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Abstract

Molecular mechanics force fields are used to understand and predict a wide range of biological
phenomena. However, current biomolecular force fields assume that parameters must be fit
to the properties of small molecules and subsequently transferred to model large proteins.
Here, we look to challenge this assumption and create a new class of QUantum mechanical
BEspoke (QUBE) biomolecular force fields. QUBE is based around the use of atoms-in-
molecule electron density partitioning to derive the non-bonded component of the force field.
This thesis focusses on the derivation and validation of compatible bonded parameters that
enable QUBE to be used in protein modelling.

Whilst parametrizing the bond and angle components of the new force fields, the inade-
quacy of current parametrization schemes became apparent. This led to the development of
a new bond and angle parametrization method that relies on only the quantum mechanical
Hessian of a molecule. The new method resulted in the accurate recreation of the normal
modes for a set of small molecules, heterocyclic molecules, dipeptides and a large osmium
containing complex. The new method had an overall error in the normal mode frequency
recreation of 6.3%, which is below that of the popular force field OPLS (7.4%).

Torsional parameters were also calculated for our protein force field and the conforma-
tional preferences of peptides and proteins were subsequently tested. Comparable accuracy
to standard transferable force fields was achieved for simulations of short peptides, and this
was demonstrated by the simulations’ J coupling errors, rotamer populations and backbone
distributions. The J coupling errors remained at an acceptable level for protein simulations of
ubiquitin and GB3, and two of the five proteins tested retained their experimental structure
well during the MD simulations. In certain regions, particularly those with no clear secondary
structure or a turn, three of the proteins exhibited some deviations from the experimental
structure as the simulations progressed. However, given that this is the first generation of our
QUBE force field, with future version envisaged, we view the results as promising.

Additionally, improvements to the electrostatic potential of system-specific small molecule
force fields were investigated. A new method was developed to add off centre point charges.
The extra charges led to a reduction in the error of an atom’s electrostatic potential of 65.8%,

as well as improvements to the free energy of hydration, for a benchmark set of molecules.
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The methods and software developed in this thesis have the potential to improve the accu-
racy and accessibility of force field derivation, particularly for applications in biomolecular

modelling.



Chapter 1
Introduction

Quantum mechanical (QM) calculations have been used to study a wide variety of systems
and processes. ' -20-98.118 For example, calculations have been used to predict the structure
of hydrogen at high pressures, to better understand the electronic and optical properties of
photovoltaic materials, and to improve the design of heterogeneous catalysts. 4870 However,
systems consisting of more than a few hundred atoms are considered outside the reach of
traditional QM methods. 197 This is because traditional QM methods have a computational

time that scales cubically, or even higher, with the number of atoms. 107

The development of
linear scaling density functional theory (DFT) has allowed systems that were once considered
to be beyond the capability of QM calculations to be routinely studied.'®’! Protein complexes
are an example of this, with linear scaling DFT used to advance our understanding of the
function and structure of such systems.!'® Although linear scaling DFT has increased the size
of the systems that can be studied, limitations on the timescales that can be investigated still

remain.

Classical molecular mechanics (MM) simulations are the natural alternative to DFT
if longer simulations, on the timescale of nanoseconds, as opposed to picoseconds, are
required. %”-'12 However, with the increase in the timescale that can be studied by moving to
MM methods there is a reduction in the accuracy of the simulation. This is primarily due to the
approximations made in the functional form and the parameters used to describe interactions
in and between molecules.3*!1?! The potentials that characterize these molecular interactions
are known as force fields. The AMBER force field is one of a number of force fields (e.g.
CHARMM, GROMOS and OPLS) which began development in the 1980’s.549%:125 The

majority of force fields use a similar functional form: >

V= Vslretching + Vbending + Vtorsional + Vi + Velec (1 1)
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with components of the potential energy function describing the bonded interactions (the
stretching, bending and torsional terms) and the non-bonded terms (the Lennard-Jones

interactions and electrostatic effects).

The Lennard-Jones potential includes an attractive component, which is due to the dis-
persion effects that occur as a result of fluctuation in the electron density, and a repulsive
component, which is present to prevent atoms coming too close together.?> In most force
fields, the electrostatic interactions are described with atom centered points charges interact-
ing via Coulomb’s law.”> The bonded components of a force field are generally described by
harmonic potentials.>*!2> The torsional component is the exception to this, and instead is

usually an anharmonic function composed of trigonometric terms. %>

Both quantum mechanical and experimental data is used in current force field parameteri-
zation, with more accurate data and better fitting techniques, such as applying regularization
and weighting functions, employed to calculate parameters for new generations of force
fields.>*9%-121.125 Improvements in parameters are increasingly being carried out with sys-
tematic and automatic techniques. !:157084 114121 Eor example, the ForceBalance program
can automatically optimize a set of a force field parameters to recreate a set of user specified
input data, whilst the Force Field ToolKit (ffTK) can parametises the bond, angle, dihe-
dral and charge terms of a small molecule using data supplied from QM calculation.3%12!
Changes to force field parameters can also be coupled with simultaneous changes to the
functional form.11-15:36.70.84.114.121 Hwever, current work often focuses on small molecule
parametrization, and not the development of new biomolecular force fields, and frequently
neglects reparametrization of the bond, angle and van der Waals components of the force
field. 34114 Additionally, biomolecular force fields aim to be transferable to multiple systems,
and this need for transferability can restrict accuracy as local polarization effects are not
included in non-polarizable force fields.%-% Although transferable force fields have been suc-
cessful for multiple applications, they can fail to be sufficiently accurate for certain practical
considerations.?>%> Using free energy calculations for computer aided drug design has been
investigated in numerous studies, however it has been shown that free energy calculations
can fail to recreate experimentally determined trends.?28%101 For example, in Ref 101, the
experimental binding affinity of a set of ligands to plasmin, an enzyme involved in blood
clotting, was compared to the results from free energy calculations. No correlation was
observed between the experimental and computational results, demonstrating the need to
further improve the methods and force fields used in the free energy calculations.

In traditional force fields, every atom in a molecule is assigned a type based on its atomic
number, bonding and chemical environment.'!3 The atom’s type then dictates the parameters

that are used to model the intermolecular and intramolecular interactions. 13 The force field



terms for each atom type are stored as a library and are parametrized with experimental
and computational data from a set of small molecules. There is therefore an assumption
made that the parameters found for a set of small molecules can be used for a wide range
of systems. 83 However, it has been shown that the non-bonded parameters in a force field,
the electrostatic and Lennard-Jones terms, are dependent on additional effects that are not
included in the atom’s type, such as local polarization effects.%%!!! This means that for
certain systems the charge distribution is not adequately reproduced by standard force fields
that use atom types. °® If the charges used in the MM simulation were specifically fit for the
system under study, and not taken from atom types, improvements in the charge distribution
may be expected. The use of system specific charges for small molecule force fields has
already been investigated by multiple groups, however system specific biomolecular force

fields have not been previously developed. 2883

In Ref. 22 the use of linear scaling DFT for system specific force field parameters began
to be investigated. The charges for each atom were found using density derived electrostatic
and chemical (DDEC) electron density partitioning.%® DDEC divides the electron density
of a molecule between individual atoms using a weighting scheme. The Lennard-Jones
parameters used in Ref. 22 were found with the equations of Tkatchenko and Scheffler,
which are commonly employed to add dispersion effects to DFT calculations and relate
the electron density to the van der Waals parameters.!!! The success of this method was
evidenced by the high level of agreement between the experimental and MM liquid properties
for a set of small molecules.?? Experimental liquid densities, heats of vaporization, and
free energies of hydration of around 40 molecules were used to benchmark the methods,
which resulted in mean unsigned errors of 0.014 g/cm?, 0.65 kcal/mol and 1.03 kcal/mol
respectively.?? Additional simulations demonstrated the feasibility and advantages of deriving
bespoke parameters for a protein-ligand complex. The computed relative binding free
energy of indole and benzofuran to the lysozyme protein using the environment-specific
force fields (-0.4 kcal/mol) was in excellent agreement with experiment (-0.6 kcal/mol),
and was substantially more accurate than the values calculated with standard force fields
(-2.4 kcal/mol).

However, clear areas of improvements remained to be made to the force field used in
Ref. 22. The most pressing changes required were to the bonded parameters, which were
taken from the OPLS force field. As bonded parameters are dependent on the non-bonded
parameters, reparametrization should be performed when non-bonded terms are updated. !¢
Reparametrization of the bonded terms, and testing the performance of our new protein force
field, QUBE (QUantum BEspoke), forms the focus of this thesis. The QUBE force field uses

the non-bonded parametrization methodologies developed in Ref. 22 which results in system
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specific terms with transferable bonded terms that are parametrized using QM calculations
of dipeptides. As the non-bonded terms are specific to the system of interest, QUBE will
therefore include polarization effects that are not present in traditional transferable force
fields, and the expectation is that this may lead to an improvement in the accuracy of the
force field.

The bond and angle parameters control the fluctuations of the bonds and angles around
their equilibrium positions. During the development of our force field, it became apparent
that a bond and angle parameterization approach did not exist that relied only on QM data
and accurately reproduced the normal modes of a molecule. 11247284103 We have altered
an existing approach, the Seminario method, to develop a scheme that results in accurate
normal mode prediction and relies only on the QM Hessian matrix of a molecule. !9 Our
new approach was then tested on 70 molecules, including a set of dipeptides, which provided
the bond and angle parameters for use in our biomolecular force field.

With new bond and angle terms derived, the torsional parameters remained the only
component of our force field that had not been reparameterized. New torsional parameters
were fitted using QM dihedral energy scans, and the accuracy of these parameters was verified
through simulations of peptides and proteins.

The final section of this thesis focuses on improving the electrostatic potential of a
molecule. The addition of off center point charges is investigated as a method to correct for
anisotropy in the electrostatic potential, with a new, automated approach implemented in the
linear scaling DFT code ONETEP. This work not only shows the improvements that can be
made to the electrostatic potential, but also demonstrates how systematic improvements can
easily be made to our force field, due to the workflow developed and the use of only QM

data in the parametrization process.



Chapter 2

Theory

In this chapter, the necessary theory required for the rest of the thesis is presented. The chapter
begins with a brief overview of proteins and peptides, before moving on to a description of
the drug discovery process. The Hartree-Fock approximation and density functional theory
are subsequently covered, and the final section details the components and non-bonded

parametrization of the QUBE force field.

D
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Fig. 2.1: An example of three protein’s (1P7E, 2F4K, 1UBQ) structure with a section of their amino
acid sequence. One letter codes are used to identify each residue present. Carbon atoms are shown in
grey, hydrogen in white, oxygen in red and nitrogen in blue.
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2.1 Proteins

Proteins are an essential component of human life and are involved in a vast number of
processes.>’ Many medicines work by changing the behaviour of proteins in our body, and
therefore further developing our understanding of proteins is essential for future developments
in medicine.

Proteins consist of a linear sequence of amino acids and are large biological molecules
containing thousands of atoms. Three proteins are shown in Fig.2.1, with a section of their
amino acid sequence also shown. '3 An amino acid is a compound consisting of a central
carbon atom attached to a sidechain group, an amine group and a carboxyl group.3” Twenty
different types of amino acids occur naturally and are distinguished from one another by their
side chain groups.3’ The amino acids with the simplest forms are glycine, with a sidechain
consisting of just one hydrogen atom, and alanine, with a methyl sidechain group, see Fig.
2.2.%" Different amino acids have varying properties and they can be classified according to
the characteristics they possess, i.e. they can be charged or uncharged, polar or nonpolar, and
hydrophobic or hydrophilic.

Fig. 2.2: Alanine and glycine dipeptides. Carbon atoms are shown in grey, hydrogen in white, oxygen
in red and nitrogen in blue.

2.1.1 Peptides

Short sequences of amino acids are not classified as proteins but instead are referred to as
peptides, and consist of amino acids joined together by a peptide bond.'? Dipeptides are
used in this work for parameterising and testing our force fields. Throughout this thesis, a
dipeptide refers to an amino acid (X) blocked with an acetyl (CH3CO) and a N-methyl group
(Ace-X-NMe). %

2.1.2 Secondary Structure

Peptides can fold into multiple structures. These structures can be identified by the backbone

dihedral angles ¢ and y.37 The atom names and main dihedral angles of an amino acid are
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Fig. 2.3: An alanine amino acid showing the naming convention for atoms used. The main dihedral
angles reparametrized are ¢ (C-N-C-C), ¢ (C-N-Cy-Cp) ¥ (N-Co-C-N) , y' (Cg-C4-C-N), 11
(N-Co-Cp-Xy), X (C-Cq-Cp-Xy) and x2 (Co-Cp-Xy-Ys) Xy and Yy correspond to heavy atoms that
are not shown). The dihedral angle is the angle between the plane containing the first three atoms and
the plane containing the last three atoms.

described in Fig.2.3. The main conformations seen in proteins are usually illustrated by the
/¢ distribution, or Ramachandran plot, in Fig 2.4.

Two of the most predominant structures found in proteins are ¢ helices and 8 sheets. '3
These structures can be easily identified in a protein using a ribbon diagram. An example is
given in Fig 2.5 with the o and 3 regions labeled. A turn is also identified, this is a region

where the protein backbone changes its overall direction.3’
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Fig. 2.4: The major conformations observed in protein structures as proposed in Ref. 43.

2.1.3 Computer Aided Drug Discovery

Free energy calculations are performed for a range of applications, including computer
aided drug discovery, as they can provide information about properties of a system such as
solubility or protein-ligand binding.3® The absolute free energy of a system is considered
expensive to compute, and instead the relative free energy of different systems is generally

d.38

use A number of methods are available for calculating this relative free energy difference,

such as free energy perturbation and thermodynamic integration.3® The accuracy of free
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Turn

B-Sheets a helix

Fig. 2.5: A ribbon diagram of GB3(1P7E) with the secondary structures shown.

energy calculations is dependent on the sampling of the configurational space of the systems
and the force field used. 1917 While not the main focus of this thesis, one of the motivations
for creating our new force field is to improve free energy calculations, particularly those
used in computer-aided drug discovery. A brief overview of the drug discovery process is
therefore given in this section.

The drug discovery process consists of a number of stages, with the workflow illustrated
in Fig. 2.6. The first stage in the drug development process consists of identifying a target
protein whose function influences the progression of a disease.*® Various types of evidence
can be used in identifying this target protein and the mechanisms it is responsible for in the
cell. 20

Once the relevant protein target has been established, the next phase is finding a ligand
that has a strong binding affinity to the protein and modulates its activity. This is commonly
carried out using high throughput screening (HTS) techniques and involves adding large
numbers of drug like molecules, available in libraries of compounds, to grids with small
wells containing the relevant protein.*”*8 The ability of the smaller molecules to bind to the
protein is then measured using an observable such as the fluorescence. Further measurements
can then be performed on molecules that appear desirable, with confirmation of results and
synthesis of analogs carried out.*3

From these results, lead compounds can be identified, these are molecules that are promis-
ing candidates for use as a potential drug molecule.*® In the lead optimization component of
the drug discovery process, a molecule that has been shown to bind well to a target protein is
adapted in order to improve its binding affinity. !”*3 This is carried out using experimental
methods and can be a long and expensive task.*® Therefore, being able to perform computa-
tional free energy calculations, with the relative free energy of binding for a ligand indicating

which molecules bind well to the protein, could lead to better efficiency and lower costs. The
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Identify Target Proteins
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Find Ligand with a
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Lead Optimization
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target protein, through a
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protein.

Fig. 2.6: The initial stages of the drug discovery process. !’

accuracy of these calculations depends on both improving ligand and biomolecular force
fields.

2.2 Quantum Mechanical Methods

In order to improve free energy calculations, and molecular mechanical simulations generally,
we use QM methods to parametrize our force field. The theory behind the QM approaches is
given in this section.

Two approximations that can be used to solve the Schrédinger equation are discussed.
Both the Hartree-Fock approximation and DFT look to solve the many-electron Hamiltonian
by reducing the problem to a set of one-body equations. The Hamiltonian of a many-electron

system is given by.”3

1 &2

hi 2
_|_
8re Pt i — 1|

H=-Y —Vi+)Y V(r)

T 2m k

(2.1)

Where m is the mass of the electron, ri is the position of electron k, e is the charge on an
electron and V (ry) is the electron-ion interaction. The first term corresponds to the kinetic
energy of the electrons and the final term is the electron-electron interaction.3? Equation
2.1, relies on the Born-Oppenheimer method to decouple the electron and ion motion. 1%

Throughout this section, atomic units are used with i =m = e = 1 and spin labels are omitted.

2.2.1 Hartree-Fock Approximation

The difficulty in solving a many-body quantum system arises from the the electron-electron
interactions.®? If it was not for this interaction, the system could be simply treated as
a set of independent particles in an external potential.”® The Hartree and Hartree-Fock
approximations assume a form for the wavefunction which allows the problem to be reduced

to a series of one-electron equations. ’®
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The original Hartree approach approximated the wavefunction as
d(ry,...,rN) = ¢1(r1)$2(r2)...0n(ry).”® However, this wavefunction does not obey Pauli’s
exclusion principle which requires that an exchange of electrons causes a change in sign of
the wavefunction.”® The Hartree-Fock approximation uses the Slater determinant to define

the wavefunction and this results in exchange being described exactly: 3>

¢1(ry) - on(ry)
@ = (N2 :

¢1(rn) - On(rN)

Exchanging electrons corresponds to swapping columns in the Slater determinant, which
causes a change in sign of the determinant and, hence, the wavefunction as required.’® This
wavefunction can be used to calculate the expectation value of the energy, E = (®|H|®).5?
The Hartree-Fock equations can then be derived using the variational principle, with the
minimum of E = (P|H|®P) with respect to the wavefunction found, this minimum E will
correspond to the ground state energy in the Hartree-Fock approximation.®? The difference
between the ground state energy calulated via the Hartree-Fock approximation and the exact
ground state energy is usually referred to as the correlation energy. 3>

The Hartree approximation, which does not obey Pauli’s exclusion principle, can be
solved directly.8? The Hartree-Fock approximation generally cannot, and a basis must
be introduced to describe the orbitals. The resultant scaling of the computational cost is
approximately N

asis» Where Npgis 1s the number of basis functions (which are generally

atom centered Gaussian functions in quantum chemistry methods).3>%7

2.2.2 Density Functional Theory

Density functional theory maps the many-body problem onto a non-interacting particle
problem, and writes the energy of the system as a functional of the single particle electron
density.®? The theorems required to achieve this are briefly described below.

The Hohenberg—Kohn theorems establish a relationship between a system’s ground state
energy and its groundstate electron density.5% The first thereom states that for a many-body
system the total energy is a unique functional of the electron density. %

Eln(r)] = / Vo (0)n(r)d3r + Ey + Fln(r)] > Egs 2.2)

where n(r) is the electron density, V. (r) is the external potential, Ej; is the interaction

between the nuclei, F[n(r)] is a universal functional which does not refer to a specific system
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or external potential, and Egyg is the ground state energy.®? The second theorem states that the

electron density that minimizes the energy functional is the ground state electron density. %>

Elngs(r)] = Egs (2.3)

The Hohenberg—Kohn theorems allow the energy to be expressed in terms of the electron
density and establishes the existence of the functional F. However, the form of this functional
is unknown and it cannot be easily approximated. >
unknown functional F as F[n(r)] = Ts[n(r)] + Egarree[n(r)] + Exc[n(r)], where Ts is the

independent particle kinetic energy which can be expressed in terms of the Kohn-Sham

The Kohn-Sham approach rewrites the

orbitals. This results in the following expression for the energy of the system: %
1
E[n(r)] = Ts[n(r)] + /n(r) [Vex: () + §¢(r)]d3r+E” + Ec[n(r)] (2.4)

where E,.[n(r)] is the exchange correlation functional and ®(r) is the Hartree potential given
by:
/
D(r) = / () 3, 2.5)
[r—r']

This is equivalent to an independent particle moving in the potential: !

OE,[n(r)]

V(r) = Veu(r) + ®(r) + Sn(r)

(2.6)

The solution to this independent particle problem can be found by solving the Schrodinger

equation for non-interacting particles:>2

5V V(i) = &wi(r) @)

where y; is the Kohn-Sham orbital i and €; is the Kohn-Sham eigenvalue. With the electron
density being given by:
N
n(r) =Y | i(r) (2.8)
i=1

The potential used in the Kohn-Sham equations is a function of the electron density. Therefore,
equation 2.7 must be solved self consistently so that the Kohn-Sham orbitals generate an
electron density that in turn reproduces the Hartree and exchange-correlation potentials
used.®? As well as this, the Kohn-Sham eigenstates must be orthogonalised to satisfy: >

(%W@I/%@%@ﬂZ% (2.9)



12 Theory

Whilst both the Hartree potential and external potential given in equation 2.6 are well

defined, the exchange-correlation term is not.3?

The Kohn-Sham equations would give
the true ground state energy if the exact form of the exchange-correlation functional was
known.>?> Whereas we previously has an unknown functional F[n(r)], the reformulation
of the Hohenberg-Kohn theorems using the Kohn-Sham approach has resulted in a new
unknown functional E,.[n(r)]. However, whilst F[n(r)] is very difficult to approximate,
Ec[n(r)] can be calculated with remarkably simple approximations which are surprisingly
accurate for many physical and chemical properties. One such approximation is the local
density approximation (LDA). This states that the energy density at a given point can be
approximated by the energy density of a homogeneous electron gas with the same electron

density: 32

Exeln(r)] = / €M [ (6)|n(r)dr (2.10)

where €"9"[n(r)] is the electron-correlation per electron for a homogeneous electron gas
with electron density n(r).%> The LDA does not account for nearby inhomogeneities in
electron density, yet despite this works well for many properties in a large number of systems
(although it does have a number of well documented flaws).’! An improvement can be made
to this approximation by additionally considering the gradient of the electron density at
each point i.e. Ey[n(r)] = [ &c(n(r),|Va(r)|,...)n(r)d>r. This is known as the generalized
gradient approximation (GGA) and is employed in the PBE functional, which is used in this
work. %

An alternative type of functional that can be used is a hybrid functional. One respect
in which the Hartree-Fock approximation differs from DFT is that it gives an explicit form
for the exchange energy. 3> Hybrid functionals use a fraction of the exchange energy from

Hartree-Fock theory to improve the exchange-correlation functional. 82

As the number of atoms in a system increases, the number of Kohn-Sham eigenstates
increases linearly. The orthonormality of these eigenstates must be enforced and this results
in conventional Kohn-Sham DFT methods having approximately O(N?) scaling.® Although
this is better than the Hartree-Fock approach, for large systems the computational cost of DFT
codes with O(N?) scaling becomes overly expensive.”” Linear scaling DFT reformulates the
underlying theory and this results in an O(N) scaling method.”” This allows QM calculations

to be carried out on systems consisting of thousands of atoms. '
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2.2.3 Linear Scaling Density Functional Theory

There are a number of different approaches to achieve linear scaling in DFT. %7 In this section,
we will just discuss the density matrix formulation used in ONETEP. Further details of
alternative methods can be found in Ref. 97.

ONETERP achieves linear scaling by using a density matrix approach and then exploiting

the decay properties of the density matrix.*’ The density matrix is defined as: 1?7

p(r.r') =3 fivi(r)y; (r') (2.11)

where f; gives the occupancy of the Kohn-Sham eigenstate y;(r).

By using density matrices, the orthonormality of the eigenstates can be enforced by

imposing idempotency on the density matrix: 'Y

pP(r,r) = / prx")p (" ¥)d’r" = / LS () Y £ )w; ()dr" = p(r.r)
l J
(2.12)

An idempotent matrix is a matrix, M, which obeys the relationship M = MM. This char-
acteristic is desirable as ensuring orthonormality of the eigenstates by alternative methods
leads to less favourable scaling properties.®

The charge density and energy expressed in terms of a density matrix are given by the

following equations: 107

n(r) =2p(r,r) =23 fi| wi(r) (2.13)

where the factor of 2 is due to spin degeneracy. '?’

Efn(r)] = — / V20 (.t )y dr + / Vo (0)1(0)d*r + Entartree [n(0)] 4+ Exc[n(r)] (2.14)

The minimum of equation 2.14, with respect to the density matrix, gives the ground state total
energy of the system. Additionally, the density matrix must be idempotent, as previously

discussed, and describe the correct number of electrons: 197

2 / p(r,0)d*r =N, 2.15)

Although the density matrix approach improves scaling, as the orthonormality of eigen-

states no longer has to be enforced, the scaling still remains as O(N?).4? However, by using
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the decay properties of the density matrix linear scaling can be achieved. The decay properties

can be expressed as: 107

p(r,r') ~exp(—y|r—r'|) (2.16)

where 7 is a constant which depends on the band gap of the material.

Therefore, as | r — ' | tends towards infinity the density matrix will tend towards zero. 1?7
This decay can be explained using Walter Kohn’s theory of nearsightedness, which states that
changes at large distances from a region have negligible effects on that region’s properties. '
In the density matrix form, regions that have a large spatial separation correspond to elements
far off the diagonal of the matrix. Due to the decay properties mentioned, these elements can
be set to zero and this results in a sparse band diagonal matrix. '

The nearsightedness properties are also exploited with the basis set that is used in
ONETEP. Non-orthogonal generalized Wannier functions (NGWFs) are used which are
atom-centered, localized and non-orthogonal. The NGWFs are optimized in situ when
calculating the minimum energy in eq. 2.14.*! This is to prevent errors introduced due to

the small basis set used and thus gives near-complete basis set accuracy using a minimal

basis. %7 The density matrix represented in terms of NGWFs is: +?
p(r,Y') =Y oo (r)K*P 9p(r') (2.17)
op

where ¢ (r) is a NGWF basis function and K*F is the density kernel.*’

In ONETEP, the NGWFs are localised to a spherical region and are expanded in terms
of a set of functions known as periodic cardinal sine (PSINC) functions.***! By ensuring
the NGWFs are set to zero outside an atom centered spherical region, the density matrix
is truncated further. The reformulation of the Kohn-Sham equations into a density matrix
format, along with the truncation of the density matrix and the localization of the NGWES,

allow linear scaling to be achieved.

2.3 Force Fields

Density functional theory using a density matrix approach allows electronic structure calcula-
tions to be carried out for large biological systems. ! However, DFT cannot provide us with
information about biological process which take place on timescales longer than picoseconds
due to the computational expense. ! MM force fields can be used to simulate timescales up

to milliseconds, but are less accurate than DFT.%7 Therefore, to retain some of the accuracy
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of DFT calculations, whilst being able to access longer timescales, we aim to use the electron
density from DFT calculations to parametrize the non-bonded components of a classical
biomolecular force fields for use in molecular dynamics simulations. The components of a
force field and parametrization approach used for our force field is described in this section.

2.3.1 Components of a Force Field

A force field describes the potential energy function used in a MM simulation. There is
some variation in the functional form used, such as the AMOEBA force field which alters the
electrostatic component to account explicitly for polarization effects, however generally most
biochemical force fields share a similar functional form.%® The components of the OPLS
force field, and the QUBE force field developed in this thesis, are as follows: 115

V= Vstretching + Vbending + Vtorsional + VvdW + Velec (218)

The first three components describe covalent interactions between atoms.

* Bond stretching

Vstretchmg Z kb b bO) (219)
bonds

where kj, is the force constant, b is the bond length and by is the equilibrium length.®>
The bond stretching component is therefore approximated by a simple harmonic

function.

* Bond bending
Viending(r) = Y ko (6 —6p)? (2.20)

angles

where kg is the force constant, 6 is the angle between a triplet of bonded atoms and 6

is the equilibrium angle.® The form is again approximated by the harmonic function.

¢ Bond torsion

Vi
Vtorszonal Z

i

(1+cos(o )+V?21(1 +c0s(2¢))—|—%3l(1 +c0s(3¢))—l—%{(l +cos(4¢))
(2.21)

t |

where V1, V;, Va3, Vy are the constant parameters and ¢ is the dihedral angle.99 The

dihedral angle is defined by a set of four atoms.

The non-bonded components are:
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¢ Electrostatic

Velee(r) = @1 (2.22)

nonbonded { Tij
pairs

where ¢ is usually the atom centered point charge and r;; is the distance between
atoms i and j.'% The form comes from Coulomb’s law and describes the classical

electrostatic interaction between charges.
e Lennard-Jones (LJ)
V(=Y [% — %] (2.23)

nonbonded | 'ij ij

rs
where A;; and B;; are parameters that are fit to QM or experimental data. The first
part corresponds to the repulsive component of the force on the atoms due to Pauli’s
exclusion principle and the second part is the van der Waals/dispersion term. This van
der Waals term is due to spontaneous fluctuations in the electron density. %% This can
be described by a series of terms with decreasing powers of r. However, it tends to be

truncated to just the first rif’ term. 10°

Force fields consist of a library of parameters, with parameters for unknown molecules fit
via analogy with the database. They are used for a wide variety of systems that may differ
significantly from the original set of molecules used to parametrize the force field. The
parametrization approaches used in traditional force fields use both QM and experimental
data.’*%% For example, atom charges tend to be parametrized using QM electrostatic
information whilst LJ terms can be fit to reproduce experimental liquid properties.>*%
Further details of bonded parametrization methods are given in the relevant chapters of this

thesis.

2.3.2 Parameterizing Non-bonded Components

We are looking to move away from using a library of predetermined parameters to describe
our force field and instead derive non-bonded terms that are specific to the system of interest.
To find new parameters for the QUBE environment specific force field a number of stages

are carried out. These stages are shown in Figure 2.7 and consist of three main steps:

* A DFT calculation is performed using ONETEP and this results in the electron density
of the whole molecule.

* A partitioning scheme is then used to assign the electron density of the molecule to

individual atoms.
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Force Fields
Parameters

Input
Structure

Electron density Electron density
of molecule of atom
ONETEP AIM Compute LJ/
Calculation Partitioning Electrostatics

Fig. 2.7: The workflow for deriving new parameters for the environment specific force field.

* From the partitioned electron density, new force field parameters can be found using

relationships between the non-bonded terms and the electron density.

Further details of the parametrization process for the QUBE force field are now outlined.

Modelling Induction within the Force Field

Induction effects are due to the distortion of the electron density by nearby molecules. % In
our force field, the effects of solvents can be included by changing the dielectric constant
of the implicit solvent used for the DFT calculation. The implicit solvent model used in
ONETERP is a minimal parameter model which defines a cavity around the molecule and
treats the solvent as a dielectric continuum surrounding this cavity.?*° The use of an implicit
solvent is important as MM calculations will often be carried out in a water environment
and the solvent will polarize the molecule. However, deriving the charges for use in a
non-polarizable force field by using an implicit solvent model with a dielectric constant
€ = 80 will result in overly polarized charges. This is because the energetic contributions
required to distort the wavefunction are not included.?? This can be corrected by using a
dielectric constant less than € = 80 or by setting the charges on the atoms to be halfway
between their values in the vacuum and condensed phase.?>*

The approach used in Ref. 22 was to set the dielectric constant to € = 4. This was justified
by accurate free energy of hydration calculations when € = 4 was used to parametrize the non-
bonded terms, and the following arguments. The free energy of hydration is the difference
in energy between the molecule in vacuum and the molecule in water and can be expressed

quantum mechanically as:

AGp = (W'|H|Y') — (Wo|Ho o) (2.24)

where H is the Hamiltonian in the DFT implicit solvent model, ﬂo 18 the DFT Hamiltonian in
the gas phase, ¥’ is the wavefunction in its polarized state in water and P, is the wavefunction
in the vacuum ground state.

Inconsistencies in the calculation of AG,,, arise due to two different wavefunctions

appearing in the equation, ¥, and ¥’.??> These two wavefunctions correspond to different
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electron densities and consequently would correspond to different force field parameters.
Therefore, in a fixed charge force field it is generally not possible to model this change in

wavefunction. However, there must exist an intermediate wavefunction (¥) such that: 22

AGexp = (('|HY') — (P|H|Y)) +((P|A]Y) — (¥|Ho|¥)) + ((F|Ho|¥) —v<‘Po|FIo|‘Po>}

§0) N

(2.25)

7+ Y = (P|Hy|¥) — (Po|Ho| o) + (V'|H|W) — (P|H|P) =0 (2.26)

This would correspond to a ‘half-polarized” wavefunction and the use of this wavefunction

would allow the free energy to be calculated with only one wavefunction: >

AGexy = (P|H|Y) — (¥|Ho|¥) (2.27)

It has been shown that for small molecules a dielectric value of € = 4 in the inhomogenous
Poisson equation produces the wavefunction ¥ with y+ 7, ~ 0.%?

The use of a ‘half-polarized’ wavefunction is based on the assumption that the wavefunc-
tion that minimizes the difference between the experimental and MM free energy of hydration
is the one to use for parametrizing force fields. It has been shown in Ref. 22 that this as-
sumption results in accurate liquid properties for small molecules. However, as the dielectric
constant in that work was chosen to minimize the error in the free energy of hydration, it may
also be correcting for additional errors in the force field. In Ref. 22, charges calculated in an
implicit solvent of € = 4 had a dipole moment approximately halfway between the vacuum
and condensed phase dipole moments. This is consistent with an alternative approach that
has been used to model induction effect, the implicitly polarized charge (iPol) method 2463

The 1Pol method was used to parametrize charges for the AMBER {f14ipq and ff15ipq
force fields. 1°-2%%3 To recreate the energy of a polarizable dipole in an external field using
a fixed dipole model, the polarization of the fixed dipole model should be approximately
halfway between the dipole polarizated in the external field and the dipole in vacuum.® This
results in the iPol charges being exactly halfway between the charges found in a vacuum and
the charges found in a solvent.?*

The average of the condensed and gas phase parameters allows the polarization energy
to be included in a non-polarizable model. !> This approximation was derived in Ref. 63
by considering the electrostatic energy of a set of dipoles in an electric field. In this work,
and Ref. 15, it was shown that the polarization energy could be modeled by a fixed charge

representation if dipoles were set to halfway between their value in vacuum and their value
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in the presence of a field. In practice this means that for each molecule two sets of charges
can be calculated, one in vacuum and one in the condensed phase, and the average value of

these two sets is then used for the force field parameters.

Electrostatic Components

There are a number of methods available for finding an atom’s charge from the output of
a DFT calculation. The atom in molecule (AIM) method has been shown to reproduce
experimentally measured quantities well, and is therefore used in our force field.%® The
AIM approach partitions the electron density of the molecule to individual atoms.® This
differs from electrostatic potential (ESP) methods, which assign charges that best recreate
the electrostatic potential at a surface around the molecule.®> The ESP approaches can fail
to be sufficiently accurately for large molecules, and is not feasible when there are atoms
buried far beneath the surface. 38!

The AIM scheme used in this work is the density derived electrostatic and chemical
charges (DDEC) method, specifically DDEC/c3.3%3! DDEC combines desirable qualities
from two methods, the iterative-Hirshfeld (IH) scheme and the iterated stockholder atoms
(ISA) scheme. 196873 Both methods use a weighting scheme which defines the proportion of
the electron density of the molecule each atom receives. The charge assigned to each atom is
then defined by:

ga =2Zp — / Wa(r)n(r)d’r (2.28)

where n(r) is the electron density, Z, is the charge on the nucleus and Wy (r) is the weighting
function.
The IH method is an iterative from of the Hirshfeld method. In the Hirshfeld method, the

weighting is based on the atomic densities: 2>

0
Wa(r) = a0 (2.29)

 Ypny(r)

where ng(r) is the atomic reference density. The atomic reference density used is the neutral

gas-phase density although alternative choices could be made.%® The Hirshfeld method tends
to result in atomic populations that are too close to zero and the IH method was developed in
an attempt to address this and additional problems. %8

The first stage in the TH method is calculating the electronic population, Q4 (i) =
[ Wy (r)n(r)d?r, using the original Hirshfeld method.®® The reference densities used are then
updated using linear interpolation between the density of the ions with the closest integer

number of electrons to Q4 (i):
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n(i,0) = nS T (0) (T4 1= Qali)) + 13" (1) (Qa (i) — 7) (2.30)

where 7 is the integer below Q4 (floor(Qy)).

This allows the electron density of an atom with the hypothetical non-integer charge Q4
to be estimated. The process is iterated until the set of atomic charges does not change by
more than a set threshold. At each iteration the new weighting used is: %

0/
n, (i,r)
Wi+ 1,r) = —4""_ 2.31
al ) Y pn%(i,r) 31)

An alternative approach, which does not require reference densities, is the ISA method.

The weighting used for the first iteration of partitioning is ng = 1 and the densities are

subsequently updated using equation 2.31 and the following equation:’3

nS(i,r) = (na(i,r))a (2.32)

where (---)4 denotes the spherical average about the center of the atom.

In ISA, the partitioned electron density used in the weighting function at iteration i + 1 is
given by the spherical average of the electron density at iteration i. However, whilst the ISA
method has been shown to produce a better approximation to the electrostatic potential than
the TH scheme, the ISA method can be slow to converge. 2>

The DDEC scheme®%8! is a compromise between convergence time and accuracy and

uses a combination of both methods. The weighting function used is: %8

[l (i, )| (i, )]

ZB["%H(i,r)]X [n{gSA(," r)]i-«

where J is an adjustable parameter which is set at 0.02 in this thesis.

Wa(i+1,r) = (2.33)

22

Lennard-Jones Parameters

With the electron density of each atom calculated, the Lennard-Jones terms can then be de-
rived. The coefficient of the 7~® component is found by following the scheme of Tkatchenko
and Scheffler and rescaling the reference free atom coefficients by the ratio of the AIM

volume to the free volume of the atom: !!!

VA[M 2 ;

ree

Bi=| e | B (2.34)
i
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where the Blf "¢ parameters were found from a time-dependent DFT calculation and V; is the

volume of the atom given by: !!!

V= /r3ni(r)d3r (2.35)

where r is the distance to the nucleus of the atom and n;(r) is the electron density for the free
atom or the electron density from the AIM calculation.

The Tkatchenko-Scheffler equations give a relationship between the electron density and
the Cg parameters of an atom. '!! These equations are derived by using the exact expression
for the Cg term between two atoms A and B, Cgap = %fg" oy (io)ap(io)dm, where oy (im)
is the frequency-dependent polarizability of A. Approximations are then made to oy /B(i o),
which results in the Cggp being expressed in terms of Cgaq and Cgpp (and a further ch term
that is calculated using TDDFT). These homonuclear Cg parameters can then be readily
approximated using equation 2.34, which is derived using the Cgap equations along with
the use of effective volumes (equation 2.35) and further approximations. The validity of
these approximations for calculating Cg terms was assessed in Ref. 111 and shown to be
surprisingly good for a large range of molecules. The Tkatchenko-Scheffler relations have
been widely used to add the dispersion interaction to DFT energies and were shown to be
appropriate for force field parametrization of small molecules in Ref. 22. 111

By constraining the minimum of the LJ potential to the vdW radii, R?IM , of the atom the

r~12 coefficient can then be calculated. 22

aV,
0= vdW (2.36)
dr ij —RAIM
1
A= EBi(ZR?IM ) (2.37)
R?IM is estimated using the scaling relationship of Tkatchenko and Scheffler.'!!
V.AIM %
RMM — [ Zi__ | Riree (2.38)
V.free l
1

The le "¢ parameters were fit to experimental liquid densities and the parameters for H, C, N,
O, S, F and Cl were found in Ref. 22.
The interaction between two different elements are calculated with the geometric com-

bining rule used in OPLS:

Aij= JAA; (2.39)
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This applies to both coefficients A;; and B;;.
Additionally, hydrogen atoms attached to polar atoms are given Lennard-Jones terms

equal to zero, with the polar atoms having a new B coefficient given by:

VB, = VBx+nyv/By (2.40)

where B/, B, are old and new terms respectively, ny is the number of hydrogen atoms and
By is the hydrogen’s dispersion coefficient.

The non-bonded parameters between atoms separated by 3 bonds (1-4 atoms) are scaled
by 0.5. This scaling is also used in OPLS.

2.3.3 Molecular Dynamics Simulations

A force field can be used describe the interactions between atoms in MM simulations with
molecular dynamics (MD) used to propagate the dynamics of a molecule.

In classical MD simulations, Newton’s equations of motions are solved for a system of
atoms and this produces the trajectory of the atoms over a period of time.>! Many different
schemes can be used to solve the equations of motion. The most commonly used is the Verlet
method, which is derived by a Taylor expansion of r(z + At), and uses discrete timesteps of

At to calculate the position of atoms at time ¢ + A¢ from their positions at previous timesteps:

r(r+Ar) =2r(r) —r(r — Ar) +a(t) A2 + O(Ar) (2.41)
r(t+At) —r(t — Ar)
t) = 2.42
0 — @42
a(t) =1£(t)/m (2.43)
where r is the position, v is the velocity, ¢ is the time, m is the mass of an atom, and a is the
acceleration.?

Additional techniques need to be used in MD simulations in order to keep pressure and
temperature at constant values. One method to control the temperature uses an extended
Lagrangian, which adds an additional term to the equations of motion so energy can flow
between the system and a reservoir.>! A frictional coefficient is added so as to minimize
the difference between the instantaneous and statistical temperatures. A similar approach
is used in the Nosé-Hoover method, with a frictional coefficient added to ensure there is

the minimum difference between the instantaneous pressure and the pressure of an external
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reservoir.3! The molecular dynamics simulations performed in this thesis follow the protocol
described in Ref. 99.






Chapter 3

Bond and Angle Parameters

In Ref. 22, the bond and angle terms were taken from the OPLS force field. These values
needed to be updated as terms should not be transferred from one force field to another. The
development of a bond and angle parametrization method is described in this chapter. Using

this new approach, bond and angle terms are calculated for our biomolecular force field.

3.1 Introduction

The bond and angle components of a force field are used to describe vibrations of the
bonds and angles around their equilibrium positions, and generally are described by a
harmonic potential. Historically, in biomolecular force fields such as OPLS and AMBER,
many of the bond and angle force constants were found by fitting MM normal modes and
frequencies to experimental or quantum mechanical (QM) studies of small molecules.>*12
Such an approach creates interdependencies between force field parameters.''* That is, the
computed bond and angle force constants are dependent on the choice of torsional and
non-bonded parameters used in the original fitting procedure, and therefore changes to
one component of the force field requires a re-fit of all the other parameters. The bond
force constants that could not be fit to experiment were estimated by assuming a linear
relationship between the force constants and experimental bond lengths, %> which may
limit the achievable accuracy.”? Given the importance of intramolecular interactions in
determining conformational preferences of molecules?* and reproducing accurate vibrational
spectra, ! biomolecular force field developers are beginning to reparametrize the bond and
angle terms as a means to improve the accuracy of MM simulations.?*!?2 However, there
is no standard approach for bond and angle parametrization that combines both accuracy
and ease-of-use, whilst removing the problem of parameter interdependence. Given that

the non-bonded parameters used in our force field are system specific, having bond and
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angle terms that do not depend on the rest of the force field is even more important than for

conventional force fields.

A number of methods have recently been developed that are aimed at finding bond and
angle parameters with greater ease and accuracy. !1247284103 These methods can be divided
into fitting approaches, which rely on MM calculations as part of the parametrization process,
and non-fitting approaches, which rely only on QM data. The use of multiple iterations to
parametrize a MM force field through fitting to the QM Hessian matrix has been shown
to give reasonably accurate MM normal modes.'! However, the dependence of the fitting
process on repeated calculations of the MM Hessian matrix, results in interdependencies
between force field parameters.'! This effectively means that bond and angle parameters
should be updated when changes to other components of the force field are made. Similarly,
in an extension to the CHARMM force field, which was fit to QM frequency spectra, the
issue of parameter interdependencies meant that repeated parametrization of bond and
angle parameters was required as dihedral and non-bonded components of the force field
were updated.'!'* This adds time and effort to the parametrization process.!'* Another
example of a large scale parametrization approach is the method used for the AMBER
ff15ipq force field.?* Eight generations of improvements were carried out, with repeated MD
simulations and QM optimization at each cycle creating tens of thousands of conformations
that were used to fit the bond and angle parameters.?* Automating this process, so that it
is suitable for use by inexperienced users to parametrize molecules outside the fitting set,
would not be straightforward. Speed is often a factor in fitting methods, not just because
of interdependencies, but also due to difficulties in the fitting process. The Force Field
Toolkit (ffTk), is a VMD plugin that works with the CHARMM force field to parameterize
small molecules. This method fits the MM potential energy surface to the QM potential
energy surface and convergence of force constants can be slow.3* Like all fitting approaches,
this method also requires an initial estimate of the force field parameters for the first MM
calculation, which relies on the preliminary values being available, and reasonably close
to the optimal values. A method to fit parameters using the partial QM Hessian matrix of
a molecule has recently been developed and tested on 23 molecules. This gave a mean

unsigned error of 73.3 cm™! for the recreation of QM vibrational frequencies >3

which gives
an indication of the levels of error that are typically obtained by fitting MM parameters to

QM data.

The methods discussed so far all have the disadvantages of non-transferability, inter-
dependency of force field parameters and reliance on an initial parameter estimate. These
are inherent characteristics of methods that rely on fitting MM force field parameters to

QM or experimental data. Therefore, it is seemingly advantageous to move away from
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using MM calculations as part of the bond and angle parametrization procedure. Non-fitting
methods offer speed, transferability and independence from the other force field compo-
nents, but currently lack accuracy. The most widely used of the non-fitting methods is the
Seminario method %> which uses projections of the QM Hessian matrix to determine force
constants for MM force fields, and is available through the AMBER suite of programs,
in the VFFDT plugin or the MCPB.py program. This method has been popularly applied
to biomolecular systems containing metals, for which general force field parameters are
typically lacking.>7%74103.127 However, this method has been shown to be less accurate than
fitting to the QM Hessian matrix for two small test sets.'!!23 In particular, the Seminario
method struggled to recreate the normal modes of molecules with more than five atoms,
with particular problems recreating the angle bending frequencies. '2* This points to possible
inaccuracies in the angle force constants.

In this section, we propose a modification to the Seminario method which substantially
improves the computed angle force constants by taking into account the geometry of the
systems under study. We extensively test the ability of the modified Seminario method to
reproduce QM vibrational frequencies, and compare the accuracy to standard MM force
fields and the original Seminario method. The benchmark data set comprises a total of 70
molecules, including small molecules and dipeptides, against which standard force fields
have been parametrized, and also more complex organic heterocycles and a metal containing
complex. For the majority of the 70 molecules tested, the modified Seminario method is
more accurate than the original approach. A program that implements the method proposed
is supplied for use by other groups, which allows users to quickly and easily derive bond
and angle parameters from the output of a Gaussian093? frequency calculation. To prevent
repetition of calculations, we have also freely supplied a complete set of bond and angle force
field parameters for each of the 20 naturally-occurring amino acids (supporting information
of Ref. 1). These terms are used in the following chapter with our biomolecular force fields,

and could similarly be used by other groups developing biomolecular force fields.

3.2 Theory

3.2.1 Normal Mode Analysis

The Hessian matrix is a 3N x 3N matrix, where N is the number of atoms, containing the
second derivative of the energy with respect to an atom’s position, see equation 3.3 for the
partial Hessian matrix. The Hessian matrix can be calculated computationally using finite

difference methods or analytically. %195
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1/ 2 where M is a matrix

The eigenvectors and eigenvalues of the matrix F =M “12HM~
of the atomic masses and H is the Hessian matrix, correspond to the normal modes and
frequencies of the molecule.®® If the atoms in the molecule are displaced in the direction
of an eigenvector then sinusoidal motion, with a frequency given by the eigenvalue, will

continue in the direction of the eigenvector.

The comparison of QM and MM normal mode frequencies is a common test of the
accuracy of the bond and angle force constants.

3.2.2 Seminario Method

The Seminario method was developed by Jorge Seminario in 1996 '93 to parametrize harmonic
bond and angle force field parameters from the QM Hessian matrix of the molecule. This
provided a valuable tool for obtaining intramolecular force field parameters directly from QM
data, without the need for empirical input. In this section, we outline the original Seminario

methodology.

The reaction force, F, due to a small displacement dr in a system comprising N atoms
can be written to second order as:
OF = —[k|6r (3.1)

where [K] is the Hessian matrix of the molecule. For practical applications in MM simulations,
the relationship between the total energy of a molecule and its nuclear coordinates are

typically expressed in terms of a force field equation in the internal coordinates:

1 1
v=Y Ekr(r—ro)an ) zk9(<9—90)2+... (3.2)

bonds angles

where the first term accounts for two-body bond stretching about an equilibrium bond
length (rp), and the second for three-body angle bending about an equilibrium bond angle
(6p). MM force fields generally also include an anharmonic four-body torsional term, and
reparametrization of this term is covered in the following chapter. The objective of the
Seminario method is therefore to obtain the MM harmonic force constants, k, and kg, from
the full QM Hessian matrix [k].

By analogy with eq 3.1, the force felt by atom A due to displacement of atom B is given
by 6Fp = —[kap]Orp. The 3 X 3 interatomic force constant matrix [kag| contains only the
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elements of the full Hessian matrix relating to atoms A and B:

9°E J’E 9°E
ox, 8x3 ox, 8yB ox, aZB

é%E 3AzE BI%E
dysdxp  dysdyp  9ysdzp

9°E 9°E d°E
8zA8xB 3ZAayB aZAaZB

[kag) = — (3.3)

The three eigenvalues of [Kag], liAB , are the force constants in the direction of the three

eigenvectors, V{‘B

. However, we instead require the force constants for changes in intramolec-
ular bond lengths and angles. To calculate the bond force constant for the bond AB, each

eigenvector is projected onto the direction of the bond vector, #45:

3
ke= Y AABAB 5B (3.4)

i=1

In the original Seminario paper the definition of a bonded atom was determined by the
eigenvalues of [kap]. We have not used this definition and use the conventional definition of
bonded atoms specified by the force field.

The angle force constant, kg, is more complex as it involves projections onto directions
perpendicular to two different bonds AB and CB. Let us define two vectors, 44! and 47C!
Fig. 3.1(a)), that are perpendicular to the bonds AB and CB respectively and lie in the
plane ABC. Then kps and kpc are defined as the corresponding force constants obtained by

projecting the eigenvectors of the partial Hessian matrix onto these two vectors:

3
kpa = Y APB1M 0P| (3.5)
i=1

3
kpe =Y ALPaPCT V7P (3.6)
i=1

Via analogy to two springs connected in series, the angle force constant is then approximated

by:
1 1 1

- = +
ko Rigkpa RZgkpc

(3.7)

where Rap and Rcp are the two bond lengths (Fig 3.1(a)).

3.2.3 Modified Seminario Method

The Seminario method for the derivation of harmonic angular force constants assumes that

the change in energy associated with the displacement of atom A along the direction 74!
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Fig. 3.1: (a) The original Seminario method applied to a water molecule. (b) Extension of the original
Seminario method to a larger molecule (benzene). If atom A moves in the direction perpendicular to
bond AB, ™!, both angles 0; and 6, are altered. Therefore, the angle force constant obtained via

projection of the eigenvector of the matrix [kap] onto #™! is over-estimated by a factor of two.
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will only change the angle involving atoms A, B and C as in Fig. 3.1(a). However, in larger
molecules, neighboring angles may also be altered by a displacement of atom A in the
direction of #™!. Let us consider how the Seminario method would calculate the angle force
constants involving four atoms (A, B, C, D) in the same plane, such as in a benzene molecule
(Fig. 3.1(b)). The Seminario method finds the force constant for angle ABC, 0y, from the
projections of the eigenvectors of the partial Hessian matrices on to 24! and #7°!. Hence
the Seminario estimate of kg, includes all QM forces on atom A acting in the direction aPAL,
Importantly, however, the equivalent calculation of kg, also includes all QM forces on atom
A acting in the direction #A!. This inevitably results an intramolecular MM force field that

18 too stiff.

We can think of this problem in terms of the change in energy caused by a small change,
Ax along 4™, that would be computed using the original Seminario method:

S (A = kpat (A)® + kpaa (Ar)° (3.8)

where kpa; (kpa2) is the hypothetical value of k3gminario (k5eminarioy that would be computed if
ABC (ABD) existed in isolation from all other angles. For the water example kf,f"?"”“r 10 — kpyj.
For the benzene molecule , kpy; = kpsp and so the Seminario method over-estimates the
change in energy by a factor of two.

PA1

If ABC and ABD are not in the same plane, movement in the direction #'”" can still

cause displacement in the direction of neighboring angles. The change in energy predicted

by the original Seminario method may then be approximated by:
K5 (Ax)® = kpat (Ax)? + kpao (Ax|dipar lipaz] ) (3.9)

Assuming further that kp4q; ~ kpso, which is true when both angles are in the same plane:

ket = fepay (14 |dipar-fipaa ) (3.10)
k;znfinario
kpar = S (3.11)
(14 |dpa;-dpaz|?)

Equation 3.11 rescales the original value of kls,j’?i”“r i by a factor that accounts for the
geometry of the molecule. To extend the above analysis to sites B with multiple angles, we
have found empirically that the mean of the additional contribution (|ipa; .ﬁpA2|2) from all
neighboring angles gives the most reasonable agreement with the QM vibrational frequency
spectra. This results in our modified formula for the angle force constant for ABC when
N > 1and M > 1, where N (M) is the number of angles in the force field that have a central
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atom B and involve movement of the bond AB (BC):

25\121 ‘ﬁPAl'ﬁPAi|2_1 Z?i] |ﬁPC1,ﬁPCi|2—l

ot — I (3.12)
k 0 R2 kSeminario R2 kS eminario :
AB™PA CB™PC

If N=1 (M = 1) the left (right) hand component is replaced by the original Seminario
method.

3.2.4 Computational Implementation

Our proposed modification to the Seminario method comprises eq 3.4 for the intramolecular
harmonic bond force constants and eq 3.12 for the modified angle force constants. The
equilibrium bond lengths and angles are obtained from the optimized QM structure. The
modified Seminario method is available for use through a MATLAB (or Python) program
which may be freely downloaded from https://github.com/aa840/ModSeminario

( https://github.com/aa840/ModSeminario_Py ) along with a short tutorial explaining
how to use the program to find the bonded parameters of a benzene molecule. For the
example given, the Hessian matrix of the molecule can be converted into bond and angle
parameters in a matter of seconds on a standard desktop computer. Larger molecules may
also be parametrized in negligible compute times since the method scales approximately

linearly with the number of bonds and angles.

The optimized structure and connectivity of the molecule, as well as the QM Hessian

matrix, is read in from Gaussian 0932 output files (specifically .fchk and .log files). Optionally,
272856 may

be supplied to provide the OPLS atom types. If a z-matrix is supplied as input, the OPLS

a BOSS z-matrix,’> which can be produced using the LigParGen web server,

atom types are used to return the average value for each bond and angle class. However if
OPLS atom types are not required, or are unavailable (for example, for molecules containing
a metal), the Gaussian 09 output files can be used in isolation, with no bond and angle
parameter averaging performed. Thus the program can be used for a wide range of molecules

and force fields.

Following standard practice, the QM-derived vibrational frequencies of a molecule can be
multiplied by a constant to better fit experimental vibrational spectra. 92 This is incorporated
into the modified Seminario method by multiplying the bond and angle force constants by
the square of the frequency scaling constant.?® This scaling constant can be altered by the

user according to the level of QM theory employed, or set equal to one.
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3.3 Simulation Methods

To test the accuracy of the modified Seminario method, 38 small organic molecules were
chosen with a diverse range of chemical structures. Test sets of this nature are commonly
used to parametrize MM biomolecular force fields. The molecules contained more than
six atoms to ensure that the effect of our angle correction is apparent. Following the small
molecule validation set, we also repeated our analysis on a set of ten heterocyclic molecules.
The full list of small and heterocyclic molecules is provided in Section A.1 of the appendix.

For each molecule, a structural optimization and frequency calculation was performed
using Gaussian 09 with the ®B97XD functional and a 6-311++G(d,p) basis set.>> The QM
vibrational frequencies were re-scaled by a factor of 0.957, which is the value recommended
for the ®B97XD/6-311G(d,p) level of theory by the Computational Chemistry Comparison
and Benchmark DataBase.>' The same scaling factor is also used to effectively scale the MM
frequencies, as outlined in Section 3.2.4. The level of QM theory chosen for the frequency
calculation is the same as that used in the recent re-parametrization of the protein backbone
torsional parameters for OPLS-AA/M.”® To ensure that this choice did not significantly
influence the results, our analysis was repeated for a subset of 10 small molecules using the
B3LYP/cc-pVTZ level of theory. As reported in Table 3.1, the computed accuracy of our
method is not strongly dependent on the choice of underlying QM data.

Bond and angle parameters for each molecule were found, as described above, from the
computed QM Hessian matrices, using the original and modified Seminario method. Dihedral
and non-bonded parameters were assigned from the OPLS/CM1A force field 2% using the
LigParGen web server to obtain z-matrices.?” The MM normal modes and frequencies were
calculated using the BOSS general purpose molecular modeling software with Broyden-
Fletcher-Goldfarb-Shanno (BFGS) structural optimization .>> The mean percentage error

100 3N | av2 —viM M/oM

. : M
in each molecule is computed as zy—¢ 3" W\ where V;

the ith MM/QM normal mode, « is the Vibratioﬁal scaling factor and N is the number of

is the frequency of

atoms in the molecule. The mean unsigned error (MUE) is also given for comparison and is
computed as ﬁ v |Ocvl-QM — vMM| Although the above measures of error are commonly
used in assessing the accuracy of bond and angle parameters, we emphasize that the QM
frequencies, that are treated as ‘ideal’ values, are derived from the same QM Hessian matrix

used to parameterize the bond and angle terms.

In order to provide direct comparison with the MCPB.py force field parametrization pro-

gram, ’? we also analyzed the complex tris(1,10-phenanthroline)-osmium(II) (Os[(phen)3]**)

I'The QM frequencies used were found from B3LYP calculations and scaled with a vibrational scaling factor
of 0.965.
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Modified Seminario Modified Seminario

(B3LYP) (%) ! (@B9I7XD) (%)
Acetic acid 4.39 (53.75) 4.28 (51.12)
Benzene 4.05 (47.94) 4.51 (50.38)
Cyclohexane 5.77 (60.06) 5.77 (57.76)
Ethane 4.91 (74.50) 4.61 (69.91)
Methyl acetate 5.62 (55.48) 6.73 (53.07)
Methyl benzoate 479 (36.41) 5.06 (36.32)
Propene 5.37 (67.15) 6.13 (66.51)
Pyridine 3.67 (41.29) 3.83 (41.01)
Triethylamine 4.04 (50.96) 4.61 (52.59)
Trifluorobenzene 5.08 (40.56) 5.55 (42.93)
Mean 4.77 (52.81) 5.11 (52.16)

Table 3.1: The mean percentage error between the QM and MM normal mode frequencies for a
subset of the small molecules. The mean unsigned error is shown in brackets (cm™1). The QM
frequencies used in the calculation of the error have been scaled to better reproduce experimental
frequencies. !°> The errors for the modified Seminario method using a B3LYP functional and using a
wB97XD functional are given.

Fig. 3.2: The Os[(phen);]** complex. Hydrogen atoms are colored in white, carbon in grey, nitrogen
in blue and osmium in red.
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shown in Fig. 3.2.25 The QM Hessian matrix, computed using the B3LYP functional and

a 6-31G(d) basis set, was obtained directly from the work by Li et al.”?

Bond and angle
parameters were computed using the modified Seminario method. For consistency with the
MCPB.py analysis, we computed MM normal modes using AMBER16,'* with the AMBER
ff14SB and GAFF force fields for torsional and non-bonded parameters. A vibrational scaling
factor was not applied in this case.

Finally, we computed bond and angle force field parameters for each of the 20 naturally-
occurring amino acids with the same methods used for the small molecule and heterocycle
data sets. The OPLS-AA/M force field was used for all torsional and non-bonded parame-
ters.”” The amino acids (X) were blocked with acetyl and N-methyl groups (Ace-X-NMe).
Our definition of a dipeptide (a single amino acid with two peptide bonds) is the same as
that described in Chapter 2. A total of 80 structures were analyzed to account for variation
in backbone and side chain conformations. A minimum of one f3-sheet and one a-helical
conformation was tested for each dipeptide, which have v and ¢ dihedral angles of (—60°,
—45°) and (—135°, 135°) respectively.”” Additional starting configurations for larger amino
acids were generated by fixing the backbone dihedral angles and scanning the side chain
dihedral angle (N-Ca-Cf-Xy, where the atom type X7y depends on the amino acid) for local
minima. The starting structures were fully optimized as part of the QM frequency calculation,
ensuring a representative sampling of low energy structures. The reported bond and angle
force field parameters were averaged over the different conformations produced.

3.4 Results

Original Modified

OPLS Seminario Seminario
Small Molecules 7.3% (60.4) 12.3% (119.5) 6.4% (52.3)
Heterocycles 8.6% (82.6) 11.7% (132.3) 6.8% (52.8)
Dipeptides 7.0% (46.6) 12.4% (104.3) 6.1% (39.5)

Average 7.4%(59.4) £ 2.9%(19.3) 12.3%(116.7)% 3.4%(26.6) 6.3%(48.5) £ 2.75%(13.7)

Table 3.2: Mean percentage error (%) in the MM vibrational frequencies for OPLS and the original/-
modified Seminario parametrization schemes. The value shown in brackets is the mean unsigned error
(cm™1). The QM frequencies used in the calculation of the error have been scaled to better reproduce
experimental frequencies. !° The error shown represents the standard deviation of the results.

Table 3.2 summarizes the ability of various force field parametrization techniques to
reproduce the QM vibrational frequencies of a range of tested molecules. The full list of

molecules and their associated errors are given in Appendix A. Focusing first on the small
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molecule data set, the percentage error for the vibrational frequencies computed using the
OPLS force field is 7.3%. As expected, the computed frequencies are very similar to high
level QM data because force fields are parameterized to fit experimental vibrational spectra
of small molecules such as these.>*!> Similar accuracy is expected for other standard MM
biomolecular force fields, which often employ the same bond and angle parameters. Next, we
reparameterize the bond and angle equilibrium values and force constants using the method
proposed by Seminario, '3 and combine the parameters with OPLS torsional and non-bonded
parameters. The resulting error is almost twice as high as that of the standard force field.

11123 \which casts

1.72

Mean unsigned errors of > 100 cm™! have been reported in other studies,
doubt on the suitability of the Seminario method as an automated parametrization too
In contrast, the error in our modified parametrization scheme (6.4%) is much lower than
the original Seminario method and similar to the OPLS force field. The corrections that we
have made to the Seminario method, described in Section 3.2.3, result in a more accurate
reproduction of the QM vibrational spectra. Figure 3.3 demonstrates this improvement in the

case of the vibrational spectra of phosphorine and methyl benzoate.

As discussed, standard MM force fields are expected to perform well for this small
molecule data set. As a more stringent test, we have computed the QM vibrational spectra
of ten more complex heterocyclic compounds, which are expected to be less structurally
similar to the original parametrization set. Table 3.2 summarizes the average error in the
three parametrization methods across all ten molecules, and Fig. 3.5 further breaks down
the results by molecule. As expected, the error in the vibrational frequencies computed
using OPLS (8.6%) is higher than that computed for the small molecule test set. However,
the original Seminario yields even higher errors, again indicating its unsuitability for force
field parametrization. Encouragingly, the modified Seminario method maintains a low error
(6.8%), which is largely constant across the heterocycle test set and is consistently lower
than the original Seminario method (Fig. 3.5). This is can also be seen in Fig. 3.4 , which
shows the vibrational spectra of adenine and 3-lactam. Closer examination reveals that the
majority of the improvement in the accuracy of the normal modes is brought about by the
changes to the harmonic force constants, rather than the bond lengths or equilibrium angles.
Some parameters have very large deviations from the corresponding OPLS parameters.
For example, one of the C—C bond force constants in pyrrole, found using the modified
Seminario method, is 25% lower than the corresponding OPLS parameter. Improvements
in the optimized structures are also observed with the new parameters for heterocyclic
molecules, particularly for the four membered rings. In the QM optimized structures, all
the heavy atoms in 3-lactam and oxetane are coplanar, which is correctly reproduced by the

modified Seminario parameters. However, optimization with OPLS yields slightly twisted
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Fig. 3.3: The vibrational spectrum of phosphorine and methyl benzoate computed using QM, and
compared with the original and modified Seminario methods and OPLS. The QM frequencies used in
the calculation of the error have been scaled to better reproduce experimental frequencies. !°2



38 Bond and Angle Parameters

(a) B lactam
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Fig. 3.4: The vibrational spectrum of 8 lactam and adenine computed using QM, and compared with
the original and modified Seminario methods and OPLS. The QM frequencies used in the calculation
of the error have been scaled to better reproduce experimental frequencies. %
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Fig. 3.5: The error in the MM vibrational frequencies for a set of heterocyclic molecules, using
bond and angle parameters from the original Seminario method, OPLS and the modified Seminario
method. The QM frequencies used in the calculation of the error have been scaled to better reproduce
experimental frequencies. 9

structures, with a computed C—O—C-C dihedral angle of 20.2° for oxetane and a C-N-C-C
dihedral angle of 11.5° in B-lactam.

Figure 3.6 shows a comparison between the QM and MM vibrational frequency spectra
of Os[(phen);]**. The MCPB.py method uses the original Seminario method to parame-
terize bonds and angles involving the metal ion, and applies the standard AMBER force
field elsewhere. % For direct comparison, we have used identical dihedral and non-bonded
parameters, but replaced all bond and angle parameters with those computed using the
original and modified Seminario methods. All methods agree well in the low frequency range
0—1250 cm™!, while reproduction of the very high frequency (> 2500 cm™!) vibrations of
bonds involving hydrogen is problematic for all methods. The original Seminario method
and MCPB methods clearly over-estimate the vibrational frequencies of normal modes in
the intermediate regime (1250-2500 cm™!). These modes largely involve angle bending
motions, which are precisely the motions that we set out to correct in the modified Seminario
method. The overall error (6.0%) of our modified Seminario method is half that computed
using the original Seminario method, and very similar to the errors computed for the small
molecule and heterocycle data sets. Furthermore, this additional test case demonstrates that

the modified Seminario method works well for relatively large system sizes (67 atoms), and
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Fig. 3.6: The vibrational spectrum of Os[(phen);]** computed using QM, and compared with the
original and modified Seminario methods, as well as the bonded parameters reported in Ref. 72
(MCPB). The mean unsigned error for each method is given in the key. No vibrational scaling factor
has been applied to the QM frequencies.

is not too dependent on the underlying force field that is used to compute torsional and
non-bonded energetics.

3.4.1 Amino Acid Parameter Set

The validation tests described in this chapter reveal that harmonic force constants derived
using the modified Seminario method give vibrational spectra that are in very good agreement
with QM data across a wide range of molecules. We therefore envisage this method being
used as a toolkit for automated parametrization of molecules that are missing force field
parameters (for example, metal complexes), or for which the transferability of the standard
force field parameters are questionable (for example, heterocyclic molecules). As a further
resource, and also to test whether the modified Seminario method is suitable for transferable
force field parametrization, we have computed a new bond and angle parameter set for the 20
naturally occurring amino acids using our new method. The amino acids are blocked with
acetyl and N-methyl groups to form dipeptides. We performed QM calculations on a total
of 80 dipeptide structures (including different backbone and side chain conformations) and
averaged parameters for each atom type over all structures and amino acids. Using these
averaged bond and angle parameters alongside the OPLS-AA/M force field, we computed
the vibrational spectra of each of the 20 amino acids and compared our results with QM
data. The results are summarized in Table 3.2, and show the expected trend. The OPLS
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Fig. 3.7: The molecule acetonitrile. The nitrogen atom is shown in blue, carbon in grey and hydrogen
in white. The parallel C—N and C—C bonds can be seen in the figure.

force field, which has been parameterized to reproduce experimental vibrational spectra of
small molecules, has a low percentage error of 7.0% relative to our QM data. The original
Seminario method fails to reproduce the QM vibrational spectra, while the modified method
results in a slightly lower error (6.1%) than the OPLS force field. As a comparison, we also
computed the vibrational spectra for each amino acid using bond and angle parameters that
are specific to that molecule (Table A.3). However, the error is virtually identical to the
averaged parameter set for the modified Seminario method, indicating that the harmonic

bond and angle parameters are indeed transferable.

To better understand how the bond and angle parameters vary, the modified Seminario
parameters were compared to the OPLS force field (Section A.2). It was found that the bond
lengths and equilibrium angles do not deviate far from the OPLS parameters. However, the
modified Seminario bond force constants are generally lower than the OPLS parameters,
with the mean bond force constant being 411 kcal/mol/A? for OPLS and 341 kcal/mol/AZ
for our new parameter set. In contrast, the modified Seminario angle force constants are
slightly higher than for the OPLS force field. However, even more apparent is the larger
range of force constants that are computed using the modified Seminario method. OPLS
angle force constants range between 33-85 kcal/mol/rad? for the amino acid set, whilst the

corresponding modified Seminario parameters lie between 22—178 kcal/mol/rad? (Fig. A.12).

3.4.2 Nitriles

Nitriles are a special case and the modified Seminario method cannot be used in the usual way.
Let us consider the acetonitrile molecule shown in Fig.3.7. The vectors defining the bonds
between C-N and C—C are parallel to one another. As these vectors are linearly dependent, a
plane for the angle C—C—N cannot be defined. This is important as the modified Seminario

method relies on uy which is the normal vector to the angle’s plane. Therefore, the angle
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Fig. 3.8: The vibrational spectrum of acetonitrile computed using QM, and compared with the
modified Seminario method and OPLS.

force constant for nitriles will cause problems in both the original and modified Seminario
method.

A solution to this problem is as follows. As uy cannot be defined, we instead look to
uniformly sample the force constant for motion in all directions. This can be carried out
by calculating the force constant for a range of uy vectors. We chose the uy vectors to be
uniformly distributed across the surface of a unit sphere. For the acetonitrile case, this resulted
in angle force constant for C—~C—N ranging from approximately 44 to 60 kcal/mol/rad?, with
a mean value of 52.7 kcal/mol/rad? after vibrational scaling.

The normal modes for the molecule are shown in Fig. 3.8. OPLS has an error of 21.79%
(155.24 cm™ ') whilst the modified Seminario method has an error of 17.19% (117.23 cm™ ).
This error is higher than other molecules tested but lower than that of OPLS. By examining
how the error changed with the C—C—N angle force constant, it could be seen that issues with
acetonitrile frequency recreation were not due to the C—-C-N angle force constant. Therefore,

we employ the method outlined in this section for molecules with linear groups.

3.5 Discussion and Conclusion

We have developed a method for the parametrization of harmonic bond and angle force
constants for molecular mechanics force fields. The method recreates QM normal mode
frequencies with a consistently high level of accuracy, and uses no empirical or MM data

in the parametrization process. Use of our bonded parameters results in similar levels of
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error to standard force fields for a general set of small molecules and dipeptides, and a
noticable improvement for heterocyclic molecules. In certain cases, the optimized structures
of hetereocyclic molecules are greatly improved using the new approach. The parameters
have been computed using a modified version of the widely used Seminario method, '3 in
which critical improvements have been made to the angle force constants. For the majority
of the 70 molecules tested, the modified Seminario method is more accurate than the original

approach.

Although the accuracy of the modified Seminario method is extremely good, Fig 3.6
reveals possible areas for further improvement. All methods tested show quite large errors in
the very high frequency bond stretching modes involving hydrogen (although these modes are
unlikely to critically affect many computed properties of interest). The modified Seminario
method substantially improves the recreation of intermediate modes involving angle-bending
motions. It should be emphasized that we do not claim that eq 3.12 is the only method
for partitioning kg parameters from the full QM Hessian matrix, and other schemes are
possible. In fact, we investigated one such scheme during development of the modified
Seminario method. Motivated by the observation that the original Seminario method strongly
over-estimates the stiffness of larger molecules, we investigated a simple re-scaling of the
angle force constants by a constant multiplicative factor. This method gave percentage
errors of around 8.5%, which is an improvement over the original Seminario method, but
significantly worse than our modified approach, which accounts more rigorously for the
molecular environment. A brief summary of the scaling method is given in the final section

of this chapter.

With regards to the low frequency portion of the vibrational spectra, we have combined
the derived harmonic bond and angle parameters with torsional and non-bonded parameters
from standard MM force fields. Figure 3.6 is typical of the vibrational spectra computed
in this study and shows that the errors in the low frequency part of the spectrum are low.
Nevertheless, further improvements in accuracy could be possible by re-parameterizing the
torsional terms using the modified Seminario bond and angle parameters, this is carried out in
the following chapters. Finally, we have assumed throughout this study that the QM normal
modes and frequencies are an accurate representation of experimental values. This is reliant
on the vibrational scaling factors used being suitable for the molecules tested, and not being

frequency dependent.”®

The Seminario method is one of a number of methods that can be used to parameterize
harmonic bond and angle force field terms. !!->#123 The level of accuracy that can be ob-
tained by fitting MM parameters to the QM Hessian matrix has been previously reported
as 63.9 cm~! or 73.3 cm™! depending on the details of the fitting procedure.'!:!?*> These
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methods appear to be less accurate than the modified Seminario method, though they have
only been tested on a small number of molecules, and further testing should ideally be carried
out on equivalent data sets with identical error analysis. As well as potentially improved ac-
curacy, the modified Seminario method also has other clear advantages compared to all fitting
methods currently in use. Since the force field parameters are derived directly from the QM
Hessian matrix, initial estimates of the remaining force field parameters are not required, and
interdependencies between the different components of the force field are avoided. Reduction
of parameter interdependencies is desirable to prevent the need for several iterations of
fitting, and therefore to produce the most efficient parametrization schemes. Recent efforts to
improve biomolecular force fields have seen a number of groups reparametrize the bond and
angle components of proteins using fitting approaches.?*!12? Therefore, each new iteration
of these force fields will require a full reparametrization of the bonded terms. We offer a
simple, alternative solution by supplying a library of bond and angle parameters for the set of
twenty naturally-occurring amino acids. These parameters can then be used as the basis for
any future protein force fields that employ the standard harmonic functional form for bond
and angle terms, as well as our own biomolecular force field.

The modified Seminario method has been implemented in a freely available program and
offers a means to parameterize bond and angle terms in a fast and automated way. Future
work will aim to combine the modified Seminario method with automated fitting of torsional
parameters, using the methods described in the following chapter. Developments such as
these will be crucial in creating an automated workflow for the accurate parametrization
of MM force fields directly from QM data.>2%%° This is useful for applications such as

parameterizing ligands for free energy calculations of protein-ligand systems.

3.6 Scaled Seminario Results

In this section we briefly discuss an alternative modification that can be made to the Seminario
method to improve the normal mode frequency recreation. This simply involves multiplying

all angle force constants by a constant value:

kgcaled _ ,ykgeminario (3.13)

where 7Y is a constant to be determined.

To find the value of 7y, the mean error in the normal mode frequencies was calculated
for various values of Y for a set of 10 small molecules and the results are shown in Fig 3.9.
The minimum error is 72.94 cm™! for 7 = 0.68, compared to 118.44 cm™~! when the scaling

constant is equal to one.
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Fig. 3.9: The change in the error in the normal mode frequency recreation with 7.

The optimal value of y value was tested on a further 20 molecules that were not in the
original test set with the results presented in Table 3.3. There is a clear improvement in the
results when a scaling constant is used. However, with a mean error of 6.50% the modified
Seminario method, described above, outperforms the scaled Seminario values with error
8.48%.

It is interesting to see how the Y value relates to the correction from the modified
Seminario method. Figure 3.10 shows the original Seminario parameters against the modified
Seminario parameters for the dipeptide set. From this figure, and the error results, it can be
seen that applying just one scaling factor is not a sufficient correction as three sets of points
can be clearly seen, each set corresponding to a different value of 7. This is not surprising as
a range of geometries are present in dipeptides, with planar groups such as phenyl requiring
different optimal scaling factors from non-planar groups such as methyl.

However, using a scaling constant may be sufficient for certain applications. It offers
existing codes that use the Seminario method a very simple way to improve normal mode
frequency recreation with negligible additional coding requirement. If this were carried out,
further testing of the most appropriate scaling constant, and the normal mode frequency error
would be advised.
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Original Scaling 0.68 Modified
OPLS (%) Seminario (%) Seminario (%) Seminario (%)
A-methylstyrene  8.63 (46.95) 15.94 (133.74) 9.16 (56.89) 8.00 (41.18)
Acetaldehyde 5.44 (69.46)  8.08 (102.01) 6.35 (89.16) 4.91 (69.19)
Acetamide 15.46 (82.34) 21.76 (127.61)  16.55 ( 80.71) 13.70 (63.34)
Acetone 6.17 (48.49) 10.85 (100.74) 8.81 (89.65) 7.02 (67.12)
Aniline 6.40 (69.80) 15.70 (159.46) 8.60 (76.64) 4.73 (39.83)
Anisole 4.65 (40.04) 12.37 (133.92) 5.67 (50.18) 3.90 (36.26)
Benzamide 6.32 (58.83) 15.49 (148.49) 8.76 (72.38) 5.19 (36.68)
Dimethylamine 6.01 (76.29)  9.83 (124.73) 5.67 (73.94) 5.16 (66.50)
Dimethylaniline 6.64 (42.27) 10.53 (122.23) 4.66 (46.32) 4.96 (43.25)
Dimethylether 8.01(94.84) 10.04 (131.24) 5.96 (80.02) 5.67 (71.71)
Dimethylsulfide 4.32 (45.40) 8.22 (67.11) 11.48 (115.65) 9.06 (76.35)
Ethane 4.47 (55.92) 5.59 (84.69) 7.67 (111.77) 4.61 (69.91)
Methyl_benzoate 5.15(37.47) 12.21(121.42) 5.87 (47.20) 5.06 (36.32)
Methylacetamide 8.54 (78.79) 11.94 (130.73)  9.50 (112.17) 6.54 (86.30)
Methylamine 6.62 (81.13) 7.19 (94.94) 7.14 (94.90) 3.79 (51.64)
Phosphorine 7.26 (66.06)  13.70 (145.41) 7.31 (70.95) 5.02 (41.65)
Propane 4.05 (45.52) 7.05 (92.03) 6.92 (94.70) 4.31 (58.54)
Propene 5.41(52.47) 12.64 (129.80) 7.42 (77.74) 6.13 (66.51)
Trifluorobenzene 7.49 (76.61) 13.02 (131.72) 7.12 (69.10) 5.55 (42.93)
Trifluorotoluene  18.52 (58.58) 24.74 (130.17)  18.95 (65.50) 16.67 (38.47)
Mean 7.28 (61.36)  12.34 (120.61) 8.48 (78.78) 6.50 (55.18)

Table 3.3: The mean percentage error between the QM and MM normal mode frequencies for a set
of small molecules using OPLS, the original Seminario, the modified Seminario and the Seminario
method with angle force constants scaled by 0.68. The MUE is shown in brackets (cm™).
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Fig. 3.10: The modified Seminario parameters plotted against the original Seminario parameters.
Lines at y = x and y = 2x are also plotted with y = x corresponding to angles with no neighbors and
y = 2x corresponding to planar molecules.






Chapter 4
Torsional Parameters

With a set of bond and angle terms derived for the QUBE force field, the torsional parameters
remain the only component left to calculate. The torsional component helps to dictate the
conformational preferences of a molecule and is a function of a molecule’s dihedral angles.
The dihedral angle is the angle between two planes, with each plane containing three atoms
present in the molecule. The reparameterization of torsional parameters has been shown
to be a particularly crucial step in improving the accuracy of force fields, as demonstrated
for AMBER ff15ipqg, CHARMM36 and OPLS-AA/M.7-?4% In Ref. 22, system-specific
non-bonded terms were used in combination with standard OPLS-AA bonded parameters.
The use of the OPLS parameters limits the accuracy of the force field due to the dependence
of the optimal torsional parameters on the non-bonded components of the force field. This
section therefore focuses on re-fitting the key torsional parameters that describe an amino

acid’s backbone and sidechain dynamics.

With the torsional terms reparametrized, the system-specific protein force field is com-
plete. The new torsional parameters are combined with QUBE non-bonded terms derived
directly from the electron density of the proteins and peptides studied using linear scaling
DFT?? and bond and angle terms from our modified Seminario dipeptide parameter library.
The complete force field is then tested via MD simulations of a variety of systems to investi-
gate the validity of using our parametrization approach. This is the first time a system-specific

biomolecular force field has been fully developed and tested.

The methods and validation tests used for the QUBE force field broadly follow the
approaches employed in the development of OPLS-AA/M, the latest OPLS force field.””
Multiple QM energy scans of backbone and sidechain dihedral angles of dipeptides are used
to fit torsional parameters by minimizing the difference between QM and MM energy scans.

The system-specific nature of our force field adds complications to the torsional parameter
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fitting process as we do not use atom typing, the energy difference corrected for by the
torsional parameters will vary. Regularization is used in an attempt to address this issue.

As well as parametrizing the torsional components, software was required to translate
a set of QUBE parameters into a format which could be readily used with existing MD
software. The necessary scripts to convert the DFT output to a CHARMM file format are
therefore supplied at https.//github.com/aa840/QUBEMAKER, along with a tutorial. This is
to facilitate future investigation of system-specific force fields.

In order to test the performance of the QUBE force field, simulations of dipeptides, Glys,
Alas and five different proteins were performed. This is similar to the testing carried out
when developing protein force fields such as AMBER ff15ipq, AMOEBA, CHARMM36 or
OPLS-AA/M.7-24.99:104

4.1 Theory

The functional form of standard biomolecular force fields has five components. Covalent
interactions between atoms are modelled using harmonic bond stretching and angle bending
parameters, while rotations about a bond are described by anharmonic 4-body torsional
terms. Non-bonded interactions are described by a sum of Coulombic interactions between
(usually) atom-centered point charges and a physically-motivated Lennard-Jones interaction.
In what follows, we give an overview of how these various components are parameterized in
the QUBE protein force field, and we contrast these approaches to those used in standard
transferable force fields. This is to supplement the information given in Section 2.3.

4.1.1 Non-bonded Parameters

The non-bonded components of a molecular mechanics force field aim to describe the
quantum mechanical electrostatic, dispersion and exchange-repulsion interactions. '%® The
latter two interactions are approximated by a Lennard-Jones potential, which combines
a short-range repulsive 7~ ! potential with a longer-range attractive »—© interaction. The
charge parameters are generally fit to the quantum mechanical electrostatic potential of
small molecules. The Lennard-Jones parameters are then fit to reproduce experimental

152454 However, neither of these

data, such as liquid densities and heats of vaporization.
parameterization strategies scale to large molecules, such as proteins. Therefore, in standard
force fields, parameters are fit to the properties of small molecules and then transferred to

larger molecules using assigned atom types.
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The aim of QUBE is to move away from the requirement for transferable force field pa-
rameters, and instead to derive parameters for individual atoms based on quantum mechanical
calculations. To achieve this goal, a different approach to non-bonded parameter fitting is re-
quired. The basis of the QUBE approach is atoms-in-molecule (AIM) partitioning of the total
QM electron density as described in Section 2.3.2.22 First, a QM simulation of the molecule
under study is performed. From the output of the QM calculation, the total electron density of
the molecule is partitioned onto individual atoms using an AIM weighting scheme. There is
no unique method to perform this partitioning, but we favor the density derived electrostatic
and chemical (DDEC) scheme, 398! which is a combination of the iterative stockholder atoms
and iterative Hirshfeld approaches. !%73 With the electron density partitioned to individual
atoms, the atom-centered charges can be simply found by integrating the electron density
over all space (and adding the nuclear charge). The DDEC approach has been implemented
in the linear-scaling density functional theory (DFT) software, ONETEP, which allows us
to perform QM calculations of, and assign parameters to, systems comprising thousands of
atoms, including entire proteins. The derived charges have been shown to be suitable for use

in flexible force field design in multiple works.?%8!

The charges are specific to the system
under study and, by performing the QM calculation in the presence of an implicit solvent
model, polarization of the charges in the condensed phase can be included in the model. ??

The dispersion and exchange-repulsion interactions are described using a Lennard-Jones
potential with a form % — % The dispersion coefficient, B;;, is calculated from the
partitioned electron denlsjity b}llj using the Tkatchenko-Scheffler relationship to rescale the
free atom dispersion coefficient by the computed volume of the atom in the molecule.?>!1!
The standard combination rule, B;; = \/ITBJ-, can then be used to determine heteroatomic
dispersion coefficients. The A;; parameter, which describes the short-range repulsion between
overlapping electron clouds, cannot be calculated directly from the electron density. Instead
it is computed by requiring that the minimum in the interatomic Lennard-Jones potential
coincides with the estimated van der Waals radius of the atom in the molecule.?? This
non-bonded parameter derivation scheme requires just one fitting parameters per atom
(corresponding to the van der Waals radii of a free atom in vacuum). Further details of this

procedure are given in Section 2.3.

4.1.2 Bond and Angles

The absence of interdependencies between the computed bond and angle parameters and
the other terms in the force field means parameters derived using the modified Seminario

method, as discussed in Section 3, are suitable for use in the QUBE protein force field. The
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modified Seminario method could be used to derive bespoke bond and angle parameters for
entire proteins, but the computation of the full QM Hessian matrix for large molecules is
currently infeasible. Since large-scale polarization effects are expected to be significantly
less important for bond and angle parameters than charges, we use the library of bonded
parameters derived in the previous chapter! (and the same atom types as those used for
OPLS-AA/M®).

Whilst preparing the protein simulations, it was found that using just dipeptide parameters
led to missing terms for the disulfide bridge between pairs of cysteine residues. These bond
and angle parameters were therefore derived using the QM Hessian matrix of dimethyl
disulfide.

4.1.3 Torsional Parameters

With the force field non-bonded parameters from atoms-in-molecule electron density parti-
tioning,?? and bond and angle parameters from the QM Hessian matrix, ! all that remains to
complete the QUBE protein force field is to obtain the torsional parameters. Unfortunately, it
is infeasible to derive torsional parameters from QM simulations that are specific to each
protein. Therefore, a library of bonded parameters for the QUBE protein force field is instead
created. We make the assumption that the derived parameters for dipeptides are transferable
to proteins, and in Section 4.3 we test the limitations of this assumption by validating the
force field against experimental peptide and protein dynamical observables.

The torsional terms in a force field are a function of the dihedral angles (¢) in a molecule.
Here, we use the same functional form as the OPLS force field:

1 1 1 l
Viors(r) = Z%(l +cos(9))+ %(1 —cos(2¢))+ %(1 +cos(3¢)) + %(1 —cos(49))

l 4.1)
where Vl’; 4 are parameters to be fit. This work is based on the torsional fitting methods and
QM benchmark data used in the fitting of the OPLS-AA/M force field with data supplied by
M. J. Robertson (Yale University).”® We focus here on reparameterizing the backbone (¢, ¢’,
v and y') and sidechain (¥, x{, X2 and X)) torsional parameters, see Fig. 2.3. Re-fitting the
remaining torsional parameters is beyond the scope of the current work, and these parameters
are instead taken from the OPLS-AA/M force field.”® However, parallel efforts are being
made to develop a toolkit for automated parameterization of small molecules using the QUBE
force field, which will facilitate derivation of the remaining parameters in future.**

When fitting torsional parameters, the main objective is to minimize the difference

between MM and QM gas phase dihedral energy scans. However, weighting schemes and
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regularization can also be used to change the form of the error function that is minimized.

The general form of the error function used in this study is given by:

_ 20—W [k T
Error = \/Z"(EMM Eou)"e /% +AY (Vi—VP)? (4.2)

n

where kg is the Boltzmann constant, 7 is a weighting temperature, 7 is the number of points
at which the energy is evaluated, W is the contribution from the weighting scheme, A is the
regularization coefficient, V; is the torsional parameter being optimized and Vl.O is an initial
estimate of the torsional parameter. Where we have used regularization we have used ViO =0
as the initial guess as previously suggested.!'® The V, term was set to zero throughout the

fitting procedure to avoid overfitting. *°

Weighting schemes are used to prioritize accuracy in particular regions of the dihedral
scan, for example in the B-sheet region of the Ramachandran plot. A range of weighting
schemes has been previously used, including schemes that prioritize the lowest QM energies*”
or that prioritize regions that have been shown experimentally to be most populated by
proteins. 1% Regularization is a technique generally used to prevent overfitting to data. As
we will show, the use of regularization appears to be particularly important for the QUBE
force field, where non-bonded parameters used in simulations are not necessarily the same as
those used during fitting. The high A values we use for certain torsional scans ensures that
the dihedral parameters only correct for the most significant energy differences between MM
and QM, and hence are less specific to the particular non-bonded parameter set used during

fitting.

4.2 Methods

4.2.1 Torsional Parameter Fitting

Torsional parameter fitting followed the general strategy employed in the development of the
OPLS-AA/M force field,”® amongst others, in which parameters are fit to reproduce QM gas
phase potential energy surfaces. Fitting and validation was performed using dipeptides of
the form (Ace-X-NMe), where X is the amino acid, Ace is an acetyl group and NMe is the
N-methyl group.



54 Torsional Parameters

ONETEP Calculation Setup

Four nonorthogonal generalised Wannier functions (NGWFs) were used for all atoms with the
exception of hydrogen which used one. The NGWFs had radii of 10 Bohr. The periodic sine
(psinc) basis was used to describe the NGWFs, with a grid size employed that corresponds
to a plane wave cutoff energy of 1020 eV. The PBE exchange-correlation functional was
used with PBE OPIUM norm-conserving pseudopotentials.®” Partitioning of the polarized
ground-state electron density was performed using the DDEC scheme in ONETEP with the
mixing parameter () set to 0.02.

QUBE Parameter Derivation

The ground state electron densities of the dipeptides were computed using the ONETEP

106 and parameter settings given above.?? Since the reference QM

linear-scaling DFT code
potential energy scans are performed in the gas phase, we have decided to derive QUBE
force field charges and Lennard-Jones parameters from the vacuum electron density (rather
than in an implicit solvent). The assumption here is that the required correction to the MM
potential energy surface is approximately the same in the gas and condensed phases.

Charge and Lennard-Jones parameters were derived from the QM ground state elec-
tron density using the DDEC scheme®"3! as implemented in the ONETEP code%®%° (Sec-
tion 4.1.1). To account for conformational dependence,®® the non-bonded parameters were
derived for multiple conformations of each dipeptide and averaged. Non-bonded parameters
on identical atoms (for example, hydrogen atoms in a methyl group) were symmetrized. It
should be noted that only atom-centered charges were used in this chapter, though off-site
charges to model anisotropic electron density distributions have been developed for use with
small molecules and this will be described further in Chapter 5. Bonded parameters were
assigned to the dipeptides from the library developed with the modified Seminario method
using OPLS-AA/M atom typing rules.

Potential Energy Scans

The torsional potential energy scans of alanine, glycine and all sidechains are the same as
those used in the development of the OPLS-AA/M force field, as described previously.® In
brief, structures were relaxed in the gas phase using Gaussian 09 with a @B97X-D functional
and a 6-311++G(d,p) basis set. Dihedral angles were scanned in 15° increments from -180°
to 180°. A single point energy calculation was then performed on the optimized structure
using the double hybrid functional B2PLYP-D3BJ and the Dunning basis set aug-cc-pVTZ.
A 2D scan of ¢ (C-N-Cy-C) and y (N-C-C-N) was carried out for alanine and glycine.
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The sidechain energy scans follow the same methods as the backbone scans, except that
the single point B2PLYP calculation was not performed for all > scans, as @®B97X-D was
shown to give sufficiently accurate results.”® These 1D scans give the energy as a function
of the x; dihedral angle (N-C¢-Cg-Xy) or the x, dihedral angle (Cy-Cg-Xy-Ys). The y
and ¢ values were constrained to their values in an « helical (¢ = —60°, y = —45°) or a
B-sheet (¢ = —135°, y = 135°) conformation. All scans used in this work can be found in

the Supporting Information for Ref. 99.

In this work, an additional 2D scan of the ¢ and y dihedral angles of serine was found to
be necessary for accurate torsional parameters for serine and threonine, which both have a
polar oxygen atom at the Xy position. This followed similar protocols to those previously
described, however the sidechain ¥; angle now had to be taken into account. Scans were
performed at 30° increments of ¢/y , for ¥ initially set to -60°, 60° and 180°. This gave
three 2D energy scans for the main rotamers of serine. The minimum energy structure for
each ¢/y angle was then used to construct the overall minimum ¢/y potential energy surface,
see Figure 4.1.

Fitting Dipeptide Torsional Parameters

Torsional parameters were optimized by minimizing the error function shown in equation
4.2 using a steepest descent algorithm. MM potential energy surfaces were computed by
scanning dihedral angles in 15° increments using the BOSS software.>> The backbone
torsional parameters for all dipeptides tested, excluding serine and threonine, were fit to the
alanine and glycine scans previously described. The total error for the two scans was given
by:

Errortota = 0.928 X Erroraj, +0.072 x Errorgyy 4.3)

with the prefactors corresponding to the relative frequency of each amino acid in the human
proteome. Preliminary testing, which is detailed in Appendix B.1, showed that a weighting
function and regularization did not improve the configurations sampled during the dipeptide

MD simulations and so were not used (A =0, W = 0).

Both QM energies and experimental Ramachadran plots were tested as weighting func-
tions. The plots shown in Fig. 4.2 are produced using data given from Ref. 110 and give
the probability density as a function of the ¢ and y dihedral angles of the residue. This
probability density is neighbor dependent and the plots shown are when all neighboring
residue types are used. These densities are derived from X-ray crystallography data of

proteins.
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Fig. 4.1: The 2D energy scan of y and ¢ dihedral angles for a set of dipeptides. For serine the

minimum value of the three sidechain scans is shown. The white areas correspond to regions with
unavailable data due to convergence issues with the QM calculations.
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Fig. 4.2: The probability density, —log(py.¢), of ¥ and ¢ dihedral angles of a) alanine and b) glycine
residues in protein structures. The data used is from Ref. 110.

The remaining dipeptides, threonine and serine (both of which contain aliphatic hydroxyl
groups in their sidechain), were assigned identical backbone parameters that were param-
eterized to fit the QM scans of serine. For these scans regularization and weighting were
shown to be necessary to produce dipeptide dynamics in agreement with experiment. An
investigation of how the simulation error changes with regularization is given in Table B.4 in
the Appendix. The regularization was set to A = 0.05.

The sidechain scans for all dipeptides followed the same fitting process as the alanine/g-
lycine backbone with no weighting or regularization used. As atom-typing is not used for the
non-bonded parameter assignment in the QUBE force field, each set of sidechain torsional

parameters is also residue-specific. This differs from the approach used in OPLS-AA/M in
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which sidechain torsional parameters with the same set of atom types are generally assigned
the same parameters.

In a number of cases it was necessary to make manual changes to the fitting process. This
was restricted to setting a number of torsion parameters to zero (that is, A = o) and reducing
the number of scans used in the fitting process. In particular, the asparagine ¢/y distribution
was improved by setting the ), torsional parameters to zero. Additionally, using just the QM
energy scan with the lowest minimum energy in the fitting process was shown to result in
an improvement in the MD simulations of the dipeptides for the ); torsional parameters of
cysteine, methionine, serine and threonine. The need for manual input in the fitting process
was also required for developing OPLS-AA/M®° and is likely due to the restrictive functional
form of the torsional potential and the conformational dependence of the energy scans. The
full set of manual changes involved are listed with the torsional parameters in Section B.2 in
the Appendix.

Torsional parameters, and improper terms, that have not been reparametrized in this work
are the same as those used in OPLS-AA/M .

4.2.2 MD Simulations

Alanine Pentapeptide and Glycine Tripeptide

As the non-bonded parameters used are specific to the system under study, they are not
the same for an alanine dipeptide molecule as for the alanine pentapeptide (Alas). The
alanine residue in the dipeptide is blocked by acetyl and N-methyl groups whereas the central
three alanine residues in Alas have neighboring alanine residues on both sides. Therefore,
varying environments exist for alanine residues in the different molecules. Consequently, the
parameters found for the alanine dipeptide were found to be unsuitable for MD simulations
of Alas (Table B.6). Fortunately, the use of regularization in the fitting process resulted in
torsional parameters that were sufficiently accurate. Alanine and glycine backbone torsional
parameters were refit to the QM energy scans with A = 0.50, no weighting was used. The 4
value used for the regularization were found by minimizing the differences between simulated
and J Coupling for Alas (Table B.6). Separate parameters are used for alanine pentapeptide
and glycine tripeptide (Gly3), as residue-specific parameters should result in a more accurate
force field.

Protein Torsional Parameters

It is expected that optimal backbone torsion parameters for protein simulations are more

similar to those developed for Alas and Glys than for the set of dipeptides. We therefore use
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Fig. 4.3: A flowchart illustrating the steps required to assign the QUBE protein force field. Blue is
used for non-bonded terms, yellow is used for bonded terms.

a regularization A = 0.50 for all protein backbone torsional parameter derivation. Alanine,
glycine, serine, and proline torsional parameters are fit to available QM potential energy
surfaces and are therefore residue-specific. Threonine uses torsional parameters fit to the
serine torsional scan, and all other amino acid use torsional parameters fit to joint alanine/g-
lycine energy scans. These backbone parameters are combined with the dipeptide sidechain
torsional parameters to give the full QUBE protein force field parameter set.

Bond and Angle Parameters for Cysteine

The S-S bond parameters and S—S—CT angle parameters needed to describe the disulphide
bridge between two cysteine residues were derived from dimethyl disulfide. This method
follows the same approach as used in Chapter 3. A structural optimization and frequency cal-
culation was performed using Gaussian 09 with the @B97XD functional and 6-311++G(d,p)
basis set. The QM Hessian was extracted from the Gaussian output files and the modified
Seminario method used to find the bond and angle terms. A scaling factor of (0.957)?
was used to scale the bond and angle terms. The terms calculated were S-S, a force con-
stant of 146.29 kcal/mol/A2 and bond length of 2.0701&, and S—-S—CT, a force constant
99.50 kcal/mol/rad® and equilibrium angle of 102.05°.

Protein MD Simulations

Following a number of previous force field validation studies,>*%%:104 the QUBE force

field was validated by molecular dynamics (MD) simulations of a benchmark test set of
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five proteins. The structures chosen (with the PDB codes shown in bracket) were ubiquitin
(1UBQ), GB3 (1P7E), BPTI (5PTI), binase (1BUJ) and a villin headpiece subdomain (2F4K).

Figure 4.3 shows the steps required to set up a QUBE protein force field for a MD
simulation. As in Section 4.1.1, the ONETEDP linear-scaling DFT software is used to compute
the ground state electron density of the five proteins, and assign the charge and Lennard-Jones
parameters from the partitioned atomic electron densities. Consistent with the QUBE small
molecule approach, every atom in the protein is assigned bespoke non-bonded parameters
derived from the quantum mechanical electron density. To model polarization effects in
the condensed phase, the electron density is computed using an implicit solvent model>*-°
with a dielectric constant of 80. For the set of proteins, the non-bonded parameters are then
set halfway between their vacuum and condensed phase values, applying the iPol method
described in Chapter 2. This method was chosen as it has previously been used in the
AMBER ff14ipq and ff15ipq biomolecular force fields.?* Preliminary work investigated
using a dielectric of € = 80, € = 10 and € = 4, but there was little change to the protein
dynamics. Typical computational requirements for the protein ONETEP calculations are
approximately 2000 cpuhrs. The sensitivity of the non-bonded parameters to the choice of
input structure is investigated in Section 4.3.5 for the GB3 structure. In order to provide a
consistent and computationally efficient approach to assigning the non-bonded parameters,
we recommend minimizing the experimental structure using a standard transferable force
field in explicit water prior to the DFT calculation. In this study, we used the OPLS-AA/M
force field for the initial minimization.

Following non-bonded parameter assignment, bond, angle and torsion parameters were
assigned based on the OPLS-AA/M atom types. For torsion types not re-parameterized in this
study, OPLS-AA/M parameters are retained.®°° All parameters, including atom-specific
non-bonded parameters, are written to a CHARMM-style parameter file. Preparation of the
parameter files is fully automated, and scripts and step-by-step tutorials are available. MD
simulations were performed using the NAMD software, using input parameters detailed in
Section 4.2.2. The necessary scripts to convert the DFT output to a CHARMM file format
are supplied at https://github.com/aa840/QUBEMAKER, along with a tutorial.

Statistics were collected over a period of 200 ns for dipeptides and Alas and Glys, and
500 ns for the proteins, and three simulations of this length were performed for each peptide

and protein to enhance the sampling of configuration space.

MD Simulation Properties

Simulations of the dipeptides, the alanine and glycine peptides, and the protein structures

were all carried out with the following protocol. The molecules were placed in a water box,
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with the total length ranging from 25 A, for small dipeptides, to 62 A, for the largest protein.
The TIP3P force field was used to model water molecules.>”-”® The charge of the system
was then neutralized with chlorine and sodium ions at a salt concentration of around 150
mM. The temperature was set to 300 K and the pressure to 1 atm. These parameters were
maintained throughout the simulation by using a Nose-Hoover Langevin piston barostat.
The piston period was set to 100 fs and the damping timescale was 500 fs. The Langevin
thermostat had a damping coefficient of 1 ps~!. Long ranged electrostatics were treated with
particle mesh Ewald. The cutoff for non-bonded terms was set at 11 A with the smoothing
function starting at 9 A.

The system was first equilibrated for 5 ns using a timestep of 2 fs. The simulation was
then run for a further 200 ns, again using a timestep of 2 fs with use of the SHAKE and
SETTLE algorithms. These properties are the same as those used in Ref. 99. The protein
simulations employed a 400 ps equilibration period in which the system was gradually heated
to 300 K. This heating period and the 5ns of equilibration were not used in the subsequent
analysis of the simulation.

The proteins were prepared using the automated psf generator, which is incorporated into
VMD, and the OPLS-AA/M topology files. The psf generator added missing hydrogen atoms
to the structures, as well as creating pdb files and psf files with OPLS-AA/M parameters.
VMD plugins were also used to solvate the proteins and add the appropriate number of
sodium and chlorine atoms. The psf file created using VMD was then used as an input
to our program QUBEMAKER. This program produces a new psf with the QUBE charge
parameters along with an additional NAMD input file which contains all other necessary
force field parameters. The files produced at each stage were manually checked to ensure no
mistakes were presence.

Simulation Analysis

The backbone and sidechain dihedral angles sampled during the dipeptide simulations were
analyzed and compared with experimental data. The sidechains sampled were separated
into p(+60°), t(180°) and m(-60°) rotamers and the populations of each were then compared
to protein coil library data.®® The backbone J coupling term 3J (Hy,Hy) was calculated
from the dipeptide simulations using the Karplus parameters proposed in Ref. 45 and the
¢ dihedral angles sampled, with the experimental J coupling values taken from Ref. 4. J
coupling occurs due to an atom’s nuclear spin perturbing the spin of electrons nearby, which
in turn perturbs the nuclear spins of other atoms. J couplings can be found experimentally

using the NMR spectrum of a molecule and from simulations by the Karplus equations,
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which link the dihedral angles sampled by the molecule to the J coupling. The form of the

Karplus equations is:

J(0) =Acos(26) + Bcos(0) +C 4.4)

where A, B, C are the Karplus parameters and 6 is the dihedral angle.

The J coupling values from the alanine and glycine simulations could be compared to
multiple experimental values given in Ref. 34. Three separate Karplus parameters sets were
used and are those used in Ref. 6 and Ref. 99, with the measurement of error also being the

same:

N
X =N"Y (Ujsim—djexp)’ /07 (4.5)
j=1

where N is the total number of J coupling parameters, (J;)sim is the average J coupling in the
simulation, J; .y is the experimental J coupling, and o; is the systematic error in the Karplus
equations.

The Karplus parameters used for the protein simulations were taken from multiple sources
with both Ref. 45 and Ref. 119 used for backbone Karplus parameters. Methyl sidechain
Karplus parameters are also supplied in Ref. 119, and Ref. 93 was used for all other sidechain
Karplus parameters. Experimental J coupling terms for ubiquitin and GB3 were taken from a

number of sources. 18,45,75,93,119

J Coupling Analysis

J coupling values are commonly used to validate the accuracy of force fields.>*° However,
if they are used in isolation as a validation test (without ¢/y distribution analysis) results can
be misleading. For example, the J Coupling value for the left-handed o-helical conformation
calculated using the Karplus parameters is close to the experimental J Coupling for the
dipeptides. Therefore, a low J coupling error for the simulation can occur if there is a high
proportion of left-handed ¢-helical conformations. However, experimental results show
that left handed helical populations should remain low,*® and this demonstrates the need to
analyze the ¢/y distribution. Additionally, the experimental J coupling value is similar for all
the dipeptides in the set. Therefore, similar ¢/y distributions for the set of dipeptides could
result in low J coupling errors. However, experimental measurements indicate that this is not
the case and different dipeptides occupy varying ¢/y regions.>> This points to additional
issues with using the J coupling values as a means to analyze a force field’s accuracy.
Additionally, there may be problems with using the Karplus parameters with glycine,

as previously suggested in Ref. 99. To demonstrate the unsuitability of these Karplus
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parameters, 2J(N,Cy) as a function of the dihedral angle is shown in Fig. 4.4. The dashed
red line is the experimental J coupling, and it can be seen that no dihedral angle can recreate

the experimental measurement. This issue has also been previously discussed in Ref. 88.

J Coupling Value (Hz)

5 -150 -100 -50 0 50 100 150
v (degrees)

Fig. 4.4: The J coupling value for 2J(N,Cg) as a function of ¥ is shown in blue. The red dashed line
shows the experimental value.

In addition to the issues with the glycine J coupling values discussed above, the second
set of Karplus parameters used in Ref. 6 have also been problematic for a variety of force
fields.2*%° Simulations of Alas struggle to recreate the experimental 2J (N, Cy,) coupling with
the second set of Karplus parameters. Figure 4.5 shows the J coupling for all three sets of
Karplus parameters along with the experimental value. From this figure, the conformation
populations that would result in a low J coupling error can be estimated. For the first set
of Karplus parameters a high PPII (¢ = —75.0°, v = 145°) conformation would result in
a low error. For the second and third set a sizeable 8 population would be required along
with the PPII conformation, however this would negatively impact other J coupling terms.
For instance, with the second set of Karplus parameters 3J(C’,C’) has an error of 160 Hz at
¢ = —135° (the B conformation). This points to problems with the Karplus parameters used
for 2J(N,Cy) as also discussed in Ref. 34. It is useful to consider the issues discussed in this

section when analyzing the results of the simulations.



64 Torsional Parameters
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Fig. 4.5: The J coupling value for 2J(N,Cg) as a function of ¥ is shown in blue. The red dashed line
shows the experimental value.
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4.3 Results

4.3.1 Torsional Parameter Fitting

The backbone torsional parameters and associated errors in the recreation of the QM energy
scans are given in the Appendix B.2. For the alanine and glycine scans, the error for the
QUBE force field is 1.25 kcal/mol compared to 0.93 kcal/mol for OPLS-AA/M, which is
a reasonable level of agreement. For proline and serine, the errors remain comparable to
OPLS-AA/M.

Although a low error is clearly the desired result, it does not necessarily correspond to
accurate non-bonded parameters. The degree to which torsional parameters can improve the
fit between MM and QM scans depends not only on the accuracy of the non-bonded and
bond and angle parameters, but also on the shape of the energy difference between the QM
and MM scans. The functional form used in classical MM force fields is very restrictive.
However, the energy difference between the QM and MM energy scans must be recreated
by the functional form for low errors to be achieved. Therefore, although we use errors as a
guide to the performance they cannot be relied upon as a measure of accuracy of a force field.

For the sidechain torsion parameters, the mean value of the error in the recreation of
the QM energy scans for our force field is 1.29 kcal/mol compared to 1.12 kcal/mol for
OPLS-AA/M. Particularly high errors occur for both the ); and ), glutamate scans and
glutamine’s ¥ term. For glutamate, the error was also high for OPLS-AA/M but the rotamer
populations remained close to the experimental values and this may be due to a problem with
the functional form used in classical force fields.”® The OPLS-AA/M error for glutamine is
roughly half that of our force field. Therefore, if the dipeptide simulations had also shown
inaccuracies this would cause some concern about the non-bonded parameters. However, as
this was not the case, it is not investigated further in this work.

Four of the y; dihedral angle scans for asparagine are shown in Fig 4.6. From the figure
the change in the energy scan with conformation can clearly be seen. Additionally, the figure

shows the difference between the QM and MM energy scan varies for the conformations.

4.3.2 Dipeptide Simulations

J coupling values allow a quantative measure of the accuracy of the ¢ distribution occupied
during a dipeptide simulation. The results are summarized in Table B.7. The QUBE force
field’s mean RMSE of 0.42 Hz can be compared to 0.35 Hz for OPLS-AA/M. The error
for our force field is far lower than OPLS-AA and OPLS-AA/L with errors of 0.97 Hz and

0.79 Hz respectively. The arginine dipeptide is primarily responsible for the higher error for
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Fig. 4.6: Four of the y; dihedral angle scans for asparagine. The QM and MM energies are shown, as
well as the difference between the two scans. The MM energies scans use the optimized torsional
parameters.

QUBE, with the arginine dipeptide excluded the error drops to 0.33 Hz. Residue specific
arginine backbone torsional parameters could be calculated, however given that the ¢/y
distribution of arginine occupies the main conformations expected, this is not investigated in
this work.

Figure 4.7 shows the collective ¢/y distribution of the dipeptide simulations, this can be
compared to the main protein conformation shown in Fig. 2.4. As discussed in Section 4.2.2,
it is important to consider the dihedral distributions present as well as the J coupling values.
Encouragingly, the ¢/y distribution for the dipeptides show that the major conformations
present in protein structures are present in the dipeptide simulations. The { conformation
does have a slightly lower y angle than suggested, and there is an additional region with
very low occupancy to the right of the y conformation. However, these are very small
discrepancies.

The individual ¢/ distributions are shown in Section. B.3.2 of the Appendix. Generally,
similar areas of the ¢/y distribution are occupied by all the dipeptides. The serine and
threonine dipeptides do not occupy identical regions to the other dipeptides, which is not
unexpected given that they have a separate set of backbone torsional parameters. There are
several dipeptides which show populations of left handed « helical conformation. High
left handed helical populations have previously caused problems for other force fields.*®
However, since the PPII and 8 conformations always remain a highly occupied region, the
populations of the left handed o helical region were not seen as a concern. The right handed

a helical populations are small for all the dipeptides. This is in agreement with experimental
results.*

As well as the backbone conformations sampled, the sidechain rotamer populations were
also analyzed. In Fig.4.8, the simulated rotamer populations are compared to experiment
values taken from protein coil library data.*> Given that the experimental data is not for
dipeptides, perfect agreement is not expected. However, populations at extreme values would
cause concern and a correlation between the experimental and simulated values is favorable.
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Fig. 4.7: a) The ¢/y distribution plotted in the form —log(py.¢) (Where py 4 is the probability of
a region being occupied) for our dipeptide simulations. The dark red regions correspond to low
probability areas including conformations that are not sampled during the simulation. b) The major
conformations observed in protein structures as proposed in Ref. 43.

Figure 4.8 shows that no dipeptides have populations consisting of just one type of rotamer
and there are no extremely high values (as was seen for OPLS-AA and OPLS-AA/L). The
rotamer M populations are slightly low than expected. However, given the issues previously
mentioned with the experimental data used, further changes were not made to adjust the
outliers shown in the figure.

The rotamer data, which was used to construct Fig. 4.8, is shown as a table of errors in
Table B.8. With a MUE of 14%, QUBE performs better than both OPLS-AA and OPLS-
AA/L with error of 23% and 21% respectively. The error is not as low as OPLS-AA/M, which
has an error of 10%, however with further empirical changes to the torsional parameters this
error could probably be reduced. Looking at individual dipeptide errors, protonated histidine
and asparate have the highest errors. The protonated histidine experimental data includes
all ionization states of histidine and therefore may not be accurate, which would explain the
high error. Asparate’s high error is more problematic and in future versions of our force

fields further changes to its sidechain parameters may be considered.

4.3.3 Peptide Simulations

The J coupling errors for the alanine pentapeptide are shown in Table 4.1, with the ¢/y
distribution shown in Fig.4.9 and further results given in Section B.4 of the appendix. Three
sets of Karplus parameters are used to evaluate the error and the value in brackets excludes
the 2J(N,Cy) coupling term. Issues with the 2J(N,C) coupling Karplus parameters are
discussed in Ref. 99, Ref. 24 and in Section 4.2.2.
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Fig. 4.8: A comparison of the rotamer populations for the dipeptide MD simulations and experimental
values from the protein coil library. The dashed lines show the populations that fall within +20% of
the experimental values.

J Coupling Error
Set 1 Set 2 Set 3
0.90 £0.03 | 4.16 +0.01 1.51 +0.02
(0.86 +0.03) | (0.81 £0.03) | (0.87 4+ 0.03)

Table 4.1: The J Coupling error for the alanine pentapeptide simulation. The Karplus parameters
used are the same as those used in Ref. 99. The values shown in brackets correspond to the J Coupling
errors excluding 2J(N,Cy).



4.3 Results 69

The J coupling error for set 1 is very encouraging and is lower than both the OPLS-AA/M
value (1.16 + 0.02 Hz) and the AMOEBA values (0.99 Hz).%%-194 The values for set 2 and 3
with the excluded 2J(N,Cy) term are similar in value. In the simulations carried out in this
work, as well as the work of Amber ff15ipq and OPLS-AA/M, the low 8 populations present
result in a high 2J (N,Cg) error for the second and third set of Karplus parameters. >+%9

V (degrees)

5 =
-150 -100 =50 0 50 100 150
¢ (degrees)

Fig. 4.9: The v and ¢ distribution of the central residues of the alanine pentapeptide, plotted
in the form —log(py.¢) (Where py 4 is the probability of a region being occupied). The lighter
regions correspond to low probability areas including conformations that are not sampled during the
simulation.

The conformation with the largest population present is PPII with 62.10 4= 2.23 % of the
simulation spent in this conformation, see Table B.12 in the Appendix. This is similar to the
results seen for OPLS-AA/M (53.5 £+ 0.2 %). Both force fields also have a low ¢ helical
population as expected from experimental data.’

For the alanine pentapeptide, the role of the torsional parameters is to correct for problems
in the reproduction of the energy surface due to the parameters and functional form used. In
preliminary work, it was shown that even with the backbone torsional terms set to zero the J
coupling error for the peptide remained below that of OPLS-AA/M with a value of 0.97 Hz.
This demonstrates the accuracy of the non-bonded parameters used in the force field.

The problems associated with using the Karplus parameters for Glys are discussed
in Section 4.2.2, Ref. 99, Ref. 88 and Ref. 34. Therefore, we evaluate the backbone
conformations of Glys through its @¢/y distribution alone. In Fig, 4.10 the OPLS-AA/M
distribution is compared to the distribution using the QUBE force field. A lower o population
is occupied by the QUBE force field, but otherwise both distributions are very similar.

The dipeptide and peptide simulations have demonstrated that the QUBE force field,
and the parametrization methods used to create it, are sufficiently accurate to recreate
conformational properties of short peptides. The error for these systems is comparable
to OPLS-AA/M and the ¢/y distribution demonstrates that the main conformations seen
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Fig. 4.10: The y and ¢ distribution for the glycine tetrapeptide (all residues are included).

in protein structures are populated. Issues with the transferability of torsional parameters
have already been identified from the longer peptide simulations and solved by applying
regularization. The performance of our force field for entire proteins was investigated to

further understand the intricacies of fitting torsional parameters to a system-specific force
field.

4.3.4 Protein Non-Bonded Parameters

Before the results of the molecular dynamic simulations are presented, the QUBE and OPLS
non-bonded parameters for each atom of the five proteins tested are compared. The QUBE
non-bonded parameters are calculated in an implicit solvent with a dielectric of &€ = 80.

Comparable trends are seen for iPol or € = 4 non-bonded parameters, see Section 2.3.2.
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Fig. 4.11: A comparison between the QUBE and OPLS non-bonded parameters. The dashed line

corresponds to y = x.

From Fig. 4.11 it can be seen that all the proteins studied show a similar relationship
between the OPLS and QUBE terms. The QUBE and OPLS charges correlate well with no
clear outliers. However, both the A and B coefficients have a group of QUBE terms that
deviate from the OPLS parameters, as highlighted in Fig. 4.11a). This was also observed
in Ref. 22, and the cluster of terms associated with this deviation corresponds to carbonyl
carbon atoms which are electron deficient. Additionally, the OPLS non-bonded terms have a
small number of possible values, as atom types are used, whilst the QUBE terms have a far

greater level of variation. This is expected as the non-bonded terms will change depending

on the local polarization environment.
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4.3.5 Change in Non-bonded Parameters with Protein Conformation

The non-bonded parameters used in the QUBE force field will be calculated for one specific
input structure. However, during the course of the MD simulation many difference conforma-
tions will occur. In order to see the change in non-bonded terms with the structure, a short
MD simulation of GB3 in a water box was carried out using OPLS-AA/M. Ten structures
were then taken from this simulation and the non-bonded parameters for these ten structure
were calculated.

Figure 4.12a) shows the distribution of the difference in atom charges from their mean
values. It can be seen that some charges show discrepancy from the mean values, with a
maximum difference of 0.161 e. However, as the distribution has a standard deviation of
0.0243 e the majority of atom charges do not change considerably. This shows that whilst the
non-bonded parameters do respond to their environment the changes are not excessive, which
would be problematic. Figure 4.12c) demonstrates that this difference is independent of the
charge. Both figures clearly show the importance of considering the input structure used.
The charge of the residue is considered in Fig. 4.12b) and changes to the input structure
are seen to result in the charge varying. Therefore, the differences are not entirely due to a
redistribution of the electron density within the residue.

The difference in the Lennard-Jones parameters from the mean value is also considered
in Fig. 4.12. The non-bonded parameters clearly change with the input structure. Again, this

shows the importance of the input structure used for the ONETEP calculation.

Run1 Run 2 Run 3 Run 4 Run 5 Run 6
Charge | 0.026 0.026 0.023 0.026 0.025 0.025
A 293x10° | 2.37x10° | 2.87x10° | 2.58 x 10° | 2.35x 10° | 2.33 x 10°
B; 1.87 1.74 1.81 1.83 1.68 1.65
Run 7 Run 8 Run 9 Run 10 Minimum

Charge | 0.025 0.025 0.025 0.025 0.017

A 244 % 10° | 2.14x10° | 2.34x10° | 244 x 10° | 1.71 x 10°

B; 1.69 1.54 1.59 1.70 1.29

Table 4.2: The standard deviation of the difference between the non-bonded parameters from one
structure and the mean values of the non-bonded parameters is shown in this table.

The standard deviation of the difference in the nonbonded parameters from the mean,
shown in Table 4.2, was also used to evaluate the minimized structure’s non-bonded parame-
ters. A low standard deviation is considered preferable as we require nonbonded terms to be
representative of as large a range of structures as possible, and therefore close to the mean

values. For all three coefficients, the minimum structure non-bonded parameters have the



74 Torsional Parameters

lowest standard deviation. This is encouraging as it shows that the minimum structure does
not have many extreme values and the standard deviations are low.

To choose the most appropriate input structure, it is important to consider not only the
accuracy of the non-bonded terms but also the time required to find these non-bonded terms.
We ideally want to create a force field that can be readily used by other research groups. If
for every protein force field we wanted to create, it was necessary to take multiple snapshots
of a MD simulation, calculate the non-bonded values and then average these terms, the cost
of the QM calculations would start to become prohibitive. Although, as the computational
cost of these calculations decreases further this may be the preferred option. Additionally,
taking structures from an MD simulation will weight the structures sampled according
to the force field used to carry out the simulation. It would also mean that two separate
groups could create a protein force field for the same protein and end up with different
non-bonded parameters as the structures sampled happened to vary. Therefore, we chose
the input structure to the ONETEP calculation to be the experimental structure minimised
with OPLS-AA/M in a water box. This provides a quick and consistent way to obtain an
input structure. In preliminary work, the mean non-bonded parameters of the ten structures
of GB3 were used to perform a 200 ns MD simulation. The conformational preference of the

molecule did not greatly vary from the minimized structure results.
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Fig. 4.12: The change in non-bonded QUBE parameters with structure. Figure a) shows the distribu-
tion of all the atoms charges from the mean values whilst ¢), d) and e) are the charge, A and B terms
as a function of the mean values. Figure b) shows the difference between the mean residue charge and
the residue charge of each structure. The black crosses correspond to the ten structures from the MD
simulation whilst the blue circles are the non-bonded terms for the structure minimized in water.
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4.3.6 Protein Simulations

The use of system-specific non-bonded parameters for biomolecular force fields allows local
polarization effects to be included and this may result in improvements in the accuracy of the
force field. Although the conformational preferences for the peptides tested are promising, it
is not known whether the torsional parameters will continue to be appropriate for use with
proteins. As the non-bonded parameters change with the system studied, the transferability of
torsional parameters cannot be as readily assumed. To assess this we first look at simulations
of the proteins ubiquitin and GB3.

1P7E 1UBQ

Fig. 4.13: The experimental structures of the proteins tested. Regions that showed the most significant
deviation from the experimental structure in the simulations are labelled. The red-white-blue color
gradient represents the residue number.

The J coupling errors for ubiquitin and GB3 are summarised in Table 4.3. With an
overall RSME of 1.54 Hz, the error using the QUBE force field for ubiquitin is worse than
OPLS-AA/M, which has a value of 1.12 Hz, but better than OPLS-AA and OPLS-AA/L with
values of 1.70 Hz and 1.84 Hz respectively.®® GB3 follows the same trend with an RMSE of
1.10 Hz for the QUBE force field, compared to the error for OPLS-AA/M of 0.90 Hz, whilst
OPLS-AA and OPLS-AA/L both have an error of 1.46 Hz.%”

The J coupling results suggest that whilst the transfer of torsional parameters from
dipeptides to proteins may cause some issues, the QUBE force field remains more accurate
than OPLS-AA and OPLS-AA/L. This is promising when we consider that OPLS has been
in development for many years with multiple iterations and changes carried out. In contrast,
this is the first version of the QUBE force field. The *J(Hy, H, 5) coupling term is the main
reason for the difference between the force field’s RMSE. For GB3,the 3J (Hq, Hg) error for
the QUBE force field is 1.80 Hz, this is well below the errors for OPLS-AA and OPLS-AA/L
of 3.71 Hz and 3.38 Hz respectively.

However, as discussed in Section 4.2.2, the J coupling error should not be used as the

only measure of a force field’s accuracy. To further test the performance of our force field,
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Backbone Couplings (Hz) Sidechain Coupling (Hz) Overall
1997 Values | 2007 Values | *J(Hq Hg) | 3J(C',Cy) | Methyl C, | RMSE
Ubiquitin | 0.94+0.07 | 1.15+0.05 | 240+0.11 | 1.16 £0.20 | 1.20 +0.05 | 1.54 + 0.07
GB3 | 093+0.05 | 1.03+0.05 | 1.80+0.05 - 0.84 +0.02 | 1.1040.04

Table 4.3: J coupling errors for the proteins ubiquitin and GB3.

we analyzed the ¢/y distribution and RMSD of the C,, atoms of each residue from the crystal
structure for five proteins. The dihedral angles of the experimental structure are shown on
each ¢/y plot and these experimental points, along with the previous data for AMBER
ff15ipq (the ¢/y plots are given in the SI of Ref. 24) are used to evaluate the performance of
our force field.?*

Figure 4.13 shows the residue number and structure of the five proteins in the testing set.
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Fig. 4.14: The RMSD, relative to the experimental structure 1P7E, for the three simulations of the
protein GB3.

Figure 4.14 shows the RMSD of GB3 over the course of the simulation. The RMSD
for the first simulation run generally remains below 2 A with reasonable retention of the
experimental structure. The second and third simulation runs also generally remain within
2 A of the experimental structure for the first 100 ns of the simulation. However, by 250 ns
one of the 3 sheets present in the protein begins to separate and this causes a rise in the
RMSD. The ¢/y distributions of GB3, Figure B.5 in the Appendix, and the RMSD per
residue, Figure B.4, help us to further analyze the results. Residues which deviate from
the experimental structure, and the ff15ipq results, tend to have high J coupling errors. For
example, residues 8 - 21 have a large discrepancy from the experimental structure and this
is reflected by high J coupling errors in this region. The backbone J coupling error, using
the 2007 Karplus parameters, for residues 8 - 21 is 2.00 Hz which is almost double the total
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backbone error. This region corresponds to the 3 sheet which separates. Aside from this
region, the only other residues which show noticeable deviation from the crystal structure are
Val 39, Asp 40, Gly 41 and Thr 55. However, the small deviations that are present in these
four residues are also observed for AMBER ff15ipq.2*
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Fig. 4.15: The RMSD, relative to the experimental structure 1UBQ, for the three simulations of the
protein ubiquitin.

The RMSD of ubiquitin is shown in Figure 4.15. As was seen for GB3, the first 100
ns of the simulation show reasonable retention of the experimental structure for all three
simulation runs. However, as the simulation progresses the RMSD of the protein rises to
give a mean values of approximately 3 A. Ubiquitin shows a deviation from the experimental
values in a number of regions. These regions tend to be those without a clear secondary
structure or with a turn. This is the case for residues 7-11, a turn connecting two 3 sheets,
and for residues 72-74 which are at the end of the protein. The flexibility in these regions is
not of concern since the results of ff15ipq and experimental NMR measurements suggest
deviations from the crystal structure in these portions of the protein. A deviation is also
observed for Asp 52 and Gly 53 which are « helical in the crystal structure. The PPII and y
regions that are occupied instead are also seen in the ff15ipq. However, between residues
54-66, which show no secondary structure or a turn, the deviation from the experimental
structure continues. The J coupling error between residues 62 and 65 also reflects issues in
this region. Residues 19-20 and residues 46-47 are also turns or without a clear structure
and again show deviations from the experimental structure which all contributes to the rising
RMSD of the protein.

The villin headpiece has the lowest RMSD of all the proteins tested, Figure 4.16. Excel-
lent agreement with the ¢/y distribution of ff15ipq is also seen with the ¢/y distribution
for QUBE presented in Figure B.7. We observe residues 10-12, a loop linking two helices,
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Fig. 4.16: The RMSD, relative to the experimental structure 2F4K, for the three simulations of the
villin headpiece.

taking an alternative conformation from the crystal structure, however this is also present in
ff15ipq simulations. The only small difference between the ¢/y distributions for QUBE and
ff15ipq is for residue 2 and residues 32-34, which are located at the beginning and end of the

headpiece and have no clear secondary structure. The three o helices present in the protein
are retained throughout the simulations.
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Fig. 4.17: The RMSD, relative to the experimental structure SPTI, for the three simulations of the
protein BPTIL.

With a mean RMSD of 1.82 A, BPTI retains its experimental structure better than all of
the other proteins tested in the set, with the exception of villin which has a mean RMSD of
1.41 A, Figure 4.17 shows the RMSD over the course of the simulation and we can see that
RMSD remains relatively stable, and consistently below 3 A. The slight deviations that are
present follow the same trends previously seen. From the RMSD per residue, Fig. B.10, and
the ¢/y distributions, Fig. B.11 it can be seen that residues 11-17 and residues 36-40 show

noticeable differences from the crystal structure. Again, these correspond to regions with
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no fixed secondary structure or a bend. In regions with a helical or 8 sheet structures the

agreement is sufficiently accurate.

Binase has an overall RSMD that is much higher than the other proteins. This was also
seen for ff15ipq which had a mean RMSD of 3.4 A. This is in part due to the multiple loops
that are present in the structure. As the 20 structures of the NMR ensemble are shown in
the ¢/ distributions, Fig. B.9, multiple conformations sampled by a residue can be seen.
Whilst some residues are clearly more representative of the experimental structure using
ff15ipq, such as Hie 101 where the QUBE force field occupies alternative structures, for other
residues it is more ambiguous which ¢/y distribution is more appropriate. For example, the
NMR ensemble for Lys 38 shows f and o conformations being present, and this is shown
for both ff15ipq and our force field, but the proportion of each conformation is different. The
ensemble of Ser 66 is not well represented with ff15ipq but with our force field all structures
in the ensemble are captured to some degree, although an additional & helical conformation
is also seen. The two o helices present in 1BUJ, around residue 10 and residue 30, are
generally well represented with our force field but small conformational changes do occur.
Towards the end of the third simulation run the protein does not retain the experimental
structure sufficiently well. In the regions with no structure, a bend or a turn we again see
a difference from ff15ipq and the experimental structure. This causes the RMSD to reach

extremely high values as the protein does not retain its structure.
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Fig. 4.18: The RMSD, relative to the experimental structure 1BUJ, for the three simulations of the
protein binase.
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4.4 Discussion and Conclusion

The assumption that biomolecular force fields must be parametrized using small molecules
has persisted since MM simulations began and remains in all force fields currently used. %9123
Within this work, we look to challenge this assumption by deriving system-specific non-
bonded parameters, from linear scaling DFT, for use in the QUBE force field. These
non-bonded terms were used with the derived bond and angle parameters from Chapter 3
and reparametrized torsional terms.

We have shown that using a system-specific QM force field can result in accurate con-
formational preferences for short peptides. Rotamer populations and J coupling errors for
the dipeptide molecules were in good agreement with experimental values and compared
favorably with the latest OPLS force field. For longer peptide molecules, the problems
associated with fitting torsional parameters to a system-specific force field became more
apparent. Fortunately, using regularization in the fitting process was shown to overcome
these issues and resulted in Alas having a J coupling error of 0.90 £ 0.03. Further work
investigating disordered peptides will ascertain how general this fix is. The accuracy of the
peptide simulation not only further validated the non-bonded parametrization strategy, but
also the modified Seminario method developed in Chapter 3. For the protein simulations, the
RMSD of the protein remained low, below 2 A, for two of the five proteins tested. The
helices present in all of the proteins generally stayed close to their experimental structure, but
the B sheets did not always remain together and regions with no clear structure or exhibiting
a turn regularly deviated from the starting structure. Despite this, the majority of the regions
in the proteins retained their experimental structure and the J coupling values for GB3 and
ubiquitin were below that of OPLS-AA and OPLS-AA/M.

Whilst fitting torsional parameters, we found that using dihedral energy scans alone is not
sufficient. This was also seen in the development of OPLS-AA/M with empirical changes
required to the sidechain torsional parameters, and we can infer from this that automatically
fitting backbone and sidechain torsional parameters using dihedral energy scans may not be
possible. Whilst developing QUBE, manual adjustments to the torsional parameter fitting
process were required, and the most obvious failure of dihedral energy scan fitting was that
for a number of sidechains it was more accurate to set the torsional parameters to zero than
use the originally proposed terms. This is in part due to the functional form used, with
improvements to this discussed below, but also due to the poor sampling of relevant energy
structures by dihedral energy scans. This problem is reduced by the iterative fitting methods
used in AMBER ff14ipq and ff15ipq. !>** These methods sample the energy structures used
for torsional parameter fitting by performing MD simulations with the current iteration of

the force field. This was not a viable approach for this work as it is necessary to derive an
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initial set of torsional parameters. However, in future versions of the force field it will be

considered and may lead to improvements in the backbone torsional parameters.

There are also additional considerations involved in using torsional parameters for a
system-specific force field. The torsional parameters are fit with one set of non-bonded
parameters but then have to be used for a wide range of non-bonded terms. It may be possible
to address this issue by changing the functional form of the torsional component. The
functional form currently used is inaccurate due to both the shape of the function used (with
its constraining requirement of symmetry being just one problem) and torsional parameter
dependency on only one dihedral angle. This problem has already be addressed for the
backbone torsional parameters in CHARMM?22 by using CMAP, a grid based correction.’
Extending the CMAP correction so it is dependent on the ) dihedral angle has also recently
been carried out.®> CMAP corrections could be added to our force field, however due to
the system-specific nature of QUBE they may not be as effective as in previous studies. An
alternative improvement that could be made to our force field would be to assign torsional
parameters based on a greater number of properties. For instance, during the side chain
torsional parameter fitting process, it was seen that the optimized torsional parameters for
o helical and B sheet conformations could greatly vary. This problem could be easily
addressed with our force field by assigning torsional parameters based on secondary structure
information from the crystal structure. The additional flexibility that can be offered when
atom types are not used in the force field parameter files has been an unexpected benefit
of a system-specific force field. More complex torsional parameter assignment could also
help to deal with the intrinsic difficulties of using torsional parameters for a system-specific
force field. For example, the torsional parameters could be dependent on the non-bonded

parameters used, with adjustments made for highly polarized regions.

However, the torsional parameters may not be the only factor responsible for the inaccu-
racies in the protein simulations. The non-bonded parameters themselves may be accurate
but the interaction between the QUBE force field and the water model (TIP3P) could be
incorrect. This would require a new compatible water model being found or developed. A
protein’s accurate interaction with water is crucial and problems in these interactions may
be responsible for some of the instabilities in structures that we have seen. Alternatively,
the non-bonded parameters could be unsuitable. The parametrization strategy employed
may be a source of error. Changes could be made to the QM calculation performed, i.e. the
exchange-correlation functional or implicit solvent method used, or to the strategy used to
obtain force field parameters from the QM data, i.e. the partitioning method used or the

method to model induction could be altered. The functional form could also be improved
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with the addition of a 7~8 term to model dispersion or the addition of off center charges to

model anisotropy effects, as discussed in the following chapter.






Chapter 5

Anisotropy

5.1 Introduction

Modeling the electrostatic interactions in force fields is often carried out by using a point
charge at the center of each atom. !!” However, point charge models can be too simplistic to
accurately recreate the electrostatic potential (ESP) of nitrogen, sulfur or halogens.%® This is
generally due to the presence of lone pairs or ¢ holes. °!17 Therefore, methods need to be
introduced to model anisotropy in the electrostatic distribution. An example of anisotropy is
shown by the ESP in Fig.5.1.

In Ref. 22, the addition of extra sites for electrostatic charge was shown to improve
calculations of the free energy of an indole and benzofuran molecule binding to the L99A
mutant of T4 lysozyme, as well as improve liquid properties for a set of small molecules. The
addition of off center charges has also been shown to improve the MM structures predicted,
and trends in the interaction energy.2® The method used in Ref. 22 relied on the partitioned
dipole and quadrupole moments, calculated from the atomic electron density, to fit optimal
positions for the charges. However, the method employed did not consistently converge and
resulted in a large number of off center point charges. Improvements were required to correct

these issues and improve usability of the method.

A number of different approaches have been previously developed to add off center point
charges. Existing methods tend to be applicable to only a certain type of bonding, such as
Ref. 53 and Ref. 49 which are limited to halogen bonding, or a specific element, such as Ref.
126 which investigates anisotropy in sulphur. Additionally, Ref. 126 uses experimental data
to parameterize the off center charges which also makes it unsuitable for our purposes. We
require a method that relies only on the electron density, can be used for a variety of different

atoms, can be used for large biological molecule and is automated. The biological molecule
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Fig. 5.1: An example of the anisotropy in the electrostatic potential energy (of a 1 eV test charge) of
the Cl atom of CH3Cl. The potential energy is measured at 1.40 times the van der Waals radius and is
in kcal/mol. The anisotropy is due to a ¢ hole, which is a positively charged region that can occur in
covalently bonded Group IV-VII atoms. **

requirement is because we plan to use the approach not only for small molecules, but also in
future versions of our protein force field.

In this section, a new method is implemented for calculating off center point charges.
It is based on optimizing the recreation of the QM ESP with additional point charges. The
method is validated on small molecules by the accuracy of the recreation of the atom’s QM
ESP, as well as the molecules’ liquid properties.

In our force field parametrization approach, the electron density for each atom is found
by partitioning the molecule’s electron density according to the DDEC scheme described in
Section 2.3.2. Adding off center point charges can be readily added into our parametrization
workflow by using the electron density from the QM calculation as the parametrization data
and we have implemented this method into ONETEP.

5.2 Off Center Point Charge Optimization

5.2.1 One Additional Off Center Charge

In addition to the requirements previously mentioned, the method also needed to result
in off center point charges that maintain the symmetry around the atom and its bonding
environment. This prevented us from using an existing approach, such as that of Ref. 3 or
Ref. 39, as constraints on the positions of the additional charges are necessary. Therefore,
we used the symmetry requirements to dictate the directions along which extra charges could
be placed. The vectors for one additional off center point charge are shown in Fig. 5.2.
These are the only directions that preserve symmetry. The vector direction is governed by

the number of bonds the atom exhibiting anisotropy has:
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* One bond - The atom A (which exhibits anisotropy) has one neighbor, atom B. The
vector for the extra charge is r{ = A rap, where rag is a vector between atom A and
atom B and A, is to be determined, which is along the bond axis.

* Two bonds - The atom A has two neighbors, atom B and atom C. The vector for
the extra charge is r; = A;(rap +rac), which is along the bisector of the two bond

vectors.

* Three bonds - The atom A has three neighbors, atom B, atom C and atom D. The vector
for the extra charge is r{ = A;(rag —rac) X (rap — rac), which makes an equal angle
with all three bond vectors.

A

TS
R

Fig. 5.2: The directions along which off center point charges are placed for an atom with one, two or
three bonds.

After the vector is assigned, the optimal position along the vector and the charge of the
off center point are determined. This is carried out using a grid search of parameters to find
the values which best recreate the QM ESP. Assigning a direction the charges are allowed to
be placed along reduces the number of variables that need to be optimized from four (the
x,y,z coordinates and the charge) to two (the distance along the vector and the charge). This
simplification is particularly important when multiple off center point charges are added,
this is described in the following section. An example of the change in the ESP error as a
function of the two variables is shown in Fig. 5.3. The QM ESP energy is calculated from the
partitioned atomic electron density with a reference charge of 1 e. This results in a method
which can be divided into tasks for individual atoms and is parallelisable. The ESP is taken at
a series of points on sets of spheres with radii between 1.4-2.0 times the van der Waals radius
of the atom. The error is calculated using equation 5.1, where @;ef is the ESP energy from
the QM calculation, ®; is the ESP for the point charges and M is the number of sampling
points. The search is constrained by a maximum distance of 1.00 A (1.50 A for chlorine), as
charges outside the van der Waals radius are problematic in molecular dynamic simulations,

and a maximum charge of +2.0 e, to prevent extreme values occurring. The atom centered
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point charge is given a value so that the overall charge for the atom is unchanged. The method

is summarized with the flowchart in Fig. 5.5.

Off Center Charge

0 0.5 1 15
Distance from Center

Fig. 5.3: The error in the ESP energy (kcal/mol) for CH3Cl as a function of the off center charge and
distance from the center. The minimum error value corresponds to the position of the off center sites
and is at 0.02 eV and 1.5A.
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An additional threshold parameter was required to distinguish between atoms that showed
anisotropy and those that did not. This parameter was assigned a value of 0.9025 kcal/mol.
Above this value the anisotropy method is used, below the value no off center charges
are added. An exception to this is hydrogen, which never has off center charges added.
Furthermore, charges are only included in the final output when there is an improvement
in error of 0.0625 kcal/mol. (These parameters were suggested from preliminary liquid

simulation tests by Joshua Horton at Newcastle University. **)

5.2.2 Multiple Off Center Charges

In Ref. 22, it was often necessary to add more than one off center point charge to recreate
the anisotropy seen in the QM ESP. Therefore, our approach was extended to add multiple
charges. Again, the method depends on the number of bonds the atom exhibiting anisotropy
has:

* One bond - A second off center charge is placed along the ry vector, ry = Ayrag.
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* Two bonds - If two extra point charges are used, the original vector is a line of symmetry.
The two charges are then placed in the same plane as the vectors that point from the
atom to the neighboring atoms, ry 3 = 4 (rag +rac) = AL (rag +rac) X (rap X rac)
or perpendicular to this plane, ry 3 = A (rap +rac) =241 (rap X rac). An example
is shown in Fig. 5.4. A third extra charge can also be added and is placed along the
bisector vector r3 = A3(rag +rac)-

* Three bonds - A second off center charge is placed along the ry vector, ry = A3(rag —
rac) X (rap —rac). An exception is made for primary amine groups with the second
off center charge placed along the bisector of the NH2 angle r, = A»(rnm, + I'NH,)-
This is necessary as the regions between the nitrogen and hydrogen atoms exhibit
anisotropy in ESP. This is not due to a physical characteristic but a consequence of
using the individual atom’s electron density to fit additional charges which includes

areas between bonds.

(a) Two extra off center charges placed

perpendicular to the plane of the angle. (b) Two extra off center charges in the

plane of the angle.

Fig. 5.4: An example of the directions off center charges are placed for the two bond case.

When additional charges are added, the first site’s position and charge continue to be
updated. Consequently, the position and charge of the first point is dependent on the position
and charge of the subsequent points. This results in the problem growing exponentially more
expensive with the number of extra charges. To accommodate this, the increments in the
parameter search are made larger when multiple charges are needed.

An additional consideration when multiple charges are used is at what point to increase
the number of charges added. If the ESP error falls below the error threshold of 0.9025
kcal/mol no further charges are added. Furthermore, there must also be an improvement in
the ESP error of at least 0.0625 kcal/mol before an additional charge is added.
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5.3 Methods

A set of 39 small molecules were selected to test the anisotropy method. The linear scal-
ing DFT code ONETEP was used to calculate the ground-state electron density. !¢ Four
nonorthogonal generalised Wannier functions (NGWFs) were used for all atoms with the
exception of hydrogen which used one. The NGWFs had a radii of 10 Bohr. The periodic
sine (psinc) basis was used to describe the NGWFs, with a grid size (0.45ap) employed
that corresponds to a plane wave cutoff energy of 1020 eV. The PBE exchange-correlation
functional was used with PBE OPIUM norm-conserving pseudopotentials. > The calculation
was carried out in an implicit solvent of € = 4 to include the induction effects described in
Chapter 2. Off center point charges were added using the method described in Section 5.2.1.
An atom was determined to be a neighboring atom if it was positioned within the free van
der Waals radius, taken from Ref. 124. The grid spacing used for the electron density was

0.225ay, half the psinc spacing.



5.3 Methods 91

Calculate the
number of bonds
for the atom.

Assign direction
vector.

Set values for
charge, q, and
distance, r1, along
the vector.

Atom centered
charge:

qc = 9qr - q1

Calculate the
error in the ESP.

Is the loop
complete?

Values for q; and
rq are chosen that

minimize the ESP
error.

Fig. 5.5: Workflow of method used to find optimal positions for off center point charges. Where g7 is
the total charge on the atom and g is the atom centered charge.
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5.4 Results

Table 5.1 shows a summary of the results. When extra charges are added, a mean decrease
in the ESP energy error of 65.8% occurs. The error in the ESP energy recreation of these
anisotropic atoms becomes comparable to ‘isotropic’ atoms with the addition of off center
point charges. It is worth noting that the remaining error may be of little consequence.
Differences between the ESP will not matter in certain areas as the regions will not be
accessible to solvents. Additionally, the error is the difference in potential felt by a unit

charge, in real solvents the charge carried will be less.

(a) Electrostatic Potential En- (b) Electrostatic Potential En-
ergy from Point Charges - ergy from DFT calculation -
Ce¢HsSH Ce¢HsSH

(¢) Structure of C¢gHsSH with
extra charges shown in purple.

18 16

18 16
25 2 20 25 2 W0

(f) Structure of (CH3),NH
(d) Electrostatic Potential En- (e) Electrostatic Potential En- with extra charges shown in pur-
ergy from Point Charges - ergy from DFT -calculation ple.
(CH3),NH (CH3),NH

Fig. 5.6: Two examples of the ability of the method to recreate the anisotropy in the ESP. The potential
is shown at 1.4 times the van der Waals radius and is in kcal/mol.

To illustrate how the method qualitatively reproduces the ESP, two examples of the
electrostatic potential with off center point charges are shown in Fig. 5.6. The ESP from
the DFT calculation is given for comparison. For both the cases shown, the anisotropy is

caused by the presence of lone pairs. The method generally results in chemically intuitive
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Number of Off ESP Error (kcal/mol)
Molecule Center Charges Atom Before After Comments
C,Hg 0
CsHg 0
CsH;sN 1 N 2.61 0.19 Two bonds,
bisector
C¢H5CCH,CHj3 0
CsH5CF; 0
C¢HsCH3 0
CgH5Cl1 1 Cl 091 0.45 One bond
CeHsCN 0
CsH5COCH; 0
C¢HsCONH, 0
C¢HsCOOCH; 2 0(C-0-C) 123 0.67 Two bond,
perpendicular to plane
C¢HsF 0
C¢HsN(CH3), 1 N 1.86 0.41 Three bond
C¢H5NH; 1 N 1.02 0.46 Three bond
CsHsNHCHj3 0
CgHs5NO, 0
CeHsOCH; 1 0 1.20 0.51 Two bond,
bisector
CeHsOH 0 Two bond,
in plane
C¢HsSCH; 2 S 1.4 0.60 Two bond,
perpendicular to plane
CeHsSH 2 S 4.08 0.81 Two bond,
in plane
CgHg 0
(CH3),CO 0
(CH3),NH 1 N 2.24 1.06 Three bond
CH;CH;NO, 0
CH;CHCH, 0
CH;CHO 0
CH;Cl 2 Cl 0.95 0.10 One bond
CH;CN 0
CH;CON(CH3), 0
CH;CONH2 0
CH;COOCHj53 0
CH;COOH 0
CH;NH, 2 N 2.10 0.33 Three bond
CH;0CH; 1 0 1.50 0.50 Two bond,
bisector
CH;0H 0
CH3SCH; 2 S 1.92 0.42 Two bond,
perpendicular to plane
CH3SH 2 S 2.09 1.12 Two bond,

perpendicular to plane
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Number of Off ESP Error(kcal/mol)
Molecule  Center Charges Atom Before After Comments
CH3;SOCHj; 1 S 4.03 0.75 Three bond
HCOOCH;3 2 0(C-0-C) 133 0.79 Two bond,

perpendicular to plane

Table 5.1: The change in the error of the electrostatic potential for a set of small molecules. The atom
exhibiting anisotropy is stated along with the number of charges added.

positions for the added charges, as expected from using the symmetric constraints, however
the positions of the extra charges do not always correspond to those expected. For example
in Fig. 5.6¢ the lone pairs are perpendicular to the plane but the off center point charges are
in the plane.

It is interesting to note which atoms are designated as displaying anisotropy and those
which are not. For example, the chlorine atoms in C¢Hs5Cl and CH3Cl both require additional
charges whilst none of the fluorine atoms do. All four fluorine atoms have an ESP error
below 0.60 kcal/mol. This is in agreement with the trends seen in Ref. 66 and can be
explained by fluorine generally not having a & hole present.’* Additionally, the poor ability
for atom-centered point charges to recreate the electrostatic properties for sulphur was shown
in Ref. 66. In Table 5.1, the maximum error in the table (4.08 kcal/mol) is due to a sulphur
atom and this error is over 50% larger than the error for any other element.

The addition of extra point charges changes the dipole moment of the molecule. Table
5.2 shows the difference in the dipole moment between the point charge model and the actual
DFT values. For all the molecules present the difference is 0.20 eBohr or below. It would be
preferable if this value was lower and there was better recreation of the molecule’s dipole.
However, the differences between the dipoles of the molecule does not significantly affect
liquid properties, as shown in the following section.

The set of the small molecules tested are not representative of the types of molecules
for which the anisotropy method will ultimately be used. One such application will be to
improve the ESP recreation of ligands in free energy calculations of protein-ligand complexes.
Therefore, our anisotropy method was also applied to two drug-like molecules. One of the
ligands chosen for our test set binds to the p38 kinase protein, the second was tested as a

potential inhibitor of plasmin enzymes. '°!

Nitrogen, oxygen, chlorine, and sulphur atoms are
present in this set of ligands. These atoms have previously been shown to exhibit anisotropy
and therefore could cause inaccuracies in calculations.

Table 5.3 shows the charges and ESP errors of the two molecules, with the positions of
the charges shown in Fig. 5.8. The off center point charges cause a reduction of 54.2% in the

ESP error. With the exception of the sulphur atom, this reduction is achieved without the
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Overall Dipole (e bohr)

Molecule Before After Correct Error
CsHsN 095 1.15 1.08 0.07
CgHsCl  0.90 0.78 0.75 0.03
C¢HsCOOCH;  0.99 0.86 0.90 0.04
Ce¢HsN(CH3),  0.94 0.95 0.90 0.04
C¢HsNH,  0.82 0.74 0.75 0.02
C¢HsOCH;  0.63 0.71 0.61 0.10
C¢HsSCH;  0.64 0.69 0.62 0.07
C¢HsSH  0.59 0.40 0.46 0.05
(CH3);NH  0.36 0.49 0.46 0.04
CH;CL  1.00 0.98 0.85 0.13
CH3;NH, 0.60 0.76 0.68 0.08
CH;0CH;  0.54 0.71 0.55 0.16
CH3;SCH;  0.78 0.90 0.74 0.16
CH3SH 0.83 0.85 0.71 0.14
CH3SOCH;  2.02 2.00 1.81 0.19
HCOOCH;3;  0.90 0.80 0.84 0.05

Table 5.2: The dipole moments of a set of molecules before extra charges are added, after they are
included, the actual value from the DFT calculation and the difference between the two values.

need for more than one off center charge. The ESP error for atom centered point charges is
particularly large for the plasmin inhibitor, with both the nitrogen and oxygen atoms having
an error greater than 1.50kcal/mol. This molecule was in a test set used in Ref. 101 to
compare experimental results to free energy perturbation calculations. A lack of correlation
between the free energy calculations and the experimental results was seen in this work and
may in part have been due to the use of atom centered charges.

Fig. 5.7: The two drug like molecules studied with the extra charge sites shown in purple. The left
hand molecule is the p38 kinase ligand and the right hand molecule is the plasmin inhibitor.
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Number of Off ESP Energy Error (kcal/mol)
Molecule Center Charges Atom Before After
Plasmin Inhibitor 1 N 2.16 1.10
1 o 1.82 1.04
p38 Ligand 1 N 0.98 0.28
1 N 1.29 0.36
1 Cl 1.04 0.56
3 S 1.17 0.66

Table 5.3: The change in the error in the electrostatic potential energy with addition of off center
point charges, for two drug like molecules. The second chlorine in the p38 kinase ligand is symmetric
to the first chlorine atom and therefore would be given identical charges to the first atom when used in
simulations.
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5.5 Testing Liquid Properties

The work in this section was carried out by Joshua Horton at Newcastle University.

The liquid properties of a set of small molecules was subsequently used to test the
anisotropy method outlined in this chapter, as well as the general parametrization scheme
that will be used for small molecules. The bond and angle parameters used in the force
field were derived using the modified Seminario method, and the torsional parameters were
calculated using a similar approach to that discussed in Section 4. Non-bonded terms were
derived using the DDEC method, with off center point charges then added.
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Fig. 5.8: The (a) liquid density, (b) heat of vaporization and (c) free energy of hydration calculated
for the 100 organic molecule test using QUBE FF parameter and compared to experiment. The MUE
and r? correlation are given in each figure

The accurate recreation of the free energy of hydration, heat of vaporization and liquid
densities is demonstrated in Fig. 5.8. The mean unsigned errors when extra sites are not
included are 0.023 g/cm?, 0.85 kcal/mol and 1.51 kcal/mol for the liquid density, heat of

vaporization and free energy of hydration respectively. This shows that the improvements
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made to the ESP of the molecules also lead to improvements the free energy of hydration for

a set of organic molecules.

5.6 Conclusions

When point charges are only present at the center of the atom, the electrostatic potential
of a molecule can fail to be accurately reproduced.®® Using off center point charges the
electrostatic potential can be recreated with increased accuracy.??

We have developed an approach that uses the partitioned electron density, computed with
the DDEC scheme implemented in ONETEDP, to find the optimal positions for extra point
charges. The method assigns a vector that point charges can be placed along based on the
number of bonds formed by an atom. The distance along the vector and charge of the site are
chosen so that the QM ESP is recreated as accurately as possible.

Using this method for a set of small molecules, an atom’s mean ESP error was reduced
by 65.8%. The error in the ESP of a molecule will be lower than suggested by the atom’s
ESP. This is because the recreation of the ESP in certain regions, such as between atoms, is
inconsequential as it is not accessible. Calculations were also performed (by Joshua Horton
at Newcastle University) to show that when off center point charges are included our force
field can accurately recreate liquid properties. Although we cannot say that the method is
appropriate for all possible organic molecules, it has been applied successfully to over 100
small organic molecules.

Additionally, the method was applied to two ligands to demonstrate the improvements
in ESP that could occur for drug-like molecules. Further work will investigate whether the
improvements in the ESP translates to more accurate free energy calculations and explore

using off center point charges to better model a protein’s ESP.



Chapter 6
Conclusions

Molecular mechanics (MM) force fields are used to understand and predict a wide range

of biological phenomena, including protein—ligand binding free energies,?!!?0

enzyme
catalysis,”” and protein folding.”® The majority of biomolecular force fields may be de-
composed into intermolecular interactions, which describe the electrostatic and van der
Waals energies, and intramolecular interactions, which describe covalent bonding. 24,54,114
The work presented in this thesis aimed to create a biomolecular force field, named QUBE,
with system-specific intermolecular terms derived from quantum mechanical data. System-
specific terms naturally include local polarization effects, and the use of quantum mechanical
data allows for an automated parametrization workflow and a consistent parametrization
methodology for small and large molecules. The work in this thesis built on that of Ref. 22,
which established that using the electron density to derive intermolecular interactions was a
viable parametrization approach for small molecules. However, Ref. 22 used a force field
which was a combination of new intermolecular terms with OPLS intramolecular terms. The
reparametrization of the intramolecular components, and testing the resulting force field, was

the focus of this thesis.

The intramolecular component of a force field is split into harmonic bond and angle
terms, which are used to describe vibrations of the bonds and angles around their equilib-
rium positions, and anharmonic torsional terms. To parametrize the bond and angle terms,
we proposed a modification to the Seminario method.'%® The new method was shown to
derive accurate harmonic bond and angle force field parameters directly from the quantum
mechanical Hessian matrix. Using the modified Seminario method, there was a reduction in
the average error in the reproduction of quantum mechanical normal mode frequencies for
a benchmark set of 70 molecules. The error fell from 12.3% using the original Seminario

method, to under 6.3%. A complete set of bond and angle force field parameters for the
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twenty naturally-occurring amino acids was then produced using the modified Seminario

method. These parameters are used in our protein force field.

The torsional components of a force field are dependent on the non-bonded parameters.
Therefore, their reparametrization is necessary for accurate conformational preferences.
Molecular dynamics simulations of short peptides and proteins were carried out to test the
accuracy of the new torsional parameters, as well as the non-bonded and bond and angle
parametrization methods. The simulations of short peptides were promising, with the back-
bone and sidechain conformations present in the simulations compatible with experimental
results. However, for the Alas peptide the intrinsic difficulties of fitting torsional parameters
to a system-specific force field were seen, with regularization required to adjust the backbone
torsional parameters. In the protein simulations performed, the system-specific force field
managed to retain the experimental structures well in two of the five proteins tested. In
the remaining three proteins, regions with no clear secondary structure or with a turn had a
particularly high RMSD. However, the majority of regions in the proteins remained close to
the experimental structures and the J coupling error of GB3 and ubiquitin were only slightly
higher than that of the OPLS-AA/M force field. Given that this is the first version of our
force field, compared to decades of work carried out on OPLS this is a good starting point
for the QUBE force field. In future work improving the functional form or fitting process of
the torsional parameters may be sufficient for the QUBE force field to have RMSDs that are
comparable to transferable force fields such as OPLS-AA/M or AMBER {f15ipq.

The final part of this work looked at improving the electrostatic potential of the QUBE
force field by using additional off center point charges. The method developed takes as input
only the electron density, is automated and is suitable for large biological molecules. The use
of off center point charges greatly improved the recreation of the atoms’ ESP, both for a set
of small molecules and for two drug like molecules. The increased accuracy of the ESP led

to improved free energies of hydration for a set of small molecules.

The addition of off center sites not only demonstrated the advantages of extra charges but
also the ease that systematic improvements can be made to a force field that is derived using
just quantum mechanical data. We hope that using system-specific non-bonded terms with a
traditional force fields’ functional form will lead to levels of accuracy that are not obtainable
with transferable force fields. However, in order to achieve this, further improvements to
the functional form may be required. Possible changes that could be made to the force field
include the addition of a 7~8 term for the van der Waals component or using a Born-Mayer
potential to describe the short ranged component. Again, the use of quantum mechanical
data, and our existing automated workflow, should help to simplify these alterations. A more

radical change that could be made to our force field is to adapt it from a non-polarizable
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to a polarizable force field. The parametrization of the polarizable terms should be able
to be determined directly from the ONETEP calculation, and therefore fit easily into our
parametrization process. %

The development of a system-specific biomolecular force field has not been the only
outcome of this work. Two new methods have also been developed that could assist with
the parametrization of traditional force fields. Force field parametrization is typically only
performed by experts in the field, we hope that the advances made will help to open up
the process to more users. The modified Seminario method provides a fast and accurate
way to obtain bond and angle parameters and, as the software implementing the method
has been made freely available (https://github.com/aa840/ModSeminario), it can be easily
used by other research groups. This could be required when studying biomolecular systems
containing metals, which can lack general force field parameters, or molecules with poorly
parametrized bond and angle terms.”? The approach used in the anisotropy method may
also be useful for other force fields. Schemes could be developed that use the same set
of predefined vectors for off center point charges, and rely on only the ESP, but use the
parametrization methodologies of traditional force fields. Therefore, although the focus of
this project was the creation of a system-specific QM force field, parametrization methods

that can be used with traditional force fields have also been developed.
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Appendix A

Bond and Angle Parameters

This section contains additional information about the bond and angle parameterisation
method discussed in Chapter 3.

A.1 Errors in Normal Mode Frequencies

Original Modified
OPLS (%) Seminario (%) Seminario (%)
o-methylstyrene 8.63(46.95) 15.94 (133.74) 8.00 (41.18)
Acetaldehyde 5.44 (69.46) 8.08 (102.01) 4.91 (69.19)
Acetamide 15.46 (82.34) 21.76 (127.61) 13.70 (63.34)
Acetic acid 5.61 (66.40) 6.90 (79.14) 4.28 (51.12)
Acetone 6.17 (48.49) 10.85 (100.74) 7.02 (67.12)
Acetophenone 5.02 (36.80) 13.68 (131.34) 4.93 (35.44)
Aniline 6.40 (69.80)  15.70 (159.46) 4.73 (39.83)
Anisole 4.65 (40.04) 12.37 (133.92) 3.90 (36.26)
Benzamide 6.32 (58.83) 15.49 (148.49) 5.19 (36.68)
Benzene 547 (57.94) 15.27 (172.51) 4.51 (50.38)
Chlorobenzene 5.55(55.16) 13.52(145.65) 3.91 (36.60)
Cyclohexane 5.68 (49.45) 9.77 (106.38) 5.77 (57.76)
Cytosine 8.61 (70.51) 16.08 (127.91) 7.65 (44.76)
Dimethylacetamide 9.71 (68.93) 11.03 (92.22) 8.06 (55.83)
Dimethylamine 6.01 (76.29)  9.83 (124.73) 5.16 (66.50)
Dimethylaniline 6.64 (42.27) 10.53 (122.23) 4.96 (43.25)
Dimethylether 8.01 (94.84) 10.04 (131.24) 5.67 (71.71)

Table A.1: The mean percentage error between the QM and MM normal mode frequencies for a set
of 38 small molecules. The mean unsigned error is shown in brackets (cm ~!). The QM frequencies
used in the calculation of the error have been scaled to better reproduce experimental frequencies. '
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Dimethylsulfide
Dimethylsulfoxide
Ethane
Fluorobenzene
Methyl acetate
Methyl benzoate
Methyl formate
Methylacetamide
Methylamine
Methylaniline
Nitrobenzene
Nitroethane
Phenol
Phosphorine
Propane
Propene
Pyridine
Thioanisole
Triethylamine
Trifluorobenzene
Trifluorotoluene

Mean

OPLS (%)

4.32 (45.40)
7.41 (60.88)
4.47 (55.92)
5.40 (57.44)
9.96 (78.05)
5.15 (37.47)
9.32 (94.96)
8.54 (78.79)
6.62 (81.13)
5.90 (45.86)
8.19 (53.22)
19.93 (82.77)
4.53 (48.38)
7.26 (66.06)
4.05 (45.52)
5.41 (52.47)
4.00 (43.04)
6.15 (39.79)
6.72 (56.39)
7.49 (76.61)
18.52 (58.58)

7.34 (60.35)

Original Modified
Seminario (%) Seminario (%)
8.22 (67.11) 9.06 (76.35)
8.99 (77.43) 7.23 (60.22)
5.59 (84.69) 4.61 (69.91)
13.67 (153.35) 3.11 (34.32)
9.05 (82.40) 6.73 (53.07)
12.21 (121.42) 5.06 (36.32)
6.29 (78.81) 6.53 (77.59)
11.94 (130.73) 6.54 (86.30)
7.19 (94.94) 3.79 (51.64)
13.43 (139.77) 4.22 (37.05)
14.41 (130.10) 7.82 (41.66)
19.34 (88.79) 19.5 (75.61)
14.23 (154.53) 3.40 (36.60)
13.70 (145.41) 5.02 (41.65)
7.05 (92.03) 4.31 (58.54)
12.64 (129.80) 6.13 (66.51)
13.75 (160.66) 3.83 (41.01)
12.94 (114.28) 6.18 (42.87)
8.04 (93.84) 4.61 (52.59)
13.02 (131.72) 5.55 (42.93)
24.74 (130.17)  16.67 (38.47)
12.30 (119.51) 6.38 (52.32)
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Original Modified
OPLS (%) Seminario (%) Seminario (%)
Adenine 7.98 (75.86) 12.34 (107.04) 6.58 (44.77)
B-lactam 7.77 (67.18) 12.79 (128.79) 6.19 (49.22)
Caprolactam 7.53 (47.26) 7.67 (104.10) 6.83 (53.01)
Dibenzofuran 6.99 (68.07) 12.61 (148.94) 4.77 (34.34)
Guanine 12.90 (98.03) 14.76 (145.56)  11.07 (49.25)
Oxetane 5.74 (64.49) 7.81 (109.88) 3.63 (52.15)
Oxirane 9.72 (115.20)  9.83 (132.73) 8.01 (89.73)
Pyrrole 12.13 (135.15) 17.51 (193.96) 6.22 (64.96)
Thiazepine 6.10 (76.63) 9.82 (103.45) 6.38 (48.49)
Uracil 8.91 (77.78) 11.54 (148.37) 8.53 (41.96)
Mean 8.58 (82.56) 11.67 (132.28) 6.82 (52.79)

Table A.2: The mean percentage error between the QM and MM normal mode frequencies for a
set of 10 heterocyclic molecules. The mean unsigned error is shown in brackets (cm™1). The QM
frequencies used in the calculation of the error have been scaled to better reproduce experimental
frequencies. '



118 Bond and Angle Parameters
Original Modified Seminario Modified Seminario
OPLS (%) Seminario (%) Averaged (%) ' Specific (%) 2
Ala 9.05 (54.74)  14.55 (107.36) 7.86 (46.21) 7.42 (44.36)
Arg 7.07 (50.76)  12.76 (109.80) 5.86 (40.22) 6.10 (42.53)
Asn 6.88 (48.83)  14.73 (109.79) 6.74 (37.79) 5.91 (35.83)
Asp 7.95 (48.64) 11.20 (96.90) 4.43 (35.68) 4.85 (35.98)
Cys 6.62 (48.67)  12.35(100.25) 5.86 (39.48) 6.34 (37.98)
Gln 8.69 (46.95) 13.47 (105.39) 6.55 (35.82) 6.74 (34.60)
Glu 7.07 (43.97) 12.15 (96.43) 5.51 (36.56) 5.57 (39.66)
Gly 10.16 (64.98) 17.40 (114.96) 10.75 (52.09) 10.61 (49.40)
Hip 7.62 (43.78) 12.43 (110.15) 6.27 (36.20) 5.86 (36.08)
His 7.53 (43.39) 9.16 (81.65) 5.85(38.51) 6.24 (40.80)
Ile 5.71 (43.77) 11.44 (97.37) 5.69 (39.21) 5.74 (40.55)
Leu 5.66 (41.09) 11.47 (99.16) 5.39 (39.03) 4.84 (42.35)
Lys 6.85 (50.97) 9.49 (98.73) 4.99 (43.89) 4.78 (43.50)
Met 6.30 (44.72) 11.81 (91.38) 6.79 (41.00) 6.30 (39.04)
Phe 6.31 (34.76)  13.53 (124.08) 5.00 (34.35) 4.79 (31.99)
Pro 6.00 (46.00) 12.66 (109.59) 5.51 (41.76) 5.35 (41.86)
Ser 6.78 (52.06) 10.54 (94.48) 5.52 (42.68) 5.40 (44.07)
Thr 7.58 (45.80) 10.47 (91.29) 5.80 (39.29) 5.23 (38.72)
Trp 6.49 (42.80) 13.19 (126.24) 5.13 (34.44) 4.15 (34.62)
Tyr 5.27 (35.40) 13.54 (124.01) 4.52 (34.42) 4.75 (31.72)
Val 5.49 (45.99) 12.80 (100.54) 6.97 (41.53) 6.74 (42.39)
Mean 7.00 (46.57) 12.44 (104.27) 6.05 (39.53) 5.89 (39.43)

Table A.3: The mean percentage error between the QM and MM normal mode frequencies for a set
of dipeptides. The mean unsigned error is shown in brackets (cm~'). The QM frequencies used in the
calculation of the error have been scaled to better reproduce experimental frequencies. '%> Hip stands
for protonated histidine.

'Bond and angle parameters that have been averaged over all 80 dipeptide structures.
ZBond and angle parameters are specific to the individual dipeptide.
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Fig. A.1: A comparison between the OPLS and modified Seminario bond lengths for a set of small
molecules.
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Fig. A.6: A comparison between the OPLS and modified Seminario bond force constants for a set of
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Fig. A.9: A comparison between the OPLS and modified Seminario bond lengths for a set of
dipeptides.
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Fig. A.10: A comparison between the OPLS and modified Seminario bond force constants for a set
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Torsional Parameters

B.1 Preliminary Work

Within this section the preliminary work carried out to determine appropriate weighting

and regularization values is summarized. MD simulations were then carried out using the

backbone torsional parameters. A set of six dipeptides were tested.

B.1.1 Alanine/Glycine Backbone Torsional Parameters

Regularization | Dihedral Torsional Error
and Weighting | Angle Parameters QUBE
A =0.00 [ -0.60 1.18 -2.76 0.00 | 1.254
No Weighting v 1.26 2.88 -2.08 0.00
o’ -3.04 -0.04 1.56 0.00
V4 1.96 -042 093 0.00
A =0.01 o 0.02 041 -0.09 0.00 | 2.880
No Weighting 74 0.09 043 -0.29 0.00
o’ -0.37 -0.16 0.00 0.00
V4 -0.26 -0.32 -0.24 0.00

Table B.1: Preliminary backbone torsional parameters tested.
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Regularization | Dihedral Torsional Error
and Weighting | Angle Parameters QUBE
A =0.00 1) -0.67 1.13 -3.02 0.00 | 1.231
1000K v .21 270 -1.28 0.00
o’ -3.08 -0.07 1.85 0.00
v 1.88 -0.50 0.11 0.00
A =0.01 [ 0.08 0.99 -0.33 0.00 | 1.804
1000K v 0.16 1.00 -0.66 0.00
o’ -1.00 -0.32 -0.08 0.00
v -0.34 -0.87 -0.58 0.00
A =0.00 1) 0.04 0.75 -0.18 0.00 | 2.069
2000K v 0.14 0.86 -0.51 0.00
o’ -0.80 -0.28 -0.04 0.00
v -0.40 -0.64 -0.46 0.00
A =0.01 1) 0.03 0.60 -0.12 0.00 | 2.360
2000K v 0.12 0.64 -042 0.00
o’ -0.60 -0.24 -0.02 0.00
v -0.37 -0.51 -0.37 0.00

Table B.2: Preliminary backbone torsional parameters tested.
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Regularization J coupling Error
and Weighting | Arg Asn Cys GIn Ile Phe | RMSE

A =0.00 0.89 0.63 0.60 048 061 0.16 | 0.60
No Weighting

A =0.01 093 0.82 039 0.11 0.69 0.01 | 0.60
No Weighting

A =0.00 007 147 072 039 036 0.63| 0.75
1000K

A =0.01 0.50 220 1.63 1.18 092 140 | 1.41
1000K

A =0.00 0.69 093 038 0.14 0.00 0.22| 0.51
2000K

A =0.01 045 1.62 101 042 004 0.77| 0.88
2000K

Table B.3: MD simulations of preliminary backbone torsional parameters.
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B.1.2 Serine Backbone Torsional Parameters

Regularization was shown to be necessary for the serine backbone torsional parameters. As
the backbone terms are dependent on the sidechain values, a second iteration of backbone

torsional parameter fitting was performed.

Regularization | Dihedral Torsional J Coup. | Rotamer
and Weighting Angle Parameters Error Error
A =0.00 [0} 094 021 -293 0.00 | Ser | 4.75 0.32
No Weighting v -1.81 242 2,57 0.00
¢’ -3.07 4.74 -1.61 0.00
v’ 0.33 229 -234 0.00
A =0.05 [0} 0.62 -0.50 -1.03 0.00 | Ser | 0.66 0.37
No Weighting v 0.09 043 0.18 0.00
¢’ -0.79 1.51 -0.80 0.00
v’ 0.69 030 0.20 0.00
A =0.05 [0} 0.51 -0.52 -0.96 0.00 | Ser | 0.27 0.11
No Weighting 174 028 04 0.19 0.00 | Thr | 0.22 0.08
Second Iteration o’ -0.69 132 -0.79 0.00
v’ 0.77 0.32 0.31 0.00

Table B.4: The change in the J coupling and rotamer error with the regularization and weighting
scheme used to fit the torsional parameters.
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B.1.3 Alanine Backbone Torsional Parameters

Regularization | Dihedral Torsional Error | Error
A Value Angle Parameters QUBE | OPLS
0.00 () -0.67 1.13 -3.02 0.00 | 1.231 | 0.927

v .21 270 -1.28 0.00
o’ -3.08 -0.07 1.85 0.00
V4 1.88 -0.50 0.11 0.00
0.10 () 0.08 099 -0.33 0.00 | 1.804
v 0.16 1.00 -0.66 0.00
o’ -1.00 -0.32 -0.08 0.00
V4 -0.34 -0.87 -0.58 0.00
0.20 () 0.04 0.75 -0.18 0.00 | 2.069
v 0.14 0.86 -0.51 0.00
o’ -0.80 -0.28 -0.04 0.00
V4 -040 -0.64 -0.46 0.00
0.30 () 0.03 0.60 -0.12 0.00 | 2.360
v 0.12 0.64 -0.42 0.00
o’ -0.60 -0.24 -0.02 0.00
V4 -0.37 -0.51 -0.37 0.00
0.40 (0] 0.02 049 -0.09 0.00 | 2.589
v 0.10 0.51 -0.34 0.00
o’ -047 -0.20 -0.01 0.00
V4 -0.32 -041 -0.31 0.00
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Regularization | Dihedral Torsional Error | Error
A Value Angle Parameters QUBE | OPLS
0.50 [0} 0.02 041 -0.07 0.00 | 2.761

v 0.09 042 -0.29 0.00
o’ -0.38 -0.17 0.00 0.00
74 -0.28 -0.34 -0.26 0.00
0.60 [0} 0.01 035 -0.06 0.00| 2.889
v 0.08 0.36 -0.25 0.00
o’ -0.33 -0.14 0.00 0.00
V4 -0.24 -0.29 -0.22 0.00

Table B.5: The alanine torsional parameters as a function of the regularization strength used.

Regularization J Coupling Error
A Value Set 1 Set 2 Set 3
0.00 7.74(5.57) | 7.62(7.29) | 9.33(7.95)
0.10 3.67(2.64) | 2.41(2.79) | 3.36(3.45)
0.20 2.26(1.71) | 1.96(1.68) | 1.77(2.06)
0.30 1.16 (1.00) | 3.03(0.87) | 1.25(1.04)
0.40 0.97(0.89) | 3.74(0.81) | 1.38(0.90)
0.50 0.87(0.80) | 3.59(0.63) | 1.28(0.78)
0.60 0.93(0.90) | 4.15(0.82) | 1.54(0.90)

Table B.6: The change in the J coupling error for Alas with the regularization used in the torsional
parameter fitting process.
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B.2 Torsional Parameter

B.2.1 Backbone Torsional Parameters

This section details the torsional parameters and corresponding errors of the terms used in
the dipeptide, peptide and protein simulations. The error shown uses all the scans included in
the OPLS-AA/M fitting process, even when the QUBE terms are fitted to a subset of scans.
The OPLS-AA/M force field is fit using a 2000K QM weighting scheme, whilst the error

used here is not weighted.

Dipeptide | Dihedral Torsional Error | Error
Name Angle Parameters QUBE | OPLS
Ala/Gly
Reg = 0.00 [0} -0.60 1.18 -2.76 0.00 | 1.254 | 0.929
4 1.26 288 -2.08 0.00
o’ -3.04 -0.04 156 0.00
v’ 1.96 -042 093 0.00
Reg = 0.50 [0} 0.02 041 -0.09 0.00 | 2.880
v 0.09 043 -0.29 0.00
o’ -0.37 -0.16 0.00 0.00
v’ -0.26 -0.32 -0.24 0.00
Ala
Reg = 0.00 [0} -0.67 1.13 -3.02 0.00 | 1.231 | 0.927
v .21 270 -1.28 0.00
o’ -3.08 -0.07 1.85 0.00
74 1.88 -0.50 0.11 0.00
Reg = 0.50 0.02 041 -0.07 0.00 | 2.761

0.09 042 -0.29 0.00
-0.38 -0.17 0.00 0.00
-0.28 -0.34 -0.26 0.00

< e<se
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Dipeptide | Dihedral Torsional Error | Error
Name Angle Parameters QUBE | OPLS
Gly

Reg = 0.00 [ -0.38 1.39 -2.01 0.00| 1.307

v 1.33 432 -1.62 0.00
Reg = 0.50 [ 0.07 042 -0.37 0.00 | 4.008
v 0.14 0.52 -0.33 0.00
Pro
Reg = 0.00 v 211 095 -236 0.00| 1.128 | 1.116
V4 1.57 -1.09 132 0.00
Reg = 0.50 v 0.10 0.22 -0.21 0.00 | 1.598
V4 -0.01 -0.28 -0.17 0.00
Ser
Reg=0.05 [ 0.51 -0.52 -0.96 0.00 | 2.541 | 2.834
v 028 04 0.19 0.00
o’ -0.69 132 -0.79 0.00
V4 0.77 032 0.31 0.00
Reg = 0.50 [ 0.08 -0.16 -0.13 0.00 | 3.109
v -0.03 0.00 0.12 0.00
o’ -0.02 0.19 -0.12 0.00
V4 0.17 0.12 0.12 0.00
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B.2.2 Sidechain Torsional Parameters

Dipeptide Dihedral Torsional Error | Error
Name Angle Parameters QUBE | OPLS
Arg X1 191 -029 0.56 0.00| 0.606 | 0.662
X1’ -1.1 -0.35 044 0.00
X2 -2.10 -0.50 0.00 0.00 | 2.302 | 0.759
Asn X1 -7.51 053 -0.56 0.00 | 1.904 | 1.246
X1 479 0.60 0.21 0.00
X2 0.81 0.51 0.00 0.00 ]| 1.819 | 0.759
X2’ 1.59 -0.10 -0.10 0.00
Asp X1 -8.04 -0.57 0.73 0.00 | 1.244 | 1.807
Bigo only X1 358 0.73 -0.12 0.00
Set to zero values X2 0.00 0.00 0.00 0.00| 1.897
Cys X1 331 029 1.72 0.00 | 1.143 | 1.062
Beo only XU -2.81 -0.03 -0.09 0.00
X2 093 290 -0.32 0.00 | 0.661 | 0.813
X2’ 0.78 1.04 2.09 0.00
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Dipeptide | Dihedral Torsional Error | Error
Name Angle Parameters QUBE | OPLS
GIn X1 2.13 -0.37 1.58 0.00 | 0.947 | 0910

Xr -1.62 0.24 0.08 0.00
X2 -1.16 1.01 -0.06 0.00 | 2.884 | 1.384
Glu X1 -0.57 -145 1.33 0.00 | 3.120 | 2.132

B Scans only X1’ -2.26 -1.87 1.04 0.00

X2 -8.81 -0.11 -0.80 0.00 | 3.105 | 2.819

Hid X1 -0.70  0.19 0.50 0.00 | 1.238 | 1.177
XU 020 0.60 0.20 0.00

X2 291 -1.61 040 0.00| 1.523

Hie X1 -3.12 039 092 0.00 | 0.803 | 1.113
XU’ 190 0.50 0.10 0.00

X2 -1.19 -0.50 0.03 0.00 | 0.749

Hip X1 -1.31 -0.37 098 0.00 | 1.482 | 1.747
B Scans only XTI -0.28 -091 0.01 0.00

X2 -0.38 050 0.19 0.00 | 1.135

Ile X1 7.51 -0.59 -0.21 0.00 | 0.694 | 1.066
XU 5.01 -0.19 0.99 0.00

X2 0.10 -0.14 0.13 0.00 | 0.855 | 0.661
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Dipeptide | Dihedral Torsional Error | Error
Name Angle Parameters QUBE | OPLS
Leu X1 -2.08 -0.65 0.58 0.00| 0.797 | 1.238

XU’ 0.53 034 0.12 0.00

X2 -1.09 0.71 020 0.00 | 0.623 | 0.733

Lys X1 0.00 0.00 0.00 0.00| 1.683 | 1.024
Xr 0.00 0.00 0.00 0.00

OPLS-AA/M X2 1.30 -0.20 0.20 0.00 | 2.689

Met X1 0.19 -0.83 -0.74 0.00 | 0916 | 0.553
B—_e0 only Xr 0.81 0.03 1.63 0.00

X2 -1.15 -045 -0.23 0.00 | 1.586 | 1.196

Phe X1 -094 0.76 091 0.00
XU 046 058 032 0.00| 0.576 | 0.990

X2 -521  0.19 0.00 0.00 | 0.828 | 0.616

Pro X1 211 095 -236 0.00 | 1.128 | 1.116
XU 1.57 -1.09 132 0.00

Ser X1 532 075 023 0.00| 1.526 | 1.388
Beo only Xr -6.93 095 1.17 0.00

X2 021 -1.21 041 0.00 | 0961 | 0.929
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Dipeptide Dihedral Torsional Error | Error
Name Angle Parameters QUBE | OPLS
Thr X1 -3.34  1.18 -1.72 0.00 | 1.879 | 1.455
Beo only Xr -3.87 3.12 -0.05 0.00
X1 364 284 391 0.00
X1 -1.61 2.13 -0.89 0.00

Trp X1 1.09 0.59 0.88 0.00| 0.661 | 0.970
Xr -0.40 090 0.12 0.00

X2 048 -0.58 -0.19 0.00 | 0.875 | 1.295

Tyr X1 -0.12 0.70 1.07 0.00 | 0.764 | 1.014
XU -0.13 1.02 -0.01 0.00

X2 -440 0.19 059 0.00 | 0.864 | 0.662

Val X1 381 -0.55 0.79 0.00 | 0.540 | 0.550
XU -1.74 -0.11 0.03 0.00

Mean Values 1.29 1.12
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B.3 Dipeptides

B.3.1 J Coupling Values

Dipeptide Backbone J Coupling Error
Name | First Run | Second Run | Third Run | Average
Arg 1.17 1.15 0.81 1.04
Asn 0.36 0.41 0.36 0.38
Asp 0.10 0.07 0.07 0.08
Cys 0.43 0.46 0.45 0.45
GIn 0.42 0.42 0.45 0.43
Glu 0.39 0.26 0.18 0.28
Hid N/A N/A N/A N/A
Hie N/A N/A N/A N/A
Hip 0.50 0.44 0.53 0.49
Ile 0.71 0.67 0.68 0.69
Leu 0.10 0.07 0.09 0.09
Lys 0.22 0.24 0.24 0.23
Met 0.38 0.45 0.39 0.41
Phe 0.09 0.06 0.04 0.06
Ser 0.27 0.38 0.31 0.32
Thr 0.22 0.12 0.09 0.14
Trp 0.14 0.16 0.14 0.15
Tyr 0.04 0.01 0.05 0.03
Val 0.47 0.44 0.41 0.44
RMSE 0.42

Table B.7: The J coupling error for the set of dipeptides.
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Dipeptide Sidechain Rotamer Error

Name | First Run | Second Run | Third Run | Average
Arg 0.08 0.09 0.10 0.09
Asn 0.17 0.16 0.17 0.17
Asp 0.28 0.29 0.28 0.28
Cys 0.08 0.11 0.13 0.11
GlIn 0.16 0.15 0.15 0.15
Glu 0.31 0.17 0.10 0.19
Hid 0.10 0.16 0.10 0.12
Hie 0.13 0.13 0.06 0.11
Hip 0.26 0.24 0.23 0.24
Ile 0.13 0.11 0.13 0.12
Leu 0.10 0.11 0.10 0.10
Lys 0.14 0.13 0.17 0.15
Met 0.13 0.15 0.14 0.14
Phe 0.07 0.09 0.08 0.08
Ser 0.11 0.09 0.07 0.09
Thr 0.08 0.08 0.10 0.09
Trp 0.14 0.16 0.19 0.16
Tyr 0.08 0.09 0.08 0.08
Val 0.18 0.20 0.21 0.20

MUE 0.14

Table B.8: The error in the rotamer populations for the set of dipeptides.



B.3 Dipeptides 141

B.3.2 Dihedral Angle Distributions ¢ and y

The dihedral distributions are given in this section. Regions of low probability are shown in
dark red as are regions that are not sampled during the simulation.
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Methionine Phenylalanine
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Fig. B.1: The y and ¢ distribution for the dipeptide simulations.
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B.4.1 J Coupling Errors

The backbone J coupling errors and conformations populated by Alas are presented in this

section.
Peptide J Coupling Error
Name Run 1 Run 2 Run 3 Average
Alas | 0.93(0.89) | 0.91(0.87) | 0.87(0.83) | 0.90 4 0.03 (0.86 £ 0.03)
Glys 5.69 5.90 5.48 5.69 + 0.21

Table B.9: The J coupling error for Alas using the first set of Karplus parameters from Ref. 6.

Peptide J Coupling Error
Name Run 1 Run 2 Run 3 Average
Alas | 4.16(0.84) | 4.16(0.82) | 4.15(0.78) | 4.16 £ 0.01(0.81 4 0.03)
Glys 7.13 7.25 6.96 7.11 £0.15

Table B.10: The J coupling error for Alas using the second set of Karplus parameters from Ref. 6.

Peptide J Coupling Error
Name Run 1 Run 2 Run 3 Average
Alas | 1.52(0.89) | 1.52(0.88) | 1.49(0.83) | 1.51 £ 0.02(0.87 4 0.03)
Glys 6.82 6.96 6.61 4.52 +0.18

Table B.11: The J coupling error for Alas using the third set of Karplus parameters from Ref. 6.

Peptide Conformation Percentages

Name PP2 B o

Alas 62.10 =2.23 | 2354+ 1.20 | 12.93 +2.82
Glys | 4593+ 1.46|29.77 +7.74 | 24.30 £ 8.57

Table B.12: The population of each conformation present in the MD simulation of Alas
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B.5 Protein MD Results
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Fig. B.2: The RMSD per residue, relative to the crystal structure with PDB code 1UBQ, of three
simulations of the ubiquitin protein.
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Fig. B.3: The y and ¢ distributions observed in the simulation of the ubiquitin protein. The white
square corresponds to the experimental structure given in the PDB file 1UBQ. The dark red regions

correspond to low probability regions that include conformations that are not sampled during the
simulation.
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Fig. B.4: The RMSD per residue, relative to the crystal structure with PDB code 1P7E, of three
simulations of GB3.
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Fig. B.5: The y and ¢ distributions observed in the simulation of the GB3 protein. The white square
corresponds to the experimental structure given in the PDB file 1P7E. The dark red regions correspond
to low probability regions that include conformations that are not sampled during the simulation.
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B.5.3 2F4K
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Fig. B.6: The RMSD per residue, relative to the crystal structure with PDB code 2F4K, of three
simulations of the villin headpiece.
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Fig. B.7: The y and ¢ distributions observed in the simulation of the villin headpiece. The white
square corresponds to the experimental structure given in the PDB file 2F4K. The dark red regions
correspond to low probability regions that include conformations that are not sampled during the
simulation.
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B.5.4 1BUJ
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Fig. B.8: The RMSD per residue, relative to the crystal structure with PDB code 1BUJ, of three
simulations of the binase protein.
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Fig. B.9: The y and ¢ distributions observed in the simulation of the binase protein. The white
square corresponds to the experimental structure given in the PDB file 1BUJ. The dark red regions

correspond to low probability regions that include conformations that are not sampled during the
simulation.
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Fig. B.10: The RMSD per residue, relative to the crystal structure with PDB code 5PTI, of three
simulations of the BPTI protein.
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Fig. B.11: The y and ¢ distributions observed in the simulation of the BPTI protein. The white
square corresponds to the experimental structure given in the PDB file SPTI. The dark red regions

correspond to low probability regions that include conformations that are not sampled during the
simulation.
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