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The development of essential medicines is being slowed by a lack of
efficiency in drug development as ninety per cent of drugs fail at
some stage during clinical evaluation.

This attrition in drug development is seen not because of a reduc-
tion in pharmaceutical research expenditure nor is it caused by a
declining understanding of biology, if anything, these are both in-
creasing. Instead, drugs are failing because we are unable to effect-
ively predict how they will work before they are given to patients.
This is due to limitations of the current methods used to evaluate a
drug’s toxicity and efficacy prior to its development. Quite simply,
these methods do not account for the full complexity of biology in
humans.

Systems pharmacology models are a likely candidate for increas-
ing the efficiency of drug discovery as they seek to comprehensively
model the fundamental biology of disease mechanisms in a quantit-
ative manner. They are computational models, designed and hailed
as a strategy for making well-informed and cost effective decisions
on drug viability and target druggability and therefore attempt to
reduce this time-consuming and costly attrition.

Using text mining and text classification I present a growing land-
scape of systems pharmacology models in literature growing from
humble roots because of step-wise increases in our understanding of
biology. Furthermore, I develop a case for the capability of systems
pharmacology models in making predictions by constructing a model
of interleukin-6 signalling for rheumatoid arthritis. This model shows
that druggable target selection is not necessarily an intuitive task as it
results in an emergent but unanswered hypothesis for safety concerns
in a monoclonal antibody. Finally, I show that predictive classification
models can also be used to explore gene expression data in a novel
work flow by attempting to predict patient response classes to an in-
fluenza vaccine.
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"So remember to look up at the stars and not down at your feet. Try to make
sense of what you see and wonder about what makes the universe exist. Be

curious, and however difficult life may seem, there is always something you
can do, and succeed at. It matters that you don’t just give up."

— Stephen Hawking, (8 January 1942 –14 March 2018)
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1
I N T R O D U C T I O N

1.1 thesis outline

This thesis is presented in four main sections, each with a discussion.
This is rounded by a conclusion which ties together the discussions in
each chapter. Chapter one provides a general introduction to systems
pharmacology models and introduces the concepts of drug discovery,
target selection and modelling methods that have defined the field as
it stands. A brief more specific introduction is given in each chapter
where the subject deviates from the main matter.

The second chapter illustrates the results of published text mining
research I performed to define the landscape of quantitative systems
pharmacology modelling. This chapter also documents the effort to
further this research by developing a supervised text classification
model to categorise and retrieve systems pharmacology models for
annotation, documentation and analysis.

Chapter three is an applied case study using quantitative systems
pharmacology to aid target selection in the disease context of rheum-
atoid arthritis. This covers the success of such an attempt, emergent
implications of current medication as well as the ease and accessibil-
ity of reusing purpose-built models for further modelling programs.

The fourth chapter illustrates an alternative use for the classifica-
tion model in gene expression data to predict patient response cat-
egories before administering therapy.

The final chapter concludes the thesis with a discussion of findings
as well as an outlook on future prospects for the research presented
within the thesis.

Pages (n)

0 17 34 50 67 84 101 117 134 151

INTRODUCTION

TEXT M
INING

QSP M
ODEL OF RA

FLU VACCINE 

 PREDICTION

CONCLUSIONS

Figure 1.1: Outline of the thesis excluding front matter and bibliography.



2 introduction

1.2 context and motivation

Biomedical research continues to produce effective medicines for hu-
manity which undoubtedly contributes to world-wide increases in
life expectancy and quality of life. These medicines are typically gen-
erated through drug development and the refinement of basic biolo-
gical research into a suitable means of preventative, curative or palli-
ative intervention. This transition from laboratory to dispensary is a
lengthy process. Currently, the average development time is ten years
for most drugs which would be perfectly acceptable if a successful
outcome was certain. However, drugs have been failing during this
process due to a variety of reasons. For example, close to 90 per
cent of drugs fail during their clinical phases (Hay et al., 2014). Of-
ten called attrition, failure at this stage is highly problematic because
it removes time from researching otherwise successful medicines and
it costs more than if the failure was detected or recognised earlier.

In context, drug development is becoming synonymous with high-
cost and low yield research. To overcome the challenges faced in the
domain, many methods have been used to varying degrees of suc-
cess. A successful field with extensive applications in predicting drug
action and informing the development process is mathematical mod-
elling and simulation. For example, the use of mathematical mod-
els in the last 30 years may have been momentous in reducing drug
failure resulting from the main causes of late-stage attrition. Despite
this, tackling these causes has shifted the leading driver of attrition to
other equally contributory factors (Kola and Landis, 2004; Waring et
al., 2015). Another milestone in modelling and simulation may there-
fore harness humanity’s current understanding of the disease mech-
anisms, drugs and druggable targets to protect against the current
sources of attrition in drug development.

One solution stems from the holistic understanding of biology in
applying a non-reductionist point of view. This is an effort to interpret
dynamic systems as fully as possible called systems biology. In using
systems-level concepts to understand how diseases and their mechan-
isms can be reversed by therapeutics, we can derive the term systems
pharmacology as is discussed in this research. Systems pharmacology
models aim to mathematically describe the detailed mechanisms that
drive pathology which are now detectable through advancements in
biomedical research. In doing so, the effects of drugs within a system
may be predicted, giving pharmaceutical researchers a framework for
detecting drug failure earlier. The concept of systems pharmacology
models may be further applied to predicting suitable strategies in
exploratory and proactive use, accelerating drug discovery and the
speed of generating new medicines.
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This research aims to put forward tangible concepts within systems
pharmacology modelling, revealing a direction for future focus within
the field. Herein I discuss the history and current literature on drug
development and modelling in pharmacology as well as the mature
and fledgling aspects of model development and the broader context
of predictive modelling in therapeutics.

The focus is upon two central aspects of systems pharmacology
modelling. Firstly, how can these models explore and understand dis-
ease mechanisms? Secondly, how they can be used to decide between
druggable targets? The research addresses the key motivation of the
emerging field by answering following question: what are systems
pharmacology models, where did they come from and how can we
harness them to reduce the causes of failure in the drug development
and discovery and boost biomedical and pharmaceutical productiv-
ity?

1.3 drug development and discovery

Drug development and discovery is the overall process by which new
therapeutics are generated and approved. It can be divided into two
themes, the first is one of discovery designed to produce an effect-
ive drug through basic research and refinement. The second theme
is one of validation which makes use of proof-of-concept clinical tri-
als to demonstrate the drug’s worth. Significant challenges become
apparent in the latter phase which can be attributed to the former
discovery phase.

1.3.1 The challenges in drug development

A modern-day definition of drug development was neatly encapsu-
lated by Sheiner and Steimer (2000) as

"the information-gathering activities that begin when a lead
compound is first introduced into man and that end when the
accumulated information is summarized and presented to a reg-
ulatory agency for a market-access decision."

The main challenge that faces drug development today is an ex-
ponential rise in the cost of producing drugs (DiMasi, November 18,
2014; Knight-Schrijver et al., 2016). The cost of developing drugs is
rising partly because more work is now required to identify, optimise
and market a drug successfully but mostly because a large fraction
of drugs fail during clinical phases; for each successful drug, nine
fail at a stage where the costs are astronomically high. For patients,
this manifests itself as a lack of effective medication for significant
diseases such as cancer or Alzheimer’s disease (AD) and continuing
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adverse reactions in current treatment strategies. AD is an extreme ex-
ample of drug attrition as nearly 100 per cent of AD therapies fail dur-
ing the clinical stages (Cummings et al., 2014). Assuming that clinical
trials are properly designed and rigorously carried out, we can reason
that the result is wholly reliant on the input (the drug(s)). Therefore,
in tackling failure during developmental stages, more needs to be un-
derstood about how drugs are generated during the initial discovery
period.

1.3.2 Rationalising drug discovery

Drug discovery began in earnest at the beginning of the twentieth
century. Early work of discovering drugs was the remit of chemists,
and substances with biological effect were structurally altered to max-
imise their activity. Understanding the mechanism of action (MoA) for
these drugs were a life time away for scientists who developed them,
let alone the population receiving them. One example of this is as-
pirin, which was synthesised and marketed properly in 1899 by Bayer
Inc after thousands of years of observation (Levesque and Lafont,
2000). The actual MoA for aspirin was only revealed seventy two years
later by Vane (1971) (the magnitude of which earned him the Nobel
Prize for Physiology or Medicine in 1982). These Then years of the
medicinal chemist (Lombardino and Lowe, 2004) were blessed with a
series of lucky finds (Ban, 2006) and pharmaceutical research adopted
what can be described as a drug-down approach to the initial stages
of drug development. Conceptually, the strategy was to observe that
a substance has a biological effect, propose a therapeutic use and
demonstrate its clinical effectiveness in in vitro or in vivo studies. For
example, pioneering research in chemistry produced cortisone which
was given patients for relieving rheumatoid arthritis despite the un-
known mechanism behind the efficacy (Hench et al., 1949). A string
of other important discoveries (Ban, 2006) are also attributed to have
occurred after initially observing clinical effects with much influence
upon the therapeutic landscape still today.

By probing our biological black-boxes with chemical inputs, a drug-
down approach has allowed researchers to develop a picture of the
underlying physiology and gradually form more targeted approaches
in treating diseases. Now that this picture is beginning to be painted
more clearly, a biology-up approach is gaining momentum. Advance-
ments in technology such as the initial decoding of the human gen-
ome (Lander et al., 2001) allow for a previously unattainable under-
standing of the fundamental disease mechanisms contained within
our bodies. More information is revealed about the normal biological
networks and the disruption of them that characterises disease. This
valuable information can be readily applied to selecting single or mul-
tiple points of impact within these networks to produce the desired
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outcome. Intending to use the breadth of biological knowledge sug-
gests the importance of systems-level thinking in drug discovery. A
biology-up view is the ideal basis for modern rational or target-based
drug discovery pipelines.

Preclinical rational drug discovery can be loosely boiled down to
two main concepts: 1) Select a good target; and 2) Select a good drug.
The first point is the comprehensive dissection of the disease mech-
anisms as well as the evaluation of target druggability within the
disease. This is the typical starting position for a biology-up paradigm.
The second step addresses the selection and optimisation of a drug
which can affect this target (lead discovery) through to validation of
use in a clinical setting. Selecting a good target and a good drug have
essentially the same list of boxes to tick.

1.3.3 A good target is a druggable target

By target, we mean
any molecule within
the body associated
with a biological
process, typically
proteins or DNA.

Apart from a few serendipitous discoveries (Ban, 2006), most thera-
peutic drugs have clear targets: either those they were selected against
or those which were uncovered during discovery stages.

In rational drug discovery, the ability to select between targets in
pre-clinical stages is essential in developing effective medicines. For
example, consider two proteins A and B, which positively regulate
a disease. The inhibition of either may produce markedly different
effects upon the overall disease activity. Where attenuating protein A
may show high efficacy, its blockade in force may result in overly toxic
effects. Alternatively, the perturbation of protein B might result in
negligible clinical effect. A good target is often a compromise between
the demonstrable efficacy and toxicity. One description of the relative Druggability - A

target’s ability to be
readily modulated
and a dichotomy of
its position as a
keystone in driving
disease mechanisms
and its relevance to
healthy function.

worth of a target is druggability which is often defined as how easy
a target is to bind to (Bakan et al., 2012) and moreover refers to ease
that a target can be modulated. I would argue that, given the example
of proteins A and B, it is equally important to define druggability
as a function of the target’s position as an essential piece of disease
mechanisms as well as the target’s safety profile.

localisation : A good target should be easily located and bound
to by drugs.

effect : A good target must be a key player in the disease, offering
maximal potential for pathological perturbation.

specificity : Modulation of a good target should be relatively be-
nign towards healthy function.

As poor clinical efficacy and poor safety of a drug are the major
contributors to attrition in clinical phases (Harrison, 2016; Kola and
Landis, 2004), we can consider that the success of a novel drug dis-
covery program depends largely on initial target selection. This de-
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pendence was shown by introducing a more stringent set of target
entry guidelines at AstraZeneca in 2003 as implementing new criteria
may have been responsible for a four-fold decrease in program fail-
ure in the following lead optimisation phase (Jackson, 2014). This con-
firms that selecting between targets is a large component of optimal
drug discovery and suggests that evidence-based predictive measures
can reduce the larger expenditure in further clinical stages. Therefore,
measuring druggability is one of the key factors in drug discovery’s
success and thus the development of methods to evaluate druggabil-
ity are of great importance.

1.3.4 A good drug is a targetable drug

A drug should be able to modulate the selected targets in the inten-
ded manner with ease. This means that, at biological concentrations,
the drug should be able to localise efficiently with, be specific for, and
be able to functionally alter its targets for a therapeutic response. This
is generally either to increase or reduce the target’s current function-
ality. The failure of a drug to maximise these three major traits results
in a loss of efficacy or a gain in drug-dependent toxicity.

localisation : A good drug needs to be delivered efficiently to the
desired tissue or system for drug-target interaction.

effect : A good drug should alter a target’s function effectively after
localisation to produce the desired result.In essence, most

drug-dependent
toxicity is off-target;
If toxicity is is seen
on-target, then it is
driven by the target

itself... find a new
target.

specificity : A good drug should not interact with endogenous or
exogenous components other than the intended target(s).

Maximising the target localisation of a drug on a macro-scale is largely
driven by optimising its molecular properties and administration route.
For example, inhibiting a receptor in the central nervous system (CNS)
would typically be difficult using a large polar molecule when de-
livered via the circulatory system (Mikitsh and Chacko, 2014; Scher-
rmann, 2002). However, a more direct administration into the CNS

could help make this drug viable (Cohen-Pfeffer et al., 2017).
Optimising the effect of the drug-target interaction is regulated by

the affinity of the drug to the target as well as the intrinsic efficacy of
the drug. For an effect focusing upon competitive inhibition, a higher
affinity results in a greater potency. Alternatively, where a functional
change is sought, the potency of a drug is a combination of both the
drug’s affinity as well as the ability of the drug to modify the target
conformation for a gain or loss of function. This is the case of both
allosteric and orthosteric ligands.

Poor specificity of the drug is the potential for binding to non-
target components. This results in off-target drug-dependent toxicity
which can be divided into several categories including bioactivation,
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idiosyncratic responses, and immunogenicity or immune hypersens-
itivity (Guengerich, 2011). Drug-dependent toxicity depends largely
upon the formulation of the compound and the route of administra-
tion and increasing the specificity of drugs may reduce the chances
of drug-dependent toxicity. Lastly, another challenge that may hinder
a good drug is the properties of its metabolites.

This is to emphasise that developing medicines is not necessar-
ily about driving towards a strong and stable compound nor is it
about finding the finest of the best of targets. It is about identifying
drug–target relationships demonstrating optimal efficacy and toxicity
profiles which is not so straight forward. We have to consider that
even after evaluating the best drug for the best target within the net-
work, there may be many unknown results caused by perturbations
of disease mechanisms. After all, it is a very large network of interact-
ing components within a black box.

1.4 modelling disease mechanisms and druggable tar-
gets

A significant fraction of knowledge in biological research is derived
from the use of in vitro or in vivo models. Animals have been used to
study biology for at least the last two millennia (Ericsson et al., 2013).
More recently, cultured cells and in vitro organoid models of biolo-
gical systems have been used to understand the mechanistic details
in biology (Jackson and Lu, 2016). Now, there are a plethora of in vitro
disease models (Benam et al., 2015) which can be used to understand
how small-scale systems may react to potential target perturbations.
For instance, this can be used to differentiate how distinct organs may
react differently to a drug. Similarly in vivo models can demonstrate
how a target can be simultaneously essential for the maintenance of
a disease model as well as safe to modulate through drug interaction
using knockout models or ribonucleic acid interference (Lee, 2014).

However, in vitro and in vivo models have their drawbacks. Assess-
ing the druggability of a target involves the context of physiology.
Therefore, the use of in vitro systems to measure the kinetics and in-
teraction of drugs within the wider system of human physiology is
flawed. Moreover, the physiology of animal in vivo models may be
drastically different to humans bringing great challenges in translat-
ing their outcomes into humans. Examples like the animal model of
leprosy in armadillos speak volumes about the selective and some-
times anthropomorphic measures applied to secure a working rep-
resentation of human disease (Truman et al., 2014). Successful out-
comes in efficacy and (lack of) toxicity in animals has occasionally
not been translated into humans which contributes to the picture of
attrition today (Garner, 2014; Shanks et al., 2009). Even in accounting
for this inter-organismal disparity, the knockout of potential targets to
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demonstrate their role in animals may be an unrealistic depiction of
real-world inhibition in humans where therapeutic windows are ac-
quired and target occupancy is rarely near 100 per cent (Sams-Dodd,
2005). Fortunately, treating humans with novel and potentially fatal
compounds is deemed unethical in most situations today, which lim-
its the number of options in choosing an ideal disease model. Finally,
while both in vitro and in vivo versions of disease are instrumental in
gathering data and examining intricate mechanisms, to combinatori-
ally examine a library of compounds against either of these models
is not only highly time consuming, but also expensive. To this end,
mathematical and computational models have been used which at-
tempt to reproduce the important aspects of drug activity in humans
by simulating and predicting drug effects while minimising cost and
time.

1.4.1 Mathematical Modelling in Drug Discovery

Almost one century of mathematical modelling has been applied
within the field of pharmacology. During this time, the core con-
cepts and methods have been refined and the field has iteratively
built upon itself, resulting in more advanced techniques and mean-
ingful predictive methods to encompass the growing knowledge of
biology.

1.4.1.1 Definitions of modelling

A hefty portion of mathematics in pharmacological modelling is based
upon ordinary differential equations (ODEs), which are almost always
numerically solved with respect to time. This is largely due to the
number of measurements taken with reference to the time domain
as well as the value of rendering model simulations as being readily
interpretable in the context of distribution, elimination, disease pro-
gression and the majority of other tangible observations associated
with biology. For example, a system of n pharmacological variables,
represented as a vector X where X = x1, x2, ..., xn, can be modelled
by a series of ODEs. The whole system can be modelled by equation
1.1 where the time-dependent change in each nth variable of X (xn)
is governed by the rate function for each variable fxn , describing the
molecular interactions between the variables in X. Other mathemat-
ical methods include agent-based models or stochastic models which
have both been instrumental in a number of studies, especially in
more recent years (Cosgrove et al., 2015; Traynard et al., 2017).

dxn

dt
= fxn(X, t) (1.1)
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1.4.1.2 Pharmacokinetic models

For want of a better definition, pharmacokinetics (PK) is the study
of the effect that the body has upon the drug and was only coined in
1953 (Wagner, 1981) despite its study decades earlier. Today’s mod-
els of pharmacokinetics can be ascribed to works in the 1930s which
may have triggered the beginning of mathematical modelling in phar-
macology. In this decade, equations were first derived for the absorp- Pharmacokinetics is

observing that a
drug does not
remain indefinitely
localised to the site
of administration
and has better places
to go.

tion, distribution and elimination of drugs using simple compartment
models (Wagner, 1981). A few examples of influential models are a
series of ODEs by Teorell (1937a,b) which illustrated the concept of
simulating drug PK in multiple tissue compartments following sub-
cutaneous distribution and were some of the founding examples of
PK modelling. A simplified diagram of such a PK model can be seen
in Figure 1.2A. PK modelling has expanded rapidly since Teorell’s
work and is now a standard element in drug development pipelines.
PK modelling today is used to predict the absorption, distribution,
metabolism and elimination (ADME) properties of drugs and its use
is streamlined by the availability of dedicated PK modelling software
like SAAM and NONLIN which began to emerge towards the end of
the 1960s.

Figure 1.2: A, a hypothetical compartmental PK model depicting
subcutaneous (SC) administration of a drug and its distri-
bution into two compartments with elimination in the tissue
only as given by arrows. B, linear or Emax response models and
an example of a biochemical reaction governing the response
only after agonist (circle) binding to the receptor (inverted arch)
and resulting complex activation. This reaction scheme results
in a sigmoidal response for certain parameter sets.
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1.4.1.3 Pharmacodynamic models

As the complement of PK, understanding pharmacodynamics (PD) is
to study the effect that the drug has upon the body. The data for exploring
these drug-response relationships stems from in vitro studies and is
usually in the form of a measured response to a fixed concentration
of drug. Initial regression-type models observing a linear response
to drug concentrations were built upon by considering that the sys-
tems have maximal and minimal responses in log-space (Holford and
Sheiner, 1982). This evolved such that dynamic models of pharmaco-
logical response used today are often forms of the sigmoidal Emax

model derived from much earlier work by Hill (1910) (Gesztelyi et al.,
2012; Holford and Sheiner, 1982). Further but much later work in ra-
tionalising the link between drug concentrations and the response of
the system was made by Black and Leff (1983) in forming the opera-
tional models of pharmacological agonism. The model integrates the
Emax model with mass action binding kinetics of drugs which expli-
citly accounts for disparate potencies seen between compounds when
acting upon the same receptor or system. The differences between
these views on PD can be see in Figure 1.2B.

1.4.1.4 Pharmacodynamic pharmacokinetic models

Pharmacokinetic-pharmacodynamic PKPD models bring two of the
essential pieces of the pharmacological puzzle together. On the one
hand we saw that drugs produce a response in cultured tissues and
experiments, which could be modelled according to mathematical re-
lationships (PD) (Figure 1.2B). On the other hand, it was possible to
simulate the concentration of the drug over time in multiple compart-
ments based on experimental clinical and animal studies (PK) (Figure
1.2A). It was only a matter of time until the two were combined, using
the output from PK simulations to determine the input concentration
for PD response model. Pharmacokinetic-pharmacodynamic (PKPD)
models first began to emerge in the 1960s and allowed pharmaco-
logists to simulate time-dependent concentration–response scenarios
using simulated PK output as the input for the PD models (Csajka and
Verotta, 2006; Holford and Sheiner, 1982). Modern day PKPD model-
ling is used in late-stage prediction and validation of dose optimisa-
tion but has also been successfully transferred to the earlier stages of
drug discovery (Agoram et al., 2007). A detailed account of the mod-
ern methods of PKPD modelling can be found in Sheiner and Steimer
(2000).

1.4.1.5 Physiologically-based pharmacokinetics models

The use of compartments in PK modelling is simplified to theoretical
volumes of distribution which limits the interpretation of the model
(Figure 1.2A for example). In seeking to address this, physiologically-
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based PK (PBPK) models account explicitly for the majority of physiolo-
gical compartments within an organism. This aids translatability between
organisms where data are derived from in vivo studies as well the use
of the models as platforms which are not tailored to a specific com-
pound.

1.4.1.6 Population pharmacokinetics

Differences in drug effects between patient populations are evident
in the quantity of patients receiving pharmaceuticals in today’s soci-
ety. Population-PK modelling is designed to model these differences
using statistical distributions and thus form population-level predic-
tions of drug ADME as well as PD and toxicity when combined with PD

models. For example, modelling patient populations is useful for un-
derstanding the effects of drugs in at-risk patient groups by assessing
drug metabolism and genetic polymorphisms (Yoo et al., 2012).

1.4.2 Challenging the success of pharmacometrics

The use of PK, PD and PKPD models in quantifying dose-response re-
lationships and population variance is now termed pharmacometrics
(Ette and Williams, 2007; Standing, 2016). In short, pharmacometrics
is a powerful approach to predicting drug kinetics, response and tox-
icity within individuals and populations. It is currently used by a
large fraction of industry with generally good results at both preclin-
ical as well as clinical stages (Schuck et al., 2015). Furthermore, the
use of pharmacometric approaches have been seen to be pivotal in
a large fraction of successful new drug applications seen by the U.S
Food and Drug Administration (FDA) between 2000 and 2008 (Bhat-
taram et al., 2007; Bhattaram et al., 2005; Lee et al., 2011).

PK models can simulate the tissue concentrations of drugs, they can
be used to estimate occupancy and to a certain extent, off-target tox-
icity to arrive at optimal dose predictions. However, to derive mean-
ing from these simulations, the volumes and compartments used in
the model should to be translatable into human physiology; PBPK

models address this caveat. Additionally, drug PK is now well un-
derstood as the variables involved are largely known and measurable
(for example, drug concentrations or metabolites). Perhaps as a result
from this knowledge, the widespread use of PK models might have
contributed to the attenuation of clinical PK-mediated attrition seen
between 1990 and 2000 (Kola and Landis, 2004).

However, the historical array of modelling approaches needs to be
adapted to address challenges faced by researchers today. Contrast-
ing with the putative success of PK modelling, the major causes of
attrition in drug development now are efficacy and toxicity (Waring
et al., 2015), which are both placed firmly within the scope of un-
derstanding the disease mechanism and selecting the best druggable
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target. Typical PD models such as the operational model (Black and
Leff, 1983) are black-box systems. This means that they can be used
to quantify the magnitude of a response even though the machinery
driving the output may be poorly understood. However, as further
intricacies of biology and disease systems are uncovered, PD models
are forecast to progress towards a more mechanistic representation of
the disease mechanisms (Csajka and Verotta, 2006). This is the remit
of systems pharmacology models.

1.5 networks in biology

To tackle the failure of drugs resulting from toxicity or poor efficacy,
more needs to be modelled within the black-box. The solution is to re-
produce as much of the known biology as possible to understand the
disease mechanism. Instead of simplification and reduction, the goal
is (reasonable) complexity and (limited) holism. One method to man-
age and infer useful information from complex biological systems is
to construct networks.

Networks are a system of nodes, connected to each other by edges.
Nodes represent the entities within the network and edges describe
the relationship between these nodes. Tangible large-scale networks
may be electrical grids (Pagani and Aiello, 2013) or road systems
(Balijepalli and Oppong, 2014). However, when biological networksA drug with

polypharmacology
modulates multiple

targets although not
necessarily by

design.

are discussed, nodes are usually in the form of proteins, chemicals
and genes (Alm, 2003) and edges in biology often portray a physical
interaction. You may think of these as drug targets and drug interac-
tions respectively.

Polypharmacy is the
concurrent use of
multiple drugs to

modulate multiple
targets for a

synergistic effect.

One example of using networks in drug discovery is seen in ef-
forts to strategically develop compounds with deliberate polyphar-
macology (Csermely et al., 2005; Hopkins, 2008). Polypharmacology
and polypharmacy have the potential to counter pathological redund-
ancy, maximise efficacy and lower toxicity by focusing on smaller but
orchestrated perturbations of multiple network targets (Kitano, 2007;
Korcsmáros et al., 2007; Morrow et al., 2010).

1.6 systems biology and systems pharmacology

By progressing towards a view that networks are dynamic and not
static it becomes feasible to model strictly time-dependent phenom-
ena such as oscillations relating to chronotherapy or the cell cycle in
cancer (Dulong et al., 2015; Jackson et al., 2017). Studying dynamical
systems or networks in biology is referred to as systems biology.
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1.6.1 Systems biology

The definition of systems biology has eluded an overwhelming
subset of researchers, prompting the question What is Systems Bio-
logy?1 by Breitling (2010). "ask two systems

biologists for the
definition of their
discipline, and you
will get three
answers"
— R. Breitling,
(2010)

The term systems biology is applied to research that studies large
scale omics data using networks and computational modelling. A simple
enough description of systems biology can be amalgamated from a
few sources: Systems biology aims to be able to fully reconstruct a bio-
logical system by understanding the structure and dynamic nature of
its wiring, including knowledge of substructure compositions neces-
sary for regulation and control of the system (Breitling, 2010; Kitano,
2002). This is much like being able to fully understand how a radio
operates through the complete knowledge of its circuitry (Lazebnik,
2002)2.

In practice systems biology is largely concerned with constructing
models which integrate this mechanistic knowledge into dynamic net-
works, yielding a system ready for quantitative analysis. Validation
of these models is the observation that the reconstructed system be-
haves, as a whole, like the real biology with a given set of inputs. By
exploring these models through individual input perturbations, the
output is the emergent and predictive response of a whole system.
Mathematical models have been used for decades to reconstruct bio-
logical systems and their wiring to predict novel outputs. A famous
example are the models by Hodgkin and Huxley (1952) were used
to examine the system of the giant squid axon and are widely recog-
nised as early important work towards systems biology. However, Many curated

examples of systems
biology models can
be explored and
simulated at leisure
from BioModels
Database 3.

applying this approach to larger, more complex systems requires not
only a greater understanding of the circuitry or components, but also
the ability to manage and compute their dynamic interactions. In that
sense, it is easy to see how this approach is only becoming realised
only now. It is a synergistic culmination of computational power for
storage and calculation, combined with the increasing resolution of
experimental technologies which builds upon an already vast moun-
tain of humankind’s knowledge.

The allure of systems biology in the context of drug discovery be-
comes obvious. Perturbations of an accurate computational counter-
part to real-life biological systems could be analogous to drug activity,
an understanding of which may ease the selection of drug-targets; re-
pairing the radio becomes trivial when you have the blueprints. Fur-

1 With responses such as: a), "to me, all biology is systems biology";
b), "it’s just one of those hypes that you need to follow to get grant money";
c), "this holistic approach is the future of biology, we all will have to do it"
(Breitling, 2010).

2 A recommended and entertaining read for those unfamiliar with the analogy.
3 Access to BioModels can be found at: www.ebi.ac.uk/biomodels

www.ebi.ac.uk/biomodels
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thermore, successfully creating in silico biological systems reduces the
need for real-world experiments which are both costly and time con-
suming.

1.6.2 Systems pharmacology

The field of systems pharmacology has emerged recently and aims
to transition the more phenomenological in silico modelling methods
in pharmacology such as PKPD modelling towards the mechanistic
views embedded in systems biology. Hence, systems pharmacology
concerns itself with the quantitative analysis of biological networks
and can be defined using systems biology. However, the key differ-
ence between the fields is that systems pharmacology is solely fo-
cused upon examining these network perturbations to explore, valid-
ate and predict drug action.

A comprehensive working definition was provided by Sorger et al.
(2011) in the National Institutes of Health white paper which remains
fully descriptive of the subject.

"Quantitative and Systems Pharmacology" is focused on "identify-
ing and validating drug targets, understanding existing therapeutics
and discovering new ones". Furthermore, it is discussed that "(QSP)
aims to develop formal mathematical and computational models that
incorporate data at several temporal and spatial scales" (Sorger et al.,
2011). Systems pharmacology is also typically described as the in-
terface between systems biology and pharmacodynamics (Graaf and
Benson, 2011; Mager and Kimko, 2016).

However, where the definition in the 2011 white paper (Sorger et al.,
2011) refers to "Quantitative and Systems Pharmacology" I make one
non-trivial amendment; this definition refers now only to systems
pharmacology and not necessarily quantitative systems pharmaco-
logy (QSP). Instead, I would argue that QSP is synonymous with sys-
tems pharmacology modelling but not systems pharmacology. This
distinction can be explained.

Observation of the past seven years has shown that the use of the
term QSP is starting to noticeably diverge from "systems pharmaco-
logy". Where the term systems pharmacology continues to be applied
in parallel with systems biology it refers to other forms of network
analyses as well as dynamical computational modelling. QSP however
has become solely synonymous with the pharmacology equivalent of
systems biology models. In other words QSP (systems pharmacology
models) is a subset of systems pharmacology. Studies which use "QSP"
approaches are almost all in this category ((Geerts et al., 2018; Kos-
insky et al., 2018; Leil and Bertz, 2014; Pichardo-Almarza and Diaz-
Zuccarini, 2017b) to name a few), in contrast with "systems pharma-
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cology" (for example: Berger and Iyengar (2009), Jalali et al. (2018)
and Zhao and Iyengar (2012)).

It is important to make this distinction as a number of articles use
the definitions interchangeably with potential confusion for readers.
For example, Musante et al. (2016) use a definition of systems phar-
macology, given by Graaf and Benson (2011), to describe QSP. If this Are QSP and

systems
pharmacology the
same?

were the definition of systems pharmacology then research describing
other forms of network analysis are defined incorrectly (such as the
study by Jalali et al. (2018)). Another example, applied to logic mod-
els is seen in research by Traynard et al. (2017) entitled Logic Modeling
in Quantitative Systems Pharmacology. In this article, QSP is introduced
briefly, but only systems pharmacology appears in the discussion. In
this case the subject matter is of course both QSP and systems phar-
macology. However, not all systems pharmacology research is QSP.

The distinction may be implicit; the first text book on systems phar-
macology occasionally uses QSP instead of systems pharmacology to
distinguish between dynamic modelling and other forms of network
analyses (Mager and Kimko, 2016). Furthermore, in their book, sys-
tems pharmacology was only ever defined by alluding to "Quantitat-
ive and Systems Pharmacology". Even in my previous work in 2016 Perhaps there is an

unspoken rule in
place...

"QSP" was used to separate modelling from the overall concept of sys-
tems pharmacology without explicit discussion (Knight-Schrijver et
al., 2016).

This is not describing a deep-rooted problem or intentional mis-
understanding on any part. The use of the term QSP is interesting
because it may directly stem from merging of two separate terms of
"quantitative pharmacology" and "systems pharmacology" (Allerhei-
ligen, 2010). Furthermore, the phrase "quantitative and systems phar-
macology" was used many times in the white paper and yet, "quantit-
ative systems pharmacology" was not mentioned once in the 47 pages
despite its use of the acronym QSP (Sorger et al., 2011). However, the
term did appear in an executive summary of the first QSP workshop
in 2008 (Lauffenburger, 2008).

Furthermore it is apparent that a whole sub-field of systems phar-
macology slips under the radar, which explicitly discusses traditional
chinese medicine using network analyses4. Recent proposals for the
working definition include the use of QSP as an integrative framework
for context, as opposed to more of the same modelling (Androula-
kis, 2016). However, the unspoken disparity creates an ambiguity that
makes it difficult for the reader to discern whether a proposed frame-

4 A query of "systems pharmacology"[Title] AND ("herbal"[Title] OR "chinese"[Title]
OR "TCM"[Title]) in Pubmed returned 14 hits before 2017. Zero of these are men-
tioned in Systems Pharmacology and Pharmacodynamics (Mager and Kimko, 2016)
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work is a computational model of dynamic systems or whether the
framework includes computational models as but one of its tools. A
final point of interest is that quantitative systems biology has failed
to become a substantial term in scientific literature. How did quant-
itative come to prepend systems pharmacology and not biology for
describing the same subset of concepts?

Pedantics aside, the debate I raise is that the definition is unclear;
there is an appreciable level of ambiguity in the subject matter dis-
cussed in this thesis. Furthermore, I would hazard a guess that more
than a few pharmacologists including I have paused for thought over
which of the two terms to use in context. My proposal is clear; that
QSP is synonymous with systems pharmacology modelling and re-
mains a subset of systems pharmacology which is itself the overall
concept described within the NIH white paper (Sorger et al., 2011).
After all, it was a working definition.



2
T O WA R D S A L A N D S C A P E O F S Y S T E M S
P H A R M A C O L O G Y M O D E L S .

2.1 introduction

To define the landscape of systems pharmacology models it is neces-
sary to examine the range of published articles describing QSP and
systems pharmacology approaches and assess the spread of focus
and areas of biological interest. As a field, systems pharmacology has
been slowly growing since conception. The first mention of systems
pharmacology in PubMed was in 2004 and the number of papers which
explicitly contain systems pharmacology in clearly visible text fields
has risen since (Knight-Schrijver et al., 2016) (Figure 2.1). These pub-
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Figure 2.1: Systems Pharmacology in PubMed. The unique published occur-
rences of systems pharmacology in PubMed from 2004

1.

lished accounts of systems pharmacology models describe a whole
plethora of disease mechanisms and pharmacological targets. How-
ever, it is difficult to properly examine where these models focus or to
infer how effective these models are in addressing clinically relevant
problems. One reason is that there is a degree of confusion as to how
to interpret systems pharmacology or QSP which hinders a proper ex-
amination of literature within the modelling landscape. Similar to the
rise in popularity of systems biology (Hübner et al., 2011), the defini-
tion of systems pharmacology may become obfuscated to those work-
ing within the field as the term has been used over a range of in vitro,

1 Retrieved with a query from PubMed in February 2018: "systems pharmaco-
logy"[Title/Abstract].
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statistical, and network analyses when a non-reductionist perspect-
ive is applied. Although these are approaches often seen in rational
drug discovery, when systems pharmacology models are discussed,
we are instead referring to the computational models akin to those in
systems biology: mathematical networks which are developed which
attempt to mimic real biological systems. Although this distinction
is now becoming defined by the term quantitative systems pharma-
cology (QSP), the actual definition of systems pharmacology and QSP

may still be poorly understood by a large proportion of the pharma-
ceutical industry (Nijsen et al., 2018). Further confounds to identify-
ing relevant articles for analysis manifest themselves as reviews of the
field or methods for the application of QSP. While they are certainly
of interest to the field as a whole, these are generally not considered
primary model descriptions.

In this project, text mining (TM) approaches were used to classify,
extract and analyse text information in order to define the modelling
landscape of QSP. In doing so, the range of focus upon disease is
discussed alongside the variety of biological processes and pharma-
ceutical targets.

2.1.1 Text mining

The general explosion in data over recent years, fuelled by more ef-
ficient data generation and storage technologies, drives the need for
powerful methods of data processing and extraction (Fan et al., 2014).
For the analysis of large-scale text data, TM is used which specifically
focuses on the parsing, processing and analysis of large corpora of
texts. Typical applications of TM involve generating structured dataCorpora is the

plural form of
corpus, a collection

of documents that
are usually themed.

from unstructured textual datasets to analyse trends and patterns.
This is used to create population-level insights from readily access-
ible literature sources. For instance, the wealth of scientific literature
in biology provides ample resource for studying and generating new
hypotheses (Bekhuis, 2006; Swanson, 1990). TM has seen a number of
uses in the biological sciences and the pharmaceutical industry. The
application of TM to sift through clinical trial reports may be able to ef-
fectively reduce the workload of forming systematic reviews (O’Mara-
Eves et al., 2015); at least 75 reports are being generated every day
on average which necessitates a semi-automated approach of report
handling (Bastian et al., 2010). TM has also been used to generate
valid novel hypotheses over numerous biological interactions (Swan-
son, 1990). As part of rational drug-discovery, knowledge generation
through TM can assist in the context of network construction (Saric
et al., 2005), aiding target selection and drug re-purposing within
a network pharmacology paradigm (Deftereos et al., 2011; Hopkins,
2008; Tari and Patel, 2014). For example, novel drug indications can
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be suggested from available literature databases such as Medline. In
one case, a clinical trial for treating chronic hepatitis C with thalidom-
ide was published a few years after a TM study suggested its potential
(Milazzo et al., 2006; Weeber, 2003). However in this example, more re-
cent evidence suggested a possible reactivation of the hepatitis c virus
in patients receiving concurrent thalidomide as therapy for multiple
myeloma (Mahale et al., 2015).

The need for TM here in building a picture of systems pharmaco-
logy models is evident. We can retrieve models for analysis using a
simple search over an indexed database such as PubMed. In doing so
however, several factors need to be considered. Firstly, the size of the
data set is large. PubMed is one of the largest medical literature re-
sources with over 28 million indexed articles; there is a vast swathe of
literature to sift through to exhaustively capture the landscape of QSP

and systems pharmacology. Secondly, large-scale datasets are noisy;
even a simple search query using only the key defining phrase systems
pharmacology or model returns many false-positives which may influ-
ence conclusions. For instance, a review article or a methodological
paper might bias the result or indeed any other text that mentions
a model. Finally, the ability to retrieve all relevant texts is limited
using simple queries as relevant research and models undoubtedly
exist which were published prior to or independent of the emergence
of QSP. These studies (in content, concept and methods) would inher-
ently be classed as QSP but are missing key words used in the current
climate of QSP or systems pharmacology. Therefore, it is necessary to
employ TM methods to define the evolved landscape of systems phar-
macology models independent of the coined name, maximising the
recall as well as the precision.

2.1.1.1 Natural language processing

Retrieving information from text is the basis for most text mining ap-
plications and begins by translating the text into useful data. Natural
Language Processing NLP is used to split text into components and
in doing so, the document is rendered accessible to interpretation by
statistical methods, machine learning approaches and other data ana-
lysis techniques.

text parsing and tokenisation The conversion of structured
or unstructured text into useful data often begins by parsing the
text. With a few exceptions, words in written English can usually
be segmentated by whitespace " " and sentences can be parsed using
a full stop "." as a delimiter (the evolution from example 2.1 to ex-
ample 2.2). Segmentation or tokenisation produces an ordered list of
character strings ready for interpretation which can consist of single
(unigrams) or multiple words (n-grams). When the order or distance
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between tokens within each document is not considered important
for the question, a bag of words model is used where the position of
each token is independent of one another. Inference over this model
assumes that the mere co-occurrence of words within the document
provides enough evidence to draw satisfactory conclusions and can
often be used for text classification tasks.

QSP increases drug development e f f iciency. (2.1)

word token︷ ︸︸ ︷
[QSP] [ ][increases][ ][drug][ ][development][ ][e f f iciency]︸ ︷︷ ︸

sentence

[.] (2.2)

semantics and linguistic annotation In addition to token-
isation, semantic concepts can be applied to ordered sets of words so
as to minimise misinterpretations resulting from polysemy or syn-
onymy. Annotation of domain-specific text is often carried out us-
ing standard ontologies or vocabulary databases such as the Unified
Medical Language System (UMLS) Metathesaurus and medical subject
headings (MeSH®) (Demner-Fushman et al., 2010; Lipscomb, 2000). In
a simple example (2.3), the predicate increases can be interpreted as
one synonym for the concept of positive regulation. Likewise, the word
drug is synonymous for several other words which could fall under
the concept of pharmaceutical or other suitable definition. A simplistic
example of this, is the interpretation of 2.3 as entity-relationship-
entity, implying positive interaction between QSP and drug develop-
ment.

[QSP]︸ ︷︷ ︸
named entity

positive regulation︷ ︸︸ ︷
[increases]

named entity︷ ︸︸ ︷
([drug]︸ ︷︷ ︸

compound
drug

medicine

[development]) [e f f iciency]︸ ︷︷ ︸
positive attribute

(2.3)

In retaining token positions, the generation of such entity-relationship-
entity "tuples" by annotating tokens with semantics is useful for higher
resolution analysis. Extraction of directed relationships between known
and unknown entities can be key in network construction tasks like
phosphorylation interaction networks (Tudor et al., 2015), gene regu-
latory networks (Song and Chen, 2009) or drug interaction networks
(Iyer et al., 2014). Using deeper levels of linguistic annotation andFor avid readers, an

interactive
demonstration of

syntactic sentence
parsing and parsing

trees can be seen
with Enju2.

sentence parsing, natural language processing (NLP) is also applied
to study more complex relationships like biological pathways with

2 Online demo for Enju courtesy of the National Centre for Text mining (NaCTeM):
www.nactem.ac.uk/enju

www.nactem.ac.uk/enju
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multiple entities. Examples can be seen in efforts such as EventMine
or the Big Mechanism programme which aims to extract large mech-
anistic networks from the wealth of literature (Cohen, 2015; MIWA
et al., 2010). Extended discussion on state-of-the-art semantic annota-
tion is non-trivial and pushes outside the scope of research. Readers
are advised to see dedicated reviews, tools and example work flows
for further information (Gonzalez et al., 2015; Jensen et al., 2006; Ser-
nadela and Oliveira, 2017). In the project here, I only consider the
annotation of entity synonyms.

2.1.2 Document classification

Text classification has a variety of real world applications such as
email filtering, plagiarism or malware detection (Alsmadi and Al-
hami, 2015; Oprisa et al., 2013). Document classification involves cal-
culating the similarity of novel documents to a set of predefined cat-
egories generated in training. This means that classifiers use data ex-
tracted from texts such as tokens, structure or other content generated
through NLP. Classifiers can be supervised or unsupervised. A super-
vised classifier is given document class labels as well as the input
data and are trained by building associations between the data and
the class. Examples of supervised classifiers for text categorisation in-
clude the naïve Bayes classifier (NBC), K-nearest neighbour (KNN) or
support vector machine (SVM) methods (Joachims, 1998; McCallum
and Nigam, 1998; Trstenjak et al., 2014). Performance between these
methods has been evaluated in many studies and the accuracy is com-
parable (Yang and Liu, 1999; Yu, 2008).

An unsupervised classifier on the other hand uses only the input
text data to generate output classes from the observations. Because no
class labels are given to be trained against, unsupervised algorithms
are designed to quantify differences between groups of observations,
separating groups where large differences occur. This results in the
clustering of similar observations. Unsupervised classifiers are gen-
erally clustering algorithms such as K-Means Clustering (Singh et
al., 2011). One example of K-means clustering will randomly assign
k observation values as class means. Class clusters are then created
by categorising the remaining observations according to the closest
mean. The class means are then recalculated by computing the class
centroids and the exercise is repeated until convergence. Because they
are unbiased, unsupervised classification methods can also be used
in feature selection for supervised methods and have been shown to
build highly decisive feature subsets for text classification tasks (Zhou
et al., 2014). While these methods typically use a bag of words model,
more recent approaches successfully use ordered representations of
sentence and paragraphs such distributed memory models (Baker et
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al., 2016; Le and Mikolov, 2014). Document classification in this pro-
ject is performed using the NBC. The NBC is easy to implement within
a work flow of feature selection and works "surprisingly well" un-
der the general assumptions of term independence. Furthermore, the
NBC is relatively easy on computation and copes well with handling
highly-dimensional data.

2.1.2.1 Naïve bayes classifier

The NBC traditionally comes in two flavours, the Bernoulli model and
the multinomial model (McCallum and Nigam, 1998). Both classifiers
utilise Bayes’ theorem of conditional probability and assumptions of
independence between observed events. Here the multinomial form
is used which accounts for word frequency between articles and is
suitable for the text length of research abstracts. Another form of
the NBC is the Bernoulli model which only takes into account binary
appearances of each term within a document.

bayes’ rule in document classification A typical repres-
entation of Bayes’ rule is seen in equation 2.4. The probability that
C occurs, given that D occurred (denoted by P(C|D)), is equal to the
prior probability of C occurring, P(C), multiplied by the posterior
probability of the event D given that C has also occured, P(D|C). This
is divided by the probability of D (P(D)).

P(C|D) =
P(D|C) · P(C)

P(D)
(2.4)

We can interpret this with respect to document classification where
class is C and the features of a document is D, our evidence. As
P(D) is the probability of drawing the evidence in posterior, it can
be practically omitted for classification purposes as the evidence is
constant in all class decisions. The probability then of C occurring
given the observation of D, is proportional to product sum of prior
and posterior probabilities (Equation 2.5.).

P(C|D) ∝ P(D|C) · P(C) (2.5)

If instead, D is a vector of character strings such as words or tokens
of length n, D = (w1, w2, ...wn), the equation can be re-written to ac-
count for the likelihood of all evidence occurring.

P(C|(w1, w2, ..., wn)) ∝ P((w1, w2, ..., wn)|C) · P(C) (2.6)

multinomial distribution Suppose that you have three large
bags of words and that someone has dipped a small container into
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one, retrieving a portion of words at random. To which bag does the
vessel of words belong? Suppose that instead of three bags, you have
now a room full of bags, of which there are three types or classes.
Calculating the probability that your container was dipped into either
one of these bag types is the premise of the multinomial naïve bayes
classifier (mNBC) in text classification. The multinomial distribution is
used to describe the probability of selecting a sequence of independ-
ent events. Using the bag-of-words model as an example, a sequence
of words of length n is drawn with replacement from a bag of words
with the unique vocabulary |V|. The words w1, w2, ..., wt in |V| occur
at different frequencies within the bag as represented as fractions (pt)
of the total number of words.

|V|

∑
t=1

pt = 1 pt > 0 (2.7)

When a document is represented by a vector of wt counts, d = (x1, x2,
..., x|V|), each word can be modelled as a xt successive draws given by
the probability of wt: pt in p1, p2, ..., p|V|. The document, as a sequence
of words, is modelled by a multinomial distribution and parametrised
by the number of words n and the probability of each word in the bag
pt (Equation 2.8.).

P(d) =
n!

∏|V|t=1 xt!
·
|V|

∏
t=1

pxt
t (2.8)

For each class in C then, pt is substituted for the conditional prob-
ability of wt given C (Equation 2.9.). For simplicity, the multinomial
coefficient is discarded from equation 2.8 as the number of sequence
combinations is constant between classes for a given document.

P(C|d) ∝ P(C) ·
|V|

∏
t=1

p(wt|C)xit (2.9)

In forming a prediction, the document class is then chosen by a
maximum a posteriori (MAP) decision and the least improbable cat-
egory is selected to classify the document. The core structure of the
algorithm used in this research is given in Listing 2.1.

Listing 2.1: A multinomial Naïve Bayes Classifier4.

model(C,D)

1 V <- ExtractFeatures(D)

2 N <- CountDocuments(D)

3 for each class c in C

4 Nc <- CountDocumentsInClass(D,c)

5 priors[c] <- Nc / N
6 textc <- tokeniseTextOfClass(D,c)

7 textc <- textc ∈ V
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8 for each term t in V
9 Tct <- countTokensOfTerm(textc,t)

10 condprob[c,t] <- Tct+1
length(textc)+length(|V|)

11 return(V, priors, condprob)

predict(C,V, priors, condprob,d)
1 W <- FeaturesInModel(V,d)

2 for each |class| c in C

3 score[c] <- log(priors[c])

4 for each t in W
5 score[c] <- score[c] + log(condprob[c,t])
6 return(max(score))

2.1.2.2 High-dimensionality and dimension reduction

One challenge of TM is the abundance of features formed from the
terms within the corpus. The NBC performs well with high-dimension
data sets but like other classifiers, an abundance of bad predictors
can lead to a low accuracy and general poor efficiency. Therefore,
choosing a set of highly predictive word tokens is an essential process
in text classification.

Common approaches for reducing feature dimensionality are wrap-
per or filter methods (Kohavi and John, 1997; Sánchez-Maroño et al.,
2007). Between the two, filter methods are less computationally in-
tensive. Wrapper methods are machine learning algorithms that se-
lect subsets of features for evaluation, often used after a filter method.
One example of algorithms used for wrapper-based feature selection
is the random forest algorithm (Breiman, 2001; Vora and Yang, 2017).
Filter methods are implemented by indexing features by their value
as predictors. A common and simple filtering approach is to rank
features by the term frequency within the corpus. In this case, high
frequency terms may be noisy predictors, offering little discrimin-
atory information due to their ubiquity. More complex methods of
filter approaches to dimension reduction can be seen with calculat-
ing information gain, which quantifies the information that a feature
provides about a class (Dasgupta et al., 2007), or methods derived
from calculating chi-square statistics (Jin et al., 2015). The results of
these approaches are often seen to be correlated and their accuracy
is still comparable to that of simple methods such as document fre-
quency when using large enough feature sets (Forman, 2003; Yang
and Pedersen, 1997). A high frequency term may provide a great dis-
criminatory power as its between-class distribution may be more well-
defined. Based on this observation, non-parametric statistical tests

4 Model training and prediction algorithm psueo-code adapted from Manning et al.
(2008).



2.2 materials and methods 25

such as a Kruskal-Wallis (Kruskal and Wallis, 1952) could also be
used to determine the value of features as inter-class discriminants
(Vora and Yang, 2017). Additionally when comparing word features,
a heuristic weighting function called term frequency-inverse docu-
ment frequency (TF-IDF) can be applied to terms within a corpus. This
method of term weighting calculates the frequency of terms and acts
to penalises those which occur frequently in documents. It is gen-
erally considered practical to weigh against words which have very
little eliteness (Robertson, 2004). These filter methods consider that
features are univariate and are independent which suits the assump-
tions in NBC models.

2.1.3 Previous work, aims and goals

A review by Hübner et al. (2011) in the field of biochemistry details
trends and patterns in systems biology modelling. However, no pre-
vious studies attempt to capture the picture of systems pharmaco-
logy modelling to such a degree. Furthermore, the definitions of sys-
tems pharmacology are loose which makes a simple query ineffective.
Therefore, in an effort to capture the essence of systems pharmaco-
logy modelling, we constructed a more complex TM query to recall
relevant research abstracts from Medline dated from 1965 to 2015.
The aims were to: 1) accurately retrieve a corpus of systems phar-
macology models; and 2) extract entity information to examine the
properties of the pharmacological modelling over the last 50 years
covering diseases, chemicals, genes and other entities in order to gen-
erate a landscape of systems pharmacology models.

2.2 materials and methods

This section describes the tools and software, the sources of data and
the work flows used to define the QSP modelling landscape through
TM.

document retrieval and clinical trials data Initial doc-
ument retrieval, including the extraction of MeSH® terms, disease cat-
egories and clinical trials data was carried out using the NLP data
mining program, I2E© version 4.2 (Linguamatics). Further analysis,
generation of figures and classification of the retrieved literature ab-
stracts was carried out in in R (R Core Team, 2016). The positive terms
in the initial search query are seen in list 2.2. A list of negative terms
such as structural model or protein folding was added to remove noise
similar to the query design by Hübner et al. (2011). Of course in my
research, terms such as pharmacokinetic or pharmacodynamic were not
negative terms.
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Figure 2.2: I2E search query. Positive terms in the I2E search query. * = word
pluralisms; ^= case sensitive. These terms are an "OR" relation-
ship.

Biological Modelling
Computational Biology

Computational Biology Models
computational* biology model*
Dynamic Model

dynamic* model*
Model* Dynamic*
computational* biology model*

Mathematical Model
Mathematical Model*
mathematical models
Quantitative Model*
mathematical biology model*
Differential Equation Models

ODE* model*
differential equation*
ordinary differential equation* model*
partial differential equation* model*
Model* by* differential equations
Model* by* ODE*

Compartmental Models
multi-compartmental model*
compartmental model*
compartment* model*
compartment model

Systems Models
systems model
agent-based model*
Systems Biology Models

computational system*
"systems biology model*"
theoretical* model*
theoretical model
model*, systems biology
model* of systems biology

Systems Pharmacology Models
systems pharmacology model*
model* of systems pharmacology
model*, systems pharmacology

Systems Medicine Models
systems medicine model*
model* of systems medicine
model*, Systems Medicine

Systems Physiology Models
systems physiology model*
model*, systems physiology
model * of systems physiology

Kinetic Models
Kinetic* model*
kinetic-metabolic model*

Computer Simulation
computer simulation*
computational model*
mathematical simulation*

Modelling Programs
copasi
gepasi
simbiology
dbsolve
celldesigner
SAAM^II^
jdesigner
biopax
SBworkbench
xpp
xppaut
Matlab
Dizzy^
biology toolbox

Modelling Languages
cellml
sbml
systems biology markup language
MIRIAM^

Computational Biology Databases
BioModel
BASIS^
Biomodels Database

path2models
biomodel ID
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corpora Abstract corpora used for classification were downloaded
directly from PubMed in extensible markup language (XML). The
annotated set of abstracts for model training and testing purposes
were compiled before optimising the model by reading abstracts ac-
quired from iterative basic queries. These were manually annotated
into three classes. Abstracts were marked as either true-negative (TN),
true-positive biology (TPB) or true-positive pharmacology (TPP) with
respect to computational systems models. Additionally if abstracts
were from articles describing models (TPP or TPB classes), an effort
was also made to store and curate the models on the BioModels Data-
base. The sizes of the corpora and the distribution of classes within
the annotated corpus are seen in Table 2.1.

Corpus Number of Documents

Query retrieved abstracts 1
372,967

Annotated TN abstracts 1,2 845

Annotated TPB abstracts 2,3 767

Annotated TPP abstracts 2,3 128

Sources: 1, retrieved using I2E query 8 in 2015 (without negations) from
Medline (1965 - 2015); 2, manually annotated abstracts retrieved during
query optimisation and dataset sampling; 3, sorted abstracts from models
stored in the BioModels Database.

Table 2.1: The size of corpora used in this study.

text processing A number of different tasks form the work flow
for text processing. To create data for a useful bag-of-words model, 6

steps were carried out:

1. Upper case characters were replaced with lowercase equival-
ents.

2. Punctuation characters were removed (with the exception of hy-
phenated word compounds).

3. Common English stop words were deleted (listing 2.2).

4. Words were stemmed using Porter’s stemming algorithm with
English (Porter, 1980).

5. Abstract strings were parsed by space (" ").

6. n-grams ranging between one and ten were generated over uni-
gram sequences.

data normalisation and analysis Data were normalised
and weighted using TF-IDF. In this calculation of TF-IDF, the term fre-
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quency TFtd is created for each term t per document d (Equation
2.10.).

TFtd =
Ftd

∑|t|t′∈d Ftd

(2.10)

The inverse document frequency for a given token (IDFtD) is then
defined by taking the logarithm of the total number of documents N
in the corpus D, divided by the number of documents with a non-
zero count of the term t nt (Equation 2.11.). A psuedocount is added
to all terms.

IDFtD = log
(

N
1 + nt

)
(2.11)

Finally, TF-IDF is given as the product of both the TFtd and the IDFtD.

statistical tests and feature reduction Supervised stat-
istical analyses were carried out over the TF-IDF distributions. Non-
parametric testing of one-criterion variance was carried out using the
Kruskal–Wallis test (Kruskal and Wallis, 1952). This assumes that the
class word distributions can be statistically modelled by an approx-
imate χ2 distribution with |K| − 1 degrees of freedom (|K| being the
number of unique classes). Feature reduction was carried out by fil-
tering over the list of tokens ordered by the descending χ2 and post-
hoc pairwise comparisons were made using Conover’s test (Conover,
1999) in cases where the Kruskal-Wallis null hypothesis was rejected.

measures of classification Standard measures of classifica-
tion were used here. Recall of individual classes is observed using the
standard formula (equation 2.12). The recall measures the fraction of
a total class population that the classifier is able to correctly identify.
The recall of a class K in a predicted set of documents D is given by.

Recall =
K ∩ D

K
(2.12)

Likewise, precision is defined by the canonical equation 2.13 and de-
tails the extent to which the classifier is stringent and correctly classi-
fies a document as class K within D, the set of documents predicted
as K.

Precision =
K ∩ D

D
(2.13)
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Finally, the harmonic mean of both recall and precision is often used
to report the effectiveness of classification (Rijsbergen, 1979) which is
usually defined as the F1 score (equation 2.14).

F1 =
2 · Recall · Precision
(Recall + Precision)

(2.14)

named entity recognition and annotation Extraction of
annotated entity information was carried out using automatically an-
notated versions of abstracts from PUBtator accessed via the REStful
api in R (Wei et al., 2013). The full list of annotations were mapped
from lesser Online Mendelian Inheritance in Man (OMIM©, https:
//omim.org/) and MeSH® (2018) terms onto MEDIC-slim terms (Davis
et al., 2012). Disease synonym mappings were derived from the com-
parative toxicogenomics database (CTD) (Davis et al., 2016). Software
entity extractions were carried out straight forward regular expres-
sion (regex) string matching commands. This was under the simple
observation that an ordered string of words containing the term soft-
ware would likely have the name of the software one word adjacent
to it.

Listing 2.2: Common English stopwords

a, about, above, across, after, again, against, all, almost, alone, along,already, also, although,

always, am, among, an, and, another, any, anybody,anyone, anything, anywhere, are, area, areas, aren’t,

around, as, ask, asked,asking, asks, at, away, b, back, backed, backing, backs, be, became,

because,become, becomes, been, before, began, behind, being, beings, below, best, better,between, big,

both, but, by, c, came, can, cannot, can’t, case, cases, certain,certainly, clear, clearly, come,

could, couldn’t, d, did, didn’t, differ,different, differently, do, does, doesn’t, doing, done, don’t,

down, downed,downing, downs, during, e, each, early, either, end, ended, ending, ends,enough, even,

evenly, ever, every, everybody, everyone, everything, everywhere,f, face, faces, fact, facts, far,

felt, few, find, finds, first, for, four,from, full, fully, further, furthered, furthering, furthers,

g, gave, general,generally, get, gets, give, given, gives, go, going, good, goods, got, great,greater,

greatest, group, grouped, grouping, groups, h, had, hadn’t, has, hasn’t,have, haven’t, having, he,

he’d, he’ll, her, here, here’s, hers, herself, he’s,high, higher, highest, him, himself, his, how,

however, how’s, i, i’d, if, i’ll,i’m, important, in, interest, interested, interesting, interests,

into, is,isn’t, it, its, it’s, itself, i’ve, j, just, k, keep, keeps, kind, knew, know,known, knows, l,

large, largely, last, later, latest, least, less, let, lets,let’s, like, likely, long, longer, longest,

m, made, make, making, man, many,may, me, member, members, men, might, more, most, mostly, mr, mrs,

much, must,mustn’t, my, myself, n, necessary, need, needed, needing, needs, never, new,newer, newest,

next, no, nobody, non, noone, nor, not, nothing, now, nowhere,number, numbers, o, of, off, often, old,

older, oldest, on, once, one, only,open, opened, opening, opens, or, order, ordered, ordering, orders,

other,others, ought, our, ours, ourselves, out, over, own, p, part, parted, parting,parts, per,

perhaps, place, places, point, pointed, pointing, points, possible,present, presented, presenting,

presents, problem, problems, put, puts, q,quite, r, rather, really, right, room, rooms, s, said, same,

saw, say, says,second, seconds, see, seem, seemed, seeming, seems, sees, several, shall,shan’t, she,

she’d, she’ll, she’s, should, shouldn’t, show, showed, showing,shows, side, sides, since, small,

smaller, smallest, so, some, somebody,someone, something, somewhere, state, states, still, such, sure,

t, take,taken, than, that, that’s, the, their, theirs, them, themselves, then, there,therefore,

there’s, these, they, they’d, they’ll, they’re, they’ve, thing,things, think, thinks, this, those,

https://omim.org/
https://omim.org/
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though, thought, thoughts, three, through,thus, to, today, together, too, took, toward, turn, turned,

turning, turns,two, u, under, until, up, upon, us, use, used, uses, v, very, w, want,wanted, wanting,

wants, was, wasn’t, way, ways, we, we’d, well, we’ll, wells,went, were, we’re, weren’t, we’ve, what,

what’s, when, when’s, where, where’s,whether, which, while, who, whole, whom, who’s, whose, why, why’s,

will, with,within, without, won’t, work, worked, working, works, would, wouldn’t, x, y,year, years,

yes, yet, you, you’d, you’ll, young, younger, youngest, your,you’re, yours, yourself, yourselves,

you’ve, z

2.3 results

This section documents the output of an initial model retrieval query
and subsequent classifier optimisation followed by the analysis of ex-
tracted information. The initial query was formed as part of earlier
work throughout my research and was published in 2016 (Knight-
Schrijver et al., 2016). The account of this work here illustrates the
query terms used in the initial query as well as some of the noise
mitigation steps taken while constructing it. The classifier was con-
structed after this research and remains an account of the extra efforts
taken to reduce the set of articles using an effective text classification
model. Finally, the results of abstract entity annotation are reported
which reveals population-level content of the predicted systems phar-
macology models.

2.3.1 Corpus retrieval

An indexed and annotated corpus of Medline abstracts was made
available through I2E©, a proprietary NLP data mining software. Us-
ing this corpus, an initial search query was constructed and optimised
in an iterative fashion to maximise the recall of a positive dataset, Bio-
Models Database (Le Novère et al., 2006). Key descriptors of compu-
tational modelling within biology and pharmacology were included
2.2.

2.3.1.1 Building a suitable query

Key terms used to retrieve modelling articles were generated subject-
ively based upon the general terms expected to be discussed within
modelling research. For example, "computational biology", "ordinary dif-
ferential equation" and "mathematical model". Improvements to the query
were made by examining the output, identifying both relevant and ir-
relevant articles, and adding the key terms within them to the next
query. These incremental modifications to the query structure and
content resulted in linear increases of recall as measured using the
positive control data at the time (Figure 2.3). However, the rise in re-
call resulted in greater gains in the total number of retrieved articles.
Without drastic measures of noise control, the relationship appeared
to be exponential. Recall of positive articles was the only metric avail-



2.3 results 31

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50000

100000

150000

200000

250000

B

Recall Total Papers

Query Number

R
e

ca
ll

To
ta

l p
a

p
e

rs
 r

e
tr

ie
ve

d

Figure 2.3: Initial query optimisation. After each query, the output was ex-
amined and obvious terms from both relevant and irrelevant ab-
stracts were added to the query. This increased the recall of the
positive control data.

able for evaluating the queries as the distribution of positive abstracts
within the population of PubMed articles remained unknown. Evalu-
ation and update of the query were carried out by assessing the out-
put at each stage and manually identifying features which contribute
to type one document retrieval errors. One effort to increase the pre-
cision and mitigate against false positive abstracts used MeSH® terms.
We extracted all MeSH® terms from our annotated datasets and com-
pared them with the MeSH® terms within our total population of re-
trieved abstracts (Figure 2.4). Within I2E©, the relative complement C
\ B, totalling 2 454 MeSH® terms, was used as a negations list for query
9. Positive document MeSH® terms within C were shared also shared
by B. This intersection of 828 MeSH® terms between the two class pop-
ulations was retained in addition to the complement of B∪C. This en-
sures that potentially positive articles with both non-novel and novel
MeSH® enrichment are still retrieved. Substantial noise was elimin-
ated from the query by including this MeSH®-fingerprint. By actively
filtering against these MeSH® terms, a three-fold reduction in the total
number of retrieved articles was seen while maintaining the recall
of the true positive data set. The effect is be shown in the difference
between queries eight and nine in Figure 2.3. However, sampling the
results of both MeSH® filtered and unfiltered retrievals suggested a
bias towards BioModels-like abstracts, with a loss in the number of
novel systems pharmacology models.
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            A B    C

52247  2454     828                            82

Figure 2.4: A, MeSH® terms not associated with either manually curated sys-
tems biology or true-negative articles; B, MeSH® terms associ-
ated with manually curated true-negative articles; and C, MeSH®

terms associated with manually curated systems biology articles.
The total population of MeSH®

2014 terms was 55 611 given by
(A∪ B∪C).

2.3.1.2 Comparing the focus of clinical trials and modelling

The abstracts retrieved from query eight, clinical trial studies and the
positive control of systems biology model abstracts were then passed
back through I2E© to extract named disease entities. Using this ap-
proach the disease coverage of proposed systems models were com-
pared with clinical trials and the BioModels Database as a positive
control.

The findings tenuously suggested both areas of overlap and dis-
joint between modelling and clinical agendas covering the last 50

years (Knight-Schrijver et al., 2016) (Figure 2.5). For example, Neo-
plasms was the most enriched disease category in all datasets. How-
ever, less of an enrichment was seen in Immune System Diseases, Respir-
atory Tract Diseases and Digestive System Diseases comparing the query
result to clinical trials.

The preliminary study assumed that the disease enrichment profile
of the BioModels Database largely represented the focus of modelling
in systems pharmacology. While this may or may not have been the
case at the time, the precision was low, making any meaningful ana-
lysis difficult. It was unlikely that the retrieved abstracts were truly
all published accounts of systems modelling let alone systems phar-
macology. Samples suggested a maximal precision of 18 per cent for
systems modelling articles but only five per cent for articles on phar-
macometrics or systems pharmacology. Even using the MeSH® finger-
print, the query returned a substantial number of abstracts and may
have biased the retrieval for BioModels-like articles. Furthermore, as
the query made no serious effort to separate systems biology and
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Figure 2.5: Disease category enrichment of texts in Clinical trials, BioModels
Database and the I2E© query corpora covering the last 50 years.
(taken from Knight-Schrijver et al. (2016)).

pharmacology models, the analysis also was not well-suited to study
the landscape of systems pharmacology models alone.
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For want of better precision then, the task was set about to first
reduce the noise of the query results while maintaining the sensitivity
in positively retrieving QSP and other systems modelling abstracts
from PubMed.

2.3.2 A naïve Bayes classifier for modelling texts

The less-than-ideal recall and dubious precision warranted a more
stringent method of document retrieval. The construction and optim-
isation of a mNBC for text categorisation was carried out to achieve a
more accurate dataset for a more meaningful analysis. Here we con-
sider three classes of document; true negative (TN), true positive bio-
logical models (TPB) and true positive pharmacological models (TPP).
For this research we are most interested in extracting information
from TPP-class abstracts as they are putative systems pharmacology
models.

2.3.2.1 Optimisation of the NBC

The mNBC model is based upon the underlying distributions in the
data and has no formal iterative learning steps. Therefore, it is best
to optimise an mNBC by determining the most efficient feature subset
which best discriminates between classes.

The number of words in a feature is considered important for clas-
sification. By generating n-grams, we can group multiple words to-
gether allowing the classifier to use features where words appear
adjacent to each other in documents. For example, as we are clas-Here, gram

describes the number
of words or tokens in
a given string. I use
the terms unigram,
bigram and n-gram

to refer to strings
containing 1, 2 and

n adjacent words.

sifying systems pharmacology models, the n-gram of length three,
"systems pharmacology model", could be a useful predictive feature.
To determine the added value of including n-grams in our feature
set, a list of n-grams of lengths one to ten were generated across all
training documents resulting in 1 777 337 features. Removing those
that occur only once and selecting those that were significantly dif-
ferent between the three classes returned 3 959 n-grams of length one
to six (p < 0.05, Kruskal–Wallis test). The performance of the mNBC

was then calculated using feature sets made from different n-gram
sizes in an attempt to optimise the classifier. We show that for our
classification model, all feature subsets with a n-grams greater than
one outperformed the unigram-only features. This can be seen as
a mean increase in prediction accuracy of 2.2 per cent in test data
between unigrams and bigrams (p < 0.01, one-way analysis of vari-
ance (ANOVA))(Figure 2.6).
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Figure 2.6: The overall accuracy of the n-gram variations shown as the frac-
tion of correct predictions (left) or as a plot of Recall against Pre-
cision (right) of TN (magenta), TPB (orange) and TPP (cyan) pre-
dictions. For each n-gram, ten models were trained on a random
sample of 60 per cent of abstracts and then used to predict the re-
maining 40 per cent for an unbiased measure. The abstracts were
manually annotated before splitting (see Materials and Methods).
Error bars are the standard deviation of these ten models.

Furthermore, significant increases in both Precision and F1 but not
Recall were seen in TPP classed abstracts when incorporating n-grams
above 1. (p < 0.001, one-way ANOVA). The largest gain in classifier
function was achieved by including bigrams as the Precision and F1

scores of test TPP abstracts were enhanced by 12 and 8 percent respect-
ively (Figure 2.7). Gains in recall were only modest in comparison and
were only significant in TPB abstracts. The increase in Precision versus
Recall was be seen in Figure 2.6 as the TPP class predictions crossed
a 0.75 F1 boundary. The highest performance was observed with a
feature set containing only unigrams and bigrams. Predictive scores
for TPP abstracts were lower than those for TN or TPB categories. The
exception to this is the recall of training data (Figure 2.7).
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Figure 2.7: Mean Recall, Precision and F1 scores for both training (left
column) and test (right column) abstracts for n-grams of length
1 to 6. For each n-gram, ten models were trained on a random
sample of 60 per cent of abstracts and then used to predict the re-
maining 40 per cent for an unbiased measure. The abstracts were
manually annotated before splitting (see Materials and Meth-
ods). Error bars are the standard deviation of these ten models.
F1 scores are the harmonic mean between Recall and Precision
(Equation 2.14).
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To further define our feature set, a filter approach was used which
covered the full list of unigram and bigram features. We can carry
out a filtering approach by generating a feature weight metric and
ordering the features by their descending score. This acts to filter out
the weakest predictors by their position at the bottom of the ordered
list. Firstly, features were removed that appeared in or mentioned
annotated genes, diseases or chemicals this was to mitigate against
bias in downstream analysis. The features were then ranked using
Kruskal–Wallis χ2 values obtained by testing between class TF-IDF

distributions. The use of a non-parametric test was justified by test-
ing for normality (Shapiro-Wilk test p values were reported between
4.7× 10−34 and 8.8× 10−8 across the classes). We generated optim-
isation curves for the classifier by descending through ranked fea-
ture space. For each set of features, three mNBC models were gener-
ated and tested over randomly sampled abstracts. The results show
that a feature set consisting of the first 3 546 highest ranked features
provides the best mean F1 score (80 per cent) and precision (82 per
cent) in test data with a recall of 78 per cent in TPP abstracts (Figure
2.8, Table 2.2).
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Figure 2.8: Feature reduction optimisation. Mean and standard deviation of
classifier performance measures n = 3) across both training (left
column) and test (right column) abstracts. For each feature set,
the classifier was trained and tested three randomly assigned par-
titions of 60 per cent training and 40 per cent test abstracts. The
abstracts were manually annotated before splitting (see Materials
and Methods). The opacity and area are the standard deviation
of these three models.

It is interesting to see that the model predicts training data well
even after 6 800 features while the predictive power on test data was
seen to decrease after approximately 3 500 features. This may be a res-
ult of model overfitting as more training specific and less generalised
word features are used for the model. The word stem features with
the most predictive power included "pharmacokinet", "system phar-
macolog" "pharmacolog", "drug" "dose" and "model" which heavily
influenced positive selection for TPP abstracts. Interestingly, the term
"experiment" was largely associated with TPB abstracts (Figure 2.9).
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Class Recall (%) Precision (%) F1 (%)

TN 87.6 +− 2.48 91.9 +− 0.660 89.7 +− 1.45

TPB 93.5 +− 0.418 88.2 +− 2.05 90.8 +− 1.25

TPP 77.9 +− 4.60 82.3 +− 5.42 80.0 +− 4.35

Values as mean +− standard deviation, n = 3.

Table 2.2: Naive Bayes Classifier statistics using the optimised set of 3 546

features.

The NBC classifier will use these word probabilities as seen in Figure
2.9. For example, a document with frequent occurrences of "experi-
ment" and "pathway" would be preferentially classed as a TPB docu-
ment unless it also had many counts of high-frequency TPP features
such as "drug interact" or "pharmacometr".
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Figure 2.9: Centroids of normalised feature frequency between classes (the
top 3 546 features). Features were normalised to their maximal
frequency between the classes. Significantly different TF-IDF word
features are highlighted (p < 0.01, pairwise Conover test across
all combinations).
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2.3.2.2 Classification of the query results

The accuracy of the mNBC after optimising the features was 89.5 +−

1.44 per cent (mean +− standard deviation, n = 3) in predicting test
data. Using this model, the abstracts retrieved using query eight (n =

372 967) were classified. Only 5 432 (1.5 per cent) of these were cat-
egorised as TPP articles while 56 714 (15.2 per cent) of the abstracts
were classed as TPB. The remaining 83.3 per cent were categorised as
TN (Figure 2.10).
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Figure 2.10: The number of predicted abstracts per class for the I2E© query
corpus for the period between 1965 and 2015.

2.3.3 Annotation and entity extraction.

We extended the methods used to examine the results of the I2E©

query, the TPP abstracts were enriched for disease as well as gene and
chemical entities. This was carried out by passing the TPP PubMed
identifiers programmatically through PubTator (Wei et al., 2013) and
parsing the results in R. The rest of this chapter will focus upon these
annotations of TPP category abstracts under the assumption that they
represent pharmacological modelling research.

Looking at a cumulative view of the past 50 years, the top three
enriched disease categories in TPP abstracts were Cancer, Nervous Sys-
tem Diseases and Cardiovascular Diseases (Figure 2.11). This was similar
to the published query result (Figure 2.5)). However, in contrast with
the original query, the fraction of TPP abstracts enriched with Immune
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System Diseases or Digestive Systems Diseases were two-fold higher. Ad-
ditionally, the classifier appears to have removed a large fraction of
documents discussing Wounds and Injuries which were present in the
initial query. The higher precision and recall using the classifier com-
pared with the query resulted in a closer match of systems pharmaco-
logy modelling and clinical disease agendas across this time period.

Environmental origin disorders
Occupational disease

Animal disease
Fetal disease

Ear−nose−throat disease
Mouth disease

Connective tissue disease
Infant−newborn disease

Parasitic disease
Lymphatic disease

Eye disease
Pregnancy complication

Nutrition disorder
Substance−related disorder

Wounds and injuries
Viral disease

Congenital abnormality
Skin disease

Musculoskeletal disease
Endocrine system disease

Genetic disease (inborn)
Respiratory tract disease

Mental disorder
Blood disease

Immune system disease
Digestive system disease

Bacterial infection or mycosis
Metabolic disease

Urogenital disease (male)
Urogenital disease (female)

Cardiovascular disease
Nervous system disease

Cancer

0 10 20

Enrichment (% annotated abstracts)

Figure 2.11: Disease enrichment of systems pharmacology. Abstract annota-
tions were retrieved from PubTator and mapped to higher
MEDIC-slim categories.
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To examine trends in disease focus since 1980, the annotated ab-
stracts were separated by date. Initially, the dominant focus was in
Urogenital Diseases however this all but vanished by 2010 (Figure 2.12).
Throughout this period TPP abstracts were increasingly annotated
with Cancer and Nervous system disease. However, it it interesting to
see that there was a sudden interest in the category of Bacterial infec-
tions or mycosis in the mid nineties which surpassed the fraction of
Cardiovascular disease annotations in 2015.
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Figure 2.12: Disease enrichment of systems pharmacology over time. Ab-
stract annotations were retrieved from PubTator and mapped
to higher MEDIC-slim categories. Plotted lines are the average
percentage over ten years.

The majority of predicted systems pharmacology models discuss
Homo Sapiens within the abstract or title followed by the common rat
and the house mouse (70 per cent, 21 per cent & ten per cent respect-
ively, table 2.3). The most common gene entities in TPP abstracts code
for metabolic enzymes such as CYP3A4 and important pharmacolo-
gical targets such as the drug efflux transporter ABCB1, involved in
regulating biodistribution and multi-drug resistance (5.6 & 3.7 per
cent of TPP abstracts respectively). The chemical creatinine appeared
the most frequently followed by glucose and cholesterol (5.3, 3.1 &
2.5 per cent of TPP abstracts respectively).
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Table 2.3: Species, chemical and gene annotations.
[Top ten species, chemical and gene annotations (% of abstracts)]

Species (%) Chemicals (%) Genes (%)

Homo sapiens (69.5) Creatinine (5.35) CYP3A4 (5.64)

Rattus norvegicus (20.7) Glucose (3.11) CD59 (3.72)

Mus musculus (9.97) Cholesterol (2.46) ABCB1 (2.46)

Canis lupus familiaris (4.06) Propofol (2.22) IL1RL1 (2.28)

HIV virus 2 (2.77) Calcium (1.59) INS (2.22)

Oryctolagus cuniculus (2.7) Dopamine (1.52) CYP2D6 (2.16)

Staphylococcus aureus (1.65) Midazolam (1.5) EGFR (1.8)

Escherichia coli (1.61) Morphine (1.5) EPO (1.74)

Pseudomonas aeruginosa (1.52) Oxygen (1.45) CD4 (1.68)

Sus scrofa (1.34) Cyclosporine (1.45) VEGFA (1.5)

2.3.3.1 Model definition and documentation

String matches to model categories defined in the study by Hübner
et al. (2011) showed that although ODEs were popular amongst an-
notated abstracts, regression models or general linear models were
the most frequent technique discussed in TPP abstracts (88 abstracts
vs 121 abstracts respectively). The favoured software in systems phar-
macology modelling up until 2015 appeared to be NONMEM (Beal
et al., 2009), followed by Simcyp (Jamei et al., 2009) and MATLAB®

(The MathWorks, Inc. www.mathworks.com) (table 2.4). The majority of
these programs are proprietary. Surprisingly, no matches for popular
freely available tools such as COPASI (Hoops et al., 2006) or XPPAUT
or even the format systems biology markup language (SBML) (Hucka
et al., 2003), a standard language used in systems biology, were found
in any TPP abstracts.

The journal which published the most pharmacological models in
this time frame was Antimicrobial Agents and Chemotherapy (Table 2.4).
The other journals were an assortment of pharmacology relevant lit-
erature with mixed clinical and theoretical research. However, at the
bottom of the list is a journal dedicated to modelling and simulation
in pharmacological contexts CPT:Pharmacometrics and Systems Phar-
maclogy with an average 29 models published every year since the
journal was established. The rate of publishing models in the other
nine much more mature journals fared between 1.8 and 5.3 models
per year.

www.mathworks.com
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Table 2.4: Top ten software and journal annotations.
Journals (n) Software (n)

Antimicrob Agents Chemother (228) NONMEM (379)

Br J Clin Pharmacol (172) Simcyp (47)

J Clin Pharmacol (139) MATLAB® (34)

Clin Pharmacokinet (136) SAAM (29)

Pharm Res (110) NONLIN (20)

J Pharm Sci (107) Monolix (14)

Cancer Chemother Pharmacol (106) GastroPlus™ (11)

Clin Pharmacol Ther (97) P-PHARM (8)

J Pharmacokinet Pharmacodyn (97) STELLA (8)

CPT Pharmacometrics Syst Pharmacol (88) PK-Sim (6)

Out of curiosity, the top five cited articles within TPP classified ab-
stracts were captured (descending order): (Cockcroft and Gault, 1976;
Jonsson and Karlsson, 1999; Mager and Jusko, 2001; Sheiner et al.,
1979; Yano et al., 2001), of which, only Mager and Jusko (2001) them-
selves were retrieved using the classifier.

2.3.3.2 Model complexity and scope

The nature and complexity of the models themselves has evolved over
the last 50 years (Figure 2.13). PK models comprised nearly 100 per
cent of modelling efforts until 1986 where models describing PD and
gradually a mix of the two (PKPD) were seen. One moment can be
seen where PBPK models gain initial popularity in 1992 followed by
a four-year decline in the annotation of all model types from 1996.
Interestingly, a decline between 1996 and 2000 was not observed in
the total numbers of TPP classed abstracts published between these
dates (not shown). From 2000 the rapid rise in all models was ob-
served alongside the introduction of population PK models. In 2012,
the emergence of a systems pharmacology model was seen as well as
the the first appearance of a QSP model in 2013. Throughout this time,
the majority of model types retrieved were PK models.
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Figure 2.13: The evolution of pharmacological modelling over the last 50

years. Plotted areas illustrate the number of modelling abstracts
which discuss the type of model.

2.4 discussion

The definition of systems pharmacology is sometimes poorly mis-
understood even within the domain of pharmaceutical research. To
resolve this I offer no additional explicit or alternative definitions of
systems pharmacology as those have been provided in a number of
cases (Androulakis, 2016; Cucurull-Sanchez et al., 2012; Mager and
Kimko, 2016; Sorger et al., 2011). Instead, the work presented offers
an emergent and tacit definition of systems pharmacology models
through observation.

In profiling the current landscape of systems pharmacology mod-
elling, a subset of literature was analysed through text mining ap-
proaches. Firstly, a corpus of systems modelling literature was re-
trieved and the overlap and disjoint of modelling and clinical disease
agendas were examined. This revealed diseases of relative neglect
where systems pharmacology can perhaps work upon in pre-clinical
and clinical phases of drug development. However, this initial ap-
proach fell short of expected recall and precision measures where a
large number of false positives and negatives were suspected.

Secondly, a supervised text classification of the corpus using a
mNBC allowed for a more meaningful and reliable analysis of the
landscape. The predicted systems pharmacology modelling abstracts
retrieved a wide range of models relevant to drug discovery. Finally,
retrieved abstracts were annotated, uncovering a variety software and
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methods used in pharmacological modelling in the run up to the sys-
tems pharmacology paradigm as well as a glimpse at some of main
biological mechanisms targeted by modellers within the last 50 years.

2.4.1 Challenges with the initial retrieval

A number of issues were encountered with interpreting the results
of the query. Access to I2E© software was restricted and the final
retrieval for analysis was run in December 2015. This means that bey-
ond this date, published accounts of systems pharmacology models
were inaccessible using the current methods.

The exact signal to noise ratio of the query was impossible to cal-
culate without knowing the full extent of true-positive articles within
the corpus. Estimated precision for systems pharmacology modelling
articles was at maximum 5 per cent (Knight-Schrijver et al., 2016)
which was particularly poor. The limitations of this query are de-
scribed more fully in the published account (Knight-Schrijver et al.,
2016). Additionally, the optimised mNBC in this study predicts that
only 1.5 per cent of the corpus was TPP which actually implies that
this was an overly generous estimate. The estimate for systems bio-
logy models in the query (18 per cent) however was a little closer
to the mark (The mNBC predicted that 15.2 per cent of the corpus
was TPB). The original query assumed a correlation between BioMod-
els and systems pharmacology modelling as BioModels was used as
a positive dataset for optimising recall. However, this and the inclu-
sion of MeSH® terms to reduce the noise may have actually biased
the query results towards BioModels-like abstracts. Hence, the MeSH®

term filtering was not used in the initial analysis or further classifica-
tion steps for the retrieval of systems pharmacology models.

2.4.2 Supervised classification of text

The aim of this study was not to develop a novel classification tool,
nor was it designed to develop optimal feature selection methods;
the implemented feature selection and classifier were a pragmatic ap-
proach to document retrieval. However, combining a Kruskal-Wallis
test with an NBC was previously shown to give a high accuracy in
text classification (Vora and Yang, 2017). As such the approach as
described is a suitable supervised strategy for the accurate categor-
isation of research abstracts.

Implementing the mNBC in R resulted in an effective text classific-
ation with an overall accuracy of 89 per cent as well as an F1 score
of 80 per cent for the TPP class. While these scores suggested that
the class predictions were of reasonable quality for further analysis
it does not mean that the classified documents were without flaw;
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a number of hurdles stand before the perfect classification of docu-
ments is achieved.

training data curation Fundamental definitions of a systems
pharmacology model are poor. To label documents, I attempted to
apply a set of criteria for abstracts to be annotated as TPP. (Knight-
Schrijver et al., 2016). A functional systems pharmacology model
must contain:

1. the components that constitute the biological system of interest.

2. the temporal dynamic nature of each individual component of
this system.

3. the interconnectivity and temporal dynamic interaction between
these components.

4. the modulation of components and dynamic interactions by pu-
tative therapy or compound(s).

It is hoped that the spread of models contained within training data
capture the terms given by participants in the survey by (Nijsen et al.,
2018), including PBPK and mechanistic PKPD models as well as more
comprehensive models. That said, a degree of shared methods and
terminology is seen between PKPD, pharmacokinetic, pharmacody-
namic and pharmacometric models which often makes them challen-
ging to separate unanimously. With mutual exclusivity necessary for Chapter three of

Systems
Pharmacology and
Pharmacodynamics
illustrates the
variety of models
which could be
described as QSP
(Mager and Kimko,
2016).

the classification, it was difficult to clearly label some abstracts within
either the TPP or TN classes as abstracts were occasionally ambiguous.
For instance, where pharmacokinetics are studied in a model, how
many biological variables does it take to constitute as a system for a
systems pharmacology approach? Likewise, distinguishing a model
between TPP and TPB articles is partially subjective in assessing the
model system’s contribution to understanding drug action. For ex-
ample, small-system models studying receptor perturbation may be
classed as TPP or TPB depending on the author’s aims. With a self-
annotated abstracts this may have lead to certain biases within the
results.

These issues could be lessened by employing a group of annot-
ators from pharmacological modelling sub-disciplines which could
provide a more realistic labelling of training documents. Addition-
ally, future work could provide a definitive set of annotated texts for
intra-pharmacological modelling classification should the need arise.

Another mNBC consideration is that the training set was not bal-
anced. Because the distribution of TPP, TPB and TN classes is unknown
within the total population, the prior probabilities were configured
manually to 0.1, 0.5 and 0.94 respectively. It was assumed that any
evidence would be strong enough to distinguish between classes on
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its own merit and a conservative prior value was used to retain TPP

precision.

noise and false positives The field of systems pharmacology
modelling is young and only 18 of the abstracts classified here expli-
citly mention systems pharmacology or QSP in text. Therefore, despite
using the classifier, an appreciable level of uncertainty still shrouds
the precision of the result. However, models which apply systems
methods are likely to exist which do not make use of the term "sys-
tems pharmacology model". These were expected to be retrieved by
this classifier.

Some false positives can be inferred through their effect upon the
results. The number of abstracts annotated with species other than
homo sapiens (rattus norvegicus for instance) suggests a large presence
of false-positive in vivo PKPD models with minimal or no modelling.
Annotation of text with morphine exemplifies a false-positive TPP art-
icle and no morphine annotated abstracts contained a systems phar-
macology model; most were rodent models of kinetics and the occa-
sional multi-compartment PK model. Even so, one PBPK model (Will-
mann et al., 2009) was found. Another example in the disease cat-
egory of Cancer, sampled false-positives may be seen with clinical
studies in patients or in vivo animal models where PK parameters
were predicted (Kamath et al., 2011; Würthwein et al., 2013). To com-
bat this, the expansion of TN training samples may be necessary by
feeding such models back into the training set.

Given the small size of the field at the time of research, one issue
in this study could be that collecting systems pharmacology model-
ling abstracts for training may have exhausted the positive abstracts
in literature. If this were the case, the retrieval exercise and classi-
fication would only serve to dilute the current (manually retrieved)
data. While a total depletion of positive abstracts is not likely, this
can only be wholly disregarded through a thorough examination of
the classifier’s output.

2.4.3 Named entity recognition and information extraction

Annotation of texts using PubTator was shown to have a high degree
of accuracy with the Disease, Gene and Species F1 scores above 80 per
cent (Chemical entity extraction was seen at 53 per cent) (Wei et al.,
2013). With this in mind, only a handful of entity extraction mistakes
were expected and on the whole this was the case. However, with real
implications to the domain of systems pharmacology modelling (or
indeed other modelling fields), some instances of false entity tagging
may drastically change the result of such an analysis.
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challenges in automatic annotation In diseases a not-
able false positive was seen where PD was recognised as Parkinson’s
disease. Furthermore the erroneous recognition CD59 and IL1R1 tagged
gene entities influence the results in this analysis. These were caused
by misidentification of units min−1 as MIN1 (an alternative name for
the gene CD59) and IL1R1 as a pseudonym for descriptions of half-
lives; most if not all retrieved IL1R1 tagging events were due to the
appearance of t1/2 alpha or t1/2 beta in text.

Mismatches like this are not made abundantly clear in studies
on annotation issues in pharmacology (Herrero-Zazo et al., 2013),
and personal communications with text mining experts have sug-
gested that such domain-specific language needs to be incorporated
for greater reliability in name entity recognition tasks. Additionally
the inclusion of specific ontologies such as the units ontology (UO)
(Gkoutos et al., 2012) within name entity recognition tasks may mit-
igate against some false positives such as units of time.

Mathematical terms were difficult to extract from text and the use
of an organised database for mathematical entities could prove useful.
The recognition of mathematical terms was using the mathematical
modelling ontology (MAMO) was attempted. However synonyms for
preferred terms did not appear to be exhaustive for the regular ex-
pression methods used here (for example, although the term ODE
model was present, the acronym ODE was not. However, the result
of mathematics annotation using MAMO was largely identical to the
current result as statistical models were the top category within TPP

abstracts.
The use of full texts could be considered to improve annotation

as well as classification as key entities are often reported within the
main body of research and not always in the abstract. Furthermore,
the methods section is bound to hold a wealth of domain-specific data
which could aid classification. This may increase the performance of
both classification and annotation tasks. However this relies upon the
availability of text for access and distribution. PubMed Central® of-
fers a range of structured full text data which could be used.

2.4.4 The landscape of systems pharmacology models

We can use the annotations of predicted TPP abstracts to build a pic-
ture of which disease mechanisms and targets are being explored in
systems pharmacology as well as how they are explored and docu-
mented.

2.4.4.1 Disease mechanisms and druggable targets

a picture of disease mechanisms in cancer . Perhaps un-
surprisingly, the appearance of cancer-related terms dominates the
results as cancer is becoming a major portion of medical literature
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(Reyes-Aldasoro, 2017) (Figure 2.12). As well as observing that cancer
is the most common disease annotation in TPP abstracts, the focus
of the genes confirms that systems pharmacology models may be fo-
cused upon mechanisms related to oncology.

ABCB1 (also multi-drug resistance protein or p-glycoprotein), as
well as being involved in PK, has a role in drug resistance in Cancer
(Vaidyanathan et al., 2016). As it is one of the most common genes
in TPP abstracts, it suggests that a number of models explore drug
resistance in cancer using pharmacological models. Twenty seven per
cent of documents which mention ABCB1 were also annotated with
cancer ((Zhang et al., 2011) and (Kolesar et al., 2011) for example).

A popular target in the landscape of systems pharmacology is
EGFR and cancer appears 48 per cent of EGFR abstracts, for example
Foo et al. (2012), Schoeberl et al. (2009) and Sharma et al. (2013).
Sharma et al. (2013) carried out a mixed experimental and compu-
tational study using in vivo and PBPK models which illustrates how
there can be an overlap between mathematical modelling and in vivo
models. Although the prediction was correct in this example, these
studies are a challenge for the mNBC to interpret, which results in
false positives as well as false-negatives.

Additionally, Erythropoetin (EPO) is largely associated with both
Cancer and Blood diseases in systems pharmacology abstracts. EPO ad-
ministration is used to reverse anaemia caused by chemotherapy for
the treatment cancer but it can also be detrimental to the effect of
anti-cancer therapeutics (Hardee, 2006). Understanding the mechan-
istic basis of using EPO for therapy is important which places EPO
in the top 10 list here seen in a number of models (Pérez-Ruixo et al.,
2009; Singh et al., 2015; Woo et al., 2007). The appearance of vascular
endothelial growth factor A (VEGFA) is also strongly associated with
cancer in abstracts (Hansson et al., 2013).

Random sampling of the abstracts annotated for Cancer provides a
number of mathematical models and PKPD studies for consideration
(Kamei et al., 2010; Pop et al., 1996; Tian et al., 2008; Tornøe et al.,
2007; Yates et al., 2015). However, a few false positives also become
apparent (Kamath et al., 2011; Würthwein et al., 2013).

disease mechanisms in nervous system diseases One of
the most common chemical entities found in TPP abstracts was dopam-
ine which was mostly associated with the Nervous system diseases and
Mental disorders. This suggests that systems pharmacology is occu-
pied with exploring the mechanisms of numerous dopamine system
dysfunctions (Parkinson’s Disease and schizophrenia being the most
prominent). For example, a QSP model and a PKPD model were re-
trieved with both annotations of Nervous system diseases and dopam-
ine (Geerts et al., 2015; Reddy et al., 2012). An analysis of systems
biology and pharmacology models in Nervous system diseases in the
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context of Alzheimer’s disease has previously shown the abundance
of systems models in this disease category (Lloret-Villas et al., 2017).

cardiovascular diseases and diabetes Extraction of cho-
lesterol was most often seen with Cardiovascular disease and Metabolic
disease annotations in TPP abstracts. The overwhelming majority of
these models were regression models using clinical data. However,
one example of a systems model was found within this subset (Lu et
al., 2014). Although Cardiovascular diseases is the third most enriched
category within TPP abstracts, the entities of genes or chemicals do
not clearly define a disease mechanism or target within this branch
of conditions.

Another target highlighted is INS (Insulin) with a high rate of oc-
currence in both Metabolic Disease and Endocrine system disease annot-
ated abstracts. Insulin is the cornerstone of diabetes and its part in
the disease mechanism of diabetes has been well-studied through sys-
tems biology modelling (Ajmera et al., 2013). Diabetes is a large slice
of the global disease burden (Tabish, 2007) and it is expected that it
will retain a high position in the landscape.

pharmacokinetics are historically the main topic A
large number of genes identified in the landscape show a tendency to
be associated with PK modelling and an over-representation of empir-
ical or population PK modelling was suggested due to several observa-
tions. Firstly, evidence implies that the most common genes (CYP3A4,
ABCB1, CYP2D6) in TPP abstracts influence the absorption, distribu-
tion, metabolism, excretion and toxicity (ADMET) attributes of drugs
(Bosch et al., 2006; Wolking et al., 2015; Zanger and Schwab, 2013).
As such they are of significant interest to population PK studies. Ad-
ditionally, the most observed chemical is creatinine which is often
used in measuring kidney function in PK studies (Mangoni and Jack-
son, 2003). This is also implied through the most cited paper in these
classified abstracts (Cockcroft and Gault, 1976). Furthermore, the ma-
jority of models observed in Figure 2.13 are PK models across all years.
The observation that early models were highly enriched for Urogen-
ital disease terms is further evidence of this. It is clear that historically,
mechanisms regulating the PK of drugs have been a mainstay focus
of computational modelling in pharmacology. However, these models
may be published at a lower rate in today’s research climate.

anaesthesiology and surgery A relatively large fraction of
chemical annotations suggest a large focus on anesthesiology and sur-
gery. Propofol is used as an anaesthetic and its kinetics are therefore
highly important to its activity in patients. PBPK modelling of propo-
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fol is seen in work by Edginton et al. (2006). Similarly, midazolam is
simulated in PBPK models for anaesthesia (Gaohua et al., 2012). How-
ever, morphine’s appearance here exemplifies a false-positive TPP art-
icle and no morphine annotated abstracts contained a systems phar-
macology model; most were rodent models of kinetics and the occa-
sional multi-compartment PK model. One such can be described as
a PBPK model (Willmann et al., 2009). Cyclosporine annotations are
largely derived from post-surgery models including a few PBPK mod-
els (Jonge et al., 2005; Wilhelm et al., 2012). Although anaesthesia is an
intertwined field with PKPD modelling (Gambús and Trocóniz, 2014),
no strong examples of systems pharmacology modelling approaches
are seen.

other notable hits Cluster of differentiation 4 (CD4) hits were
largely associated with in-text references to CD4 counts used as vari-
ables in statistical predictive models (Revell et al., 2012). However, at
least one example of using the CD4 expression in a mechanistic model
is seen (Page et al., 2015). The major disease categories recognised in
CD4 containing abstracts were Viral Diseases and Immune System Dis-
eases.

2.4.4.2 Documentation, methods and the evolving landscape

By and large, the physiological scale of the models retrieved was
above the cellular level, focusing more upon tissue distribution and
systemic response of drugs and interactions rather than the intrica-
cies of intracellular signal transduction and events. A significant con-
tribution to this observation is the motivation at the time for PK and
PD model development within the pharmaceutical industry. This was
a time to explore dose–effect relationships and predict optimal dose
regimens for patients (Holford and Sheiner, 1981). This has been shift-
ing to incorporate higher resolution networks in more recent years.

Only one unique
journal published a

pharmacological
model in the sixties,

63 journals in the
seventies and 206 in

the eighties. Since
the new millennium,

913 journals
published

pharmacology
models.

documentation of models The number and variability of mod-
els published each year is certainly increasing. More and more journ-
als with a pharmacological focus are publishing systems pharmaco-
logy models and dedicated journals start to present the variety of
modelling in the field. Despite their youth, these dedicated journals
such as CPT:PSP will likely become centre-pieces of the landscape as
the rate they published systems pharmacology models was far greater
than mixed-methods papers.

methods of modelling ODEs are the most popular mathemat-
ical technique used for simulation in systems pharmacology. How-
ever, other methods such as agent-based or logic models are occa-
sionally seen in systems pharmacology models (Cosgrove et al., 2015;
Traynard et al., 2017). The results suggest that PK and population PK
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models were the most common type of model throughout the last
50 years. The large spike in PK models seen here adds evidence to
the role that PK modelling played in reducing PK-mediated attrition
between 1990 and 2000 (Knight-Schrijver et al., 2016; Kola and Landis,
2004).

The tools used to construct models during the examined time-frame
also agree that PK models were the most common type of pharmaco-
logy model. The most frequent software listed are designed for PK

modelling (Table 2.4). One criticism of the field is the use of propri-
etary software which may hinder reproducibility of models and the
access to modelling environments for would-be systems pharmacolo-
gists. However, the variety of software is changing to accommodate
for the structural complexities and data required by today’s model-
ling which brings a selection of alternative tools.

the evolution of modelling into systems pharmacology.
Models are only as complex as they need to be. For example, the
rise of retrieved population-PK models coincides with the initial se-
quencing of the human genome (Lander et al., 2001) (figure 2.13). Se-
quencing of the human genome completed the identification of cyto-
chrome p450 polymorphisms (Ingelman-Sundberg, 2004). Although
population-PK models were used before this time, it is clear that
growth in the field was suddenly triggered. Examples like this show
that as information becomes available, models seek to utilise it in a
meaningful way.

An analogy using evolution can be used to describe this as the pro-
gressing complexity of mathematical models in pharmacology is seen
to be collectively curious, rational and methodical as more is revealed
about the nature of biology (figure 2.13). In minimising the objective
function of the difference between a simulated world and the real
world, models evolve to accommodate for our increased understand-
ing of complex dynamic systems. First generation models observe
that the body affects drug movement when measured and explore the
drug PK. Future generations of models understand that the opposite
also occurs; drugs alter the body and a response is seen. Mathemat-
ical models of the PD begin to simulate this effect. Collective theories
about the input-output relationships of drug and body are formed,
models simulate the dose-response and two sets of observations are
combined in PK and PD models. Evidence sheds light upon the dif-
ferences within populations and population models begin to emerge.
Finally, the current iteration of models using PBPK, QSP and systems-
biology tries to understand the higher resolution dynamic networks
that we see in biology which together form the state-of-the-art gener-
ation of modelling in systems pharmacology. A neat example of this
modelling evolution is a review within the context of atherosclerosis
by Pichardo-Almarza and Diaz-Zuccarini (2017a).
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2.4.5 Concluding remarks and future direction

The current landscape of systems pharmacology models stands on
the shoulders of a previous foundation of pharmacological modelling.
This foundation, generated by the development of early PK and PD

models, harbours a scientific effort to understand dose-response rela-
tionships that are invaluable in drug discovery. Now, current models
aim towards a building dynamical networks from the fundamental
understanding of disease mechanisms and targets and their focus is
similar to that seen in clinic.

To expand upon the study, future work should benchmark the clas-
sification approach on domain-independent datasets. Furthermore,
work should be undertaken to extend the dates predicted to include
the most current models as the field will have changed in the last
two years with the sudden interest in systems pharmacology and
QSP. Additionally, predictions should be run across all of PubMed as
elements of bias from the initial query cannot be ruled out. Finally, I
had planned to reassess the focus of clinical trials alongside models
using the same pipeline of annotation described here. However, the
older set of MeSH® terms and the work flow through I2E© could not
be updated. The retrieval of clinical trial data fields may be carried
out through alternative means.
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P R E D I C T I N G D R U G G A B L E TA R G E T S :
D E V E L O P I N G A Q U A N T I TAT I V E S Y S T E M S
P H A R M A C O L O G Y M O D E L .

3.1 introduction

This chapter presents an opportunity taken to build a model in a
disease area of relatively low enrichment in systems pharmacology
models. The value of this research is three-fold. Firstly, rheumatoid
arthritis is an area of clinical focus within the ageing population and
aiming to treat the disease effectively is a major desire in today’s soci-
ety. Secondly, the number of biologics and therapeutic monoclonal
antibodies (mAbs) in drug development is increasing; constructing
QSP models of mAbs contributes to the knowledge surrounding their
use. their use. Thirdly, I describe the process of adapting a previous
model from its components which highlights some of the challenges
in mathematical modelling and QSP surrounding model documenta-
tion, standards and validation.

3.1.1 Rheumatoid arthritis and interleukin-6

the impact of rheumatoid arthritis Rheumatoid arthritis
is typically defined as an inflammatory disease of the joints. Driven
and maintained by a complex and varied array of autoimmune re-
sponses, primary clinical manifestations are painful swelling of syn-
ovial joint capsules and the destruction of cartilage and bone. This
leads to a loss of function in patient mobility and quality of life. The
world-wide prevalence of rheumatoid arthritis (RA) is 0.24- one per
cent (Cross et al., 2014; Silman and Pearson, 2002) rising to two per
cent in individuals over 60 years of age and higher still as age in-
creases (Helmick et al., 2007; Rasch et al., 2003). Furthermore, in terms
of contribution to global disability, RA has been ranked nearly as high
as malaria (Cross et al., 2014). Therefore, in conjunction with the age-
ing population, the increasing and age-associated global incidence of
RA (Minichiello et al., 2016), places the disease in realms of significant
clinical interest.

disease mechanisms Much has been uncovered about the pu-
tative mechanisms implicated in RA pathology with both genetic and
environmental factors contributing to the disease. Moreover, a major
and well-documented component of RA pathogenesis is mediated by
the regulation of cytokines (McInnes and Schett, 2007; Stahl et al.,
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2010) such as tumour necrosis factor-alpha (TNF-α) and interleukins
6, 17 and 23 (IL-6, IL-17 & IL-23) ("Siebert et al., 2015). One cytokine in
particular, the pleitropic interleukin-6 (IL-6), has been shown to con-
tribute to the disease state by promoting the infiltration of immune
cells into the synovial tissue and sustaining active neutrophil popula-
tions (Lally et al., 2005). Further deleterious IL-6 effects are also shown
through its role in joint destruction by regulating osteoclast numbers
and activity (Le Goff et al., 2010). Therefore, inhibiting the activity of
IL-6 is deemed viable as a strategy for treating RA.

3.1.2 Endogenous roles of IL-6

il-6 in inflammatory diseases The dysfunctional potentiat-
ion of IL-6 signalling drives pathology in a large number of inflam-
matory conditions including RA and Crohn’s disease (CD) (Jones et al.,
2011). On the whole, ubiquitous increases in the synthesis of IL-6 is
seen in inflamed, injured and stressed tissues which is thought to de-
termine the major differences between healthy and disease physiology.
In patients with RA, there is a distinct increase in the synthesis of
IL-6 from synoviocytes and the concentration of IL-6 in the synovial
fluid (SF) which implicates synovial IL-6 production as a hallmark of
the rheumatic joint (Guerne et al., 1989; Kotake et al., 1996; Rosen-
baum et al., 1992). The raised SF concentration of IL-6 in RA contrib-
utes to joint destruction by increasing osteoclast and matrix metal-
loproteinase activity (Kotake et al., 1996; Srirangan and Choy, 2010).
IL-6 has been shown to drive differentiation, strong survival and anti-
apoptosis signals in T cells (Dienz and Rincon, 2009; Durant et al.,
2010; Takeda et al., 1998). Furthermore, IL-6 induces T cell migration
in acute inflammation in mice (McLoughlin et al., 2005), potentiating
exaggerated local immune responses; a persistent T cell population is
one of the mechanisms by which chronic inflammation is maintained.
In hepatic tissue, high IL-6 activity promotes an acute phase response
with secretion of proteins such as C-reactive protein (CRP) (Norris et
al., 2014), and the systemic effects of IL-6 in RA are observed through
this positive effect upon CRP secretion (Rosenbaum et al., 1992). As
such, CRP is used as a systemic marker of inflammation. Addition-
ally, CRP is a likely factor in the progression of coronary heart disease
(Shrivastava et al., 2015).

sources of il-6 Secretion of IL-6 is a cellular response to stress
and occurs in a wide variety of tissues. For example, IL-6 synthesis
in the liver is a relatively normal process which is seen to increase
in response to trauma (Norris et al., 2014). Evidence also suggests
that rapid and transient secretion of IL-6 is a major player in liver
regeneration post-injury (Schmidt-Arras and Rose-John, 2016). An-
other important source of IL-6 lies with peripheral blood mononuclear
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cells (PBMCs) (Jansky et al., 2003) and is essential to consider when ac-
counting for an immune response and maintenance of autoimmune
diseases. A further major source of IL-6 is reported to be adipose tis-
sue which may contribute to insulin resistance (Lagathu et al., 2003).

3.1.3 IL-6 targets and signalling

Evidence suggests that IL-6 has two populations of cell-surface bind-
ing sites, low and high-affinity, presumably caused by the sequential
binding of IL-6 to receptor subunits. It is likely that IL-6 associates
with its primary binding target membrane-bound IL-6 receptor-alpha
(mIL-6Rα) followed by its signal transduction subunit, glycoprotein 130

(gp130), forming a heterotrimer (Boulanger, 2003; Taga et al., 1989). Fi-
nally, a dimerisation step forms the putative hexameric receptor com-
plex necessary for downstream signalling (Boulanger, 2003). It is ar-
gued that the low-affinity binding is the association of IL-6 to mIL-6Rα

only and that the high-affinity site is the binding of mIL-6Rα to IL-6

and the subsequent fast binding of the mIL-6Rα:IL-6 complex to gp130

(Schroers, 2005). The observed low-affinity binding has a dissociation
equilibrium constant (KD) of 500 pM whilst the high-affinity inter-
action has a KD of 15 pM in human hepatocellular carcinoma cell
line (HepG2) cells (Baumann et al., 1988). Attempts to reproduce IL-6

signalling with known components of the canonical receptor transfec-
ted into monkey kidney fibroblast-like cell line 7 (COS-7) cells resulted
in lower affinity interactions with a KD between 0.3 and three nM (Dit-
trich et al., 1994; Gearing et al., 1992; Heinrich et al., 1998). We also
see that binding of IL-6 to a soluble form of the receptor soluble IL-6

receptor-alpha (sIL-6Rα) occurs at the high picomolar range with a KD

of 500 pM (Weiergraber et al., 1995). This is similar to the interaction
with the membrane-bound receptor. In the same study using HepG2

cells, the binding of IL-6 to the complete array of cell-surface receptor
components resulted in a KD of 50 pM, which was comparable to pre-
vious investigations describing high-affinity binding sites (Sonne et
al., 1990; Weiergraber et al., 1995; Zohlnhöfer et al., 1992). The KD for
the binding reaction between IL-6 and its receptors in vivo is in the
range of 20-1000 pM. After receptor binding, the plieotropic nature
of the in vivo response is driven by the relative tissue expression of
the cytokine’s receptor components. The binding and transduction
of IL-6 signals occurs through two selective pathways, classical and
trans-signalling pathways.

classical signalling The first pathway is coined as classical
IL-6 signalling and is mediated through the membrane-bound forms
of the receptor and signal transduction element of the receptor (mIL-6Rα

and gp130 respectively). Cell-surface expression of the receptor com-
ponents depends on the organ, tissue or cell type. Hepatocytes con-
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stitutively express mIL-6Rα at high concentrations on the cell-surface
which results in a high concentration of the receptor in the liver.
Other notable organs with high messenger RNA expression include
the small intestine and the ovaries (Uhlen et al., 2015). Lymphocytes
are one non-hepatic cell type which typically have a high expression
of mIL-6Rα (Uhlen et al., 2015). In contrast, most other organs have a
low cell-surface expression of mIL-6Rα. This suggests that classical IL-6

signalling is relatively cell-selective.

trans-signalling The second IL-6 response pathway called trans-
signalling is through a soluble form of IL-6 receptor-alpha (IL-6Rα),
(sIL-6Rα), generated through the shedding of mIL-6Rα by matrix metal-
loproteinases as well as synthesis through alternative splice variants
(Briso et al., 2008; Jones et al., 1998; Lust et al., 1992; Matthews et
al., 2003; Schumacher et al., 2015). Shedding is the process by which
cell-surface receptors are dispersed into the surrounding medium.
Immune cells are largely responsible for sIL-6Rα production and act-
ive T cells may preferentially produce sIL-6Rα. Furthermore, cluster
of differentiation 4 positive (CD4+) T cells have also been shown to
downregulate mIL-6Rα (Briso et al., 2008; Jones et al., 2010). It is in-
teresting to note that sIL-6Rα sourced from splice variants is seen to
decrease with age whilst the total concentration in serum remains
unchanged. This suggests that receptor shedding is partially age-
dependent (Jones, 2001). Elevated concentrations of sIL-6Rα are seen
in RA patient’s synovial fluid in comparison with serum fluid which
may be driven by presence by synovial leucocytes (Desgeorges et al.,
1997; Jones, 2001). The mechanism by which this pathway elicits an
effect is through the binding of sIL-6Rα:IL-6 to membrane gp130. This
results in the formation of an active cell-surface receptor complex ne-
cessary for IL-6 response in tissues that otherwise do not inherently
express mIL-6Rα. Hence, gp130’s ubiquitous cell-surface expression in
tissues (Uhlen et al., 2015) enables IL-6 to bind and elicit a response at
a large number of sites via the soluble form of receptor. The availab-
ility of two pathways results in a tissue selection mechanism and the
dynamic interplay between IL-6 binding to either classical mIL-6Rα or
sIL-6Rα could be key to IL-6 pathology. Evidence in literature suggests
that through sIL-6Rα, IL-6 activity may be pro-inflammatory whereas
the interaction of IL-6 with mIL-6Rα may be anti-inflammatory (Garbers
et al., 2015; Rose-John, 2012; Scheller et al., 2011). For example trans-
signalling via sIL-6Rα stimulates T cell migration through chemokine
secretion in multiple cell lines (Hunter and Jones, 2015; McLoughlin
et al., 2005), one of the drivers in maintained T cell populations in
RA.

other signalling components A soluble form of gp130 can
be found in patients (Diamant et al., 1997; Narazaki et al., 1993).
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With similarity to sIL-6Rα, soluble glycoprotein 130 (sgp130) is sourced
through alternative splice variants and membrane shedding (Mull-
berg et al., 1993). Association is seen between sIL-6Rα and sgp130 form-
ing a soluble receptor complex. However, as sgp130 contains no trans-
membrane region for signal transduction, the interaction of sIL-6Rα

with sgp130 has been shown to inhibit IL-6 signalling (Garbers et al.,
2011; Tanaka et al., 2000). Evidence suggests that this could be a neg-
ative feedback mechanism (Tanaka et al., 2000).

receptor activation Evidence for the step-wise formation of
the active hexameric receptor was shown to 3.65 Å (Boulanger, 2003).
The hexamer, comprised of two IL-6, mIL-6Rα and gp130 heterotrimers
results in an active receptor with a 2:2:2 component composition.
Signal transduction is driven by the phosphorylation of intracellular
gp130 domains. However, the hexameric structure has been disputed
as evidence also indicates receptor activity in a tetrameric form with
component stoichiometry of 1:1:2 (IL-6, mIL-6Rα and gp130 respectively)
(Grötzinger et al., 1999). Further controversy is found in discovering
that mIL-6Rα can pre-form a dimer both in the cell-surface membrane
and in solution (Schuster et al., 2003). Additionally, pre-formed di-
merisation may also occur in membrane-anchored gp130 (Tenhumberg
et al., 2006) which aids the tetrameric receptor hypothesis as a pre-
formed gp130 dimer may bind to one IL-6:mIL-6Rα complex to activate.
Tenhumberg et al. (2006) also demonstrate that the ligand binding to
this pre-formed gp130 dimer is essential for the tyrosine residue phos-
phorylation and signalling confirming that all three components are
required for receptor activation. Ultimately, both active forms of the
receptor may exist and could result in different response behaviours
at varying concentrations of IL-6 (Scheller et al., 2011).

intracellular signalling and stat3 Alongside gp130 phos-
phorylation, janus kinases (JAKs) one and two and then signal trans-
ducer and activator of transcription (STAT) proteins, primarily one
and three, are phosphorylated (Hunter and Jones, 2015). signal trans-
ducer and activator of transcription 3 (STAT3) translocation to the
nucleus results in transcription of and upregulation of various pro-
inflammatory genes (Bild, 2002; Cimica et al., 2011; Ushijima et al.,
2005). In RA, phosphorylated STAT3 (pSTAT3) is constitutively elevated
in peripheral and synovial fluid T cells at levels significantly greater
than healthy controls (Gao et al., 2014; Isomaki et al., 2014). Greater
levels of pSTAT3 are also seen in cluster of differentiation 3 posit-
ive (CD3+) cells (Anderson et al., 2015). The immediate sensitivity of
STAT3 to IL-6 in some RA patient cells may be reduced and the frac-
tion of pSTAT3-positive T cells is negatively correlated with plasma
IL-6 (Isomaki et al., 2014). In the synovium, pSTAT3 activity promotes
survival of the dysfunctional synovial fibroblasts (Krause et al., 2002).



60 a qsp model of il-6 signalling in rheumatoid arthritis

An alternative intracellular signalling pathway is seen through SHP-
2 with links to both mitogen-activated protein kinase (MAPK) and
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathways and
promotes cell survival and proliferation (Chen et al., 1999). Down-
stream from this pathway is another transcription factor, CCAAT/en-
hancer binding protein beta (C/EBPβ), which is also a player in genetic
regulation through IL-6 (Cantwell et al., 1998; Heinrich et al., 2003).
In depth descriptions of the transduction processes are discussed by
Kamimura et al. (2003) and systems biology models mapping these
components of IL-6 intracellular signalling attempt to unravel the con-
nections (Moya et al., 2011; Qi et al., 2013; Singh et al., 2006). More
simply, a scheme of reversible reactions has been used to describe
STAT3 phosphorylation in a published model (Sadreev et al., 2014).

termination of signals The heterodimer of IL-6:mIL-6Rα inter-
nalises with a half-life of two hours (Fujimoto et al., 2015) whilst the
heterotrimeric complex of IL-6:mIL-6Rα:gp130 internalises rapidly with
an approximate half-life of 15 minutes (Dittrich et al., 1996; Nesbitt
and Fuller, 1992; Zohlnhöfer et al., 1992). Following internalisation,
both gp130 and mIL-6Rα are thought to be preferentially degraded
instead of recycled (Heinrich et al., 1998; Nesbitt and Fuller, 1992;
Zohlnhöfer et al., 1992). Receptor depletion occurs rapidly and is re-
covered slowly after eight hours, arguing against recycling pathways
(Zohlnhöfer et al., 1992). The overwhelming contribution of de novo
protein synthesis to the restoration of cell-surface receptors was con-
firmed by cycloheximide (Zohlnhöfer et al., 1992). Further evidence
against recycling is that the pH of endosomes in HepG2 cells did not
favour dissocation of the iodinated ([125I]) recombinant human IL-6

used in the study suggesting that mIL-6Rα remained bound to the cy-
tokine for degradation. The same fate is suggested for gp130 where
it is also preferentially degraded as opposed to recycled (Wang and
Fuller, 1994). The signal transduction protein, gp130, is also capable of
internalisation through a ligand, dimer, and activation-independent
manner (Thiel et al., 1998). Using rat hepatocytes, internalised radio-
labelled IL-6 was shown to be eliminated rapidly, further implying
a strong degradation versus recycling pathway (Nesbitt and Fuller,
1992). Known contributors to signal termination downstream of the
receptor, however, are intracellular phosphatases such as SHP-2 or the
suppressor of cytokine signalling (SOCS) proteins (Kim et al., 1998;
Lehmann, 2002; Starr et al., 1997). Signal attenuation through these
pathways occurs independently of the receptor conformation or re-
ceptor internalisation (Thiel et al., 2000). With trans-signalling, sIL-6Rα

may also be internalised through interaction with gp130 via clathrin-
coated pits (Graeve et al., 1996). This has been further validated where
IL-6:sIL-6Rα receptor complex was seen to clear more rapidly than
unbound sIL-6Rα in rats (Weiergraber et al., 1995). Therefore trans-
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signalling may also drive a target-mediated downregulation of re-
ceptor components.

crp as a biomarker and feedback mechanism Clinical ob-
servation of IL-6 signalling and pSTAT3 activity lies in the biomarker
CRP. CRP is produced in an IL-6-dependent manner from hepatocytes
(although non-hepatic sources of CRP have been observed) (Kuta, 1986;
Ramji et al., 1993; Zhang et al., 1996). This accounts for serum CRP con-
centrations found in patients with inflammatory conditions including
CD and RA (Shadick, 2006; Srirangan and Choy, 2010; Vermeire, 2006).
In RA, the serum concentration of CRP is used as a surrogate bio-
marker for disease activity; it is measured during clinical trials for
anti-IL-6 compounds. CRP has been shown to cause mIL-6Rα shedding
(Jones et al., 1999).

3.1.4 Cytokine-targeting therapeutics in RA

current gold-standards In the pharmacological treatment of
RA, the current gold standard is the disease-modifying antirheumatic
drug methotrexate (MTX) (Shinde et al., 2014). As the first port of call,
the mechanism of action of MTX is attributed to its immunosuppress-
ive and anti-proliferative effects (Cutolo et al., 2000; Wessels et al.,
2008) and is seen to be effective in reducing disease progression and
relieving the debilitating symptoms of RA. However, MTX monother-
apy has a poor effect in a large subset of RA patients with remission
rates in patients between 16 per cent and 46 per cent (Breedveld et al.,
2006; Grigor et al., 2004). Furthermore, while MTX as monotherapy is
effective in slowing or halting disease progression, it may be relatively
ineffective in reversing the damage in moderate to severe RA. This is
in contrast to its combination with a TNF-α antagonist infliximab, a
mAb, which is also seen to reverse the damage (Rau, 2010).

monoclonal antibodies The recent development of biologics
targeting cytokine signalling is further evidence that cytokines present
themselves as significant and readily-targeted components of RA patho-
logy. For example the mAbs infliximab, adalimumab (anti-TNF-α), and
sarilumab or tocilizumab (TCZ) (anti-IL-6 receptor) are all effective in
clinic as monotherapy or in combination with MTX (Fleischmann et
al., 2017; Keystone et al., 2014; Ogata et al., 2014; Shinde et al., 2014).
Moreover, therapeutic polypharmacy of MTX and biologics such as in-
fliximab or adalimumab may result in much higher rates of remission
(Breedveld et al., 2006). The specific blockade of IL-6Rα function using
TCZ or sarilumab confirms that inhibiting cytokines may be an effect-
ive alternative to MTX treatment and may even be comparable with
MTX-based combination therapies after one year of treatment (Flipo
et al., 2017).
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tocilizumab and sirukumab We have discussed that inhibit-
ing IL-6 signalling by blocking IL-6Rα appears to be a valid treatment
for RA. However, if competitive inhibition of the receptor is effective,
an equally important target could be the ligand. The development
of the anti-IL-6 antibody sirukumab (SRK) (Xu et al., 2011), currently
in clinical phases, is driven by the promise of an alternative target.
However, it is not fully understood what relative merits or caveatsGiven the similar

strategy of IL-6
blockade, which

drug offers greater
therapeutic

potential?

exist between inhibiting either target of this binary interaction. Thus,
when inhibiting IL-6 for the treatment of RA, how do the two anti-
bodies compare? As mAbs are highly selective and their mechanism
of action is generally that of true antagonism, with respect then to
target druggability, which component of IL-6 signalling is better as an
option for treating RA?

3.1.5 Comparing drug targets

Several approaches can be utilised to compare the druggability of tar-
gets like IL-6 or IL-6Rα. Perhaps the most obvious method would be
to carry out in vitro studies using the biological system in question.
For example, assays using receptor expressing cell-lines or tissues
could indicate differences in target kinetics or redundancy in cellular
responses. This lacks the full array of inter-tissue reactions present
in organisms. A more holistic method would be to compare the tar-
gets in an in vivo setting using animal models. Comparison of target
knockout or drug administration in disease models would give dir-
ectly comparable results for targets. However, animal models may
lack the translation of efficacy or toxicity into humans, both essen-
tial drivers of drug attrition (Garner, 2014; Shanks et al., 2009). The
logical and best comparison of two targets for human intervention
would be to use the target population itself. Head-to-head clinical
trials are the best interpretation of relative drug-target combinations.
However, head-to-head trials of drugs in development is not a com-
mon or trivial practice. Decision-making methods exist which focus
upon the comparison of drugs without these comparative trials and
yet, these approaches still require clinical data of the individual com-
pounds (Kim et al., 2013). As such they are limited by the availability
of clinical trials or human data and require significant investment for
their decision-making power. Alternatively, QSP can utilise and inter-
pret pre-clinical data through systems modelling and simulation to
compare targets in the earlier stages of drug-discovery.
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(a) TCZ and SRK mechanisms. The biological targets of TCZ
and SRK are the receptors (sIL-6Rα and mIL-6Rα) and IL-6
respectively.
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Figure 3.1: (a). Competitive binding to both targets attenuates the dimerisa-
tion and binding of gp130, reducing the pool of active receptors
but which target is better? (b), The expression of receptor com-
ponents differs across tissues and cell types but T cell levels in
the compartments regulate the expression of mIL-6Rα where the
tissue-specific cell types do not express mIL-6Rα at a high level.
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3.1.6 Systems modelling of IL-6 signalling

Studying RA therapeutics within IL-6 signalling by systems biology
or pharmacology modelling is not entirely new. Previous modelling
efforts have constructed networks for the IL-6 intracellular signalling
cascades (Moya et al., 2011; Qi et al., 2013; Singh et al., 2006). Together
these models comprehensively explore the downstream signalling of
IL-6 in isolation and in unison with other cytokines. At a lower resolu-
tion, RA has been examined by modelling the opposing effects of pro
and anti-inflammatory cytokines and their net effect upon ageing and
in therapy (Baker et al., 2012). Furthermore, specific PK and systems
pharmacology models have been developed which examine TCZ in its
effectiveness and adverse activity in treating RA (Frey et al., 2010; Gi-
biansky and Frey, 2011). A deterministic QSP model of IL-6 signallingFor the sake of

brevity, the CD
model by Dwivedi

et al. (2014) shall be
frequently referred

to as the original
model.

and drug target comparison was carried out by Dwivedi et al. (2014)
where a QSP model was developed to explore the activity of IL-6 sig-
nalling in CD. The model was used to assess the relative merits and
caveats of targeting either the sIL-6Rα, mIL-6Rα or IL-6.

3.1.7 Research scope, aims and goals

To avoid re-inventing the wheel, the task was set to adapt and re-
purpose an existing model on IL-6 in CD to direct questions of target
selection and drug comparisons in RA. Presented as a network of de-
terministic ODEs, the QSP model presented herein sought to simulate
the biology of IL-6 signalling in RA to the level of detail required to
adequately describe mAb-mediated perturbation of extracellular IL-6

signalling. The biological scope of the model was therefore restric-
ted to the mechanistic cell-surface and extracellular, tissue-level and
whole-body interactions of IL-6-signalling as well as a phenomenolo-
gical downstream response towards IL-6. The process of repurposing
questions the value and ease of reusing existing model networks for
QSP approaches and provides a useful model for predictive compar-
ison of current and in-development mAbs. Furthermore, the model
aims to highlight areas of uncertainty in the knowledge of the dis-
ease mechanisms where the resulting simulations fail to fit the exper-
imental studies or clinical data. Additionally, recent news highlights
that there were safety concerns in clinical trials with the use of SRK

in RA patients and it has since been withdrawn from development
in treating this disease (Taylor, 2017a,b). The model may be able to
explore potential reasons. Moreover, a model can still be applicable
to alternative uses of sirukimab in depression or other anti-IL-6 mAbs

such as siltuximab used in Castleman’s disease (Rhee et al., 2010; Sun
et al., 2017).
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The primary goals are to:

• outline the ease of model re-usability with respect to structure
and parametrisation.

• compare drugs and drug targets in rheumatoid arthritis, discuss-
ing merits and caveats of both PK and PK in each instance.

• evaluate optimal dose-regimens for SRK through simulation.

• explore potential causes of SRK adverse reactions.

Ultimately, The presented research sought to demonstrate that a
QSP modelling (QSPM) approach can be used to predict and compare
several aspects of two targets or compounds without the full research
& development (R&D) expenditure of large-scale clinical trials.

3.1.8 Modelling approach and development

The approach taken to developing this model was largely to re-struct-
ure and re-parametrise an existing model. However, with differences
in pathology, tissue of interest, and clinical data altering a model of
CD into one of RA warranted a full re-construction.

I approached this modelling task in a modular fashion so as to im-
plement these differences gradually and methodically. Firstly, I gen-
erated a model that describes the PK of mAbs across multiple com-
partments of relevance to treating and monitoring the severity of
RA. Secondly and after the PK model was deemed suitable, the PK

compartments were populated with mechanistic biological reactions
between IL-6 signalling components in the form of a receptor turnover
model. This used literature derived data to govern the rates and com-
ponent concentrations. These reactions formed the PD component of
the PKPD model. Lastly, after combining these individually developed
modules, the model was re-parametrised with RA clinical data instead
of CD data. This altered the original model’s parameter values using
equivalent data that were not available for a CD model thus allow-
ing for a more meaningful description of RA IL-6 signalling to answer
questions specific to RA.

3.2 materials and methods

3.2.1 Modelling tools

3.2.1.1 Model source and model definition

The model was derived from a published model on CD by Dwivedi
et al. (2014) and was stored in the BioModels Database, a repository
for systems biology models (Le Novère et al., 2006). This involved
curation of the published supplementary materials file by checking
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the consistency through reproducing published simulations and an-
notating model components according to minimal information re-
quested in the annotation of biochemical models (MIRIAM) guidelines
(Le Novère et al., 2005). The model was defined in SBML, a model
description format which allows for model exchange and aims for
standardisation (Hucka et al., 2003). The curated CD model can be ac-
cessed from the BioModels Database (www.ebi.ac.uk/biomodels) us-
ing the unique identifiers [BIOMD0000000534] - [BIOMD0000000537].
The model definition language, antimony (Smith et al., 2009), was
used to write the SBML for the RA model and graphical representa-
tions of the RA model such as those seen in Figure 3.10 were com-
pliant with systems biology graphical notation (SBGN) standards (Le
Novère et al., 2009), designed using open graphics software LibreOf-
fice Draw.

3.2.1.2 Simulation and parameter estimation

Simulations including parameter scans, estimations and sensitivity
analyses were carried out in COPASI version 4.22 (Hoops et al., 2006)
using the robust deterministic livermore solver for ordinary differen-
tial equations (LSODA) algorithm for stiff and non-stiff ODEs (Hind-
marsh, 1983; Petzold, 1983).

Parameter estimation tasks were carried out using the particle swarm
algorithm (Kennedy and Eberhart, 1995) available in COPASI. The
objective function is a weighted sum of squares between the exper-
imental data and the simulated values as defined as follows in the
COPASI user manual (Equation 3.1).

E(P) = ∑
i,j

wj·(xi,j − xi,j(P))2 (3.1)

Here, P is a parameter set being simulated and evaluated. The in-
dices i and j refer to rows and columns in the datasetand xi,j and
yi,j(P) are the experimental and simulated data points respectively.
The weight for each data column is given by ωj and is calculated
both between and within experiments. Dataset weights are assigned
based on the standard deviation of each experiment. To improve the
whole-model estimation, the value of ωj was overridden manually to
accommodate for the nonlinearity of antibody elimination. This was
to facilitate better fitting to a log scale when datasets differed by sev-
eral orders of magnitude. Comparisons of model PK fits were carried
out using Akaike information criterion (AIC), a model comparison
statistic which can be applied to a multitude of mathematical models
including PK models (Akaike, 1974; Yamaoka et al., 1978). The AIC

penalises models for the number of estimated parameters used in es-
timation. Therefore it can be used to select between models differing
in structure where more or fewer parameters are unknown.

www.ebi.ac.uk/biomodels
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3.2.1.3 Data Statistics and Graphics

Time-course and steady-state data were sourced from an array of
published experiments and clinical trials and were extracted using
Engauge Digitizer, version 4.1 (Mitchell et al., 2016). These data were
cleaned and processed in the statistical programming environment R
(R Core Team, 2016) prior to parameter estimation steps. Statistical
calculations and simulation plots of the results were generated in R
using a variety of bespoke functions.

3.2.2 Parameter estimation and model assumptions.

Because of the incompleteness of human knowledge, assumptions
have to be made about the physical mechanisms, molecular interac-
tions and concentrations, and reaction rates which allow the model
to be constructed in the current framework. Estimation was carried
out using a modular approach. This helps to identify parameter sets
within each sub-model. For each module, assumptions are listed along-
side evidence. General model assumptions are that:

compartments are homogenous and well-mixed : Molecul-
es are instantly and equally diffused throughout the compart-
ment as they enter. Cells in this scenario are homogenised and
readily accessible. This simplifies the model in using mass-action
kinetics.

component affinity is simplified : Association and dissociat-
ion rate parameters are a simplified ratio to give the apparent
KD seen in experimental studies.

3.2.2.1 Monoclonal antibody pharmacokinetics and compartmentalisation

The anti–mIL-6Rα mAb, TCZ, is a prominent biological therapeutic in
treating RA. A number of clinical studies have characterised the PK

and PD in both RA and healthy patients, providing a reasonable amou-
nt of data (Bao et al., 2012; Morcos et al., 2013; Ogata et al., 2014;
Ohta et al., 2013; Zhang et al., 2013a,b). As such, TCZ was ideal for
the fitting and validation of the PK model. The PK model was created
assuming that:

elimination of tcz is through physiological clearance :
A non-saturable route of mAb elimination occurs via site-indep-
endent mechanisms. The clearance of TCZ is not heavily hepatic
and is largely influenced by body mass, implying a degradation
in tissues typical of antibodies (Frey et al., 2010; Tabrizi et al.,
2006). For example one part of non-specific immunoglobulin-G
(IgG) antibody elimination may occur via the reticuloendothelial
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system in phagocyte-rich tissues (Ferl et al., 2016). The para-
meter kel is derived from the elimination half-life (t½ − β) of 23

days for IgG-type antibodies (Paul, 2008).

tcz is subject to tmdd : A saturable
route of TCZ elimination is the result of degradation or intern-
alisation of the drug-target complex. This is known as target-
mediated drug disposition (TMDD) and occurs mainly through
non-central routes. This gives rise to a nonlinear rate of TCZ

disappearance as seen in PK data. This is modelled through a
Michaelis-Menten (MM) reaction rate in both the liver and peri-
pheral compartments. The equilibrium constant KM is defined as
the KD of the drug-receptor binding interaction which is between
0.7 and 2.54 nM (Mihara et al., 2005; U.S Food and Drug Admin-
istration, BLA: 125276). We assume that Rtot3 is the total concen-
tration of hepatic mIL-6Rα, 0.83 nM (Baumann et al., 1988; Sonne
et al., 1990; Zohlnhöfer et al., 1992). For the peripheral receptor
concentration Rtot2 we make the assumption that it is at least
the concentration of mIL-6Rα expressed in peripheral fluid T cells,
0.0347 nM (Bongioanni et al., 2000; Mascio et al., 2009; Zola
and Flego, 1992). The internalisation parameter kRint defines the
first-order rate at which the receptor-antibody complex intern-
alises and is removed from the system, 0.35 h−1 (Fujimoto et
al., 2015). The MM reaction scheme was previously shown as an
adequate approximation for TMDD and receptor-mediated endo-
cytosis (RME) (Krippendorff et al., 2009; Yan et al., 2009).

administration of mabs is first-order : Administration of
the antibody was modelled assuming a first-order reaction wher-
eby the antibody is dosed into a theoretical depot pool [Abdepot]

which is then absorbed into the serum through a first order re-
action. For subcutaneous administration a parameter bioavailab-
ility describes the bioavailability of the administered dose com-
pared with intravenous (IV) administration. A value for Bioavail-
ability taken from literature adequately fits the experimental
data. Likewise, an absorption rate within ranges measured by
clinical studies was applied here.

volumes are physiological : The serum or central compartment
volume is 3.5 l and is similar to physiological blood plasma
volumes. It fits with the IV administration PK data of TCZ in
humans and is a reasonable central volume for IgG-class mAbs.
Two tissue compartments are explicitly defined within the scope
of the model, the liver and the synovium. The synovium volume
is an estimated total of synovial joint volume within arthritic
humans (Buckwalter, 2007; R.W et al., 2007; Simkin et al., 1995).
The liver volume was derived from observations that total liver
volume lies between one and two l (Heinemann et al., 1999; Kan
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and Hopkins, 1979; Kwon et al., 2001). The remaining volume
of distribution is attributed as miscellaneous tissues and was
roughly derived from the total interstitial fluid (ISF). The final
volume of 11.25 l in the peripheral compartment accounts for
subtracting the synovial tissue fluid as well as the 30 per cent
extracellular fluid fraction within the liver.

a single macro parameter describes distributions : The
flow between the central and tissue compartments was described
using a global parameter Q from which the first-order rate con-
stants k12, k21, k13, k31, k14 and k41 were derived.

synovial permeability limits distribution : The transfer ra-
te is assumed to be equal in all tissues apart from the synovium.
There may be impedance across vascular barriers to the syn-
ovium, poor vascular perfusion or an efflux process significantly
larger than influx. The rate of distribution of molecules through
the synovium is determined largely by the molecular radius of
the molecule in question due to putative pore structures. Previ-
ous work to assess the effect of pore-size is seen in a two-pore
model which describes two populations of pores which traverse
the vascular barrier (Rippe and Haraldsson, 1994). Further work
describes a three-pore model, which includes vascular fenestrae,
and appears to adequately describe synovial distribution data
for a large range of molecular radii (Simkin, 2014). This model
describes how large pores are non-selective for radius and smal-
ler pores select against increasingly large molecules. Therefore
smaller radius molecules are capable of diffusion through both
sets of pores whilst larger macromolecules are limited in dif-
fusion rates through small pores. In context, IgG has a hydro-
dynamic radius of 5.3 nM (Armstrong et al., 2004) which is
relatively large and has a significantly limited small-pore dif-
fusion rate. Other evidence shows that the rate at which a mac-
romolecule the size of albumin is cleared from the synovium is
twice as fast as the rate at which it enters (Wallis and Simkin,
1983). This means that we consider two factors to alter synovial
distribution, the overall permeability or perfusion, and the rate
at which the antibody leaves the synovium. The assumption is
made that the exit of TCZ occurs twice as fast as the entry and
that a perfusion coefficient V4p further limits the distribution by
factoring perfusion and diffusion barriers.

parameter estimation steps To parametrise a four-compart-
ment model we split a two-compartment model incrementally into a
four compartments in three steps by fitting to clinical TCZ data (Choy
et al., 2000; Zhang et al., 2013a) (See Figure 3.2). Progressive partition-
ing of the peripheral compartment into the final four-compartment
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Figure 3.2: A two compartment PK model (A) was split into three (B) incor-
porating literature-derived values for TMDD parameters within
both the liver and whole body T cell estimates. The fourth com-
partment (C) was added by including the synovial compartment.
Estimates were made across the same three clinical data sets
(Choy et al., 2000; Zhang et al., 2013a).

model was measured using AIC. The first model (A, Figure 3.2) did
not fit to the serum PK data at later time-points, presumably due to the
lack of a saturable elimination route. Additionally, no synovium com-
partment meant that the model would not fit to the given synovial
data. We improved upon this by assuming the presence of a satur-
able TMDD elimination route in the peripheral compartment as well as
an additional liver compartment using experimentally-derived con-
centrations of mIL-6Rα (Tables 3.1 and 3.2). While this PK model suc-
ceeded in fitting serum PK data for TCZ, the synovial data set was not
modelled successfully. We further split the peripheral compartment
and completed the four compartment structure by the addition of
the synovium. This reduced the peripheral volume by 0.15. Estimation
was carried out for a further parameter, V4P (Table 3.3).
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Parameter ID Units Value Standard deviation CV (%)

Intercompartmental
clearance

Q l · h−1
0.0595 0.0261 43.9

Akaike Information Criterion: 460.3

Table 3.1: Parameter estimates for the two-compartment PK model without
nonlinear elimination.

See the results
section 3.3.1.1 and
figure 3.4 for the
simulation and fit to
data.

Parameter ID Units Value Standard deviation CV (%)

Intercompartmental
clearance

Q l · h−1
0.0301 0.0132 43.7

Akaike Information Criterion: 459.3

Table 3.2: Parameter estimates for the three-compartment PK model with
nonlinear elimination.

Parameter ID Units Value Standard deviation CV (%)

Intercompartmental
clearance

Q l · h−1
0.0356 0.00964 9.37

Synovial perfusion frac-
tion

V4p N/A 0.0662 0.0137 20.6

Akaike Information Criterion: 379.7

Table 3.3: Parameter estimates for the four-compartment PK model with
nonlinear elimination and synovial perfusion constraints.

3.2.2.2 Receptor dynamics

Several receptor turnover datasets were available in two cell lines (Dit-
trich et al., 1996; Zohlnhöfer et al., 1992). However these are not en-
tirely reminiscent of true hepatocytes. Furthermore, the application of
a hepatic IL-6Rα signalling phenotypes to the other cells throughout
the body is a large simplification. The assumptions in this module
were that:

active receptor stoichiometry is simplified : The model as-
sumed that receptor activation occurs independently of hetero-
trimer formation. The stoichiometry, mechanism and dimerisa-
tion status of gp130 complexes are still unclear in both IL-6-bound
and unbound forms of the full receptor complex (Grötzinger et
al., 1999; Scheller et al., 2011). The extent of or whether gp130

is preformed as a dimer or dimerisation occurs following re-
ceptor binding in vivo is yet to be confirmed (Tenhumberg et
al., 2006). As such, we model an activation reaction with a 1:1:1
trimer (IL-6:IL-6Rα:gp130) reactant as simplified in original model
Dwivedi et al., 2014. This bypasses controversy of the receptor
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stoichiometry and approximates the gp130 dimerisation and phos-
phorylation as a single first-order reaction. The parameters for
receptor activation were taken from the original model and the
reaction assumes that intracellular gp130 tyrosine residues are
readily phosphorylated upon assuming the active receptor con-
formation. A reverse reaction assumes the presence of intracel-
lular phosphatases.

mil-6rα undergoes fast internalisation : The receptor,
mIL-6Rα, has a relatively fast internalisation without the aid of
gp130 binding as previously thought (Fujimoto et al., 2015). There-
fore IL-6 can internalise through interaction with the receptor.

no receptor recycling occurs : IL-6 remains bound to the re-
ceptor and recovery of the cell-surface receptor population is
slow after depletion (Wang and Fuller, 1994; Zohlnhöfer et al.,
1992). Therefore the intracellular degradation reactions are ab-
sent from the whole model. This is because the model is only
concerned with the dynamics of the receptors at the cell-surface.

parameter estimation The final parameter set for the in vitro
receptor dynamics sub-model was estimated in two steps. Firstly, val-
ues for the zero-order gp130 synthesis parameter, first-order intracel-
lular receptor degradation parameter, and the global low temper-
ature modifier (kgp130synth

, kdeg and T4 respectively) were estimated
in COPASI (Table 3.4, Figure 3.3a). First-order degradation paramet-
ers for all intracellular receptor components were assumed to be
the identical. The temperature modifier T4 was included to simulate
reduced reaction rates prior to warming the cell-media. Estimation
was carried out using data from a transfected HepG2 cell-line over-
expressing mIL-6Rα (Zohlnhöfer et al., 1992). The initial receptor con-
centration was derived from the approximate number of IL-6 binding
sites in the transfected HepG2 cells. Refinement of the estimation was
carried out using a parameter scan to arrive at a suitable value for
gp130 synthesis rates in mIL-6Rα-transfected HepG2 cells (Figure 3.3a).

Parameter ID Units Value Standard deviation CV (%)

gp130 synthesis kgp130synth
nM h−1

2.91×105
5.18×107

1.78×104

Intracellular degrada-
tion

kdeg h−1
0.623 0.0390 6.26

Temperature modifier T4 N/A 0.0494 0.00700 14.1

Table 3.4: Parameter estimates for receptor dynamics in transfected HepG2

cells.
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Figure 3.3: Parameter estimation of receptor dynamics with mIL-6R trans-
fected HepG2 cells.
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3.2.2.3 Intracellular signalling and STAT3.

The level of intracellular signalling presented in the model is only de-
tailed enough to simulate phenomenological responses to IL-6. Thus,
the model assumes that:

only stat3 is considered : Whilst multiple downstream pathways
are perturbed in response to gp130 phosphorylation, this model
assumes that the main response is captured as a function of
STAT3. In simplifying the structure, the intricate intracellur path-
ways that regulate STAT activity are absent. For example, SOCS3

negative feedback was proposed to be ineffective in CD (Dwivedi
et al., 2014; Lovato et al., 2003). Interestingly, the expression of
SOCS3 may be decreased in RA T cells, providing a case for this
assumption in the RA model (Ye et al., 2015). This adequately
provides a clinical end-point within synovial tissue and the clin-
ical biomarker within the hepatic tissue through the secretion
of CRP.

stat3 dimerisation is omitted : Evidence suggests that STAT3 di-
merisation may not be wholly necessary for activity (Cimica et
al., 2011). For simplicity, the dimerisation step was not included
in the original model.

available stat3 is constant : The sum of both STAT3 and pSTAT3

is assumed to be constant, that a steady-state of synthesis and
degradation is present within the cell population that is not im-
mediately perturbed by either the activity of IL-6 or other com-
ponents within the model. This may not necessarily be the case
in biology (Henkel et al., 2011), however, the simplification is
necessary due to the lack of useful data and the level of model
scope. The concentration of STAT3 was estimated from the num-
ber of molecules found in porcine heart cells for a general ap-
proximation of the concentration (Equation 3.2). This assumed
that there were between 73 and 123 STAT3 molecules per cell.
With respect to hepatocytes, the cell volume was 2.8 pl.

[STAT3] + [pSTAT3] = 98/((2.8× 10−12) · 6.02× 1023) (3.2)

Both tissue and inter-organism effects may vastly alter the con-
centration in real human physiology, and pragmatically speak-
ing, 98 is a very low number of molecules per cell. Alternatively,
evidence suggests that the relative expression of of STAT6 could
be upwards of 10 000 molecules per cell (Raia et al., 2011). How-
ever, no quantitative contrary evidence was readily available for
STAT3 and which remains a caveat in this module.

phosphorylation is reversible : A scheme of reversible Micha-
elis–Menten STAT3 phosphorylation reactions is presented in a
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previous model (Sadreev et al., 2014). The forward reaction is
catalysed by the active receptor complex while the reverse is
driven by an implicit presence of STAT3 phosphatases.

stat3 phosphorylation is only il-6 dependent : The reacti-
on structure does not account for IL-6-independent pSTAT3 reac-
tions, the model only assesses the effect of IL-6. It is assumed
that the other mechanisms are unaffected by perturbation in
IL-6-signalling pathways and are therefore excluded from the
model.

parameter estimation Reactions for the reversible phosphory-
lation of STAT3 were added to the receptor dynamics model. The
MM reaction rate parameters were estimated simultaneously using
data from multiple cell-lines (human hepatocyte-derived cellular car-
cinoma cell line (HuH7), tongue cell carcinoma cell line (Cal33), &
murine hybridoma cell line (7TD1)). The data were digitised and con-
verted from published studies (Casanovas et al., 2014; Gough et al.,
2016; Simard et al., 2014).

Parameter ID Units Value Standard deviation CV (%)

Catalytic rate of phos-
phorylation

kcatSTATphos h−1
5280 4.23×107

9.17×103

STAT3 phosphorylation
MM constant

KMSTATphos nM 0.0164 0.0727 412

Maximal rate of de-
phosphorylation

VmSTATdephos nM h−1
144000 9.09×107

1.08×104

pSTAT3 dephosphoryla-
tion MM constant

KMSTATdephos nM 31.4 195 8.56×103

Table 3.5: Parameter estimates for STAT3 phosphorylation reactions. MM,
Michaelis-Menten; CV, coefficient of variation. Parameter values
are median values from parameter sets within 0.1 % of the lowest
objective value.

3.2.2.4 Tissue compartments, CRP and steady-state concentrations

Connection of all modules was carried out and the model assumed
its final structure. Assumptions were made to simplify this process
and ease the parameter estimation and retain identifiability. The final
model assumed that:

components were sourced and degraded in tissues : Evid-
ence suggests that tissue compartments are major contributors
to the production and degradation of trans-signalling compon-
ents. The rate of sIL-6Rα and sgp130 degradation is similar to other
soluble cytokine receptors (Jacobs et al., 1993).
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ra is maintained by local secretions : Synovial synthesis of
signalling components in RA creates a local environment op-
timal for maintaining the arthritic state. High concentrations
IL-6 are presumed to be responsible for the pathology of RA. Its
increase in disease is assumed to be driven largely by local syn-
ovial secretions (Guerne et al., 1989; Rosenbaum et al., 1992) Fur-
thermore, a reaction for sIL-6Rα synthesis is included in the syn-
ovium. One modification is made to the original model whereby
the serum IL-6 synthesis reaction is removed. Here the assump-
tion is that the circulatory system secretes an insignificant por-
tion in systemic IL-6 concentrations relative to the RA disease
state.

t cells drive sil-6rα synthesis : Production of sIL-6Rα is seen
from activated CD4+ mononuclear cells (Briso et al., 2008). The
model assumes that serum sIL-6Rα production is proportional to
the compartmental concentration of T cells.

receptor shedding is driven by crp : Receptor shedding of
sIL-6Rα occurs in the serum where CRP catalyses a shedding re-
action. The in vivo contribution of this reactions has not been
determined. The assumption is made that the increase in CRP

between healthy and RA state causes the increase in sIL-6Rα in
RA.

crp synthesis is il-6 dependent : Similar to omitting IL-6-indep-
endent STAT3 phosphorylation, the model’s scope is solely that
of IL-6-mediated events. In this model, CRP production is sim-
plified so that all CRP is sourced from hepatocytes via IL-6 sig-
nalling. The IL-6-independent CRP synthesis seen in the original
model was removed.

crp synthesis is simplified : In the presence of pSTAT3, CRP syn-
thesis was assumed to be an enzymatic Michaelis-Menten re-
action with pSTAT3 as the catalytic enzyme. This simplification
merges the steps of transcription and translation.

protein tissue concentrations are higher : The original mo-
del defined that steady-state protein concentrations in tissue are
two-fold higher than those in serum at steady-state. This applies
to all components except those where experimental data sug-
gests otherwise. A coefficient of 2 was applied to serum to tissue
rate constants to reflect this.

synovial perfusion also limits il-6 components The syno-
vial perfusion constant V4p used in the PK model was also used
here for calculating the transfer between compartments. Fur-
thermore, the smaller molecule sizes of the majority of com-
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ponents may require the removal of the 2-fold modifier seen in
k41 as seen in the PK model.

both active receptor complexes are independent : In con-
trast to the original model, a reaction was implemented which
separates both active forms of the receptor. The original model
allowed for a flux from [mR_IL6_gp130] to [sR_IL6_gp130] via
the receptor activation reaction which is unlikely to occur in
biology at a great rate. This would only be explainable if the
whole membrane-anchored receptor complex was cleaved after
inactivation. Hence in this model, an additional reaction was im-
plemented for the proper separation of cis and trans-signalling
active receptor complexes.

parameter estimation In total, 15 unknown value, kinetic rate
constants were estimated with published data. These included zero-
order synthesis and first-order constants for molecular species as well
as MM constant for protein synthesis in CRP production and the inter-
compartmental flow rates for PK and PD components (Table 3.6). This See figure 3.9,

section 3.3.1.4 for
the figure exploring
parameter space.

was carried out in a single step with the full model in an optimisa-
tion task fitting to steady-state data as well as dynamic drug response
data. The steady-state concentrations of molecular species were collec-
ted from a number of studies in RA patients (table 3.7).

Parameter ID Units Value Standard deviation CV (%)

PD distribution flow QPD l h−1
0.255 0.0154 5.82

PK distribution flow Q l h−1
0.0354 9.71×10−4

2.72

Soluble mAb complex de-
gradation

kAb_sRdeg
h−1

9.76×10−3
5.11×10−4

5.33

Synovial IL-6 synthesis kIL6_synoviumsynth
nM h−1

0.226 8.38×10−3
3.75

Systemic IL-6 synthesis kIL6synth nM h−1
0.0165 4.29×10−4

2.62

Liver sIL-6Rα synthesis ksR_liversynth
nM h−1

0.365 0.0183 5.04

Peripheral sIL-6Rα syn-
thesis

ksR_peripheralsynth
nM h−1

0.361 8.84×10−3
2.45

Synovial sIL-6Rα synthesis ksR_synoviumsynth
nM h−1

0.291 0.0189 6.51

Liver sgp130 synthesis ksgp130_liversynth
nM h−1

1.23 0.0776 6.23

Peripheral sgp130 synthesis ksgp130_peripheralsynth
nM h−1

1.00 0.0350 3.50

Serum sgp130 synthesis ksgp130_serumsynth
nM h−1

0.0986 0.0595 66.3

Synovial sgp130 synthesis ksgp130_synoviumsynth
nM h−1

2.44×10−6
2.62×10−3

1.17×104

Protein synthesis rate max Vm protsynth nM h−1
1.36×108

5.45×109
8.87×103

Protein MM constant KM protsynth nM 1.51×104
2.72×106

8.75×103

mIL-6Rα shedding rate kRshedding h−1
1.02×10−6

6.98×10−5
6.71×103

Table 3.6: Estimated parameter values for the whole model. These were de-
rived by fitting to experimental temporal PK and PD data as well
as RA steady-state concentrations of IL-6 signalling components.
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Tissue concentration (nM unless stated)

IL61 (pM) IL64 (pM) CRP1 sIL6Ra1 sIL6Ra4 sgp1301 sgp1304

mean (SD) 6.24 (6.39) 137 (85.6) 245 (171) 1.36 (1.16) 1.50 (1.05) 4.34 (0.424) 2.78 (NA)

median 2.45 125 230 0.907 1.337 4.34 2.78

Source

A − 14.9 − − − − −
B − 11.0 − − − − −
C 2.43 − − 0.995 − − −
D 2.34 − − − − − −
E − − − − 0.714 − −
F − 2202 − − 0.57 − 2.78

G − 409 − − 2.76 − −
H 2.11 70.3 112 3.08 1.96 − −
I 2.46 − 432 0.554 − − −
J 10.8 − − 0.818 − 4.64 −

K − − − − − 4.04 −
L − − 88 − − − −

M 17.3 179 348 − − − −
A, Kokebie et al. (2011); B, Tsuchida et al. (2012); C, Robak et al. (1998); D, Manicourt et al. (1993);
E, Nowell et al. (2003); F, Richards et al. (2006); G, Kotake et al. (1996); H, Kohno et al. (1998); I,
Nishimoto et al. (2008); J, Spano et al. (2011); K, Pignatti et al. (2003); L, Zhang et al. (2013b); M,
Okamoto et al. (1997).

Table 3.7: Steady-State disease concentrations of IL-6 signalling components.
The subscript integer refers to compartment number (1), serum;
(4), synovium.

3.3 results

The results focus upon several aspects of developing QSP models.
Firstly, the model re-parametrisation is presented in modules, detail-
ing the results of fits to data and the choice parameter set. Secondly,
the resulting RA model’s validity is shown through simulation, com-
pared with experimental data both at equilibrium and with respect to
time covering a variety of experiments. Finally, results of predictions
are shown where the model is used to address the posed questions.
In this last section, simulations are made to predict the action of SRK

and TCZ over several dose regimens.

3.3.1 Parametrisation

As described in the methods, parametrisation of the model was car-
ried out in modules: mAb PK, cell-surface receptor dynamics, and
STAT3 phosphorylation. These modules were separated from the over-
all model by fixing their inputs and the whole model was pieced
together over several estimation steps to maximise module identi-
fiability. To determine whether the parameter values chosen were
indeed suitable for use in the model or identifiable, multiple itera-
tions of each estimation task were carried out for each estimation step
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throughout the model development. Without performing a bonefide
identifiability analysis, we used the distributions of lowest objective
function values to declare a parameter as identifiable with our current
model structure and data. For example, Figure 3.9 showed that even
in parameter sets that fit our data most closely, parameters may take
a very wide range of values for an equally good fit. This type of distri-
bution suggests that either the experimental data or the model were
not fully descriptive of the processes occurring in biology. Parameters
with a wide distribution across best fitting parameter sets can be con-
sidered unidentifiable as they have no identified value. On the other
hand, we can call parameters with well-defined minima as identifi-
able and we can confidently determine their value within our model.

3.3.1.1 Monoclonal antibody pharmacokinetics

In striving to achieve the original model’s reaction structure, the PK re-
actions were re-parametrised to fit experimental IgG-class mAb PK data.
This produced a four-compartment model comprised of the central
circulatory compartment serum and the tissue compartments of the
liver and synovium as well as a peripheral tissue compartment. The tis-
sues were connected via the serum which allowed for the transfer of
soluble IL-6 signalling components between the tissues. The reaction
scheme and diagram can be seen in Table 3.8. To reconstruct this PK

model, a two-compartment model of physiological volumes was pro-
gressively split into further compartments, accommodating the liver
and the synovium tissues necessary for the scope of the model. During
this process, assumptions were made about the PK of TCZ and other
IgG mAbs which increased the model complexity and the fit to IgG-
mAb data. For example, it was apparent in IV data that TCZ exhibited
nonlinear elimination and that this would have to be accounted for in
a more complex model. The resulting PK model and parametrisation
was able to fit to the kinetics of TCZ in several dose regimens and
administration routes (Figure 3.4). The fit of the PK model to the ex-
perimental data for TCZ shows nonlinearity which was parametrised
using mIL-6Rα concentrations in the liver and peripheral compartments
calculated from published experiments (Figure 3.4A).
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Figure 3.4: PK trajectories for the final four-compartment model. The above
trajectories are experimental data points used in fitting the PK
model alongside simulated events for A, single-dose IV admin-
istration of 162 mg TCZ; B, single-dose SC administration of 162

mg TCZ (Zhang et al., 2013a); and C, five-dose IV administration
of 300 mg anti–CD4+ mAb over 120 h (Choy et al., 2000).
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3.3.1.2 Cell-Surface receptor dynamics

The core reactions that govern IL-6 signalling are related to the reg-
ulation of cell-surface receptors and the binding of IL-6 to these re-
ceptors. It is within this network that the proposed mAbs bind and
exert their perturbation. The structure of the model accounts for the
dynamic turnover of both mIL-6Rα and gp130 as well as receptor ac-
tivation. Receptor components are synthesised, internalised and de-
graded, establishing a cell-surface equilibrium. Perturbations caused
by IL-6 binding and changes in temperature shift the expression equi-
librium. The first step was to use parameters fully derived from ex-
perimental sources in literature. This provided an approximate fit to
experimental internalisation data (Figure 3.6a). However, the simula-
tion depicted a much lower peak of mIL-6Rα internalised mIL-6Rα than
at least that seen experimentally in the HepG2 cell-culture. Subsequent
estimation of gp130 synthesis rates and degradation rates of intracel-
lular receptor components resulted in a much greater fit to the data
(Figure 3.6b). Emerging from this model parametrisation was the ob-
servation that, after the removal of IL-6, the cell-surface expression
of mIL-6Rα was nearly restored after 8 hours (Figure 3.6c). This was
also seen in published experiments (Zohlnhöfer et al., 1992). Details
of the parameter estimation figures can be seen in the materials and
methods section.
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The complete receptor dynamics module was capable of simulating
the dynamic turnover of IL-6 receptor components in cell culture to a
reasonable semi-quantitative degree (Figure 3.6).
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Figure 3.6: Reproducing an experiment of wild-type HepG2 cells using the
receptor dynamics model (Zohlnhöfer et al., 1992). Model simu-
lations are denoted by "sim" while experimental data is referred
to as "exp". Internalisation dynamics of mIL-6Rα were observed
after heating and exposure to IL-6.
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3.3.1.3 Intracellular signalling and STAT3 phosphorylation.

Phosphorylation of STAT3 was modelled using reversible Michaelis-
Menten reactions and conveys the transduction of gp130 phosphoryla-
tion. This gives a phenomenological interpretation of a downstream
response to IL-6. Estimation of the STAT3 response parameters was car-
ried out by adding STAT3 reactions to the receptor dynamics model.
The fitted model captures the sigmoidal curve of STAT3 phosphoryla-
tion seen with in vitro IL-6 dose–response experiments (Figure 3.7).

1e
−

05
1e

+
01

K
M

_d
ep

ho
s

●
●

●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●
●●●●●●●●●●●●●

●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●
●

●●●●●●●●
●●●●●●●●●●

●

●

●

●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●

●
●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●

●

●

●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●●●
●●
●●●●●●●●●●●●

●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●
●

●
●●●●●●●●●●●●●●●

●

●

●●
●

●●●●●●●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●

●

●
●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●
●●●●●●●●●●●●●

●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●
●

●●●●●●●●
●●●●●●●●●●

●

●

●

●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●

●
●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●

●

●

●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●●●●
●●
●●●●●●●●●●●●

●

●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●
●

●
●●●●●●●●●●●●●●●

●

●

●●
●

●●●●●●●
●

●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●

●

●
●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

K
M

de
ph

os

A

 − −7.3

 − −6.6

 − −5.8

 − −5.1

 − −4.3

 − −3.6

lo
g 

ob
je

ct
iv

e 
va

lu
e

1e
−

05
1e

+
01

V
M

_d
ep

ho
s

●

● ●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●
●●●●●●●●●●●●

●●●●●
● ●

●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●●
●
●
●
●

●●●●●●●●●●●●●●

● ●

●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

● ●●●●●●●●●●●●●●●●●●●

●
●

●
●

●●
●

●

●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●● ●

●

●

●
●

●

●
●

●
●
●●●●●●●●●●●●●

●● ●

●●
●

●●
●
●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
●
●

●
●

●
●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●
●●●●●●●●●●●●

●●●●●
● ●

●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●●
●
●
●
●

●●●●●●●●●●●●●●

● ●

●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

● ●●●●●●●●●●●●●●●●●●●

●
●

●
●

●●
●

●

●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●● ●

●

●

●
●

●

●
●

●
●
●●●●●●●●●●●●●

●● ●

●●
●

●●
●
●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
●
●

●
●

●
●●
●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

V
m

de
ph

os

●

●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●
●●●●●●●●●●●●

●●●●●
●●

●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●●●
●

●
●

●●●●●●●●●●●●●●

●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●
●●●●●●●●●●●●

●
●

●
●

●●
●

●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●●●●●●●●●●●●

●●●

●●
●

●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●
●

●
●●

●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●
●●●●●●●●●●●●

●●●●●
●●

●

●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●●●
●

●
●

●●●●●●●●●●●●●●

●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●
●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●
●●●●●●●●●●●●

●
●

●
●

●●
●

●

●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●●●●●●●●●●●●

●●●

●●
●

●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●
●

●
●●

●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●

1e
−

05
1e

+
01

K
M

_p
ho

s

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●

●

●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●
●●●●
●●●●●●●●●●●●●●

●

●

●
● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●●●●●●●●●●●●●●●

●

●

●

●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

●
●

●●●●●
●

●
●●●●●●●●●●●●

●
●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

● ●

●

●

●

●
●●

●●●●●●●●●●●●●

●

●

● ●
●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●● ●

●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●

●

●●

●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●
●●●●
●●●●●●●●●●●●●●

●

●

●
● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●●●●●●●●●●●●●●●

●

●

●

●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

●
●

●●●●●
●

●
●●●●●●●●●●●●

●
●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

● ●

●

●

●

●
●●

●●●●●●●●●●●●●

●

●

● ●
●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●● ●

●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

K
M

ph
os

●

●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●

●

●●

● ●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●● ●●●
●●●●●●●●●●●●●●

●

●

●
●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
●

●

●●●●●●●●●●●●●●●

●

●

●

● ●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

●
●

●●●●●
●
●
●●●●●●●●●●●●

●
●●●

●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

● ●

●

●

●

●
●●
●●●●●●●●●●●●●

●

●

● ●
●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●● ●

●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●

●

●●

● ●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●● ●●●
●●●●●●●●●●●●●●

●

●

●
●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●
●

●

●●●●●●●●●●●●●●●

●

●

●

● ●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

●
●

●●●●●
●
●
●●●●●●●●●●●●

●
●●●

●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

● ●

●

●

●

●
●●
●●●●●●●●●●●●●

●

●

● ●
●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●● ●

●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●

●

●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●●●●●
●●●●●●●●●●●●●●

●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●●●●●●●●●●●●●●●

●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●●●
●●
●

●
●●●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●

●

●

●

●
●●

●●●●●●●●●●●●●

●

●

●●
●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●
●●●●●●●●●●●●●●●●●

●

●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●

●●●●●●
●●●●●●●●●●●●●●

●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●●●●●●●●●●●●●●●

●

●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●●●
●●
●

●
●●●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●

●

●

●

●
●●

●●●●●●●●●●●●●

●

●

●●
●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

1e−05 1e+01

1e
−

05
1e

+
01

KM_dephos

K
ca

t_
ph

os

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●

●
●●

●
●
●
●
●●●●●●●●●●●●●●

●

●

●● ●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
● ●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

● ●●
●
●

●●●●●●●●●●●●●●●

●

●

● ●

●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

● ●●●●●●●●●●●●●●●

●
● ●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●
●●
●●
●
●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●

●
●●

●
●
●
●
●●●●●●●●●●●●●●

●

●

●● ●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
● ●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

● ●●
●
●

●●●●●●●●●●●●●●●

●

●

● ●

●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

● ●●●●●●●●●●●●●●●

●
● ●

●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●
●●
●●
●
●
●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

K
ca

t p
ho

s

KMdephos

1e−05 1e+01

VM_dephos

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●

●
●●●
●

●
●

●●●●●●●●●●●●●●

●

●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
● ●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

● ●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●●●
●
●
●●●●●●●●●●●●●●●

●

●

●●

●●
●● ●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

● ●● ●●●●●●●●●●●●●

●
●●

●
●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

●

●
●●●
●

●
●

●●●●●●●●●●●●●●

●

●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
● ●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

● ●●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●●●
●
●
●●●●●●●●●●●●●●●

●

●

●●

●●
●● ●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

● ●● ●●●●●●●●●●●●●

●
●●

●
●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●

Vmdephos

1e−05 1e+01

KM_phos

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●●●

●
●
●

●●●●●●●●●●●●●●

●

●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

● ●●
●

●
●●●●●●●●●●●●●●●

●

●

●●

●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●
● ●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●
●●
●●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●●●

●
●
●

●●●●●●●●●●●●●●

●

●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●● ●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

● ●●
●

●
●●●●●●●●●●●●●●●

●

●

●●

●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●
● ●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●
●●
●●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

KMphos

1e−05 1e+01

Kcat_phos

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●●

●
●

●
●

●●●●●●●●●●●●●●

●

●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●●●
●

●
●●●●●●●●●●●●●●●

●

●

●●

●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●●
●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●●

●
●

●
●

●●●●●●●●●●●●●●

●

●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●●●
●

●
●●●●●●●●●●●●●●●

●

●

●●

●●
●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●●
●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Kcatphos

1e−05 1e−03 1e−01 1e+01
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05

●●

●

●

●●

●

●

●
●

● ● ● ●
●

●

●

●

●
● ● ●

IL−6 (nM)

pS
TA

T
3 

(n
M

)

B
●
●
●

7TD1
HuH7
Cal33
Fitted simulation

Figure 3.7: STAT3 model estimation and result. A, parameter correlation and
convergence towards minima; B, steady-state dose–response of
tissue STAT3 phosphorylation to a range of fixed IL-6 concentra-
tions plotted with response data from HuH7, 7TD1 and Cal33 cells.

3.3.1.4 Whole model fitting; CRP and steady-state concentrations

Estimation of synthesis, inter-compartmental distribution and degrad-
ation rates of IL-6 signalling components in a final estimation step yiel-
ded a system that fits the dynamics of IL-6Rα blockade after TCZ ad-
ministration, albeit semi-quantitatively (Figure 3.8A-E). Furthermore,
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the steady-state concentrations resemble those derived from published
studies and clinical trials with RA patients (Figure 3.8F).
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Figure 3.8: Fitted simulations of the whole model parameter estimation.
Simulations were optimised to fit the experimental PK data for
TCZ in A, single-dose IV administration (Zhang et al., 2013a); B,
single-dose SC administration (Zhang et al., 2013a); as well as a
combination of serum biomarker responses with C, IL-6 dissoci-
ation; D, sIL-6Rα elevation; and E, suppression of CRP (Zhang et
al., 2013b). At the same time, the model was calibrated to fit F,
the RA steady-state concentrations of IL-6 signalling components.
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The estimation of parameter space for the whole model fitting in-
cluding CRP and steady-state concentrations can be seen in Figure
3.9).
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Figure 3.9: Estimation of synthesis and distribution rate constants for the
whole model.
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Additionally, the completed model, detailing reactions, species and
compartments is represented in Figure 3.10 on the next double page
with the corresponding reactions in Tables 3.11 to 3.17. The paramet-
ers can be found in Tables 3.18 and 3.19.



Figure 3.10: IL-6 model schematic in SBGN.
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92 a qsp model of il-6 signalling in rheumatoid arthritis
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Description Name Value Units Source

Tissue IL-6 synthesis kIL6synth
0.0165 nM h−1 †

IL-6 degradation kIL6deg
0.164 h−1 A

sIL-6Rα degradation ksRdeg
0.11 h−1 B

sgp130 degradation ksgp130deg
0.11 h−1 B

CRP degradation kCRPdeg
0.0365 h−1 C

gp130 association kgp130on 1.0 nM−1 h−1 D, E, F

gp130 dissociation kgp130o f f
0.05 h−1 D, E, F

IL-6 association kIL6on 1.0 nM−1 h−1 G, H, I, J

IL-6 dissociation kIL6o f f
0.5 h−1 G, H, I, J

gp130 synthesis kgp130synth
2.77 (0.29) nM h−1 †

basal gp130 internalisation kgp130int
0.35 h−1 K, L

basal mIL-6Rα internalisation kRint
0.25 h−1 M

IL-6 driven mIL-6Rα internalisation kR-IL6int
0.35 h−1 M

IL-6 driven gp130 internalisation kR-IL6-gp130int
2.77 h−1 N, O, P

Receptor activation kRactivation
155 h−1 Q

Receptor dephosphorylation Vm Rdephos 0.525 h−1 Q

MM constant receptor dephosphorylation KM Rdephos 155.3 nM Q

IL-6Rα shedding kRshedding
1.02 ×10−6 h−1 †

VM STAT3 phosphorylation kcatSTATphos 5280 h−1 †

KM STAT3 phosphorylation KMSTATphos 0.0164 nM †

VM pSTAT3 dephosphorylation VMSTATdephos 144000 nM h−1 †

KM pSTAT3 dephosphorylation KMSTATdephos 31.4 nM †

Serum T cells Tcellsserum 7.83 ×108 cells l−1 ∗ R, S, T

Serum sIL-6Rα synthesis ksRserum synth
0.00327 nM h−1 ∗

Peripheral T cells Tcellsperipheral 8.65 ×1010 cells l−1 ∗ U

Peripheral mIL-6Rα synthesis kRperipheral synth
8.675 ×10−3 nM h−1 ∗ V

Peripheral sIL-6Rα synthesis ksRperipheral synth
0.361 nM h−1 †

Serum mIL-6Rα synthesis kRserumsynth
7.85 ×10−5 nM h−1 ∗

Serum sgp130 synthesis ksgp130serumsynth
0.0986 nM h−1 †

Peripheral sgp130 synthesis ksgp130peripheral synth
1 nM h−1 †

Liver mIL-6Rα synthesis kRliver synth
0.254 nM h−1 ∗ N

Liver sIL-6Rα synthesis ksRliver synth
0.365 nM h−1 †

Liver sgp130 synthesis ksgp130liver synth
1.23 nM h−1 †

VM Protein synthesis Vm protsynth 1.36×108 nM h−1 †

KM Protein MM constant KM protsynth 15100 nM †

Synovial T cells Tcellssynovium 3.92 ×108 cells l−1 ∗ T

Synovial IL-6 synthesis kIL6synovium synth
0.226 nM h−1 †

Synovial sIL-6Rα synthesis ksRsynoviumsynth
0.291 nM h−1 †

Synovial mIL-6Rα synthesis kRsynovium synth
3.93 ×10−5 nM h−1 ∗

Synovial sgp130 synthesis ksgp130synoviumsynth
2.44 ×10−6 nM h−1 †

PD flow parameter QPD 0.255 l h−1 †

Peripheral PD distribution rate kdist12
0.146 h−1 †

Liver PD distribution rate kdist13
0.146 h−1 †

Synovium PD distribution rate kdist14
0.00988 h−1 †

Peripheral PD distribution rate kdist21
0.0227 h−1 †

Liver PD distribution rate kdist31
0.142 h−1 †

Synovium PD distribution rate kdist41
0.115 h−1 †

CRP secretion rate kCRPsecretion
0.116 h−1 W

Sources: A, (Weber et al., 1993); B, (Jacobs et al., 1993); C, (Pepys and Hirschfield, 2003); D, (Richards et al., 2006); E,
(Jostock et al., 2001); F, (Schroers, 2005); G, (Heinrich et al., 1998); H, (Gearing et al., 1992); I, (Weiergraber et al., 1995);
J, (Dittrich et al., 1994); K, (Thiel et al., 1998); L, (Blanchard et al., 2001); M, (Fujimoto et al., 2015); N, (Zohlnhöfer et al.,
1992); O, (Nesbitt and Fuller, 1992); P, (Dittrich et al., 1996); Q, (Dwivedi et al., 2014); R, (Horneff et al., 1991); S, (Mélet
et al., 2013); T, (Moradi et al., 2014); U, (Mascio et al., 2009); V, (Bongioanni et al., 2000); W, (Macintyre et al., 1985). ∗,
Calculated a priori using evidence from literature. † , Estimated parameters using data from literature.

Table 3.18: IL-6 signalling parameter values and sources.
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Description Name Value Units Source

Serum volume serum 3.5 l A

Peripheral volume peripheral 11.25 l ∗
Liver volume liver 1.8 l B, C, D

Synovium volume synovium 0.15 l E, F, G

mAb mass Abk Da 145 kDa H

mAb bioavailability bioavailability 0.81 (SC) N/A I

mAb absorption kabs 0.0091 (SC) h−1 A

mAb elimination rate kel 0.0012257 h−1 J

mAb association rate kAbon 1 nM−1 h−1 K L

mAb dissociation rate kAbo f f
0.001 - 1 nM−1 h−1 K, L

mAb:sIL-6Rα elimination rate kAb_sRdeg
0.00976 h−1 †

mAb:mIL-6Rα internalisation rate kAb_Rdeg
0.35 h−1 M

mAb:IL-6 elimination rate kAb_IL6deg
0.0012257 h−1 J

PK flow parameter Q 0.0354 l h−1 †

Peripheral PK distribution rate k12 0.0101 h−1 †

Peripheral PK distribution rate k21 0.00314 h−1 †

Liver PK distribution rate k13 0.0101 h−1 †

Liver PK distribution rate k31 0.0197 h−1 †

Synovium PK distribution rate k14 6.86×10−4 h−1 †

Synovium PK distribution rate k41 0.0320 h−1 †

Synovium perfusion fraction V4p 0.0678 N/A †

Sources: A, (RoActemra: EPAR - Product Information); B, (Kwon et al., 2001); C, (Heinemann et al., 1999); D, (Kan and
Hopkins, 1979); E, (R.W et al., 2007); F, (Buckwalter, 2007); G, (Simkin et al., 1995); H, (Mihara et al., 2011); I, (CHMP
Assessment report RoActemra. EMA/CHMP/606295/2013, 20 February 2014.); J, (Paul, 2008); K, (Mihara et al., 2005); L, (U.S
Food and Drug Administration, BLA: 125276); M, (Fujimoto et al., 2015); ∗, Calculated a priori using evidence from literature.
† , Estimated parameters using data from literature.

Table 3.19: Antibody parameter values and sources.

3.3.2 Validation

To validate the model, simulations were compared with independent
datasets not previously included in estimation. These cover the PK

and PD of both TCZ and SRK. The PK data to both mAbs were relat-
ively well predicted, and single and multiple-dose regimens for TCZ

were readily simulated using the final parameter set (Figure 3.11).
This provides evidence that the model suitably predicts TCZ kinetics.
This was reasonably expected as TCZ PK data were were used to para-
metrise the model. However, the PK of an anti–IL-6 mAb such as SRK

emerged from the model suggesting that the model can be applied to
similar mAbs and molecules (Figure 3.12).

On the other hand, the PD data were less well-simulated. The ex-
tent of CRP suppression was evidently under-predicted in TCZ simu-
lations and the elevation of sIL-6Rα in response to TCZ binding was
over-estimated (Figures 3.13A and B). Furthermore, while the initial
dose of TCZ dissociated IL-6 from IL-6Rα in good agreement with ex-
perimental data, the final peak was over-predicted by approximately
3-fold. This was observed despite the success of simulations in ad-
hering to experimental trough measurements (the concentrations of
IL-6 prior to administering a new dose) (Figure 3.13C). Additionally,
the simulated suppression of CRP following SRK administration shows
that although the model captures the depth of CRP suppression in RA

http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Assessment_Report_-_Variation/human/000955/WC500167788.pdf
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Figure 3.11: TCZ PK Validations. Simulated TCZ administration matches the
serum PK profiles of several dose regimens. A, single-dose IV
(Zhang et al., 2013a); B, multiple-dose SC (Zhang et al., 2013b);
C, multiple-dose IV (Nishimoto et al., 2003); and D, single-dose
SC regimens (Ohta et al., 2013) were captured by the whole
model.

patients, the simulation fails to capture the slow speed of CRP recov-
ery seen in clinical data (Figure 3.14).

Shown in these simulations, the model captures and predicts the
PK of mAbs reasonable well. However, there are quantitative differ-
ences between experimental data and that of the model in the case
of PD dynamics. This error is largely within the experimental error
with mean differences of approximately 522, 52 and 46 per cent from
the mean experimental data (CRP, sIL-6Rα and IL-6 respectively). These
differences between simulation and clinical data may be explained by
multiple factors associated with the structure and parametrisation of
the model.
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Figure 3.12: SRK PK Validations. Simulated SRK administration matches the
serum PK profiles of several dose regimens in RA patients. A,
single-dose administration (Zhuang et al., 2016); B, multiple-
dose SC administration (Smolen et al., 2014); C, multiple-dose
IV administration in patients with lupus (Szepietowski et al.,
2013).
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Figure 3.13: TCZ PD Validations. Simulated TCZ administration over several
SC dose regimens attempts to match the serum PD biomarker re-
sponses observed in patients. A, CRP suppression from multiple
doses; B, elevation of sIL-6Rα during dosing; and C, a rise in IL-6
(Zhang et al., 2013b).

3.3.2.1 Can we improve the pharmacodynamics?

Throughout the model development, some work was undertaken to
understand the limitations of the model when reproducing the PD as
well try and improve the fit. One thing of note was was the threshold
for STAT3 phosphorylation by activating IL-6Rα when examining the
output for CRP. The dose–response curve for pSTAT3 suggested that
physiological hepatic levels of IL-6 within the liver (approximately 5
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Figure 3.14: SRK PD Validations. Simulated CRP suppression during SRK SC
administration (Smolen et al., 2014).

pM) would have very little response when using the phosphorylation
curve I fitted to in vitro data (Figure 3.7B). The result of this is that
the subsequent parametrisation of CRP synthesis plays solely upon the
lower tail of the sigmoidal STAT3 phosphorylation curve in Figure 3.7B
and remains too stiff to be modulated by mAb perturbations. This may
be fixed by re-evaluating the STAT3 phosphorylation sub-model using
in vivo or ex vivo data if available to gather quantitative evidence of
the relationship between the hepatic IL-6 and pSTAT3. Other improve-
ments to PD may be made by including an IL-6-dependent feedback
mechanism on IL-6 production. This would act to both lower the IL-6

synthesis parameter, fixing the sustained response of both IL-6 and
sIL-6Rα as observed in Figures 3.13B and 3.13C.
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3.3.3 Prediction

To make predictions on the relative merits and caveats of IL-6 blocking
strategies, we ran simulations. These compared the effects that the
targets have upon a mAb-based therapy as well as the ability of each
target to elicit a clinical response. Further predictions are made with
specific comparisons of TCZ and SRK.

3.3.3.1 Comparing drug targets for monoclonal antibody therapy

Predictions compare the target druggability by assessing how either
the receptor or ligand affects mAb PK. Simulations of an equal affin-
ity mAb at a KD of 1 nM demonstrate that targeting mIL-6Rα as op-
posed to IL-6 results in a much lower area under the curve and steady-
state trough concentration (Figure 3.15). Furthermore, the difference
in t½ − β between the two mAb targets is apparent and nonlinear kin-
etics were also observed at the lower end of the mAb concentration.
Nonlinear elimination of the anti–IL-6Rα mAb was expected as the KD

used represents the approximate affinity of TCZ.
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Figure 3.15: The effect of drug target on PK. Simulations were run for 12

weeks with a twice-monthly SC administration of mAb. A KD of
1 nM was chosen for each mAb.

We made further simulations to predict the behaviour of the sys-
tem in response to mAb administration. In clinic, the response to a
mAb which targets either IL-6 or IL-6Rα can be seen through the sup-
pression of CRP in patients. In our model, Dose–response predictions
reveal that blockades of either IL-6 or IL-6Rα are able to achieve full
CRP suppression which suggests that either target is viable (Figure
3.16a). However, the model predicts that the potency differs between
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both strategies; the comparison of acute phase protein response us-
ing a mAbs with a one nM KD suggests that targeting IL-6Rα with a
mAb would be more beneficial than targeting IL-6, and the suppres-
sion of CRP is achieved at a lower dose when targeting IL-6Rα com-
pared with IL-6 (Figure 3.16a). Furthermore, the trough to peak range
in serum CRP after antibody administration appears to be wider for
anti–IL-6 therapy at lower doses but dampens as the dosage increases.
For anti–IL-6 therapy these pulses appear to maintain their magnitude
(Figure 3.16a).

However, upon modifying the affinity of the mAbs we can see a
change in the potency and behaviour of CRP suppression in both
strategies. Decreasing the off-rate (kAboff) over several orders of mag-
nitude yields a typical shift to the left for the anti–IL-6 mAb but not
substantially for the anti–IL-6Rα mAb (Figure 3.16b). Instead, the effect
of a higher affinity in the anti–IL-6Rα mAb alters the response beha-
viour from a gradual sigmoidal curve to a dose-dependent switch
(Figure 3.16b). In other words the leftwards shift is otherwise limited
by a dose-threshold. This effect could be caused by the necessity of
an anti–IL-6Rα mAb to first saturate sIL-6Rα as suggested in the original
model (Dwivedi et al., 2014). In assuming this however, the contribu-
tion of classical signalling to STAT3 phosphorylation in hepatocytes
must be greater than that of trans-signalling in order to regulate the
output of CRP.
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Figure 3.16: CRP was fully suppressed by the inhibition of either target. Sim-
ulations were run for 12 weeks with a twice-monthly SC ad-
ministration of a mAb with the labelled KD. Saturation of colour
is the density of response values over the course of treatment.
Lines are the final trough values after 12 doses.
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3.3.3.2 The majority of an anti–IL-6R mAb is bound to sIL-6Rα.

To determine whether the pool of free sIL-6Rα was responsible for this
dose threshold, the concentrations of hepatic bound and free IL-6Rα

complexes were monitored over a range of simulated anti–IL-6Rα mAb

doses. The model illustrated that the high affinity anti–IL-6Rα mAb has
to first bind to and saturate the pool of soluble receptors before the
drug can bind to the pool of mIL-6Rα. This is apparent because the
mAb has an equal affinity for both membrane and soluble forms of
the receptor. The model showed that a significant shift from free to
bound mIL-6Rα only occurred when less than ten per cent of sIL-6Rα

remains unbound (Figure 3.17). Additionally, the model also showed
that on the approach to this critical dose-threshold, the concentration
of active mIL-6Rα actually increases by 40 per cent (Figure 3.17). This
suggested that a below-threshold dose of a high-affinity mAb target-
ing IL-6Rα may increase the signalling via classical pathways.
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Figure 3.17: Free and mAb-bound IL-6Rα concentrations in the liver as a frac-
tion of the total concentration. Active mIL-6Rα was normalised
to RA the pre-treatment concentration (t =0). Simulations were
run for 12 weeks with a fortnightly administration (Q2W) SC ad-
ministration of a high-affinity anti–IL-6Rα mAb.
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To further assess how the sequestration of TCZ by sIL-6Rα affects
the dynamics of cell-surface receptor components in the liver, hep-
atic classical and trans-signalling components were monitored over a
range of high affinity anti–IL-6Rα mAb doses (Figure 3.18, note the log
scale). In the absence of antibody, mIL-6Rα and sIL-6Rα were mostly free.
Simulations predicted that, at larger concentrations, the anti–IL-6Rα

mAb competes with IL-6 for sIL-6Rα and which slows the degradation
of the total pool of sIL-6Rα. Figure 3.18 shows that the total concentra-
tion of sIL-6Rα increased after exposure to the anti–IL-6Rα mAb, which
agrees with clinical studies (Figure 3.13). The total concentration of
sIL-6Rα peaks after 100 mg when sIL-6Rα is fully saturated by the mAb.
At the same dose however, the total concentration of mIL-6Rα was seen
to decrease when it suddenly became saturated by the mAb. This in-
creases the rate of receptor internalisation as it is bound by the an-
tibody. Furthermore, the active membrane-bound receptor was seen
to disappear completely after dosing with 100 mg of a high affinity
anti–IL-6Rα mAb. Sequestration of the anti–IL-6Rα mAb by sIL-6Rα is aug-
mented by an increasing total concentration of the receptor. This is
driven by the a reduction in sIL-6Rα degradation when bound to the
antibody. Combined with the sustained synthesis reaction of sIL-6Rα,
a new equilibrium was reached after continuous mAb administration
(Figure 3.18).
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Figure 3.18: Hepatic classical (left) and trans-signalling (right) receptor sat-
uration. Simulations were run for 12 weeks with a twice-
monthly SC administration of a high-affinity mAb (KD = 1 pM).
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Figure 3.19: A diagram of the proposed saturation problem seen by com-
paring mAbs against IL-6Rα and IL-6. A mAb with IL-6Rα as a target
may have to first bind to and saturate the overwhelming popula-
tions of rapidly synthesised sIL-6Rα across multiple tissues prior
to binding to hepatic mIL-6Rα. Competitive binding to IL-6 on the
other hand affects both classical and trans-signalling in unison.
Furthermore, this effect is exacerbated because of differences
between low IL-6 and high sIL-6Rα concentrations in extracellu-
lar space; the ratio between sIL-6Rα and IL-6 is several orders of
magnitude greater still than that depicted.
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3.3.3.3 Comparing sirukumab and tocilizumab.

As the majority of mAbs are competitive inhibitors, the therapeutic
difference between two mAbs of the same class is often associated
with their affinities. We simulated the dose–response of CRP using
mAbs with affinities similar to those seen in TCZ and SRK with KDs of
one nM and and ten pM respectively. The model predicted that the
SRK-like mAb was more potent in terms of end-of-course CRP response
and a full reduction of serum CRP was achieved at a much lower dose
of SRK compared with TCZ (Figure 3.20). The serum EC50s of SRK and
TCZ were 23.1 nM and 88.3 nM respectively, delivered by doses of 32

mg (SRK) and 293 mg (TCZ) SC, Q2W for 12 weeks.
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Figure 3.20: Dose–response of TCZ compared with SRK. Simulations were
run for 12 weeks with a twice-monthly SC administration of a
mAb with an affinity in the range of TCZ or SRK. The KDs used
here were one nM and ten pM respectively. Colour saturation
is the density distribution of response values over the course of
treatment. Lines are the final trough values after 12 doses.

Because we see that the potency of SRK is greater than TCZ (Figure
3.20), it may be possible to use a substantially lower dose for SRK and
still achieve the same level of CRP suppression as TCZ. Using the same
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dose schedule and route of administration as TCZ, the model predicts
that an SRK-like mAb can achieve the same CRP response as TCZ with
a dose of 12 mg (Figure 3.21). This is half the lowest strength of the
proposed set of doses for SRK used in clinical trials but administered
more frequently. In making this comparison I assume that CRP is a a
valid surrogate biomarker for clinical efficacy in anti–IL-6 therapy for
treating RA.
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Figure 3.21: Lower doses of SRK suppresses CRP similarly to TCZ. Simula-
tions were run for 12 weeks with a twice-monthly SC adminis-
tration of SRK or TCZ.

To see the effect of each mAb within the target tissue, the syn-
ovium, we assessed the concentrations of IL-6 and the trans-signalling
complex sIL-6Rα. This may give a more relevant comparison of the
therapeutic effect in arthritis. We noticed that the administration of
either SRK or TCZ reduced the concentration of synovial IL-6-bound
sIL-6Rα (Figures 3.22a and 3.22b). However, this effect was greater
using SRK, with a ten-fold reduction in synovial [sIL-6Rα:IL-6] by the
sixth dose (Figure 3.22b). During treatment with both mAbs, the serum
concentration of the trans–signalling complex was seen to fluctuate
around the RA baseline concentration. However, upon the cessation
of therapy, the SRK treatment resulted in a dramatic increase in serum
[sIL-6Rα:IL-6] (Figure 3.22b). Interestingly, this may be caused by an-
other observation; Figures 3.22a and 3.22b also show that both mAbs

elevate serum IL-6 during treatment. While this effect has been ob-
served for TCZ in clinical studies (Zhang et al., 2013b), it may be sur-
prising following the administration of SRK as SRK is a selective IL-6

antagonist. The nature of the IL-6 response to SRK suggests a rebound
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effect which occurs as the course of therapy is terminated. This is pre-
sumably caused by the binding of IL-6 to SRK, and the protection from
degradation that SRK bestows upon IL-6 as the first-order elimination
rate of the complex is lower than that of the cytokine.
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(a) The effect of TCZ upon trans-signalling
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Figure 3.22: Simulated dose regimen for 12 weeks with a twice-monthly SC
administration of (a), TCZ at 162 mg or; (b), SRK at 50 mg.

We further explored this phenomenon by producing a a dose–concentration
curve of SRK against serum IL-6 after 12 weeks of administration (Fig-
ure 3.23). This illustrates that if a rebound were to occur following
SRK treatment it may be seen even at low doses and at lower frequen-
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cies. Furthermore, doses above 100 mg appear to mitigate against
this IL-6 rebound immediately after treatment. However, the timing
of IL-6 measurement is key to the simulation in Figure 3.23; Figure
3.22b suggests that the peak rebound concentration of IL-6 after treat-
ment occurs after a month while Figure 3.23 shows the concentra-
tion immediately following the 12-week course of SRK therapy (2016

hours). Therefore it is highly plausible that higher simulated doses of
anti–IL-6 mAbs still cause a rebound effect, increasing the concentra-
tion of IL-6 weeks after therapy.
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Figure 3.23: The response of serum IL-6 to a potent anti–IL-6 mAb. Administra-
tion of an anti–IL-6 mAb may cause an IL-6 rebound. Simulated
dose–response of an SC administered SRK-like mAb increases the
concentration of IL-6 as measured after 12 weeks.

3.4 discussion

A QSP model was re-purposed to address questions on druggable tar-
get selection and disease mechanisms within the scope of RA. The CD

model by Dwivedi et al. (2014) was broken down into its individual
modules and parametrised using published in vitro, in vivo and clin-
ical data from cell lines, animals and arthritic patients. The process
outlines a case study in the reuse of QSP models, the types of answers
sought, and the questions raised in probing our knowledge of biology.
The effort in re-purposing this model from CD to RA was not without
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errors. The validation simulations question the model’s structure and
parametrisation and the results of estimation steps suggested iden-
tifiability issues. Furthermore, the process was more laborious than
anticipated due to the absence of key quantifiable data.

Despite the challenges faced, the model was able to fit the PK data
of TCZ as well as predict the PK of SRK demonstrating that the assump-
tions, structure, and parametrisation were at least sound enough to
simulate novel data. Moreover, the model forms emergent predictions
relating to target selection between IL-6Rα and IL-6 as well as compar-
isons of the mAbs TCZ and SRK. Finally, these predictions generate a
novel hypothesis of IL-6 rebound in SRK therapy which can be tested
in clinical studies as a followup.

3.4.1 Successes and challenges in model parametrisation.

During the process of re-purposing and parametrisation, reactions
were modified, parameter values altered and identifiability issues
were raised. Primarily, to explore the causes of TMDD in TCZ, a large
peripheral compartment was populated with the receptor turnover re-
actions which gives evidence for the receptor’s role as a large part of
TCZ’s saturable elimination. Additionally, the receptor turnover sub-
model was re-calibrated using further experimental values from liter-
ature. To account for the differences between diseases, all biological
parameter values were altered during the construction of the model
and assumptions were made to the best of the knowledge surround-
ing the disease mechanisms of RA as opposed to CD (see Materials
and Methods). In turn, the parametrisation also explored and often
agreed with hypotheses driven by experimental evidence.

3.4.1.1 TCZ pharmacokinetics

Previous PK models have used MM approximation for nonlinear elim-
ination routes of TCZ although the molecular basis of this effect was
not covered by their model’s granularity (Gibiansky and Frey, 2011).
Another model discusses that the nonlinearity is reminiscent of a
target-mediated elimination via mIL-6Rα (Frey et al., 2010). At this
time there was no strong evidence that the target for TCZ, mIL-6Rα,
internalises efficiently without binding to gp130. Nevertheless, it was
still considered that TCZ internalises alongside the receptor (Ritchie
et al., 2013). The history of IL-6 signalling studies implicates gp130

as the main player in receptor endocytosis which suggested that, if
TMDD was occurring, TCZ could bind in a complex with mIL-6Rα and
gp130 and internalise through gp130-mediated routes. Addressing this
was a more recent study which defines the mechanisms of TCZ TMDD

(Fujimoto et al., 2015). Fujimoto et al. (2015) demonstrated that not
only did mIL-6Rα-dependent internalisation occur with TCZ at a similar
rate to IL-6-bound mIL-6Rα, but also that it does so independently of
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gp130. The internalisation is mediated by an mIL-6Rα cytoplasmic motif
through clathrin-dependent pathways. It is uncertain whether TMDD

is driven only by the classical signalling component of IL-6 signalling
or also by trans–signalling too. These may have different degradation
or internalisation rates as modelled by Gibiansky and Frey (2011) or
affinities for TCZ (U.S Food and Drug Administration, BLA: 125276).

The dose-dependent nonlinear clearance kinetics of TCZ were read-
ily reproduced in simulation by using parameter values derived only
from published studies, including mIL-6Rα concentrations based solely
from interstitial T cell counts, hepatocyte numbers at physiological
levels, and by assuming that the internalisation of TCZ-bound mIL-6Rα

occurs at a similar rate to IL-6-bound mIL-6Rα. Therefore, our PK model
as described confirms that TMDD via mIL-6Rα is a likely explanation for
the nonlinear elimination of TCZ in vivo, although sIL-6Rα-mediated se-
questration and elimination may also contribute to the overall effect.
The parameter set acquired during estimation of the whole model
suggested that the complex of TCZ and sIL-6Rα degrades faster than
TCZ on its own which implies a role for the pool of soluble receptors
in TMDD.

3.4.1.2 Receptor Dynamics and Turnover

The parameters for the receptor dynamics were re-estimated and
differed from those of the original model to account for several factors.
Experimental evidence suggested different basal internalisation rates
for both mIL-6Rα and gp130. Furthermore, the ratio of gp130 and mIL-6Rα

are likely to be different in wild-type hepatocytes than cells which
artificially over-express the receptor such as those used for the CD

model’s estimation. Wild-type human hepatocyte data would certainly
disperse the ambiguity.

The parametrisation of the receptor dynamics model provides an
interesting view on receptor cell-surface expression profiles. The first
observation is that the cell-surface expression of gp130 was estimated
to be higher than that of mIL-6Rα in fitting HepG2 data which agrees
with a variety of experimental findings. For example, early invest-
igations showed that cell-surface gp130 is expressed at much higher
levels than mIL-6Rα in HepG2 cells (Hibi et al., 1990; Taga et al., 1989)
and that the amount of mRNA for mIL-6Rα is far lower than gp130

in all patient groups in chronic liver disease (Lemmers et al., 2009).
The evidence implies that it may indeed be reasonable for gp130 to be
more highly expressed than mIL-6Rα in human hepatocytes. On this
note, the expression ratios of IL-6 receptors in HepG2 cells may be dif-
ferent to hepatocytes in vivo; similar strengths of fluorescence were
observed in IL-6-stimulated hepatocytes when comparing the surface
expression of both gp130 and mIL-6Rα (Memoli et al., 2010). Addition-
ally, in largely different cell lines such as human multiple myeloma
cell line (U266) cells or transfected jurkat T cells, the ratio of gp130
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to mIL-6Rα was less than one (Hibi et al., 1990). Clearly there is a
wide spread of mIL-6Rα expression on the cell-surface within differ-
ent cell populations. This is exemplified in a similar study instead
using mIL-6Rα-transfected COS-7 cells where the rate of internalisation
appears to be much slower (Dittrich et al., 1996). The parameter scan
altering gp130 synthesis in the materials and methods section implies
a slowing of IL-6 internalisation in lower ratios of gp130 to mIL-6Rα

(Figure 3.3), which mimics the experiments by Dittrich et al. (1996).

3.4.1.3 Intracellular signalling and STAT3

The goal of parametrising the STAT3 phosphorylation reactions was
to simulate the dose–response profiles of pSTAT3 after IL-6 administra-
tion seen in in vitro experiments. In doing so, our model at least de-
scribes a phenomenological model of IL-6-mediated cellular response
and measurable outcome via STAT3 phosphorylation.

Issues were raised in the practical identifiability of our model as a
number of parameter’s minima were uniformly distributed across a
large range of values. I argue that the our parameter estimation was
successful in fitting to the data from multiple cell lines by reprodu-
cing the behaviour of STAT3 phosphorylation in vitro in response to
IL-6 stimulation. The dose–response curve generated using the model
results in a reasonable fit to multiple cell-lines and independent ex-
periments. We assumed that the broad coverage of data using differ-
ent cell types describes a general pSTAT3 response. Furthermore, the
model shows a documented time-dependent effect of IL-6 stimulation.
Experiments in vitro show that a short-lived peak of pSTAT3 occurs
rapidly after the administration of IL-6 (Ara et al., 2013; Niemand et
al., 2003; Thiel et al., 2000) (Figure 3.24). This has also been success-
fully modelled with more complex intracellular signalling systems
biology models by including negative feedback mechanisms (Moya
et al., 2011; Qi et al., 2013; Singh et al., 2006). However, in our simpli-
fied model, the peak occurred a little later than in these experiments.

The original model suggested that a 3-fold increase of pSTAT3 is ob-
served between Healthy and Disease patients. This is illustrated by a
variety of studies in inflammatory disease states in both in CD3+ cells
or rat hepatocytes after IL-6 stimulation (Anderson et al., 2015; Henkel
et al., 2011). However, within this reaction scheme, this behaviour was
not identifiable. No parameter set would produce the basal pSTAT3

levels at steady-state under normal IL-6 concentrations. This suggests
that the structure of STAT3 phosphorylation within model does not
fully capture the dynamic range of STAT3 present in biology. This
may be solved by the addition of a basal phosphorylation reaction
which phosphorylates STAT3 independently of IL-6. IL-6-independent
STAT3 phosphorylation may be the cause for unstimulated cell pSTAT3

responses seen in experiments (Henkel et al., 2011). Furthermore it
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Figure 3.24: IL-6 administration results in a rapid transient peak in pSTAT3

concentrations.

is questionable that basal phosphorylation of STAT3 is caused by IL-6

as available published experiments on STAT3 phosphorylation suggest
that the picomolar physiological range of IL-6 would have very little
effect indeed upon the range of STAT3 phosphorylation, at least ac-
cording to in vitro studies. For instance, the in vitro EC50 of IL-6 was 0.1,
0.9, and 0.046 nM in HuH7, human Cal33, and 7TD1 cell lines respect-
ively (Casanovas et al., 2014; Gough et al., 2016; Simard et al., 2014).
Therefore, although IL-6-independent phosphorylation is likely, it is
currently outside of the model scope. Lastly, the number of molecules
and the concentration of STAT3 in the model is most likely underes-
timated. Future studies would build upon estimating a more realistic
value for the concentrations and revision of structure alongside true
human hepatocyte STAT3 data.

3.4.1.4 Tissue compartments, CRP and steady-state concentrations

Without in vivo time course data across multiple tissues in humans
it was difficult to determine suitable values for the distribution rates.
In a similar fashion to the PK parametrisation process, a single macro
parameter QPD was used for all components but a more realistic ap-
proach could be applied in using a PBPK model with measured or
estimated flow parameters for each compartment. Furthermore, the
availability of multi-compartmental time course data for signalling
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components would certainly assist in parametrising the distribution
reactions for a more mechanistic model.

No value for the rate of sgp130 synthesis was found which further
minimised the objective function. Furthermore, the lack of parameter
identifiability and model sensitivity to the estimations of sgp130 syn-
thesis were consistent with the previous conclusions regarding sgp130

as a poor therapeutic protein (Dwivedi et al., 2014) (Figure 3.9). Ad-
ditionally, the estimation of kRshedding suggests that the current model
structure offers little place for CRP-mediated mIL-6Rα shedding. I ar-
gue that the extent of CRP-mediated shedding in vivo by hepatocytes
is not fully understood and CRP is only one of several reported causes
of mIL-6Rα solubilisation (Jones, 2001; Lust et al., 1992; Matthews et
al., 2003; Schumacher et al., 2015). Perhaps the specific contribution
of CRP to mIL-6Rα shedding is smaller than theorised in this situation.
That said, a biological mechanism must exist which is responsible for
the increase in sIL-6Rα in elevated IL-6 patients such as those seen with
RA.

In validating the model with TCZ data, the elevation in IL-6 or
sIL-6Rα was not properly simulated. One reason may be that the model
does not account for any regulation upon the rate of IL-6 synthesis.
The model instead assumes a fixed IL-6 synthesis for generating RA

steady-state concentrations. However, clinical data suggested that IL-6

increases transiently but tends towards or below the pre-treatment
concentrations after several weeks of therapy. This is evident as the
magnitude of the experimental peak after multiple doses is smaller
than the simulated peak implying a reduction in IL-6 in vivo (Figure
3.13C). An improvement to the disease model would be to include a
mechanism for the disease progression which incorporates a positive
feedback mechanism for IL-6 synthesis responsible for an increased
IL-6 synthesis rate in the disease state. The ability to reverse this pro-
gression could then be simulated.

The reason that simulated elevation of sIL-6Rα may not fit the ex-
perimental data is that the synthesis and degradation parameters are
unknown and therefore may not truly represent those apparent in
nature. The degradation rate of sIL-6Rα was fixed prior to estima-
tion utilising approximate serum half-life values for similar soluble
cytokine receptors (Jacobs et al., 1993). Although this is a reasonable
assumption, a multitude of unknown biological reactions may influ-
ence this observed half-life and alter the model parameters mediat-
ing sIL-6Rα’s steady-state concentration. However, contrasting with the
original model, our parameter set fitted the elevation in sIL-6Rα more
closely where the previous model may have been fitted without suffi-
cient CD data.

The rate constants for CRP synthesis were difficult to estimate and
the ability of TCZ to suppress the acute phase response was under-
predicted. A reduction in CRP was observed which only qualitatively



120 a qsp model of il-6 signalling in rheumatoid arthritis

represented experimental data. One reason may be the response threshold
of the STAT3 module; physiological RA concentrations of IL-6 in the
liver are in the range of one pM to ten pM. However, data from in vitro
studies used in validation suggest that STAT3 is barely phosphorylated
at these disease, let alone healthy, concentrations of IL-6. The model
may be too insensitive to simulate reduction in pSTAT3 following TCZ

administration at this dose. Alternatively the receptor activation reac-
tions may not be parametrised effectively which together highlights
a lack of data for these reactions and greater identifiability issues
within the model. Finally, the simulated suppression of CRP was fur-
ther limited by the fixed synthesis rate of IL-6 in the model without a
feedback mechanism.

3.4.2 Model predictions

The model was used to predict the different effects of targeting either
mIL-6Rα or IL-6 in RA using mAbs. Furthermore, the model used these
predictions to compare the perturbative capacity of two mAbs which
are either in clinical use (TCZ) or currently in development (SRK) for
treating IL-6-mediated diseases such as RA. The two different targets
regulated the PK of each mAb as well as the behaviour of the response.
Both of which have implications for their use as druggable targets.

3.4.2.1 Druggable target selection

The differences in between targeting either IL-6Rα and IL-6 are appar-
ent firstly by observing the PK profiles. Our model demonstrates that
the target is the largely responsible for this effect as simulations of
equal affinity mAbs show dramatically different PK profiles (Figure
3.15). Targeting IL-6Rα opens a rapid elimination route through re-
ceptor internalisation for drugs in contrast to IL-6. This is a typical
phenomenon often seen in receptor-targeting mAbs such as TCZ and
is of consequence as linear elimination kinetics are easier to predict,
monitor and subsequently dose in patients.

Overall, targeting the receptor is seen to be strongly dose-dependent
in terms of pharmacokinetics and the rate of elimination, which lim-
its the duration of drug–target localisation. Additionally, the response
behaviour is sub-optimal as a large dose has to be achieved to pass
the critical dose-response threshold. Targeting the ligand on the other
hand provides a predictable linear PK and, as the response is affinity-
dependent, there is the potential for improving the binding and there-
fore potency throughout optimisation phases in drug development.

Selecting between druggable targets within a biological network is
a challenging task and there are many variables to consider. Based
on these simulations it would be wiser to select IL-6 as a target in-
stead of IL-6Rα to advance along a drug development pipeline. That
said, in the case of IL-6 signalling, trans-signalling may be respons-
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ible for the deleterious effects (Garbers et al., 2015; Rose-John, 2012).
If so, this preferential saturation of sIL-6Rα instead of mIL-6Rα by an
anti–IL-6Rα mAb may be favourable for mitigating against both the on-
target toxicity and the blanket blockade of IL-6 that may attenuate
normal function.

To address mechanistic toxicity, the model could be improved by
including specific toxicological modules. These could include and
explore immune system reactions by further incorporating neutro-
phil activity to address the risk of infections, the rise in low-density
and high-density lipoproteins, or perhaps even an increased risk in
malignancy as seen following anti–IL-6Rα treatment (Hennigan and
Kavanaugh, 2008).

3.4.2.2 Tocilizumab or sirukumab

From a pre-clinical perspective, a fresh pair of targets to choose betwe-
en offers a decision-making task with the promises of compound
modification or optimisation of formula further down the develop-
mental pipeline. In this project instead, the focus was upon the mAb

TCZ, with demonstrable success in clinic against SRK, a mAb which has
yet to be approved for normal clinical use.

pharmacokinetics and pharmacodynamics The linear elim-
ination kinetics of SRK compared with the nonlinear kinetics of TCZ

suggests that the dosing of SRK may be easier to scale for clinical use.
Nonlinear kinetics are often caused by RME and can be problematic
for drug dosing.

Furthermore, in terms of cost and ease of use to patients and health
care professionals, a high-affinity mAb with linear kinetics such as SRK

also has the benefit of a reduced cost per dose as well as the poten-
tial for a reduced subcutaneous injection volume. However there may
even be further room for dose optimisation in SRK with regimens not
explored in clinical trials. We considered that clinical trials of SRK in
arthritis patients using dose regimens of 50 mg monthly administra-
tion (Q4W) and 100 mg Q2W recorded a CRP response of 98 per cent.
This suggests that the treatment may be refined to include smaller
doses.

One outcome of the model was to suggest that the linear PK and
high-affinity properties of SRK can be used to reduce dose magnitude
and increase frequency. The model predicts that SRK achieves the
same CRP suppression response as TCZ using lower doses than those
used in clinical trials (Figures 3.21 and 3.20).

It is important to note that the CRP response was not fully fitted
or validated using the clinical data for TCZ. However, at the dose
selected for the anti–IL-6Rα mAb, TCZ has been shown to be effective
in treating the disease as monotherapy and can be measured through
its suppression of CRP. Therefore, a comparison can be made on the
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basis that TCZ is clinically viable using this dose and we can thus infer
equivalence for SRK from a simulated reduction in serum CRP.

the safety of anti-il-6 therapeutics The anti–IL-6 mAb SRK

failed to be approved by the FDA for its use in treating RA in humans
as there were some concerns with safety at the proposed dose regi-
mens (Johnson & Johnson, 2017). The exact causes of this were not
clear. However, patient deaths may have been attributed to major ad-
verse cardiovascular events (MACE) while a number of infections and
infestations were also reported (FDA Briefing Document, Arthritis
Advisory Committee Meeting, August 2017). Moreover, MACE were
seen to be higher in the trials without a correlation with lipids and
no other explanation was offered. That said, a recent clinical study
assessing the use of SRK in RA showed that no MACE were reported
(Takeuchi et al., 2018). However, this could have been be due to a
lower relative incidence of MACE in Japanese patients in comparison
with the global population.

Although the model was not developed with a dedicated safety
sub-model or set of reactions, the results provide substrate for a hypo-
thesis on the adverse effects patterns observed with anti–IL-6 therapy.
Our simulations showed that the rebound in IL-6 was mirrored by a
rise in circulating sIL-6Rα:IL-6. Upon careful inspection, it was apparent
that a rebound only occurred in the serum compartment, leaving the
synovium with lower concentrations of free IL-6 and sIL-6Rα:IL-6. This
could be best explained by arthritic synovial tissues having concen-
trations of IL-6 at orders of magnitude above other tissues. Therefore,
perhaps IL-6 is transported out of the synovium and into the serum by
strong anti–IL-6 mAb binding, augmented by the difference between
mAb influx and efflux rates through the synovial capsule. The dis-
parity between the synovium and serum concentrations of IL-6 and
sIL-6Rα:IL-6 after treatment makes for a plausible and compelling hy-
pothesis: the therapeutic effects of anti–IL-6 mAbs in RA patients may
be seen quite readily in the reduction in synovial IL-6 signalling and
pSTAT3 but the increase in serum unbound as well as bound IL-6 may
account for unknown systemic side effects.

For instance, the increase in sIL-6Rα:IL-6 might contribute towards
side effects in the broader context of anti–IL-6 therapy by considering
the evidence that places trans-signalling as a the pathological facet of
IL-6 signalling (Rose-John, 2012). Moreover, increasing the concentra-
tion of systemic trans-signalling is potentially relevant in cardiovas-
cular events (Fontes et al., 2015; Morieri et al., 2017; Ziegler et al.,
2018). It is also interesting to note that clinical evidence presented to
the FDA arthritis advisory committee revealed that the incidence of
MACE was seen mostly in the 50 mg Q4W group whereas the the incid-
ence in the 100 mg group was similar to placebo (Vratsanos, August 2,
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2017). These clinical results agree with our IL-6 rebound simulations
in Figure 3.23 where the post-therapy IL-6 rebound at 50 mg doses
was higher than at 100 mg doses.

In light of these simulations I propose that the potential link between
anti–IL-6 therapies and trans–signalling-mediated side effects could
be further examined and confirmed in experiments. Firstly however,
we must debate whether this simulated rebound translates into a bio-
logical setting.

The first argument against the existence of an IL-6 rebound in peri-
pheral compartments is the model structure as IL-6 synthesis in the
model is fixed to produce the RA steady-state. This is an important as-
sumption to consider as the synovial secretion of IL-6 is proportional
to the severity of inflammation. Therefore, because IL-6 synthesis is
fixed in our model, we do not account for the relationship between
IL-6 secretion rates and the level of synovial inflammation. By factor-
ing this relationship in our model, we may instead find that the IL-6

synthesis rate decreases throughout the course of treatment which in
turn could reduce the accumulation of cytokine–antibody complexes.
A second argument against this hypothesis is that the degradation
rate of the mAb:IL-6 complex in the model is assumed to be no differ-
ent than the elimination rate of mAb. A lack of contrary evidence for
this resulted in this being the assumed value. A third possible reason
for disputing these predictions is that anti–IL-6 mAbs have been seen
to reduce depressive symptoms in RA patients during clinical trials
(Aletaha et al., 2017; Lindqvist et al., 2009). This could be taken as
evidence that systemic IL-6 signalling may indeed be reduced after
anti–IL-6 therapy, refuting an IL-6 rebound. However, perhaps anti–IL-6

therapy scrubs IL-6 from a CNS compartment as described for the syn-
ovium here. This might also reduce only local concentrations of CNS

IL-6 if subject to constraints of compartmental permeability towards
the molecular species in the serum.

Existing observations of the rebound phenomena with mAb-based
therapies substantiate this hypothesis. Evidence suggests that the mAb

infliximab elicits a positive three to four-fold change in circulating
TNF-α, the cytokine that it is highly selective for (Chung, 2003; Koller-
Strametz et al., 1998). Another example is seen after treatment with
the anti–interleukin 5 (IL-5) compound, SCH55700 (Kim et al., 2004).
Kim et al. (2004) go on to discuss that the prolongation of IL-5 likely
depends upon the molar ratio of the cytokine and the monoclonal
antibody, and that the rebound results from the decreased clearance
of the drug-target complex. Also noted is that a higher dose of the
anti–IL-5 antibody prevents the apparent rebound of IL-5, similarly
seen in figure 3.23. Finally, this IL-6 rebound occurs in patients with cu-
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taneous lupus erythematosus when treated using SRK (Szepietowski
et al., 2013).

3.4.3 Concluding remarks

The various merits and caveats of drug targets may not be teased
solely from in vitro studies. Even in vivo studies may have trouble in
defining a mechanistic basis of PK, PD and toxicity associated with
potential targets.

In addressing the aim of predicting target druggability, the model
initially presents IL-6 as a better candidate for mAb-based therapy. This
was due to tunable PD behaviour and less of an impact upon drug PK.
In contrast, the IL-6Rα PD response was seen to be a dose-dependent
switch in cases of high drug affinity and nonlinear PK was seen when
targeting IL-6Rα. Simulations predict that, by using an anti–mIL-6Rα

mAb, larger systemic concentrations are required for a significant clin-
ical effect while an anti–IL-6 mAb would need a substantially smaller
concentration for the same response.

When we compared the two drugs, the model suggested that dose
regimens for SRK lower than those currently used in clinical trials
may have a similar therapeutic effect to TCZ but no conclusion could
be made about specific measures of toxicity or safety between the
two mAbs. That said, a rebound effect with anti–IL-6 therapy emerged
which was revealed by studying the results of the re-purposed model.
The offloading of the active trans-signalling complex in high concen-
trations was unexpected and may begin to explain the nature behind
FDA concerns in using anti–IL-6 mAbs.

While the SIRROUND trials still continue for the use of SRK in the
treatment of RA (ClinicalTrials.gov; NCT01856309, 2013 - [cited 2018

March]), another clinical study is carried out for its use in treating ma-
jor depressive disorder (ClinicalTrials.gov; NCT02473289, 2015 - [cited
2018 March]) which may reveal more information on the likelihood
of an IL-6 rebound.

Finally, A key component in driving the use of QSP is the ease at
which it is applied. By demonstrating that new models need not be
made from scratch, an attempt was made to show that reuse of QSP

models can be used for pharmacological predictions in a limited time-
frame. However many challenges were faced in obtaining parameter
values, re-using code and simulating experiments. As speed is of par-
ticular importance to making strategic decisions within pharmaceut-
ical research, this highlights the necessity that these processes need to
be standardised and streamlined for QSP to be integrated effectively
in drug development pipelines.
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E X T E N D I N G T H E C L A S S I F I C AT I O N M O D E L F O R
PAT I E N T R E S P O N S E P R E D I C T I O N .

4.1 introduction

One hundred years after what was arguably the greatest pandemic
in human history, infections caused by the influenza virus are still a
problem today. One concern now with influenza is the annual winter
epidemics which occur across the globe. The World Health Organiz-
ation (WHO) state that the winter outbreak is responsible for severe
illness in three to five million individuals and the death of between
291 000 and 646 000 patients world-wide (Iuliano et al., 2017). The dis-
ease burden is high in patient groups such as those who are either
pregnant, elderly, very young, or immunocompromised. The burden
in healthy patients is otherwise relatively low. It is these groups that
a vaccination program is targeted at. For example, a vaccination rate
of 75 per cent is recommended for patients over 65 and those in other
at-risk categories (Palache et al., 2014). What’s the question

here?

4.1.1 Influenza vaccination

The influenza virus was first isolated in 1933 and the first large-scale
studies on patient vaccination were carried out in 1942 (Francis et al.,
1945; Smith et al., 1933). This study demonstrated that vaccines were
effective in protecting against subsequent infection using a bivalent
vaccination against type A and type B influenza. Now the flu vaccin-
ation is reformulated every year to accommodate for the prevalent
strains (Santos et al., 2015).

efficacy and safety In reducing the risk of infection in the
adult population, the efficacy in 18 to 49 year olds was 70 per cent
(Monto et al., 2009). However, at-risk populations such as the eld-
erly or immuno-compromised patients do not respond as well as
healthy individuals and the vaccination is not as effective. When in-
cluding older patient groups (18 to 65 year olds) the pooled efficacy
of trivalent inactivated vaccines was shown to be 59 per cent in one
meta-analysis (Osterholm et al., 2012). Although confirmation of re-
duced efficacy in elderly patients has been marred by lack of stat-
istical confidence (Trucchi et al., 2015), one study indicates that an
response rate of 42 per cent was seen in patients over 60 years of age
(mean age = 69.5) using a live attenuated influenza vaccine (Villiers
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et al., 2009). There are many studies on population wide response to
vaccination and these represent just a few.

Vaccination is the primary method of effective protection against
influenza infection by providing individual and herd immunity. How-
ever, occasional adverse events have been associated with vaccination
(Stratton et al., 2011). The majority of non-serious adverse reactions
are headaches, runny nose and other mild flu-like symptoms (Belshe
et al., 2004; Musana et al., 2004). A serious adverse reaction, post-
immunisation anaphylaxis can occur in 1.3 individuals per million
with the majority of cases occurring less than four hours after vaccin-
ation (McNeil et al., 2016). Evidence also implicated vaccination with
an oculo-respiratory syndrome (Skowronski et al., 2003). This was
seen to in 2.9 per cent in vaccinated patients during the 2001-2002

vaccination season in Canada (Scheifele et al., 2003).

measures of effectiveness The effectiveness of influenza vac-
cination can be interpreted using serological measures of immuno-
genicity, commonly the production of antibodies to viral haemagglut-
inin (HA) (Hobson et al., 1972). Laboratory measurements of these
antibodies are obtained by performing a haemagglutination inhibi-
tion (HAI) assay where patient serum samples are serially diluted
until there is no more (if any) inhibition of red blood cell agglutin-
ation (Reber and Katz, 2013; Zacour et al., 2016). The induction of a
four-fold increase in the titre from baseline can be associated with
a two-fold decrease in the risk of infection (Benoit et al., 2015). This
four-fold increase in titre between pre- and post-vaccination is known
as seroconversion, one universal measure of vaccine response to vac-
cination (Reber and Katz, 2013; Talbot et al., 2012). The rate of sero-
conversion was estimated to be 70 per cent in patients across different
strains (Seidman et al., 2012).

The relationship between age and response The production of HA

antibodies and the resulting seroconversion in patients is driven by
B cells and plasma cells within the blood and bone marrow. Evid-
ence suggests the anti-HA antibody response peaks rapidly within
one week of vaccination secreted by plasma cells. Another peak is
seen later between two and three weeks and is attributed to IgG+ se-
creting memory B cells (Wrammert et al., 2008).

The response of CD4+ T cells may be also be coordinated with anti-
body secretion as a result of vaccination (Tan et al., 2017); An expan-
sion of haemagglutinin tetramer-positive (tet+) CD4+ T cells is seen in
patients which is seen to correlate with HAI measurements (Nayak
et al., 2012). Therefore it may be important to understand the effects
of vaccination upon gene expression in the HA-specific CD4+ T cell
population.
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4.1.2 Predicting seroconversion

The real-terms protective effect of vaccine-induced HAI titres has been
predicted using post-vaccination measurements. A dilution passing 1

in 40 has said to confer a 50 per cent reduction in the risk of influ-
enza infection in healthy patients and remains as a benchmark (Hob-
son et al., 1972). A more recent dose-response model takes this a step
further to quantify the response for antibody titres measured after
vaccination (Huang et al., 2017). However, the prerequisite is that pa-
tients have to be patients have to be vaccinated to predict whether
they will be protected. A more ideal model would also be able to
predict the patient response prior to vaccination itself in an effort to
mitigate against unnecessary injections.

methods of predicting seroconversion Linear regression
models have been used to predict HAI response and seroprotection
rates in patients. One highly predictive linear regression model showed
that pre-vaccination CD4+ T cells were the best age-independent pre-
dictor of non-seroprotection (HAI titre below 1:40) (Jürchott et al.,
2016). Jürchott et al. (2016) also show that, surprisingly, their influenza-
specific (CD40L+) activated CD4+ T cells did not contribute towards
prediction. Another study even demonstrated that a good mood, or
at least the unmeasured factors associated with a patient’s positiv-
ity, was the greatest predictor patient response in a regression model
(Ayling et al., 2018). Non-clinical variables such as residence have also
been studied which suggests that institutional residence affects sero-
conversion rates between strains (Seidman et al., 2012). An extensive
differential expression analysis of PBMCs was carried out by Nakaya
et al. (2011) which used a discriminant analysis algorithm to predict
HAI response, demonstrating a high predictive accuracy (90 per cent)
in independent trials. This is the largest validated predictor which
uses a large variety of cells, however, a more specific cell type may
work just as well for response categorisation.

aims As part of a larger project, this research describes the use of
a classification model of patient seroconversion response which uses
the transciptomic profiles of serum tet+ CD4+ memory T cells prior
to vaccination. The study aimed to examine the gene expression of
immune cells using mRNA sequencing, to determine the key genetic
differences between tet+ CD4+ memory T cells from seronegative and
seropositive patient samples and return a gene panel for response
classification.
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4.2 materials and methods

4.2.1 Patients and samples

Two influenza season cohorts of patients were used in this study.
Samples were accessed through the Cambridge BioResource and con-
sisted of two ages groups, young and old. Vaccination formula and
key sample information can be found in Table 4.1. Both cohorts re-
ceived the current season’s influenza vaccination and blood samples
were collected before, one week and six weeks after vaccination (de-
noted day zero, day seven and day 42). Influenza (A/H1N1/Cal09)
tet+ memory (CD45RA−) T cells were isolated using fluorescence-
activated cell sorting (FACS). The experimental side of this research
prior to sequencing was carried out by Danika Hill at the Babraham
Institute, Cambridge, UK.

E1 (2014/2015) E2 (2014/2015)†

Seropositive 14 4

Seronegative 9 6

Age (years) 48.5 +− 20.5 60.4 +− 2.5

Influenza season 2014/2015 Trivalent Vaccination: A/Califor-
nia/7/2009 (H1N1)pdm09, A/Texas/50/2012 (H3N2)-like virus,
B/Massachusetts/2/2012-like virus. †, the age range for this group
was 57–64

Table 4.1: Sample characteristics.

4.2.2 Software and packages

R (R Core Team, 2016) was used to perform the data cleaning, normal-
isation, statistical analyses and classification as well as graphics. Dif-
ferential expression analysis was performed using package DESeq2

(Love et al., 2014). The random forest was performed using the imple-
mentation in randomForest package (Liaw and Wiener, 2002). Inter-
cohort correction was carried out using ComBat (Johnson et al., 2007).

4.2.3 Supervised random forest

Random forests were generated over the top 1 000 DESeq-ranked list
of genes. A supervised random forest is given a class list as well as
training and test data to generate decision trees. Trees were initially
seeded with a random sample of genes from the input data and the
most important gene features across multiple forests were harvested.
Each feature selection was tested with four-fold cross validation.
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4.2.4 Unsupervised clustering

Unsupervised clustering of data generates distinct clusters of samples
by attempting to determine distinct true class distributions using a
serious of parameters. In this research, non-squared euclidean dis-
tances were calculated between sample and the clusters were com-
puted using Ward’s algorithm.

4.2.5 Sequencing and read count processing

Single-end mRNA sequencing was carried out, The expected library
size was 100 base pairs. Genes with zero counts in all samples were
removed. For classification and principal component analysis (PCA),
read counts were normalised using regularised log2 transformation
which accounts for library and sample sizes. For differential expres-
sion analysis, the non-normalised counts were used.

4.2.6 Classification

The output from the differential expression analysis was ranked by
both absolute fold change and significance scores using equation 4.1.

score =
| f oldchange|
signi f icance

(4.1)

The probability of a patient response using the NBC is calculated
as the product of both prior and posterior probabilities 4.2. The prior
probability is the probability that response category Ck occurs. The
posterior probability is the probability that the genes’ log RNA read
counts (x1, x2, ...xj) in |X| are observed in class Ck as is modelled using
a univariate probability density function (PDF). In using a univariate
distribution, the classifier assumes variable independence.

P(Ck|(x1, x2, ..., xj)) ∝ P((x1, x2, ..., xj)|Ck) · P(Ck) (4.2)

The model is trained by taking the mean µjk and standard deviation
σjk of the log read counts of genes xijk in samples of each class. To
make a prediction, a new patient sample is a given vector of log read
counts d, (x1, x2, ...xj). The likelihood that the read count xj is from a
given class Ck is then calculated as a function of the Gaussian distri-
bution parametrised to µjk and standard deviation σjk (4.3).

L(xj|Ck) =
1√

2πσ2
jk

· e
−

(xj−µjk)2

2σ2
jk (4.3)
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A MAP decision is then made between the classes after calculating
the product sum of each class’ gene-expression likelihoods and the
prior probabilities defined by 4.4.

P(Ck|d) ∝ P(Ck) ·
|X|

∏
j=1
L(xj|Ck)

xij (4.4)

As a result, the classifier selects the highest probability / likelihood
patient response as the category for vector of log read counts provided
to it.
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4.3 results

For training the model, the first cohort’s (E1) pre-vaccination tet+ CD4+

memory T cells were examined. Although here the interest is in de-
veloping an age-independent predictor, age is likely to correlate with
response.

4.3.1 The relationship between age and response

Measured by the fold-change in HAI titre before and after vac-
cination, the response was seen to decrease with age in E1 samples
(Figure 4.1). The median fold-change increase in HAI measured from
day zero to day 7 was 10 and 1.5 in young and old patients re-
spectively. The difference between age groups was significant (p <

0.01, Kruskal–Wallis test; normality rejected with Shapiro–Wilk test,
p < 1× 10−3). Moreover, there were 11 positive young responders
compared with three old responders determined by a four-fold change
in HAI titre after vaccination. This suggests a correlation of age with
a drop in seroconversion rates.
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Figure 4.1: The dashed line shows the four-fold change threshold for cat-
egorising a positive response patient. Medians values of the age
groups are shown.
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4.3.2 Principal component analysis using unfiltered genes.

To explore the transcription profiles of tet+ CD4+ memory T cells,
differential expression analysis was carried out on E1 samples. The
list of gene features was cleaned by removing dropout genes. The
primary aim of this was to compare T cells between seropositive and
seronegative patients and so a standard pairwise comparison was car-
ried out between groups without adjusting for age. No genes were
determined to be statistically significant after adjusting for false dis-
covery rate following a Benjamini-Hochberg procedure. A PCA using
this list was performed to observe the variance, if any, caused by re-
sponse category and age in tet+ cells prior to vaccination (Figure 4.2).
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(b) Age categories (left) and response categories (right).

Figure 4.2: PCA of E1 (n = 23) day zero samples consisting of 11274 gene-
features.

Neither age nor response explain the two largest components of
variance (making up 29 per cent of the variance) in gene expression
within E1 samples (Figure 4.2). To find a principal component (PC)
that contains the response category the most, the median normalised
PCA scores of each class were subtracted from each other within each



4.3 results 133

component. The largest difference between age groups was PC 1 fol-
lowed by PC 3 and the largest difference for response categories was
seen in PC 1 followed by PC 23 (Figure 4.3).
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Figure 4.3: PCA components with maximal distance between age and re-
sponse categories in cohort E1.

4.3.3 Dimensionality reduction of genes in training an NBC

To narrow down the genes and reveal any potential underlying tran-
scriptional features of memory T cells which regulate HAI response,
a classification model was used, applying dimensionality reduction
methods.

B
C D

E

A

Figure 4.4: A, Patient data was taken before vaccination; B, differential ex-
pression results reveal no significant differences in gene expres-
sion; C, supervised random forests discern between serological
classes and re-order the ranked list of genes; D, unsupervised
hierarchical clustering using the output genes gives an unbiased
view of the gene selection; E, the naïve Bayes classifier model is
formed with an optimal and reduced-dimension subset of genes.
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(b) Reducing the gene dimensions of the differential expression analysis after feature
selection with random forests.

Figure 4.5: Plots show the means of four-fold cross validation over 100 ran-
dom samples. The shade and area show the standard deviation
across NBCs.

Gene-rank positions were obtained by sorting the differential ex-
pression analysis by fold-change and unadjusted significance between
E1 response categories. We assumed that this ranked the genes by
their importance as predictors. For each sequence of genes, descend-
ing through the highest ranking differential expression results, one
hundred Gaussian NBCs were trained and tested in four-fold cross
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validation over randomly selected partitions from E1 samples. The
genes list was cut off at a maximum of 1 000 genes as a larger set of
features was not expected to increase accuracy. Using this prelimin-
arily ranked list of differentially expressed genes following the red
work flow in Figure 4.4, the NBC achieved an accuracy of 96.12 per
cent +− 2.53 per cent in test partitions by selecting only the top 25

genes (Figure 4.5a).

In parallel, feature selection was performed over these top-ranking
1 000 genes using a supervised random forest algorithm (blue traject-
ory in Figure 4.4). This re-ordered the genes by the frequency of ap-
pearance within the ten highest importance genes from each of 1 000

forests. One hundred NBCs were also trained over each descending se-
quence of re-ordered genes. The random forest optimisation resulted
in an accuracy of 99 per cent within 11 genes and the optimal subset
of 23 gene features resulted in an overall accuracy of 99.95 per cent +−

0.5 per cent providing a highly-predictive subset of features between
E1 samples (Figure 4.5b).

Unsupervised hierarchical clustering of the data using only the 23

predictive genes demonstrates that these genes effectively separate
between the seropositive and seronegative classes (Figure 4.6). Fur-
thermore, a follow-up PCA using only these 23 genes demonstrates
that the largest source of variance, component one, is now undoubtedly
explained by the response category (Figure 4.7). Patient age and re-
sponse category appear to be associated as a large overlap is seen
between the positive responders and young patients. However, the
spread of old patients was not fully accounted for in component
one which suggests that the gene subset is at least partially age-
independent (Figure 4.7).
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quoise labels are seropositive.
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Figure 4.7: PCA of E1 day zero samples using the optimal predictive gene
subset.
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4.3.4 Predicting patient response

The goal was then to test the classifier by predicting an independ-
ent cohort, E2. These samples were collected from patients receiving
the same vaccine formula in the same year. However, they were se-
quenced at a later date. A large inter-cohort effect was observed and
cohort corrections were carried out to remove this effect seen in PCA

(Figure 4.8a). The NBC was then trained with the corrected E1 data
and subsequently used to predict the seroconversion responses of E2

patients. This was carried out blind to avoid the possibility of bias.
Despite the solid prediction of E1 using cross-validation methods,
the overall accuracy of E2 predictions was 30 per cent with 90 per
cent of the predictions being seropositive. The PCA (Figure 4.8b) con-
firms this over-estimation of seroconversion as the majority of E2 are
clustered with E1 seropositive samples. Examination over why the
classifier performs as it does on the new data shows that most pre-
dictive genes in E2 are expressed in a manner complementary to E1

(Figure 4.9).

Many of the genes selected by the random forest (RF) and NBC op-
timisation process have been highlighted in previous studies on viral
response. F2R plays and anti-viral role in innate immunity and F2R
(PAR-1)−/− mice show increased viral load and inflammation after
influenza infection (Antoniak et al., 2013). However, the knockout of
F2R has also increased the survival of mice after influenza infection
as it might reduce epithelial barrier integrity (Khoufache et al., 2012).
MXRA7 was found to be expressed at a lower level individuals resi-
lient to Enterotoxigenic Escherichia coli infection (Yang et al., 2016).
SAP30 is seen to play a role in Rift Valley fever virus as its activity
may cause increased virulence (Terasaki et al., 2016). Upregulation
of SYTL2 was seen in pigs infected with a strain of African swine
fever viruse (Jaing et al., 2017). It is reportedly associated with the
immunological synapse. CREBZF has been implicated in a number
of anti-viral responses (Zhang et al., 2012). TATDN3 has previously
been seen as significant between HIV and healthy patients (Wu et
al., 2015). SPTLC2 is responsive in rhinovirus infection amongst oth-
ers (Çalışkan et al., 2015). One interesting gene is LONP2. The ex-
pression of LONP2 is increased in aged antibody secreting cells in
mice (Kannan et al., 2016). The PARP8 gene remains part of a larger
family of proteins which regulate virus response (Kuny and Sulli-
van, 2016). CKAP4 was shown to be upregulated in chicken embryos
in response to a strain of influenza (Li et al., 2017). A cytodine deam-
inase, APOBEC3G, a protein coding gene, is an inhibitor of retrovirus
replication and retrotransposon mobility. This gene correlated with
seroresponse in a previous analysis but was only highly expressed
in natural killer cells and not discussed (Nakaya et al., 2011). Stav-
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rou and Ross (2015) review APOBEC3 proteins and point out that
APOBEC3G may be a dominant anti-viral protein in CD4+ T cells (Gil-
lick et al., 2012).
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(a) PCAs of E1 and E2 using the 23 predictor genes before (left) and after (right)
cohort correction
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(b) Seroconversion of E1 and E2 samples across the com-
ponent explained by the predictive genes.

Figure 4.8: True-positive seroresponders are highlighted by P.
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Figure 4.9: Regularised log2 RNA-seq counts from seropositive patients
were subtracted from the geometric mean of seronegative pa-
tients in each cohort.
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4.4 discussion

Understanding the mechanisms behind the protective effects of vac-
cination is of major importance in the prevention of seasonal epidem-
ics and occasional pandemics. Previous studies have identified T cell
expansion as a major correlate of serological response in patients and
have outlined predictive sets of genes between a large selection of
PBMCs (Nakaya et al., 2011; Nayak et al., 2012; Tan et al., 2017).

One subset of cells not specifically explored yet were tet+ CD4+

memory T cells. An attempt was made to reveal a genetic determinant
of response to vaccination in circulating tet+ CD4+ memory T cells us-
ing differential expression analysis. However, only non-significant res-
ults were seen in transcriptional differences between seropositive and
seronegative patient’s cells. One possible reason for non-significance
with this study could be the low power due to a small sample are lim-
itation the low power of this experiment was limited due to sample
sizes.

4.4.1 Feature selection and Classification

This research shows a novel work flow that despite the lack of signific-
ance in differentially expressed genes, selects features from RNA-seq
data using an RF and provides a non-arbitrary cut-off for biological
analysis using the NBC. This demonstrates one approach to RNA-seq
dimensionality reduction and classification with potential use in pre-
dicting patient response to medication.

The use of the Gaussian NBC is justified given that RNA-seq data
are transformed correctly. Classifying RNA-seq data was shown to
be reasonably effective using classifiers such as RF, SVM or variants
of discriminant analysis upon data transformed by variance stabilisa-
tion or regularised log transformations (Zararsız et al., 2017). How-
ever, authors also describe that an alternative method to deal with
inherent over-dispersion of in mRNA counts data is to use discrete
counts based classifiers. Additionally a multivariate distribution NBC

can also be used for linear-discrimination which was shown to be
more effective in a number of datasets (Gama, 2000). Another im-
provement could be made by using different or adjusted measures of
effectiveness as normal serological endpoints overestimate the effect-
iveness in inactivated vaccines (Petrie et al., 2011). Furthermore, the
change in HAI resulting from vaccination is altered by the baseline
abundance of HAI. Adjustments for this effect may normalise the pa-
tient responses and improve the classifier result (Beyer et al., 2004). It
would be interesting to use the mNBC classifier from chapter two for
this purpose as it assumes a multinomial, hence discretised, distribu-
tion. The use of this approach on publicly available data is required
to validate the current approach further.
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challenges across cohorts Within the first cohort, the clas-
sifier accuracy was 100 per cent with a panel of 23 genes. However,
the prediction of second cohort was much less than 30 per cent which
could suggest a non-random result; the model actively mis-classifies
samples. Possible reasons for issues faced within this research were
the low number of samples, a large variance between cohorts and in-
dividual samples as well as a number of uncontrolled biases in the
training data, specifically a young positive responder bias. We also
saw uneven distributions of age and response within and between
cohorts. Sample size could be one of the most important factors to
successful classification models using RNA-seq data (Zararsız et al.,
2017) which is exaggerated by high variance in human sequencing
data. To address this, larger studies could be carried out to better un-
derstand and predict the role of pre-vaccination tet+ CD4+ memory T
cells. Figure 4.9 illustrates how the model actively mis-classifies pa-
tient responses. It shows that the fold-change of selected gene mRNA
levels between positive and negative patient’s tends to be largely op-
posite of the other cohort. This results in sample’s gene expression
being incorrectly assigned within the wrong class distribution by the
predictive model.

It was initially assumed that an age-independent predictor of re-
sponse could be found. However, it might be seen that age is a strong
component of the response and a large intersection is seen between
seropositive patients and young patients (Figures 4.7 & 4.1). In fact,
only one young patient was seronegative in our training data which
resulted in a particularly underpowered analysis for this sub-pop-
ulation. Experimental differences could may also be a reason that
the classifier struggled to reproduce the precise classification of co-
hort E1 across cohort E2 samples. For example, the use of a different
vaccine between the two cohort years may have contributed to the
inter–cohort effects seen here. Furthermore, as large inter-cohort dif-
ferences were observed, cohort correction using ComBat is advised
for for small batches but may impose certain unwanted transforma-
tions of data with unbalanced sample groups (Nygaard et al., 2015).
Additionally, it may be there is simply no real tangible difference
between responsive and non-responsive patients using this cell type
in a predictive model of vaccination.

4.4.2 Gene selection and prediction of vaccination

The gene selection made through classification is heavily associated
with regulation of host-viral interactions. Interestingly, the trend in
the training data E1 suggests that the majority of the anti-viral genes
were expressed more in seronegative rather than seropositive patients.
Unfortunately the results poor significance after multiple-test correc-
tions gives little weight to these observations. As discussed age may
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have biased the gene selection. This is potentially seen with LONP2 as
its higher expression in positive cells may mimic its increased expres-
sion in aged cells as seen in mice (Kannan et al., 2016). Furthermore,
the expression of APOBEC3G, one of the top predictors of seroconver-
sion, was significantly higher in old patients compared with young
patients at day zero when examined with a differential expression
analysis (not shown).

In light of my analysis, perhaps pre-existing circulating tet+ CD4+

memory T cells convey little predictive power for estimating sero-
logical response to vaccination. Previous regression modelling has
shown that influenza-specific T cells were not important compared
with the total naive T cell population for prediction (Jürchott et al.,
2016). Additional challenges faced in applying this model is that pre-
vious exposure to influenza may play a role in classifying response
categories as the fold-change of antibody titres between pre-vaccinat-
ion and post-vaccination are less pronounced in those who have high
HAI titres at the time of injection (Francis et al., 1945; Seidman et al.,
2012). Furthermore, patients with zero detectable antibody prior to
vaccination were supposedly less susceptible to infection (Hobson et
al., 1972). This poses an issue when matching genotype to phenotype
when determining if a patient responds to vaccination.

In terms of translating pre-vaccination genetic variables to actual
protection in real terms, models predicting HAI titre and the protect-
ive effect from a given titre value could be combined. One such fu-
ture model could combine modules of pre-vaccination predictions of
HAI and another with a protective dose response for HAI such as the
model Huang et al. (2017). This could be a systems pharmacology
model as none to my knowledge exist for this purpose.

4.4.3 Concluding remarks

I have successfully outlined an approach to classify vaccination re-
sponse categories based on RNA-seq data. This was applied to pre-
dicting influenza vaccination response in patients but fell short when
validated by independent test data. This might have been caused by
a limited sample size combined with a great inter-patient variabil-
ity. Successful prediction of vaccination responses can be important
for screening patients in high-risk groups as well those who may ex-
perience more serious adverse reactions. However, the magnitude of
most adverse reactions in influenza vaccination is low. Therefore it
this context it could also be applied for resource-saving measures.
For example, predictors of vaccine efficacy could prove useful in that
herd immunity could be achieved by targeting only high-responders
within a population. By evaluating an individual’s priority to be vac-
cinated, a proactive vaccine vigilance program may then recommend
the most responsive patients for vaccination to achieve the fraction of
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population immunity required for population-level immunity. More
broadly, the potential to predict the patient response rate for other
more harmful drugs would be highly desirable and classification
models such as this could be essential in advent of a more person-
alised genomic medical system.

One of the aims of systems pharmacology is to predict the response
to therapeutics in patients and inform decisions on dose regimens
and formulation. by sampling a patient’s molecular profile we can
inform models for predicting outcomes and communicate individual
and population-wide treatment and prevention strategies for diseases.
Additionally, systems pharmacology models are interested in under-
standing the underlying disease mechanisms. To that end I argue
that we can also derive the critical molecular mechanisms responsible
for conferring vaccination efficacy by applying feature reduction and
classification to feed into networks and explore disease mechanisms.





5
D I S C U S S I O N , C O N C L U S I O N S A N D O U T L O O K

5.1 introduction

The research presented in this thesis set out to explore the systems
pharmacology modelling and whether its use can help us understand-
ing disease mechanisms and makes decisions between druggable tar-
gets.

We uncovered a retrospective spread of computational pharmaco-
logy models, exemplified a case of systems pharmacology models in
target selection by modelling disease mechanisms, and examined a
classification model for predicting response to therapeutics was ex-
amined. Two crucial questions were addressed by the study and help
to assess whether systems pharmacology models are able to reduce
drug attrition:

1. Can systems pharmacology models explore disease mechanisms?

2. Can systems pharmacology models predict drug targets?

5.2 main findings

The discussions situated at the end of each chapter hold a more spe-
cific and topical debate on the results, limitations of methodology
and value of findings. However, in the true spirit of systems pharma-
cology, the individual chapters present pieces of a combined puzzle
greater than merely the sum of their parts. Together, the findings
show that systems pharmacology models can be and are useful in
exploring disease mechanisms.

clinical focus directs an evolving modelling landscape :
The findings in chapter two suggest that firstly, the diseases
which are explored by the models up until now have been rel-
evant to today’s picture of medical needs with only a few excep-
tions. This observation is important as a clear dialogue between
clinical scientists and modellers is key in understanding which
disease mechanisms are most important for exploring for im-
pacting drug attrition.

Secondly, the rising knowledge of complex biological systems is
mirrored by a rise in model complexity. The success in prevent-
ing drug failure that the previous generation of predictive mod-
els may have played a part in could be bolstered by the newer
generation of mechanistic systems pharmacology models.
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systems pharmacology is built by understanding the disease :
Beyond demonstrating the re-usability of methods, chapter four
shows that disease mechanisms are derived from mechanistic
understanding. Classification models that predict patient response
highlight key players which drive efficacy in drugs. Variation in
response is often modulated multi-factorially and require sys-
tems approaches to understand.

systems pharmacology models result in emergent hypotheses :
The IL-6 model of arthritis in chapter three shows that systems
pharmacology models built to model biological mechanisms
may reveal overlooked properties of the disease. Offloading a
soluble receptor in high concentrations by sequestering its cog-
nate ligand was unforeseen and not documented in clinical tri-
als. Moreover, the work in developing this model aligns both
chapters two and four in realising that the conjunction of clin-
ical drive and amassed mechanistic knowledge are necessary
motivators of constructing systems pharmacology models to un-
derstand disease mechanisms.

Furthermore, we find that systems pharmacology models can predict
response outcomes to aid optimal target selection, a requirement for
developing safer more efficacious therapy.

systems pharmacology makes pre-clinical decisions : In chapter
three, the QSP model of TCZ and SRK therapy in RA is the com-
parison of two targets within a single system. The dichotomy
of receptor versus ligand is a perfect example of how dynamic
systems pharmacology models can be used in target pre-clinical
selection. We show that the comparison between targets could
take place before drugs are pushed into large-scale clinical trials
without fitting to drug-specific data. Drug viability can then be
inferred for making judgment calls in continuing development
of a drug over a competitor or gold-standard of therapy. Fur-
thermore, the model shows that systems pharmacology model-
derived hypotheses on target-related toxicity may suggest al-
ternative biomarkers or measures in clinical studies. These eval-
uations would be important in making go or no-go decisions
and reduce late-stage attrition.

networks can assess multiple targets : Predicting patient re-
sponse using a classification model in chapter four may be used
to identify strong drivers of therapeutic response. This shows
one case for determining the multiple components of complex
networks that drive drug efficacy which could lead to develop-
ing systems pharmacology models and therapeutic targets.



5.3 theoretical implications . 147

5.3 theoretical implications .

The work undertaken here gives an organic view of the evolution
into systems pharmacology models however more work needs to be
carried out to reach the substantial goals of reduced attrition in drug
development.

In this study, a desired outcome was to reveal the merits of sys-
tems pharmacology models in making clinical decisions but the cur-
rent assessment using clinical trials data was too course-grained to
derive any pre-clinical context. Although the use of pharmacometrics
in regulatory decisions has shown remarkable success (Bhattaram et
al., 2007; Bhattaram et al., 2005; Lee, 2014), the effectiveness of sys-
tems pharmacology models to aid decisions in pre-clinical phases
still needs to be properly assessed. It may be difficult to achieve this
as both published and unpublished accounts of modelling need to be
considered.

The hypothesis-driven construction of systems pharmacology mod-
els can stem from connecting models of patient response to the under-
lying variables taken from in vitro studies such as RNA sequencing.
We generated a work-flow for one half of the puzzle; evaluating the
power of underlying genes in which predict patient response from
the levels of their mRNA in circulating T cells. This is one approach
of developing networks which can be transferred into systems phar-
macology models (Thiel et al., 2016). Inconsistencies between the data
sets inaccurate predictions do not reduce the value of these methods
and call for more data.

The model constructed for IL-6-mediated RA may improve our un-
derstanding of intricacies in targeting IL-6 in arthritis and other con-
ditions. This work built upon a QSP model and was further validated
by fitting to and predicting a broad array of data. Previous models in
this disease and drug topic have been population PK models and have
used estimations for nonlinear elimination. The model in chapter
three however demonstrates that an understanding of the disease and
a mechanistic interpretation using experimentally derived measures
can simulate the TMDD seen in clinical data. The model examined the
general use of monoclonal antibodies and proposed challenges that
may come from high affinity drugs. One implication of this model is
that we may now have a testable hypothesis for the safety concerns
of MACE in SRK therapy.

5.4 pushing for change .

The paradigm of successful drug discovery that relies upon serendip-
ity has long since past and researchers strive to generate new drugs
for existing diseases using a wide range of methods. The utility of QSP

and systems pharmacology as a framework will likely be a keystone
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in the multi-disciplinary endeavour that is drug discovery and devel-
opment, helping to reduce attrition. The thoughts contained here are
not without an echo in the field (Androulakis, 2016) and many com-
putational pharmacologists are looking forward to fully using QSP

throughout the drug discovery pipeline.
The landscape generated in chapter two suggests that the majority

of software used are proprietary and operated through industrial ef-
forts. This may hinder the uptake of avid younger pharmacologists
in pursuit of interdisciplinary science. A push to overcome this major
hurdle is needed for embracing a systems pharmacology framework
by expanding QSP training in institutions of education as discussed in
the white paper (Sorger et al., 2011). Moreover, as the field becomes a
bonefide player in the wider scientific community, a more solid defin-
ition will form, increasing accessibility of QSP.

Additionally, following the re-purposing of the IL-6 model in chapter
three, it is apparent that model standards and source code are import-
ant aspects for systems pharmacologists to be able to share their mod-
els and knowledge. A push for change would be to increase the up-
take of model exchange formats such as PharmML (Swat et al., 2015)
in pharmacometrics or SBML in systems biology as well increase use
of standard guidelines for annotation and model documentation like
MIRIAM (Le Novère et al., 2005). Interestingly, we did not see the
terms SBML or PharmML once in the systems pharmacology model-
ling landscape I outlined in chapter 2 which is further evidence that
although systems modelling communities have coordinated to build
these standards, there is no evidence that they are adopted within
systems pharmacology.

5.5 expanding the research .

One future project for the landscape of systems pharmacology mod-
els could be to generate a modelling literature library where research-
ers can search for models using a pre-classified index of PubMed.
Experience in curation within BioModels and filtering through liter-
ature to find models has shown that it can be tedious for researchers
to find mathematical models. This could be linked to model repositor-
ies such as The Drug Disease Model Resources (DDMoRe) repository
(Harnisch et al., 2013) or BioModels and help to further the prac-
tice of re-usability in modelling research. This could also serve to
improve model accuracy through public consensus of class labelling
and be implemented as a dynamic picture of systems pharmacology
and biology modelling landscapes. Additionally, this could provide a
platform for crowd-sourced contributions towards modelling ontolo-
gies such as MAMO and improve annotation accuracy.

Future research would be to validate the findings of the IL-6 model
in chapter three. Quite simply, data from clinical studies measuring
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serum sIL-6Rα or IL-6 may entirely refute the hypothesis for safety
concerns which, in itself would be one outcome of the model. This
could lead to extending the model structure to incorporate known
aspects of the drug toxicity. Furthermore, the current trial and use
of anti–IL-6 therapy including SRK, in indications such as major de-
pressive disorder could provide a new opportunity for model use
and refinement.

Finally, although very much in its infancy, the influenza response
classifier using RNA-seq data in circulating flu-specific memory T
cells should be further validated in independent cohorts. Extension
of the model into a dynamical network could generate an interesting
systems pharmacology model in vaccination.

5.6 conclusion

Systems pharmacology models are vital for interpreting the rising
complexities in our knowledge of biology. Moreover, their use in turn-
ing these interpretations into predictions for developing medicines is
seen by their application in probing druggable targets.

Their success in the clinical setting is beginning to show and yet
their application in the preclinical setting is where they will most
likely shine; it may still be too early to tell if systems pharmacology
models can really impact attrition in drug discovery.

However, this research addressed two key questions with findings
suggesting that in fully modelling the disease mechanisms, systems
pharmacology models may predict the druggable targets for drug
development and indeed, reduce the chances of attrition.
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