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The viscosity of a dense suspension has contributions from hydrodynamics and particle interac-
tions, both of which depend upon the flow-induced arrangement of particles into fragile structures.
Here, we study the response of nearly hard sphere suspensions to oscillatory shear using simulations
and experiments in the athermal, non-inertial limit. Three distinct regimes are observed as a func-
tion of the strain amplitude ~o. For 7o < 107, initially non-contacting particles remain separated
and the suspension behaves similarly to a Newtonian fluid, with the shear stress proportional to
the strain rate, and the normal stresses close to zero. For 7o > 10', the microstructure becomes
well-established at the beginning of each shear cycle and the rheology is quasi-Newtonian: the shear
stress varies with the rate, but flow-induced structures lead to non-zero normal stresses. At inter-
mediate 7o, particle-particle contacts break and reform across entire oscillatory cycles, and we probe
a non-linear regime that reveals the fragility of the material. Guided by these features, we further
show that oscillatory shear may serve as a diagnostic tool to isolate specific stress contributions
in dense suspensions, and more generally in those materials whose rheology has contributions with
both hydrodynamic and non-hydrodynamic origin.

I. INTRODUCTION

Flowing amorphous materials such as dense suspen-
sions and pastes find applications across industry, yet
a complete microscopic description of their mechanical
behaviour remains the subject of much study and de-
bate [1]. Though seemingly distinct at a phenomenologi-
cal level, many types of structurally disordered materials
share underlying physical features, and their rheology is
increasingly unified by their positioning within the jam-
ming phase diagram [2—4]. Those systems below jamming
are further unified according to simple phase diagrams
that take into account particle repulsion and attraction,
inertia, and friction [5-8].

Such systems often also share the common feature
of fragility [9]: loads that are compatible with the mi-
crostructural configuration can be sustained; incompati-
ble loads, however temporary, lead to rapid particle re-
organisation. Materials in fragile states can be forced to
unjam or rearrange and flow by small changes in shear-
ing direction. The concept of fragility is also useful for
explaining the flowing behaviour of dense suspensions,
which, while not jammed themselves, may comprise frag-
ile force chains that can engage under compatible loads
or collapse under incompatible ones giving the material
a highly anisotropic viscosity [10, 11]. While this de-
tail has been exploited recently to tune the flow response
of suspensions [12], fluctuations or intermittent shearing
can consequently coincide with highly non-linear rheol-
ogy, relevant to flow instabilities such as shark toothing
during paste extrusion, for example [13]. To this end, os-
cillatory rheology, which has classically been employed to
study viscous and elastic contributions to rheology across
a broad class of amorphous material [14-16], might prove
useful in suspension rheology not only to examine the

material response to non-steady flows in practice [17],
but also to reveal the inherent fragility and hence pro-
vide information linking microstructure to bulk rheology.
Though the presence of fragility has been brought into
question for jammed states of softer particles [18, 19],
it remains an instructive concept for understanding the
roles of microstructure and contact and hydrodynamic
stresses in disordered materials below jamming [20].

Dimensional analysis suggests that the rheology of
athermal, non-inertial, hard-sphere suspensions is rate-
independent [21-23] in the limit of large strains. The flow
remains non-Newtonian, though, in that arising nonzero
normal stresses are linked to the solids volume fraction ¢
through the viscous number I, [24], an analogue of the
inertial number I [25, 26]. Experimental evidence sug-
gests, however, that even within this supposedly rate-
independent limit, dense suspensions may have stress
contributions arising from particle-particle interactions
as well as hydrodynamics [20, 27]. Rate-independence
holds for stresses that are not close to ¢*, a threshold
stress for the onset of friction in such particle-particle sur-
face contacts, which enhances flow resistance [6]. We ex-
pect, therefore, that the contact contribution to the stress
increases near o* (manifested as shear thickening [28]),
but that rate-independence holds elsewhere.

Below the jamming point, a finite strain is required
for assembly of load bearing contact structures [10], il-
lustrated in Figure 1. At smaller strains, the microstruc-
tural state might represent some intermediate between
successive load bearing states, that is itself unable to
sustain large stresses. Here, hydrodynamic stresses may
dominate, leading to apparently viscous rheology. Ramp-
ing up the strain, we see an onset of load bearing contacts
at intermediate values (hitherto referred to as strain stiff-
ening [29]), and the above mentioned rate-independent,



quasi-Newtonian regime for large strains. This sequence
of microstructural events may be usefully interpreted as
a nonlinear response to oscillatory flow, as previously
demonstrated in the context of soft colloidal glasses [30].
Oscillatory measurements in suspensions might, there-
fore, reveal viscous rheology at very small or large strains,
with nonlinearities arising for intermediate values.

Due to disordered crowding at the microscale, the par-
ticles (e.g. the suspended solids in a suspension) do not
follow an affine trajectory as defined by the bulk material
deformation, as would be the case for a lattice solid [31].
Instead, particle-particle interactions, which do not nec-
essarily obey any kind of spatial or temporal symmetry,
necessitate nonaffine trajectories at the particle level at
sufficiently large strains [32, 33]. For ¢ < ¢. the particle-
particle interactions that give rise to nonaffinity are fur-
ther responsible for disrupting the time-symmetry of the
flow [34], as was beautifully demonstrated again in a re-
cent revisiting of Taylor’s classical experiment [35]. In
addition to a bulk rheological nonlinearity, this affine-to-
nonaffine transition in particle trajectories above a crit-
ical strain might serve as a microstructural signature of
the intermediate strain amplitude regime.

In this article, we set out the response of nearly hard
sphere suspensions to oscillatory shear, taking evidence
from simulations and experiments to demonstrate the
behaviour under small-, medium- and large-amplitude
strains. As discussed above, and in accordance with
a series of works [10, 11, 20], it has proven highly in-
structive to consider the response of suspensions to tran-
sient flows as a strain-dependent series of microstructural
events. Within this framework, the interpretation of
large-amplitude oscillatory shear (LAOS) rheology data
is challenging and as such there is an ongoing discussion
in the literature on how one can understand the nonlin-
earities associated with LAOS data [36]. Initially, data
were analysed in terms of an oscillatory time series, with
stress responses being interpreted as superpositions of pe-
riodic contributions with varying phase shifts that can be
extracted through Fourier transformations [37]. Later at-
tempts to add a physical meaning to such superpositions
included the replacement of sinusoidal contributions with
exotic characteristic basis functions such as rectangular
and triangular waves [38], the stress decompostion ap-
proach [39], leading to the models of Ewoldt and McKin-
ley [40] that offer an interpretation of elastic and viscous
stresses as sets of orthogonal polynomials. More recently,
the ‘sequence of physical processes’ framework [41] has
proven a successful approach to capture the nonlinear re-
sponse of yield-stress and visco-elastic materials within
the strain, strain rate and stress domain. Given the lack
of clear consensus in the literature regarding methods of
analyzing oscillatory rheology data for suspensions, how-
ever, we refrain from making a specific choice from the
above models, and instead focus on the overall transient
shear stress response and how structural rearrangements
give rise to the rheological forms observed.

We find Newtonian behaviour for small strains, where

particles remain separated by viscous lubrication films.
In terms of a generalised non-Newtonian number pro-
posed by Giacomin [42], we expect that this regime cor-
responds to a number close to zero, since nonlineari-
ties associated with either amplitude or frequency ef-
fects are absent. For large strains the response is quasi-
Newtonian: the Lissajous curve shows superficially vis-
cous behaviour, but the suspension is within the above-
mentioned rate-independent regime, where both hydro-
dynamic and contact stresses contribute to the overall
rheology. At intermediate strains, building and destroy-
ing particle contacts [9] leads to highly non-linear be-
haviour in all stresses and microstructural quantities. We
finally demonstrate that oscillatory rheology can comple-
ment shear reversal protocols [10, 11, 20, 43] to diagnose
shear-induced structural contributions to the viscosity of
dense suspensions. This will be useful for characteris-
ing suspended particles in material products as diverse
as industrial ceramic pastes and catalytic washcoats.

II. METHODOLOGY

A. Numerical simulation

Force and stress calculation We consider dense sus-
pensions with solid volume fractions ranging from ¢ =
0.50 — 0.62. The material is represented by N, =
0(10%) bidisperse, spherical particles (diameters d and
1.4d, density p) in a cubic periodic domain of volume
V. Newtonian dynamics are calculated in a stepwise,
deterministic manner using an established molecular dy-
namics code [44], applying a normal penalty function
Fom = kor,/|r,| with stiffness k& to minimize overlaps
(with magnitude p) between contacting particle pairs
that have centre-to-centre vectors r,. We further add
a resistance to pairwise tangential motion F&! = ku,,
for tangential displacement u,, constrained by a coeffi-
cient of friction p such that [F&t| < p|FS™| [45]. The
particles are suspended in a density-matching liquid, ac-
counted for by resolving frame-invariant hydrodynamic
lubrication forces FZ with leading term —a,67nsvg, for
neighbouring particle pairs (within a cutoff length 0.05d,
the sensitivity to which we tested earlier [7]) with centre-
to-centre vector rg, relative normal velocity v, fluid vis-
cosity 1y and squeeze resistance asq. A detailed descrip-
tion of the simulation model is given elsewhere [46]. The
bulk contact and hydrodynamic stress tensors are calcu-
lated according to
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respectively, where N, and Ny, are the number of contact-
ing and hydrodynamically interacting pairs, respectively.
The total stress is given by o = o 4+ o". Data are pre-
sented for the shear (0,y) and normal (044, 0yy, 022)
components of o as well as o, and Ugy.

Sample preparation and oscillatory shearing Samples
are prepared using an energy minimisation scheme
comprising thermal equilibration, leading to spatially
isotropic suspensions with no initial particle-particle
contacts. The simulation box is subjected to an oscilla-
tory shear deformation of amplitude g, with flow and
gradient in 2 and y respectively (see Figure 1). The
time-dependent strain and rate of strain are given by
v(t) = vosin(wt) and #(t) = ~ow cos(wt), respectively.
The strain amplitude 7 is varied between 10~2 and 10!
to explore the linear and non-linear rheological responses
of the suspension. Although, as discussed in the Intro-
duction, we interpret the material response throughout
as series of microstructural events, as opposed to super-
positions of multiple bulk periodic functions, we find it
instructive to model the resulting shear stress according
to 04y(t) = osin(wt + J§), which gives representative
storage (G’) and loss (G”) moduli for the suspension as

G =L coss (3) G¢" =2 siné (4)
Yo 7o

from which we may recover an approximation of the
complex viscosity magnitude according to

| = (G + G2 Jw. (5)

We determined delta simply by using a best-fitting al-
gorithm to approximate the non-sinusoidal material re-
sponse as a sinusoidal one. This is a very good approx-
imation in the small- and large-amplitude limits where
the response is close to linear, but it necessarily aver-
ages over the nonlinearities for intermediate amplitudes.
Moreover, we find the complex viscosity magnitude it-
self (without explicitly considering the phase) a useful
parameter to consider alongside the microstructural evo-
lution. Starting from the isotropic equilibrated assembly,
the samples are sheared for ten oscillatory cycles. The
following results represent ensemble averages across 40
realisations, for the final five cycles. Notably, we did not
observe any long term effects when shearing the sample
for additional cycles. In fact, the long-time response is
obtained within the first half of the first cycle in all cases.
This is in contrast to a recent study of dry grains under
oscillatory flow, in which rich phase behaviour was ob-
served after many shear cycles [47]. We attribute this
disparity to our use of bidisperse grains, which frustrate
ordering, and fixed volume, which prevents contraction
and dilation.

The dimensional parameters in the model and their
units are particle density p [mass/length®], particle diam-
eter d [length], fluid viscosity n; [mass/(lengthxtime)],
particle stiffness k [mass/time?] and shear rate ~(t)
[1/time] (which is related to frequency w [rad/time]),

from which we construct two dimensionless control pa-
rameters, py(t)d?/ns and §(t)d/\/k/pd. We choose w
such that both parameters remain < 1 for all ¢, giv-
ing non-inertial and nearly hard sphere rheology, respec-
tively. The suspension viscosity and microstructural evo-
lution under well-established flow are therefore expected
to be rate-independent [21]. Shear stresses that resist
flow are positive for positive 4, while compressive nor-
mal stresses are negative independent of the sign of 7.

B. Experimental protocol

Sample preparation Experimental results presented
here are obtained using supermarket-bought cornstarch
particles supended at 50wt.% in a mixture that is it-
self composed of 50 wt.% water and 50 wt.% glycerol
(suspending liquid viscosity n; = 0.012Pa.s, density p =
1.1g/cm3). The steady shear rheology of our suspension
is quantitatively consistent with recent works in shear
thickening of cornstarch suspensions [48, 49]. Given the
acute size dependence demonstrated recently [6], there-
fore, we expect that such agreement is indicative of com-
parable particle sizes and assume a particle diameter of
order 10um. The samples were freshly prepared before
each experiment and thoroughly dispersed with a vortex
mixer then rested for several minutes before loading.

Oscillatory shearing protocol Rheological measure-
ments were performed using a stress-controlled rheometer
(Anton Paar MCR501) in a cone-plate geometry with di-
ameter 50mm and angle 2° at a temperature of 12°C [50].
The temperature control was achieved by a Peltier sys-
tem consisting of the bottom plate and a hood with
Peltier elements equipped on each. Oscillatory strain
sweep measurements were performed with strain ampli-
tudes 79 = 0.1 — 5, under a fixed angular frequency
of w = 50rad/s, ensuring the characteristic stress o ex-
ceeded the onset for frictional particle contacts o*. Fre-
quency sweeps ranging from w = 0.5 — 50rad/s were
performed with strain amplitudes v = 0.5 and 9 = 2.
Measurements were taken across a minimum of 100 os-
cillatory cycles in each case. The Péclet number remains
at all times > 100 such that Brownian motion can be
neglected. The influence of sample sedimentation and
evaporation is non-negligible after ~ 60 mins, therefore
all the presented data were taken within this time dura-
tion. No evidence of particle aggregation was observed
during the experiment. It is noted that shear history ef-
fects may arise in the experiment that are not accounted
for in simulation, though we verified that quantitatively
consistent experimental results were obtained for both
upwards and downwards sweeps of amplitude and fre-
quency.
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FIG. 1. Schematic of particle assembly in the unsheared state
(left) and in the sheared state (right). Dark shading indi-
cates force-transmitting particle contacts that appear after
some necessary strain. Shown in 2-dimensions for clarity; all
simulation data are obtained from 3-dimensional suspensions.
Inset: coordinate definition used throughout.

III. RESULTS

In Figure 2 we present computational and experimen-
tal results of the bulk rheological response of the sus-
pension to oscillatory shear, for increasing ~y at fixed w.
Shown are computational results for frictionless (1 = 0)
and frictional (g = 1) particles, both at ¢ = 0.55, and
experimental results measured at w = 50 rad/s for which
the characteristic shear stress o exceeds the onset stress
for frictional contacts o* [6, 49]. The numerically pre-
dicted storage and loss moduli, particularly for frictional
particles, show remarkable qualitative agreement with
experiment. Indeed, the limiting complex viscosity mag-
nitudes are in good quantitative agreement, though there
is some degree of offset in the critical strain magnitude
for the viscosity increase, Figure 2d. Such an offset might
be explained by the disparity in precise volume fractions,
which is challenging to overcome for cornstarch suspen-
sions [29].

The detailed shear stress response, predicted by
simulation at ¢ = 0 and g = 1, is given in the form of
Lissajous curves in Figure 3 at ¢ = 0.55 for five represen-
tative values of 7. Shown in Figure 4 for p = 0 are the
evolutions of per-particle contact number Z. = 2N./N,
and two quantifications of the suspension fabric, defined
according to directly contacting particles and hydro-
dynamically interacting particles, given respectively as

Np,

rgrg (7)
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from which we report the zy components, written as
A¢ and A" for convenience. Contacts aligned in the
compressive quadrant have positive fabric contributions
for positive shear rates, Figure 1b. In Figure 5 we
illustrate the reversibility and affinity of the particle
displacements with increasing -y. Shown in Figure 6
are the normal stresses and normal stress differences
Ny = 045 — 0yy and Ny = 0yy — 0, corresponding to
# =0 in Figure 3. Note that in each case the simulation
results are rate-independent. In Figure 7 we present

experimental results for frequency sweeps at v = 0.5
and 9 = 2, while in Figure 8 we propose representative
Pipkin diagrams at two volume fractions.

A. Newtonian response at small amplitude

In the limit of small v, the simulation predicts purely
viscous rheology, with o, o ¥, indicated by a circle in
the stress-strain Lissajous plot, Figure 3, and GY > G/,
Figure 2. This is in good agreement with the experimen-
tal result. The contact contribution to the stress is ob-
served to be negligible. Particles remain separated by lu-
brication films that dominate the dissipation and merely
oscillate about their initial positions with no plastic re-
arrangement. This is illustated by Z. =~ 0, Figure 4,
and in Figure 5a, which gives the net displacement of
a particle with position after one cycle (wt = 27) Xan
from its starting position xq, where (...) denotes the av-
erage over all particles and realisations. In the limit of
small 7, particle displacements are demonstrated to be
reversible. Similarly, for small g, the absence of direct
particle contacts means individual particle motions are
not highly constrained, so their translation under oscil-
latory flow tends to follow the affine deformation of the
simulation box, so fluctuating, or non-affine, velocities
are small. In Figure 5b we plot the particle-averaged
nonaffine velocity magnitudes at the end of the shearing
cycle, defined for particle ¢ with position x; and velocity
v; as v = v; — 4x;. While Z, remains very close to 0,
A¢ is undefined during most of the cycle. The overall
structure remains largely isotropic, with A® — 0. Nor-
mal stresses remain close to zero for small g, so that the
rheological response might be described as Newtonian.
This is in contrast to the large 7 limit, described later,
that we refer to as quasi-Newtonian.

The small strain limit holds while the particle trans-
lations induced by the shear flow remain smaller than
the mean particle separations developed during sample
preparation. Indeed, the transition to the irreversible re-
gion occurs for smaller vg with increasing ¢, as expected
(Figure 5). In this small strain regime, therefore, there
is no frequency at which particle contacts will arise, so
the relaxation time is always vanishing. As a result the
viscous response retains rate-independence provided we

keep p¥(t)d2/nf, 4(t)d//k/pd < L.

B. Non-linear response at moderate amplitude

The stress response becomes non-linear when the
strain magnitude approaches then exceeds 107!, evi-
denced by a negative surge in the lower right quadrant
of the Lissajous curves at 79 = 0.22 and 9 = 0.55,
Figure 3a. Here, particle contacts begin to become
widespread, with particles contacting at least one of their
neighbours on average at the peak strain, Figure 4a. Over
these strain amplitudes, such particle-particle interac-
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FIG. 2. Storage (G’) and loss (G”') moduli and complex viscosity magnitude (|n*|) as functions of 7o for a dense suspension
of nearly hard particles. (a) Simulated suspension with friction coefficient u = 0, volume fraction ¢ = 0.55; (b) Simulated
suspension with friction coefficient y = 1, volume fraction ¢ = 0.55; (¢) Cornstarch suspension at ¢ > o* where we expect
frictional contacts; (d) Complex viscosity magnitude for each suspension. Shown are the storage and loss moduli, defined
according to Equations 3-4 and the complex viscosity magnitude calculated according to Equation 5. The presented moduli
are given in units of k/d and Pa, while the viscosity is scaled by the suspending fluid viscosity ;.

tions begin to generate contact stresses that contribute
to the total stress out-of-phase with the hydrodynamic
stresses, which manifests as G| approaching G} and a
gradual increase of the suspension viscosity magnitude
|n*|, Figure 2. The larger deformations now lead to large
scale organisation of the microstructure, illustrated by
the emergent switching of A", and the loss of reversibil-
ity in particle trajectories, Figure 5a.

The reconfiguration of the particle contact network on
this scale further requires particle motions that deviate
from the net shearing flow. Moreover, direct particle-
particle contacts lead to unbalanced, anisotropic forces
on particles that must be dissipated by nonaffine motions,
contributing to an increased suspension viscosity [51].
Linked to this, there is a sudden increase in the magni-
tude of the non-affine velocities v/ when o > 10~1. The
nonaffinity increases with ¢ as jamming is approached, as
particles must deviate further from their affine trajecto-
ries to satisfy the imposed shear rate. This result is rem-
iniscient of several other findings and theoretical mod-
els [4, 51]. Though in general for disordered systems the
emergence of nonaffinity and irreversibility are not neces-

sariliy equivalent, our results indicate that the onsets of
both are correlated in this case. Precisely understanding
the link (or lack thereof) between these two phenomena
for below-jamming systems could be a promising line of
future investigation and could indeed serve to enhance
the unification of disordered systems across the jamming
transition.

A sudden loss of contacts coupled with a discontinuity
in A€ is observed at 4 = 0, corresponding to the turn-
around of the flow direction in the suspension. The dis-
torted microstructure, represented by both A" and A°,
that appears under moderate strain amplitudes becomes
immediately incompatible with a reversed shearing direc-
tion, allowing a total relaxation of direct particle-particle
contacts, resulting in loss of the contact stress contribu-
tion and an instantaneous viscous flow with greatly re-
duced stress. The structural information stored in A€ is
lost at this point, since it is undefined when N. — 0.
By contrast, the hydrodynamic fabric A", which repre-
sents the mean orientation of neighbouring particle pairs,
remains even when the contacts themselves vanish. We
observe some continuity, therefore, in the evolution of the
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FIG. 3. Rheological data for oscillatory shear in a dense suspension, predicted by simulation for 4 =0 and g =1 at ¢ = 0.55.
Black lines indicate total shear stress; blue lines indicate hydrodynamic contribution; red lines indicate contact contribution.
(a) Stress-strain relationship for u = 0; (b) Stress-strain rate relationship for p = 0; (c¢) Stress-strain relationship for pu = 1;
(d) Stress-strain rate relationship for 4 = 1; Shown are data for increasing 7o, left to right, with the axis labels in the far left
applicable to their whole row. To indicate the phase of each set of data, results corresponding to ¥(t) > 0 are highlighted with
dashes, while those for 4(t) < 0 are dotted. Arrowheads in (a) and (b) indicate starting point and direction to read, for initial
increase of the strain. Strain amplitudes are indicated along the bottom axis.

microstructure at this scale during flow reversal.

The onset of widespread particle contacts corresponds
to the emergence of significant normal stresses, Figure 6.
Consistent with previous findings [11], we observe that
the deformation of the contact network for increasing
~(t) requires squeezing of lubrication films, generating
compressive normal stresses and positive N7, indicative

of dilatant behaviour. This is best illustrated for the
~vo = 0.22 case, where we observe positive Ny (and neg-
ative Ns) for increasingly negative A". Upon reversal of
the flow direction, there is a very slightly negative Ny
and a larger positive Ny, both indicating slight tensile
behaviour, as the large scale microstructural orientation
returns to isotropic, illustrated by A" returning to zero.
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FIG. 4. Microstructural data for oscillatory shear in a dense suspension, predicted by simulation for p = 0 and ¢ = 0.55. (a)
Evolution of coordination number Z.; (b) Hydrodynamic fabric A"; (c¢) Contact fabric A°. Shown are data for increasing 7o,
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FIG. 5. Irreversible and non-affine particle translation with
increasing 7o during oscillatory shear as predicted by simu-
lation for ¢ = 0 and ¢ = 0.55. (a) Particle-averaged net
translation after one cycle of shearing. Particles return ex-
actly to their starting positions for o up to 0.1. For larger
~0, plastic rearrangements lead to a loss of reversibility; (b)
Particle-averaged non-affine velocity magnitude (rescaled by
a characteristic streaming rate yowd) after one cycle of shear-
ing. Spatially anisotropic particle-particle contacts at large
7o lead to unbalanced forces on particles, that dissipate by
non-affine motions. We find equivalent results for p = 1.

For strain magnitudes in the range 107! < 7o < 10°,
it is noted that the stresses and microstructural quanti-
ties retain strain dependent characteristics at all stages
of the oscillatory cycle, indicating that the flow never
achieves a well-established state, but rather remains in
a perpetual transient configuration. In this respect, we
may state that full coherence between the stress/strain
state and the microstructural details is only achieved to-
wards the end of each oscillatory cycle (if at all), mean-
ing the suspension is fragile with respect deformations
in any direction. Although the complete change in flow
direction adopted here is at odds with the very small
change in shear direction required to indicate the pres-
ence of fragility, we find that the rapid changes in stress
response for very small amounts of strain do indeed ren-
der this material fragile. The response to moderate strain
amplitudes is in contrast to the case where 7, > 10!,
discussed below, where the suspension achieves a well-
established state, i.e. the extent and arrangement of the
contact network reaches steady state near the start of
each oscillatory cycle.
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C. Quasi-Newtonian response at large amplitude

For large strain amplitudes, the suspension microstruc-
ture becomes well established shortly after the reversing
of the sign of 4(t), and the shear stress enters the afore-
mentioned approrimately rate-independent regime. In-
deed, even the contact stress is observed to be approxi-

mately rate-independent in this regime, giving a viscous
contribution that leads to considerably higher viscosities
in the large-amplitude compared to the small-amplitude
regimes. Here, the start-up period after each reversal of
flow direction, during which the microstructural quanti-
ties evolve, represents a very small portion of each os-
cillatory cycle. We studied the detailed evolution of the
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microstructure during this phase in a separate work [11].
Indeed, the loss modulus begins to dominate again (Fig-
ure 2), with the Lissajous plot appearing to illustrate
close to viscous flow. The extensive nonaffine motions
during the long period of plastic deformation result in
substantial irreversibility of the particle positions, Fig-
ure 5. In this case, the strain dependences of Z. and A",
A€ indicate that the suspension microstructure attains
compatibility with the imposed flow shortly after changes
in flow direction, and thenceforth evolve independently of
4(t) until 4(¢) = 0, when the underlying fragility is again
manifested by considerable contact breakage and subse-
quent reformation, which again takes place very shortly
after flow start-up in the new direction. The flow in this
regime, being predominantly viscous and with a consid-
erable contact contribution after the start-up period, is
consistent with the rheological law described by Boyer et
al [24].

The appearance of demonstrable nonzero values of Ny
appears to be a transient effect during contact forma-
tion/breaking and microstructural evolution. For large
strain magnitudes, say vy > 8.79, where the contact
number and fabric become well established during the
flow cycle, N7 remains close to zero except at flow ini-
tiation. This suggests that, with respect to the flow-
gradient plane, the suspension is neither dilatant nor ten-
sile. The remaining non-Newtonian character is retained,
however, in No, which demonstrates proportionality with
4(t) when the microstructure is well established, illus-
trating a stress contribution, i.e. that of the particle
contacts, that acts uniformly in x and y, consistent with
the fabric A¢ and A", but that is absent in z. Overall, the
quasi-Newtonian behaviour observed here for large g is
reminiscent of the viscous flow regime described by Boyer
et al [24], in that the shear stress and normal stresses are
both nonzero and rate-independent, while contacts and
hydrodynamics contribute. Our results across a broad
range of 79 demonstrate that this picture can be unified
with that of the fragile, breakable contact networks seen

for small and intermediate strains.

D. Oscillatory rheology as a diagnostic tool for
shear-induced structure

We have identified a low strain hydrodynamic-
dominated viscous regime, and a high strain contact-
dominated viscous regime. Provided we remain in
the athermal, noninertial limit, the low strain regime
should remain viscous independently of the oscillatory
frequency, since the dissipation is simply dominated by
hydrodynamics which are governed by the rheology of
the suspending liquid. We therefore expect |n*| # f(w)
in this region. Conversely, any stress dependence in the
shear-induced microstructure, for example frictional con-
tacts appearing above ¢* [6], should show up in a fre-
quency sweep at the high strain limit. The simulations
at 4 = 0 and pu = 1, as well as the experimental data,
show an increased complex viscosity magnitude |n*| and
a non-negligible storage modulus at 7y = 2, indicating
a stress contribution from shear induced structures at
this point. We present experimental results for such fre-
quency sweeps in Figure 7, for vy = 0.5 and v = 2.
The low strain regime shows no frequency dependence,
as expected, while the large strain regime shows a sharp
increase in |p*| with increasing frequency, Figure 7. In
spite of the complexity of having both hydrodynamics
and contacts contributing to the shear stress in differing
proportions, our Lissajous plots presented above demon-
strate approximately viscous rheology at large strains for
=0 and p = 1. Simply considering the magnitude of
the complex viscosity, therefore, we recover the stress de-
pendence in the material viscosity. Plotting instead with
the characteristic shear stress o, we find a near linear
increase in |n*| with o, reminiscent of the steady shear
rheology of a comparable suspension close to discontinu-
ous shear thickening [6].

This result is also consistent with our simulation re-
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FIG. 8. Pipkin diagrams for the oscillatory rheology of dense suspensions at ¢ < ¢, and ¢, < ¢ < drcp

sult. Comparing the |n*| response as a function of p,
we find the disparity arises only at large strains. This
is consistent with the notion of a stress-dependent par-
ticle friction being detected under large amplitude os-
cillatory flow. By this technique, therefore, we might
further extend the diagnostic capabilities of non-steady
flows. At small strains, a frequency sweep provides in-
formation about the at-rest configuration of the suspen-
sion, and might also be indicative of the rheology of the
suspending fluid itself. At large strain amplitudes, how-
ever, we can quantify the stress dependence of any shear
induced fragile structures. These might contain infor-
mation about the frictional or attractive properties of
particle-particle interactions, for example.

IV. CLOSING REMARKS

The results in this work provide further testimony to
the potential of non-steady rheology measurements as
diagnostic tools for elucidating particle contact prop-
erties [11] and suspension stress contributors. Further
work is needed to link these results to those exploring
additional complexities such as particle-particle cohesive
forces that may give rise to gel-like elasticity, the Brow-
nian regime that may give rise to glassy behaviour and
competition between thermal and convecting motion at
low Peclet numbers, and the crossover from viscous to
elastic responses at ¢., for example.

The nonaffine framework has been developed and suc-
cessfully used to calculate the shear modulus of gen-
eral disordered solids [31], including extending to specific
cases of metallic glasses [52] and polymer glasses [53].
Linking the nonaffine framework to dense suspensions,
and therefore to disordered systems below jamming more
generally, remains a promising route, and one that can
be informed by further oscillatory shear experiments and
simulations.

Though a classical material for studying suspension

rheology, comparing experimental cornstarch data to
somewhat idealised simulation results remains tricky. In
particular, the grains are spherulites with facets and
edges that are difficult to define as ‘hard’ or ‘rough’, par-
ticularly when solvent effects on the surface friction are
only now coming to light [54]. Overall, though, our find-
ings demonstrate that with a sufficiently high friction
coefficient, nearly-hard, bidisperse spheres can provide
quantitative bulk rheology data and are useful for inter-
preting microsctructural evolution associated with real
suspensions.

In future, oscillatory shear in suspensions might be ex-
plored as a tool for further elucidating the shear-jamming
phase diagram [55, 56]. The emerging picture of discon-
tinuous shear thickening as a transition from lubricated
to frictional particle interactions [28, 57-59] presents in-
teresting consequential volume fraction effects. At low
stresses, one expects the suspension viscosity to diverge
at ¢rop &~ 64%, while at high stresses the divergence
occurs at ¢, =~ 58%. In the present article we remain
below both critical values of ¢ (accounting for the shape
effects in our cornstarch suspension), such that we stay
away from jamming or shear-jamming at all times. By in-
creasing the volume fraction to prop < ¢ < P, though,
we might explore the regime where shear-jamming occurs
above some critical strain, which could be explored as an
extreme strain-hardening effect [17]. Such shear-jamming
might be aided by the inherent capability of dense pack-
ings to exploit pre-existing, potential load-bearing struc-
tures at small strains [60]. To this end, we construct
tentative Pipkin diagrams at two representative volume
fractions, to illustrate the general rheological regimes ex-
pected tying in the stran-amplitude dependence explored
in this work, Figure 8. Here, we indicate a line of fixed
stress ¢* at which particle-particle interactions become
frictional. For simplicity we show this as a sharp tran-
sition, but in practice the onset of friction occurs over a
range of stress [61]. At low volume fractions this transi-
tion might be observed as a shear thickening transition,



similar to that presented in this work, while at higher
volume fractions it is anticipated that the shear jamming
regime is entered.

Our findings demonstrate the unique flow map of
nearly hard particle suspensions under oscillatory shear.
Keeping the strain small allows us to probe the rheology
of the interstitial fluid; large strains allow us to build up
a shear induced microstructure and quantify its contribu-
tion to the viscosity. The character of the intermediate
regime can reveal the susceptibility of the load-bearing
contact network to incompatible flows. More generally,
our results may lay a template for future use of oscillatory
flows as diagnostic tools for characterising challenging in-
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dustrial suspensions [62, 63], and may also inform future
microstructurally-based constitutive relations for dense
flowing systems [64].
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