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We study the optimal timing of adoption of a service innovation that a new entrant firm brings to a market

populated by two incumbent firms. Our analysis is based on a model of competitive diffusion dynamics that

extends the monopolistic Bass model to include customer churn processes, as well as a potential market

expansion resulting from the introduction of the innovation. We obtain expressions for the time trajectories

of the customer bases, i.e., the numbers of customers that use old and new service processes for the competing

firms in a general setting, as well as sharper, closed-form characterizations for the setting with a stable

market and homogeneous imitation process.

In modeling competitive dynamics we consider settings where incumbents anticipate a potential failure

of the innovation. We use the trajectories for the customer bases to model an optimal adoption response

problem faced by one of the incumbent firms in the setting in which the adoption time for the other incumbent

can be anticipated or is pre-announced, and analyze this problem in the absence of market expansion or

intra-generational customer churn. Using the optimal response results, we provide the Nash equilibrium

analysis of the adoption decisions by competing incumbent firms and derive sufficient conditions for the

“now-now”, “now-never” and “never-never” adoption equilibria. We use the trading volume data from the

foreign exchange markets to estimate the parameters of the competitive diffusion dynamics for our model

and to conduct a numerical investigation of the impact of the uncertainty associated with the success of the

innovation on the incumbents’ Nash equilibrium adoption times.
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1. Introduction

Innovations driven by new technologies are being introduced at increasing speed (Ringel et al.

2015). The shorter life-cycle times underscore the importance for firms to appropriately time their

innovation adoption decisions. Multiple studies have shown that an innovation adoption time is

an important marketing decision, which can determine the success of the innovation (Golder and

Tellis 1993; Shankar et al. 1998; Frattini et al. 2013; Bhargava et al. 2013). In the present work, we

consider a service setting in which a market entrant firm, leveraging a new technology to launch

an innovation, enters the market populated by two incumbent firms. We use the term “customer

base” to denote the numbers of customer accounts that, at a given time, use a particular firm-

business model combination. The incumbents with differing initial customer bases need to respond

by deciding when to adopt the innovation. Such a setting is commonly found in many industries,

and it has long been observed that some incumbent firms are quick to adopt an innovation while

others appear to be very slow.

For example, incumbent firms adopted online business models at different times in the equity

brokerage market and the foreign exchange market in the US. Charles Schwab, the major firm in

equity brokerage market, adopted the online brokerage model before the minor firm, Ameritrade.

In contrast, Atriax, formed by the consortium of major banks in the foreign exchange market

adopted an online foreign exchange model only after the minor banks adopted such a model via a

consortium called FXAll. These contrasting observations about the timing of adoption of innovation

by incumbents raise the question about the underlying reasons that drive the innovation adoption

decision.

The issue of innovation adoption in a competitive setting is the focus of a number of papers

in the economics literature. Benoit (1985) argues that the time when the incumbent firms adopt

innovation depends on the expected profits that the innovation brings: the greater the expected

profits from innovation, the earlier the adoption. However, the greater expected profits also increase

the likelihood of adoption by rival firms, which might decrease the expected gains. These forces
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work in opposite directions and the net result might depend on one firm’s evaluation of the other

firm’s response.

Several studies have also shown how uncertainty regarding the profitability of an innovation

affects the adoption decision (Doraszelski 2004; Jensen 1988; Mamer and McCardle 1987; McCardle

1984). As argued in Rogers (1962), innovation adoption is often a contagious process due to the

presence of strong imitation effects. Furthermore, it has been argued that contagion effects could be

strengthened by the potential for substitution of the existing market by the market created by the

innovation (King and Tucci 2002) or by a gradual reduction in uncertainty about the attractiveness

of the innovation (Gilbert and Lierberman 1987; Haunschild and Miner 1997). In addition, several

studies have shown that the introduction of an innovation could increase the size of the potential

market, which in turn might affect the speed of response by incumbent firms (Golder and Tellis

1993; Sorescu et al. 2003; Aboulnasr et al. 2008)

All the papers described above consider static adoption settings. In particular, none of the above

studies provide a detailed analytical account of customer adoption dynamics and how this might

affect firms’ profits and influence innovation adoption decisions. On the other hand, the marketing

literature contains a well-developed stream of papers, starting with the seminal work of Bass (1969),

focusing on the dynamics of innovation adoption by customers.

The literature on the diffusion of products and services in competitive settings has seen signif-

icant growth in recent years (Libai et al. 2009a; Libai et al. 2009b; Guseo and Montarino 2012;

Guseo and Montarino 2014; Guseo and Montarino 2015). While a review paper by Peres et al.

(2010) calls for an increased focus on the analysis of the optimal market entry timing, the literature

on when to adopt an innovation or launch a new product in a competitive setting remains rela-

tively sparse. Savin and Terwiesch (2005) and Guseo and Montarino (2010) looked at the optimal

market entry time by considering a two-firm competitive diffusion model to study the life-cycle

market shares of competing firms. A model of the optimal market entry with a single incumbent is

analyzed in Joshi et al. (2009). In the present analysis, we extend Savin and Terwiesch (2005) by
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considering simultaneous diffusion processes of old and new business models in a three-firm setting.

Our ultimate goal is to address the limitation of the extant literature and analyze the equilibria

of innovation adoption decisions emerging under a setting with competitive diffusion dynamics.

Given the complexity of the analysis of the optimal adoption timing decisions, we assume in our

modeling, similar to Savin and Terwiesch (2005) and Joshi et al. (2009), that the marketing-mix

variables, such as pricing and advertising, are predetermined. This assumption describes an envi-

ronment where the innovation adoption decisions are made in the presence of the independently set

marketing-mix levels. Our diffusion model includes the intra-firm and inter-firm imitation processes

in a Bass-like setting and increases in market potential for both the existing business model, as well

as the new business model, upon the introduction of innovation (Mahajan et al. 1993; Krishnan et

al. 2000). In addition, we incorporate intra-generational churn, whereby customers switch between

firms within the same business model (Gupta et al. 2004; Libai et al 2009a).

Our modeling and the results of our analysis can be summarized as follows:

1. We extend the classical Bass-like approach to describe dynamics of adoption of a new service

business model in a market populated by two incumbent firms and a single entrant firm. We

consider a generalized setting in which the speed of the imitation adoption depends on whether

the new business model is also offered by one of the incumbent firms or only by the entrant firm.

2. We provide a characterization of the diffusion trajectories of the customer bases for each com-

peting firm and each service business model in the general setting and derive closed-form expressions

in homogeneous and asymmetric imitation settings (Propositions 1-5). We also derive expressions

for the terminal customer base values, which are often viewed as proxies for overall profits and for

the strength of firms’ competitive positions, both with and without intra-generational customer

churn (Proposition 6). These values are expressed in terms of a few easy-to-estimate parameters.

We also analyze the impact of the market expansion resulting from the introduction of the service

model innovation and show that the incumbents may initially benefit from its introduction, as it

attracts new potential customers for all competitors in the market.
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3. We model setting where the business model introduced by the entrant firm has a risk of failing

and derive the closed-form expressions for the diffusion trajectories of the incumbent firms after

potential failure of the service innovation (Proposition 7).

4. For the setting with asymmetric churn processes, we obtain closed-form expressions for the

terminal values of customer base for the cases when the new service model fails as well as when it

succeeds (Proposition 8).

5. The optimal adoption response problem faced by an incumbent firm is analyzed in a setting

where the adoption time of the other incumbent can be anticipated or is preannounced. Using the

expressions for the diffusion trajectories, we establish quasiconcavity of the firm’s profit function

(Proposition 9) and show that the optimal adoption response time is a non-decreasing function of

the firm’s initial profit-adjusted customer base values (Proposition 10) in the absence of market

expansion or intra-generational customer churn.

6. For the same setting, we provide Nash equilibrium analysis of adoption decisions by compet-

ing incumbent firms and derive sufficient conditions for the realization of three adoption equilib-

ria: immediate adoption by both incumbents, maximum-delay adoption by both incumbents, and

immediate-delayed mixture of equilibrium adoption times (Proposition 11). We also show that in

settings where the time discounting of profits is negligible, these equilibria are the only ones that

can be observed.

7. We use the the FX market data, shown in Appendix B, to estimate the parameters of our

model (Section 3) and apply the estimates to the numerical evaluation of the Nash equilibria in

the new service model adoption times by the incumbents (Section 5).

Our paper is organized as follows. In the next section we introduce our model and derive expres-

sions for the diffusion trajectories of the customer base values for each competing firm. Section 3

describes the analysis of the optimal adoption response decisions and the Nash equilibria adop-

tion times. The implications of our findings and the directions for future research are discussed in

Section 4.
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2. Competitive Diffusion Dynamics in the Presence of Innovation

Consider a market populated by two incumbent firms (major incumbent and minor incumbent),

which is faced (at t = 0) with the entry of a new firm. In reality, the major incumbent and the

minor incumbent firms can represent clusters of firms that form a consortia (e.g., top 3 vs. the

rest of the market), which are similar in the way they approach the introduction of a new business

model. We assume that the entrant firm employs only the new service model. In order to account

for the uncertain, unproven nature of the service innovation and the possibility of its “failure”, we

assume that the new model fails with probability PF ∈ [0,1] and succeeds with probability 1−PF .

In the case of success, the new firm (and the new service model) remains in the market at any

t≥ 0. In the case of failure, the new entrant (and the new service model) remains on the market

for t∈ [0, TF ], and then exits the market. We assume that the time-to-failure TF , if failure occurs,

is a random variable distributed on [0,+∞] according to the CDF Φ(·). In our analysis, we treat

both the value of the failure probability PF as well as the distributional information describing the

time-to-failure TF as known to both incumbents.

In our analysis, we assume that incumbents 1 and 2 commit, at time t = 0, to adopting the

innovation at t= t1 ≥ 0 and t= t2 ≥ 0, respectively, provided that the new entrant remains on the

market at those times. We model the dynamics for the customer base for the old and the new

service model using the classical framework proposed by Bass (1969) for describing adoption of

durable goods and extended by Libai et al. (2009b) to include the diffusion of services.

The specific form of the customer base trajectory equations at any time t depends on whether

by this time the service innovation has been adopted by one (or both) of the incumbents.

In particular, the customer base dynamics proceeds through a set of distinct phases. For example,

consider the case where the innovation is successful and the new entrant remains on the market for

any positive t. Then, in phase I corresponding to the time period [0,min(t1, t2)], the entrant firm

is the only one to employ the new service model. Phase II (t ∈ [min (t1, t2) ,max(t1, t2)]) describes

the competitive market-share dynamics in the period when the innovation has been adopted by
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only one of the incumbents. Next, in phase III (t∈ (max(t1, t2) ,+∞)) both incumbents employ

the new service model. Note that, if the innovation fails, then the customer base dynamics will

contain an additional phase that starts at time t= TF . In this phase, which we call phase IV, both

incumbents compete using the old service model.

Thus, at any time t≥ 0, the customer market base M can potentially be comprised of as many

as 6 customer groups: two customer groups, mo
1(t) and mo

2(t), which continue to do business with

one of the incumbent firms using the old service model, three customer groups, mn
1 (t), mn

2 (t), and

mn
3 (t), which switch to the new service model offered by either one of the incumbents (firms 1

and 2) or by the new entrant (firm 3), and the group of customers who have not yet adopted any

service model.

Figure 1 provides an illustration of this market structure. Two features of the customer dynamics

we model deserve a separate mention. First, in addition to the adoption of the new service model

by customers who previously used the old one, we also consider the “churn” adoptions, that is,

switching between firms within the same type of service model. This “churn” feature is common in

the models of inter-generational product adoption and diffusion of services (Gupta et al. 2004; Libai

et al. 2009a, Libai et al. 2009b, Peres et al. 2010). Second, we assume that the introduction of the

new service model by a “newcomer” firm leads to the expansion in overall market size for both new

and old models from mo
1(0) +mo

2(0) to M≥ mo
1(0) +mo

2(0), with M−mo
1(0)−mo

2(0) representing

the size of the market increase; in other words, the initial number of customers who have yet to

adopt any service model. The increase in the overall market potential upon the introduction of

innovation we use in our model is consistent with previous research on technological substitution

and diffusion (Mahajan et al. 1993; Golder and Tellis 1993; Sorescu et al. 2003; Aboulnasr et al.

2008). The market potential expansion is modeled in the form of a one-off increase following the

introduction of the innovation (Wilson and Norton 1989; Mahajan and Muller 1996; Krishnan et

al. 2000).

Table 1 summarizes the notation we use in our model.
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Notation Description

t1 Innovation adoption time by the 1st incumbent

t2 Innovation adoption time by the 2st incumbent

PF Probability that the innovation fails

TF Time when the innovation fails, given the failure

mo
i (t) Customer base of the “old” service model for incumbent i= 1,2 at time t

mn
i (t) Customer base of the “new” service model for incumbent i= 1,2 at time t

mn
3(t) Customer base of the “new” service model for the new entrant at time t

M Total market potential

po Innovation coefficient for the “old” service model

qo Imitation coefficient for the “old” service model

poc Innovation “churn” coefficient for the “old” service model

qoc Imitation “churn” coefficient for the “old” service model

pn Innovation coefficient for the “new” service model

qn Imitation coefficient for the “new” service model offered by the new entrant

Qn Imitation coefficient for the “new” service model offered by an incumbent

pnc Innovation “churn” coefficient for the “new” service model

Table 1 Description of notation.

Below we conduct a detailed analysis of the competitive diffusion dynamics for each of the four

adoption phases described above. We first consider the case where the new model succeeds and

describe the dynamics of the first three phases of the market-share dynamics. Then, we add the

description of the phase IV that appears if the new model fails.

2.1. Phase I: “New Entrant Only”

In this phase the new entrant is the only firm that uses the new service model. Let tf = min(t1, t2).

Then, at any time t∈ [0, tf ], the entire marketM consists of four groups of customers: mo
i (t), i= 1,2
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o

1m

o

2m

n

1m
n

2mn

3m

Major incumbent: 

“old” model

New entrant:  

“new” model

Minor incumbent: 

“old” model

Total market potential

Minor incumbent” 

“new” model

Major incumbent: 

“new” model

Figure 1 Customer groups in a competitive market

- those that continue to do business with the incumbent firm i through the “old” service model;

mn
3(t) - those who opt to do business with the entrant firm; as well as those (M−mo

1(t)−mo
2(t)−

mn
3(t)) who have not yet adopted either service model. We assume that the new entrant operates

exclusively through the new service model. We also assume that at the time when the innovation

becomes available, the customer base for the major incumbent is higher than that for the minor

incumbent: mo
1(0) =M >m=mo

2(0). In addition, the initial customer base for the new entrant is 0:

mn
3 (0) = 0 (in other words, at t= 0 the number of customers who have not yet adopted any business

model is given byM−M −m). In describing the competitive diffusion dynamics, we will follow the

diffusion approach widely used in the marketing literature to describe the adoption of innovations.

In his seminal paper, Bass (1969) has applied contagion biological models to describe the process of

adoption of durable products in a monopolistic setting. Since then, Bass’ approach has been shown

to be a reliable descriptor of innovation dynamics in many settings, and the definition of innovation

was extended to include new services (Peres et al. 2010). We propose the following generalization

of Bass diffusion dynamics for the competitive setting described above:

dmo
1

dt
=
(
po +

qo

M
mo

1

)
(M−mo

1−mo
2−mn

3)
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+
(
poc +

qoc

M
mo

1

)
mo

2−
(
pn +

qn

M
mn

3 + poc +
qoc

M
mo

2

)
mo

1, (1)

dmo
2

dt
=
(
po +

qo

M
mo

2

)
(M−mo

1−mo
2−mn

3)

+
(
poc +

qoc

M
mo

2

)
mo

1−
(
pn +

qn

M
mn

3 + poc +
qoc

M
mo

1

)
mo

2, (2)

dmn
3

dt
=
(
pn +

qn

M
mn

3

)
(M−mn

3) . (3)

Equation (1) describes the evolution of customer base of the “old” service model through the major

incumbent in the presence of a new service model. Such evolution proceeds through two major

channels: 1) increase through both innovation and imitation adoption processes from customers who

were either using the old service model through the minor incumbent (the term
(
poc + qoc

Mmo
1

)
mo

2)

or were not using any service model, old or new (the term (po + qom
o
1/M) (M−mo

1−mo
2−mn

3)),

and 2) decrease caused by customers switching over to the old service model provided by the

minor incumbent (the term
(
poc + qoc

Mmo
2

)
mo

1) or to the innovation provided by the new entrant

(the term (pn + qnm
n
3/M)mo

1). In (1), innovation and imitation diffusion processes that result in

the adoption of an old (new) service model are characterized by parameters po (pn) and qo (qn),

respectively. Similarly, the intra-generational churn is characterized by the innovation parameter

poc, and the imitation parameter qoc. The intra-generational churn innovation and imitation are not

firm-specific and occur through symmetric coefficients. In other words, the churn adoption from

firm 1’s customer base into firm 2’s service model occurs through identical innovation/imitation

terms (poc and qoc) with the churn adoption from firm 2’s customer base into firm 1’s service

model. Note that the term describing intra-generational imitation from firm 2 to firm 1
(
qoc
Mmo

1m
o
2

)
is equal to the similar term describing intra-generational imitation from firm 1 to firm 2. Hence,

the churn-imitation terms
(
qoc
Mmo

im
o
j

)
can be dropped from the diffusion equations, as we will do

for the rest of the paper. Equation (2) describes the dynamics of the minor incumbent’s customer

base in a similar fashion, while equation (3) reflects the growth of the entrant firm’s customer base

(associated with the new business model). We note that equation (3) has the standard Bass form,

which, subject to the initial condition mn
3 (0) = 0, produces a closed-form Bass-like solution:

mn
3 (t) =M

(
1− qn + pn

qn + pne(qn+pn)t

)
. (4)
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Equations (1)-(2) differ from the classical Bass form in a substantial way; yet, combined with initial

conditions mo
1(0) = M and mo

2(0) = m (m+M <M) they also admit closed-form solutions. In

order to describe these solutions, it is convenient to introduce the following notation. For a given

set of diffusion parameters po, qo, pn, and qn, define

F̂I (po, pn, qo, qn, t) = 2F1

(
2po + pn + qn

qn + pn

,1− qo

qn

;
2(po + pn + qn)

qn + pn

;− qn

pn

)
− e−(2po+pn+qn)t

2

× 2F1

(
2po + pn + qn

qn + pn

,1− qo

qn

;
2(po + pn + qn)

qn + pn

;− qn

pn

e−(pn+qn)t

)
, (5)

where 2F1(a, b; c;x) is the hypergeometric function:

2F1(a, b; c;x) = 1 +
ab

1!c
x+

a(a+ 1)b(b+ 1)

2!c(c+ 1)
x2 + ...

=
+∞∑
n=0

a× ...× (a+n− 1)× b× ...× (b+n− 1)

n!c× ...× (c+n− 1)
xn =

+∞∑
n=0

(a)n(b)n
n!(c)n

xn. (6)

In addition, let

ĜI (po, pn, qo, qn, t) = 1−
e−(2po+pn+qn)t

(
(qn+pn)e(qn+pn)t

qn+pne(qn+pn)t

)( qn−qoqn )(
M

M−m−M −
qo(1+ qn

pn )(
1− qoqn )

2po+pn+qn
F̂I (po, pn, qo, qn, t)

) , (7)

ĤI (po, poc, pn, qo, qn, t) =
(M −m) (qn + pn)e(qo−2poc)t

qn + pne(qn+pn)t
e−qo

∫ t
0 ĜI (po,pn,qo,qn,τ)dτ . (8)

Using the definitions (5)-(8), the time evolution of the customer base trajectories for competing

firms in this phase of the diffusion process can be described as follows.

Proposition 1. For t∈ [0, tf ] , the market share functions

mo
1(t) =

1

2

(
M
(
ĜI (po, pn, qo, qn, t)− 1 +

qn + pn

qn + pne(qn+pn)t

)
+ ĤI (po, poc, pn, qo, qn, t)

)
,

mo
2(t) =

1

2

(
M
(
ĜI (po, pn, qo, qn, t)− 1 +

qn + pn

qn + pne(qn+pn)t

)
− ĤI (po, poc, pn, qo, qn, t)

)
,

mn
3 (t) = M

(
1− qn + pn

qn + pne(qn+pn)t

)
, (9)

solve the competitive diffusion dynamics equations (1)-(3) subject to the initial conditions mo
1(0) =

M , mo
2(0) =m, and mn

3 (0) = 0.
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Proposition 1 states that in a setting where the new entrant is the only provider of the new

service model, the time evolution of its customer base is still described by the Bass-like dynamics.

However, the corresponding dynamics for the incumbent firms may be substantially different from

the one predicted by the monopolistic Bass analysis. The expressions of (9) take a simpler form

in two special settings. In the first setting, there is no “word-of-mouth” effect in the old service

model dynamics, namely, qo = 0. In the second setting, diffusion dynamics proceed without market

expansion (M=M +m) or customer churn (poc = 0).

Corollary 1.1. If qo = 0, the customer base trajectories for the competing firms for any t ∈

[0, tf ] can be expressed as

mo
1(t) =

1

2

(
(qn + pn) (M− e−2pot(M−m−M) + (M −m)e−2poct)

qn + pne(qn+pn)t

)
,

mo
2(t) =

1

2

(
(qn + pn) (M− e−2pot(M−m−M)− (M −m)e−2poct)

qn + pne(qn+pn)t

)
,

mn
3 (t) = M

(
1− qn + pn

qn + pne(qn+pn)t

)
. (10)

In the second special setting, the introduction of the innovation does not cause an expansion in the

overall market potential (M=M+m), and there is no intra-generational customer churn (poc = 0).

In this setting the diffusion dynamics are solely governed by customers switching from the old

service model to the new one.

Corollary 1.2. For M=M +m and poc = 0, the customer bases of the competing firms for

any t∈ [0, tf ] can be expressed as

mo
1(t) = M

(
qn + pn

qn + pne(qn+pn)t

)
,mo

2(t) =m

(
qn + pn

qn + pne(qn+pn)t

)
,mn

3 (t) =M
(

1− qn + pn

qn + pne(qn+pn)t

)
. (11)

2.2. Phase II: “New Entrant and One Incumbent”

In order to counteract the detrimental effect of the new business model on their customer base,

the incumbents may decide to adopt the new service model. Let ti, i= 1,2 be the time at which

incumbent i starts offering a new service model alongside its old model, and denote min (t1, t2)

as tf and max(t1, t2) as ts. Consider the period of time t ∈ [tf , ts] after the adoption of the new
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service model by the first incumbent, but before adoption by the second incumbent. Without

the loss of generality, we consider the situation where the minor incumbent is first to adopt the

new model, namely, tf = t2 and ts = t1. In the time phase between tf and ts, two firms (the

entrant and the minor incumbent) offer a new service model, and the market base M is split into

five distinct customer groups. As before, mo
i (t), i = 1,2 denote the customers who remain with

incumbent firms and with the old service model, mn
i (t), i= 2,3 correspond to the customers who

do business with the minor incumbent or with the entrant using the new service model, while

M−mo
1(t)−mo

2(t)−mn
2(t)−mn

3(t) corresponds to the group of customers who have not yet adopted

any service model. The competitive diffusion dynamics in this phase are described by

dmo
1

dt
=
(
po +

qo

M
mo

1

)
(M−mo

1−mo
2−mn

2 −mn
3) + pocm

o
2

−
(
poc + 2pn +

Qn

M
mn

2 +
qn

M
mn

3

)
mo

1, (12)

dmo
2

dt
=
(
po +

qo

M
mo

2

)
(M−mo

1−mo
2−mn

2 −mn
3) + pocm

o
1

−
(
poc + 2pn +

Qn

M
mn

2 +
qn

M
mn

3

)
mo

2, (13)

dmn
2

dt
=

(
pn +

Qn

M
mn

2

)
(M−mn

2 −mn
3) + pncm

n
3 − pncm

n
2 , (14)

dmn
3

dt
=
(
pn +

qn

M
mn

3

)
(M−mn

2 −mn
3) + pncm

n
2 − pncm

n
3 , (15)

with the initial conditions

mo
1(tf ) =

1

2

M
(
ĜI (po, pn, qo, qn, tf )− 1 + qn+pn

qn+pne
(qn+pn)tf

)
+ĤI (po, poc, pn, qo, qn, tf )

 , (16)

mo
2(tf ) =

1

2

M
(
ĜI (po, pn, qo, qn, tf )− 1 + qn+pn

qn+pne
(qn+pn)tf

)
−ĤI (po, poc, pn, qo, qn, tf )

 , (17)

mn
2 (tf ) = 0,mn

3 (tf ) =M
(

1− qn + pn

qn + pne
(qn+pn)tf

)
, (18)

reflecting the results of Proposition 1.

Equations (12) and (13) describe the customer base of the incumbents’ old business models,

mo
1 and mo

2, which evolve via innovation and imitation by non-adopters (po and qo terms), intra-

generational churn (poc terms) and adoption of the new service model (pn, qn, and Qn terms). In
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this diffusion phase, we allow the imitation terms for the new service model to have an asymmetric

form. In particular, the probability of adopting the new model depends on whether the imitation

contact occurred with the incumbent or the entrant firm’s customer. In numerous settings, incum-

bents enjoy a stronger imitation process due to brand awareness. We model this by using different

parameters to describe the imitation of the incumbent’s new service model (Qn), and the entrant’s

service model (qn with qn ≤Qn). Strong brand awareness results in shorter take-off periods for the

incumbent’s customer base, as suggested by equation (14). Modeling the brand awareness effect

provides an additional layer of realism to the model, while increasing its analytical complexity.

Finally, equation (15) describes the dynamics of the new entrant’s customer base, evolving through

innovation, imitation and churn. Note that in (14)-(15) the parameter pnc describes the inter-firm

churn process for customers that use the new service model.

The diffusion dynamics (12)-(15), while providing a detailed description of a competitive diffu-

sion setting, yield closed-form solutions for the customer base trajectories in two special settings

described below.

2.2.1. Ballooning Market with Symmetric Brand Effect In this section we consider

a setting allowing market expansion (M≥M + m) and intra-generational churn (poc, pnc > 0).

In addition, we assume that the imitation process in the adoption of the new service model is

symmetric. In other words, we assume that the incumbent’s new service model adoption does not

enjoy a brand awareness advantage over the new entrant’s one, so that Qn = qn. This assumption is

along the lines of the brand communication model of Krishnan et al. (2000), whereby cross-brand

and intra-brand influences are equal.

For a given set of diffusion parameters po, qo, pn, and qn, define

α=
(2pn + qn)(qn + pne

(pn+qn)tf )

pn + qn

− qn, (19)

F̂II (po, pn, qo, qn, t) = 2F1

(
1,

2po + 2pn + qn

2pn + qn

+
qo

qn

;
2(po + 2pn + qn)

2pn + qn

;−qn

α

)
−e−(2po+2pn+qn)(t−tf )

(
α+ qne

−(2pn+qn)(t−tf )

α+ qn

) qo
qn

(20)
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× 2F1

(
1,

2po + 2pn + qn

2pn + qn

+
qo

qn

;
2(po + 2pn + qn)

2pn + qn

;−qn

α
e−(2pn+qn)(t−tf )

)
.

In addition, let

ĜII (po, pn, qo, qn, t) = 1−
e−(2po+2pn+qn)(t−tf )

(
(qn+α)e

(qn+2pn)(t−tf )

qn+αe
(qn+2pn)(t−tf )

)( qn−qoqn )

(
1

1−ĜI(po,pn,qo,qn,tf)
− qo(α+qn)

α(2po+2pn+qn)
F̂II (po, pn, qo, qn, t)

) , (21)

ĤII (po, poc, pn, qo, qn, t) =
ĤI (po, poc, pn, qo, qn, tf ) (α+ qn)e(qo−2poc)(t−tf)

qn +αe(qn+2pn)(t−tf )

×e−qo
∫ t
tf
ĜII (po,pn,qo,qn,τ)dτ

, (22)

n(t) = M
(

1− 2pn + qn

αe(2pn+qn)(t−tf ) + qn

)
, (23)

a(t) =
mn

3 (tf )e(2(pn−pnc)+qn)(t−tf )(α+ qn)

αe(2pn+qn)(t−tf ) + qn

(24)

= M
(
pn(2pn + qn)e(2pn−2pnc+qn)(t−tf )(e(pn+qn)tf − 1)

(αe(2pn+qn)(t−tf ) + qn)(pn + qn)

)
. (25)

Then, the diffusion dynamics in this phase can be described as follows.

Proposition 2. For any t∈ [tf , ts] the market shares can be expressed as

mo
1(t) =

MĜII (po, pn, qo, qn, t)−n(t) + ĤII (po, poc, pn, qo, qn, t)

2
,

mo
2(t) =

MĜII (po, pn, qo, qn, t)−n(t)− ĤII (po, poc, pn, qo, qn, t)

2
,

mn
2(t) =

n(t)− a(t)

2
,mn

3(t) =
n(t) + a(t)

2
. (26)

We can get simpler closed-form expressions for customer base trajectories, considering the case

where there is no “word-of-mouth” effect for the old service model.

Corollary 2.1. If qo = 0, the customer base trajectories of the competing firms for any t ∈

[0, tf ] can be expressed as

mo
1(t) =

1

2

(
(qn + 2pn) (M− e−2pot(M−m−M) + (M −m)e−2poct)

qn +αe(qn+2pn)(t−tf )

)
,

mo
2(t) =

1

2

(
(qn + 2pn) (M− e−2pot(M−m−M)− (M −m)e−2poct)

qn +αe(qn+2pn)(t−tf )

)
,

mn
2 (t) =

n(t)− a(t)

2
,mn

3 (t) =
n(t) + a(t)

2
. (27)
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2.2.2. Mature Market with Asymmetric Brand Effect As in the previous phase, we

restrict the focus to a setting where a) the new service model does not cause an expansion in

the overall market potential (M=M +m), and b) there is no intra-generational customer churn

(poc = pnc = 0). This assumption is similar to the brand communication model of Kalish et al.

(1995), whereby the influence of communication is only within brand. However, we allow the

incumbents to enjoy a brand awareness advantage in customer imitation by letting Qn > qn. For

the convenience of future analysis, we introduce the following notation corresponding to relative

(percentage) customer bases:

oi(t) =
mo
i (t)

M
, i= 1,2, ni(t) =

mn
i (t)

M
, i= 1,2,3,

and θ= M
M . Also, for Qn > 0, let

S (x, z) =


pn
Qn

((
pn+qnx
pn+qnz

)Qn
qn − 1

)
, qn > 0,

pn
Qn

(
e
Qn(x−z)

pn − 1
)
, qn = 0.

(28)

Proposition 3. If the introduction of the new service model does not expand the overall market

potential (M=M + m), and there is no intra-generational customer churn (poc = pnc = 0), the

percentage customer base trajectories of the competing firms for any t∈ [tf , ts] can be expressed as

t− tf =

n3(t)∫
n3(tf )

dy

(pn + qny) (1− y−S(y,n3(tf )))
,

o1(t) = θ (1−n3(t)−S (n3(t), n3(tf ))) ,

o2(t) = (1− θ) (1−n3(t)−S (n3(t), n3(tf ))) ,

n2(t) = S (n3(t), n3(tf )) . (29)

Proposition 3 expresses the customer bases of present firm/service model combinations at any

point in time through the value of an easy-to-evaluate integral. The expressions of (29) can be

further simplified in the case when the word-of-mouth effects of the new service model are firm-

independent, so that qn =Qn.
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Corollary 3.1. When the introduction of the new service model does not expand the overall

market potential (M=M +m), there is no intra-generational customer churn (poc = pnc = 0), and

imitation occurs through symmetric terms (qn =Qn > 0), the customer bases of the competing firms

for any t∈ [tf , ts] can be expressed as

n3(t) =
pn

(
1− pn

qn

)
+ (pn + qn)n3 (tf )

2pn + qnn3 (tf )

−
(pn (qn + pn) + qn(2pn + qn)n3 (tf ))

(
pn

(
1− pn

qn

)
−n3 (tf ) (pn− qn + qnn3 (tf ))

)
(pn + qnn3 (tf )) (2pn + qnn3 (tf ))

2
e

(pn(2pn+qnn3(tf))+pn(qn−pn)+qn(pn+qn)n3(tf))(t−tf)
(pn+qnn3(tf)) + 1


,

o1(t) = θ

(
1−n3(t)− pn

(
n3(t)−n3(tf )

pn + qnn3(tf )

))
, o2(t) = (1− θ)

(
1−n3(t)− pn

(
n3(t)−n3(tf )

pn + qnn3(tf )

))
,

n2(t) = pn

(
n3(t)−n3(tf )

pn + qnn3(tf )

)
. (30)

2.3. Phase III: “New Entrant and Two Incumbents”

For any time t > ts, in addition to the customer groups described in the previous section, there

appears mn
1(t), the group of customers who adopt the new service model through the incumbent

firm 1. The diffusion dynamics are now described by the following set of differential equations:

dmo
1

dt
=
(
po +

qo

M
mo

1

)
(M−mo

1−mo
2−mn

1 −mn
2 −mn

3) + pocm
o
2

−
(
poc + 3pn +

Qn

M
(mn

1 +mn
2) +

qn

M
mn

3

)
mo

1, (31)

dmo
2

dt
=
(
po +

qo

M
mo

2

)
(M−mo

1−mo
2−mn

1 −mn
2 −mn

3) + pocm
o
1

−
(
poc + 3pn +

Qn

M
(mn

1 +mn
2) +

qn

M
mn

3

)
mo

2, (32)

dmn
1

dt
=

(
pn +

Qn

M
mn

1

)
(M−mn

1 −mn
2 −mn

3) + pnc (mn
2 +mn

3)− 2pncm
n
1 , (33)

dmn
2

dt
=

(
pn +

Qn

M
mn

2

)
(M−mn

1 −mn
2 −mn

3) + pnc (mn
1 +mn

3)− 2pncm
n
2 , (34)

dmn
3

dt
=
(
pn +

qn

M
mn

3

)
(M−mn

1 −mn
2 −mn

3) + pnc (mn
1 +mn

2)− 2pncm
n
3 (35)

augmented by the initial conditions following from the solution of the previous phase. For example,

the initial conditions in the case of symmetric imitation (Qn = qn) (31)-(35) are

mo
1(ts) =

MĜII (po, pn, qo, qn, ts)−n(t) + ĤII (po, poc, pn, qo, qn, ts)

2
, (36)
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mo
2(ts) =

MĜII (po, pn, qo, qn, ts)−n(t)− ĤII (po, poc, pn, qo, qn, ts)

2
, (37)

mn
1 (ts) = 0,mn

2 (ts) =
n(ts)− a(ts)

2
,mn

3 (ts) =
n(ts) + a(ts)

2
. (38)

2.3.1. Ballooning Market with Symmetric Brand Effect As in the previous phases, we

first consider the setting allowing market expansion (M≥M +m) and intra-generational churn

(poc, pnc > 0), while restricting ourselves to symmetric word-of-mouth effects for the new service

model (Qn = qn). For a given set of diffusion parameters po, qo, pn, and qn, define

λ=
(3pn + qn)(qn +αe(2pn+qn)(ts−tf))

2pn + qn

− qn (39)

F̂III (po, pn, qo, qn, t) = 2F1

(
1,

2po + 3pn + qn

3pn + qn

+
qo

qn

;
2(po + 3pn + qn)

3pn + qn

;−qn

λ

)
−e−(2po+3pn+qn)(t−ts)

(
λ+ qne

−(3pn+qn)(t−ts)

λ+ qn

) qo
qn

(40)

× 2F1

(
1,

2po + 3pn + qn

3pn + qn

+
qo

qn

;
2(po + 3pn + qn)

3pn + qn

;−qn

λ
e−(3pn+qn)(t−ts)

)
,

In addition, let

ĜIII (po, pn, qo, qn, t) = 1−
e−(2po+3pn+qn)(t−ts)

(
(qn+λ)e(qn+3pn)(t−ts)

qn+λe(qn+3pn)(t−ts)

)( qn−qoqn )(
1

1−ĜII (po,pn,qo,qn,ts)
− qo(λ+qn)

λ(2po+3pn+qn)
F̂III (po, pn, qo, qn, t)

) , (41)

ĤIII (po, poc, pn, qo, qn, t) =
ĤII (po, poc, pn, qo, qn, ts) (λ+ qn)e(qo−2poc)(t−ts)

qn +λe(qn+3pn)(t−ts)
(42)

×e−qo
∫ t
ts
ĜIII (po,pn,qo,qn,τ)dτ ,

n̂(t) = M
(

1− 3pn + qn

λe(3pn+qn)(t−ts) + qn

)
, (43)

â(t) =
a(ts)e

(3(pn−pnc)+qn)(t−ts)(λ+ qn)

λe(3pn+qn)(t−ts) + qn

, b̂(t) =
mn

2(ts)e
(3(pn−pnc)+qn)(t−ts)(λ+ qn)

λe(3pn+qn)(t−ts) + qn

. (44)

The diffusion dynamics in this phase can be described as follows.

Proposition 4. For t > ts, the competitive diffusion dynamics can be expressed as

mo
1(t) =

MĜIII (po, pn, qo, qn, t)− n̂(t) + ĤIII (po, poc, pn, qo, qn, t)

2
,

mo
2(t) =

MĜIII (po, pn, qo, qn, t)− n̂(t)− ĤIII (po, poc, pn, qo, qn, t)

2
,

mn
1 (t) =

n̂(t)− 2b̂(t)− â(t)

3
,mn

2 (t) =
n(t) + b̂(t)− â(t)

3
,mn

3 (t) =
n(t) + b̂(t) + 2â(t)

3
. (45)
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Similar to the dynamics in the previous phase, generalized expressions of (45) convert to simpler

closed-form when there is no “word-of-mouth” effect for the old service model.

Corollary 4.1. When there is no word-of-mouth effect for the old service model (qo = 0), the

customer bases of the competing firms for t > ts, can be expressed as

mo
1(t) =

1

2

(
(qn + 3pn) (M− e−2pot(M−m−M) + (M −m)e−2poct)

qn +λe(qn+3pn)(t−ts)

)
,

mo
2(t) =

1

2

(
(qn + 3pn) (M− e−2pot(M−m−M)− (M −m)e−2poct)

qn +λe(qn+3pn)(t−ts)

)
,

mn
1 (t) =

n̂(t)− 2b̂(t)− â(t)

3
,mn

2 (t) =
n̂(t) + b̂(t)− â(t)

3
,mn

3 (t) =
n̂(t) + b̂(t) + 2â(t)

3
. (46)

2.3.2. Mature Market with Asymmetric Brand Effect Once again, we focus on the

adoption of the new service model, assuming that the new model does not expand the potential

market (M = M +m) and there is no intra-generational customer churn (poc = pnc = 0). Never-

theless, we allow for asymmetric imitation (Qn > qn) to reflect the incumbents’ potential brand

awareness advantage.

Proposition 5. When the introduction of the new service model does not expand the overall

market potential (M=M +m), and there is no intra-generational customer churn (poc = pnc = 0),

the percentage customer bases of the competing firms for t≥ ts, can be expressed as

t− ts =

n3(t)∫
n3(ts)

dy

(pn + qny)
(

1−S (n3(ts), n3(tf ))− y−S(y,n3(ts))
(

2 + Qn

pn
S (n3(ts), n3(tf ))

)) ,
o1(t) = θ

(
1−n3(t)−S (n3(t), n3(ts))

(
2 +

Qn

pn

S (n3(ts), n3(tf ))

)
−S (n3(ts), n3(tf ))

)
,

o2(t) = (1− θ)
(

1−n3(t)−S (n3(t), n3(ts))

(
2 +

Qn

pn

S (n3(ts), n3(tf ))

)
−S (n3(ts), n3(tf ))

)
,

n1(t) = S (n3(t), n3(ts)) , n2(t) = S (n3(t), n3(ts))

(
1 +

Qn

pn

S (n3(ts), n3(tf ))

)
+S (n3(ts), n3(tf )) . (47)

As in the previous phase, expressions in (47) convert to the closed-form in the environment where

the imitation coefficients do not depend on the firm through which the new service model was

adopted:
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Corollary 5.1. When the introduction of the new service model does not cause an expansion

in the overall market potential (M=M +m), there is no intra-generational churn (poc = pnc = 0),

and imitation occurs through symmetric terms (qn =Qn > 0), the customer base trajectories for the

competing firms for t≥ ts, can be expressed as

n3(t) =
n3(ts) (qn + 3pn) + pn

(
1− e−(qn+3pn)(t−ts)

)(
1− Ŝ (n3(ts), n3(tf ))−n3(ts)

)
qn + 3pn− qn (1− e−(qn+3pn)(t−ts))

(
1− Ŝ (n3(ts), n3(tf ))−n3(ts)

) ,

o1(t) =
M

M

(
1−n3(t)−

(
n3(t)−n3(ts)

pn + qnn3(ts)

)(
2pn + qnŜ (n3(ts), n3(tf ))

)
− Ŝ (n3(ts), n3(tf ))

)
,

o2(t) =
m

M

(
1−n3(t)−

(
n3(t)−n3(ts)

pn + qnn3(ts)

)(
2pn + qnŜ (n3(ts), n3(tf ))

)
− Ŝ (n3(ts), n3(tf ))

)
,

n1(t) = pn

(
n3(t)−n3(ts)

pn + qnn3(ts)

)
, n2(t) =

(
n3(t)−n3(ts)

pn + qnn3(ts)

)(
pn + qnŜ (n3(ts), n3(tf ))

)
+ Ŝ (n3(ts), n3(tf )) , (48)

where

Ŝ (n3(ts), n3(tf )) = pn

(
n3(ts)−n3(tf )

pn + qnn3(tf )

)
. (49)

As expected, in the case where the new service model turns out to be successful, the diffusion

dynamics described in the above Propositions have important implications for the values of terminal

customer base percentages of competing firms, n∞1 = limt→∞ n1(t), n∞2 = limt→∞ n2(t) and n∞3 =

limt→∞ n3(t). These terminal values are often viewed by firms themselves, as well as by investors

as proxies for overall profits and as indicators of the strength of firms’ competitive positions. In

particular, given the multi-product nature of most established incumbents, large market share in

a particular product often increases the perceived attractiveness of other components of the firm’s

product portfolio. In addition, a large volume of transactions in which a firm participates provides

valuable market information, which can be used for more effective cross-selling of the product

portfolio.

In the following Proposition, we describe the terminal customer base values for the different

diffusion settings described above. We find that the presence of inter-generational churn plays a

significant role in the distribution of these terminal values.



Paç, Savin, and Velu: When to Adopt a Service Innovation: Nash Equilibria in a Competitive Diffusion Framework
Article submitted to ; manuscript no. 21

Proposition 6. a) If there is positive intra-generational customer churn and the adoption

occurs through symmetric terms (Qn = qn), the terminal customer base values of the new entrant

and the incumbents are identical:

m∞1 =m∞2 =m∞3 =
M
3
. (50)

b) If there is no intra-generational customer churn (poc = pnc = 0), and no market expansion

resulting from the introduction of the new business model,M=M+m, the terminal customer base

value of the new entrant, n∞3 , is a root of the following equation:

n∞3 = 1− γ
δ

((
γ+n∞3
γ+n3(tf )

)δ
+

(
γ+n∞3
γ+n3(ts)

)δ
− 2

)
, (51)

while the terminal customer base values of the incumbent firms are given by

n∞1 =
γ

δ

((
γ+n∞3
γ+n3(ts)

)δ
− 1

)
, n∞2 =

γ

δ

((
γ+n∞3
γ+n3(tf )

)δ
− 1

)
, (52)

where n3(tf ) and n3(ts) are the customer base values for the new entrant firm at times tf and ts at

which firms 1 and 2, respectively, adopt the new service model, and γ = pn
qn

, δ = Qn

qn
. In particular,

in a homogeneous imitation setting (δ= 1), the terminal customer base values are

n∞3 =
(3γ+ 1)(γ+n3(tf ))) (γ+n3(ts))

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))
− γ,

n∞1 =
γ(3γ+ 1)(γ+n3(tf )))

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))
− γ,

n∞2 =
γ(3γ+ 1)(γ+n3(ts)))

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))
− γ. (53)

Figure 2 shows the terminal customer base values in the setting where both incumbents enter

at the same time, determined by the customer base of the new entrant. The two sets of curves on

this figure correspond to different relative “speeds” of the incumbent diffusion, Qn = δqn with δ= 1

and δ= 5. Note that in the case of symmetric imitation (δ= 1), the simultaneous entry of the new

entrant and of the incumbents splits the new service model market into three equal parts; on the

other hand, if incumbents wait until the new entrant captures 25% of the market before adopting,

their terminal customer base values of the new market will rise only up to around 10% each, leaving
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Figure 2 Terminal customer base values when both incumbents enter at the same time (γ = 0.05, δ= 1,5)

80% for the new entrant. As expected, the setting with fast incumbent diffusion (δ = 5) is more

forgiving to incumbent delays: incumbents can allow the new entrant to capture 15% of the total

customer base, and still catch up with it in terms of terminal customer base value. In a similar

manner, the new entrant will have to capture around half of the potential market before adoption

by incumbents in order to keep their terminal customer base values at a 10% level.

2.4. Phase IV: “Two Incumbents”

The analysis above pertains to the case where the new service model turns out to be successful. If,

however, the new model fails at t= TF , then, starting at that point in time, the only firms present

in the market are incumbents, both of them employing the old service model. Below we consider

the diffusion dynamics in such a case for t ≥ TF . The diffusion dynamics for this time period is

described by the following set of differential equations:

dmo
1

dt
=
(
po +

qo

M
mo

1

)
(M−mo

1−mo
2) + pocm

o
2− pocm

o
1, (54)

dmo
2

dt
=
(
po +

qo

M
mo

2

)
(M−mo

1−mo
2) + pocm

o
1− pocm

o
2, (55)

augmented by the initial conditions following from the solution of phase III equations, mo
1 (TF ) and

mo
2 (TF ). The dynamics expressed by (54)-(55) with these initial conditions admit a closed-form

characterization.
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Proposition 7. Consider the setting where the new model fails at t= TF , and define, for t≥ TF

Ī1(t) =
1

2poc

(
e2poc(t−TF )

2F1

(
2poc

2po + qo

,− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)(
e−(2po+qo)(t−TF )

))
−2F1

(
2poc

2po + qo

,− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)))
, (56)

and

Ī2(t) =
1

2poc

(
e2poc(t−TF )

2F1

(
2poc

2po + qo

,1− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)(
e−(2po+qo)(t−TF )

))
−2F1

(
2poc

2po + qo

,1− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)))
, (57)

where mo
i (TF ), i= 1,2 is the customer base of incumbent i at time TF , and mo (TF ) =mo

1 (TF ) +

mo
2 (TF ). Then, the customer bases of the incumbents for t≥ TF are given by

mo
i (t) = e−2poc(t−TF )

 1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
1 +

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+qo)(t−TF )


1

2po+qo

× (mo
i (TF )

+

 1

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
 1

2po+qo (
(poM+ (poc− po)mo (TF )) Ī1(t) + (poc− po) (M−mo (TF )) Ī2(t)

) ,

i= 1,2. (58)

The results of the Proposition 7 indicate, in particular, that limt→+∞m
o
i (t) = M

2
, i= 1,2: upon the

failure of the new model, the diffusion dynamics reflects the competition between the incumbents

that end up, in the long run, splitting the market equally. This result is a direct consequence of

our assumption on the symmetry of the process of adoption of the old service model.

2.5. Terminal Customer Base Values in the Settings with Asymmetric Churn

The terminal customer base values serve as important indicators of relative strength of competing

firms in settings where the new model succeeds as well as in settings where the new model fails. In

the former case, the terminal customer base values reflect the relative strength of the incumbents

under the old model, while in the latter - the relative strength of the newcomer and the incumbents

under the new model. Below we derive the expressions for the terminal customer base values in
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both cases in the general setting with asymmetric churn among the incumbents employing the old

model as well as the asymmetric churn between the incumbents and the newcomer when they all

employ the new model. In particular, we assume that the diffusion dynamics in the general setting

with asymmetric churn with three firms present is described by

dmo
1

dt
=
(
po +

qo

M
mo

1

)
(M−mo

1−mo
2−mn

1 −mn
2 −mn

3) + p12
ocm

o
2

−
(
p21

oc + 3pn +
Qn

M
(mn

1 +mn
2) +

qn

M
mn

3

)
mo

1, (59)

dmo
2

dt
=
(
po +

qo

M
mo

2

)
(M−mo

1−mo
2−mn

1 −mn
2 −mn

3) + p21
ocm

o
1

−
(
p12

oc + 3pn +
Qn

M
(mn

1 +mn
2) +

qn

M
mn

3

)
mo

2, (60)

dmn
1

dt
=

(
pn +

Qn

M
mn

1

)
(M−mn

1 −mn
2 −mn

3) + p12
ncm

n
2 + p13

ncm
n
3 −
(
p21

nc + p31
nc

)
mn

1 , (61)

dmn
2

dt
=

(
pn +

Qn

M
mn

2

)
(M−mn

1 −mn
2 −mn

3) + p21
ncm

n
1 + p23

ncm
n
3 −
(
p12

nc + p32
nc

)
mn

2 , (62)

dmn
3

dt
=
(
pn +

qn

M
mn

3

)
(M−mn

1 −mn
2 −mn

3) + p31
ncm

n
1 + p32

ncm
n
2 −
(
p13

nc + p23
nc

)
mn

3 , (63)

where pijnc > 0 is the parameter that describes the churn from the customer group that uses the new

model offered by the firm j to the customer group that uses the new model offered by firm i 6= j,

and pijoc > 0 is the parameter that describes the churn from the customer group that uses the old

model offered by the firm j to the customer group that uses the old model offered by firm i 6= j.

The terminal customer base values of competing firms are expressed by the following result.

Proposition 8. a) In a setting where the new model succeeds, the terminal customer base values

corresponding to the old service model, o∞i = limt→∞ oi(t), i = 1,2 are zero, while the terminal

customer base values corresponding to the new technology, n∞i = limt→∞ ni(t), i= 1,2,3, are given

by

n∞1 =
p12

ncp
23
nc + p13

ncp
32
nc + p12

ncp
13
nc

p12
ncp

23
nc + p21

ncp
13
nc + p31

ncp
12
nc + p23

ncp
31
nc + p13

ncp
32
nc + p32

ncp
21
nc + p12

ncp
13
nc + p21

ncp
23
nc + p31

ncp
32
nc

, (64)

n∞2 =
p21

ncp
13
nc + p23

ncp
31
nc + p21

ncp
23
nc

p12
ncp

23
nc + p21

ncp
13
nc + p31

ncp
12
nc + p23

ncp
31
nc + p13

ncp
32
nc + p32

ncp
21
nc + p12

ncp
13
nc + p21

ncp
23
nc + p31

ncp
32
nc

, (65)

n∞3 =
p32

ncp
21
nc + p31

ncp
12
nc + p31

ncp
32
nc

p12
ncp

23
nc + p21

ncp
13
nc + p31

ncp
12
nc + p23

ncp
31
nc + p13

ncp
32
nc + p32

ncp
21
nc + p12

ncp
13
nc + p21

ncp
23
nc + p31

ncp
32
nc

. (66)
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b) In the setting where the new model fails, the terminal customer base values corresponding to the

old service model are given by

o∞1 =
p21

oc

p12
oc + p21

oc

, (67)

o∞2 =
p12

oc

p12
oc + p21

oc

. (68)

Part b) of Proposition 8 outlines the impact of asymmetry in the inter-incumbent churn processes

on the way the market is split when all potential customers have made their adoption decisions in

the setting where the old model manages to stave off the innovation threat. If the new model fails,

the ratio of incumbents’ relative customer bases is equal to the ratio of their churn parameters. Part

a) of Proposition 8 describes an opposing setting where the new model survives and completely

replaces the old one. In this setting, the segmentation of the market dominated by the new model

follows a much more complex pattern. The terminal customer base expressions (64)-(66) reflect

the most general, and entirely asymmetric, churn dynamics between the incumbents and the new

entrant. Note that, in the trivial special case where all churn coefficients are equal, the three firms,

as expected, split the market equally. Figure 3 provides an illustration of the terminal market

coverage in the case where the churn processes between the incumbents and the new entrant are

symmetric (i.e, p13
nc = p31

nc = p23
nc = p32

nc = p̂), but the churn process between the incumbents is not

(so that, in general, p12
nc 6= p21

nc 6= p̂). Figure 3a looks at the subcase where the churn between the

incumbents and the new entrant is very slow (p̂= 0.01<< p12
nc = 1), while the Figure 3b describes

the subcase where the churn between the incumbents and the new entrant is very fast (p̂= 100>>

p12
nc = 1). There are two important observations that can be made in such semi-asymmetric setting.

First, the symmetry in the incumbent-new entrant churn ensures that the customer base of the

new entrant is equal to 1
3
, and is not affected by the intra-incumbent churn processes. Second, the

way the incumbents split the remaining 2
3

of the market can be strongly affected by the presence

of the new entrant. Note that, as (64)-(65) imply, for p13
nc = p31

nc = p23
nc = p32

nc = p̂ the ratio of the

terminal customer base values for the two incumbents is

n∞1
n∞2

=
p12

nc + 2p̂

p21
nc + 2p̂

. (69)
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Figure 3 : The terminal customer base values as functions of the incumbent churn assymetry factor
p21nc
p12nc

for different

values of new entrant-incumbent churn parameter p̂ = p13nc = p31nc = p23nc = p32nc: a) p̂ = 0.01, p12nc = 1, b)

p̂= 100, p12nc = 1.

Comparing this expression with the ratio justified by the intra-incumbent churn processes alone,

p12nc
p21nc

, we observe that (69) is greater than p12nc
p21nc

if and only if p12nc
p21nc

< 1. Note that if p12
nc < p

21
nc, the incum-

bent 1 is less “attractive” to consumers than the incumbent 2 and, therefore, has smaller terminal

customer base values in the absence of a newcomer. Thus, the presence of the new entrant allows

for the incumbent 1 to have higher terminal customer base. As (69) indicates, such moderating

effect of the new entrant becomes especially pronounced if the churn that involves the new entrant

dominates other churn processes.

3. An Empirical Example: FX market

In this section, we illustrate the application of our model by examining the empirical context

mentioned briefly in the Introduction section, namely, the foreign exchange (FX) market. Obtaining

detailed firm-level data to illustrate our model is not trivial. Most previous studies of new product

diffusion have been conducted at the category level (Libai et al. 2009a, p. 24). We have collected

our data from archival material (press releases and industry reports), and supplemented our data

with detailed interviews with senior managers in the industry.

The foreign exchange market displays four characteristic that make it appropriate context in

which to illustrate the application of our model. First, this market had a traditional service model
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with the potential to be transformed into a new one. Second, there was a new entrant that launched

the new service model. Third, incumbent firms with different sizes of customer bases existed.

Fourth, the markets displayed different adoption times for the innovation by the major and minor

firms respectively.

The major customers in the foreign exchange market are corporations such as investment man-

agement firms, pension funds and insurance firms. Customers typically use the foreign exchange

market for international trade, cross-border investments and hedging against currency risks. Tradi-

tionally, the trading on the foreign exchange market was done in an over-the-counter mode whereby

the customer had to make several phone calls to dealers to obtain quotes. Dealers, in turn, offered

both buy and sell quotes to customers. Once a price has been agreed upon, the transaction was

executed with one of the dealer banks. In the traditional process, the dealers’ business model was

based on generating revenues from the spread between buy and sell prices. Dealers are able to

charge a spread because of their ability to match buyers and sellers as well as to take on inventory

risks. Often dealers might not be able to match buyers and sellers at the same time and hence,

would need to hold the currencies in inventory until a corresponding customer is found.

The advent of the Internet enabled more efficient means for price information dissemination and

execution of trades via electronic trading technology. In this new service model, dealers post their

bid and offer prices, or customers can request quotes from multiple dealers and transact accordingly

on the electronic platform. In April 2000, Currenex, a new entrant, launched a new model of foreign

exchange trading via the Internet. Currenex started attracting customers away from the incumbent

dealer banks onto its platform. In response, the dealer banks formed two consortia to adopt the

new foreign exchange trading model. The first consortium consisted of three of the world’s largest

dealers in foreign exchange, namely Citibank, JP Morgan Chase and Deutsche Bank, with the

combined share of 28.9% of total daily trading volume; the second consortium was formed by seven

smaller/minor banks with the combined daily trading volume adding up to 25.5% of the total

(Euromoney 2000). Thus, from the point of view of the adoption of the new business model the
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dealer banks essentially acted like a duopoly. The consortium led by the minor banks adopted the

new business model by launching a platform called FXall in May 2001 (13 months after the new

entrant). This was then followed by the consortium led by the major banks launching a similar

platform, Atriax in June 2001 (14 months after the new entrant). Atriax, however, stopped its

operation in April 2002.

We have estimated the overall market potential M as well as the innovation and imitation

parameters using the average daily trading volume data for competing bank consortia shown in

Appendix B. Since the numbers of customer accounts are not publicly available, in our estimation

analysis we used the daily transaction volume as a proxy for the sizes of customer bases in foreign

exchange e-trading. In addition, since all of the available data estimates relate to the trading

volumes for the new service model, we have used the estimate for the total daily trading volume

at around the time of the introduction of the new model ($1 trillion, Reuters News 2001) and

the pre-innovation customer base estimates for the major and the minor incumbents to set their

respective values at M = $289 billion, and m= $255 billion, and focused on establishing the values

forM, po, qo, poc, pn, qn, Qn and pnc (8 parameters) that provide the best fit for the available data.

We established the best-fit parameters by minimizing the sum of the equally-weighted squared

deviations between the analytical and the actual customer bases values. For the fitting procedure,

we have used the discretized version of our model, with the discrete time unit equal to 1 month

to reflect the empirical data. To account for the finite time that the major incumbent invested

in the Atriax platform, we have set the customer bases values corresponding to the new model

offered by the major incumbent to 0 after April 2002, thus estimating the model where the minor

incumbent and the new entrant share the new model market. The minimization was done using

Excel Solver with ”GRG Nonlinear” option with multiple random restarts. After obtaining the

best-fit values, we have run the ”Evolutionary Solver” on the resulting values to ensure that they

cannot be improved upon. The resulting estimated values are reported in Table 2.

Figure 4 illustrates the fit between the analytical model with parameters from the Table 2 and

the empirical data for Currenex, the new entrant (Figure 4a) and FXAll, the minor incumbent

(Figure 4b).
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Parameter Estimated Value, $bn

M 544.00

Parameter Estimated Value, ×10−5 1
month

po 8.74

qo 0.23

poc 96.23

Parameter Estimated Value, ×10−5 1
month

pn 1.10

qn 7233.87

Qn 1645.64

pnc 0.00

Table 2 The best-fit parameter values.

Month

($bn)𝑚3
n ₓ  Actual

● Predicted

a)

Month

($bn)𝑚2
n

ₓ  Actual

● Predicted
b)

Figure 4 : The actual vs. predicted average daily trading volumes a) for the new entrant (Currenex), and b) for the

minor incumbent (FXAll).

Table 2 prompts several observations regarding the diffusion dynamics in the environment

described by the FX trading data. First, the introduction of a new service model has resulted, in

this environment, in a redistribution of the existing market (M=M +m). Second, the customer

base dynamics under the old service model and under the new service model appear to have very
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different features: the old model is driven mostly by innovation in the presence of a strong customer

churn, while the new model expands almost exclusively through imitation, with no customer churn.

Finally, the new entrant have a clear first-mover advantage in terms of the speed of the “imitation”

process as compared to the incumbents. In Section 5 we will use the best-fit estimates from Table 2

to conduct a numerical study of the impact of these features of the customer base dynamics on the

emerging Nash equilibria in adoption of the new service model by the incumbent firms.

4. Optimal Response Decisions and Nash Equilibria Analysis:
Successful Innovation in the Absence of Market Expansion or
Intra-Generational Churn

In this section we analyze the optimal response and the equilibrium entry-time decisions of the

incumbents. While under the general model the analysis of the equilibrium market-entry decisions

appears intractable, we managed to provide characterization of such decisions for the special setting

where the introduction of the new service model is guaranteed to be successful (i.e. PF = 0), does not

expand the overall market (M= M +m), and there is no intra-generational churn (poc = pnc = 0),

as described in Corollary 1.2 and Propositions 3 and 5.

The analysis of the competitive diffusion dynamics developed in the previous section connects

the new service model adoption decisions by two incumbent firms with the resulting customer base

trajectories. Below we adopt a perspective of one of the incumbent firms and use these trajectories

to build a framework for making the optimal adoption decisions. Without loss of generality, we

select firm 1, and assume that the time t2 at which the other incumbent, firm 2, commits to

adopting the new service model is known. We also assume that firm 1’s objective is to maximize

its discounted profits Π1 over the infinite planning horizon:

Π1 (t1, t2) =

+∞∫
0

e−βt (πoo1(t) +πnn1(t))dt, (70)

where πo(πn) is a per-unit-of-time profit contribution from each firm 1 customer using old (new)

service model, and β is the time discounting factor. Note that, in practice, the profit contributions

themselves may be affected by the respective customer base values. To maintain the tractability of
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the analysis of the adoption times, we use the simplified approach that assigns to the profit margins

constant values that reflect the average profit margins earned over a large range of customer base

values.

For simplicity, we consider the adoption times to be between 0 (“adopt immediately”) and some

maximum time tmax (“delay adoption as much as possible”). In other words, the profit maximization

problem for firm 1 can be expressed as

max
0≤t1≤tmax

Π1 (t1, t2) , (71)

so that the optimal adoption response time is defined as

topt
1 = arg max

0≤t1≤tmax

Π1 (t1, t2) . (72)

The choice of tmax, while somewhat arbitrary, can be tied to the time characteristic of the customer

base dynamics of the new firm n3(t) in the first phase of the competitive diffusion: the rate of change

of n3(t), as shown in Bass (1969), peaks at T = 1
pn+qn

ln
(
qn
pn

)
and becomes negligible after 2T .

Thus, setting, for example, tmax = 3
pn+qn

ln
(
qn
pn

)
appears to be a reasonable choice. The optimization

problem (71) is well-behaved under a mild assumption on the time parameters of the underlying

dynamics:

Proposition 9. For β ≤ 3pn the profit Π1 (t1, t2) is a quasiconcave function of t1.

The assumption of Proposition 9, ensuring that the profit function of firm 1 has unique local max-

imizing adoption time, is both mild and easy-to-interpret: in order for the profit function to be

well-behaved, we require that the process of time discounting of profits proceeds at a relatively

slow rate and does not interfere with the dynamics of adoption of the new service model. Such

an assumption seems quite reasonable in cases of computer/Internet-related technology diffusions,

since it is likely that such “digital diffusions” exhibit much faster innovation dynamics than tradi-

tional ones (Rangaswamy and Gupta 1999). For example, Lilien, Rangaswamy and Van den Bulte

(2000) report the innovation parameter pn = 0.121 per year for PC adoptions in the US - as com-

pared to the average of pn = 0.037 across multiple categories of agricultural, medical equipment,
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production technology and consumer electronics products. For a diffusion similar to the PC adop-

tion, the maximum value of time discounting factor β satisfying the assumption of Proposition 9

is 3pn = 36.3% per year, which is high enough to accommodate any realistic discount rate. While

in real business settings the value of β is likely to exceed this level, our extensive numerical tests

show that the quasiconcavity of the profit function is preserved even for much higher values of time

discounting factor.

For a given value of t2, the optimal response time topt
1 depends on the underlying parameters

of the diffusion problem, in particular, on the values of firm 1’s initial customer base θ, as well

as the profit contributions πo and πn. The monotonicity properties of the response time topt
1 are

formalized by the following Proposition:

Proposition 10. The optimal response time topt
1 is a non-decreasing function of the profit-

adjusted customer base πo θ
πn

.

Proposition 10 indicates that high initial customer base predisposes a firm to delay its innovation

response.

The equilibrium analysis of the adoption decisions in a competitive environment can be recast

in terms of finding a pair of Nash equilibrium adoption times t∗1 and t∗2 such that t∗1 = topt
1 (t∗2) and

t∗2 = topt
2 (t∗1). In a more general setting the equilibrium analysis may also include the endogenous

determination of the diffusion parameters. While the existence of pure equilibrium in terms of

adoption times is not guaranteed, mixed equilibrium strategies for the model we analyze do exist

for any combination of problem parameters, as implied by the continuity of our profit functions

(Gliksberg 1952; Dasgupta and Maskin 1986). Despite the absence of guarantees for the existence of

pure Nash equilibrium in the general case, the partial characterization of pure equilibria is possible

for a broad range of problem parameters:

Proposition 11. Define ρ1 = πoθ
πn

and ρ2 = πo(1−θ)
πn

.

a) Suppose that ρ1 ≤ 1 and ρ2 ≤ 1. Then, t∗1 = t∗2 = 0.

b) Suppose that β < pn(qn+3pn)

qn+2pn
and ρ1 ≥ 1

1− β(qn+2pn)
pn(qn+3pn)

, ρ2 ≥ 1

1− β(qn+2pn)
pn(qn+3pn)

. Then, t∗1 = t∗2 = tmax.

c) Suppose that β < pn(qn+3pn)

pn+2pn
and ρ1 ≥ 1

1− β(qn+2pn)
pn(qn+3pn)

, ρ2 ≤ 1. Then, t∗1 = tmax and t∗2 = 0.
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Figure 5 Nash equilibria with respect to new service model adoption times (β = pn = 1.3× 10−4, qn = 0).

The statements of Proposition 11 are illustrated on Figure 5 for the case of 2β = pn = 1.3× 10−4,

qn = 0. For this parameter combination,
(

1− β(qn+2pn)

pn(qn+3pn)

)−1

= 1.5, and Proposition 11 identifies the

Nash equilibria for a wide range of problem settings. Clearly, in the cases not covered by the

statements of Proposition 11, the existence of a pure-strategy Nash equilibrium and the values of

the matching adoption response times have to be established through the numerical evaluation of

the profit functions of competing firms. Note that the “grey areas” of the parameter space not

covered by Proposition 11 shrink as the time discount factor β goes down, reflecting the growing

attractiveness of the “delay as much as you can” option for both incumbents. In particular, in the

limit of β→ 0, Proposition 11 completely describes the adoption behavior of both incumbents for

any combination of problem parameters. Table 3 provides a detailed illustration of this limit. Note

that the types of possible adoption equilibria in this case are determined by the relative discount

offered to customers switching to the new business model, πn
πo

. In particular, in the “deep discount”

case (πn
πo
≤ 0.5) the major incumbent always delays its adoption as much as possible, while the

minor incumbent uses the “delay as much as possible” approach when the initial customer base

of the major incumbent is not too high (θ ≤ 1− πn
πo

), and the “ adopt now” approach otherwise.

On the other hand, when the new model does not offer a significant discount (πn
πo
> 0.5), the minor
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Profit Discount, πn
πo

Market Dominance, θ Moderate
(
πn
πo
> 0.5

)
Deep

(
πn
πo
≤ 0.5

)
Moderate

(
θ≤max

(
πn
πo
,1− πn

πo

))
Major Incumbent-“Now” Major Incumbent-“Delay”

Minor Incumbent-“Now” Minor Incumbent-“Delay”

Strong
(
θ >max

(
πn
πo
,1− πn

πo

))
Major Incumbent-“Delay” Major Incumbent-“Delay”

Minor Incumbent-“Now” Minor Incumbent-“Now”

Table 3 Adoption Nash-equilibrium strategies in the absence of time discounting.

incumbent adopts the new model immediately, while the policy of the major incumbent changes

from “adopt now” in settings where its market dominance is limited (θ ≤ πn
πo

) to “delay as much

as possible” when it is pronounced (θ > πn
πo

). The results of Proposition 11 indicate that in the

business settings where the customer base values of competing firms follow Bass-like dynamics

introduced in Section 2, major incumbents (dominant firms) are prone to delays in innovation. An

intuitive, simple nature of the equilibria described in Table 3 offers competitors an appealing recipe

for building their adoption strategies in settings where the time discounting factors are negligible.

5. Nash Equilibria Adoption Times in the FX Market: A Numerical
Study

The analytical results presented in Section 4 relate to the special setting where the innovation is

guaranteed to be successful, does not affect the overall market potential, and where the customer

base dynamics exhibits negligible intra-generational churn. The FX market example introduced in

Section 3 describes an environment without the market expansion upon the introduction of new

service model, no intra-generational churn in the diffusion dynamics of the new service model, but

where the intra-generational churn in the dynamics of the old service model is prominent. For such

a setting we have conducted numerical tests of the Nash equilibria in the adoption times for the new

service model. In particular, we have used the diffusion parameters and the market size estimates

reported in Table 2 and varied the parameters that describe the incumbents’ beliefs about the risk

associated with the new service model, i.e., their beliefs regarding the probability and the time of

its potential “failure”.
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Note that, in addition to the diffusion, market size, and risk parameters, the Nash equilibrium

adoption times are determined by the ratio πn
πo

of the profit margins associated with the old and

the new service model, as well as the time discount factor β. We have estimated the profit margin

associated with the the traditional, phone-based, business model, πo, to be 11% by averaging the

profit margins for 1998-2000 from the 10-k reports for the Bank of New York and Merrill Lynch

(Bank of New York Mellon 2001, Merrill Lynch 2002). The interviews we have conducted with

senior executives in the industry have confirmed a significant reduction in the profit margin upon

switching to the online trading model, with πn being about 5%. In our numerical tests, we have

used these estimates for the πo and πn, respectively, resulting in the ratio of πn
πo

= 45.45%. For

the time-discounting factor, we have used β = 0.01 (per month), corresponding to 12% annual

discounting rate.

In calculating the Nash equilibria adoption times, we have assumed that each incumbent commits

to entering at a particular (integer) month value between the launch of the new model and the

finite horizon of tmax = 30 months. We have selected the moderately high finite horizon value to

ensure that the numerical search for the Nash equilibria can be accomplished in reasonable time.

For each combination of problem parameters reported below, the Nash equilibrium in incumbent

adoption times exists and is unique when the incumbents’ choices are limited to the set of integers

between 0 and tmax.

Figure 6 reports the Nash equilibrium incumbent adoption times as functions of the “failure”

probability PF for two fixed values of the “failure” time, TF = 15 and TF = 60. We have selected

these two values to illustrate the difference in incumbents’ responses to the failure that occurs

“early” (TF < tmax) and to the one that occurs “late” (TF > tmax). The adoption-time Nash equilib-

ria described in Figure 6 reflect a rather interesting competitive dynamics among the incumbents.

Note the “discontinuity” in the Nash equilibrium pattern observed in Figure 6a that describes the

case of an early failure (TF = 15 < tmax). In this setting, when PF = 1, i.e., when the failure is

certain, both incumbents react to such early and certain failure by abandoning the adoption of
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Nash Equilibrium 

Adoption Times (months)
𝑇𝐹 = 15

a)

𝑡1
∗

(“major” incumbent)

𝑡2
∗

(“minor” incumbent)

𝑃𝐹

Nash Equilibrium 

Adoption Times (months)
𝑇𝐹 = 60

b)

𝑡1
∗

(“major” incumbent)

𝑡2
∗

(“minor” incumbent)

𝑃𝐹

Figure 6 : The Nash equilibrium adoption times for the two incumbents in the FX example as functions of the

failure probability PF for the determinsitic failure times TF = 15 (a), and TF = 60 (b).

the innovation. However, as soon as there appears to be a finite probability for the innovation to

survive, both incumbents immediately hedge by committing to an adoption at the potential failure

time TF = 15. When the failure probability is reduced further, there emerges a range of probability

values such that the “minor” incumbent favors immediate adoption, while the “major” incumbent

commits to a delayed adoption at TF = 15. Finally, as the failure becomes even less likely, both

incumbents choose immediate adoption. In our numerical tests, a similar Nash equilibrium pattern

is observed for any fixed 0<TF < tmax.

Figure 6b illustrates a corresponding monotonicity in the incumbents’ responses when failure,

if it occurs, happens fairly late, beyond the allowable horizon of incumbents’ responses. In this

case, incumbents cannot commit to adopting at TF , and the “adopt now” response directly follows

“never adopt” response as the survival of the new service model becomes increasingly likely.

We observed a similar response pattern for all values of TF > tmax, with the region of “never

adopt” response shrinking as the failure time becomes more distant. In particular, for TF ≥ 115,

both incumbents choose “adopt now” response irrespective of the probability of failure. For such

high values of TF incumbents behave as if failure does not occur at all and immediately move to

protect their profit streams.
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Nash Equilibrium 

Adoption Times (months)

(months)𝐸[𝑇𝐹]

𝑃𝐹 = 0.8

𝑡1
∗

(“major” incumbent)

𝑡2
∗

(“minor” incumbent)

Figure 7 : The Nash equilibrium adoption times for the two incumbents in the FX example as functions of the

expected failure time E[TF ] for the geometric distribution of the failure time period (PF = 0.8).

Figure 6 illustrates the properties of the Nash equilibria in settings where the failure of the new

model, if it occurs, happens at a given time period. A more interesting setting is shown in Figure 7,

where the time-to-failure, if it occurs, follows the variant of geometric distribution, i.e.,

P (TF = k) = p (1− p)k , k= 6,12,18,24, ... (73)

Note that, under the probability distribution (73), the failure of the new model can occur at 6-

month increments (i.e., at t = 6,12,18,24, ..., months), and is “memoryless”. The latter feature

of this distribution provides an appropriate match to the open-loop nature of the incumbents’

decision process on when to adopt an innovation. In other words, under the geometric time-to-

failure distribution, the incumbents cannot improve their decision making process by adopting

a dynamic, “closed-loop” policy that would entail making an adoption decision based on time

elapsed since the introduction of the new service model. Figure 7 shows the Nash equilibrium

adoption times for the incumbents as a function of the expected time-to-failure for the setting

where the failure is quite likely (PF = 0.8). This high value of the failure probability reflects an
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important outcome we have observed: both incumbents choose “immediate” adoption (i.e, the Nash

equilibrium is t∗1 = t∗2 = 0) for all values of E[TF ] as long as the failure probability PF is low. Hence,

in Figure 7 we report the results for the value of PF that results, at least for some values of TF , in

“delayed-adoption” Nash equilibria.

There are three key observations that we can make based on the results shown in Figure 7.

First, the insight outlined in Proposition 10 continues to hold in a more general setting of the FX

market example. In particular, the customer base dominance in terms of the old model translates

into “inertia” in adopting the new service model: the “major” incumbent never leads in terms of

adoption of the new service model, and either enters simultaneously with the “minor” incumbent,

or lags behind it.

Second, in the FX market setting, incumbents must estimate the failure of the new model to be

quite likely to abandon the “immediate adoption” equilibrium. In particular, for PF = 0.8 (i.e., for

the setting where the failure of the new model is likely, but not certain), we observe an emergence

of the “delay equilibria” when the expected failure time is neither too small nor too large.

Third, the equilibrium adoption responses of the incumbents exhibit a clear non-monotone pat-

tern as TF grows. In particular, when the failure is expected in a “near future”, the marginal

impact of failure delays on the adoption delays is positive, as the incumbents react by increasing

the protection of their old customer bases and delaying their adoption decisions. However, when

the TF reaches a particular threshold, the failure of the new model, even if it happens with high

probability, is late enough to lose most of its impact. From the incumbents’ perspective, the situa-

tion begins to look more and more like the setting where the new model succeeds, and this forces

the incumbents to reverse their assessments and lean towards the “immediate” adoptions.

As mentioned in Section 3, in the FX market example the “minor” incumbent has adopted the

new model at t2 = 13, and the “major” incumbent - at t1 = 14 months. These adoption times are

close to the Nash equilibria in the setting where incumbents assign a high probability of failure to

the new model, expecting the failure to occur at around a two-year mark.



Paç, Savin, and Velu: When to Adopt a Service Innovation: Nash Equilibria in a Competitive Diffusion Framework
Article submitted to ; manuscript no. 39

6. Conclusions and Managerial Implications

The question of when an incumbent firm should cannibalize the customer base from an existing

service model as a result of adopting a new service model introduced by a “new entrant” firm

is of major importance in a number of business settings. In particular, is market dominance of

the incumbent a hindrance or an incentive for an early adoption? The theoretical and empirical

literature on this issue provides conflicting answers. Our paper addresses the limitations of the

existing literature and provides a detailed analytical account of customer adoption dynamics and

how it might affect firms’ profits and influence innovation adoption decisions. Our approach to

describing customer base trajectories extends the classical Bass adoption dynamics to the setting

where two incumbent firms compete with an entrant proposing a new service model.

In our analysis, we model a setting that includes the market expansion upon the introduction

of the new service model, as well as the intra-generational customer churn. We derive closed-form

expressions for the customer base trajectories of competing firms in two special settings. In the

first setting, we assume that the introduction of the innovation leads to an expansion of the market

potential and the diffusion dynamics includes intra-generational customer churn. In the second

setting, we assume that there is no intra-generational churn and the market potential remains

unchanged upon the introduction of innovation, but there are brand awareness effects whereby the

incumbents enjoy a larger customer imitation effect compared to the new entrant. For the latter

setting, we analyze the optimal adoption response decisions and the Nash equilibria adoption times.

Our results show that under the Bass-like competitive dynamics, the market dominance translates

into lagged response to innovation as long as the size of the pre-innovation customer base is the

main distinguishing feature between the incumbents.

One important aspect of our work is the analysis of potential risks associated with the new

service model. In particular, we analyze, analytically, the diffusion dynamics of the two incumbents

following the new model failure, and, numerically, the Nash equilibrium adoption decisions for the

incumbents that share estimates for the probability of failure of the new service model and the
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distribution of time at which such failure may occur. For the latter investigation, we use the actual

trading volume data from the FX markets to identify the best-fit diffusion dynamics parameters

and to study the effects of the likelihood and the imminence of the new model failure on the

responses of the incumbents. Our results, in particular, help to quantify an important connection

between the delays in the adoption of the new business model and the incumbents’ perception of

the expected duration for the new model to remain on the market.

The model we propose and the analysis we conduct have several managerial implications. First,

for managers it is important to distinguish between innovation and imitation effects of not only

one’s own firm but also those of competitors when introducing new products, services and business

models. Managers have increasingly come to realize the importance of market research and ways

to affect interpersonal communications, such as word of mouth, especially in a world where social

media is increasingly playing a major role. However, as a result of easier data availability, firms

often focus on measuring and understanding their own innovation and imitation effects as part

of marketing communications but less on those of their competitors. In particular, the brand

awareness effect often comes through the imitation effect, whereby communication about the new

adoption experience from an existing customer of the firm might have a stronger effect on the

willingness of other customers to switch to the innovation introduced by the firm, as compared to

the imitation effect coming from customers of a new entrant. Managers need to evaluate fully the

relative influence of these two effects and use this knowledge for prediction and planning on when

to adopt an innovation.

Second, it is important for managers to have reliable estimates of the churn rate for existing

services. Often, customers switch between incumbent firms that provide an old service even when

new one is launched. Some of these customers may churn and choose a different service provider due

to selection or quality-related reasons. This customer switching pattern creates intra-generational

churn, which is an important factor influencing customer base trajectories and profits for the

competing firms.
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Third, as the introduction of innovation can result in market expansion for both the existing

service model and the new service model, managers need to understand how the various sources of

interpersonal communication influence such market expansion. While a number of previous studies

on the subject of innovation have looked at the implications of a new entrant on the incumbent’s

incentive to innovate (Schumpeter 1942; Ghemawat 1991; Chandy and Tellis 2000), we adopt a

more nuanced view of how the effect of the new entrant works through the incentives of other

incumbent firms. In our analysis, the adoption decision of other incumbent firms is just as important

as that of the new entrant. Managers can use our model to assess changes taking place in the

diffusion process because of adoption by another incumbent firm and to analyze possible “what if”

scenarios to understand the impact of their actions on the terminal sizes of their customer bases

and profitability.

In the present paper we focused on the diffusion dynamics and assumed a pre-set marketing-mix

environment and a symmetry in the incumbents diffusion parameters. One promising extension

to our work is to model the influence of dynamically set prices on the resulting adoption-time

Nash equilibria. Another avenue for future research relates to the “now” or “never” innovation

adoption prescription described by Wilson and Norton (1989) and refined by Mahajan and Muller

(1996). In particular, whether such a policy remains an optimal response for competing firms in

the presence of intra-generational churn and post-innovation market expansion is an important

question for further investigation. Finally, the important question we left outside of the scope of

our present investigation is how robust the inertia in adopting the innovation is in settings with

asymmetric incumbents. We anticipate that a reversal of such market entry order can only be

observed in settings where the pre-innovation customer base asymmetry is complemented by a

substantial additional asymmetry in the incumbents’ diffusion parameters. Identifying such settings

is an important future step in characterizing competitive market-entry equilibria.

In our analysis we have assumed that the competing firms have ample capacity to handle the

consumer demand. It is possible, however, especially in the case of the new entrant, that the
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limited ability to accommodate growing demand may slow down the process of innovation diffusion

(Balakrishnan and Pathak 2014). Extending our analysis to constrained-capacity settings is a

promising direction for future research.
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Paç, Savin, and Velu: When to Adopt a Service Innovation: Nash Equilibria in a Competitive Diffusion Framework
44 Article submitted to ; manuscript no.

Kalish, S., V. Mahajan, E. Muller. 1995. Waterfall and Sprinkler New Product Strategies in Com-

petitive Global Markets. International Journal of Research in Marketing 12(2) 105–109.

King, A.A., C.L. Tucci. 2002. Incumbent Entry into New Market Niches: The Role of Experience

and Managerial Choice in the Creation of Dynamic Capabilities. Management Sci., 48(2) 171–186.

Krishnan, T.V., F.M. Bass, V. Kumar. 2000. Impact of a Late Entrant on the Diffusion of a New

Product/Service. Journal of Marketing Research 37 269–278.

Libai, B., E. Muller, R. Peres. 2009a. The Role of Within-Brand and Cross-Brand Communications

in Competitive Growth. Journal of Marketing 73(May) 19–34.

Libai, B., E. Muller, R. Peres. 2009b. The Diffusion of Services. Journal of Marketing Research 46

(April), 163–175.

Lilien, G.L., A. Rangaswamy, C. Van den Bulte. 2000. Diffusion Models: Managerial Applications

and Software in New-Product Diffusion Models, ed. by Vijay Mahajan, Eitan Muller, and Yoram

Wind, New York: Springer.

Mahajan, V., E. Muller. 1996. Timing, Diffusion, and Substitution of Successive Generations of

Technological Innovations: The IBM Mainframe Case. Technological Forecasting and Social Change

51(2) 109–132.

Mahajan, V., S. Sharma, R.D. Buzzell. 1993. Assessing the Impact of Competitive Entry on Market

Expansion and Incumbent Sales. Journal of Marketing 57(3) 39–52.

Mamer, J.W., K.F. McCardle. 1987. Uncertainty, Competition and the Adoption of New Technol-

ogy. Management Science 33(2) 161–177.

McCardle, K.F. 1984. Information Acquisition and the Adoption of New Technology. Management

Sci. 31(11) 1372–1389.

Merrill Lynch. 2002. 10-k Report 2001, New York: Merrill Lynch.

Peres, R., E. Muller, V. Mahajan. 2010. Innovation Diffusion and New Product Growth Models:

A Critical Review and Research Directions. International Journal of Research in Marketing 27

91–106.
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Paç, Savin, and Velu: When to Adopt a Service Innovation: Nash Equilibria in a Competitive Diffusion Framework
Article submitted to ; manuscript no. 1

Appendices for “When to Adopt a Service Innovation: Nash Equilibria
in a Competitive Diffusion Framework”

Appendix A: Proofs of Analytical Results

Proof of Proposition 1

The Bass-like form of mn
3(t) (4) is obtained by directly integrating (3) with the initial condition

mn
3(0) = 0. Let us denote mtot(t) =mo

1(t) +mo
2(t) +mn

3(t). Then, adding equations (1)-(3), we get

dmtot

dt
=

(
2po + pn + qo

mtot

M
+

(
qn− qo

M

)
mn

3

)
(M−mtot) . (A1)

Denoting X(t) = M
M−mtot , we can rewrite (A1) as dX

dt
− f(t)X = −qo with f (t) = 2po + pn + qo +(

qn−qo
M

)
mn

3(t) and the initial condition X(0) = M
M−m−M . The solution to the latter equation with

this initial condition is given by

X(t) =

 M
M−m−M

− qo

t∫
0

dτ exp

− τ∫
0

f(u)du

 exp

 t∫
0

f(τ)dτ

 . (A2)

Note that

t∫
0

f(τ)dτ

=

t∫
0

(
2po + pn + qo +

(
qn− qo

M

)
mn

3(τ)

)
dτ = (2po + pn + qn) t+

(
qn− qo

qn

)
log

(
qne
−(qn+pn)t + pn

qn + pn

)
, (A3)

and

t∫
0

dτ exp

− τ∫
0

f(u)du



=

(
1 + qn

pn

)(1− qoqn )

2po + pn + qn

×

 2F1

(
2po+pn+qn
qn+pn

,1− qo
qn

; 2(po+pn+qn)

qn+pn
;− qn

pn

)
− exp (− (2po + pn + qn) t)

×2F1

(
2po+pn+qn
qn+pn

,1− qo
qn

; 2(po+pn+qn)

qn+pn
;− qn

pn
exp (− (pn + qn) t)

)
 ,(A4)

where 2F1(a, b; c;x) =
∑+∞

n=0
(a)n(b)n
n!(c)n

xn is the hypergeometric function. Using (5), we get

X(t) =

 M
M−m−M

−
F̂I (po, pn, qo, qn, t) qo

(
1 + qn

pn

)(1− qoqn )

2po + pn + qn

( qn + pne
(qn+pn)t

(qn + pn)e(qn+pn)t

)( qn−qoqn )
e((2po+pn+qn)t),

(A5)
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and

mtot(t) =M

1−
exp (− (2po + pn + qn) t)

(
qn+pne

(qn+pn)t

(qn+pn)e(qn+pn)t

)−( qn−qoqn )(
M

M−m−M −
qo(1+ qn

pn )(
1− qoqn )

2po+pn+qn
F̂I (po, pn, qo, qn, t)

)
 . (A6)

Now, using (7), defining m−(t) =mo
1(t)−mo

2(t) and subtracting (2) from (1), we get

dm−(t)

dt
=
(
−2poc− pn + qo− qoĜI (po, pn, qo, qn, t)−

qn

M
mn

3

)
m−(t), (A7)

with the initial condition m−(0) =M −m. The solution to (A7) with this initial condition is

m−(t) =
(M −m) (qn + pn) exp ((qo− 2poc) t)

qn + pne(qn+pn)t
e(−qo

∫ t
0 ĜI (po,pn,qo,qn,τ)dτ) = ĤI (po, poc, pn, qo, qn, t) . (A8)

Given that mo
1(t) +mo

2(t) =mtot(t)−mn
3(t) =MĜ (po, pn, qo, qn, t)−mn

3(t), we get (9).

Proof of Corollary 1.1

The customer base of the new entrant, mn
3(t), remains identical to that in Proposition 1. Plugging

in qo = 0 into equation (A1) we get

dmtot

dt
=
(

2po + pn +
qn

M
mn

3

)
(M−mtot) . (A9)

with the initial condition mtot(0) =m+M . The solution to (A9) with this initial condition is

mtot(t) =M− (M−m−M)(qn + pn)e−2pot

qn + pne(qn+pn)t
. (A10)

Using, m−(t) = mo
1(t) − mo

2(t) and plugging in qo = 0 into (A7), we get dm−(t)

dt
=(

−2poc− pn− qn
Mm

n
3

)
m−(t), with the initial condition m−(0) = M −m. The solution to these is

m−(t) = (M−m)(qn+pn)e−2poct

qn+pne(qn+pn)t . Given that mo
1(t) +mo

2(t) =mtot(t)−mn
3(t), we obtain (10).

Proof of Corollary 1.2

The Bass-like form of mn
3(t) remains identical to that in Proposition 1. Plugging in the conditions

of Corollary 1.2 into (1)-(2), we have

dmo
1

dt
= −pnm

o
1−

qn

M
mn

3m
o
1,
dmo

2

dt
=−pnm

o
2−

qn

M
mn

3m
o
2. (A11)

Dividing the first equation in (A11) by the second one, and integrating the result with with the

initial conditions mo
1 =M and mo

2 =m, we obtain mo
2(t) =mo

1(t)
(
m
M

)
. Combining this with mo

1(t)+

mo
2(t) +mn

3(t) =M, we get mo
1(t) =

(
M
M

)
(M−mn

3(t)) and mo
2(t) =

(
m
M

)
(M−mn

3(t)).
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Proof of Proposition 2

Assuming Qn = qn, we denote n(t) =mn
2(t) +mn

3(t). Then, adding (14)-(15), we get

dn

dt
=
(

2pn +
qn

M
n
)

(M−n) . (A12)

Integrating (A12), with the initial condition n(tf ) = mn
3(tf ) =M

(
1− qn+pn

qn+pne(qn+pn)t

)
, we get the

Bass-like form of n(t) =M
(

1− 2pn+qn

αe
(2pn+qn)(t−tf )+qn

)
, where α = (2pn+qn)(qn+pne

(pn+qn)tf )

pn+qn
− qn. Let

a(t) =mn
3(t)−mn

2(t). Then, subtracting (14) from (15), we get

da

dt
= a

(
−2pnc + qn−

qn

M
n(t)

)
. (A13)

Solving (A13) with the initial condition a(tf ) =mn
3(tf ), we get a(t) =

mn
3(tf)e

(2(pn−pnc)+qn)(t−tf )(α+qn)

αe
(2pn+qn)(t−tf )+qn

.

Combining this with mn
2(t) +mn

3(t) = n(t) and, mn
3(t)−mn

2(t) = a(t), we get the expressions for

mn
2(t) and mn

3(t). Next, denote mtot(t) =mo
1(t) +mo

2(t) +mn
2(t) +mn

3(t). Then, adding equations

(12)-(15), we get

dmtot

dt
=

(
2po + 2pn + qo

mtot

M
+

(
qn− qo

M

)
mn

3

)
(M−mtot) . (A14)

Denoting X(t) = M
M−mtot , we can rewrite (A14) as

dX

dt
=Xf(t)− qo, (A15)

with f (t) =
(

2po + 2pn + qo + (qn−qo)

M n(t)
)

and the initial condition X(tf ) = M
M−MĜI(po,pn,qo,qn,tf)

.

The solution to (A15) with this initial condition is given by

X(t) =


M

M−MĜI (po, pn, qo, qn, tf )
− qo

t∫
tf

dτe

−

τ∫
tf

f(u)du

e

t∫
tf

f(τ)dτ

. (A16)

Note that

t∫
tf

f(τ)dτ =

t∫
tf

(
2po + 2pn + qo +

(
qn− qo

M

)
n(τ)

)
dτ

= (2po + 2pn + qn) (t− tf ) +

(
qn− qo

qn

)
log

(
qne
−(qn+2pn)(τ−tf ) +α

qn +α

)
, (A17)
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and

t∫
tf

dτe

−

τ∫
tf

f(u)du

=

t∫
tf

dτe−(2po+2pn+qn)(τ−tf )

(
qn +α

qne
−(qn+2pn)(τ−tf ) +α

)( qn−qoqn )

=
α+ qn

α(2po + 2pn + qn)


2F1

(
1, 2po+2pn+qn

2pn+qn
+ qo

qn
; 2(po+2pn+qn)

2pn+qn
;− qn

α

)
−e−(2po+2pn+qn)(t−tf )

(
α+qne

−(2pn+qn)(t−tf )

α+qn

) qo
qn

× 2F1

(
1, 2po+2pn+qn

2pn+qn
+ qo

qn
; 2(po+2pn+qn)

2pn+qn
;− qn

α
e−(2pn+qn)(t−tf )

)

 , (A18)

where 2F1(a, b; c;x) is the hypergeometric function. Using (20), we get

X(t) =

(
1

1−ĜI (po, pn, qo, qn, tf )
− qo (α+ qn)

α(2po + 2pn + qn)
F̂II (po, pn, qo, qn, t)

)

×
(
α+ qne

−(qn+2pn)(t−tf )

α+ qn

)( qn−qoqn )
exp ((2po + 2pn + qn) (t− tf )) , (A19)

and

mtot(t) =M

1−
e−(2po+2pn+qn)(t−tf )

(
(qn+α)e

(qn+2pn)(t−tf )

qn+αe
(qn+2pn)(t−tf )

)( qn−qoqn )

(
1

1−ĜI(po,pn,qo,qn,tf)
− qo(α+qn)

α(2po+2pn+qn)
F̂II (po, pn, qo, qn, t)

)
 . (A20)

Now, using (21), defining m−(t) =mo
1(t)−mo

2(t) and subtracting (13) from (12), we get

dm−(t)

dt
=
(
−2poc− 2pn + qo− qoĜII (po, pn, qo, qn, t)−

qn

M
n(t)

)
m−(t), (A21)

with the initial condition m−(tf ) = ĤI (po, poc, pn, qo, qn, tf ). The solution to (A21) with this initial

condition is given by

m−(t) =
ĤI (po, poc, pn, qo, qn, tf ) (α+ qn)e(qo−2poc)(t−tf)

qn +αe(qn+2pn)(t−tf )
e
−qo

∫ t
tf
ĜII (po,pn,qo,qn,τ)dτ

= ĤII (po, poc, pn, qo, qn, t) . (A22)

Combining the above with mo
1(t) +mo

2(t) = mtot(t)− n(t), we get the expressions for mo
1(t) and

mo
2(t).

Proof of Corollary 2.1



Paç, Savin, and Velu: When to Adopt a Service Innovation: Nash Equilibria in a Competitive Diffusion Framework
Article submitted to ; manuscript no. 5

The customer base of the new entrant, mn
3(t), and that of the second incumbent’s new business

model, mn
2(t), remain identical to those in Proposition 2. Plugging in qo = 0 into equation (A14)

we get

dmtot

dt
=
(

2po + 2pn +
qn

M
n(t)

)
(M−mtot) . (A23)

Given the initial condition mtot(tf ) =M− (M−m−M)(2pn+qn)e
−2potf

qn+α
, the solution to (A23) is

mtot(t) =M− (M−m−M)(2pn + qn)e−2pot

qn +αe(qn+2pn)(t−tf )
. (A24)

Using, m−(t) =mo
1(t)−mo

2(t) and plugging in qo = 0 into equation (A21), we get

dm−(t)

dt
=
(
−2poc− 2pn−

qn

M
n(t)

)
m−(t), (A25)

with the initial condition m−(tf ) = (M−m)(qn+pn)e
−2poctf

qn+pne
(qn+pn)tf

. The solution to (A25) with this initial

condition is given by m−(t) = (M−m)(qn+2pn)e−2poct

qn+αe
(qn+2pn)(t−tf )

. Given that mo
1(t) +mo

2(t) = mtot(t)− n(t), we

get the expressions for mo
1(t) and mo

2(t).

Proof of Proposition 3

Plugging in the conditions of Proposition 3 into the diffusion equations (12)-(15), and using (??)

we get:

do1

dt
= −2pno1−Qnn2o1− qnn3o1, (A26)

do2

dt
= −2pno2−Qnn2o2− qnn3o2, (A27)

dn2

dt
= pn(o1 + o2) +Qnn2(o1 + o2), (A28)

dn3

dt
= pn(o1 + o2) + qnn3(o1 + o2), (A29)

with the initial conditions:

o1(tf ) = θ

(
qn + pn

qn + pne
(qn+pn)tf

)
, (A30)

o2(tf ) = (1− θ)
(

qn + pn

qn + pne
(qn+pn)tf

)
, (A31)

n2(tf ) = 0, (A32)

n3(tf ) = 1− qn + pn

qn + pne
(qn+pn)tf

. (A33)
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Dividing (A26) by (A27), we get

do1

o1

=
do2

o2

. (A34)

Using the initial conditions (A30) and (A31), we obtain, as in phase I,

o2(t) = o1(t)

(
1− θ
θ

)
. (A35)

Similarly, dividing (A28) by (A29), we have

dn2

pn +Qnn2

=
dn3

pn + qnn3

. (A36)

For qn > 0, integrating (A36) with initial conditions (A32) and (A33) yields

n2(t) =
pn

Qn

((
pn + qnn3(t)

pn + qnn3(tf )

)Qn
qn

− 1

)
. (A37)

Similarly, when qn = 0, integration of (A36) with initial conditions (A32) and (A33) yields

n2(t) =
pn

Qn

(
e
Qn
pn (n3(t)−n3(tf ))− 1

)
. (A38)

Combining (A37) and (A29) with the conservation of market potential equation o1(t) + o2(t) +

n2(t) +n3(t) = 1, we obtain

dn3

dt
= (pn + qnn3)

(
1− pn

Qn

((
pn + qnn3(t)

pn + qnn3(tf )

)Qn
qn

− 1

)
−n3

)
. (A39)

Using the definition (28), we get

t− tf =

n3(t)∫
n3(tf )

dy

(pn + qny) (1−S1(y)− y)
. (A40)

Combining (A40) with (A35) and o1(t) + o2(t) +n2(t) +n3(t) = 1, we get (29).

Proof of Corollary 3.1

For Qn = qn, (28) becomes

S1 (x) =
pn

qn

((
pn + qnx

pn + qnn3(tf )

)
− 1

)
. (A41)
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Then, (A40) can be expressed as

t− tf =

n3(t)∫
n3(tf )

(pn + qnn3(tf ))dy

(pn + qny)
(
pn

(
1− pn

qn

)
+ (pn + qn)n3(tf )− (2pn + qnn3(tf ))y

) , (A42)

or

n3(t) =A−
pn
qn

+A( pn
qn

+n3(tf )

A−n3(tf )

)
exp

(
qn(2pn+qnn3(tf ))( pnqn +A)(t−tf)

(pn+qnn3(tf ))

)
+ 1

. (A43)

where

A=
pn

(
1− pn

qn

)
+ (pn + qn)n3(tf )

2pn + qnn3(tf )
. (A44)

Using n2(t) = S1 (n3(t)), we get

n2(t) =
pn

qn

((
pn + qnn3(t)

pn + qnn3(tf )

)
− 1

)
. (A45)

Now, since o1(t) + o2(t) +n2(t) +n3(t) = 1, and o2(t) = o1(t)
(

1−θ
θ

)
, we get

o1(t)

θ
+
pn

qn

((
pn + qnn3(t)

pn + qnn3(tf )

)
− 1

)
+n3(t) = 1, (A46)

or, equivalently, o1(t) = θ
(

1−n3(t)− pn
qn

((
pn+qnn3(t)

pn+qnn3(tf )

)
− 1
))

, o2(t) = (1−θ)
θ
o1(t).

Proof of Proposition 4

Throughout the proof, we use Qn = qn. Denoting n(t) =mn
1(t) +mn

2(t) +mn
3(t) and adding (33)-

(35), we get

dn

dt
=
(

3pn +
qn

M
n
)

(M−n) . (A47)

Similar to the analysis in previous phases, we get n(t) =M
(

1− 3pn+qn
λe(3pn+qn)(t−ts)+qn

)
, where λ =

(3pn+qn)(qn+αe
(2pn+qn)(ts−tf))

2pn+qn
−qn. Denoting â(t) =mn

3(t)−mn
2(t), and subtracting (35) from (34), we

get

dâ

dt
= â

(
−3pnc + qn−

qn

M
n(t)

)
. (A48)

Solving (A48) with the initial condition â(ts) = mn
3(ts) − mn

2(ts), we get â(t) =

(mn
3(ts)−mn

2(ts))e
(3(pn−pnc)+qn)(t−ts)(λ+qn)

λe(3pn+qn)(t−ts)+qn
. Similarly, let b̂(t) =mn

2(t)−mn
1(t). Subtracting equation (33)

from (34) for Qn = qn, we get

db̂

dt
= b̂
(
−3pnc + qn−

qn

M
n(t)

)
. (A49)
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Solving (A49) with the initial condition b̂(ts) =mn
2(ts), we get b̂(t) =

mn
2(ts)e

(3(pn−pnc)+qn)(t−ts)(λ+qn)

λe(3pn+qn)(t−ts)+qn
.

Combining the above with mn
1(t)+mn

2(t)+mn
3(t) = n(t), mn

3(t)−mn
2(t) = â(t), and, mn

2(t)−mn
1(t) =

b̂(t) we get the expressions for mn
1(t), mn

2(t) and mn
3(t). Further, let mtot(t) = mo

1(t) + mo
2(t) +

mn
1(t) +mn

2(t) +mn
3(t). Then, adding equations (31)-(35), we get

dmtot

dt
=

(
2po + 3pn + qo

mtot

M
+

(
qn− qo

M

)
n(t)

)
(M−mtot) . (A50)

Denoting X(t) = M
M−mtot , we can rewrite (A50) as

dX

dt
=Xf(t)− qo, (A51)

with f (t) =
(

2po + 3pn + qo + (qn−qo)

M n(t)
)

and the initial condition X(tf ) = M
M−MĜII (po,pn,qo,qn,ts)

.

The solution to (A51) with this initial condition is given by

X(t) =


M

M−MĜII (po, pn, qo, qn, ts)
− qo

t∫
ts

dτe

−

τ∫
ts

f(u)du

e

t∫
ts

f(τ)dτ

. (A52)

Note that

t∫
tf

f(τ)dτ =

t∫
tf

(
2po + 3pn + qo +

(
qn− qo

M

)
n(τ)

)
dτ

= (2po + 3pn + qn) (t− ts) +

(
qn− qo

qn

)
log

(
qne
−(qn+3pn)(τ−ts) +λ

qn +λ

)
, (A53)

and

t∫
ts

dτe

−

τ∫
ts

f(u)du

=

t∫
tf

dτe−(2po+3pn+qn)(τ−ts)
(

qn +λ

qne−(qn+3pn)(τ−ts) +λ

)( qn−qoqn )

=
λ+ qn

λ(2po + 3pn + qn)


2F1

(
1, 2po+3pn+qn

3pn+qn
+ qo

qn
; 2(po+3pn+qn)

3pn+qn
;− qn

λ

)
−e−(2po+3pn+qn)(t−ts)

(
λ+qne

−(3pn+qn)(t−ts )

λ+qn

) qo
qn

× 2F1

(
1, 2po+3pn+qn

3pn+qn
+ qo

qn
; 2(po+3pn+qn)

3pn+qn
;− qn

λ
e−(3pn+qn)(t−ts)

)

 , (A54)
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where 2F1(a, b; c;x) is the hypergeometric function. Using (40), we get

X(t) =

(
1

1−ĜII (po, pn, qo, qn, ts)
− qo (λ+ qn)

λ(2po + 3pn + qn)
F̂III (po, pn, qo, qn, t)

)

×
(
λ+ qne

−(qn+3pn)(t−ts)

λ+ qn

)( qn−qoqn )
exp ((2po + 3pn + qn) (t− ts)) , (A55)

and

mtot(t) =M

1−
e−(2po+3pn+qn)(t−ts)

(
(qn+λ)e(qn+3pn)(t−ts)

qn+λe(qn+3pn)(t−ts)

)( qn−qoqn )(
1

1−ĜII (po,pn,qo,qn,ts)
− qo(λ+qn)

λ(2po+3pn+qn)
F̂III (po, pn, qo, qn, t)

)
 . (A56)

Now, using (41), defining m−(t) =mo
1(t)−mo

2(t) and subtracting (32) from (31), we get

dm−(t)

dt
=
(
−2poc− 3pn + qo− qoĜIII (po, pn, qo, qn, t)−

qn

M
n(t)

)
m−(t), (A57)

with the initial condition m−(ts) = ĤII (po, poc, pn, qo, qn, ts). The solution to (A57) with this initial

condition is given by m−(t) = ĤIII (po, poc, pn, qo, qn, t). Combining the above with mo
1(t) +mo

2(t) =

mtot(t)−n(t), we get the expressions for mo
1(t) and mo

2(t).

Proof of Corollary 4.1

The customer base of the new entrant, mn
3(t), and those for the incumbents’ new business models,

mn
1(t), mn

2(t), remain identical to those in Proposition 4. Plugging in qo = 0 into (A50) we get

dmtot

dt
=
(

2po + 3pn +
qn

M
n(t)

)
(M−mtot) . (A58)

Given the initial condition mtot(ts) =M− (M−m−M)(3pn+qn)e−2pots

qn+λ
, the solution to (A58) becomes

mtot(t) =M− (M−m−M)(3pn + qn)e−2pot

qn +λe(qn+3pn)(t−ts)
. (A59)

Using, m−(t) =mo
1(t)−mo

2(t) and plugging in qo = 0 into equation (A57), we get

dm−(t)

dt
=
(
−2poc− 3pn−

qn

M
n(t)

)
m−(t), (A60)

with the initial condition m−(ts) = (M−m)(qn+2pn)e−2pocts

qn+αe
(qn+2pn)(ts−tf )

. The solution to (A60) with this initial

condition is given by

m−(t) =
(M −m) (qn + 3pn)e−2poct

qn +λe(qn+3pn)(t−ts)
.
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Given that mo
1(t) +mo

2(t) =mtot(t)−n(t), we get the final expressions for mo
1(t) and mo

2(t).

Proof of Proposition 5

Plugging in the conditions of Proposition 5 into (31)-(35), and using (??) we have:

do1

dt
= −3pno1−Qn(n1 +n2)o1− qnn3o1, (A61)

do2

dt
= −3pno2−Qn(n1 +n2)o2− qnn3o2, (A62)

dn1

dt
= pn(o1 + o2) +Qnn1(o1 + o2), (A63)

dn2

dt
= pn(o1 + o2) +Qnn2(o1 + o2), (A64)

dn3

dt
= pn(o1 + o2) + qnn3(o1 + o2), (A65)

with the initial conditions:

o1(ts) = θ (1−n3(ts)−S (n3(ts), n3(tf ))) , (A66)

o2(ts) = (1− θ) (1−n3(ts)−S (n3(ts), n3(tf ))) , (A67)

n1(ts) = 0, (A68)

n2(t) = S (n3(ts), n3(tf )) , (A69)

ts− tf =

n3(ts)∫
n3(tf )

dy

(pn + qny) (1− y−S(y,n3(tf )))
. (A70)

Combining (A63) and (A64), we get

dn1

pn +Qnn1

=
dn2

pn +Qnn2

, (A71)

or

n1(t) =
pn

Qn

((
pn +Qnn2(t)

pn +Qnn2(ts)

)
− 1

)
. (A72)

Similarly, putting together (A63) and (A70) yields

n1(t) =
pn

Qn

((
pn + qnn3(t)

pn + qnn(ts)

)Qn
qn

− 1

)
. (A73)

Denoting

S2(x) =
pn

Qn

((
pn + qnx

pn + qnn3(ts)

)Qn
qn

− 1

)
(A74)
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and using o1(t) + o2(t) +n1(t) +n2(t) +n3(t) = 1, we convert (A70) into

dn3

dt
= (pn + qnn3)

(
1−n2(ts)−S2(n3)

(
2 +

Qn

pn

n2(ts)

)
−n3

)
, (A75)

so that

t− ts =

n3(t)∫
n3(ts)

dy

(pn + qny)
(

1−n2(ts)− y−S2(y)
(

2 + Qn

pn
n2(ts)

)) . (A76)

Further, combining (A61) and (A63), we get

do1

o1

=
do2

o2

, (A77)

and

o2(t) =
o2(ts)

o1(ts)
o1(t). (A78)

Finally, from o1(t) + o2(t) +n1(t) +n2(t) +n3(t) = 1 we obtain

o1(t) =

(
o1(ts)

o1(ts) + o2(ts)

)(
1−n3(t)−S2 (n3(t))

(
2 +

Qnn2(ts)

pn

)
−n2(ts)

)
, (A79)

and

o2(t) =

(
o2(ts)

o1(ts) + o2(ts)

)(
1−n3(t)−S2 (n3(t))

(
2 +

Qnn2(ts)

pn

)
−n2(ts)

)
. (A80)

Proof of Corollary 5.1

For qn =Qn, (28) becomes S2(x) = pn

(
x−n3(ts)

pn+qnn3(ts)

)
, and

t− ts =

n3(t)∫
n3(ts)

dy

(pn + qny)
(

1−n2(ts)− y−S2(y)
(

2 + qn
pn
n2(ts)

))
=

n3(t)∫
n3(ts)

dy(
pn
qn

+ y
)(

(1−n2(ts))pn+n3(ts)(2pn+qn)

3pn+qn(n3(ts)+n2(ts))
− y
)

=

(
1

qn + 3pn

)
log

(
(1−n2(ts)−n3(ts)) (pn + qnn3(t))

(1−n2(ts)−n3(ts)) (pn + qnn3(t)) + (n3(ts)−n3(t)) (qn + 3pn)

)
. (A81)

The last expression is equivalent to

n3(t) =
n3(ts) (qn + 3pn) + pn (1− exp (− (qn + 3pn) (t− ts))) (1−n2(ts)−n3(ts))

(qn + 3pn)− qn (1− exp (− (qn + 3pn) (t− ts))) (1−n2(ts)−n3(ts))
. (A82)

Finally, substituting (A82) into (47), we get (48).
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Proof of Proposition 6

a) Using the expression for n(t) =mn
1(t)+ mn

2(t)+mn
3(t) from (43), and taking the limit we have:

lim
t→∞

n(t) = lim
t→∞
M
(

1− 3pn + qn

λe(3pn+qn)(t−ts) + qn

)
=M, (A83)

Then, using â(t) =mn
3(t)−mn

2(t) and taking the limit we get

lim
t→∞

â(t) =
a(ts)e

(3(pn−pnc)+qn)(t−ts)(λ+ qn)

λe(3pn+qn)(t−ts) + qn

= lim
t→∞

a(ts)(λ+ qn)

λe3pnc(t−ts) + qne−(3(pn−pnc)+qn)(t−ts)
= 0. (A84)

For b̂(t) =mn
2(t)−mn

1(t) the limit gets us

lim
t→∞

b̂(t) = lim
t→∞

mn
2(ts)e

(3(pn−pnc)+qn)(t−ts)(λ+ qn)

λe(3pn+qn)(t−ts) + qn

= lim
t→∞

mn
2(ts)(λ+ qn)

λe3pnc(t−ts) + qne−(3(pn−pnc)+qn)(t−ts)
= 0. (A85)

Combining equations (A83)-(A85) yields m∞1 =m∞2 =m∞3 = M
3

.

b) Note that in Corollary 3.2, o1 (∞) = o2 (∞) = 0. Then, as it follows from (47),

1−n∞3 −S (n∞3 , n3(ts))

(
2 +

Qn

pn

S (n3(ts), n3(tf ))

)
−S (n3(ts), n3(tf )) = 0. (A86)

Introducing γ = pn
Qn

and δ= Qn

qn
, we can transform (A86) into

n∞3 = 1− γ
δ

((
γ+n∞3
γ+n3(ts)

)δ
− 1

)(
1 +

(
γ+n3(ts)

γ+n3(tf )

)δ)
− γ
δ

((
γ+n(ts)

γ+n3(tf )

)δ
− 1

)
, (A87)

which, in turn, is equivalent to (51). Further, (52) are obtained by substituting (A87) into the last

2 equations in (47). For Qn = qn (51) becomes

1− γ (n3(ts)−n3(tf ))

γ+n3(tf )
−n∞3 = γ

(
2 +

n3(ts)−n3(tf )

γ+n3(tf )

)(
n∞3 −n3(ts)

γ+n3(ts)

)
, (A88)

or, equivalently,

n∞3 =
(γ+n3(tf )− γn3(ts) + γn3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))n3(ts)

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))

=
(3γ+ 1)(γ+n3(tf ))) (γ+n3(ts))

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))
− γ. (A89)
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Then, using (52), one gets

n∞1 =
γ

γ+n3(ts)
(n∞3 −n3(ts)) =

γ(3γ+ 1)(γ+n3(tf )))

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))
− γ, (A90)

and

n∞2 =
γ(3γ+ 1)(γ+n3(ts)))

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))
− γ. (A91)

Differentiating (51) with respect to n3(ts), we get

∂n∞3
∂n3(ts)

=

γ

((
γ+n∞3
γ+n3(ts)

)δ)(
1

γ+n3(ts)

)
1 + γ

((
γ+n∞3
γ+n3(tf )

)δ−1 (
1

γ+n3(tf )

)
+
(

γ+n∞3
γ+n3(ts)

)δ−1 (
1

γ+n3(ts)

)) > 0. (A92)

Monotonicity of n∞3 with respect to n3(tf ) is shown in exactly same way. Further, using (52), we

get

∂n∞1
∂n3(ts)

= γ

((
γ+n∞3
γ+n3(ts)

)δ−1(
1

γ+n3(ts)

)(
∂n∞3
∂n3(ts)

− γ+n∞3
γ+n3(ts)

))
. (A93)

Now,

∂n∞3
∂n3(ts)

− γ+n∞3
γ+n3(ts)

=

γ

((
γ+n∞3
γ+n3(ts)

)δ)(
1

γ+n3(ts)

)
1 + γ

((
γ+n∞3
γ+n3(tf )

)δ−1 (
1

γ+n3(tf )

)
+
(

γ+n∞3
γ+n3(ts)

)δ−1 (
1

γ+n3(ts)

)) − γ+n∞3
γ+n3(ts)

=
− (γ+n∞3 )− γ

(
γ+n∞3
γ+n3(tf )

)δ
(

1 + γ

((
γ+n∞3
γ+n3(tf )

)δ−1 (
1

γ+n3(tf )

)
+
(

γ+n∞3
γ+n3(ts)

)δ−1 (
1

γ+n3(ts)

)))
(γ+n3(ts))

< 0, (A94)

so that
∂n∞1
∂n3(ts)

< 0. On the other hand,

∂n∞1
∂n3(tf )

= γ

((
γ+n∞3
γ+n3(ts)

)δ−1(
1

γ+n3(ts)

))
∂n∞3
∂n3(tf )

> 0. (A95)

Similarly, since n∞1 turns into n∞2 upon exchange of n3(tf ) and n3(ts),
∂n∞2
∂n3(ts)

> 0 and
∂n∞2
∂n3(tf )

< 0.

Now, consider a symmetric imitation setting, δ= 1. Noting that since n∞3 can be re-expressed as

(3γ+ 1)(γ+n3(tf ))) (γ+n3(ts))

(γ+n3(tf )) (γ+n3(ts)) + γ (2γ+n3(ts) +n3(tf ))
− γ =

3γ+ 1

1 + γ
γ+n3(tf )

+ γ
γ+n3(ts)

− γ, (A96)
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it is a monotone increasing function of both n3(tf ) and n3(ts). On the other hand, for fixed values

of n3(tf ) and n3(ts),

∂n∞3
∂γ

=
3
(

3− n3(tf )

γ+n3(tf )
− n3(ts)

γ+n3(ts)

)
− (3γ+ 1)

(
n3(tf )

(γ+n3(tf ))2
+ n3(ts)

(γ+n3(ts))2

)
(

3− n3(tf )

γ+n3(tf )
− n3(ts)

γ+n3(ts)

)2 − 1. (A97)

This expression is negative if and only if

(
n3(tf )

γ+n3(tf )
+

n3(ts)

γ+n3(ts)

)(
3− n3(tf )

γ+n3(tf )
− n3(ts)

γ+n3(ts)

)
< (3γ+ 1)

(
n3(tf )

(γ+n3(tf ))2
+

n3(ts)

(γ+n3(ts))2

)
(A98)

which is equivalent to

2 <

(
(2γ+ 1)

γ+n3(tf )
+

(2γ+ 1)

γ+n3(ts)

)
+

2γ2

(γ+n3(tf )) (γ+n3(ts))
−
(

(2γ+ 1)γ

(γ+n3(tf ))2
+

(2γ+ 1)γ

(γ+n3(ts))2

)
. (A99)

Note that for a given value of n3(tf ), the market share value n3(ts) is greater or equal to n3(tf )

but, as follows from (29) and (49), it cannot exceed n̂3 =
γ+(1+γ)n3(tf )

2γ+n3(tf )
. In other words, the value of

zs = 1
γ+n3(ts)

belongs to the interval
[

1
2γ+1

(
1 + γ

γ+n3(tf )

)
, 1
γ+n3(tf )

]
. Then, for given value of n3(tf ),

we only need to check validity of (A99) at the boundary points of this interval. In particular, for

zs = 1
2γ+1

(
1 + γ

γ+n3(tf )

)
, (A99) is equivalent to

3γ+ 1

2γ+ 1
<

(2γ+ 1) (γ+ 1)

γ+n3(tf )
+
γ2 + (1 + 2γ3) (1 + 2γ)

2

(1 + 2γ)
2
(γ+n3(tf ))

2 (A100)

which is trivially satisfied for n3(tf ) = 1, and, therefore, for any n3(tf ) ∈ (0,1). Further, for zs =

1
γ+n3(tf )

, (A99) is equivalent to

1<
2γ+ 1

γ+n3(tf )
− γ (γ+ 1)

(γ+n3(tf ))2
, (A101)

which, in turn, is trivially satisfied for any n3(tf )∈ (0,1).

Proof of Proposition 7

Adding (54) and (55), we have a Bass-like equation for mo(t) =mo
1(t) +mo

2(t) for t≥ TF :

dmo

dt
=
(

2po +
qo

M
mo
)

(M−mo) , (A102)



Paç, Savin, and Velu: When to Adopt a Service Innovation: Nash Equilibria in a Competitive Diffusion Framework
Article submitted to ; manuscript no. 15

with the initial condition

mo (TF ) =mo
1 (TF ) +mo

1 (TF ) . (A103)

Defining, for t̄= t−TF ,

m̄o (t̄) =mo (t)−mo (TF ) , (A104)

we note that (A102)-(A103) is equivalent to

dmo

dt̄
=
(

2po +
qo

M
mo (TF ) +

qo

M
m̄o
)

(M−mo (TF )− m̄o) , (A105)

with the initial condition

m̄o (t̄= 0) = 0. (A106)

Solution to (A105)-(A106) is given by

m̄o (t̄) = (M−mo (TF ))

1−

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

+ 1
)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))t̄

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))t̄

 , (A107)

resulting in

mo (t) =mo (TF )+(M−mo (TF ))

1−

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

+ 1
)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(t−TF )

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(t−TF )

 ,

(A108)

for t≥ TF . Then, (54) is equivalent to

dmo
1

dt
=B(t) +mo

1(t)A(t), (A109)

where

B(t) = po (M−mo(t)) + pocm
o(t), (A110)

A(t) =
qo

M
(M−mo(t))− 2poc, (A111)

and mo(t) is given by (A108). Solution to (A109) for t≥ Tf with the initial condition mo
1 (TF ) is

given by

mo
1(t) = e

∫ t
TF

A(τ)dτ

(
mo

1 (TF ) +

∫ t

TF

B(u)due
−

∫ u
TF

A(v)dv

)
. (A112)
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Consider

∫ t

TF

A (τ)dτ

=
qo

M
(M−mo (TF ))

∫ t

TF

dτ


( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

+ 1
)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(τ−TF )

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(τ−TF )


− 2poc (t−TF ) . (A113)

Note that

∫ t

TF

dτ


( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

+ 1
)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(τ−TF )

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(τ−TF )


=

(
1

2po + qo
Mm

o (TF ) + qo
M (M−mo (TF ))

)

× ln

 1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
1 +

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(t−TF )

 , (A114)

so that

e
∫ t
TF

A(τ)dτ

= e−(2poc(t−TF ))

×

 1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
1 +

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+ qo

Mmo(TF )+ qo
M (M−mo(TF )))(t−TF )


1

2po+
qo
Mmo(TF )+ qo

M (M−mo(TF ))

= e−2poc(t−TF )

 1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
1 +

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+qo)(t−TF )


1

2po+qo

. (A115)

Next,

∫ t

TF

B(u)due
−

∫ u
TF

A(v)dv
=

∫ t

TF

B(u)du
(
e2poc(u−TF )

)1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+qo)(u−TF )

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)


1
2po+qo

=

∫ t

TF

du
(
e2poc(u−TF )

)1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+qo)(u−TF )

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)


1
2po+qo

(poM+ (poc− po)mo(u))

=

 1

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
 1

2po+qo

Ī(t), (A116)
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where

Ī(t) =

∫ t−TF

0

due2pocu

(
1 +

( qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)
e−(2po+qo)u

) 1
2po+qo

(poM+ (poc− po)mo(u+TF ))

=

∫ t−TF

0

due2pocu

(
1 +

( qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)
e−(2po+qo)u

) 1
2po+qo

×

poM+ (poc− po)

mo (TF ) +

 M−mo (TF )

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+qo)u


= (poM+ (poc− po)mo (TF )) Ī1(t) + (poc− po) (M−mo (TF )) Ī2(t), (A117)

with

Ī1(t) =

∫ t−TF

0

due2pocu

(
1 +

( qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)
e−(2po+qo)u

) 1
2po+qo

=
1

2poc

∫ e2poc(t−TF )

1

dx

(
1 +

( qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)
x−( 2po+qo

2poc )
) 1

2po+qo

=
1

2poc

(
e2poc(t−TF )

2F1

(
2poc

2po + qo

,− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)(
e−(2po+qo)(t−TF )

))
−2F1

(
2poc

2po + qo

,− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)))
, (A118)

and

Ī2(t) =

∫ t−TF

0

due2pocu

(
1 +

( qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)
e−(2po+qo)u

) 1
2po+qo

−1

=
1

2poc

(
e2poc(t−TF )

2F1

(
2poc

2po + qo

,1− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)(
e−(2po+qo)(t−TF )

))
−2F1

(
2poc

2po + qo

,1− 1

2po + qo

; 1 +
2poc

2po + qo

;

(
−

qo
M (M−mo (TF ))

2po + qo
Mm

o (TF )

)))
. (A119)

Thus, (A112) is equivalent to

mo
1(t) = e

∫ t
TF

A(τ)dτ

(
mo

1 (TF ) +

∫ t

TF

B(u)due
−

∫ u
TF

A(v)dv

)

= e−2poc(t−TF )

 1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
1 +

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+qo)(t−TF )


1

2po+qo

× (mo
1 (TF )

+

 1

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
 1

2po+qo (
(poM+ (poc− po)mo (TF )) Ī1(t) + (poc− po) (M−mo (TF )) Ī2(t)

) .

(A120)
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Using the same approach, we obtain

mo
2(t) = e

∫ t
TF

A(τ)dτ

(
mo

2 (TF ) +

∫ t

TF

B(u)due
−

∫ u
TF

A(v)dv

)

= e−2poc(t−TF )

 1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
1 +

( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
e−(2po+qo)(t−TF )


1

2po+qo

× (mo
2 (TF )

+

 1

1 +
( qo
M (M−mo(TF ))

2po+ qo
Mmo(TF )

)
 1

2po+qo (
(poM+ (poc− po)mo (TF )) Ī1(t) + (poc− po) (M−mo (TF )) Ī2(t)

) .

(A121)

Proof of Proposition 8

a) Consider a setting where the innovation succeeds. In this setting, the terminal customer base

values can be obtained by equating the right-hand sides in (59)-(63) to 0, in the limit of t→∞. In

particular, adding the right-hand sides of (61)-(63), we get

n∞1 +n∞2 +n∞3 = 1. (A122)

Then, the right-hand sides of (61) and (62) imply that

p12
ncn
∞
2 + p13

ncn
∞
3 −

(
p21

nc + p31
nc

)
n∞1 = 0, (A123)

p21
ncn
∞
1 + p23

ncn
∞
3 −

(
p12

nc + p32
nc

)
n∞2 = 0. (A124)

Combining (A123)-(A124) with (A122), we obtain

P


n∞1

n∞2

n∞3

=


1

0

0

 , (A125)

where

P =


1 1 1

− (p21
nc + p31

nc) p12
nc p13

nc

p21
nc − (p12

nc + p32
nc) p23

nc

 . (A126)
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Then, 
n∞1

n∞2

n∞3

= P−1


1

0

0

 . (A127)

Note that

P−1 =
1

det (P)


p12

ncp
23
nc + p13

nc (p12
nc + p32

nc) − (p12
nc + p32

nc + p23
nc) p13

nc− p12
nc

(p21
nc + p31

nc)p
23
nc + p13

ncp
21
nc p23

nc− p21
nc − (p13

nc + p21
nc + p31

nc)

(p21
nc + p31

nc) (p12
nc + p32

nc)− p21
ncp

12
nc (p12

nc + p32
nc + +p21

nc) (p12
nc + p21

nc + p31
nc)

 , (A128)

where

det (P) = p12
ncp

23
nc + p21

ncp
13
nc +

(
p21

nc + p31
nc

) (
p12

nc + p32
nc

)
− p12

ncp
21
nc + p23

nc

(
p21

nc + p31
nc

)
+ p13

nc

(
p12

nc + p32
nc

)
= p12

ncp
23
nc + p21

ncp
13
nc + p32

ncp
21
nc + p31

nc

(
p12

nc + p32
nc

)
+ p23

nc

(
p21

nc + p31
nc

)
+ p13

nc

(
p12

nc + p32
nc

)
= p12

ncp
23
nc + p21

ncp
13
nc + p31

ncp
12
nc + p23

ncp
31
nc + p13

ncp
32
nc + p32

ncp
21
nc + p12

ncp
13
nc + p21

ncp
23
nc + p31

ncp
32
nc. (A129)

Thus,
n∞1

n∞2

n∞3

=
1

det (P)


p12

ncp
23
nc + p13

nc (p12
nc + p32

nc)

(p21
nc + p31

nc)p
23
nc + p13

ncp
21
nc

(p21
nc + p31

nc) (p12
nc + p32

nc)− p21
ncp

12
nc

=
1

det (P)


p12

ncp
23
nc + p13

ncp
32
nc + p12

ncp
13
nc

p21
ncp

13
nc + p23

ncp
31
nc + p21

ncp
23
nc

p32
ncp

21
nc + p31

ncp
12
nc + p31

ncp
32
nc

 ,

(A130)

which is equivalent to (64)-(66).

Now, using the limit of t→∞ for the right-hand sides of (59)-(60), and noting (A122), we get

− (po + qoo
∞
1 ) (o∞1 + o∞2 ) + p12

oco
∞
2 −

(
p21

oc + 3pn +Qn (n∞1 +n∞2 ) + qnn
∞
3

)
o∞1 = 0,

− (po + qoo
∞
2 ) (o∞1 + o∞2 ) + p21

oco
∞
1 −

(
p12

oc + 3pn +Qn (n∞1 +n∞2 ) + qnn
∞
3

)
o∞2 = 0. (A131)

Adding the two equations in (A131), we get

− (2po + qo (o∞1 + o∞2 )) (o∞1 + o∞2 )− (3pn +Qn (n∞1 +n∞2 ) + qnn
∞
3 ) (o∞1 + o∞2 ) = 0, (A132)

that results in o∞1 = o∞2 = 0.
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b) In the setting where the innovation fails at t= TF , for any t > TF the customer base dynamics

is described by the modified version of (54)-(55):

dmo
1

dt
=
(
po +

qo

M
mo

1

)
(M−mo

1−mo
2) + p12

ocm
o
2− p21

ocm
o
1, (A133)

dmo
2

dt
=
(
po +

qo

M
mo

2

)
(M−mo

1−mo
2) + p21

ocm
o
1− p12

ocm
o
2. (A134)

In the limit of t→∞, these result in

(po + qoo
∞
1 ) (1− o∞1 − o∞2 ) + p12

oco
∞
2 − p21

oco
∞
1 = 0,

(po + qoo
∞
2 ) (1− o∞1 − o∞2 ) + p21

oco
∞
1 − p12

oco
∞
2 = 0. (A135)

Adding the two equations in (A135), we get

1− o∞1 − o∞2 = 0, (A136)

so that the solution to (A135) is given by the combination of

p12
oco
∞
2 − p21

oco
∞
1 = 0, (A137)

and (A136). Then, (67)-(68) follow.

Proof of Proposition 9

We will prove the quasiconcavity of the firm’s 1 profit function by showing that this function

cannot have unconstrained local minima. Define Tc as a set of local unconstrained optima of

Π1 (t1, t2):

Tc =

(
0< t< tmax|

∂Π1 (t1, t2)

∂t1
|t1=t = 0

)
. (A138)

The statement of the Proposition will be established if we show that

∂2Π1 (t1, t2)

∂ (t1)
2 |t1=t∗ ≤ 0 (A139)

for any t∗ ∈ Tc. Consider the case where t∗ ≥ t2 (the proof for the case of t∗ ≤ t2 follows similar

steps). Then,

∂Π1 (t1, t2)

∂t1
|t1=t∗ = 0⇔ ρ

 +∞∫
t∗

e−βt
(
∂o13(t, t∗, t2)

∂t∗

)
dt

+

 +∞∫
t∗

e−βt
(
∂n1(t, t∗, t2)

∂t∗

)
dt

= 0,

(A140)
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where ρ= θπo
πn

and

+∞∫
t∗

e−βt
(
∂n1(t, t∗, t2)

∂t∗

)
dt= e−βt

∗ dn3(t∗)

dt∗
pn

pn + qnn3(t∗)

+∞∫
0

e−βu
(
Qn

pn

S (n3(t), n3(t∗)) + 1

)

×

n3(t∗)−n3(t)−S (n3(t), n3(t∗))
(

2 + Qn

pn
S (n3(t∗), n3(t2))

)
1−S (n3(t∗), n3(t2))−n3(t∗)

du, (A141)

and

+∞∫
t∗

e−βt
(
∂o13(t, t∗, t2)

∂t∗

)
dt= e−βt

∗
+∞∫
0

e−βu
(
∂o13(t, t∗, t2)

∂u

)
du

= e−βt
∗ dn3(t∗)

dt∗

+∞∫
0

e−βu
(
∂o13(t, t∗, t2)

∂n3(t∗)
+
∂o13(t, t∗, t2)

∂n3(t)

∂n3(t)

∂n3(t∗)

)
du

= −
+∞∫
t∗

e−βt
(
∂n1(t, t∗, t2)

∂t∗

)
dte−βt

∗
− dn3(t∗)

dt∗
pn

pn + qnn3(t∗)

1

1−S (n3(t∗), n3(t2))−n3(t∗)

×
+∞∫
0

e−βu
[
1 +

Qn

pn

S (n3(t), n3(t2)) +
pn + qnn3(t)

pn

]

×
(

1−S (n3(t∗), n3(t2))−n3(t)−S (n3(t), n3(t∗))

(
2 +

Qn

pn

S (n3(t∗), n3(t2))

))
du. (A142)

The sign of the second derivative of the profit function at a local optimum depends on whether

the ratio

R=

+∞∫
t∗
e−βt

(
∂o13(t,t∗,t2)

∂t∗

)
dt

+∞∫
t∗
e−βt

(
∂n1(t,t∗,t2)

∂t∗

)
dt

(A143)

is an increasing or a decreasing function of t∗. Using a shorthand notation n3 = n3(t), n∗3 = n3 (t∗),

n2
3 = n3 (t2), we get

R=−1−

+∞∫
0

e−βu
(

1 + Qn

pn
S (n3, n

2
3) + pn+qnn3

pn

)(
1−S (n∗3, n

2
3)−n3−S (n3, n

∗
3)
(

2 + Qn

pn
S (n∗3, n

2
3)
))

du

+∞∫
0

e−βu
(
Qn

pn
S (n3, n∗3) + 1

)(
n∗3−n3−S (n3, n∗3)

(
2 + Qn

pn
S (n∗3, n

2
3)
))

du

,

(A144)

so that now we need to check the monotonicity of

R̂ =

+∞∫
0

e−βu
(

1 + Qn

pn
S (n3, n

2
3) + pn+qnn3

pn

)(
1−S (n∗3, n

2
3)−n3−S (n3, n

∗
3)
(

2 + Qn

pn
S (n∗3, n

2
3)
))

du

+∞∫
0

e−βu
(
Qn

pn
S (n3, n∗3) + 1

)(
n∗3−n3−S (n3, n∗3)

(
2 + Qn

pn
S (n∗3, n

2
3)
))

du



Paç, Savin, and Velu: When to Adopt a Service Innovation: Nash Equilibria in a Competitive Diffusion Framework
22 Article submitted to ; manuscript no.

=

(
1 + Qn

pn
S (n∗3, n

2
3)
)

1
pn

+∞∫
0

e−βudS (n3, n
∗
3) + 1

pn

(
β

+∞∫
0

e−βun3du−n∗3
)

−(1−S (n∗3, n
2
3)−n∗3)

+∞∫
0

e−βu
(
Qn

pn
S (n3, n∗3) + 1

)
du+ 1

pn

+∞∫
0

e−βudS (n3, n∗3)

=

(
1 + Qn

pn
S (n∗3, n

2
3)
)

β
pn

+∞∫
0

e−βuS (n3, n
∗
3)du+ 1

pn

(
β

+∞∫
0

e−βun3du−n∗3
)

−(1−S (n∗3, n
2
3)−n∗3)

+∞∫
0

e−βu
(
Qn

pn
S (n3, n∗3) + 1

)
du+ β

pn

+∞∫
0

e−βuS (n3, n∗3)du

=

(pn+qnn
∗
3)
Qn
qn

(pn+qnn23)
Qn
qn

+

+∞∫
0
e−βu(n3−n∗3)du

+∞∫
0
e−βuS(n3,n

∗
3)du

1 + (n∗3 +S (n∗3, n
2
3)− 1)

Qn

β
+ pn

β2
+∞∫
0
e−βuS(n3,n∗3)du

 =

1

(pn+qnn23)
Qn
qn

+ qn
pn
A (n∗3)

B (n∗3)
(A145)

with

A (n∗3) =

δ
+∞∫
0

e−βu(n3−n∗3)du

+∞∫
0

e−βu
(

(pn + qnn3)
δ − (pn + qnn∗3)

δ
)
du

,

B (n∗3) =

1 + (n∗3 +S (n∗3, n
2
3)− 1)

Qn

β
+ pn

β2
+∞∫
0
e−βuS(n3,n∗3)du


(pn + qnn∗3)δ

, (A146)

where we have used δ= Qn

qn
≥ 1.

Below we will show that under the assumptions of the proposition A is a non-increasing, and B

is a non-decreasing function of n∗3. For convenience, we state these results as Lemmata.

Lemma A1

For β ≤ 3pn, A is a non-increasing function of n∗3.

Proof

First,

A (n∗3) =

δ
+∞∫
0

e−βu(n3−n∗3)du

+∞∫
0

e−βu
(

(pn + qnn3)
δ − (pn + qnn∗3)

δ
)
du

=
1

q

δ
+∞∫
0

e−βu((pn + qnn3)− (pn + qnn
∗
3)du

+∞∫
0

e−βu
(

(pn + qnn3)
δ − (pn + qnn∗3)

δ
)
du

=
1

qnpδ−1
n

δ
+∞∫
0

e−βu((1 + y)− (1 + y∗)du

+∞∫
0

e−βu
(

(1 + y)
δ − (1 + y∗)

δ
)
du

, (A147)
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where y= qnn3
pn

and y∗ =
qnn
∗
3

pn
. Note that the monotonicity of A with respect to n∗3 is equivalent to

the monotonicity of

D=

δ
+∞∫
0

e−βu((1 + y)− (1 + y∗)du

+∞∫
0

e−βu
(

(1 + y)
δ − (1 + y∗)

δ
)
du

(A148)

with respect to y∗. Further, the sign of dA
dy∗ is the same as

δ

 +∞∫
0

e−βu
(
dy

dy∗
− 1

)
du

 +∞∫
0

e−βu
(

(1 + y)
δ − (1 + y∗)

δ
)
du


−δ

 +∞∫
0

e−βu
(

(1 + y)
δ−1 dy

dy∗
− (1 + y∗)

δ−1

)
du

 +∞∫
0

e−βu (y− y∗)du


≤ δ

 +∞∫
0

e−βu
(
dy

dy∗
− 1

)
du

 +∞∫
0

e−βu
(

(1 + y)
δ − (1 + y∗)

δ
)
du


−δ (1 + y∗)

δ−1

 +∞∫
0

e−βu
(
dy

dy∗
− 1

)
du

 +∞∫
0

e−βu (y− y∗)du


= δ

 +∞∫
0

e−βu
(
dy

dy∗
− 1

)
du


×

 +∞∫
0

e−βu
(

(1 + y)
δ − (1 + y∗)

δ
)
du− (1 + y∗)

δ−1

+∞∫
0

e−βu (y− y∗)du

 . (A149)

Note that  +∞∫
0

e−βu
(

(1 + y)
δ − (1 + y∗)

δ
)
du− (1 + y∗)

δ−1

+∞∫
0

e−βu (y− y∗)du


= (1 + y∗)

δ

 +∞∫
0

e−βu

((
1 + y

1 + y∗

)δ
−
(

1 + y

1 + y∗

))
du


= (1 + y∗)

δ

 +∞∫
0

e−βu
(

1 + y

1 + y∗

)((
1 + y

1 + y∗

)δ−1

− 1

)
du

≥ 0 (A150)

for y≥ y∗and δ≥ 1. Since dy
dy∗ = dn3

dn∗3
and

dn3

dn∗3
− 1 =

(pn + qnn3)
(

1−S (n∗3, n
2
3)−n3−S (n3, n

∗
3)
(

2 + Qn

pn
S (n∗3, n

2
3)
))

(pn + qnn∗3) (1−S (n∗3, n
2
3)−n∗3)

, (A151)

so that
+∞∫
0

due−βu
(
dy

dy∗
− 1

)
=

+∞∫
0

due−βu

(
dn3
du
− (pn + qnn

∗
3) (1−S (n∗3, n

2
3)−n∗3)

(pn + qnn∗3) (1−S (n∗3, n
2
3)−n∗3)

)
. (A152)
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Now,

+∞∫
0

due−βu
(
dn3

du
− (pn + qnn

∗
3)
(
1−S

(
n∗3, n

2
3

)
−n∗3

))

= −n∗3 +β

+∞∫
0

n3due
−βu− 1

β
(pn + qnn

∗
3)
(
1−S

(
n∗3, n

2
3

)
−n∗3

)
≤ n∗3−n∗3−

1

β
(pn + qnn

∗
3)
(
1−S

(
n∗3, n

2
3

)
−n∗3

)
. (A153)

where n∗3 = limu→+∞ (n3) is the limiting customer base indicator of the new entrant firm, for given

values of n2
3 and n∗3. According to (47), n∗3 is the solution to the following equation

1−S
(
n∗3, n

2
3

)
−n∗3−S (n∗3, n

∗
3)

(
2 +

Qn

pn

S
(
n∗3, n

2
3

))
= 0. (A154)

Note that the left hand-side of (A153) is non-positive for any β ≤ β∗, where

β∗ = inf
n23,,n

∗
3≥n

2
3

(
(pn + qnn

∗
3) (1−S (n∗3, n

2
3)−n∗3)

n∗3−n∗3

)

= inf
n23,,n

∗
3≥n

2
3

pn + qnn
∗
3 + (pn + qnn

∗
3)
S (n∗3, n

∗
3)
(

2 + Qn

pn
S (n∗3, n

2
3)
)

n∗3−n∗3

 . (A155)

Now, consider the expression

G = (pn + qnn
∗
3)
S (n∗3, n

∗
3)

n∗3−n∗3
=

qn (pn + qnn
∗
3)

(pn + qnn
∗
3)− (pn + qnn∗3)

(
pn

Qn

((
pn + qnn

∗
3

pn + qnn∗3

)δ
− 1

))

=
pn

δ

(
pn+qnn

∗
3

pn+qnn∗3

)δ
− 1(

pn+qnn∗3
pn+qnn∗3

)
− 1

=
pn

δ

(
(1 +F )

δ − 1

F

)
, (A156)

where

F =

(
pn + qnn

∗
3

pn + qnn∗3

)
− 1≥ 0. (A157)

Note that

dG

dn∗3
=
pn

δ

δ (1 +F )
δ−1

F −
(

(1 +F )
δ − 1

)
F 2

 dF

dn∗3

=
pn

δ

(
1 + (δ− 1) (1 +F )

δ−1
F − (1 +F )

δ−1

F 2

)
dF

dn∗3

=
pn

δ

(1 +F )
δ−1
(

1

(1+F )δ−1 + (δ− 1)F − 1
)

F 2

 dF

dn∗3
. (A158)
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Since 1

(1+F )δ−1 + (δ− 1)F − 1 is an increasing function of F for F ≥ 0, the smallest value for this

expression is 0 (reached at F = 0). Thus, the sign of dG
dn∗3

is the same as the sign of dF
dn∗3

. Now,

dF

dn∗3
=
q
dn∗3
dn∗3

(pn + qnn
∗
3)− qn(pn + qnn

∗
3)

(pn + qnn∗3)2
=
qn (pn + qnn

∗
3)

(pn + qnn∗3)
2

(
(pn + qnn

∗
3)dn∗3

(pn + qnn
∗
3)dn∗3

− 1

)
. (A159)

Using (A154), we get

0 = − pn

pn + qnn∗3

(
1 +

Qn

pn

S
(
n∗3, n

2
3

))
− dn

∗
3

dn∗3

−
(

pn

pn + qnn
∗
3

dn∗3
dn∗3
− pn

pn + qnn∗3

)(
1 +

Qn

pn

S (n∗3, n
∗
3)

)(
2 +

Qn

pn

S
(
n∗3, n

2
3

))
−Qn

pn

S (n∗3, n
∗
3)

pn

pn + qnn∗3

(
1 +

Qn

pn

S
(
n∗3, n

2
3

))
, (A160)

or

(pn + qnn
∗
3)dn∗3

(pn + qnn
∗
3)dn∗3

− 1 =
− (pn + qnn

∗
3)− pn

(
1 + Qn

pn
S (n∗3, n

∗
3)
)(

1 + Qn

pn
S (n∗3, n

2
3)
)

pn + qnn
∗
3 + pn

(
1 + Qn

pn
S (n∗3, n

∗
3)
)(

2 + Qn

pn
S (n∗3, n

2
3)
) ≤ 0, (A161)

so that dG
dn∗3
≤ 0. Then,

β∗ = inf
n23,n

∗
3≥n

2
3

(
pn + qnn

∗
3 +G

(
2 +

Qn

pn

S
(
n∗3, n

2
3

)))
≥ inf

n23,n
∗
3≥n

2
3

(pn + qnn
∗
3) + inf

n23,,n
∗
3≥n

2
3

(
G

(
2 +

Qn

pn

S
(
n∗3, n

2
3

)))
≥ pn + pn inf

n23,n
∗
3≥n

2
3

(
2 +

Qn

pn

S
(
n∗3, n

2
3

))
= 3pn, (A162)

where we have used monotonicity of G and S functions. Thus, any β ≤ 3pn also satisfies β ≤ β∗.

Thus, A is a non-increasing function of n∗3 for β ≤ 3pn. �

Lemma A2

For β ≤ 3pn, B is a non-decreasing function of n∗3.

Proof

From (A146),

B (n∗3) =

1 + (n∗3 +S (n∗3, n
2
3)− 1)

Qn

β
+ pn

β2
+∞∫
0
e−βuS(n3,n∗3)du


(pn + qnn∗3)δ

=
1

(pn + qnn∗3)δ
+
Qn

β

(n∗3 +S (n∗3, n
2
3)− 1)

(pn + qnn∗3)δ
+

pn (n∗3 +S (n∗3, n
2
3)− 1)

β2(pn + qnn∗3)δ
+∞∫
0

e−βuS (n3, n∗3)du

. (A163)
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Now,

d

dn∗3

(
n∗3 +S (n∗3, n

2
3)− 1

(pn + qnn∗3)δ

)
=

d

dn∗3

(
n∗3− pn

Qn
− 1

(pn + qnn∗3)δ

)
=

(pn + qnn
∗
3)δ − δqn(pn + qnn

∗
3)δ−1

(
n∗3− pn

Qn
− 1
)

(pn + qnn∗3)2δ

=
1

(pn + qnn∗3)δ+1
(qnn

∗
3 (1− δ) + 2pn + δq) , (A164)

and

d

dn∗3

 pn (n∗3 +S (n∗3, n
2
3)− 1)

β2(pn + qnn∗3)δ
+∞∫
0

e−βuS (n3, n∗3)du

=
pn

β2
+∞∫
0

e−βuS (n3, n∗3)du

d

dn∗3

(
n∗3 +S (n∗3, n

2
3)− 1

(pn + qnn∗3)δ

)

+
pn

β2

(
n∗3 +S (n∗3, n

2
3)− 1

(pn + qnn∗3)δ

)
d

dn∗3

 1
+∞∫
0

e−βuS (n3, n∗3)du

 . (A165)

Further,

d

dn∗3

 1
+∞∫
0

e−βuS (n3, n∗3)du

=−

d
dn∗3

(
+∞∫
0

e−βuS (n3, n
∗
3)du

)
(

+∞∫
0

e−βuS (n3, n∗3)du

)2

=

+∞∫
0

e−βu
((

pn
pn+qnn∗3

)
−
(

pn
pn+qnn3

)
dn3
dn∗3

)(
1 + Qn

pn
S (n3, n

∗
3)
)
du(

+∞∫
0

e−βuS (n3, n∗3)du

)2 . (A166)

As (47) indicates,

dn3(t)

dn3(t∗)
=

(pn + qnn3(t))
(

1−S (n3(t∗), n3(t2))−n3(t)−S (n3(t), n3(t∗))
(

2 + Qn

pn
S (n3(t∗), n3(t2))

))
(pn + qnn3(t∗)) (1−S (n3(t∗), n3(t2))−n3(t∗))

.

(A167)

Using (A167), we get

+∞∫
0

e−βu
((

pn

pn + qnn3

)
dn3

dn∗3
−
(

pn

pn + qnn∗3

))(
1 +

Qn

pn

S (n3, n
∗
3)

)
du

=

(
pn

pn + qnn∗3

)

×
+∞∫
0

e−βudu

n∗3−n3−S (n3, n
∗
3)
(

2 + Qn

pn
S (n∗3, n

2
3)
)

(1−S (n∗3, n
2
3)−n∗3)

(1 +
Qn

pn

S (n3, n
∗
3)

)
, (A168)
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and

d

dn∗3

 1
+∞∫
0

e−βuS (n3, n∗3)du

 =

(
pn

pn + qnn∗3

)

×

+∞∫
0

e−βu
(
n3(t)−n∗3+S(n3(t),n∗3)(2+Qn

pn
S(n∗3,n23))

(1−S(n∗3,n23)−n∗3)

)(
1 + Qn

pn
S (n3, n

∗
3)
)
du(

+∞∫
0

e−βuS (n3, n∗3)du

)2

≥ 0. (A169)

Putting these results together, we get

dB (n∗3)

dn∗3
= − δqn

(pn + qnn∗3)
δ+1

+

Qn

β
+

pn

β2
+∞∫
0

e−βuS (n3, n∗3)du

 (qnn
∗
3 (1− δ) + 2pn + δqn)

(pn + qnn∗3)δ+1

+
pn

β2

(
n∗3 +S (n∗3, n

2
3)− 1

(pn + qnn∗3)δ

)
d

dn∗3

 1
+∞∫
0

e−βuS (n3, n∗3)du



≥ − δqn

(pn + qnn∗3)
δ+1

+

Qn

β
+

pn

β2
+∞∫
0

e−βuS (n3, n∗3)du

 (qn∗3 (1− δ) + 2pn + δqn)

(pn + qnn∗3)δ+1

≥ − δqn

(pn + qnn∗3)
δ+1

+

(
Qn

β
+
pn

β

)
(qnn

∗
3 (1− δ) + 2pn + δqn)

(pn + qnn∗3)δ+1

≥ − Qn

(pn + qnn∗3)
δ+1

+

(
Qn

β
+
pn

β

)
(qn + 2pn)

(pn + qnn∗3)δ+1
≥ 0 (A170)

for any β ≤ (Qn+pn)(qn+2pn)

Qn
, in particular, for β ≤ 3pn. Note that in deriving (A170) we have used

(A169), as well as S (n3, n
∗
3)≤ 1 and n∗3 ≤ 1.

�

Thus, the second derivative of the profit function at any local optimum is non-positive - the

profit function is quasiconcave.

Proof of Proposition 10

Let ρ= πoθ
πn

and define Tm as a set of local unconstrained maxima of Π1 (t1, t2):

Tm =

(
0< t< tmax|

∂Π1 (t1, t2)

∂t1
|t1=t = 0,

∂2Π1 (t1, t2)

∂(t1)2
|t1=t ≤ 0

)
. (A171)
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The statement of the Proposition will be established if we show that

∂t

∂ρ
≥ 0 (A172)

for any t∈ Tm. Consider an arbitrary t∗ ∈ Tm. Then,

∂Π1 (t1, t2)

∂t1
|t1=t∗ = 0, (A173)

and

∂2Π1 (t1, t2)

∂t1∂ρ
|t1=t∗ +

∂t∗

∂ρ

∂2Π1 (t1, t2)

∂(t1)2
|t1=t∗ = 0.

Consider t∗ ≥ t2 (the proof for the case of t∗ ≤ t2 follows similar steps). Then,

∂Π1 (t1, t2)

∂t1
|t1=t∗ = 0⇔ ρ

 +∞∫
t∗

e−βt
(
∂o13(t, t∗, t2)

∂t∗

)
dt

+

 +∞∫
t∗

e−βt
(
∂n1(t, t∗, t2)

∂t∗

)
dt

= 0,

(A174)

and

∂2Π1 (t1, t2)

∂(t1)2
|t1=t∗ ≤ 0⇔ ρ

 +∞∫
t∗

e−βt
(
∂2o13(t, t∗, t2)

∂(t∗)2

)
dt− e−βt

∗
(
∂o13(t, t∗, t2)

∂t∗
|t=t∗

)
+

 +∞∫
t∗

e−βt
(
∂2n1(t, t∗, t2)

∂(t∗)2

)
dt− e−βt

∗
(
∂n1(t, t∗, t2)

∂t∗
|t=t∗

)
≤ 0, (A175)

Differentiating (A174) with respect to ρ, we get +∞∫
t∗

e−βt
(
∂o13(t, t∗, t2)

∂t∗

)
dt

+
∂t∗

∂ρ

(
∂2Π1 (t1, t2)

∂(t1)2
|t1=t∗

)
= 0. (A176)

Note that, as (A174) indicates, +∞∫
t∗

e−βt
(
∂o13(t, t∗, t2)

∂t∗

)
dt

=−1

ρ

 +∞∫
t∗

e−βt
(
∂n1(t, t∗, t2)

∂t∗

)
dt

 . (A177)

Now, noting that n3(t) for t ≥ t∗ is actually a function of u = t − t∗ and a parameter n3(t∗),

n3(t) = f (u,n3(t∗)), we can re-express the integral on the right-hand side of (A174) as

+∞∫
t∗

e−βt
(
∂n1(t, t∗, t2)

∂t∗

)
dt
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= e−βt
∗

+∞∫
0

e−βu
(
∂n1

∂u

)
du

= e−βt
∗ dn3(t∗)

dt∗

+∞∫
0

e−βu
(
∂S (n3(t), n3(t∗))

∂n3(t∗)
+
∂S (n3(t), n3(t∗))

∂n3(t)

dn3(t)

dn3(t∗)

)
du, (A178)

where we have dropped the notation for a fixed value of t2. Note that the second term in brackets

in (A178) contains the limit of the ratio of the change of the function S at any point t to the change

in the function value n3(t). Strictly speaking, we need to use the variance notation
δS(n3(t),n3(t∗))

δn3(t)

here to denote such limit - however, we retain the “partial derivative” notation for simplicity. Using

(28), we get

∂S (n3(t), n3(t∗))

∂n3(t∗)
=− pn

pn + qnn3(t∗)

(
Qn

pn

S (n3(t), n3(t∗)) + 1

)
, (A179)

and

∂S (n3(t), n3(t∗))

∂n3(t)
=

pn

pn + qnn3(t)

(
Qn

pn

S (n3(t), n3(t∗)) + 1

)
. (A180)

Recall that from (A167),

dn3(t)

dn3(t∗)
=

(pn + qnn3(t))
(

1−S (n3(t∗), n3(t2))−n3(t)−S (n3(t), n3(t∗))
(

2 + Qn

pn
S (n3(t∗), n3(t2))

))
(pn + qnn3(t∗)) (1−S (n3(t∗), n3(t2))−n3(t∗))

.

(A181)

Substituting (A179)-(A181) into (A178), we get

+∞∫
t∗

e−βt
(
∂n1(t, t∗, t2)

∂t∗

)
dt

= e−βt
∗ dn3(t∗)

dt∗
pn

pn + qnn3(t∗)

+∞∫
0

e−βudu

(
Qn

pn

S (f(u,n3(t∗)), n3(t∗)) + 1

)

×

n3(t∗)− f(u,n3(t∗))−S (f(u,n3(t∗)), n3(t∗))
(

2 + Qn

pn
S (n3(t∗), n3(t2))

)
1−S (n3(t∗), n3(t2))−n3(t∗)

 . (A182)

Now, since ∂n3(t∗)
∂t∗ > 0, 1 − S (n3(t∗), n3(t2)) − n3(t∗) > 0 (follows from (47)), and n3(t∗) −

f(u,n3(t∗))− S (f(u,n3(t∗)), n3(t∗))
(

2 + Qn

pn
S (n3(t∗), n3(t2))

)
≤ 0 for any u ≥ 0 (equality is true

only at u = 0), integrals in (A182) are negative. Thus, the left-hand side of (A177) is positive.

Combining this result with (A175) and (A176), we establish that ∂t∗

∂ρ
≥ 0.
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Proof of Proposition 11

a) Without loss of generality, consider the setting in which t1 ≥ t2. Then,

Π̂1 (t1, t2) =
Π1 (t1, t2)

πn
= ρΠo (t1, t2) + Πn (t1, t2) , (A183)

where ρ= θπo
πn

, and

Πo (t1, t2) =

t2∫
0

e−βto11(t)dt+

t1∫
t2

e−βto12(t)dt+

+∞∫
t1

e−βto13(t)dt,Πn (t1, t2) =

+∞∫
t1

e−βtS (n3(t), n3(t1))dt. (A184)

Similarly, for firm 2 we get, after some algebra,

Π̂2 (t1, t2) =
Π2 (t1, t2)

πn
= ρΠo (t1, t2) + Πn (t1, t2)

(
1 +

Qn

pn

S (n3(t1), n3(t2))

)

+
e−βt1

β
S (n3(t1), n3(t2)) +

t1∫
t2

e−βtS (n3(t), n3(t2))dt, (A185)

where ρ= (1−θ)πo
πn

.

Further, the first derivative of (A183) with respect to the adoption time t1 is

∂Π̂1

∂t1
= ρ

 +∞∫
t1

e−βt
∂o13(t)

∂t1
dt

+

 +∞∫
t1

e−βt
∂S (n3(t), n3(t1))

∂t1
dt


= (1− ρ)e−βt1

dn3(t1)

dt1

pn

pn + qnn3(t1)

+∞∫
0

due−βu
(

1 +
Qn

pn

S (n3(u), n3(t1))

)

×

n3 (t1)−n3(u)−S (n3(u), n3 (t1))
(

2 + Qn

pn
S (n3(t1), n3(t2))

)
1−S (n3(t1), n3(t2))−n3 (t1)


−ρe−βt1 dn3(t1)

dt1

pn

pn + qnn3(t1)

×
+∞∫
0

due−βu

1−S (n3(t1), n3(t2))−n3(u)−S (n3(u), n3 (t1))
(

2 + Qn

pn
S (n3(t1), n3(t2)

)
1−S (n3(t1), n3(t2))−n3 (t1)


×
(

1 +
Qn

pn

S (n3(u), n3(t1)) +
pn + qnn3(u)

pn

)
, (A186)

where we have used (A141) and (A142). Similarly, the first derivative of (A185) with respect to t2

is given by

∂Π̂2

∂t2
= ρ

∂Πo (t1, t2)

∂t2
+
∂Πn (t1, t2)

∂t2

(
1 +

Qn

pn

S (n3(t1), n3(t2))

)
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+

(
Πn (t1, t2)

Qn

pn

+
e−βt1

β

)(
1 +

Qn

pn

S (n3(t1), n3(t2))

)
dn3 (t2)

dt2

×
(

pn

pn + qnn3(t1)

dn3(t1)

dn3(t2)
− pn

pn + qnn3(t2)

)

+
dn3 (t2)

dt2

t1∫
t2

e−βt
(

pn

pn + qnn3(t)

dn3(t)

dn3(t2)
− pn

pn + qnn3(t2)

)

×
(

1 +
Qn

pn

S (n3(t), n3(t2))

)
dt. (A187)

Further,

∂Πo (t1, t2)

∂t2
=

t1∫
t2

e−βt
∂o12(t)

∂t2
dt+

+∞∫
t1

e−βt
∂o13(t)

∂t2
dt=

dn3 (t2)

dt2

t1∫
t2

dte−βt

×
(
− dn3(t)

dn3(t2)
−
(

pn

pn + qnn3(t)

dn3(t)

dn3(t2)
− pn

pn + qnn3(t2)

)(
1 +

Qn

pn

S (n3(t), n3(t2))

))

+
dn3 (t2)

dt2

+∞∫
t1

dte−βt

×
(
−1−

(
pn

pn + qnn3(t)

)(
1 +

Qn

pn

S (n3(t), n3(t2)

)(
2 +

Qn

pn

S (n3(t1), n3(t2))

))

× dn3(t)

dn3(t1)

dn3(t1)

dn3(t2)
+
dn3 (t2)

dt2

+∞∫
t1

e−βt
(

pn

pn + qnn3(t1)

dn3(t1)

dn3(t2)

)

×
(

2 +
Qn

pn

S (n3(t1), n3(t2))

)(
1 +

Qn

pn

S (n3(t), n3(t1)

)
dt

−dn3 (t2)

dt2

+∞∫
t1

e−βt
(

1 +
Qn

pn

S (n3(t), n3(t1))

)

×
(

pn

pn + qnn3(t1)

dn3(t1)

dn3(t2)
− pn

pn + qnn3(t2)

)(
1 +

Qn

pn

S (n3(t1), n3(t2))

)
dt

= −dn3 (t2)

dt2
e−βt2

+∞∫
0

e−βu
dn3(u)

dn3(t2)
dt

+
dn3 (t2)

dt2

(
pn

pn + qnn3(t2)

)
e−βt2

+∞∫
0

e−βu
(

1 +
Qn

pn

S (n3(u), n3(t2)

)
du

−dn3 (t2)

dt2
e−βt2

+∞∫
0

e−βu
(

pn

pn + qnn3(u)

dn3(u)

dn3(t2)

)(
1 +

Qn

pn

S (n3(u), n3(t2)

)
du

−dn3 (t2)

dt2
e−βt1

+∞∫
0

e−βu
(

pn

pn + qnn3(u)

dn3(u)

dn3(t1)

dn3(t1)

dn3(t2)

)

×
(

1 +
Qn

pn

S (n3(u), n3(t2)

)(
1 +

Qn

pn

S (n3(t1), n3(t2))

)
du
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+
dn3 (t2)

dt2
e−βt1

+∞∫
0

e−βu
(

pn

pn + qnn3(t1)

dn3(t1)

dn3(t2)

)(
1 +

Qn

pn

S (n3(u), n3(t1)

)
dt, (A188)

with

dn3(t1)

dn3(t2)
=

(pn + qnn3(t1))(1−n3(t1)−S (n3(t1), n3(t2)))

(pn + qnn3(t2))(1−n3(t2))
, (A189)

and

dn3(u)

dn3(t1)
=

(pn + qnn3(u))
(

1−n3(u)−S (n3(t1), n3(t2))−S (n3(u), n3(t1))
(

2 + Qn

pn
S (n3(t1), n3(t2))

))
(pn + qnn3(t1))(1−n3(t1)−S (n3(t1), n3(t2)))

,

(A190)

for u≥ 0. Also,

∂Πn (t1, t2)

∂t2
=
dn3(t1)

dn3(t2)

dn3(t2)

dt2
e−βt1

+∞∫
0

e−βu
(

pn

pn + qnn3(u)

dn3(u)

dn3(t1)
− pn

pn + qnn3(t1)

)

×
(
Qn

pn

S (n3(u), n3(t1)) + 1

)
du. (A191)

We would like to establish conditions under which ∂Π̂1
∂t1

(t1, t2)≤ 0 for all t1 ≥ t2. Now, according to

(A186) the sign of ∂Π̂1
∂t1

is the same as the sign of

(1− ρ)

+∞∫
0

due−βu
(

1 +
Qn

pn

S (n3(u), n3(t1))

)

×
(
n3 (t1)−n3(u)−S (n3(u), n3 (t1))

(
2 +

Qn

pn

S (n3(t1), n3(t2))

))

−ρ
+∞∫
0

due−βu
(

1 +
Qn

pn

S (n3(u), n3(t1))

)

×
(

1−S (n3(t1), n3(t2))−n3(u)−S (n3(u), n3 (t1))

(
2 +

Qn

pn

S (n3(t1), n3(t2)

))

−β ρ
pn

+∞∫
0

due−βu (n3 (u)−n3(t1))

≤ (1− ρ)

+∞∫
0

due−βu
(

1 +
Qn

pn

S (n3(u), n3(t1))

)

×
(
n3 (t1)−n3(u)−S (n3(u), n3 (t1))

(
2 +

Qn

pn

S (n3(t1), n3(t2))

))
, (A192)
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which is non-positive for ρ≤ 1. In a similar fashion, ρ≤ 1 implies that ∂Π̂2
∂t2

(t1, t2)≤ 0 for all t2 ≥ t1.

The two conditions together imply that

∂Π̂1

∂t1
(0,0)≤ 0,

∂Π̂2

∂t2
(0,0)≤ 0, (A193)

so that the adoption Nash equilibrium is t∗1 = t∗2 = 0.

b) Now,

∂Π̂1

∂t1
=
dn3(t1)

dt1

pne
−βt1X (n3 (t1) , n3 (t2))

(pn + qnn3(t1)) (1−S (n3(t1), n3(t2))−n3 (t1))
, (A194)

where dn3(t1)

dt1
≥ 0, 1−S (n3(t1), n3(t2))−n3 (t1)> 0 and

X (a, b) = (1− ρ)

+∞∫
0

due−βu
(

1 +
Qn

pn

S(n3(u), a)

)(
a−n3(u)−S (n3(u), a)

(
2 +

Qn

pn

S (a, b)

))

−ρ
+∞∫
0

due−βu
(

1 +
Qn

pn

S (n3(u), a) +
pn + qnn3(u)

pn

)

×
(

1−S (a, b)−n3(u)−S (n3(u), a)

(
2 +

Qn

pn

S (a, b)

))
. (A195)

Further, in order to compute the limit of t1 = tmax and t2 = tmax, we set a= b and let a= 1−ε with

ε << 1. Then, starting at n3(0) = a, and noting that n3(u)− a is of the order of ε for all u≥ 0, we

get

S (n3(u), a) =
pn

Qn

((
pn + qnn3(u)

pn + qna

)Qn
qn

− 1

)
=
pnn3(u)

pn + qna
+ o (ε) , (A196)

where

n3(u) = n3(u)− a. (A197)

Denoting n̂3(u) = n3(u)

pn+qn
, we have the evolution equation for n̂3(u) as

dn̂3

du
= (1 + n̂3) (ε− (3pn + qn)n̂3(u)) = ε− (3pn + qn)n̂3(u), (A198)

where we have only kept terms linear in ε. Then,

n̂3(u) =
ε

3pn + qn

(
1− e−(3pn+qn)u

)
, (A199)
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so that

n3(u) = a+
ε(pn + qn)

3pn + qn

(
1− e−(3pn+qn)u

)
, (A200)

and

S (n3(u), a) =
εp

3pn + qn

(
1− e−(3pn+qn)u

)
, (A201)

where, as before, we neglected terms of the order o (ε). Combining these results, we get

lim
a→1

X (a,a) =

[
(ρ− 1)

qn + 3pn

β
− ρ

(
2 +

qn

pn

)]
ε

β+ 3pn + qn

≥ 0

iff β < pn(qn+3pn)

qn+2pn
and ρ≥ 1

1− β(2pn+qn)
pn(3pn+qn)

. In a similar way, ∂Π̂2
∂t2

is positive for high values of both t1 and

t2 iff β < pn(qn+3pn)

qn+2pn
and ρ≥ 1

1−β(2pn+qn)
p(3pn+qn)

. Thus, both firms delay their adoption as much as possible

when both ρ and ρ exceed 1

1− β(2pn+qn)
pn(3pn+qn)

> 1, provided that, in addition, β < pn(qn+3pn)

qn+2pn
.

c) We would like to establish sufficient conditions guaranteeing that t∗1 = tmax, t∗2 = 0. As it follows

from (A194) and (A195), for the first incumbent we need to evaluate

lim
a→a∗

X (a,0)

1−S (a,0)− a
, (A202)

where 1 − S (a∗,0) − a∗ = 0. Now, consider a such that 1 − S (a,0) − a = ε with ε << 1. Then,

similarly to (A200) and (A201), we get

n3(u) = a+
ε(pn + qna

∗)

3pn + qna∗+QnS (a∗,0)

(
1− e−(3pn+qna

∗+QnS(a∗,0))u
)
, (A203)

and

S (n3(u), a) =
εpn

3pn + qna∗+QnS (a∗,0)

(
1− e−(3pn+qna

∗+QnS(a∗,0))u
)
. (A204)

Thus, keeping terms linear in ε, we get

lim
a→a∗

X (a,0) =

[
(ρ− 1)

3pn + qna
∗+QnS (a∗,0)

β
− ρ

(
2 +

qna
∗

pn

)]
ε

β+ 3pn + qna∗+QnS (a∗,0)
≥ 0

if and only if β <
pn(qna

∗+QnS(a∗,0)+3pn)

qna∗+2pn
and ρ ≥ 1

1− β(2pn+qna∗)
pn(3pn+qna∗+QnS(a∗,0))

. Further, in the case of

t1→+∞, the first-order condition for the adoption time of the second incumbent is

∂Π̂2

∂t2
= ρ

∂Πo (t1, t2)

∂t2
−

+∞∫
0

e−βu (pn +QnS (n3(u),0))
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×
(
n3(u) +S (a∗,0) +S (n3(u), a∗)

(
2 +

Qn

pn

S (a∗,0)

))
du

≤
+∞∫
0

e−βudu (pn +QnS (n3(u),0))

×
(
ρ (n3(u)−S (n3(u),0))−n3(u)−S (a∗,0)−S (n3(u), a∗)

(
2 +

Qn

pn

S (a∗,0)

))
≤ 0,

for ρ≤ 1.
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Appendix B: Estimates of FX Trading Volumes and Their Sources

Below we report the data and its sources for the FX example we used to estimate the diffusion

parameters.

In particular, Table B1 shows the estimates for the average daily trading volumes for the “new

entrant”, Currenex, while Tables B2 and B3 show these for the Atriax (“major” incumbent) and

the FXAll (“minor” incumbent).

Date Average Daily Trading Volume, $bn Source

Oct. 2000 0.5 Reuters News, 07/13/2001

Jul. 2001 1.0 Reuters News, 07/13/2001

Jul. 2002 1.5 Reuters News, 07/15/2002

Apr. 2003 3.5 Reuters News, 04/14/2003

Feb. 2004 4.5 Dow Jones International News, 02/20/2004

Mar. 2005 5.0 Reuters News, 03/02/2005

Feb. 2007 40.0 Dow Jones Capital Markets, 02/26/2007

Nov. 2010 250.0 Global Finance, 01/01/2011

Table B1 The average daily trading volumes for the Currenex: estimates and their sources.

Date Average Daily Trading Volume, $ bn Source

Oct. 2001 0.22 Financial News, 10/29/2001

Apr. 2002 0.4* American Banker, 04/26/2002

Table B2 The average daily trading volumes for the Atriax: estimates and their sources. *The estimate for

Apr. 2002 was obtained by averaging the lower estimate (0.3bn) and the upper estimate (0.5bn)
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Date Average Daily Trading Volume, $ bn Source

Aug. 2001 0.2 Reuters News, 03/15/2002

Apr. 2002 1.5 Reuters News, 05/04/2002

Jan. 2003 4 Reuters News, 04/14/2003

Apr. 2003 7.5 Reuters News, 04/14/2003

Jul. 2003 10.6 Reuters News, 07/09/2003

Nov. 2003 13.0 Financial Times, 12/03/2003

Mar. 2004 18.0 Financial Times, 04/14/2004

Oct. 2004 25.0 Financial Times, 10/28/2004

Dec. 2004 30.0 Reuters News, 01/10/2005

Mar. 2005 35.0 Reuters News, 03/14/2005

Oct. 2005 43.0 Reuters News, 10/10/2005

May. 2006 54.0 Reuters News, 05/05/2006

Nov. 2006 64.0 Reuters News, 11/06/2006

Oct. 2007 90.0 Reuters News, 10/04/2007

Mar. 2010 100.0 Dow Jones, 03/26/2010

Nov. 2010 125.0 Global Finance, 01/01/2011

Table B3 The average daily trading volumes for the FXAll: estimates and their sources.


