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Abstract 

The successful implementation of Building Information Models (BIMs) for facility 

management, maintenance and operation is highly dependent on the ability to 

generate such models for existing assets. Generating such BIMs typically requires 

laser scanning to acquire point clouds and significant post-processing to register the 

clouds, replace the points with BIM objects, assign semantic relationships and add 

any additional properties, such as materials. Several research efforts have attempted to 

reduce the post-processing manual effort by classifying the structural elements and 

clutter in isolated rooms. They have not however examined the complexity of a whole 

building. In this paper, we propose a robust framework that can automatically process 

the point cloud of an entire building, possibly with multiple floors, and classify the 

points belonging to floors, walls and ceilings.. We first extract the planar surfaces by 

segmenting the point cloud, and then  we use contextual reasoning, such as height, 

orientation, relation to other objects, and local statistics like point density in order to 

classify them into objects. Experiments were conducted on a registered point cloud of 

an office building. The results indicated that almost all of the walls and floors/ceilings 

were correctly clustered in the point cloud.       
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1. Introduction 

 The creation of an as-is Building Information Model (BIM) of a facility is a 

complex process, starting with the acquisition of the point clouds, which is followed 
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by the accurate creation of surfaces and the inclusion of information regarding the 

objects, such as materials and .costs However, modelers spend an excess amount of 

time into clustering the points that correspond to each object prior to modelling them. 

This process is time and cost-prohibitive restricting asset-owners from using BIMs in 

their small scale projects. 

 To address this issue, we propose a novel algorithm which aims at detecting 

walls, floors and ceilings in point clouds, under the assumption of Manhattan-World 

(MW) buildings. MW was first defined by Coughlan & Yuille (1999); these buildings 

have three mutually orthogonal directions orthogonal and the coarse objects’ 

relationships have distinctive rules, for example the floors and ceilings are horizontal, 

whereas the walls are vertical and are either parallel to the y-z or the x-z planes. The 

proposed algorithm achieves the detection of the above-mentioned objects with 

limited human intervention and low computational complexity. Another major 

contribution of this algorithm is that it can be applied to entire point clouds of 

buildings, and not only on isolated rooms.   

In the following, the state of research is presented, followed by the detailed 

description of the proposed algorithm: its input, the main steps, and the expected 

output. The experimental section presents the results obtained by applying the 

proposed method to extract the BIM model of an office building. The last section 

concludes the paper and discusses directions of future research. 

   

2. Related Work 

Object detection in point clouds is a well-studied topic. Therefore, in this 

section we will only present the papers that are closest to our approach. Valero et al 

(2012) used Radio Frequency Identification tags prior to laser scanning the facility, so 

that they could obtain information regarding the objects. Jung et al (2014) proposed a 

semi-automated process for the creation of as-built BIM for indoor environments 

using point clouds. Specifically, point clouds are converted into geometric drawings 

where lines are given to guide the manual modelling, reducing the modelling time. 

The process consists of three steps: segmentation, refinement and boundary tracing.    

Pu and Vosselman (2009) detect major objects which define building facades, 

such as walls and roofs. To detect these objects they use predefined human knowledge 

such as the size, position, orientation, topology and point density. In our method, we 

determine similar characteristics to infer the object class. Sanchez & Zakhor (2012) 

classify coarse objects by comparing the angles of normal with the x and y axis. This 

approach however fails to address the case of highly cluttered environments: e.g. it is 

not able to distinguish between bookshelves and walls.  Hong et al (2015) proposed 

an algorithm for the accurate creation of as-built BIMs. They first model horizontal 

planes (floors, ceilings) by estimating the z difference between the highest and lowest 

surface. The vertical planes are projected onto the horizontal and the boundary is 

extracted. Even though the accuracy of the proposed solution is encouraging, the 

method does not address the issue of a multiple room floor. Also, the research 



addresses planar surface modelling and not solid modelling as needed to generate 

BIMs.   

Xiong et al (2013) and Adan & Huber (2010) examined the detection of coarse 

objects in interior environments. In the first paper, the researchers use machine 

learning to classify planar patches based on their contextual features, whereas in the 

second paper, the authors detect walls by voxelizing the space and determining the 

major plane regions exploiting geometric characteristics. Other objects, such as 

openings, are distinguished using an SVM classifier. Both cases offer promising 

results in labelling walls, floors and ceilings in cluttered environments. 

More specifically for MW buildings, grammar based methods where 

investigated (Vanegas et al 2010, Khoshelham & Díaz-Vilariño 2014, Becker et al 

2015). The rules set are rather restrictive and can only be applied to specific scenarios, 

e.g. in floors with long hallways. Xiao and Furukawa (2012) reconstructed the 

world’s museums, by taking advantage of the fact that most of the museums’ 

geometry is cuboid. Hence, they could fit cubes in the point cloud data. The point 

cloud was sliced in 2D pieces and in each piece lines were extracted and rectangulars 

were fitted, the 2D solid models were finally stacked to create the 3D model.  In this 

case, the researchers managed to create a volumetric 3D model, but the classification 

of the objects is not performed. Therefore, the user has to manually determine the 

different objects in the scene.  

To address these limitations, we aim at developing a novel algorithm that can 

detect and classify each object separately in a cluttered MW building. As BIM 

necessitates solid modelling and not simple surface modelling, the objects of interest 

are represented through volumetric models when possible, e.g. a wall consists of a 

vertical cuboid, and not only a planar surface. Also, the minimum human intervention, 

the reduced computational complexity and the simplicity of the algorithm add up to 

the contribution of the paper. 

3. Proposed Algorithm 

 The outline of the algorithm for detecting walls, floors and ceilings is 

presented in Figure 1. First, the algorithm takes as input a Point Cloud Data (PCD). 

The PCD is considered to be a set of point clouds which are registered and aligned to 

the major axis. Since these operations can be performed using the proprietary 

software accompanying laser scanners, they are not examined in this paper. The point 

cloud is then segmented into planar surfaces using RANSAC for point cloud shape 

detection as described in Schnabel et al (2007). RANSAC is an iterative algorithm, 

which tries to find the parameters of the model that best fits the data, while filtering 

out the outliers. This step outputs the point cloud segmented into n planar surfaces. 

We focus on obtaining planar surfaces based on the assumption that the coarse objects 

being examined are clearly planar. The n planar segments are extracted in a 

descending order based on the number of points to facilitate the subsequent 

processing steps. Also, the position and normals of the segments are computed. These 

data assist in the determination of the orientation of the segments. The point cloud is 



then projected onto the y-z plane and the x-z plane, octree division is applied and the 

octrees with the maximum number of points are acquired. This leads to the detection 

of the horizontal planar surfaces that correspond to the floors and ceilings. 

Subsequently, we remove the majority of the present clutter by keeping the vertical 

planar surfaces that satisfy specific criteria. The rest of the segments are divided into 

two categories: the one that are parallel to the y-z plane and the x-z plane, we keep the 

planar surfaces in the perimeter that are within a minimum distance from the 

bounding box of the point cloud and we merge the planar surfaces that correspond to 

cuboid walls. The remaining segments are discarded. The final result contains the 

detected walls, floors and ceilings. In the following paragraphs, each step is explained 

in detail. 

 

Figure 1 Flow chart of the proposed solution 

3.1. Floor and Ceiling 

Since the point cloud is aligned with the axis and we consider an MW 

structure, the floor and ceiling are horizontal and parallel to the x-y. Therefore, the 

points corresponding to these objects are concentrated on specific values of z that 

have to be identified. To this end, we project the point cloud into the y-z and the x-z 

plane back to back, acquiring a straight line of points on the z axis with different point 

density. In order to identify the z values where most of the points are concentrated, we 



use octree division which is an efficient algorithm for partitioning the 3D space 

(Meagher (1982)).  

Having applied the octree division to the projected PCD, we extract the point 

density in each octree cell. By comparing the percentage difference of the point 

density of one division with the previous and following two octree divisions, we keep 

the octrees that satisfy a predefined threshold. The horizontal planar segments that 

have been extracted by the segmentation step, and which contain the points of the 

octree divisions identified in this step are classified as floors and ceilings. The rest of 

the horizontal segments are discarded.  
 

Object  Criteria 

Floor & 

Ceiling 
𝑎𝑏𝑠(𝑃𝑜𝑖𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦[𝑖] −  𝑃𝑜𝑖𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦[𝑖 + 1])/𝑃𝑜𝑖𝑛𝑡𝐷𝑒𝑛𝑠𝑖𝑡𝑦[𝑖] > 1  

Interior 

Walls in 

the minor 

axis (x-z) 

 (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑧 −  𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑧 > 𝑇ℎ𝑟𝑒𝑠ℎ) && (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑥 −
 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑥 > 𝑇ℎ𝑟𝑒𝑠ℎ)                                 
 

 𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠 < 𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑖] − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠             
 

 𝑎𝑏𝑠(𝑀𝑎𝑥𝑋[𝑖] − 𝑀𝑎𝑥𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠                                               

Interior 

Walls in 

the major 

axis (y-z) 

 (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑧 −  𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑧 > 𝑇ℎ𝑟𝑒𝑠ℎ) && (𝑚𝑎𝑥𝑃𝑜𝑖𝑛𝑡. 𝑦 −
 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡. 𝑦 > 𝑇ℎ𝑟𝑒𝑠ℎ)                                                                           

 

 𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠 < 𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌[𝑖] − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑌[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠     

 

 𝑎𝑏𝑠(𝑀𝑎𝑥𝑋[𝑖] − 𝑀𝑎𝑥𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠                     
Perimeter 

Walls 

Minimum Distance from the Bounding Box  

Table 1 The proposed criteria for the detection of objects in the point cloud 

 

3.2.Clutter Removal and Walls  

Even though in MW buildings walls are considered to be orthogonal and 

perpendicular to the x-y plane, they stand a greater challenge compared to floors. 

Their length as well as their position in 3D space varies based on the configurations of 

the rooms in the interior. Additionally, a wall in an interior environment is not a 

simple planar surface but a pair of planar segments, since the same wall is laser 

scanned from both sides from two different rooms -- a detail that adds up to the 

difficulty of defining the walls in interior environments. 

We extract the planar surfaces which have normals parallel to the x-z and y-z 

plane. The algorithm discards all these segments whose difference between the 

maximum x or y coordinate and minimum x or z coordinate is below a threshold for 

the segments parallel to y-z or x-z planes respectively. In this case, most of the clutter 

which is present in the interior is rejected. 



Having removed most of the clutter from the point cloud, the algorithm finally 

detects the boundary walls of the structure and the planar segments that correspond to 

interior walls. For the boundary walls of the structure, the algorithm keeps the first 

planar surfaces which are in the minimum distance from the bounding box 

surrounding the point cloud. 

   To connect the planar segments which form a wall, we consider two 

directions the x-z and y-z axis and the positions of the segments acquired from 

RANSAC as mentioned above. The examined segments i and j in the x-z direction are 

considered as one wall as long as the following statements are true: 

𝐿𝑜𝑤𝑒𝑟𝑇ℎ𝑟𝑒𝑠 < 𝑎𝑏𝑠(𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑖] − 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠    (1) 

 

𝑎𝑏𝑠(𝑀𝑎𝑥𝑋[𝑖] − 𝑀𝑎𝑥𝑋[𝑗]) < 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠  (2) 

 

The first relationship (1) compares the Position in the x direction of the two surfaces, 

whereas the second (2) compares the y distance of the segments. (1) guarantees that 

surfaces lying on the same level on the x axis do not get connected, whereas (2) 

guarantees that the distance in the y direction does not surpass an upper threshold. 

Similarly for the y-z. The above thresholds derive from the common knowledge that 

walls have a specific width.  

4. Experiments and Results 

The proposed algorithm is applied on a floor of an office building. The 

examined MW structure is the Baker Building of the Engineering Department of the 

Figure 2 The top image shows the original point cloud. The bottom images show the 3D model manually created using Revit 



University of Cambridge. The laser scans have been first registered and aligned to the 

x-y-z axis. The floor consists of 11 offices, (out of which 10 have been fully laser 

scanned), a main corridor and a stairwell. The building is in use, therefore the scans 

are very cluttered. The original point cloud) can be seen in Figure 2 top row.  It 

consists of 94,143,512 colored points. Color has been discarded since our algorithm 

relies purely on geometry, ignoring appearance cues. Also, the PCD has been 

downsampled to two million points. This drastic operation (discarding 97% of the 

original point cloud) was performed to ensure a fast execution during RANSAC 

segmentation. However, since planar surfaces can be estimated from a small number 

of point (only three points are needed in the ideal case), the downsampling does not 

affect the final results. The segmentation returned 392 planes with the largest one 

containing 294,840 points corresponding to the floor. The parameters describing the 

planar surfaces, e.g. normals and position are extracted by the algorithm in a txt 

format.  

By visual inspection, we are able to identify the minor and the major axes as 

being xz and yz respectively, and set the corresponding thresholds.  Finally we fed all 

the clusters to our algorithm.. The results are shown in Figure 3. 

 To evaluate the accuracy of the proposed approach, we have manually 

generated the 3D model of the point cloud using Revit (see Fig. 2 bottom row), and 

clustered the points that belong to the same primitive (Figure 3c). The manual 

labelling of the segments has shown that we have 13 segments that correspond to the 

ceiling and one large planar surface corresponding to the floor. 14 segments 

correspond to the perimeter walls, while the number of cubic interior walls is 10. The 

final results and accuracy are grouped in Table 2. The results show that the precision 

for floor, ceiling and exterior walls is 100%, whereas for the interior walls, the 

precision reaches 91%. The false positive in the algorithm is the light pink segments 

shown in Figure 3f, which correspond to the staircase handrails.   

Table 2 Results of the conducted experiment. 

 

  

Objects Manually 

Detected 

Segments 

Automatically 

Detected Segments 

(True Positive) 

Automatically 

Detected 

Segments (False 

Positive) 

Floor 1 1 0 

Ceiling 13 13 0 

Exterior walls 14 14 0 

Interior Walls 10 10 1 



 
Figure 3   a) The downsampled point cloud, b) the final result for the floor and ceiling, c) the ground truth detection, d) first pass of clutter removal, e) detected walls, f) the different  

pairs of walls having been detected in color, the perimeter walls in white.



5.  Conclusions 

We proposed an algorithm which successfully detects floors, walls and 

ceilings in Manhattan-World structures. The algorithm uses simple geometric priors 

to determine which planar surfaces correspond to the sought structural elements. It is 

divided into two sections, one referring to the horizontal surfaces and the second to 

the vertical surfaces. The algorithm has been tested in a laser scanned point cloud. We 

have proven that the precision is over 90% and issues regarding the clutter have been 

successfully tackled. Hence, our goal of minimizing the manual effort needed to 

detect structural elements in a building has been significantly accomplished. 

. However, this is only the first step in creating 3D models from point clouds. 

Our next goal in this process of capturing the as-is conditions is the generation of IFC 

models. Having extracted the dominant structural elements, we can now extract 

information regarding their length, width, height and position, which will constitute 

the basis for the IFC model generation..   
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