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Summary

Bats provide important ecosystem services such as pollination of native forests; they are also a source

of zoonotic pathogens for humans and domestic animals. Human-induced changes to native habitats

may have created more opportunities for bats to reside in urban settings, thus decreasing pollination

services to native forests and increasing opportunities for zoonotic transmission. In Australia, fruit25

bats (Pteropus spp. �ying foxes) are increasingly inhabiting urban areas where they feed on

anthropogenic food sources with nutritional characteristics and phenology that di�er from native

habitats. We use optimal foraging theory to investigate the relationship between bat residence time in

a patch, the time it takes to search for a new patch (simulating loss of native habitat) and seasonal

resource production. We show that it can be bene�cial to reside in a patch, even when food30

productivity is low, as long as foraging intensity is low and the expected searching time is high. A

small increase in the expected patch searching time greatly increases the residence time, suggesting

non-linear associations between patch residency and loss of native resources that are driven by

resource seasonality. We also found that sudden increases in resource consumption due to an in�ux of

new bats has complex e�ects on patch departure times that again depend on expected searching times35

and seasonality. Our results suggest that the increased use of urban landscapes by bats may be a

response to new spatial and temporal con�gurations of foraging opportunities. Given that bats are

reservoir hosts of zoonotic diseases, our results provide a framework to study the e�ects of foraging

ecology on disease dynamics.
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Introduction40

The aggregation of animals around food resources is an important driver of disease transmission [1]

and spillover to new host species [2]. For many animals, food availability exhibits substantial seasonal

and spatial variation. In particular, foods such as fruit and �oral nectar occur in habitat patches with

variable levels of synchrony across space. Animals that rely on such ephemeral resources must be

highly mobile and must make decisions about the time spent exploiting a given food patch. Such45

decisions are likely based on the energetic pro�tability of the resources and the costs associated with

�nding a new food patch [3, 4, 5, 6, 7, 8, 9]. In human-modi�ed landscapes, animals are confronted

with new foraging conditions imposed by the removal of traditional food sources and/or the

appearance of exotic foods with di�erent nutritional and yield characteristics. Animals may respond

to changes in the distribution, abundance and quality of food resources by adjusting their foraging50

strategies [10, 11, 12], which may explain why some foragers utilize urban habitats with increasing

frequency and duration [13, 14]. In the context of public health and animal welfare, this is important

because the use of urban and peri-urban habitats by animals hosting zoonotic diseases increases the

risk of disease spillover [15, 16].

Evaluating the conditions that lead to increased patch residence time, such as the interplay55

between resource seasonality, habitat clearing and foraging decisions could thus provide valuable

insights into the dynamics of animal-borne diseases [17, 18]. For example, disease expression could

depend on the foraging ecology of hosts because immune mechanisms of defense are energetically

costly [19, 20]. Similarly, among–hosts dynamics could depend on the foraging decisions made by

host in di�erent classes of infection [21, 22].60

Pteropodid bats across the world are known to be reservoir hosts of several diseases that may

transmit to livestock and humans [16, 23, 24, 25]. Previous work on Australian pteropus bat species

(commonly named �ying foxes) has shown that disease spillover is greater in areas where bats,

livestock and humans co-inhabit [16, 26, 27]. Although urban Australian �ying foxes are considered a

nuisance and are often removed from urban settings, in most other countries, human-bat contact is65

facilitated by the valuable services that bats provide including bushmeat and guano (which serves as
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fertilizer). Elucidating the mechanisms that favor human-bat contact may thus be useful in the

management of bat-borne viral diseases such as Ebola, Nipah and Hendra [23, 25].

Australian �ying foxes establish roosts near habitat patches where fruit and nectar are produced

[28, 29, 30]. However, such food sources are spatially scattered because of variation in tree community70

composition and in the �owering phenology of any given tree species in space [31, see also Figure 1].

Such asynchronous production of food and the dependence of �ying foxes on high-energy-yielding

food sources [32, 31] is thought to explain the nomadic behavior of �ying foxes. However, the four

species of �ying foxes in Australia di�er in their dietary requirements. In urban and peri-urban

habitats, generalist species, such as Pteropus alecto, exploit a combination of native and exotic food75

sources [33, 34, 35], which may favor increased residency in urban habitats due to a constant food

supply across seasons [36]. Furthermore, longer residence time in urban landscapes could result from

loss of native habitat across the landscape or from loss of habitat that �owers within speci�c seasons

[30]. In either case, higher energetic demands would be required to �nd new habitat patches

producing food [32]. It is thus possible that both the increased transit distance imposed by habitat80

clearing and a more constant food supply from non-native food items explain the increased time that

some species of �ying foxes spend near urban habitats. While patch residence times and the

movement behavior of �ying foxes is a�ected by a multitude of factors, previous work suggest that

�ying foxes display optimal foraging behaviors in selecting roosting and foraging sites [37], so that

patch residence time is at least partly guided by energetic considerations.85

Our aim is to predict how seasonal �uctuation in resources and habitat fragmentation or patch

isolation (measured as the expected time required to travel to a di�erent patch) a�ect patch residence

times of �ying foxes. We assume that bats make optimal foraging decisions, such that the patch

residence time depends on marginal energetic gains obtained through foraging in the patch with

respect to expected energetic costs of �nding a new patch. To help explain the increase in number of90

permanent �ying fox camps near urban landscapes in Australia [38, 39], we speci�cally seek to

identify conditions that lead to longer residence times in habitats with lower amplitude of seasonal

resource variation (i.e. more consistent resources). For cases of high seasonality, we then characterize
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the e�ect of initial food density at the time of bat arrival on the patch residence time. Finally, we

quantify the e�ects of sudden immigration events associated with �oral blooms on the patch residence95

time of established bats.

Methods

Dynamic model

We built a dynamic model to track resource abundance R(t) in a single patch and the amount of

energy E(t) stored by a colony of bats since their arrival at time t = 0 days. In the absence of bats, the100

resources (which can be nectar or fruit) are assumed to follow a logistic growth model [40], with

resource birth ⌫ and carrying capacityK(t) that oscillates as a cosine function with a period (d) of one

year between 1 + k1 (peak) and 1� k1 (trough) in arbitrary units. The assumption of logistic growth

of the resource is justi�ed by the observation that nectar production is replenished following

consumption [41]. Resources are also assumed to oscillate seasonally given that the �owering105

abundance of native tree species greatly decreases in winter (Figure 1). Bat foraging occurs at constant

rate � which implicitly captures the colony size, assuming that all bats arrive and leave at the same

time. Bats convert the consumed resources into energy E(t) at rate �. While in the patch, bats

consume energy at metabolic rate µ. When bats leave the patch, they expect to spend an arbitrary

time T searching for and traveling to a new suitable patch, resulting in a net energy expenditure of110

cT . Note that we de�ne a patch as encompassing both roosting and feeding sites within a close

distance; this is in line with the observation that �ying foxes forage in the vicinity of their roosting

site and that migration to new roosts is correlated with the use of di�erent foraging areas [42]. This
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leads to the following set of di�erential equations:

dR

dt
= R


⌫

✓
1� R

K(t)

◆
� �

�
, (1)

dE

dt
= ��R� µE, (2)

E(0) = 0, (3)

K(t) = 1 + k1 cos(d2⇡t). (4)

Decision model115

While patch occupancy and migration patterns of �ying foxes have been shown to correlate with

spatiotemporal variations in food abundance [43, 28], the underlying decision process is poorly

characterized. Here we consider one particular framework, known as the marginal value theorem

[44], which has been used to model resource-driven migration behavior in several animal taxa

[45, 46, 47, 48]. In short, the model assumes that the optimal residence time in a patch is the value that120

maximizes the net average energy gain E⇤
(t): “net” because we discount the energy spent traveling to

the next patch (cT ), and “average” as we normalize by the sum of the residence and traveling times:

E⇤
(t) =

E(t)� cT

T + t
. (5)

As shown by [44], and summarized in Supplementary Figure S1, E⇤
(t) is maximized when it is equal

to the marginal energy gain E 0
(t). In other words, bats remain in the patch for as long as the marginal

energy gain E 0
(t) exceeds the net average gain to date E⇤

(t).125

We used a Runge-Kutta integrator algorithm in R (function ode, method ’lsoda’, package deSolve

[49]) to solve the above di�erential equations and evaluate the �rst time point when E 0
(t) < E⇤

(t) as

the optimal residence time. We generated model outputs by varying seasonal amplitude k1 (range: 0

to 0.95), the consumption rate � (range: 0.05 to 1 consumed resource units/t) and the expected time

required to travel to a new patch T (range: 0.5 to 72 hours). Consumption was always set to start130

when the resource density was cycling at its equilibrium (i.e. on the limit cycle). To evaluate the
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e�ects of variable bat arrival times, we allowed consumption to start when the resource was either at

the minimum or maximal resource value of the limit cycle.

E�ect of secondary immigration

We then investigated how the residence time changed in response to sudden immigration events135

associated with �oral blooms. We extended eqns 1-4 to simulate the arrival of a second bat cohort

when food resources R(t) were at their peak:

dR

dt
= R


⌫

✓
1� R

K(t)

◆
� �1 � �2

�
, (6)

dE1

dt
= ��1R� µE1, (7)

dE2

dt
= ��2R� µE2, (8)

K(t) = 1 + k1 cos(d2⇡t). (9)

Here, the subscripts 1 and 2 identify the established and immigrant bat cohorts, respectively. We

varied �2 so that the overall consumption rate was up to 20-fold greater than the consumption rate of

the established population �1, which was introduced at time 0, when the resource density was at its140

lowest value. For the resident cohort, we set �1 = 0.05, ⌫ = 1 and T = 72 h, leading to residence

times > 1.5 years in the absence of immigration (see results). We then calculated the residence time

for both the established bat population and immigrant bats at di�erent seasonality values (k1 = 0.25

or 0.95). In cases of high resource consumption, emigration of arriving bats occurred before the

departure of the resident cohort. In these situations, we recalculated the departure time of resident145

bats by setting �2 = 0 when the departure time of the immigrant cohort occurred (using the “events"

option in the deSolve package in R). This step was also performed to correctly calculate the departure

time of immigrant bats following the departure of resident bats.
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Results

Our �rst objective was to identify conditions that favor residence in a patch for more than a year150

(which we refer to as “overwintering”). In habitats with large seasonal amplitude k1 and at low

consumption rates �, small increases in expected searching time (T ) led to bats residing in the patch

through complete seasons (Figure 2). When comparing the optimal residence time between bats

arriving at the peak or the trough of patch productivity (respectively, right and left-hand panels in

Figure 2) we found a striking pattern: on the one hand, bats that arrived in the low season tended to155

stay for a few months (but only overwintered if they had a very low consumption rate, top-left panel);

on the other hand, bats that arrived at the peak of productivity would either stay for a very short time

or overwinter until the next peak.

To better understand these patterns, it is helpful to take a closer look at the dynamics that take

place at low consumption rates (i.e. when � = 0.05, Figure 3). When bats arrived at the time of160

minimum resource abundance (top panel, Figure 3), the following generation of resources extended

the patch residence time because of high energetic pro�ts. Increasing the expected searching time,

which is analogous to making the resource more scarce, also increased the patch residence time

because this allowed for higher marginal energetic pro�ts relative to expected gains, even through

subsequent periods of resource decay. By contrast, when consumption started at the maximum165

resource value, the following resource decay was ampli�ed by consumption, leading to low energetic

pro�ts and quick departures from the patch. Exceptions to this trend occurred when the searching

time was su�ciently high to maintain large marginal energetic pro�ts even under fast resource decay

(bottom panel Figure 3). These results suggest that the initial density of the resource (and its

subsequent growth or decay) interact with the expected searching time for new patches to determine170

the residence time in a focal patch.

Next, we asked how resident bats would respond to the arrival of a second bat cohort at peak

resource density. We found that the additional resource consumption brought by immigration could

result in an earlier departure time of the resident bats. The e�ect of immigrant bats on the departure

time of resident bats, however, depended on the patch’s resource seasonality, with an earlier departure175
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more easily achieved in weakly seasonal patches (Figure 4 panel A vs panel B). Overall, these trends

depend on the expected searching time T . As T increases, immigration has smaller e�ects on the

residence time of established bats, regardless of the strength of seasonality (results not shown. In

Figure 4, T = 20). Nevertheless, in addition to showing that immigration can a�ect the departure time

of resident bats, our results also show that immigrant bats may also reside for a long period of time in180

the patch (grey rectangles in Figure 4), and that cases of immigration followed by rapid emigration,

which occur under high consumption rates, (�2 in Figure 4) can also lower the departure time of

resident bats.

Discussion

Habitat loss and the availability of food in urban habitats have been hypothesized to cause �ying foxes185

to become resident in urban environments [32]. Consistent with this hypothesis, our results suggest

that the ideal conditions for patch residency occur when the cost of traveling to new patches is high

and when the depletion rate of the food source through foraging is low. By contrast, conditions that

favor quick departure from a patch are a low cost of traveling and a high rate of resource depletion.

Where consumption rates are high, the period of residence is determined by the resource density at190

the start of consumption, which itself depends on the level of seasonality of the patch’s resources. If

bats start foraging when resources are at the lowest density, then future resource generation would

favor longer patch residence times. By contrast, if bats start foraging at the highest resource value,

then rapid resource depletion leads to shorter residence times. Our results show that if bats deplete

resources through consumption, patch residence time depends on the timing of bat arrival with195

respect to the resource density.

In Australia, the �ower and fruit production of many native trees is seasonal, with only a few

species reliably producing nectar over winter [50, 31]. However, �owering phenology is spatially

asynchronous, such that the timing of peak �owering di�ers between sites [32]. The di�erences in

�owering phenology across sites are thus thought to explain the nomadic behavior of �ying foxes, as200
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they track food across the landscape. Our results further suggest that the time that bats reside in a

focal patch (i.e. the degree of nomadism) depends on the rate at which resources are consumed within

a patch, in addition to the patch’s degree of isolation (as measured by the expected time required to

�nd a new patch). However, when consumption is high, the e�ect of patch isolation on the residence

time is small, suggesting that the depletion of food through consumption is the main predictor of205

nomadic behavior.

The urbanization of native habitats has changed the composition of �owering tree species, with a

mixture of exotic and native foods now likely producing food throughout the year [36, 51]. This

human e�ect on the landscape is hypothesized to explained the increased presence of �ying foxes in

urban habitats [52]. Our results suggest that the residence time does not only depend on constant food210

availability, but also depends on the initial food density found at bat arrival. For example, a longer

residence time in a seasonal food patch compared to a constant food patch is possible if bats arrive at

the start of the �owering cycle, because the rapid food generation favors residency. Conversely, if bats

arrive to the patch at peak food production, then the following food decay leads to quicker departure

times in seasonal food patches compared to constant food patches. Our results thus suggest that215

consumption rates and food availability are not the only predictors of patch residence time. Under

optimal foraging theory, initial food density conditions and the degree patch isolation play an

important role in determining the patch residence time.

In contrast to native fruit and nectar which are produced ephemerally, urban areas contain a

mixture of exotic and native vegetation that likely produces food throughout the year [36, 51]. Thus,220

the increased presence of �ying foxes is often linked to the constant availability of food in urban

habitats [52]. Our results suggest that the residence time is in�uenced by constant food availability,

and therefore on a minimal impact of consumption on food density. In habitat patches where food

density varies more strongly with season, the residence time also depends on the initial food density

at bat arrival. For example, a longer residence time in a seasonal food patch compared to a constant225

food patch is possible if bats arrive at the start of the �owering cycle, because the rapid food

generation favors residency. Conversely, if bats arrive to the patch at peak food production, then the
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following food decay leads to quicker departure times in seasonal food patches compared to constant

food patches. Our results thus suggest that in addition to consumption rates and the degree of patch

isolation, the initial food density conditions at bat arrival plays an important role in determining the230

time that bats will stay in the patch.

Our results also show that new immigration occurring with �oral blooms may trigger the

departure of resident bats, with immigration reducing the departure time of resident bats to a greater

extent in weakly seasonal patches compared to strongly seasonal patches. This e�ect may be

explained by the di�erence in resource generation and decay between the strongly and weakly235

seasonal patches. In contrast to the strongly seasonal patch, immigration has a large e�ect on the

resource depletion of weakly seasonal patches. This can then force marginal energetic gains to fall

below net average gains made to date, triggering the earlier departure of resident bats. By contrast, in

the strongly seasonal patch, the additional e�ect of immigration may not drastically alter the rate of

resource depletion through seasonal decay, or therefore the optimal departure time. This result has240

the caveat that the expected searching time for new patches can override the e�ect of immigration,

such that isolated patches may experience additional immigration but no emigration. Overall, these

results suggest that permanent patch occupation may occur through 1) increased residency through

patch isolation, 2) bat turnover in the patch as new immigrant bats trigger the departure of previous

bats residing in the patch, rather than because of permanent occupancy of one bat cohort, or 3)245

immigration at a rate that has little or no e�ect on resource density (e.g. immigration of only a few

bats), but increasing the overall bat population size.

Such contrasting hypotheses about the mechanisms allowing for permanent patch residency have

di�erent implications for understanding and managing human-bat interactions, including disease

spillover. Although some data exists on patch residence time [42, P. Eby, unpublished data], more data250

are needed to test these hypotheses and to quantify the energetic and behavioral mechanisms that

create variation in patch residence time. For example, we know that males and females Pteropus

Poliocephalus have di�erent patch residence times depending on reproductive state (i.e. pregnant and

lactating females have higher energetic requirements and change patches more often); that some bats
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forage over much larger distances [4] than others; and that �ight distance is constrained by bat body255

size and climatic variables such as temperature [53, 37, 54, 4]. This suggests that the energetic bene�ts

of foraging and expected traveling costs are likely to be determined by body size, reproductive state or

season. It also suggests that some decisions to migrate or stay put are driven by reproductive

considerations and territoriality which may either override or amplify decisions based on energetic

demands.260

Thus, while processes other than marginal energetic gains may play a role in determining patch

residence time, previous studies have argued that movement patterns in Australian pteropodid bats

are greatly in�uenced by the energetic bene�ts of minimizing commuting distance from roosting to

foraging grounds [55, 28, 37, 42, 56, 57, 34, 51]. These arguments are consistent with the theory of

optimal foraging and the marginal value theorem used here [44]. Furthermore, our results show that265

understanding foraging decisions within the context of temporal variation of food resources can

provide qualitative approximations of the movement dynamics of pteropodid bats. Further work is

however required to quantify the parameters in�uencing these decisions.

Nevertheless, a key issue is that the data suitable for testing our model assumptions are also

suitable for testing other models of foraging and movement. One di�culty in developing a270

mechanistic understanding of patch residence time is that the required data would involve studying

animal movement concomitantly with physiology and plant phenology. Models like the ones

presented here can guide the design of such studies [58, 59], and then be extended to include testable

mechanisms of disease dynamics. For example, foraging models may be used to set time-boundaries

under which virus transmission, shedding and spillover can occur in di�erent patches in a275

metapopulation. Similarly, stochastic model extensions of these foraging decisions could be combined

with stochastic epidemic models to evaluate how the movement behavior of infected individuals a�ect

disease dynamics.
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Figure 1: Fewer native tree species �ower in winter compared to summer in Australia. Top panel shows
the maximum number of species �owering per month out of 56 species known to be nectar food sources
for bats in New South Wales, Australia (Data from [32]) The bottom panel shows a simulation of the
irregular �owering events of Eucalypt species over a 10-year period. This simulation was created by
randomly drawing �owering events from �owering frequency data collected by Law et al.[31]. The
�gure illustrates that irregular �owering events can lead to occasional food bottlenecks.

14



Init. = Min Init. = Max

β
=

0.05
β
=

0.35
β
=

0.65

0 20 40 60 0 20 40 60

0

1

2

3

0.0

0.3

0.6

0.9

0.00

0.25

0.50

0.75

1.00

Expected searching time (T), hours

Re
sid

en
ce

 ti
m

e,
 y

ea
rs

0.25

0.50

0.75

k1

Figure 2: E�ects of resource seasonality (k1), consumption rate (�), Initial resource conditions (Init.)
and expected searching time (T ) on the patch residence time. The red dotted line places emphasis on a
full year of patch residency. Additional parameter values: the resource generation ⌫ = 1, the metabolic
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immigration at peak resource values for weakly seasonal patches (k1 = 0.25 panel A) and strongly
seasonal patches (k1 = 0.95 panel B). The grey rectangles delimit �2 values for which immigrant bats
reside for more than 3 years in the patch. Here, the expected searching time, T = 20, the consumption
of resident bats �1 = 0.05, the resource generation ⌫ = 1, the metabolic rate µ = 0.1, the resource-to-
energy conversion � = 0.5, and the energetic costs of searching for a new patch c = 1.
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Figure S1: Patch departure times based on ther marginal value theorem. The average energy gain
acquired by exploiting a patch for t units of time, followed by travel time T to a new patch at the
expense of cT energy units is de�ned as: E⇤

(t) = E(t)�cT
t+T . The marginal gain of energy at time t is the

derivative E 0
(t). If the bat stays in the patch for an extra @t time units, it can expect to acquire E 0

(t)@t
energy units, so that the new average gain will be:

E⇤
(t+ @t) = E(t)+E0(t)@t�cT

t+@t+T

=

E⇤(t)(t+T )
t+@t+T +

E0(t)@t
t+@t+T

The decision to stay (top panel) or leave (bottom) is based on maximizing the average gain in
this patch. The bat will leave at time t if the average gain E⇤ is expected to decrease between t and
t+ @t:

E⇤
(t+ @t)� E⇤

(t) < 0.

We can then re-write the change as:

E⇤
(t+ @t)� E⇤

(t) = E⇤(t)�E0(t)
@t/(t+@t+T ) .

In other words, the bats should stay for as long as the marginal gain E 0
(t) is higher the average

gain so far E⇤
(t).
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