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Abstract

The spatial distribution of dengue and its vectors (spp. Aedes) may be the widest it has ever

been, and projections suggest that climate change may allow the expansion to continue.

However, less work has been done to understand how climate variability and change affects

dengue in regions where the pathogen is already endemic. In these areas, the waxing and

waning of immunity has a large impact on temporal dynamics of cases of dengue haemor-

rhagic fever. Here, we use 51 years of data across 72 provinces and characterise spatiotem-

poral patterns of dengue in Thailand, where dengue has caused almost 1.5 million cases

over the last 30 years, and examine the roles played by temperature and dynamics of immu-

nity in giving rise to those patterns. We find that timescales of multiannual oscillations in den-

gue vary in space and time and uncover an interesting spatial phenomenon: Thailand has

experienced multiple, periodic synchronisation events. We show that although patterns in

synchrony of dengue are similar to those observed in temperature, the relationship between

the two is most consistent during synchronous periods, while during asynchronous periods,

temperature plays a less prominent role. With simulations from temperature-driven models,

we explore how dynamics of immunity interact with temperature to produce the observed

patterns in synchrony. The simulations produced patterns in synchrony that were similar to

observations, supporting an important role of immunity. We demonstrate that multiannual

oscillations produced by immunity can lead to asynchronous dynamics and that synchrony

in temperature can then synchronise these dengue dynamics. At higher mean
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temperatures, immune dynamics can be more predominant, and dengue dynamics more

insensitive to multiannual fluctuations in temperature, suggesting that with rising mean tem-

peratures, dengue dynamics may become increasingly asynchronous. These findings can

help underpin predictions of disease patterns as global temperatures rise.

Introduction

The spatiotemporal dynamics of animal populations, including fluctuations and correlations

in amplitudes and phases, has been an important area of research in ecology and the physical

sciences for decades. Empirical observations of patterns in population dynamics have pro-

pelled theory forward leading to a better understanding of predator–prey interactions [1,2],

allee effects [3], and the interactions between deterministic and stochastic elements of systems

[4,5]. While a rich literature exists on synchronisation of systems and their causes [6], there is

little empirical evidence for periodic oscillations or fluctuations in spatial synchrony, particu-

larly in epidemiology, where identification of long-term patterns in infectious disease dynam-

ics could be critical for the success of health interventions. For instance, knowing when

pathogen population levels are particularly low concurrently across a region presents

improved opportunities for pathogen elimination [7]. Likewise, anticipation of global epidem-

ics may assist in the structured allocation of resources, such as vaccines, across space and time.

While regular spatial synchrony in other wildlife species has been described (e.g., [8–12]), how

the degree of synchrony may vary over time has received less attention [13–15]. Here, we

describe regular periodic synchronisation in the dynamics of dengue haemorrhagic fever

(DHF) in Thailand over a 51-year interval.

Dengue virus (DENV) is a mosquito-borne virus estimated to infect 100 million people

each year [16,17]. Four viral serotypes (DENV1–4) exist. Primary infection with a specific

serotype confers long-term immunity against subsequent infections of that same serotype, and

there is strong empirical support for short-term, temporary protection against other serotypes

[18–21]. Additionally, other mechanisms such as antibody-dependent enhancement also

potentially mediate the dynamics of incidence [22–24].

Multiannual patterns in dengue observed in any location arise as the result of a complex

interplay of various factors, including the following: climate, through its effect on the vector

and transmission efficiency; predator–prey dynamics between the virus and the host (charac-

terised by phase-shifted fluctuations in the predator and prey abundances); the interactions

between different serotypes and strains of dengue; spatial patterns in host structure, dynamics,

and movement; and viral factors [25–28]. Much work has gone into disentangling the roles of

extrinsic drivers, such as climate, and intrinsic factors in shaping dynamics across many dis-

ease systems and using a range of approaches [29–34]. In ascribing drivers to interannual pat-

terns in dengue dynamics, studies have often viewed extrinsic factors and intrinsic factors,

particularly the dynamics of immunity, as competing alternative hypotheses [26,35–41]. How-

ever, immunity clearly provides a negative feedback where increases in transmission due to

favourable climatic conditions can lead to decreases in transmission in future time periods

through the protective effects of immunity, leading to multiannual dynamics in many systems

[30,42].

Many of the same factors involved in generating multiannual dynamics can also produce

synchrony across locations [6]. Again, both intrinsic (specifically host movement between

locations) and extrinsic (environmental; the “Moran effect,” where correlations between
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geographically separate populations are driven by correlations in their respective environ-

ments) have the potential to not only synchronise dynamics across space, but also produce var-

iation in the degree of synchrony over time [13–15]. Empirical studies have tended to focus on

climate [40,41]. van Panhuis and colleagues [40], for instance, detected synchronous dengue

outbreaks across Southeast Asia in 1997 to 1998, a period of elevated temperatures and a

strong El Niño event.

The environment, and especially temperature, is a priori expected to be significant in shap-

ing the dynamics of dengue [43–45]. Through its effect on metabolic rates, temperature

strongly influences many mosquito life history traits (e.g., biting rates, population growth

rates, mortality rates; [28,44]) and, therefore, their population dynamics [46]. Projections sug-

gest that increasing temperatures may expand the range in which dengue is efficiently trans-

mitted [47–49]. However, the impact of changing temperature regimes on dengue in locations

where the pathogen is already endemic is less well studied, and these areas, even in projections

to 2050 or 2080, comprise a majority of the world’s population at risk of dengue [47–49].

Here, we examine the spatiotemporal dynamics of dengue in Thailand between 1968 and

2018. We characterise multiannual cycles and uncover an interesting spatial phenomenon in

which Thailand has experienced periodic synchronisations of dengue incidence. In contrast to

previous studies, which tended to focus on either extrinsic or intrinsic drivers to explain

observed patterns, we hypothesise that immunity constitutes a strong dynamical filter neces-

sary to understand impacts of temperature on dengue. For this reason, we adapt a mechanistic,

temperature-dependent, 4-serotype dengue model to disentangle how temperature and

dynamics of immunity interact to generate periodic synchronisations. We focus on temporary

cross-protection between serotypes because of the clear empirical support, although there are

other mechanisms, such as antibody-dependent enhancement, that could conceivably also

play a role.

Results

Empirical patterns in multiannual cycles and synchrony

Multiannual cycles in dengue. Fig 1A shows a heatmap of the monthly number of dengue

cases by province over the 51 years, in which seasonal outbreaks are clear, but in which some

years (e.g., 1998 to 1999 or 2001) had larger outbreaks throughout the country than other

years. It is these latter multiannual patterns that we are interested in here. Specifically, we

focus on cyclical patterns with timescales between 1.5 and 5 years (i.e., patterns in which years

with larger than average outbreaks are separated by 1.5 to 5 years) because this range encom-

passes the timescales that have been previously reported for dengue dynamics (see section

“Materials and methods” for a more detailed rationale). To characterise multiannual cycles, we

applied continuous wavelet transforms (WTs). WTs quantify the importance of different time-

scales in a time series over time, and with them, time series can be reconstructed only using

the multiannual components of observed patterns. Reconstructions of the dengue time series

confirm the presence of distinct multiannual patterns (Fig 1B). We quantify which multiann-

ual timescale is most important in characterising dengue dynamics in each province and for

each point in time (the “dominant timescale”), revealing both that the dominant multiannual

timescale tends to change over time (varying between 1.5 and 4.5 years) and that at any given

point in time, the dominant timescales can differ substantially across provinces (S8b Fig in S1

Appendix). The presence of multiannual timescales has been previously observed [27,40], but

here, with the benefit of longer time series, we show that these change over time and space.

Synchrony in dengue. We estimate spatial synchrony in dengue cases using a range of

methods; we here focus on one approach, wavelet mean fields (WMFs; [50,51]), but provide
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details and results for the others in section “Perspectives on synchrony” in S1 Appendix.

WMFs measure synchrony as a function of both timescale and time; they indicate timescales

and time points at which both phases (the position in time on a cycle) and magnitude of oscil-

lations are consistent (or more synchronous) across provinces. The WMF for DHF cases

across Thailand describes a system that appears to fluctuate in and out of synchrony (Fig 2B),

results that are consistent with the travelling waves observed across Thailand [27] and South-

east Asia [40]. The synchrony in dengue is statistically significant at all times, meaning that

even when synchrony is lower (the whiter areas in Fig 2B), the degree of synchrony is still

1970 1980 1990 2000 2010

(a)

1970 1980 1990 2000 2010

(b)

Fig 1. Dengue multiannual cycles. Heatmaps of (a) ln number of cases and (b) reconstructions of time series using

multiannual components only, per province arranged from north (top) to south (bottom). To improve clarity, values

for each province were normalised to a mean of 0 and a standard deviation of 1 in both panels. Blues (respectively

reds) are lower (respectively higher) numbers, and whites correspond to the mean for each province. Edge effects in

the WTs may influence results before and after the vertical dashed lines in (b) (see section “Materials and methods”).

The underlying data are in S1 Data at https://github.com/UF-IDD/synchrony_dengue_figures. WT, wavelet transform.

https://doi.org/10.1371/journal.pbio.3001160.g001
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greater than would be expected in an asynchronous system. Furthermore, moments of greater

synchrony take place at different timescales. For example, while the synchrony event of the late

1980s occurs with a timescale of�2.2 years, the one taking place around the year 2000 has a

timescale of�4.1 years. These results are further corroborated using 4 additional approaches

to estimate synchrony (Fig 3); all methods describe a system that appears to fluctuate in and

out of synchrony (section “Perspectives on synchrony” in S1 Appendix). In all cases, periods of

greater synchrony appear to coincide with larger outbreaks (e.g., comparing S8a and S8c Fig in

S1 Appendix), as also previously observed [40,52].

Synchrony in temperature. Using the Global Historical Climatology Network version 2

and the Climate Anomaly Monitoring System (GHCN CAMS), we extracted a temperature

time series for each province and calculated the temperature WMF across provinces for the
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Fig 2. (Cross-)WMFs. WMFs for (a) temperature, and ln-transformed dengue cases from the (b) passive surveillance

data and (c) model output. Cross-WMFs between (d) temperature and ln-transformed dengue cases (data) and (e)

temperature and ln-transformed dengue model output. Model output assumes a mean cross-protection of 1 year (see

S13 Fig in S1 Appendix for results using other mean cross-protections). The same temperature time series are used for

both (d, e). Grey bars above panels indicate the times for which phases (in a–c) and phase difference angles (in d, e) are

highly consistent across provinces and statistically significant (see section “Material and methods”). In (a–c), higher

values in the mean fields indicate timescales and points in time where the phases are more consistent across provinces,

and where the amplitudes of oscillations are more correlated. In (d, e), higher values correspond to timescales and

points in time where the agreement between dengue and temperature is itself more consistent across provinces. S14

Fig in S1 Appendix shows which multiannual timescales dominate the (C) WMFs for each panel in this figure. Edge

effects in the WTs may influence results before and after the dashed lines (see section “Materials and methods”). The

underlying data are in S1 Data at https://github.com/UF-IDD/synchrony_dengue_figures. WMF, wavelet mean field;

WT, wavelet transform.

https://doi.org/10.1371/journal.pbio.3001160.g002
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same time period as the dengue passive surveillance data (1968 to 2018). As expected, syn-

chrony in temperature was significant at all points in time. The WMF for temperature

describes a system similar to that found in dengue, where temperature fluctuates in and out of

synchrony at multiannual timescales (Fig 2A; for results using alternative approaches, see S34
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Fig 3. Comparison of all measures of synchrony in dengue. For details on these measures of synchrony, see section

“Perspectives on synchrony” in S1 Appendix. The curve for WMFs was obtained by taking the mean WMF of Fig 2B

across multiannual timescales, for each point in time. To facilitate comparisons, all metrics were normalised to have a

mean of 0 and standard deviation of 1, and where necessary, time series were flipped along the y-axis so that higher

values always equate to greater synchrony. Note that for the metric taken from the distribution of distances of peaks

and nadirs, there are 2 time series in the same colour (one for peaks and another for nadirs). The 2 panels show the

same time series, but (b) separates them for clarity. Edge effects in the WTs may influence results before and after the

vertical dashed lines. The underlying data are in S1 Data at https://github.com/UF-IDD/synchrony_dengue_figures.

WMF, wavelet mean field; WT, wavelet transform.

https://doi.org/10.1371/journal.pbio.3001160.g003
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and S35 Figs in S1 Appendix). Furthermore, the moments of greater synchrony appear to

align, both in timing and timescale, with those of dengue (Fig 2A and 2B).

If the patterns in synchrony in dengue were to be directly linked to patterns in synchrony

in temperature, we would expect the magnitudes of the 2 respective WMFs (in the multiannual

time scales, and for all points in time excluding the cone of influence) to correlate positively

and significantly. We found a Pearson correlation of 0.21 (P = 0.060; see section “Materials

and methods” for significance testing) and a Spearman correlation of 0.20 (P = 0.069). Thus,

while correlations were positive, they were not statistically significant. However, see the result

for WMFs of dengue data and the output of a mechanistic model based on temperature in sec-

tion “Driving the model with actual temperature time series” below.

To address whether the patterns of synchrony in temperature were consistent with those

observed in the dengue cases in greater detail, we extended the methods of Sheppard and col-

leagues [50,51] to calculate cross-wavelet mean fields (CWMFs). Cross-wavelets quantify the

similarity in 2 time series’ (temperature and dengue cases) wavelet power and phase angles at

each timescale and time point, so the CWMFs (the weighted mean cross-wavelet across prov-

inces) quantify the consistency of this similarity across locations. Results in Fig 2D (in which

darker colours mean greater consistency between dengue and temperature across locations)

suggest that temperature plays a crucial role particularly when synchrony in dengue was high

(as demonstrated by the statistically significant consistency in phase angles between dengue

and temperature during synchrony events).

On the other hand, the CWMFs do not clarify what mechanisms are at play during the

more asynchronous periods. Asynchronous multiannual dynamics in temperature might lead

to similar asynchronous multiannual dynamics in dengue, or different thermal regimes might

elicit intrinsic multiannual dynamics of varying periodicities in dengue, thus also leading to

asynchrony. In both these cases, the CWMF might be expected to be low. To distinguish

between these 2 hypotheses, for each province, we correlated the wavelet power in temperature

and dengue, separately for high- and low-synchrony periods (S15 Fig in S1 Appendix). Having

established the importance of temperature during synchronous events, we expected statisti-

cally significant positive correlation coefficients during high-synchrony periods. Were temper-

ature to also have been the main driver during the asynchronous periods, we might have

expected similar correlation coefficients. However, we found correlations to be significantly

lower during low synchrony (S16 Fig and S2 Table in S1 Appendix). This result alone does not

preclude temperature from being the main driver of dengue dynamics during asynchronous

periods, but see section “Driving the model with actual temperature time series.”

Periodicity of synchronisation events in dengue and temperature. Our analyses

describe a system that oscillated in and out of synchrony (Figs 2B and 3). To describe the peri-

odicity of the degree of synchrony itself, we collapsed WMFs to a time series by taking the

mean WMF across multiannual timescales for each point in time (red line in Fig 3B). We then

normalised the resulting time series to a mean of 0 and standard deviation of 1 and applied

WTs.

Because these time series of synchrony contain, at most, 4 distinct cycles (Fig 3), we chose

to characterise their periodicity by averaging the wavelet power over time, by taking the mean

wavelet power per timescale. The periodicities that dominated the time series of synchrony of

dengue and temperature in Thailand, where synchrony was quantified using WMFs, were 12.6

and 12.5 years, respectively (e.g., the main periodicity of the cycles shown in the red line in Fig

3 is 12.6 years). As a point of comparison, the periodicity of synchrony in dengue, where syn-

chrony is estimated using alternative methods such as weighted median timescales or win-

dowed spline correlograms (section “Perspectives on synchrony” in S1 Appendix) was 12.0

years in both cases.
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Simulations to explore mechanism: The interplay of temperature and

immunity

Mechanistic dengue model and simulations. While our results may suggest a relatively

straightforward statistical relationship between dengue cases and temperature (Fig 2 and S36

Fig in S1 Appendix), we wanted to explore the mechanisms by which temperature could gen-

erate asynchronous and synchronous dynamics, while accounting for intrinsic factors, such as

the interaction between serotypes. Immunity is central in shaping dengue dynamics; tempo-

rary cross-protection between serotypes alone can give rise to a qualitatively wide range of

dengue dynamics. Any effects of temperature on dynamics must therefore necessarily be

viewed through the lens of the dynamics of immunity. To this end, we used a simple, tempera-

ture-dependent 4-serotype differential equation dengue model (see section “Materials and

methods”). The model, building on that of Huber and colleagues [46], explicitly encodes the

temperature dependence of vector traits, which, in turn, allows for temperature to drive trans-

mission and dengue dynamics. We extended their model to allow for cross-protective interac-

tions between serotypes of varying mean lengths of time.

The patterns quantified so far describe a system that fluctuates in and out of synchrony.

When seeking potential drivers for the observed patterns, these would need to account for

both asynchrony, and thus the ability to produce a range of spatially heterogeneous dynamics,

and synchrony, during which dynamics are more homogeneous.

We ran 3 sets of simulations to see whether we could better understand how temperature

might drive patterns in synchrony, using both real temperature time series and simplified

experiments (Table 1). First, in simulation 1, we used the temperature time series for each

province as input for the model, with the objective of reproducing observed spatiotemporal

features. Next, for simulations 2 and 3, we wanted to delve into the specific mechanisms

through which temperature may produce asynchronous and synchronous dynamics. Simula-

tion 1 allows us to establish that temperature plays a less important role in producing asyn-

chronous dynamics in dengue; we therefore explore whether different temperature (and thus

transmission) regimes can generate diverse enough (and thus asynchronous) intrinsic multi-

annual oscillations across locations. To this end, we devised simplified experiments across 6

idealised hypothetical locations along a transect in Thailand, going from high mean tempera-

tures and low seasonal variability, to low mean temperatures and high seasonal variability (see

S40–S42 Figs in S1 Appendix). For simulation 2, we used seasonal sine curves as temperature

inputs (with no multiannual cycles) and ran simulations for the 6 locations. Finally, for simula-

tion 3, we built on simulation 2 by introducing a single multiannual fluctuation in the temper-

ature time series, at the same time across the 6 locations, superimposed over the seasonal

cycles. The multiannual fluctuation had varying timescales (2 to 5 years), and the amplitude of

Table 1. Simulations used in this study. We use the mechanistic dengue model, with different temperature inputs, numbers of locations L, and initial population sizes

per location N, to address specific but related questions (column Aim). Each location was run as an independent simulation (no host movement between locations), with a

total population size corresponding to the population size of each province (simulation 1), or equal across locations (simulations 2 and 3), using the same host birth and

death rates, such that the only differences across locations were temperature (all simulations), and population size (simulation 1 only; see section “Further details on simu-

lation studies” in S1 Appendix). In all cases, simulations were run assuming mean cross-protections between dengue serotypes of 6 months, 1 year, and 2 years. Outputs

had a monthly resolution.

Sim. L N Temperature input Aim

1 72 2.0�105 to

5.6�106
Real temperature time series Reproduce empirical patterns using temperature as the input.

2 6 1�106 Seasonal sinusoids Reproduce asynchrony using different thermal regimes alone.

3 6 1�106 Seasonal sinusoids, with a superimposed single multiannual

fluctuation (with a timescale of 2–5 years).

Reproduce synchrony in an asynchronous system and explain

contributions of intrinsic and extrinsic factors.

https://doi.org/10.1371/journal.pbio.3001160.t001
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the multiannual wave was a proportion (10% to 40%) of the seasonal amplitude. The objective

of simulation 3 was to determine whether the common multiannual fluctuation across loca-

tions would be sufficient to produce synchrony in an otherwise asynchronous system. Using

idealised sinusoidal temperature functions in simulations 2 and 3 allows us to better identify

whether frequencies detected in the resulting modelled dengue dynamics are due to frequen-

cies present in temperature or due to immunity in the host population.

Driving the model with actual temperature time series. The mechanistic model, driven

by temperature with the mediation of temporary serotype cross-protection, was capable of

producing qualitatively similar dynamics to those observed in the data (e.g., see S12 Fig in S1

Appendix), thereby supporting the hypothesis that temperature plays an important role. The

ratios between reported cases and our modelled output (median of 0.11 across all provinces

and points in time) are up to almost 30 times greater (for a cross-protection of 1 year) than

those estimated in Reich and colleagues [19] (median values of between 0.0037 and 0.0120

across serotypes), suggesting that transmission rates in the model may be comparatively low.

However, our results were robust to changes in transmission (see section “Robustness tests” in

S1 Appendix). For simulation 1 (using temperature time series for the 72 provinces), the WMF

for the model output had statistically significant synchrony at all times (Fig 2C). The Pearson

and Spearman correlations between the modelled dengue output and the dengue data WMFs

(Fig 2B and 2C) were 0.29 (P = 0.017) and 0.32 (P = 0.011), respectively. That these correlation

coefficients were statistically significant, but those between dengue cases and temperature

were not, suggests that the nonlinearities in temperature encoded in the model, together with

cross-protection, are important elements of dengue dynamics. These correlation coefficients

were still significant for different assumptions on the mean duration of cross-protection (S1

Table in S1 Appendix). The phase angles between temperature and model output across prov-

inces were, as expected, consistent and statistically significant over most time points (Fig 2E).

WMFs and CWMFs for model outputs using different assumptions on cross-protection are

shown in S13 Fig in S1 Appendix and show that with longer mean cross-protections (e.g., 2

years), the consistency in the phase angles between modelled dengue and temperature is lower

than with shorter cross-protections. Both the WMF and CWMF for the model output contain

a notable synchrony event in the early 1970s, reproducing that found in temperature; this fea-

ture is absent from the WMF and CWMF estimated using the data (Fig 2B and 2D). We also

compared the correlations between the wavelet spectra of the modelled dengue output and

dengue data for each province, for low- and high-synchrony periods separately. The correla-

tions in high-synchrony conditions were also significantly greater than during low synchrony,

but here, low-synchrony correlations were on average greater than the low-synchrony correla-

tions between temperature and dengue data (see S2 Table and S16 Fig in S1 Appendix). These

results show that the model (which includes dynamics of immunity) captures mechanisms at

play in each province during low synchrony and explains some of the variation in multiannual

dynamics of dengue that temperature alone cannot.

A temperature gradient can generate asynchronous dengue dynamics. For the idealised

experiments of simulation 2, we found that with at least a mean of 1 year temporary cross-pro-

tection between serotypes, the resulting dengue dynamics include multiannual cycles (Fig 4A–

4C), cycles that are completely attributable to the dynamics of immunity given that here there

are no multiannual cycles in temperature. The periodicity of these cycles (and their ampli-

tude), however, changed as a result of the temperature regime. As temperature conditions are

optimised for transmission (i.e., as mean temperatures increase, approaching the higher tem-

peratures that characterise temperature in, for instance, Bangkok; S42 Fig in S1 Appendix), the

periodicity of multiannual components in dengue go down (i.e., multiannual cycles are more

frequent), and the power at the multiannual timescales increases. At the highest mean
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temperature, with a mean of 2 years of cross-protection, seasonal cycles all but disappear (Fig

4C) due to 2 main trends. On the one hand, as cross-protection becomes longer, the power of

the multiannual cycles (and, therefore, their amplitude) increases (Fig 4A–4C). On the other,

the seasonal variation in transmission is most limited at the highest mean temperatures (S44

Fig in S1 Appendix), thus producing more limited seasonal variation in dengue cases. Taken

together, these 2 trends mean that dynamics become increasingly dominated by the multiann-

ual cycles produced through cross-protection and less so by seasonal variation in temperature.

While the periodicity of the multiannual cycles for each temperature regime changes little

between means of 1 and 2 years of cross-protection, their prominence does: With longer

cross-protection, these cycles increase in mean wavelet power. The range of dynamics pro-

duced across locations under all assumptions of cross-protection are sufficiently diverse: No

synchrony is detected (e.g., Fig 4D). Nevertheless, part of the asynchrony observed in dengue

cases (Fig 2B) may also be due to asynchrony in the multiannual cycles in temperature across

locations.

Common multiannual fluctuations in temperature can synchronise dengue dynamics.

Because different temperature regimes can produce distinct dengue dynamics (Fig 4A–4C),

one simple explanation for synchrony could be that temperatures across the country converge
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Fig 4. Multiannual periodicities and synchrony for models driven by simple seasonal sine curves. (a–c) Mean

wavelet power for simulation 2 experiments (seasonal temperature input with no multiannual components; Table 1)

per timescale for each of the 6 hypothetical locations (rows within each panel), assuming a mean cross-protection of (a)

6 months, (b) 1 year, and (c) 2 years. (d) Mean wavelet field for the simulations in (b) (i.e., assuming a cross-protection

of 1 year) and (e) mean wavelet field for the same simulation, except for the introduction of a single 4-year fluctuation

across all locations on year 468. The amplitude of the multiannual fluctuation here is 20% of that of the seasonal cycle.

Darker colours indicate greater wavelet power (colours in a–c and d–e are (separately) on the same scale). Green lines

in (a–c) indicate peaks in mean wavelet power over multiannual timescales. Edge effects in the WTs may influence

results before and after the dashed lines in (d, e). See S19–S32 Figs in S1 Appendix for more complete results (across all

cross-protections, and timescales and amplitudes of the multiannual fluctuation). The underlying data are in S1 Data

at https://github.com/UF-IDD/synchrony_dengue_figures. WT, wavelet transform.

https://doi.org/10.1371/journal.pbio.3001160.g004
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to a more similar temperature regime during those periods, resulting in more synchronous

dengue dynamics. However, this has not been the case in Thailand (S38 Fig in S1 Appendix).

The next hypothesis is that a common multiannual fluctuation in temperature can synchronise

dengue dynamics. The result for simulation 3 was that when the amplitude of the multiannual

fluctuation in temperature was at least 20% of the seasonal cycle, the 6 locations were tempo-

rarily synchronised (Fig 4E), under all assumptions on cross-protection. Synchrony in dengue

was typically detected across a range of timescales. However, when the multiannual fluctuation

had an amplitude 10% that of the seasonal cycle and mean cross-protection was 2 years, syn-

chrony was weaker (S32 Fig in S1 Appendix). Synchrony was also generally weaker when the

multiannual fluctuation in temperature had a longer periodicity (e.g., 5 years) and a cross-pro-

tection of at least 1 year.

The roles played by immunity and temperature. The synchronisation achieved in the

simulation 3 experiments varied as a function of the mean duration of cross-protection: The

degree of synchrony fell with a longer cross-protection (S24–S32 Figs in S1 Appendix). To

explain why, we need to better understand how the multiannual timescales produced by

intrinsic and extrinsic factors interact. Comparing simulations with (simulation 3) and with-

out (simulation 2) a single multiannual fluctuation in temperature allows us to quantify how

the multiannual timescales in dengue change specifically as a result of the multiannual fluctua-

tion in temperature. We found that while the periodicity of the multiannual fluctuation in tem-

perature is generally detectable in the resulting dengue dynamics, its importance relative to the

timescales of the intrinsic dynamics (i.e., the dengue multiannual timescales attributable to

cross-protection alone) varies as a function of mean temperature, seasonal amplitude in tem-

perature, and mean cross-protection (Fig 5). Dengue appears to be more insensitive to multi-

annual fluctuations in temperature with increasing mean temperatures, smaller seasonal

variation in temperature, and longer cross-protections. Specifically, as the duration of cross-

protection and/or mean temperatures increase, and as seasonality in temperature is reduced,

the power of the multiannual intrinsic dynamics increases, such that the effect of the multiann-

ual fluctuation in temperature can be overwhelmed. In our simulations, this is particularly the

case for higher mean temperatures and a mean cross-protection of 2 years (Fig 5).

It is also worth noting that the multiannual fluctuation in temperature is not necessarily

straightforwardly reproduced in dengue dynamics. Instead, it elicits a transient response in

dengue cases that can extend in time beyond the multiannual fluctuation in temperature, as

can be clearly seen when plotting the phase angle between simulations with a multiannual fluc-

tuation in temperature, and those without (S33 Fig in S1 Appendix). These show both that the

effect of the multiannual fluctuation in temperature can be lasting and also confirm that the

effect of the multiannual fluctuation in temperature is reduced with longer cross-protections

and higher mean temperatures.

This interaction between temperature and cross-protection explains why with longer cross-

protection, the degree of synchrony appears to go down: As cross-protection becomes longer,

locations with higher mean temperatures are more likely to be dominated by the intrinsic

timescales, and, as a result, the ability of a multiannual fluctuation in temperature to synchro-

nise locations is reduced.

Discussion

Using multiple approaches, we have described an interesting spatial phenomenon in dengue:

The country has repeatedly and periodically moved in and out of synchrony in dengue cases.

In general, periods of greater synchrony coincided with larger outbreaks. When analysing tem-

perature time series across Thailand, we found a similar pattern in spatial synchrony. Although
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Fig 5. Comparing multiannual timescales in dengue caused by cross-protection and by multiannual fluctuations

in the environment. We compare the mean wavelet power of dengue at the timescale of the single environmental

multiannual fluctuation and at the timescale at which wavelet power is maximised without a multiannual fluctuation in

temperature (the multiannual timescale attributable to cross-protection alone) by taking their difference. Columns and

rows of panels are for the different assumptions on cross-protection and the different timescales of the multiannual

fluctuation in temperature, respectively. Positive values (reds) mean that the multiannual fluctuation in temperature

plays a more important role driving dengue multiannual dynamics, and negative values (blues) mean that dengue

dynamics are less sensitive to the multiannual fluctuation in temperature. For example, for a mean temperature of

29˚C, a seasonal amplitude of 3˚C, a 3-year fluctuation in temperature, and a mean cross-protection of 2 years, we

compared the mean wavelet power at a timescale of 3 years (that of the temperature multiannual fluctuation), with the

mean wavelet power at a timescale of 5.1 years (the multiannual timescale at which wavelet power was maximised with

no multiannual fluctuation in temperature, i.e., the peak on the top row of Fig 4C). The mean wavelet power was

distinctly greater at the 5.1 year timescale than at the 3-year timescale, meaning dengue dynamics were insensitive to

the multiannual fluctuation in temperature. Overall, temperature appears to be more important, but longer cross-

protections (the right column) and higher mean temperatures are more likely to lead to a system dominated by

intrinsic dynamics and less sensitive to multiannual fluctuations in temperature. Mean wavelet power is estimated for

the duration of the multiannual fluctuation only (so for a 3-year fluctuation in temperature, mean wavelet power is

estimated during those 3 years only). Here, the multiannual fluctuation has an amplitude 0.2 times that of the seasonal

cycle, but the patterns are qualitatively similar for the other amplitudes of the multiannual fluctuations. The 6
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the correlation between the overall patterns in synchrony in temperature and dengue cases was not

statistically significant, the relationship between temperature and dengue cases was particularly

consistent across provinces during times of greater synchrony. Temperature played a less impor-

tant role during periods of asynchrony. Accounting for the dynamics of immunity is essential for

understanding dengue dynamics; any effects of temperature on dynamics are modulated by immu-

nity. To gain a more mechanistic understanding of how temperature interacts with the dynamics

of immunity to produce the observed patterns in synchrony, we adapted a mechanistic dengue

model with temporary cross-protection. When running the model using the observed tempera-

tures across Thai provinces, the patterns in synchrony in the resultant model output dengue time

series correlated positively and significantly with observed patterns in synchrony in dengue cases

from the passive surveillance data. The fact that this correlation was statistically significant, but the

one between the patterns in synchrony in dengue cases and temperature was not, further highlights

the importance of nonlinearities in the way temperature affects dengue and dynamics of immunity.

Using the model output, we found that immunity also plays a more important role during periods

of asynchrony. While (a sufficiently long) cross-protection alone can produce multiannual cycles,

we found that their periodicity was modulated by temperature (which, in turn, drives transmis-

sion); different temperature regimes produced characteristically different dengue dynamics. How-

ever, although the timescales of the multiannual periodicities of dengue varied little, their power

became more prominent with longer cross-protections. We also found that a range of temperature

regimes produced asynchronous dengue dynamics, but the introduction of common multiannual

fluctuations across a range of different temperature regimes was sufficient to synchronise the oth-

erwise asynchronous system. The degree of synchrony depended on the duration of cross-protec-

tion: As the duration of cross-protection increased, the multiannual cycles produced by cross-

protection became more prominent compared to those produced by multiannual fluctuations in

temperature, particularly at higher mean temperatures, resulting in a lower degree of synchrony

across locations. With longer cross-protections, a larger proportion of the population is temporar-

ily protected and not susceptible to infections and thus unaffected by variations in transmission.

However, particularly with less than 2 years of mean cross-protection, synchrony in temperature

can synchronise an otherwise asynchronous system. Our results highlight how ongoing climate

change, together with other concurrent changes, may be affecting dynamics in areas where the dis-

ease is endemic and a majority of the population at risk, now and in future projections, lives.

There are several caveats to our analyses. We chose to focus on temperature because we have

specific theories for how it might mechanistically impact dengue dynamics. However, we could

not ascribe every pattern in synchrony in dengue to synchrony in temperature. For example,

Thailand experienced a strongly synchronous 2-year fluctuation in temperature around 1972,

and while this fluctuation was reproduced in our model output, it was conspicuously absent from

the observed dengue dynamics. There are multiple reasons that could explain this discrepancy.

During the earlier part of the records, dengue cases might have been detected less effectively, thus

potentially not qualitatively capturing multiannual features of the underlying dynamics. On the

other hand, other environmental variables (notably precipitation) and their interaction with tem-

perature are likely important for the dynamics of the vector of dengue. For instance, the extent to

which a synchronous event in temperature can synchronise multiannual cycles in dengue might

depend on the amount of precipitation or timing of the rainy seasons during those years. Addi-

tionally, other nonenvironmental mechanisms might also influence synchrony in dengue. Com-

plex multiannual cycles, synchrony, and variations in the degree of synchrony over time can in

hypothetical locations are marked along the diagonals. White tiles are missing values due to simulations without a

multiannual fluctuation in temperature lacking any peaks in wavelet power at multiannual timescales. The underlying

data are in S1 Data at https://github.com/UF-IDD/synchrony_dengue_figures.

https://doi.org/10.1371/journal.pbio.3001160.g005
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theory be produced via, for example, the movement of hosts between locations [15]. There are

also a range of concurrently ongoing changes in Thailand that may also influence multiannual

dynamics and synchrony. For instance, the birth rates across the country have been declining

[53], and the rates of decline may be spatially heterogeneous. Similarly, long-term trends in popu-

lation densities across the country could also contribute to the observed spatiotemporal patterns.

Exploring how these factors may interact with temperature and contribute to the observed spatio-

temporal patterns deserves further attention. The mechanistic model we use here, when com-

pared to data, also leads to reporting ratios that are distinctly higher than those estimated in the

literature [19], implying transmission rates in the model may be low. Lower transmission rates

might be expected to affect the dynamics of immunity, as susceptibles would be depleted at a

slower rate, and would lead to an increase in the periodicity of multiannual cycles produced by

immunity. Nonetheless, our results on synchrony are robust to variations in transmission.

Finally, the model we use necessarily makes simplifying assumptions (see section “Caveats on the

dengue model” in S1 Appendix). Further work is required to understand which of these assump-

tions may significantly affect synchrony.

The patterns in synchrony in temperature we have observed arise as a result of broader cli-

matological patterns. Specifically, the synchronous events in temperature (Fig 2A) coincide

with strong El Niño and La Niña events (1972 to 1973, 1982 to 1983, 1997 to 1998, and 2014 to

2016), during which respectively higher and lower than average temperatures were recorded

across the country [54]. The multiannual timescale at which synchrony is detected might then

depend on the extent to which El Niño events are followed by La Niña events and their respec-

tive strengths. Because of the broad geographical reach of the effects of the El Niño Southern

Oscillation (ENSO), we might therefore expect temperature to synchronise dengue dynamics

in other countries where ENSO has a similar manifestation in local climate conditions, as

shown, for example, in van Panhuis and colleagues [40]. Indeed, several studies have sought

links between dengue dynamics and ENSO (e.g., [35,38,40,55,56]). Here, our aim was to test

specific hypotheses on how temperature, an environmental variable that we know affects the

vector of dengue, can produce asynchrony and synchrony in dengue cases. Care should be

taken when drawing the link between ENSO and dengue dynamics, because ENSO affects the

environment beyond just temperature, and the physical manifestations of ENSO in any loca-

tion are complex and can change over time [57]. For example, precipitation, which likely also

plays a role in dengue dynamics, can also vary with ENSO (drier conditions associated with El

Niño, wetter with La Niña; [58]), but in Thailand, the correlation between precipitation and

ENSO has increased over time, while in India, the opposite trend is true [59].

Any disease that is primarily driven by extrinsic (environmental) factors might exhibit a

similar pattern of coinciding and related synchronising events in the environment and in the

disease, as we observed in this study. The feature that makes dengue a complex system in the

context of our study is that intrinsic dynamics can have variation at similar (multiannual) peri-

odicities as the extrinsic drivers (temperature), leading to difficulty in disentangling the role of

each in this system. This feature is common to other disease systems, and disentangling extrin-

sic and intrinsic factors has been a major question in previous work [29–34]. Here, we have

applied and developed a series of methods (CWMFs, correlations at low and high synchrony)

and used simulations to better understand the relative role of each. Our approach might there-

fore be useful to other systems where there is a similar intermingling of timescales and for

which intrinsic dynamics might constitute an important filter to consider (as might be the case

in, e.g., Zika, chikungunya, respiratory syncytial virus, and influenza).

Most locations’ temperature appear to be increasing in mean and decreasing in seasonal

variation (S39 and S42 Figs in S1 Appendix). If these trends were to be maintained, our results

suggest that dengue dynamics could slowly shift, too, and approach a regime characterised by
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higher average incidence (S19–S21 Figs in S1 Appendix), and dynamics increasingly domi-

nated by multiannual, rather than seasonal, cycles. Multiannual cycles may also be, to greater

extents, dictated by intrinsic factors over the multiannual timescales present in temperature,

meaning that in the future, temperature may be less able to synchronise dengue dynamics.

However, these hypotheses are contingent on a more precise understanding of the interactions

between serotypes and contributions from other extrinsic (e.g., rainfall) and intrinsic factors

(such as changes in demography and movement of hosts between locations).

Materials and methods

Data

We use data provided by the Thai Ministry of Public Health in their Annual Epidemiological Sur-

veillance Reports. Monthly dengue case counts are given per province, starting in January 1968.

Prior to 2003, the counts provided combine the cases of dengue fever (DF), dengue shock syn-

drome (DSS), and DHF, while separate counts are given for each category thereafter. For 2003

onwards, we use DHF cases only given that these are the cases that are most likely to lead to

severe outcomes and the most likely to have been reported prior to 2003, although results change

little when including DF and DSS. Starting in 1982, 5 new provinces were created. To maintain

consistency across the time series, cases for these new provinces were added back to the provinces

they were created from, keeping the total number of provinces (72) constant over time.

Temperature time series were obtained from the GHCN CAMS gridded (0.5˚ by 0.5˚ reso-

lution) monthly mean temperature data set (provided by NOAA/OAR/ESRL PSD, Boulder,

Colorado, USA, from https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html,

downloaded on 18 June 2019). This dataset combines station observations from the Global

Historical Climatology Network v2 and the Climate Anomaly Monitoring System [60] (S37

and S38 Figs in S1 Appendix). The time series start in 1948. We downloaded shapefiles for

Thai provinces from https://data.humdata.org/dataset/thailand-administrative-boundaries on

12 February 2019, and estimated province centroids using function “calcCentroid” in R pack-

age “PBSmapping” v2.72.1. A time series for each province was then obtained by using the

grid point nearest to the centroid of each province.

For simulations using real temperature time series (simulation 1; Table 1), we use the 2020

population sizes of each province (rounded to the nearest 1�105) downloaded from the Thai

National Statistical Office (http://statbbi.nso.go.th/staticreport/page/sector/en/01.aspx), on 24

November 2021. As with the numbers of cases, we combine populations for provinces created

from 1982 onwards.

Wavelet transforms

We applied continuous WTs to explore how the oscillatory behaviour of dengue cases has changed

over time. WTs have now been applied extensively in the study of infectious disease dynamics

[37,40,56,61,62] and more broadly in ecology [50,51]. WTs decompose time series into frequency

components, but, as opposed to Fourier transforms, WTs are also localised in time. Thus, WTs can

be used to characterise nonstationary time series and how the relative importance of different fre-

quencies change over time. The basis for the WT is a “mother” wavelet, a wave localised in both fre-

quency and time (i.e., of limited duration), which is then scaled or stretched (for the frequency

component) and shifted along the time axis (for the temporal component) to derive a set of “daugh-

ter” wavelets. The WT can then be understood as a correlation between (or more specifically the

convolution of) the time series and the set of daughter wavelets [63].

We use the WT as implemented in R package “WaveletComp” v1.1—details are provided

in the package documentation [64] and code, and a summary is given here. The package uses a
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Morlet mother wavelet, ψ(t) = π−1/4 exp(i ω t) exp(−t2/2), where t is time (t = 1,. . .,T) and ω is

the angular frequency, set to 6 radians t−1 [64]. The WT, W, at a point in time τ and scale s
(proportional to period, the inverse of frequency) is:

Wðt; sÞ ¼
X

t

xðtÞ
1
ffiffi
s
p c

� t � t
s

� �

; ð1Þ

where x(t) is the original time series, and � denotes the complex conjugate. The modulus of W
(τ,s), |W(τ,s)|, gives the local amplitude A at time point τ and scale s. For any plots of the WT

or calculations performed directly on it, we correct A so that A(τ,s) = s−1/2 |W(τ,s)| [65]. A(τ,s)2

is the wavelet energy density. W(τ,s) also yields the instantaneous local wavelet phase.

Although the WT contains significant redundancy in time and scale, it is possible to recon-

struct the original time series (or time series containing specific scales only) on the basis of

summing over the real part of the WT [63].

For these analyses, prior to performing the WT, a value of 1 was added to time series of

dengue cases prior to ln-transforming and normalising to a mean of 0 and a standard devia-

tion of 1. Time series of dengue cases were not detrended prior to calculating wavelet power

because detrending a time series with zeroes produced artificially odd patterns. Time series

of temperature were not transformed; long-term nonlinear trends were removed by taking

the residuals of a local polynomial regression (using function “loess” with a span of 0.75),

and the detrended time series were subsequently normalised, as above. Due to the finite

length of the time series, whenever the wavelets extend beyond the edges of the time series,

estimates of transform coefficients become less accurate. This issue is exacerbated as scales

increase, due to wavelets extending further in time [63,64]. Regions where these edge effects

are present (often referred to as the “cone of influence”) are clearly indicated in wavelet

plots by thick dashed lines.

While the dynamics of dengue are seasonal, previous studies have also identified distinct

multiannual timescales [27,35,37,40,56]. We are specifically interested in these multiannual

timescales; for this reason, we focus on timescales greater than 1.5 years. This lower bound pre-

vents leakage from the annual signal into the multiannual timescales. As the timescales

increase, edge effects increasingly dominate and the length of time we can reliably analyse

becomes shorter. Furthermore, previous studies [35,40] typically identified multiannual com-

ponents at 2 to 3 years, albeit using shorter time series. For these reasons, we here focus on the

1.5- to 5-year timescales (henceforth, “multiannual” components or timescales refer to this

range). See S43 Fig in S1 Appendix for time series of dengue and temperature and their respec-

tive WT for 4 representative Thai provinces characterised by different thermal regimes.

Wavelet mean fields as a measure of synchrony

WMFs provide a measure of synchrony as a function of both scale and point in time (further

details can be found in Sheppard and colleagues [50,51]; only a summary is provided here).

More intuitively, WMFs indicate scales and time points at which both phases and magnitude

of oscillations are consistent (or more synchronous) across provinces. WMFs are a mean of

the power-normalised WTs of each location n across all N locations (n = 1,. . .,N), where we

normalised each WT by

wn s; tð Þ ¼
Wnðs; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NT
PN

n¼1

PT
t¼1

Wnðs; tÞWnðs; tÞ
�

q ð2Þ

[50,51].
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To test whether synchrony is statistically significant in the multiannual range against a null

hypothesis of no synchrony, we focus on the consistency of phases across locations (see section

“A note on estimating significance of (cross-)wavelet mean fields” in S1 Appendix for an expla-

nation as to why significance of WMFs focusses on consistency of phases). We do so by esti-

mating the wavelet phasor mean field (WPMF), defined as

1

N

XN

n¼1

Wnðs; tÞ
jWnðs; tÞj

; ð3Þ

which retains information on the complex phases of the transforms [51]. When different loca-

tions have a similar phase, the value WPMF will be large, while when the phase in each loca-

tion is independent from all other locations, the value of the WPMF will be small. We test

significance by generating surrogate datasets where the autocorrelation structure within each

time series is preserved. We do this by generating time series with the same Fourier spectrum

as the original time series [51]. Following this approach, we produced 1,000 surrogate time

series, using function “surrog” in R package “wsyn” v1.0.2 [66]. For each surrogate dataset, we

produced a WPMF, and then, for each point in time, and across the multiannual scales, we

1. compared, scale by scale within a single time point, the power of the “real” WPMF with that

of all surrogate WPMFs, noted which scales were at least in the 95 percentile, and then cal-

culated the fraction of scales at that point in time for which this was the case (producing a

time series of proportions);

2. repeated step 1 but taking each surrogate WPMF in turn and comparing it to all other sur-

rogate WPMFs (producing a time series of proportions for each surrogate WPMF); and,

finally,

3. calculated the points in time for which the time series of step 1 were at least in the 95 per-

centile compared to the time series in step 2.

Drivers of synchrony

To assess the association in the patterns in synchrony between the WMFs of dengue cases and

temperature and between the WMFs of dengue cases and modelled dengue output, we per-

form both Pearson and Spearman correlations on the respective WMF values within the time-

scales of interest for all points in time (excluding the cone of influence). These correlations

quantify the overall similarity in the pairs of WMFs and, when statistically significant, would

imply that the 2 WMFs are related (and thus lend support to the hypothesis that the patterns

in synchrony of temperature drive patterns in dengue). For the Pearson correlations, we

square root transform the WMF values. We estimate statistical significance by producing null

distributions of correlations. We generate WMFs for 1,000 surrogate datasets of dengue cases,

obtained, as above, by preserving the same Fourier spectrum as the original time series of den-

gue cases. The Pearson and Spearman correlations between each of these surrogate WMFs and

the temperature WMF or the model output WMF produce the null distributions against which

we compare the observed correlations.

To determine in greater detail whether the patterns of synchrony in temperature were con-

sistent with those observed in the dengue cases, we extended the method above for WMFs [51]

to calculate CWMFs. Cross-wavelets quantify the similarity in 2 time series’ (temperature and

dengue cases) wavelet power at each scale and time point, so the CWMFs quantify the consis-

tency of this similarity across locations. CWMFs are an average of the power-normalised

cross-wavelets at each location between temperature and dengue cases. A cross-wavelet X
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between 2 time series is defined as

X s; tð Þ ¼
1

s
W1 s; tð ÞW2 s; tÞ�; ð4Þð

where the cross-wavelet is corrected following Veleda and colleagues [67]. The argument of X
gives the phase angles between the 2 time series per time point and scale. For time series of

temperature and dengue cases with respective power-normalised (Eq (2)) wavelets wm
n ðs; tÞ

and wd
nðs; tÞ, the CWMF is defined as

Cðs; tÞ ¼
1

N

XN

n¼1

wd
nðs; tÞw

m
n ðs; tÞ

�
: ð5Þ

C(s,τ) will be large if the phase differences between temperature and dengue for each time

point and scale are consistent across locations and if the amplitudes of the oscillations are cor-

related. Two unrelated but temporally and spatially autocorrelated variables can quite readily

produce patterns in synchrony. For example, if instead of using temperatures for Thailand we

were to produce a CWMF using temperatures from a different location, with similar temporal

and spatial autocorrelation, we could potentially observe similar patterns in synchrony, despite

the 2 variables being clearly unrelated. For this reason, we test significance in the multiannual

timescales using the same 3-step approach described above, but here, surrogate dengue data-

sets are produced that preserve not only the autocorrelation structure of the time series, but

also the cross-correlation structure across locations (i.e., synchrony-preserving surrogates).

We do this by generating time series with the same Fourier spectrum as the original time series

(as above), but then adding the same random uniformly distributed phase at each frequency

across all time series [51]. As above, we test significance by focussing on the consistency of

phase angles between dengue and temperature. Using these surrogate dengue datasets, cross-

wavelets are estimated relative to the real temperature dataset, and these, in turn, are used to

produce the surrogate cross-WPMFs, which we use for comparison.

Consistency in phase differences and correlations in the amplitudes of temperature and den-

gue (i.e., higher values of CWMF) might be expected during synchronous periods and would

point to the importance of temperature as a driver. On the other hand, low values of CWMF can

arise due to multiple reasons that this approach cannot distinguish between. Temperature might

also be the driver of dengue dynamics during asynchronous periods, but if multiannual dynamics

of temperature were to differ across locations (and, therefore, those of dengue too), both would

have low synchrony. On the other hand, dengue dynamics might be primarily driven by intrinsic

dynamics, which across locations might produce different multiannual periodicities, thus leading

to asynchrony. To address this issue and provide a better explanation for the asynchrony we

observe, we performed additional analyses. Using the dengue data WMF values (for multiannual

timescales only and excluding the cone of influence), we defined points in time and timescales

(henceforth, “conditions”) that were above the 75th percentile as “high synchrony” and those

below this value as “low synchrony” (S15 Fig in S1 Appendix). Then, for each province, we calcu-

lated the Spearman correlation between the square amplitudes of the wavelet spectra of dengue

cases and temperature, separately for high- and low-synchrony conditions, yielding 2 correlation

coefficients (r values) per province. Were temperature to be the main driver of dengue dynamics

during both periods of synchrony and asynchrony, we would expect positive and perhaps similar

r values. Systematic differences in r values between high- and low-synchrony conditions would

point to the possibility of there being different mechanisms at play. For example, low or no corre-

lations during low-synchrony conditions could be ascribed to the greater importance of intrinsic

dynamics or the lack of multiannual cycles in temperature, dengue, or both. We also performed
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the same analysis comparing the wavelet spectra of dengue model output and dengue data. In

this case, greater r values in low-synchrony conditions than those found between temperature

and dengue data would mean that the model captures some of the variation that temperature

alone cannot, and would suggest that the nonlinearities in how temperature affects dengue and

intrinsic dynamics may be playing a greater role.

Temperature-dependent dengue model

The model is based on that of Huber and colleagues [46], with the difference that we extended

their model to include 4 serotypes with temporary cross-protection. We assume at most 2

infections, after which individuals become immune to all serotypes. Vectors are only ever

infected once after which they are immune to all serotypes. The vector compartments (and,

therefore, transmission) are fully temperature dependent. The temperature reaction norms are

the ones used in Huber and colleagues and Mordecai and colleagues [44,46]; we specifically

use parameters corresponding to Aedes aegypti.
All vector compartments are indicated with a superscript v. Subscripts indicate the serotype and

track infection history. The human compartments include susceptibles to all serotypes (S0) and

susceptibles to all serotypes but i (Si; having previously been infected by serotype i and fully suscep-

tible to all other serotypes but i), individuals exposed to serotype i (Ei), or individuals that have pre-

viously been infected by serotype i and currently exposed to serotype j (Eij), individuals infected by

serotype i (Ii) or individuals that have previously been infected by serotypes i and currently infected

by serotype j (Iij). Individuals that have first been infected by serotype i are then immune to that

serotype, but after primary infection, they are temporarily protected against all other serotypes too

(Ci, where the subscript tracks the primary infection). Their rates of change are

dS0

dt
¼ r � S0

X

k2f1;2;3;4g

b Tð Þg Tð Þ
Ivk
N
� mS0;

dEi

dt
¼ S0b Tð Þg Tð Þ

Ivi
N
� dþ mð ÞEi;

dIi
dt
¼ dEi � Zþ mð ÞIi;

dCi

dt
¼ ZIi � xþ mð ÞCi;

dSi

dt
¼ xCi � Si

X

j2f1;2;3;4g
j6¼i

b Tð Þg Tð Þ
Ivj
N
� mSi;

dEij

dt
¼ Sib Tð Þg Tð Þ

Ivj
N
� dþ mð ÞEij;

dIij
dt
¼ d Eij � Zþ mð ÞIij;

dR
dt
¼ Z

X

ij
j6¼i

Iij � mR:

Here, r is host growth rate (set to correspond to a life span of approximately 77 years), b is

the mosquito biting rate, γ is the probability of mosquito infectiousness (probability of human

infection per bite of an infectious mosquito), μ is the host mortality rate, δ is the intrinsic incu-

bation period, η is the rate of host recovery from infectiousness, and ξ is the rate of loss of

cross-protection.
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The rates of change of the vector compartments are

dSv

dt
¼

lðTÞsðTÞdðTÞ
mvðTÞ

Nv 1 �
Nv

KðTÞ

� �

� Sv
X

k

b Tð Þg Tð Þ
Ik
N
� mv Tð ÞSv;

dEv
i

dt
¼ Svb Tð Þd Tð Þ

Ii
N
� ε Tð Þ þ mv Tð Þð ÞEv

i ;

dIvi
dt
¼ ε Tð ÞEv

i � m
v Tð ÞIvi þ k;

where

K Tð Þ ¼
lðT0ÞsðT0ÞdðT0Þ

mvðT0Þ
� mv T0ð Þ

lðT0ÞsðT0ÞdðT0Þ

mvðT0Þ

Nv
mexp

� EaðT � T0Þ
2

kðT þ 273:15ÞðT0 þ 273:15Þ

� �

; ð6Þ

and where l is the number of eggs laid per female, s is the probability of egg-to-adult survival, d
is mosquito egg-to-adult development rate, ε is the virus extrinsic incubation period, and δ is

the probability of infection per bite on an infectious host. Their dependence on temperature is

modelled using a Brière or a quadratic function [44]. The term (l(T) s(T) d(T))/μv(T) quantifies

the number of surviving offspring produced in a mosquito lifetime. N and Nv are total number

of hosts and vectors, respectively.

The carrying capacity K of the mosquito population is necessary to constrain its population

growth. Ea is the activation energy, which defines the temperature dependence of K. While

Huber and colleagues [46] state that Ea = 0.5, the code they provide online has Ea = 0.05. We

use the latter as the more conservative (less temperature-dependent) option (a value of 0.5 pro-

duced strongly temperature dependent carrying capacity, and there is little support in the liter-

ature for either value), although our results are robust to changes in this assumption (see

sections “Caveats on the dengue model” and “Robustness tests” in S1 Appendix). Finally, k is

the Boltzmann–Arrhenius constant, Nv
m is the maximum carrying capacity (capped at some

multiple M of the total host population), and T0 is the reference temperature at which carrying

capacity K is greatest (here equal to 29˚C). Huber and colleagues [46] assumed a maximum

ratio M of mosquitoes to humans of 2. Here, we chose a value of 1.5 (i.e, Nv
m ¼ 1:5 N; S44 Fig

in S1 Appendix) such that the R0 for mean temperatures typically observed in Thailand were

within the approximate range previously reported in the literature of 2 to 7 [68–70]. Our

results do not change qualitatively with M = 1 (see section “Robustness tests” in S1 Appendix).

We constantly introduced a small number of infected mosquitoes, κ, to mitigate situations

where population sizes were reduced to very small numbers. We used κ = 1�10−5 / day / sero-

type. See section “Caveats on the dengue model” in S1 Appendix for a discussion on some of

the assumptions made by this model.

The model was run in R v3.6.2 using the “lsoda” integrator in R package “deSolve” v1.24. In

all simulations, the starting conditions were as follows: a total host population size correspond-

ing to that of each province for simulation 1, or 1�106 for simulations 2 and 3, in all cases all of

which are susceptibles except for 1, 2, 3, and 4 infected individuals allocated to each serotype at

random, a host birth and death rate corresponding to a life span of 77 years, and, unless other-

wise stated, a mean temporary cross-protection between serotypes of 1 year. Section “Further

details on simulation studies” provides more information on how the models were set up.
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Supporting information

S1 Appendix. Notes and details on methods used, robustness tests using different formula-

tions of model parameters, results employing different approaches to quantify synchrony,

and additional results.

(PDF)

Acknowledgments

We thank Matt Hitchings and Jessica Metcalf for comments on the manuscript and valuable

discussions.

Disclaimers

Material has been reviewed by the Walter Reed Army Institute of Research. There is no objec-

tion to its presentation and/or publication. The opinions or assertions contained herein are

the private views of the author and are not to be construed as official or as reflecting true views

of the Department of the Army or the Department of Defense.

Author Contributions

Conceptualization: Bernardo Garcı́a-Carreras, Mary K. Grabowski, Justin Lessler, Derek A.

T. Cummings.

Data curation: Bernardo Garcı́a-Carreras, Angkana T. Huang, Sopon Iamsirithaworn, Pawi-

nee Doung-Ngern.

Formal analysis: Bernardo Garcı́a-Carreras, Bingyi Yang, Mary K. Grabowski, Derek A. T.

Cummings.

Funding acquisition: Derek A. T. Cummings.

Investigation: Bernardo Garcı́a-Carreras.

Methodology: Bernardo Garcı́a-Carreras, Lawrence W. Sheppard, Derek A. T. Cummings.

Supervision: Derek A. T. Cummings.

Visualization: Bernardo Garcı́a-Carreras.

Writing – original draft: Bernardo Garcı́a-Carreras, Derek A. T. Cummings.

Writing – review & editing: Bernardo Garcı́a-Carreras, Bingyi Yang, Mary K. Grabowski,

Lawrence W. Sheppard, Angkana T. Huang, Henrik Salje, Hannah Eleanor Clapham,

Sopon Iamsirithaworn, Pawinee Doung-Ngern, Justin Lessler, Derek A. T. Cummings.

References
1. Rosenzweig ML, MacArthur RH. Graphical representation and stability conditions of predator-prey inter-

actions. Am Nat. 1963; 97(895):209–23. https://doi.org/10.1086/282272

2. Anderson RM, May RM. Population biology of infectious diseases: Part I. Nature. 1979; 280

(5721):361–7. https://doi.org/10.1038/280361a0 PMID: 460412
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