes (for
which the higher-order derivatives cannot be neglected):
it means that the dynamics of the Matsubara modes be-
comes classical when they are decoupled from the non-
Matsubara modes.
One way to understand the origin of the ~/N in

Eq. (105) is to note that the Fourier transform between

P̃n and D̃n (in the Wigner transforms of Eqs. (58) and

(59)) is exp(iNP̃nD̃n/~). Hence the effective Planck’s
constant associated with motion in the Matsubara coor-
dinates tends to zero in the limit N → ∞. Note that
the dependence of the Boltzmann distribution on the
non-Matsubara modes is more complicated than that of
Eq. (102), and contains powers of (~/N)−1 which cancel

out the powers of (~/N) in L̂N (which must obviously
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happen, since we know that the exact dynamics is not in
general classical).
Matsubara dynamics thus has many features in com-

mon with LSC-IVR: it is exact in the t = 0 limit (when
all distributions of (p,q) are smooth superpositions of
Matsubara modes), in the harmonic limit (where the dy-
namics of the Matsubara modes is decoupled from that
of the non-Matsubara modes), and in the classical limit
(since setting M = 0 in Eq. (102) gives the classical time-
correlation function); and it neglects all terms O(~2)
in the (exact) quantum Liouvillian. However, Matsub-
ara dynamics differs from LSC-IVR in that it also ne-
glects the terms O(~0) that contain derivatives in the
non-Matsubara modes. One can thus regard Matsubara
dynamics as a filtered version of LSC-IVR, in which the
parts of the dynamics that cause the smooth distribu-
tions of (p,q) to become jagged have been removed.67

C. Conservation of the quantum Boltzmann

distribution

Confining the dynamics to the space of Matsubara
modes has a major effect on the symmetry of the Hamil-
tonian. The LSC-IVR Hamiltonian HN (P,Q) is simply
the classical Hamiltonian ofN independent particles, and
is thus symmetric with respect to any permutation of the
phase space coordinates [e.g. (p1, q1) ↔ (p3, q3)]. On re-
stricting the dynamics to the Matsubara modes, most
of these symmetries are lost (since individual permuta-
tions would destroy the smoothness of the distributions
of (p,q)). However, one operation which is retained68

is symmetry with respect to cyclic permutation of the
coordinates, which, on restricting the dynamics to Mat-
subara space, becomes a continuous, differentiable sym-
metry, namely invariance with respect to translation in
imaginary time:

dH̃M (P̃, Q̃)

dτ
= 0 (78)

(see Appendix A). It thus follows from Noether’s
theorem,69 that

dΛ̃M (P̃, Q̃)

dτ
=

d

dt




(M−1)/2∑

n=−(M−1)/2

P̃n
dQ̃n

dτ


 = 0 (79)

where ΛM (P̃, Q̃) is the Matsubara Lagrangian. In other
words, in Matsubara dynamics, there exists a constant
of the motion (in addition to the total energy) which is
given by the term in brackets above.

In Appendix A, it is shown that the phase θM (P̃, Q̃) in
the quantum Boltzmann distribution [Eqs. (102)-(104)]
can be written

θM (P̃, Q̃) = −
(M−1)/2∑

n=−(M−1)/2

P̃n
dQ̃n

dτ
(80)

and is thus the constant of the motion associated with the
invariance of H̃M (P̃, Q̃) to imaginary time-translation.

Since H̃M (P̃, Q̃) is of course also a constant of the mo-
tion, it follows that Matsubara dynamics conserves the

quantum Boltzmann distribution.
As a result, Matsubara dynamics satisfies the detailed

balance relation

C
[M ]
AB (t) = C

[M ]
BA (−t) (81)

and gives expectation values

〈
B̂
〉[M ]

(t) =
αM

2π~

∫
dP̃

∫
dQ̃

× e−β[H̃M (P̃,Q̃)−iθM (P̃,Q̃)]B(Q̃t)

=
αM

2π~

∫
dP̃t

∫
dQ̃t

× e−β[H̃M (P̃t,Q̃t)−iθM (P̃t,Q̃t)]B(Q̃t)

=
αM

2π~

∫
dP̃t

∫
dQ̃t

× e−βR̃M (P̃t,Q̃t)B(Q̃t)

=
〈
B̂
〉[M ]

(0) (82)

which are independent of time (and equal to the exact
quantum distribution in the limit M →∞; see Eq. (94)).
Note that the step between the second and third lines fol-
lows from analytic continuation (Pn → Pn − imωnQ−n).

We thus have the surprising result that a purely clas-
sical dynamics (Matsubara dynamics) which uses the
smoothed Hamiltonian that arises naturally when the
space is restricted to Matsubara modes, conserves the
quantum Boltzmann distribution. At first sight this may
appear counter-intuitive. For example, it is clear that the
classical dynamics will not respect zero-point energy con-
straints, nor will it be capable of tunnelling. However, it

is the phase θM (P̃, Q̃) which converts what would other-
wise be a classical Boltzmann distribution in an extended
phase-space into a quantum Boltzmann distribution, and
the phase is conserved.

D. Generalizations

The derivations above can easily be generalized to sys-
tems with any number of dimensions. For a system whose
classical Hamiltonian resembles Eq. (2), there are F ×M
Matsubara modes, one set ofM modes in each dimension.
All the steps in Secs. III and IV.A-C are then the same,
except that, with F dimensions instead of one, there is

now a sum of F phase terms, each resembling θM (P̃, Q̃).
Noether’s theorem shows that the sum of these terms and
hence the quantum Boltzmann distribution is conserved.
We emphasise that the derivations above were carried

out for operators Â and B̂ in CAB(t) which are general

functions of the coordinate operators q̂. Matsubara dy-
namics is therefore not limited to correlation functions
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involving linear operators of position. The derivations
can also be repeated, with minor modifications in the al-
gebra, for the case that Â and B̂ are general functions of

the momentum operator (which results in functions of P̃
appearing in the generalised Wigner transforms).

V. NUMERICAL TESTS OF THE

EFFICACY OF MATSUBARA DYNAMICS

So far we have made no attempt to justify the use of
Matsubara dynamics, beyond pointing out that it is exact
in all the limits in which LSC-IVR is exact, but that, un-
like LSC-IVR, it also conserves the quantum Boltzmann
distribution. Here we investigate whether Matsubara dy-
namics converges with respect to the number of modes
M , and make numerical comparisons with the LSC-IVR,
CMD and RPMD methods.
The presence of the phase θM (P̃, Q̃) in the Boltzmann

distribution [Eq. (102)] means that Matsubara dynam-
ics suffers from the sign problem, and thus cannot be
used as a practical method. However, we were able to

evaluate C
[M ]
qq (t) (i.e. C

[M ]
AB (t) of Eq. (102) with Â = q̂,

B̂ = q̂) for some one-dimensional model systems. For
consistency with previous work,32,33 we considered the
quartic potential

V (q) =
1

4
q4 (83)

and the weakly anharmonic potential

V (q) =
1

2
q2 +

1

10
q3 +

1

100
q4 (84)

where atomic units are used with m = 1. Calculations
using potentials with intermediate levels of anharmonic-
ity were found to give similar results (and are not shown
here).

Figure 3 shows C
[M ]
qq (t) for the quartic potential, at an

inverse temperature of β = 2 a.u., for various values of
M . These results were obtained by propagating classi-

cal trajectories using the Matsubara potential ŨM (Q̃) to
generate the forces, subject to the Anderson thermostat2

(according to which each P̃n was reassigned to a value
drawn at random from the classical Boltzmann distribu-
tion every 2 atomic time units); ŨM (Q̃) was computed
by taking the N →∞ limit analytically, as described in
the supplemental material.70 A total of 1011 Monte Carlo

points was found necessary to converge C
[M ]
qq (t). Extend-

ing these calculations beyond M = 7 was prohibitively
expensive, and the final few M were particularly diffi-

cult to converge (since θM (P̃, Q̃) becomes increasingly
oscillatory as ω̃n increases). Nevertheless, the results in

Fig. 3 are sufficient to show that C
[M ]
qq (t) converges with

respect to M , although the convergence appears to be-
come slower as t increases. For the weakly anharmonic
potential, convergence to within graphical accuracy was
obtained using M = 5 for β = 2 a.u.

We also confirmed numerically that Matsubara dynam-
ics conserves the quantum Boltzmann distribution. Fig-

ure 4 shows the phase θM (P̃, Q̃) as a function of time
along a Matsubara trajectory. When a coarse number of
polymer beads (N = 5) is used, such that the M lowest-
frequency modes are a poor approximation to the Mat-
subara modes, the phase is not conserved; however, as
N is increased, the variation of the phase along the tra-
jectory flattens, becoming completely time-independent
in the limit N → ∞. Figure 5 plots the expectation

value
〈
q2
〉[M ]

(t), which is found to be time-independent
as expected from Eq. (117).

Figure 6 compares the Matsubara correlation functions

C
[M ]
qq (t) for both potentials with exact quantum, LSC-

IVR, CMD and RPMD results. The quartic potential at
β = 2 (panel a) is a severe test for which any method
that neglects real-time coherence fails after a single re-
currence. Nevertheless, we see that Matsubara dynamics
gives a much better treatment than LSC-IVR, reproduc-
ing almost perfectly the first recurrence at 6 a.u., and
damping to zero more slowly.71 The Matsubara result
is also better than both the CMD and RPMD results.
The same trends are found for the weakly anharmonic
potential (Fig. 6, panel b), and were also found for the
potentials with intermediate anharmonicity (not shown).

VI. CONCLUSIONS

We have found that a single change in the derivation
of LSC-IVR dynamics gives rise to a classical dynam-
ics (‘Matsubara dynamics’) which preserves the quantum
Boltzmann distribution. This change involves no explicit
truncation in powers of ~2, but instead a decoupling of
a subspace of ring-polymer normal modes (the Matsub-
ara modes) from the other modes. The dynamics in this
restricted space is found to be purely classical and to en-
sure that smooth distributions of phase-space points (as
a function of imaginary time), which are present in the
Boltzmann distribution at time t = 0, remain smooth at
all later times. The LSC-IVR dynamics, by contrast, in-
cludes all the modes, which has the effect of breaking up
these smooth distributions, and thus failing to preserve
the quantum Boltzmann distribution. Numerical tests
show that Matsubara dynamics gives consistently better
agreement than LSC-IVR with the exact quantum time-
correlation functions.

These results suggest that Matsubara dynamics is
a better way than LSC-IVR, at least in principle, to
account for the classical mechanics in quantum time-
correlation functions. We suspect that Matsubara
dynamics may be equivalent to expanding the time-
dependence of the quantum time-correlation function in
powers of ~

2 and truncating it at ~
0; this is in con-

trast to LSC-IVR, in which one truncates the quantum
Liouvillian72 at ~0. However, further work will be needed
to prove or disprove this conjecture.
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Matsubara dynamics is far too expensive to be useful
as a practical method. However, it is probably a good
starting point from which to make further approxima-
tions in order to develop such methods. The numerical
tests reported here show that Matsubara dynamics gives
consistently better results than both CMD and RPMD,
suggesting that these popular methods may be approxi-
mations to Matsubara dynamics.
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Appendix A: Differentiability with respect to

imaginary time

A distribution of ring-polymer coordinates ql, l =
1, . . . , N , can be written as a smooth and differentiable
function of the imaginary time τ (0 ≤ τ < β~) if the
limit

dq(τ)

dτ
= lim

N→∞

ql+1 − ql−1

2βN~
, τ = l~βN (A1)

exists, i.e. if

lim
N→∞

ql+1 − ql−1 ∼ N−1 (A2)

For a distribution formed by superposing only the Mat-
subara modes, we can use trigonometric identities and
the definitions in Sec. III to write

ql+1 − ql−1

= 2
√
2

(M−1)/2∑

n=1

[
cos

(
2πnl

N

)
Q̃n − sin

(
2πnl

N

)
Q̃−n

]

× sin

(
2πn

N

)
(A3)

Since n≪ N , the sine function on the right ensures that
Eq. (A2) is satisfied; also, repetition of this procedure
shows that higher-order differences of order λ scale as
N−λ. Hence a distribution ql formed from a superposi-
tion of Matsubara modes is a smooth and differentiable
function of τ . The same is true for distributions in pl and
∆l.
To prove that the Matsubara Hamiltonian is invariant

under imaginary-time translation [Eq. (107)], we first dif-

ferentiate the Matsubara potential UM (Q̃) with respect

to τ , which gives

dŨM (Q̃)

dτ
= lim

N→∞

P̃1 ŨM (q)− ŨM (q)

βN~
(A4)

where

ŨM (q) =
N∑

l=1

V




N∑

m=1

(M−1)/2∑

n=−(M−1)/2

TlnTmnqm


 (A5)

and P1 represents a cyclic permutation of the coordinates
qm → qm+1, such that

P1 ŨM (q) =
N∑

l=1

V




N∑

m=1

(M−1)/2∑

n=−(M−1)/2

TlnT(m−1)nqm




(A6)

We then rearrange the sum over n in Eq. (A8) into

Tl0T(m−1) 0 +

(M−1)/2∑

n=1

[
TlnT(m−1)n + Tl−nT(m−1)−n

]

(A7)

and use trigonometric identities to show that

TlnT(m−1)n + Tl−nT(m−1)−n

= T(l+1)nTmn + T(l+1)−nTm−n (A8)

Re-ordering the sum over l and using the property that
Tl0 = N−1/2 gives

P1 ŨM (q) = ŨM (q) (A9)

which proves that

dŨM (Q̃)

dτ
= 0 (A10)

The same line of argument can be applied to the kinetic

energy P̃2/2m, thus proving Eq. (107).

To obtain the derivative of Q̃n with respect to τ
(needed to prove Eq. (109)), we write

dQ̃n

dτ
= lim

N→∞

1√
N

N∑

l=1

Tln
ql+1 − ql−1

2βN~

= lim
N→∞

1√
N

N∑

l=1

[T(l−1)n − T(l+1)n]ql

2βN~
(A11)

and use trigonometric identities to obtain

Tl+1n − Tl−1n = 2Tl−n sin(2nπ/N) (A12)

Since n≪ N , it follows that

dQ̃n

dτ
= −ω̃nQ̃−n (A13)

where ω̃n is the Matsubara frequency defined in Eq. (87).
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Appendix B: Error term for Matsubara

Liouvillian

The error term L̂error(N,M) of Eq. (95) is the differ-

ence L̂N − LM between the exact quantum Liouvillian
and the Matsubara Liouvillian. Using Eqs. (85) and (97)
and the trigonometric identity

sin(a+ b)− sin a ≡ 2 sin

(
b

2

)
cos

(
a+

b

2

)
(B1)

we can write

L̂error(N,M) =

(N−1)/2∑

n=(M+1)/2

P−n

m

∂

∂Q−n
+

Pn

m

∂

∂Qn

− 4

~
U(Q) sin

(
X̂

2

)
cos

(
Ŷ +

X̂

2

)
(B2)

with

X̂ =
~

2

(N−1)/2∑

n=(M+1)/2

←−
∂

∂Q−n

−→
∂

∂P−n
+

←−
∂

∂Qn

−→
∂

∂Pn
(B3)

and

Ŷ =
~

2

(M−1)/2∑

n=−(M−1)/2

←−
∂

∂Qn

−→
∂

∂Pn
(B4)

Appendix C: Derivation of Matsubara

time-correlation function

To obtain the expression for C
[M ]
AB (t) in Eq. (102),

we note that B(P,Q, t) is independent of the non-
Matsubara P modes (since, by construction, these modes
are not involved in the Matsubara dynamics) which can
therefore be integrated out, giving a product of Dirac

delta-functions in the non-Matsubara D̃ modes.73 As a
result, the Wigner transform

[
e−βĤÂ

]

N
in Eq. (99) re-

duces to
[
e−βĤÂ

]

N
(PM ,Q)

= (2π~)N−MA(Q)

∫
dDM

(M−1)/2∏

n=−(M−1)/2

eiPnDn/~

×
N∏

l=1

〈η−l−1(Q,DM )|e−βN Ĥ |η+l (Q,DM )〉 (C1)

where PM and DM include only the Matsubara modes
(and Q includes all N modes), and

η±l (Q,DM ) =

(N−1)/2∑

n=−(N−1)/2

TlnQn ±
(M−1)/2∑

n=−(M−1)/2

TlnDn/2

(C2)

(where the dependence of η±l on (Q,DM ) will be sup-
pressed in what follows). Expressing the bra-ket in ring-
polymer form, and using trigonometric identities, we ob-
tain

[
e−βĤÂ

]

N
(PM ,Q)

= (2π~)N−M

(
m

2πβN~2

)N/2

A(Q)

∫
dDM

× e−βNmfM (Q,DM )/2

(M−1)/2∏

n=−(M−1)/2

eiPnDn/~

× exp

{
−βN

2

[
N∑

l=1

V (η−l ) + V (η+l )

]}
(C3)

where

fM (Q,DM )

=
4

(βN~)2

(M−1)/2∑

n=−(M−1)/2

(
Qn sin

nπ

N
+

D−n

2
cos

nπ

N

)2

+

(N−1)/2∑

n=(M+1)/2

(Q2
n +Q2

−n)ω
2
n (C4)

On taking the limit N → ∞, and converting DM to

D̃, we find that the Gaussians involving DM in Eq. (C8)
have the form

exp
(
−mD̃2

nN
2/2β~2

)
(C5)

i.e. each Gaussian in D̃ becomes a Dirac delta-function
in the limit N →∞. This allows us to replace the third
line in Eq. (C8) by

exp


−βN

N∑

l=1

V




(N−1)/2∑

n=−(N−1)/2

TlnQn




 (C6)

and to integrate out the D̃, giving

[
e−βĤÂ

]

N
(PM ,Q)

=

(
2πm

βN

)(N−M)/2

A(Q)

× e−βNP2

M
/2m

(M−1)/2∏

n=−(M−1)/2

e2iPnQ−n tan(nπ/N)/~

× exp


−βN

2

N∑

l=1

V




(N−1)/2∑

n=−(N−1)/2

TlnQn






× exp


−βNm

2

(N−1)/2∑

n=(M+1)/2

(Q2
n +Q2

−n)ω
2
n


 (C7)
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We then substitute this expression into the integral of
Eq. (99) (with

∫
dP replaced by

∫
dPM ), and take the

limit M → ∞ (subject to M ≪ N), which allows us to
integrate out the non-Matsubara modes in Q. Use of the
formula74

N−1∏

n=1

sin (nπ/N) = N/2N−1 (C8)

then gives Eqs. (102)-(104).
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Figure Captions

Figure 1 Schematic diagram showing the structure of
the (exact) Kubo-transformed quantum time-correlation
function when represented in ring-polymer coordinates
as in Eq. (54). The red and blue dots represent the
coordinates ql and zl; solid lines represent stretches of
imaginary time of length βN~; arrows represent forward-
backward propagations in real time.

Figure 2 Schematic diagram showing that su-
perpositions of Matsubara modes give distributions of
path-integral coordinates ql which are smooth, differen-
tiable functions of imaginary time τ . Inclusion of non-
Matsubara modes gives jagged distributions.

Figure 3 Convergence with respect to number of
modes M of the Matsubara position auto-correlation

function C
[M ]
qq (t), calculated for the quartic potential of

Eq. (118), at a reciprocal temperature of β = 2 a.u.
The red lines correspond to M = 1 (dots), 3 (chains),
5 (dashes) and 7 (solid). The solid black line is the exact
quantum result.

Figure 4 Evolution of the phase θM (P̃, Q̃) along a
single classical trajectory on the quartic potential, with
M = 5, and N = 5 (dots), 9 (dashes) and ∞ (solid line).
The latter corresponds to Matsubara dynamics in which
the phase is conserved.

Figure 5 Time-dependence of the thermal expectation
value

〈
q2
〉
(t) for the quartic potential at β = 2, computed

using LSC-IVR (blue), and Matsubara dynamics (red:
M = 1 (dots), 3 (dashes), 5 (solid)), and compared with
the exact quantum result (black).

Figure 6 Comparisons of position-autocorrelation func-
tions computed using different levels of theory, for (a) the
quartic potential and (b) the weakly anharmonic poten-
tial of Eq. (119). The Matsubara results were obtained
using M = 7 (quartic) and M = 5 (weakly anharmonic).
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Figure 4
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Figure 5
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Figure 6
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