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Section 1: Sample collection 

We used whole-genome sequencing data from 35 orangutans, covering the entire geographic range of 
North Sumatran (Pongo abelii) and Bornean (P. pygmaeus) orangutans (Fig. 1, Tables S1 and S2). 
Data from 16 individuals was obtained from Nater et al. [1], genomes of 10 orangutans were 
sequenced in Prado-Martinez et al. [2], and data for 9 individuals were taken from Locke et al. [3]. 
Most individuals were wild-born, except for five orangutans which were first-generation offspring of 
wild-born parents of the same species (Table S2). 

Table S1. Overview of orangutan samples. Effective read-depths are given as ranges in brackets 
below the source reference. Numbers in parentheses are individuals born in captivity.  

Species Sampling areas  

Nater et al. 
2017 
[13.7-31.1x] 

Prado-Martinez 
et al. 2013  
[20.5-27.4x] 

Locke et al. 
2011 
[4.8-12.2x] Total

P. abelii Langkat (LK) 0 4 2 6 

P. abelii North Aceh (NA) 1 (1) 0 1+(1)

P. abelii West Alas (WA) 5 0 2 7 

P. pygmaeus morio South Kinabatangan (SK) 2 0 0 2 

P. pygmaeus morio North Kinabatangan (NK) 2 0 0 2 

P. pygmaeus morio East Kalimantan (EK) 2 0 1 3 

P. pygmaeus pygmaeus Sarawak (SR) 1+(1) 1 1 3+(1)

P. pygmaeus wurmbii Central Kalimantan (CK) (1) 2+(2) 3 5+(3)

P. pygmaeus wurmbii West Kalimantan (WK) 1 0 0 1 
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Table S2. Details of study individuals.  

Species Sampling area 
Individual 
ID 

Individual 
name Sex 

Mean 
deptha Source Comments and origin details, if available 

P. abelii Langkat PA_KB4661 Bubbles M 4.76 Locke et al. [3] Wild-born 
P. abelii Langkat PA_KB5883 Sibu M 4.99 Locke et al. [3] Wild-born 
P. abelii Langkat PA_A947 Elsi F 27.39 Prado-Martinez et al.  [2] Wild-born 
P. abelii Langkat PA_A948 Kiki F 23.71 Prado-Martinez et al.  [2] Wild-born 
P. abelii Langkat PA_A950 Babu F 26.28 Prado-Martinez et al.  [2] Wild-born 
P. abelii Langkat PA_A952 Buschi M 21.03 Prado-Martinez et al.  [2] Wild-born 
P. abelii North Aceh PA_A949 Dunja F 27.39 Prado-Martinez et al.  [2] 1st Generation by 456 and 457 both wild-born Sumatra 
P. abelii North Aceh PA_B018 Jeff M 16.31 Nater et al. [1] Wild-born; Desa Seuneubok Bayu, Kec. Indra Makmu 
P. abelii West Alas PA_KB4361 Likoe F 5.66 Locke et al. [3] Wild-born 
P. abelii West Alas PA_SB550 Doris F 4.86 Locke et al. [3] Wild-born 
P. abelii West Alas PA_B017 Miky F 13.74 Nater et al. [1] Wild-born; Aluebillie, Aceh Nagan Raya, Aceh province 
P. abelii West Alas PA_A953 Vicky F 17.78 Nater et al. [1] Wild-born 
P. abelii West Alas PA_A955 Suma F 25.27 Nater et al. [1] Wild-born 
P. abelii West Alas PA_A964 Rochelle F 11.06 Nater et al. [1] Wild-born 
P. abelii West Alas  PA_B020 Maini F 16.3 Nater et al. [1] Wild-born; Aceh Sealatan near Suaq Balimbing 
P. pygmaeus Central Kalimantan PP_KB4204 Dolly M 5.61 Locke et al. [3] Wild-born 
P. pygmaeus Central Kalimantan PP_KB5404 Billy F 12.24 Locke et al. [3] Wild-born 
P. pygmaeus Central Kalimantan PP_KB5405 Dennis M 5.61 Locke et al. [3] Wild-born 
P. pygmaeus Central Kalimantan PP_A940 Temmy F 21.8 Prado-Martinez et al.  [2] 1st Generation by 793 and 794 both wild-born Borneo 
P. pygmaeus Central Kalimantan PP_A941 Sari F 23.17 Prado-Martinez et al.  [2] 1. Gen. by 202 and 322 both wild-born Borneo 
P. pygmaeus Central Kalimantan PP_A943 Tilda F 24.17 Prado-Martinez et al.  [2] Wild-born 
P. pygmaeus Central Kalimantan PP_A944 Napoleon M 23.32 Prado-Martinez et al.  [2] Wild-born 
P. pygmaeus Central Kalimantan PP_A938 Lotti F 18.62 Nater et al. [1] 1st Generation by 358 and 422 both wild-born Borneo 
P. pygmaeus West Kalimantan PP_A983 Claus M 29.71 Nater et al. [1] Wild-born; Pontianak 
P. pygmaeus East Kalimantan PP_KB5543 Louis M 6.03 Locke et al. [3] Wild-born 
P. pygmaeus East Kalimantan PP_A984 Barong F 29.89 Nater et al. [1] Wild-born; Taman Nasional Kutai 
P. pygmaeus East Kalimantan PP_A985 Panjul M 30.13 Nater et al. [1] Wild-born; Taman Nasional Kutai 
P. pygmaeus North Kinabatangan PP_A987 Tara F 30.65 Nater et al. [1] Wild-born; Bukit Garam, Kinabatangan area 
P. pygmaeus North Kinabatangan PP_A988 Kala M 31.06 Nater et al. [1] Wild-born; Kg. Tikolod, Tambunan 
P. pygmaeus South Kinabatangan PP_5062 Ampal M 13.81 Nater et al. [1] Wild-born; Lahad Datu, Kinabatangan area 
P. pygmaeus South Kinabatangan PP_A989 Micelle F 27.30 Nater et al. [1] Wild-born; Lahad Datu, Kinabatangan area 
P. pygmaeus Sarawak PP_KB5406 Dinah F 4.90 Locke et al. [3] Wild-born 
P. pygmaeus Sarawak PP_A939 Nonja F 20.48 Prado-Martinez et al.  [2] 1st Generation by 1052 and 1012 both from Sarawak 
P. pygmaeus Sarawak PP_A942 Gusti F 23.12 Nater et al. [1] 1st Generation by 1435 and 1392 both wild-born Borneo 
P. pygmaeus Sarawak PP_A946 Kajan M 22.39 Nater et al. [1] Wild-born 

amean effective whole-genome sequencing coverage. We estimated sequence depth on the filtered BAM files where duplicated reads, bad read mates, reads with mapping 
quality zero, and reads which mapped ambiguously had already been removed. Thus, our sequence coverage estimates correspond to the effective read-depths which are 
available for SNP discovery and genotyping (see Nater et al. [1]).
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Section 2: Whole-genome sequencing, read mapping, SNP, genotype calling, 
and haplotype phasing 

We followed identical bioinformatics procedures for all 35 study individuals. Read mapping and 
variant calling is described in Nater et al. [1]. Basic sequencing and mapping statistics of all 35 study 
individuals are provided in the Tables S2 and S3. Briefly, we mapped reads to the ponAbe2 reference 
genome [3] using BWA-MEM v0.7.5 [4] and removed duplicate reads with Picard v1.101 
(http://picard.sourceforge.net/). We performed local realignment around indels and empirical base 
quality score recalibration (BQSR) with the Genome Analysis Toolkit (GATK) v3.2.2. [5, 6]. We used 
the HaplotypeCaller of the GATK to obtain individual genotype likelihoods and genotyped 
individuals on a per-island level, as well as combined for all individuals, using the Genotype GVCFs 
tool of the GATK. To identify high-confidence SNPs, we performed variant quality score recalibration 
(VQSR) on the candidate SNP files, using a ‘true SNP’ set containing 5,600 high-confidence SNPs, 
which were independently identified by three different variant callers in a previous reduced-
representation sequencing project [7]. 

We also produced high-quality genomic consensus FASTA sequences for each study individual. We 
used custom Perl scripts to create the consensus sequences by merging the information of the SNP 
VCF and gVCF files as following: all sites (variant and reference sites) had to be covered by at least 
eight individuals per island or genotypes in all individuals at this site were set to ‘N’. SNP and 
genotype calling at genomic positions covered by fewer individuals is less accurate, hence the power 
to discriminate between variant and non-variant genomic positions is reduced. In addition, we filtered 
out sites with a mean mapping quality below 20. On the individual level, we required genotypes of 
both variant and reference positions to be covered by at least three reads, otherwise individual 
genotypes at that site were set to ‘N’. Positions not sequenced for a given individual were also denoted 
as ‘N’. The sequence depth of all non-variant sites in the reference genome (i.e., reference sites) for 
each individual was obtained from the gVCF files (also mappability masked) produced in the first step 
of the SNP calling pipeline. The genotype at variant genomic sites was extracted for each individual 
from the SNP VCF file described above. Heterozygous genotypes were encoded with their respective 
IUPAC codes. 

Genotype data from P. abelii and P. pygmaeus were phased using the SHAPEIT v2.0 [8] as described 
in Nater et al. [1]. A high-quality subset of genotype data from the original SNP-calling dataset was 
used for each species, for which only biallelic and polymorphic SNPs without missing genotype data 
were extracted. SHAPEIT was run using the following parameters: 100 states, a window size of 0.5 
Mb, and two species-specific recombination maps, which had been estimated using LDhat. The 
algorithm was run at chromosome level to generate a haplotype graph, which was used to assess 
phasing uncertainty and to extract the most likely haplotypes per individual.  

To infer the ancestral states of variants segregating within Pongo, we repeated the mapping and 
genotype calling procedure with whole-genome sequencing data from two individuals each of human 
(SRA sample accession: ERS007255 and ERS007266) and common chimpanzee (Pan troglodytes, 
SRA sample accession: SRS394801 and SRS396844). All short reads from these outgroup individuals 
were mapped against the ponAbe2 reference genome and genotypes were called on a per-species basis 
with GATK UnifiedGenotyper using the set of high-confidence SNP sites identified in Pongo. We 
then applied a parsimony approach to assign ancestral states to SNPs and recoded the Pongo genotype 
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VCF files in order to represent the ancestral state as the reference allele. We did not assign ancestral 
states for variants for which i) data were missing in both outgroup species, ii) data were missing in one 
outgroup species and the other species was polymorphic, iii) both outgroup species were polymorphic, 
iv) both outgroup species were monomorphic for different alleles, or v) three or more alleles were 
present over both outgroup species. In such cases, we coded all genotypes for this site in the recoded 
Pongo VCF files as missing. 
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Table S3. Basic sequencing and mapping statistics of orangutan whole-genome sequencing data. 

 

Species 
Individual 
ID Source Total no. of reads No. of reads filtered % reads filtered No. of bad mate readsa % bad mate reads 

P. abelii PA_A947 Prado-Martinez et al.  [2] 1,199,070,495 217,651,201 18.15% 31,965,745 2.67% 
P. abelii PA_A948 Prado-Martinez et al.  [2] 1,026,568,611 212,620,172 20.71% 23,791,092 2.32% 
P. abelii PA_A949 Prado-Martinez et al.  [2] 1,238,435,940 295,572,494 23.87% 28,597,946 2.31% 
P. abelii PA_A950 Prado-Martinez et al.  [2] 1,221,075,045 277,425,024 22.72% 26,033,305 2.13% 
P. abelii PA_A952 Prado-Martinez et al.  [2] 1,061,059,740 333,654,395 31.45% 26,183,487 2.47% 
P. abelii PA_A953 Nater et al. [1] 863,795,942 240,805,194 27.88% 16,835,303 1.95% 
P. abelii PA_A955 Nater et al. [1] 1,151,082,160 258,616,853 22.47% 25,494,067 2.21% 
P. abelii PA_A964 Nater et al. [1] 1,118,829,477 739,560,932 66.10% 18,622,494 1.66% 
P. abelii PA_B017 Nater et al. [1] 1,114,451,019 576,916,768 51.77% 320,927,625 28.80% 
P. abelii PA_B018 Nater et al. [1] 1,213,126,904 606,523,688 50.00% 380,058,442 31.33% 
P. abelii PA_B020 Nater et al. [1] 1,063,963,834 467,186,672 43.91% 268,296,390 25.22% 
P. abelii PA_KB4361 Locke et al. [3] 502,515,251 102,527,136 20.40% 5,668,056 1.13% 
P. abelii PA_KB4661 Locke et al. [3] 395,184,293 76,284,313 19.30% 4,802,843 1.22% 
P. abelii PA_KB5883 Locke et al. [3] 470,563,961 115,172,006 24.48% 7,246,997 1.54% 
P. abelii PA_SB550 Locke et al. [3] 420,906,050 87,518,248 20.79% 6,816,380 1.62% 
P. pygmaeus PP_5062 Nater et al. [1] 520,463,882 71,616,442 13.76% 12,238,321 2.35% 
P. pygmaeus PP_A938 Nater et al. [1] 878,679,380 219,613,306 24.99% 18,771,601 2.14% 
P. pygmaeus PP_A939 Prado-Martinez et al.  [2] 982,875,157 258,243,405 26.27% 22,266,716 2.27% 
P. pygmaeus PP_A940 Prado-Martinez et al.  [2] 879,365,509 111,712,294 12.70% 23,951,485 2.72% 
P. pygmaeus PP_A941 Prado-Martinez et al.  [2] 974,172,871 162,961,808 16.73% 22,324,151 2.29% 
P. pygmaeus PP_A942 Nater et al. [1] 1,119,665,510 294,172,924 26.27% 27,378,538 2.45% 
P. pygmaeus PP_A943 Prado-Martinez et al.  [2] 1,137,225,178 276,513,275 24.31% 28,140,416 2.47% 
P. pygmaeus PP_A944 Prado-Martinez et al.  [2] 1,110,367,688 280,618,436 25.27% 30,240,109 2.72% 
P. pygmaeus PP_A946 Nater et al. [1] 944,435,510 165,822,299 17.56% 19,510,440 2.07% 
P. pygmaeus PP_A983 Nater et al. [1] 1,150,227,749 171,282,032 14.89% 27,964,164 2.43% 
P. pygmaeus PP_A984 Nater et al. [1] 1,166,011,497 181,228,288 15.54% 32,704,080 2.80% 
P. pygmaeus PP_A985 Nater et al. [1] 1,188,314,591 190,300,804 16.01% 38,933,010 3.28% 
P. pygmaeus PP_A987 Nater et al. [1] 1,182,067,514 169,028,331 14.30% 32,242,622 2.73% 
P. pygmaeus PP_A988 Nater et al. [1] 1,184,387,913 159,637,530 13.48% 28,471,644 2.40% 
P. pygmaeus PP_A989 Nater et al. [1] 1,182,468,671 254,009,220 21.48% 111,433,632 9.42% 
P. pygmaeus PP_KB4204 Locke et al. [3] 488,513,841 91,445,743 18.72% 5,431,871 1.11% 
P. pygmaeus PP_KB5404 Locke et al. [3] 1,223,090,264 279,931,929 22.89% 26,711,713 2.18% 
P. pygmaeus PP_KB5405 Locke et al. [3] 450,850,553 102,845,293 22.81% 3,703,627 0.82% 
P. pygmaeus PP_KB5406 Locke et al. [3] 427,501,183 79,470,592 18.59% 5,199,834 1.22% 
P. pygmaeus PP_KB5543 Locke et al. [3] 531,449,862 133,019,779 25.03% 7,881,803 1.48% 
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Table S3 (Continued)  

Species Individual ID 
No. of duplicate 

reads
% duplicate 

reads
No. of MappingQualityZero 

reads
% MappingQualityZero 

reads
No. of NotPrimaryAlignment 

readsb
% NotPrimaryAlignment 

reads 
P. abelii PA_A947 101,285,592 8.45% 83,954,851 7.00% 445,013 0.04% 
P. abelii PA_A948 110,628,113 10.78% 77,752,127 7.57% 448,840 0.04% 
P. abelii PA_A949 185,752,688 15.00% 80,721,416   6.52% 500,444 0.04% 
P. abelii PA_A950 121,393,826 9.94% 129,564,956 10.61% 432,937 0.04% 
P. abelii PA_A952 235,278,445 22.17% 71,714,221 6.76% 478,242 0.05% 
P. abelii PA_A953 165,539,909 19.16% 58,112,480 6.73% 317,502 0.04% 
P. abelii PA_A955 157,826,898 13.71% 74,849,426 6.50% 446,462 0.04% 
P. abelii PA_A964 650,727,730 58.16% 69,762,441 6.24% 448,267 0.04% 
P. abelii PA_B017 19,106,249 1.71% 214,074,036 19.21% 22,808,858 2.05% 
P. abelii PA_B018 14,010,011 1.15% 186,627,308 15.38% 25,827,927 2.13% 
P. abelii PA_B020 16,041,711 1.51% 165,324,329 15.54% 17,524,242 1.65% 
P. abelii PA_KB4361 26,047,292 5.18% 70,810,607 14.09% 1,181 0.00% 
P. abelii PA_KB4661 14,107,709 3.57% 57,371,308 14.52% 2,453 0.00% 
P. abelii PA_KB5883 39,113,310 8.31% 68,810,275 14.62% 1,424 0.00% 
P. abelii PA_SB550 15,906,300 3.78% 64,792,367 15.39% 3,201 0.00% 
P. pygmaeus PP_5062 7,891,952 1.52% 51,019,044 9.80% 467,125 0.09% 
P. pygmaeus PP_A938 143,064,905 16.28% 57,302,521 6.52% 474,279 0.05% 
P. pygmaeus PP_A939 166,225,495 16.91% 69,332,393 7.05% 418,801 0.04% 
P. pygmaeus PP_A940 21,089,546 2.40% 66,213,038 7.53% 458,225 0.05% 
P. pygmaeus PP_A941 75,201,269 7.72% 65,002,932 6.67% 433,456 0.04% 
P. pygmaeus PP_A942 186,368,059 16.64% 79,902,965 7.14% 523,362 0.05% 
P. pygmaeus PP_A943 166,560,691 14.65% 81,341,070 7.15% 471,098 0.04% 
P. pygmaeus PP_A944 163,330,781 14.71% 86,536,463 7.79% 511,083 0.05% 
P. pygmaeus PP_A946 67,691,610 7.17% 78,230,815 8.28% 389,434 0.04% 
P. pygmaeus PP_A983 12,085,031 1.05% 130,143,364 11.31% 1,089,473 0.09% 
P. pygmaeus PP_A984 13,694,397 1.17% 133,233,733 11.43% 1,596,078 0.14% 
P. pygmaeus PP_A985 10,739,096 0.90% 139,051,397 11.70% 1,577,301 0.13% 
P. pygmaeus PP_A987 12,414,888 1.05% 123,045,423 10.41% 1,325,398 0.11% 
P. pygmaeus PP_A988 12,024,936 1.02% 117,985,391 9.96% 1,155,559 0.10% 
P. pygmaeus PP_A989 12,366,091 1.05% 123,005,953 10.40% 7,203,544 0.61% 
P. pygmaeus PP_KB4204 7,718,787 1.58% 78,293,575 16.03% 1,510 0.00% 
P. pygmaeus PP_KB5404 25,789,966 2.11% 227,395,875 18.59% 34,375 0.00% 
P. pygmaeus PP_KB5405 35,353,666 7.84% 63,732,088 14.14% 55,912 0.01% 
P. pygmaeus PP_KB5406 12,921,773 3.02% 61,347,330 14.35% 1,655 0.00% 
P. pygmaeus PP_KB5543 52,266,887 9.83% 72,854,176 13.71% 16,913 0.00% 
a, reads whose mate mapped to a different contig; b, reads with non-unique mapping.
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Section 3: PSMC analysis 

3.1 Methods 

We inferred orangutan population size history with the pairwise sequentially Markovian coalescent 
(PSMC) model [9], which uses single diploid genome sequences to reconstruct population size 
changes through time. The PSMC is implemented as a hidden Markov model in which the observed 
states correspond to the sequence of homozygous and heterozygous genotypes along the genome. The 
hidden state is the coalescent time of the two chromosomes at a given position, and transitions 
between hidden states represent ancestral recombination events. Thus, the PSMC model allows 
estimating historical changes in Ne based on the distribution of the time to the most recent common 
ancestor (TMRCA) for alleles within a diploid genome.  

We applied the PSMC model to each sample. Input files for PSMC were created from the autosomal 
consensus FASTA sequences described above, using the utility ‘fq2psmcfa’ (provided with the PSMC 
package). We ran PSMC with the following parameter settings, which were found to be suitable for 
great apes and applied to orangutans previously [2, 9]: ‘psmc -N25 -t15 -r5 -p "4+25*2+4+6" -o 

output.psmc input.psmcfa’. The parameter ‘-N’ defines the number of iterations, ‘-t’ the maximum 
TMRCA (in the 2N0 scale), ‘-r’ the ratio of theta over rho, and ‘-p’describes the temporal binning 
parameters. In our case there were 64 atomic time intervals and 28 (=1+25+1+1) free interval 
parameters. We measured the variance of Ne estimates by bootstrapping. For each individual, we split 
its consensus sequence into 50-Mb segments using the ‘splitfa’ utility (PSMC package), and randomly 
sampled with replacement from these segments applying the ‘-b’ option in PSMC for 100 rounds.  

PSMC plots were drawn with an in-house modified version of the ‘psmc_plot.pl’ script of the PSMC 
package. We scaled results to real time, assuming a generation time of 25 years [10] and a mutation 
rate of 1.5x10-8 per site per generation [1] [11-14]. We generated different plots for high-coverage (≥ 
20x), mid-coverage (11–18x), and low-coverage (5–6x) genomes as the trajectories of Ne should only 
be compared among genomes with similar read-depths. This is because the lower the coverage the 
higher the risk of missing a true heterozygous genotype, leading to reduced TMRCA in PSMC 
analyses [9].  

3.2 Results 

Trajectories of the PSMC suggest that Bornean and North Sumatran orangutans diverged ~0.8–1.1 Ma 
(scaling 0.6 x 10-9 per base pair per year; Fig. 2 and Fig. S1). Subsequently, the two species 
experienced very different demographic histories. Bornean orangutans underwent an initial population 
decline followed by short recovery. Around 300 ka, Ne began to decline continuously, resulting in very 
low Ne in the more recent past. In contrast, Ne of North Sumatran orangutans increased considerably 
after species separation, which could represent actual population growth, a signal of increased 
population sub-structuring, or most likely a combination of both. More recently (50–100 ka) 
autosomal Ne of North Sumatran orangutans dropped sharply to just a few thousand individuals, 
coinciding with the Toba supereruption ~73 ka [15]. Within species, the trajectories of Ne were highly 
similar for individuals across populations as shown by the overlap of the variance of their PSMC 
estimates (Fig. S1).  
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Fig. S1. PSMC bootstrapping plots for individuals in Fig. 2. The x-axis shows time scaled in years, 
assuming a generation time of 25 years and a mutation rate of 1.5x10-8 per site per generation. The y-
axis shows historical Ne. The fluctuation of the 100 bootstrap replicates indicates the variance. The 
plot on the top left shows the overlay of all nine individuals. Color codes match those of Fig. 1. 
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Fig. S2. PSMC analysis of mid-coverage (11–18x) orangutan genomes. The x-axis shows time 
scaled in years, assuming a generation time of 25 years and a mutation rate of 1.5x10-8 per site per 
generation. The y-axis shows historical Ne. Color codes match those of Fig. 1. Details on individuals 
can be found in Table S2.  

 

 

 

Fig. S3. PSMC analysis of low-coverage (5–6x) orangutan genomes. The x-axis shows time scaled 
in years, assuming a generation time of 25 years and a mutation rate of 1.5x10-8 per site per generation. 
The y-axis shows historical Ne. Color codes match those of Fig. 1. Details on individuals can be found 
in Table S2.  
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Section 4: Ancestral gene flow between orangutan populations 

4.1 Methods 

Inference of ancestral gene flow was carried out using a method based on the pairwise sequentially 
Markovian coalescent (PSMC) model [9], namely the multiple sequentially Markovian coalescent 
(MSMC2) model (https://github.com/stschiff/msmc2). Whereas PSMC uses information from inter-
chromosomal genetic differences within a single diploid genome to infer ancestral Ne, MSMC2 
extends this approach to multiple genomes (or more than two haplotypes). When run on a pair of 
haplotypes, the core method in MSMC2 reduces to PSMC. On more than two haplotypes it 
systematically averages the pairwise analysis. 

Following a strategy used by Li & Durbin [9], we exploited the method to explore temporal patterns of 
gene flow between two populations. This was done by treating a pair of haplotypes, one from each 
population, as a pseudo-diploid sequence on which the programs were run. To avoid issues with 
phasing uncertainty, we focused on male X chromosomes, but additionally validated the results with 
phased autosomal genomes. This approach to analyze gene flow between populations can be justified 
by considering two populations which diverged at some time T in the past with no subsequent gene 
flow. We would expect no loci in the pseudo-diploid genome to coalesce more recently than T, and 
both PSMC and MSMC2 would infer an effectively infinite Ne between T and the present. Prior to T, 
the inferred Ne should match that obtained in an analysis of the (diploid) X chromosome of a female 
individual from either population. 

Complex demographic histories introduce uncertainty into the estimates of divergence times. This 
might happen if populations, for example, diverged gradually in the presence of ongoing gene flow. 
Nevertheless, the inverse of the inferred Ne indicates the extent of genetic exchange between two 
populations following the split. 

To avoid issues with low-coverage genomes, we excluded the following individuals from the analysis: 
PA_KB5883 and PA_KB4661 from the North Aceh population, PP_KB4204 and PP_KB5405 from 
Central/West Kalimantan, and PP_KB5543 from East Kalimantan. For all remaining male individuals, 
we prepared input files in accordance with the requirements specified for MSMC2 (available at 
https://github.com/stschiff/msmc), by using Python scripts based on the conversion tool 
generate_multihetsep.py found at https://github.com/stschiff/msmc-tools. Based on the mappability 
mask described above, we minimized spurious variant calls when generating the input files. Default 
time discretization parameters were used throughout, but we note that reasonable modifications to 
them did not substantially affect our results. Cross-population comparisons were handled with -P flag. 
For example, since we had one male individual from Sarawak and two from Kinabatangan, we ran 
MSMC2 using -P 0,1,1 when analyzing gene flow between these two populations. 

Recent studies in great apes have found signatures of widespread selection affecting the X 
chromosome [16, 17], which might lead to biased results when estimating effective population sizes 
based on X-chromosomal data alone. We therefore ran additional MSMC2 analyses using complete 
autosomal genomes. To avoid coverage related issues, we only used the two individuals from each 
sampling location with the highest mean genome-wide coverage. We processed the input data in the 
same manner as the X-chromosomal data and applied identical settings for the MSMC2 runs. 
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Results were scaled using a X-chromosomal mutation rate of X = 1.17 x 10-8 mutations per base pair 

per generation. This was determined using the relationship X = (4A - Y)/3, where Y is the Y-

chromosomal mutation rate and A is the autosomal mutation rate. This relationship assumes that the 

autosomal rate is the average of the male and female rates, that the Y-chromosomal rate is equal to the 
male mutation rate, and that X-chromosomal lineages spend two thirds of their time in females [9]. We 

assumed an autosomal mutation rate of A = 1.5 x 10-8 per base pair per generation [1], a Y-

chromosomal mutation rate of 2.5 x 10-8 per base pair per generation [18], and used a generation time 
of 25 years [10]. 

To further corroborate the results of our gene flow analyses, we fitted a demographic model to the 
SNP data set using the program momi2 [19]. We devised a model that incorporated population 
structure on both Borneo and Sumatra and allowed for discrete phases of admixture between the two 
islands after the initial split (Fig. S8). We used genotype data from three individuals with the highest 
mean coverage for each of the six populations (two on Sumatra and four on Borneo). To reduce the 
impact of spurious genotype calls, we applied strict filters for the inclusion of sites into the analysis, 
requiring three valid genotypes from each population (i.e. no missing data) with a minimum individual 
coverage of five reads. This resulted in 1,372,932,767 valid sites with 14,037,332 SNPs. We converted 
the genotypes to a multidimensional site-frequency spectrum using the ‘read_vcf.py’ and 
‘extract_sfs.py’ scripts of the momi2 package. Using the empirical site-frequency spectrum, we 
optimized the likelihood of the demographic model in 100 independent runs using the L-BFGS-B 
algorithm with a maximum number of 1,000 iterations. Based on the highest obtained likelihood, we 
performed 200 bootstrap resamples from 100 equal-sized data blocks to obtain confidence intervals, 
using the maximum likelihood estimate of the parameters as starting points of the optimization 
procedure. 

4.2 Results 

Cross-population Ne between all Bornean populations and the Sumatran population North Aceh 
gradually increased to infinity between 1.5 Ma and 400 ka (Fig. S4), suggesting a steady decline of 
genetic exchange between the two islands during this time frame. However, because MSMC2 is 
unable to detect sudden changes in gene flow with high precision, actual divergence might have 
occurred rapidly at some point between these bounds. There appears to be no gene flow between 
Bornean and North Sumatran populations at more recent times (Fig. S4). Cessation of gene flow 
between Northeast Alas and all Bornean populations occurred at similar times. No cross-population 
comparisons with the West Alas population were performed since no male individual from that region 
was available. 

There were signals of divergence between most of the Bornean populations between 40 ka and 20 ka 
(Figs. 3B and S5). Due to the relative paucity of coalescent events during this period, it is difficult to 
resolve the order in which the populations diverged from each other. Complex divergence processes 
would also tend to obscure times of initial separation. Remarkably, we found evidence for gene flow 
between the Sarawak and Central/West Kalimantan populations and between the North and South 
Kinabatangan sampling areas continuing to the most recent detectable times (<10 ka, Figs. S5 and S6). 

Validation of the cross-population Ne estimates using complete autosomal genomes revealed highly 
congruent patterns to the analysis limited to X chromosomes only (Fig. S7). However, we note that 
our estimates of the cross-population Ne on Borneo during the pronounced bottleneck 50-100 ka was 
smaller by a factor of two to three for the X-chromosome as compared to the autosomes (see Fig. 3B 
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vs. Fig. S7B). While a small reduction in Ne is expected for the X-chromosomal estimates given the 
smaller number of X-chromosomes compared to autosomes (0.75 to 1 for equal sex ratios), such a 
strong reduction might be indicative of widespread effects of selection acting on the X chromosome. 

The results from the model fitting using SNP data with momi2 were largely in agreement with our 
findings from MSMC2 (Table S4). We inferred a split time between Borneo and Sumatra of ~730 ka 
(95%-CI: 716–743 ka). In agreement with the PSMC and MSMC2 results, momi2 inferred a relatively 
large ancestral population on Borneo (~28,000 individuals) that went through a bottleneck of ~8,300 
individuals between 157 and 25 ka, followed by rapid population divergence. On Sumatra, population 
sizes increased from ~37,000 to 51,000, before declining to extremely low values in recent times (~95 
individuals for each population, Table S4). Contrary to earlier results [1, 20], which inferred 
population split times on Sumatra on the order of hundreds of thousands of years, momi2 inferred a 
recent divergence of population at ~1.3 ka, followed by admixture affecting large proportions of the 
genome. This discrepancy is most likely a result of the limits of the gene flow model implemented in 
momi2, which only supports discrete admixture events, but not continuous gene flow. Therefore, in 
the presence of high rates of continuous gene flow, momi2 tends to fit a recent split time between 
populations on Sumatra. Interestingly, while all MSMC2 runs indicated an infinite cross-population Ne 
and therefore lack of gene flow between Borneo and Sumatra more recently than ~400 ka, momi2 
found evidence for admixture as recent as ~44 ka (Table S4). Even though the estimates of admixture 
proportions were relatively small (~4.2% from Borneo to Sumatra, ~1.5% from Sumatra to Borneo), 
both rates were significantly larger than zero and the fit of the model including admixture was 
significantly better than the corresponding model without admixture (ΔAIC: 100,984.92). 

 

 

 
Fig. S4. Gene flow history between North Aceh and Bornean populations. Pseudo-diploid cross-
population Ne was inferred using the multiple sequentially Markovian coalescent 2 (MSMC2) on pairs 
of male X chromosomes from respective populations. The x-axis shows time scaled in years, assuming 
a generation time of 25 years and an X-chromosomal mutation rate of 1.17x10-8 per site per generation. 
The y-axis shows historical Ne, which is an inverse measure of gene flow between respective 
populations. 
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Fig. S5. Gene flow history between Bornean populations. Pseudo-diploid cross-population Ne was 
inferred using the multiple sequentially Markovian coalescent 2 (MSMC2) on pairs of male X 
chromosomes from respective populations. The x-axis shows time scaled in years, assuming a 
generation time of 25 years and an X-chromosomal mutation rate of 1.17x10-8 per site per generation. 
The y-axis shows historical Ne, which is an inverse measure of gene flow between respective 
populations. 
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Fig. S6. Gene flow history between North Kinabatangan and South Kinabatangan sampling 
areas on northeastern Borneo. Pseudo-diploid cross-population Ne was inferred using the multiple 
sequentially Markovian coalescent 2 (MSMC2) on pairs of male X chromosomes from respective 
populations. The x-axis shows time scaled in years, assuming a generation time of 25 years and an X-
chromosomal mutation rate of 1.17x10-8 per site per generation. The y-axis shows historical Ne, which 
is an inverse measure of gene flow between respective populations. 
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Fig. S7. Validation of gene flow results with phased autosomal data. (A) Temporal estimates of 
cross-population Ne between population pairs from multiple sequentially Markovian coalescent 
(MSMC) analyses by comparing autosomal haplotypes of Sumatran populations of Langkat and North 
Aceh to the Bornean populations of Central/West Kalimantan and East Kalimantan. Cross-population 
Ne is inversely proportional to gene flow between population pairs, but also influenced by within-
population Ne. The x-axis shows time scaled in years, assuming a generation time of 25 years and an 
autosomal mutation rate of 1.5x10-8 per site per generation. (B) Cross-population Ne between Bornean 
populations estimated from autosomal haplotypes in MSMC, revealing complete genetic isolation 
from 30 ka onwards for all population pairs.  
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Fig. S8. Illustration of demographic model used for the momi2 analysis. Point estimates of time 
parameters are shown on the Y-axis, while estimates of effective population size parameters are 
indicated by the width of population bars. Horizontal arrows depict admixture events and estimated 
admixture proportions. The Y-axis is linear below the dashed line and follows a logarithmic scale 
above 100 ka.  
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Table S4. Maximum likelihood parameter estimates and bootstrap resampling in the momi2 
analysis. 

Parametera Search boundsb MLEc 95%-CId 
N_NKSK 1–1,000,000 4,994 4,583–5,492 
N_EK 1–1,000,000 3,246 2,960–3,577 
N_CKWK 1–1,000,000 5,562 4,987–6,241 
N_SR 1–1,000,000 6,454 5,935–7,091 
N_LKNA 1–1,000,000 207 188–234 
N_WA 1–1,000,000 95 78–113 
N_bn_BO 1–1,000,000 8,388 7,197–9,314 
N_anc_BO 1–1,000,000 27,935 26,414–29,873 
N_anc_SU 1–1,000,000 50,812 48,593–53,156 
N_anc_all 1–1,000,000 36,840 36,488–37,306 
T_split_BO 1,000–1,000,000 24,717 22,988–26,481 
T_bn_BO 1,000–1,000,000 156,560 122,034–190,948 
T_split_SU 1,000–1,000,000 1,266 1,239–1,303 
T_admix_wSU 100–100,000 194 162–230 
T_split_BOSU 10,000–3,000,000 731,197 715,701–743,161 
T_admix_BOSU 1,000–1,000,000 44,077 39,469–47,966 
P_wSU 0.000–1.000 0.849 0.785–0.898 
P_BO_SU 0.000–0.500 0.042 0.040–0.044 
P_SU_BO 0.000–0.500 0.015 0.013–0.017 

a, N_XX = effective population size parameters, T_XX = time parameters in years, P_XX_YY = 
admixture proportions from XX to YY; b, parameter search ranges for maximum likelihood 
optimization; c, maximum likelihood estimate from 100 independent runs; d, 95% confidence intervals 
from 200 bootstrap replicates. 
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Section 5: Mutational load analysis 

Bornean orangutans experienced a drastically lower Ne during the Middle Pleistocene (Fig. 2), 
possibly due to recurrent population bottlenecks during glacial cycles (Figs. 2 and 3B) [1]. Such 
bottlenecks might have led to an increased fixation of moderately deleterious mutations due to 
enhanced drift [21]. Evidence for this emerges when correlating the density of segregating deleterious 
variation in the individual genomes with estimated long-term Ne.  

The ratio of non-synonymous to synonymous variants in an individual genome is related to the 
efficiency of natural selection to remove detrimental variants [22]. We estimated the ratio of stop gain 
and non-synonymous single nucleotide variants to synonymous variants in each individual, and plotted 
them against the long-term effective population size (Ne) estimated from Watterson’s estimator of 
theta [23]. As expected, and previously described for ten great ape populations [2], those ratios are 
inversely correlated to effective population size: the smaller the population size the higher proportion 
of putatively detrimental variants. This correlation is weak and only marginally significant when 
considering all polymorphic variants within each species (Fig. S9). However, the correlation is strong 
considering only the variants segregating in each population (Fig. S10), and especially strong for the 
stop gain variants (Fig. S11). Stop gain mutations are more likely to have a gene-disrupting effect 
among the loss-of-function variants, while others, such as splice site donor and acceptor variants or 
start and stop losses, are more difficult to predict. The effect of Ne on the efficiency of natural 
selection is also seen when representing the number of fixed variants inside each group (species and 
populations) (Figs. S12 and S13), where species/populations with higher Ne have fewer fixed 
detrimental variants. 

 

 

Fig. S9. Ratio of polymorphic non-synonymous to synonymous variants for each individual (y-
axis) against long-term effective population size (Ne, x-axis). Color codes match those of Fig. 1. Ne 
was estimated from the density of segregating sites (Watterson’s estimator of theta).  
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Fig. S10. Ratio of polymorphic non-synonymous to synonymous variants for each individual (y-
axis) against long-term effective population size (Ne, x-axis), excluding those variants fixed in 
each population. Color codes match those of Fig. 1. Ne was estimated from the density of segregating 
sites (Watterson’s estimator of theta). 

 

 

 
Fig. S11. Ratio of polymorphic stop gain introducing variants to synonymous variants for each 
individual (y-axis) against long-term effective population size (Ne, x-axis), excluding those 
variants fixed in each population. Color codes match those of Fig. 1. Ne was estimated from the 
density of segregating sites (Watterson’s estimator of theta). 
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Fig. S12. Absolute number of fixed stop gain introducing variants in each species and population 
(y-axis) against long-term effective population size (Ne, x-axis). Ne was estimated from the density 
of segregating sites (Watterson’s estimator of theta). 

 

 

 
Fig. S13. Absolute number of fixed missense variants in each species and population (y-axis) 
against long-term effective population size (Ne, x-axis). Ne was estimated from the density of 
segregating sites (Watterson’s estimator of theta). 
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Section 6: Fixed SNPs between species 

6.1 Methods 

We investigated fixed SNPs between species in more detail, i.e. SNPs for which all Bornean 
orangutans were homozygous for one allele and all North Sumatran orangutans for the other. We only 
considered SNP positions which were covered by at least 10 genotypes per species with a minimal 
sequence depth of 5x (n = 27,037,765 SNPs) and identified fixed SNPs with custom R scripts. To 
characterize the effects of fixed SNP variants on genes, transcripts, and protein sequence we used the 
Variant Effect Predictor [24] implemented in the Ensembl genome browser 
(http://www.ensembl.org/info/docs/tools/vep/). For all genes containing at least one non-synonymous 
fixed SNP, we again obtained detailed functional information with GeneALaCart. 

We performed GO enrichment analyses for fixed SNPs between species. For these SNP-based GO 
analyses, we used the program GOWINDA [25]—a software that was designed for genome-wide 
association studies. Classical GO analyses may be biased as longer genes typically have more SNPs, 
thus a higher probability of being sampled [25]. Permutation tests implemented in GOWINDA take 
this into account and allow for an unbiased analysis of gene set enrichment [25]. To obtain an 
orangutan-specific gene set file of GO terms, we downloaded biological process GO terms for all 
protein-coding genes in the orangutan genome from the BioMart web-interface (accessed April 5th 
2015) and converted the file to the format required by GOWINDA in R. The list of candidate genes 
was built from genes which contained at least one fixed SNP within a window of 5,000 bp upstream 
and downstream of the gene. Including these flanking regions ensured to capture also SNPs within 
close-by regulatory elements [26, 27]. The background list of genes for significance assessment was 
derived from all variable sites used to identify the fixed SNPs. We applied the recommended more 
conservative ‘–gene flag’, which assumes that all SNPs within a gene are completely linked. 
Significance thresholds (P < 0.05) after false-discovery rate (FDR) correction were obtained 
empirically based on 100,000 simulations.  

6.2 Results 

Out of 27,037,765 analyzed autosomal SNPs, 123,023 SNPs (0.455%) were completely fixed for 
different alleles in Bornean and North Sumatran orangutans (Additional file 2: Table S13). These 
SNPs constitute the genetic basis of differences between the two orangutan species, which might have 
arisen either by random genetic drift or directional selection. Of all fixed SNPs, 39.9% were located 
within 5 kb of a protein-coding gene, indicating an enrichment of fixed SNPs in gene and regulatory 
regions (Additional file 2: Table S14). Gene ontology analysis of protein-coding genes containing 
fixed SNPs (3,889 genes) revealed statistically significant (P FDR < 0.05) enrichment of 19 biological 
GO categories (Table S5, Additional file 2: Table S15). The significantly enriched GO terms were 
associated with brain development (n = 2), skeletal development (n = 3), metabolism (n = 5), 
organismal development (n = 4), and regulation of transcription (n = 3). Enriched gene ontologies 
include for example two terms possibly associated with differences in diet between Bornean and North 
Sumatran orangutans, i.e. the sensory perception of taste and the response to stilbenoid. Stilbenoids are 
a class of plant phenolics occurring in the wood and fruits of several plant families, including tropical 
Dipterocarpaceae and Gnetaceae [28]. Orangutan fallback food is higher in phenolics than fruit pulp 
and seeds [29]. 
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Among the 123,023 SNPs fixed between Bornean and North Sumatran orangutans, 296 SNPs were 
non-synonymous, i.e. altered amino acids, and three were splice donor/acceptor variants (Additional 
file 2: Table S14). A proportion of these SNPs likely represent causal variants underlying phenotypic 
differences between the two orangutan species. Fixed non-synonymous SNPs altered 236 protein-
coding genes, of which 28 were uncharacterized novel genes in Pongo (identified by Ensembl Gene 
Build). Two fixed non-synonymous SNPs resulted in gain of a premature stop codon (loss-of-function 
mutations) in the genes ARGFX and ZNF224. ARGFX is a putative transcription factor and thought to 
be involved in early embryonic development. ZNF224 may be involved in transcriptional regulation as 
repressor. We identified further loss-of-function mutations in splicing regions, which affected the gene 
SRBD1 (splice donor variant), whose function remains unknown, and two uncharacterized novel genes 
(ENSPPYG00000010361, ENSPPYG00000000950). We did not find significant (P FDR < 0.05) 
enrichment of genes with potential functional changes for any particular biological GO term. Detailed 
functional and disease association information of all genes containing fixed non-synonymous SNPs or 
splice acceptor/donor variants are provided in Additional file 2: Table S16.  
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Table S5. Significantly enriched gene ontology (GO) terms between North Sumatran and 
Bornean orangutans. Listed GO terms were significantly enriched in the analysis of SNPs fixed 
between species. We report only GO terms that are related to biological processes.  

GO term GO description P FDRa 
No. of 
genesb 

Brain development       
GO:0021797 Forebrain anterior/posterior pattern specification 0.00165 5/5 

GO:0021938 Smoothened signaling pathway involved in regulation 
of cerebellar granule cell precursor cell proliferation 

0.04976 4/4 

Skeletal development       
GO:0048706 Embryonic skeletal system development 0.01067 19/39 

GO:0060348 Bone development 0.01067 26/38 

Metabolism       
GO:0050909 Sensory perception of taste 0.00605 14/31 

GO:0051453 Regulation of intracellular pH 0.04083 6/7 

GO:0072001 Renal system development 0.04632 11/18 

GO:2000377 Regulation of reactive oxygen species metabolic 
process 

0.02304 12/17 

GO:0007275 Multicellular organismal development 0.00165 88/188 

GO:0009952 Anterior/posterior pattern specification 0.00165 41/87 

GO:0009953 Dorsal/ventral pattern formation 0.03875 23/43 

GO:0061154 Endothelial tube morphogenesis 0.04868 4/4 

Regulation       
GO:0000122 Negative regulation of transcription from RNA 

Polymerase II promoter 
0.01637 181/460 

GO:0045944 Positive regulation of transcription from RNA 
Polymerase II promoter 

0.00165 280/702 

GO:0030178 Negative regulation of Wnt signaling pathway 0.01067 24/42 
aP-value after adjustment for multiple testing; bthe number of unique genes found for the given GO term related 
to the total number of genes that could be found at most for this term, i.e. genes that have a corresponding entry 
in the annotation file and contain at least one SNP.  
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Section 7: Codon models for positive selection analysis 

 

Fig. S14. Species topologies used in the codon modeling. The North Sumatran clade contains all P. 
abelii individuals except those from Batang Toru. The East Bornean clade includes all P. pygmaeus 
morio individuals, whereas the remaining Bornean individuals belong to the West Bornean clade. The 
outgroup species include the human, chimpanzee and rhesus macaque lineages. Because some genes 
might exhibit gene trees incongruent with the assumed species topology, we filtered out the exons that 
have low branch support (<0.5 aBayes support) [30] at the internal branch separating Sumatran from 
Bornean individuals in the unrooted tree setting. 
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Table S6. Genes with evidence of positive selection in Northeast Borneo. Genes are grouped based 
on the pathways or functions they are associated to according to GeneCards database. 

HUGO Gene ID Function based on interaction network analysis 2Δl LRT 

Muscle activity  
CDON myogenesis 2.799 

EFCAB9 muscle contraction 3.285 

GAS2L2 crosslink microfilaments in muscle 3.113 

MLYCD fatty acid biosynthesis in muscle  3.076 

NAIP modifier of spinal muscular atrophy 3.755 

NRAP muscle tendon junction 3.822 

RGS20 cardiac muscle activity  4.100 

TNNI3 cardiac muscle relaxation, obesity, diabetes 3.354 

TNNI3K cardiac muscle contraction 3.354 

Heart and vessels  
EFNA5 activates the EPHA3  2.751 

EPHA3 cardiac cell differentiation 5.780 

GLG1 interactions at the vascular wall 3.797 

JAG1 heart development 3.108 

Fertilization  
CMPK1 nucleotide metabolism, ovulation 3.768 

EFCAB6 spermatogenesis and fertilization 3.285 

LIMK2 spermatogenesis 3.851 

MUC16 cell surface signaling in ovaries 4.700 

SPATA13 spermatogenesis  5.420 

TEKT3 sperm mobility 3.243 

BRCA1 cell cycle, estragen pathway 3.226 

PES1 main regulator of estrogen levels 4.678 

Olfaction   

OR5AU1 olfactory perception 3.232 

OR6D2 olfactory perception 3.197 

OR7D2 olfactory perception 3.454 

Peroxisome metabolism  
FAT1 peroxisome proliferation, regulate PEX5 and TG activity 13.409 

PEX5 peroxisomal biogenesis 3.388 

TG insulin secretion 3.008 

Lipid metabolism  
FPGT glycolipid metabolism 6.776 

GPR116 fat cell differentiation 5.469 

LGSN glutamine synthesis 6.471 

Hyaluronan metabolism  
ABCC5 hyaluronic acid biosynthesis 2.829 

ACAN binds to hyaluronic acid 4.218 

STAB2 binds to hyaluronic acid, glycogen storage 3.630 

Brain and nervous system  
KIF1C reelin pathway, brain development 9.949 

RELN cortex development 2.819 

SPTA1 actin cytoskeleton, neural growth 3.294 

Hair  
KRT23 hair follicle 4.267 

KRT32 hair keratin 6.431 

Other  
CAPN14 apoptosis, cell division 2.800 

FRAS1 organogenesis during development 3.863 

GRK7 visual perception 3.083 

IGF2R regulates fetal growth  2.790 

PARP15 transcription regulation 3.191 

PDZD2 pain pathway 4.042 

ZNF236 transcription regulation 2.912 

ZNF777 transcription regulation 3.054 

MCM10 DNA replication 6.181 
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Table S7. Genes with evidence of positive selection in North Sumatra.  

HUGO Gene ID Function based on interaction network analysis 2Δl LRT 
Brain and nervous system  
ADGRF3 neuropeptide signaling 3.197 
DLC1 neural tube closure 3.062 
HAUS2 mitotic activity in brain 3.123 
MPDZ postsynaptic activity 3.584 
MTCH1 neuronal ion channel 3.180 
NEK1 axonal development 3.208 
NTRK2 neuron migration and survival 5.336 
PLCB1 signaling in brain and neural tube 5.157 
RECQL5 energy metabolism in cerebral cortex 3.399 
SF3A3 embryonic development of the brain 4.060 
SH3RF2 embryonic development of the neural tube 3.907 
SMC2 mitotic activity in brain 4.152 
SYT1 synaptic neurotransmitter release in brain 3.701 
TENM2 neural development 3.233 
YARS neuronal signal transduction in brain 3.961 
Kidney  
RPGRIP1L kidney development 2.910 
SLC12A1 kidney development 5.770 
Metabolism   
ABCA13 phospholipid transport 3.040 
ABCC1 lipid metabolism 3.874 
ABCC2 glucose/energy metabolism  2.758 
ACO2 glucose/energy metabolism  2.925 
LPIN1 fatty acid, triacylglycerol and ketone body metabolism 2.880 
LYPLAL1 lipid metabolism 3.940 
PIGR protein-energy metabolism  3.656 
SAMM50 protein metabolism in mitochondria 3.812 
SLC9B2 energy metabolism 4.189 
Other   
GAS8 cell growth 4.359 
PDCD11 cell death 3.617 
SERPINA4 immune system 3.391 
SERPING1 immune system 3.421 
TAS2R38 taste receptor 2.745 
ZFP161 transcription regulation 5.238 

 

We repeated the MCM positive selection tests for the genes with the evidence of positive selection by 
using the whole protein coding transcripts (Table S8). We merged the exons that fulfil the original 
criteria for each gene using the bedtools. 
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Table S8. Results of MCM using whole protein coding transcripts. 

Northeast Borneo   North Sumatra 
HUGO Gene ID 2Δl  HUGO Gene ID 2Δl  
ABCC5 4.66016 ABCA13 3.04027 
ACAN 4.21728 ABCC1 3.87419 
BRCA1 3.22596 ABCC2 2.75766 
CAPN14 2.79917 ACO2 4.99823 
CDON 4.49756 ADGRF3 3.19737 
CMPK1 7.91556 CACNB2 4.39668 
CNTN2 5.66427 DLC1 3.06256 
DMXL2 3.23381 GAS8 3.24736 
EFCAB6 3.28472 HAUS2 3.12283 
EFNA5 2.75127 LPIN1 3.95157 
EPHA3 5.77908 LYPLAL1 3.94015 
FAM184A 9.4647 MPDZ 3.58354 
FAT1 13.4094 MTCH1 3.18018 
FPGT 6.77569 NEK1 4.13116 
FRAS1 3.86342 NTRK2 5.33643 
GAS2L2 3.11336 PDCD11 3.61745 
GLG1 3.79665 PIGR 3.65565 
GPR116 22.296 PLCB1 5.15674 
GRK7 3.93602 RECQL5 3.39903 
IGF2R 2.78969 RPGRIP1L 2.90991 
JAG1 18.90462 SAMM50 8.45200 
KIF1C 9.49883 SERPINA4 3.39107 
KRT23 17.06778 SERPING1 3.42126 
KRT32 6.43136 SF3A3 4.05953 
LGSN 6.47103 SH3RF2 3.90674 
LIMK2 3.85154 SLC12A1 5.77033 
MAP3K10 3.3365 SLC9B2 4.18922 
MCM10 6.18065 SMC2 9.94144 
MLYCD 5.54278 SYT1 3.70096 
MUC16 4.70021 TAS2R38 5.51144 
NAIP 3.75485 TENM2 3.23282 
NAV2 4.84717 YARS 3.96115 
NRAP 3.82186 ZFP161 5.23814 
OR5AU1 11.75782 
OR6D2 3.19736 
OR7D2 22.779 
PARP15 3.1909 
PDZD2 4.04203 
PES1 4.67827 
PEX5 6.54676 
RASL11A 3.03538 
RELN 2.81864 
RGS20 4.09976 
SPATA13 16.18588 
SPTA1 2.7276 
STAB2 3.62969 
TEKT3 3.24328 
TG 3.00826 
TNNI3K 3.3543 
TNNI3K 3.3543 
ZNF236 2.91207 
ZNF777 3.0535 
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Section 8: Interaction network analyses 

To gain a better understanding of the functions of genes putatively under positive selection in the two 
orangutan species, we employed a network approach to visualize interaction relationships among the 
sets of genes identified in Section 7. 

We generated gene networks using GeneMania App 3.4.0 in Cytoscape 3.3.0 [31]. We used the 
functional association database of GeneMania to retrieve the interaction networks within the set of 
candidate genes. We disabled the search for relevant genes, so that each node in the network was a 
candidate gene identified through MCM. Genes were labeled with the HUGO gene ID.  

For candidate genes found in East Borneo (n = 46) and in North Sumatra (n = 33) in the codon 
modeling approach, we considered all interaction classes except the predicted interactions class. We 
found that most of the candidate genes were involved in one of the following interaction classes: co-
expression, genetic interaction, shared pathway, shared protein domain, physical interaction. The 
genes that were not involved in any interaction with other genes in the sets are shown as single nodes 
in the networks. 

We assigned functional classes to genes according to the presence of specific keywords in the 
GeneCards encyclopedia summaries of gene function and disease association annotations from the 
following databases: Entrez Gene of the National Center for Biotechnology Information (NCBI), 
UniProt Knowledgebase (UniProtKB/Swiss-Prot), The Human Malady Compendium (MalaCards), 
and DISEASES database (Table S9). Different functional classes were coded by different colors. 

Table S9. Keywords used for functional classification of candidate genes. 

Functional class Keywords 
Lipid metabolism lipid, lipo-, fat, adipo-, peroxi-, obesity, diabet-, insulin 
Glucose metabolism sugar, carbo-, gluco- 
Brain and neural development nerv-, neurogenesis, neurite, axon guidance, cortex, cereb- 
Learning and memory learning, memory, synaptic plasticity, long-term potentiation, post synaptic 

synapse formation 
Cardiac/muscle activity cardi-, muscle, myo-, atrioventricular 
Stress response environmental stress, stress 
Cellular growth cell cycle, mito-, survival, cellular growth, proliferation, replicati-, death, 

division 
Reproduction reproduction, fertilization, germinal, gamete, sperm, ovary, -male 
Immune response immune response, inflammatory response 

 
 

The classification of the keyword search was manually checked for each gene. In case of multiple 
putative functions and/or a lack of a main function, we did not assign the gene to a functional class. 
Following these procedures, we could assign at least half of the candidate genes in each set to one of 
the functional classes listed in Table S9. 
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Section 9: Population-based selection analyses 

We also carried out population-based selection analyses to uncover candidate loci that might explain 
the genetic basis of phenotypic differences observed among populations within the two orangutan 
species. We applied two complementary tests in genome-wide windows to uncover signatures of 
ongoing or recent selective sweeps. First, we ran a composite likelihood ratio (CLR) test to assess site 
frequency spectra to investigate local frequency shifts relative to the genomic background. Second, we 
applied a haplotype-based selection test (iHS) [32] occurring within the last few thousand years [33]. 
In both approaches, we identified significant departure from patterns expected under neutrality by 
running neutral coalescent simulations under the demographic model described in Nater et al. [1]. 

9.1 Methodological considerations 

There are two methodological challenges that might bias our population-based selection analyses. First, 
low sequencing coverage of certain individuals sequenced here might bias the discovery rate of SNPs 
against low-frequency variants, which will affect our selection tests. However, we believe that our 
methods are robust to such a bias. The iHS statistic was developed and tested for the analysis of chip-
array data [32], which usually show some degree of ascertainment bias, similar to what is expected to 
occur with non-uniform coverage in whole-genome sequencing. Furthermore, iHS is based on the 
relative length of haplotypes carrying the ancestral and derived alleles, thus it is considered to be quite 
robust to biases affecting the allele frequency spectrum [32]. 

The second methodological challenge is related to the relatively low sample sizes of the studied 
populations. However, sample sizes are to be considered when simulating the neutral null model, 
resulting in a broader null distribution of test statistics and therefore reduced power to detect outliers, 
but no apparent bias. 

9.2 Data sets for population-level analyses 

We used genome-wide SNP data from 30 individuals from four populations to perform population-
level tests of positive selection (Table S10). For each individual, we estimated the haplotypes at each 
chromosome using SHAPEIT as described in Section 2. Additionally, we determined the ancestral 
state for each SNP (Section 2). We excluded sites that were not biallelic, for which the ancestral state 
could not be determined, or which were monomorphic at the population level.  
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Table S10. Samples used for population-level selection analyses. 

Species Population Individuals 

P. abelii Northeast Alas PA_KB4661, PA_KB5883, PA_A947, PA_A948, PA_A950, PA_A952, 
PA_A949, PA_B018 

West Alas PA_KB4361, PA_SB550, PA_B017, PA_A953, PA_A955, PA_B020 

P. pygmaeus Central/West 
Kalimantan 
(P. p. wurmbii) 

PP_KB4204, PP_KB5404, PP_KB5405, PP_A940, PP_A941, PP_A943, 
PP_A944, PP_A938, PP_A983 

Kinabatangan/ 
East Kalimantan 
(P. p. morio) 

PP_KB5543, PP_A984, PP_A985, PP_A987, PP_A988, PP_5062, 
PP_A989 

 

9.3 Tests for positive selection 

We calculated the composite likelihood ratio (CLR) test statistic using the program SweeD v3.3.2 [34]. 
We applied a spacing of grid points for the calculation of the CLR statistic of 12.5 kb, using the 
unfolded site-frequency spectrum. To ensure accurate allele frequency estimates across genomic 
regions with varying coverage, we required genotypes to be covered by at least five reads, and sites to 
have at least 80% of individuals with valid genotypes. 

We used the R package rEHH [35] with default parameters to obtain absolute iHS scores for each 
informative polymorphic site in each population, using only polymorphic sites with no missing 
genotypes in all individuals of a given population. We then averaged iHS scores in sliding windows of 
25 kb with 12.5 kb step size (iHSavg). Averaging absolute iHS scores in genomic windows reduces the 
variance of the statistic and it is commonly advised [32, 36]. 

9.4 Neutral simulations 

In order to assess thresholds of significance for each population, we performed a set of neutral 
simulations based on the demographic model estimated through ABC modeling described in Nater et 
al. [1] by sampling model parameter values from the posterior density distributions. For each 
population, we matched the sample sizes of the simulations to the empirical data. We fixed the 
mutation rate at 1.5 x 10-8 per base pair per generation [1], and sampled the recombination rate for 
each simulated locus from a uniform distribution between 10-9 and 10-8 per base pair per generation 
(covering approximately the range observed during recombination map estimation, see Nater et al. [1]). 

In total, we generated 10,000 replicates, simulating sequences spanning 100 kb, and analyzed the 
simulated data with the same pipeline as described above. We used the same sliding window 
parameters as for the empirical data to average iHS scores and the same grid point spacing as for the 
calculation of the CLR statistic, allowing us to check for possible simulation biases along the 
simulated sequence. Since we did not observe any bias towards the ends of the simulated sequences, 
we used all the test scores from the simulated 100 kb sequences to build the score distributions and 
establish 1%-FPR thresholds. By applying the thresholds estimated according to the neutral null model, 
we identified a set of regions under putative positive selection for each population. 
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9.5 Candidate gene information and GO enrichment analysis 

We identified protein-coding genes located within putative sweep regions with the BioMart web-
interface [37] of the Ensembl genome browser (http://www.ensembl.org/biomart/), searching the 
‘Pongo abelii genes’ dataset (Ensembl release 84). We further gathered detailed information on 
identified protein-coding genes using GeneALaCart (LifeMap Sciences, Inc.), which allows extracting 
information on a large number of genes from the GeneCards encyclopedia—an integrated database of 
information dealing with human genes (https://genealacart.genecards.org; last accessed March 19th 
2016) [38]. We obtained GeneCards summaries of gene function and disease association annotations 
from the following major knowledge databases: Entrez Gene of the National Center for Biotechnology 
Information (NCBI), UniProt Knowledgebase (UniProtKB/Swiss-Prot), The Human Malady 
Compendium (MalaCards), and DISEASES database (disease-gene associations mined from literature). 

To examine whether genes within putative selective sweep regions (i.e. candidate genes) were 
enriched for any particular biological process, we performed an analysis of Gene Ontology (GO) terms 
using the R package ‘gProfileR’ of the g:Profiler toolkit [39, 40]. Significance was assessed by 
comparing the candidate genes with a background list of all possible genes, i.e. all protein-coding 
genes (n = 12,866) located within any window with sufficient coverage for calculation of the iHS and 
CLR statistics. We applied the Benjamini-Hochberg method [41] for computing multiple testing 
correction for P-values gained from GO enrichment analysis. 

9.6 Overlap of candidate genes among populations 

Our gene mapping strategy provided an approximate genome-wide measure of the number of genes in 
regions showing evidence of positive selection, as well as an estimate of the overlap among 
populations. Overlap of identified candidate genes between populations was generally low, indicating 
geographically localized recent sweep events (Table S11 and S12). As expected, comparisons of 
populations within each species showed a generally higher overlap as compared to population pairs 
between species. 

Table S11. Overlap among populations of candidate genes identified in the iHS tests. 

 Northeast Alas West Alas 
Kinabatangan/East 
Kalimantan 

Central/West 
Kalimantan 

Northeast Alas 350 - - - 

West Alas 28 319 - - 

Kinabatangan/East 
Kalimantan 

8 9 216 - 

Central/West 
Kalimantan 

11 10 22 256 
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Table S12. Overlap among populations of candidate genes identified in the CLR tests. 

 Northeast Alas West Alas 
Kinabatangan/East 
Kalimantan 

Central/West 
Kalimantan 

Northeast Alas 456 - - - 

West Alas 108 409 - - 

Kinabatangan/East 
Kalimantan 

37 35 295 - 

Central/West 
Kalimantan 

54 51 84 346 
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