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Abstract 
Investigating the calcium wave and actin dynamics at 

Drosophila egg activation 

Anna Henrietta York-Andersen 

Egg activation is a series of highly coordinated processes that prepare the 

mature oocyte for embryogenesis. Typically associated with fertilisation, egg 

activation results in the resumption of the cell cycle, expression of maternal 

mRNAs and cross-linking of the vitelline membrane. While some aspects of egg 

activation, such as initiation factors in mammals and environmental cues in sea 

animals, have been well-documented, the mechanics of egg activation in many 

animals are still not well understood. This is especially true for animals where 

fertilisation and egg activation are unlinked. 

In order to elucidate how egg activation is regulated independently of 

fertilisation, I use Drosophila melanogaster as a model system. This insect 

provides extensive genetic tools, ease of manipulation for experimentation and 

is amenable for imaging. Through visualisation of calcium, Processing bodies 

and meiotic spindles, I show that osmotic pressure acts as an initiation cue for 

the calcium wave and downstream processes, including the resumption of cell 

cycle and the dispersion of the translational repression sites. I further show that 

aquaporin channels, together with external sodium ions, play a role in 

coordinating swelling of the oocyte in response to the osmotic pressure. 

I proceed to identify the requirement of internal calcium sources together with a 

dynamic actin cytoskeleton for a calcium wave to occur. Through co-

visualisation of calcium and actin, I provide the first evidence that the calcium 

wave is followed by a wavefront of non- cortical F-actin at egg activation, which 

requires the calcium wave. Genetic analysis supports a model where changes 

in osmotic pressure trigger the calcium wave via stretch- sensitive calcium 

channels in the oocyte membrane and the calcium wave is relayed by nearby 

channels via the actin cytoskeleton. My work concludes that the mechanism of 

egg activation in Drosophila is more similar to plants, compared to most 

vertebrates.  
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Chapter 1  
General introduction 
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1.1 Egg activation overview 

The mature oocyte is a specialised cell, which is arrested at a specific stage of 

meiosis and is ready to be fertilised by a parental gamete. Upon fertilisation, the 

mature oocyte undergoes a series of highly coordinated processes that prepare 

oocytes for successful embryogenesis. These events are collectively called egg 

activation. Egg activation is essential for the successful totipotent development 

of an oocyte, which is ensured by the resumption of the cell cycle, changes in 

maternal gene regulation and cross-linking of the vitelline membrane (Stricker, 

1999; Horner and Wolfner, 2008).  

The molecular event that unifies egg activation in all animals is an increase in 

intracellular calcium (Stricker, 1999). Typically initiating from the point of sperm 

entry, this calcium increase propagates as a wavefront across an entire oocyte 

at speeds ranging from 5 to 30µm/s (Jaffe, 2002; Jaffe, 2008; Stricker, 1999). 

The first calcium wavefront was visualised with aequorin photoprotein in 

medaka fish eggs (Gilkey et al., 1978). With the development of calcium dyes 

and genetic tools, the calcium wavefront is now visualised and well-

characterised in most animals. The calcium wavefront can take one of two 

morphological forms: a single wave as documented as in echinoderms, 

zebrafish, Xenopus and cnidarians; or multiple oscillations in ascidian and 

mammalian eggs (Stricker, 1999). The calcium oscillations in mammalian 

oocytes have been shown to last for several hours and are required for cell 

cycle coordination (Miyzaki et al., 1986; Miyazaki et al., 1992; Nagano et al., 

1997). Although an increase in calcium at egg activation is a conserved event, 

the mechanism of the calcium wave or oscillations differs between organisms. 

This introduction will summarise the key themes relating to egg activation. 

These include how the fertilisation and non-fertilisation cues initiate events of 

egg activation, what is the source of calcium and how calcium coordinates the 

downstream processes after egg activation. 

�2



1.2 Fertilisation as an initiation cue of egg activation 

The entry of sperm into the female gamete acts as an initiation cue of egg 

activation in many animals, including ascidians, echinoderms, Xenopus and 

mammals (Stricker, 1999). There are two leading models for fertilisation-

induced calcium increase at egg activation: (1) the receptor-binding model; and 

(2) the soluble-factor model.   

1.2.1 Receptor-binding model 

The receptor-binding model argues that a calcium increase is initiated by the 

sperm binding to the plasma membrane of the egg. In order to achieve 

successful recognition, the egg surface expresses species specific factors to 

mediate the sperm binding during the acrosomal reaction (Wyrick et al., 1974, 

Wassaman, 1999). The sperm is hypothesised to bind a surface receptor on the 

oocyte and to activate the cytoplasmic Phospholipase C (PLC) enzyme, which 

is known to hydrolyse Phosphatidylinositol 4,5-bisphosphate (PIP2) into Inositol 

1,4,5-trisphosphate (IP3) (Fukami et al., 2010). IP3 subsequently binds and 

activates the IP3 receptor on the endoplasmic reticulum (ER), releasing 

intracellular calcium into the cytosol. The PLC is activated by ligand binding to 

the G-protein coupled receptor (GPCR) and subsequent G-protein translocation 

(Fukami et al., 2010). GPCR and PLC activation are thought to be key to the 

calcium release at fertilisation, which is supported by the previous discovery of 

the potential receptor, Bindin protein, on the plasma membrane of the sea 

urchin eggs (Foltz and Shilling, 1993). The requirement of the GPCR is further 

supported by the injection of a guanosine triphosphate (GTP) analogue, which 

causes calcium oscillations in golden hamster eggs or exocytosis of the cortical 

granules in sea urchin eggs (Turner et al., 1986; Miyazaki, 1988). Furthermore, 

intracellular calcium changes are inhibited in the presence of the guanosine 

diphosphate (GDP) analogue (Turner et al., 1986; Miyazaki, 1988). However, 

the requirement of  the GPCR and PLCβ was later disproved by the evidence 

that the GDP analogue had non-specific action on other components (Crossley 

et al., 1991).  
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With the role of PLCβ in question, new data from starfish and sea urchins 

indicated that, in fact, sperm binding causes the activation of PLCγ via Src-

family protein tyrosine kinase (SFK). This was supported by the injection of 

PLCγ or SFK interfering SH2 domains into starfish and sea urchin eggs, which 

prevented a calcium increase at fertilisation (Abassi et al., 2000; Runft et al,. 

2004). SFK was suggested to up-regulate PLCγ activity to hydrolyse PIP2 into 

IP3, and to mediate a calcium increase at fertilisation (Shearer et al., 1999, Jaffe 

et al., 2001; Runft et al., 2004). Altogether, the requirement of SFK and PLCγ 

was shown to be essential in sea urchin, zebrafish, starfish and ascidian 

oocytes (Carroll et al., 1997, Runft et al., 1999, Shearer et al., 1999; Kinsey et 

al., 2003). Despite this research, the identity of the receptor on the plasma 

membrane of these oocytes remains unknown, and hence the receptor-binding 

model remains controversial in the fertilisation field .  

  

1.2.2 Soluble-factor model 

While PLCγ plays an important role at fertilisation in some animals, it does not 

explain how fertilisation is directly linked to a calcium increase at egg activation. 

Compared to sea urchin oocytes, the injection of inhibitory SH2 domains did not 

block fertilisation in frogs or mammals (Mehlmann et al., 1998; Runft et al., 

1999; Mehlmann and Jaffe 2005). Data from these model systems has led to a 

soluble-factor model, which argues that the fusion of a sperm to an egg results 

in the translocation of a soluble-factor into the cytoplasm of an egg (Runft et al., 

2002; Whitaker, 2006; Miyazaki, 2006; Whitaker, 2008). The first experiments in 

establishing this model involved the injection of mammalian sperm extracts into 

the eggs, causing calcium oscillations in human, hamster and mouse oocytes 

(Swann, 1990; Homma and Swann, 1994; Swann 1996). Similar observations  

were also made in invertebrate animals, where sperm extract were able to 

activate Nemertean worm and ascidian oocytes (Stricker et al., 1996; 

McDougall et al., 2000). Together, these findings led to the conclusion that the 

presence of a sperm soluble-factor is able to initiate an increase in intracellular 

calcium and egg activation. Analysis of rabbit sperm indicated trypsin and 

temperature dependancy, leading to the proposal that the sperm factor was a 

protein (Stice and Robl, 1990). The requirement of a soluble-factor was further 
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supported by the observation that intracytoplasmic sperm injection (ICSI) from a 

single sperm cell caused calcium oscillations in human oocytes (Tesarik et al., 

1994). The calcium oscillations are disrupted when sperm binds to the egg, but 

is not able to fuse to the membrane in mouse (Kaji et al., 2000). Furthermore, 

the injection of somatic cell extracts into mammalian eggs did not cause calcium 

oscillations (Jones et al., 2000). Together, these data argue that upon the egg-

sperm fusion, a sperm soluble protein translocates into the egg’s cytoplasm and 

initiates calcium oscillations in mammalian oocytes. 

Purification and cloning experiments in mouse oocytes identified the factor as a 

sperm-specific isoform of PLC, known as PLC zeta (Saunders et al., 2002). The 

depletion of PLC zeta in sperm extracts inhibits the calcium oscillations at 

fertilisation (Saunders et al., 2002). The role of PLC zeta to initiate the calcium 

oscillations has been demonstrated further by the injection of either the protein 

or RNA into mouse, pig, cow and human oocytes (Saunder et al, 2002; Kouchi 

et al., 2004; Rogers et al., 2004; Ross et al., 2008; Ito and Kashiwazaki 2012; 

Nomikos et al., 2013). PLC zeta is a unique isoform of PLC as it was shown to 

initiate IP3 production at resting calcium levels of 100nM (Nomikos et al., 2015). 

The function of PLC zeta is thus proposed to be due to the four EF-hands, X-Y 

catalytic and C2 domains in the protein (Nomikos et al., 2011). This data argues 

that the EF-hands bind calcium ions, and the X-Y catalytic domains bind PIP2.  

PLC zeta is enriched within the sperm at the site of sperm-oocyte contact and 

fusion (Fujimoto et al., 2004; Heytens 2009; Escoffier et al., 2016). However, in 

comparison to other isoforms, PLC zeta is not localised at the plasma 

membrane (Yu et al., 2012). There is no PLC zeta null mouse line available, but 

genetic knock-down using the PLC zeta RNAi line expressed in males causes 

disrupted and reduced calcium oscillations at fertilisation (Knott et al., 2005). To 

date, how PLC zeta mediates an efficient increase in the calcium oscillations at 

mammalian fertilisation is not clear. 

In summary, the soluble-factor hypothesis is the predominant model to explain 

how fertilisation acts as the initiation cue of a universal calcium increase at egg 

activation with evidence from both vertebrate and invertebrate model systems. 

The fertilisation causes an increase in IP3 and subsequent release of 
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intracellular calcium that propagates across the oocyte in the form of a single 

wave or oscillations.  

  

1.3 Non-fertilisation initiation cues of egg activation  

While fertilisation is the initiation cue of egg activation in many organisms, in 

some animals egg activation is independent of fertilisation. Models of non-

fertilisation initiation cues include changes in the external environment or the 

application of physical stress on the plasma membrane of the oocyte. 

1.3.1 Changes in the external environment as the initiation cue of egg 
activation 

The ionic composition of the external solution has been shown to be important 

in starfish Asterina pectinifera (Kishimoto et al., 1998; Harada et al., 2003). Ex 

vivo studies in these eggs proved the requirement of external sodium ions for 

the resumption of meiosis  (Harada et al., 2003). Sodium is hypothesised to 

activate the sodium/hydrogen antiporter channel in the oocyte, facilitating the 

export of hydrogen ions across the plasma membrane. This results in an 

increase of intracellular pH and the subsequent resumption of the cell cycle. 

The composition of the external ionic solution has been shown to be  important 

in another marine animal, shrimp Siconia ingentis, where egg activation 

requires the presence of magnesium ions in seawater (Lindsay et al., 1992). 

Interestingly, the exposure to oxygen in the air results in the resumption of 

meiosis in the oocytes of stick insects Catrausius morosus (Went, 1982). These 

examples show that changes in the external environment are capable of 

initiating the downstream events of egg activation independent of fertilisation.  
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1.3.2 Physical stress on the membrane as the initiation cue of egg 

activation 

Another cue to initiate egg activation is the application of physical stress on the 

plasma membrane of an oocyte. Data supporting this model predominantly 

comes from parthenogetic insects, such as Pimpla turionellae (wasp), where 

egg activation was observed when the egg was squeezed through a polythene 

capillary (Went and Krause 1973; Went and Krause 1974). This physical stress 

is proposed to displace the maternal nucleus and to drive the resumption of the 

cell cycle. Parthenogetic activation was achieved when the unactivated eggs of 

Drosophila mercatorum were placed and passed through Drosophila hydei 

oviduct, suggesting that the pressure from the genital ducts is required for egg 

activation (Beck and Gloor, 1979; Went 1982).  

The tension in the plasma membrane can also be initiated from within the egg, 

rather than from the external environment. The osmotic pressure model 

contends that the osmotic flow into the egg results in tension on the membrane 

and in stretching of cytoskeletal components of the egg. This change in 

pressure subsequently causes the calcium influx via mechanosensitive 

channels. The model is supported by experiments in which the addition of 

hypotonic solution results in egg activation of dragonfly, mayfly, turnip sawfly 

and yellow fever mosquito (Sawa and Oishi, 1989; Tojo and Machida, 1998; 

Watanabe et al., 1999, Yamomoto et al., 2013). The mosquito oocytes undergo 

a visible morphological darkening, which is thought to be associated with the 

increased production and cross-linking of the endochorion at egg activation (Li, 

1994; Li and Li, 2006). The oocytes are thought to be kept in the meiotically-

arrested state in the ovaries to prevent parthenogenetic activation (Yamomoto 

et al., 2013). Together, there is substantial data arguing that the physical 

pressure stimulus is able to activate eggs in many insects. 

1.4 The source of calcium at egg activation 

Calcium ions are a key second-messenger in many biological systems. Calcium 

mediates various downstream processes, including tissue contraction in 
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muscles, firing of action potentials in neurones, cell death and protein 

expression (Berridge 2000, Clapham 2007, Bootman et al., 2012). The basal 

calcium concentration in cells is approximately 100nM, compared to the typical 

extracellular concentration of 1µM. Any increase in intracellular calcium is highly 

coordinated, as prolonged exposure to calcium can result in cell death (Rinton 

et al., 2008; Celsi et al., 2009). Importantly, cells cannot produce calcium ions 

and therefore have to mediate the calcium influx from intracellular stores via 

calcium channels (Chapter 5), or the extracellular environment. 

1.4.1 The role of IP3 receptor at egg activation 

The ER is a dynamic intracellular store, from which the calcium release is 

mediated by either the Ryanodine (RyR) or IP3 receptors (Meldolesi, 2001; 

Berridge, 2002). The activation of these channels, by the ligand and calcium 

binding, results in an intracellular calcium increase, which propagates across a 

cell in a calcium-induced calcium release (CICR) manner. At egg activation, the 

calcium increase predominantly comes from the ER via the IP3-mediated 

pathway. The first experiment, where purified IP3 was injected into sea urchin 

eggs, showed a calcium wave and other hallmarks of egg activation (Whitaker 

and Irvine, 1984; Swann and Whitaker, 1986). The calcium release was also 

initiated by IP3 injection into hamster eggs (Miyazaki, 1988). The inhibition of 

mammalian type 1 IP3 receptor by the injection of an antibody in the same eggs 

resulted in no calcium oscillations (Miyazaki et al., 1993). Since then, IP3 was 

shown to be a key molecule to induce calcium release at fertilisation in many 

eggs, including frogs, starfish and ascidians (Stricker, 1999). The proposed 

mechanism for the calcium release at fertilisation includes the upregulation of 

IP3 production, IP3 and calcium binding to the IP3 receptor, and subsequent 

calcium release and propagation via a CICR mechanism (the mechanism of 

calcium signalling is discussed in greater detail in the Chapter 2 introduction). 
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1.4.2 The role of RyR at egg activation 

There is also evidence that RyR contributes to the calcium release in sea urchin 

oocytes, as well as in ascidian and mammals oocytes (Galione et al., 1993; Lee 

et al., 1993; Ayabe et al., 1995; Grumetto et al., 1997; Russo et al., 1996, 

Wilding and Dale, 1998). Previous studies have shown that the activation of 

RyR, by caffeine or ryanodine stimulation, results in calcium release in 

echinoderm and fish eggs (Galione et al., 1993; Fluck et al., 1999; Lee et al., 

1993; Santella et al., 1999; Stricker 1999). The potential cues for RyR are cyclic 

ADP ribose and nitric oxide, where cyclic ADP ribose was shown to induce 

calcium release in echinoderm eggs (Galione et al., 1993 Santella et al., 1999). 

The nitric oxide increase was shown to be associated with sea urchin egg 

activation (Kuo et al., 2000), and is thought to be linked with the cGMP pathway 

(Willmott et al., 1996). Overall, RyR is thought to provide a contributory calcium 

release alongside the IP3-mediated calcium release in some eggs. 

Data from all these systems strongly support the conclusion that the calcium 

influx from internal and external environments are not mutually exclusive. For 

example, in Mollusca and Nemerteans the initial calcium influx from the 

extracellular environment allows the propagation of the calcium wavefront via 

CICR (Stricker, 1996; Deguchi et al., 1996; Stricker, 1999). The external calcium 

also plays a role in supporting prolonged calcium oscillations by refilling the 

internal calcium stores in mammalian eggs (Igusa and Miyazaki, 1983; Kline 

and Kline, 1992; Miyazaki, 1995). In summary, an increase in intracellular 

calcium at egg activation is sustained by both internal and external calcium 

sources. 

1.5 Resumption of the cell cycle in the mature oocyte 

One key aspect of egg activation is the resumption of the cell cycle, which 

prepares the oocyte to enter embryogenesis. After the oocyte has undergone 

maturation, the oocyte is paused in development. Waiting for fertilisation, this 

arrest is ensured by an increased activity of the maturation promoting factor 

(MPF), which consists of a regulatory subunit Cyclin B1 and a catalytic subunit 
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Cdk1 (Doree and Hunt, 2000). The arrest has been shown to occur at different 

stages of meiosis depending on the organism. In most insect, mollusc and 

ascidian eggs, arrest is at metaphase I of meiosis (King, 1970; Dupre et al., 

2011); mammalian and frog eggs at the metaphase II of meiosis (Fan and Sun, 

2004); echinoderm and cnidarian eggs at the G1 stage of mitosis concomitant 

with the timing of the pronuclei formation (Dupre et al., 2011).  

The key step to reverse the meiotic arrest is an increase in intracellular calcium 

at egg activation (reviewed in Horner and Wolfner, 2008). This resumption is 

mediated by the activation of anaphase-promoting complex (APC/C), which 

degrades the Cyclin B1 complex. Although APC/C function is well-documented, 

it is not quite clear how an increase in calcium is linked to APC/C activity at egg 

activation. One hypothesis is that calcium results in the activation of the 

downstream effector calmodulin-dependent protein kinase II (CaMKII), which 

modulates the activity of APC/C (Lorca et al., 1993; Tatone et al., 2002; 

Markoulaki et al., 2004).  

Mammals encode four isoforms of CaMKII, including α, β, δ and γ (Ma et al., 

2015). Compared to other isoforms, CaMKII γ has been shown to be essential 

for egg activation in mouse eggs (Backs et al., 2010). Experiments that use 

pharmacological or genetic  techniques to remove CaMKII result in the 

disruption of egg activation (Colonna et al., 1997; Galicano et al., 1997; Backs 

et al., 2010), and eggs fail to inhibit the activity of MAPK and Cdk1/Cyclin B, 

and thus remain arrested in meiosis. It is hypothesised that an increase in 

CaMKII activity leads to destruction of Emi2, and subsequent activation of APC/

C. Together, these data support a model where a calcium increase coordinates 

the resumption of meiosis via the activation of APC/C at egg activation. 

Another way calcium has been hypothesised to mediate the resumption of 

meiosis is via Calcineurin (CaN), a phosphatase linked to calcium and 

calmodulin activity. It was shown to be important in Drosophila and Xenopus 

oocytes at egg activation (Takeo et al., 2006; Horner et al., 2006; Mochida and 

Hunt, 2007). CaN exhibits an increase in activity similar to CaMKII at egg 

activation, prior to the degradation of Cyclin B (Nishiyama et al., 2007). 

Previous work has shown that frog eggs lacking CaN activity at egg activation 

�10



have  elevated levels of Cyclin B and are unable to exit the meiotic arrest 

(Nishiyama et al., 2007). It is proposed that CaN acts on numerous downstream 

effectors, including a binding APC/C factor Cdc20 and others (Mochida and 

Hunt, 2007). Together, this conserved increase in activity of CaMKII and CaN, 

via calcium, is hypothesised to lead to full activation of APC/C and the 

resumption of the cell cycle at egg activation. 

1.6 Modification to the outer coverings of the oocyte at egg activation 

The modification in the outer layer of the oocyte is an important feature of egg 

activation. By providing a more stable and turgid eggshell, this aspect of egg 

activation prevents polyspermy and supports the early development of the egg. 

Calcium is known to be responsible for modifying the outer layer of the oocyte. 

There are two main mechanisms to modify the outer layer of an oocyte: (1) 

cortical granule exocytosis; and (2) cross-linking of eggshell.  

1.6.1 Cortical granule exocytosis at egg activation 

Most oocytes are known to have cortical granules within 0.1-1µm of the plasma 

membrane (Schuel, 1985; Shapiro et al., 1989). These granules are filled with 

enzymes such as glycosides and proteases. At egg activation, the cortical 

granules undergo translocation and fusion with the oocyte’s plasma membrane, 

releasing the granular content into the perivitelline space (Tahara et al., 1996). 

This process is known as cortical granule exocytosis. Evidence that this process 

hardens the exterior of the oocyte comes from sea urchin or some mammalian 

oocytes, where peroxidase-type enzyme is released and cross-links the tyrosine 

residues in the membrane (Gulyas, 1979; LaFleur et al., 1998). Another key 

function of the enzymes is to cleave any remaining sperm proteins from the 

vitelline membrane or zona pellucida, thus preventing polyspermy. 

Cortical granule exocytosis is mediated by an increase of intracellular calcium at 

egg activation, which can be prevented by the injection of calcium chelators into 

the oocyte (Kline and Kline, 1992). This process is hypothesised to involve 
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SNARE and synaptotagmin proteins, which are known to be modulated by 

calcium (Clapman et al., 1995; Clapman, 2002). Further evidence argues for the 

involvement of synaptotagmin in sea urchin eggs, where the visualisation of this 

factor showed that synaptotagmin 1 localises to the scattered cortical granules 

in a developing oocyte or at the cortex in the mature oocyte (Leguia et al., 

2006). Immunolocalisation and Western blotting techniques have shown that 

Synaptotagmin plays a role in mediating the fusion of the cortical granules at 

sea urchin egg activation (Leguia et al., 2006). Thus, cortical granule exocytosis 

is an important and common mechanism to modify the outer layer of the oocyte 

at egg activation.  

1.6.2 Cross-linking of the eggshell at egg activation 

The other modification of the plasma membrane at egg activation involves the 

cross-linking of the eggshell layer. These changes have been shown to be 

mediated by a protein EGG-3 in C.elegans oocytes (Maruyama et al., 2007). 

Visualisation and knock-down studies have shown that EGG-3 recruits other 

factors, such as MBK-2 and CHS-1, which together form a network of proteins 

to increase stability of the outer eggshell layer (Maruyama et al., 2007).   

Drosophila is another organism that is known to cross-link the chorion at egg 

activation (Waring, 2000; Horner et al., 2008). Previous work has shown that the 

chorion production can be induced by the application of hydrogen peroxide, 

suggesting the requirement of a peroxidase enzyme (Mindrinos et al., 1980). In 

addition, Nudel protease mutant flies fail to undergo covalent cross-linking, 

suggesting that Nudel might be required for the cross-linking of the chorion 

(LeMosy and Hashimoto, 2000). Overall, the cortical granule exocytosis and 

cross-linking of the outer layer are each essential processes that occur at egg 

activation. 
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1.7 Focus and outline of my PhD 

It is evident that egg activation is an indispensable event in the development of 

any organism. The role of egg activation has been well-documented in many 

models systems, including worms, frogs, sea urchins and mammals (Stricker, 

1999). Despite extensive research in these systems, the mechanism and the 

function of egg activation in insects is poorly understood. Drosophila has been a 

favoured model system for many decades to study early developmental events 

due to extensive availability of genetic tools, the practicality of fly husbandry and 

the short life cycle of the organism. My PhD will focus on using Drosophila as a 

model system to provide a better understanding of the mechanism of egg 

activation. 

My PhD work firstly attempts to address the mechanisms of the initiation, 

propagation and recovery of the calcium wave. I test the requirement of calcium 

channels, the models of the initiation and the source of calcium. My work 

highlights a link between intracellular calcium changes and the hallmark 

downstream processes of egg activation: the resumption of the cell cycle, the 

translation of the maternal mRNA and changes in cytoskeletal dynamics. My 

work provides further evidence as to how egg activation occurs in Drosophila, 

which highlights more similarities with plants as compared to most vertebrates.   

The structure of this PhD thesis will be: 

Chapter 1 - General introduction 

Chapter 2 - Materials and methods 

Chapter 3 - Establishing the mechanism of the initiation of the calcium wave at 

         Drosophila egg activation 

Chapter 4 - Investigating the dynamics and function of the actin cytoskeleton at 

         Drosophila egg activation 
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Chapter 5 - Investigating the mechanism of calcium transport at Drosophila 

         egg activation  

Chapter 6 - Investigating mRNA localisation in Drosophila embryonic hemocytes  

Chapter 7 - Discussion 

Chapter 8 - References. 
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Chapter 2  
Materials and methods 
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2.1 Fly husbandry 

The fly stocks were raised on Iberian recipe fly food at 18°C, 21°C or 25°C. The 

stocks were kept in vials and flipped every 3-4 weeks. To expand stocks for 

experiments, the flies were transferred to bottles containing Iberian recipe fly 

food, and flipped as required. For dissection of the mature oocytes, female flies 

were fattened with additional yeast and water for 36-48 hours at 25°C.  

2.2 Fly strains 

The following fly strains were used for this project: 
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Table 1
Fly line Genotype Bloomington number/

Reference

1 MyrGCaMP5 UASt-MyrGCaMP5/Tm3 Melom et al., 2013

2 GCaMP3  matalpha-GAL4::VP16; UASp-GCaMP3/cyo Kaneuchi et al., 2015

3 Tubulin-GaL4 tub-GAL4VP16 ; Sco/cyo Lee et al., 1999

4 OregonR

5 Water-witch RNAi y1 sc* v1; P{TRiP.HMC03264}attP2 51503

6 Water-witch mutant y1 w67c23; P{EPgy2}mRpS9EY20195 wtrwEY20195 22370

7 Ripped-pocket RNAi y1 sc* v1; P{TRiP.HMS01973}attP40 39053

8 Painless mutant w*; P{EP}painEP2251 31432

9 Trpm mutant y1 w67c23; P{EPgy2}TrpmEY01618/cyo 15365

10 IP3 mutant w*; Itp-r83Asv35/TM6B, Tb1 30740

11 IP3 mutant w*; Itp-r83Aka901/TM6B, Tb1 30741

12 Prip mutant y1; P{SUPor-P}PripKG08662 14750

13 Prip RNAi y1 sc* v1; P{TRiP.GLC01619}attP2 44464

14 Prip RNAi y1 v1; P{TRiP.HMC03097}attP40 50695

15 SERCA mutant SERCAKum170/CyO 26700

16 F-tractin (2nd chromosome) w*; P{UASp-F-Tractin.tdTomato}15A/SM6b; MKRS/TM2 58989

17 F-tractin (3rd chromosome) w*; snaSco/CyO; P{UASp-F-Tractin.tdTomato}10C/TM2 58988

18 Lifeact - mCherry w;;UAS-lifeact::mCherry A. Rosdal (Isabel Palacios)

19 Ressille::GFP w;Resille::GFP/CyO;MKRS/TM6b Maik Drechsler

20 ER marker (1)G0320::YFP Lye et al., 2014

21 Mitochondria marker mRpS9::YFP Lye et al., 2014

22 Golgi marker YFP::Rab6 62544

23 Sarah mutant sarah A108/Tm3 Mariana Wolfner

24 Sarah mutant sarah A426/Tm3 Mariana Wolfner

25 Act42A MS2 UASp-actin42AMS2/TM3 Sb Daniel St Johnston

26 MCP-GFP P[w+ UASt MCP-GFP] 8c / CyO Liz Gavis

27 Hemocyte marker srp-GAL4, UAS-GFP; crq-GAL4, UAS-GFP Helen Skaer

28 P body marker Me31B::GFP Nakamura et al., 2001

29 Prip deficiency Df(2R)BSC160/CyO 9595

30 IP3 RNAi P{TRiP.HMC03351}attP40 51795

31 IP3 RNAi P{TRiP.GLC01786}attP40 51686
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Table 2.1. The list of Drosophila fly lines used in this project.



2.3 Preparation of mature oocytes for live imaging  

The mature oocytes were dissected from fattened fly ovaries using a probe and 

fine tweezers (Fine Science tools) as described previously (Weil et al., 2012). 

The mature oocytes were teased out of the ovary taking care not to puncture 

the eggs. The oocytes were placed in series 95 halocarbon oil on 22x40 or 

22x50 cover slips. The oocytes were aligned parallel to each other with a probe 

to maximise the acquisition area for imaging. A crosshair was drawn around the 

sample for ease of location once on the scope. Excess  ovarian tissue was 

removed with a probe. The oocytes were left to settle for 10-15 minutes before 

imaging. The protocol was adopted from York-Andersen et al., 2016, JoVE. 

2.4 Ex vivo egg activation, solutions and pharmacological treatments  

The mature oocytes were activated ex vivo using activation buffer (AB):

260mOsm (3.3 mM NaH2PO4, 16.6 mM KH2PO4, 10 mM NaCl, 50 mM KCl, 5% 

polyethylene glycol 8000, 2 mM CaCl2, brought to pH 6.4 with a 1:5 ratio of 

NaOH:KOH) (Mahowald et al., 1983). Schneider’s Insect Medium (Sigma-

Aldrich) was used as a control solution. The oil displacement was achieved by 

the addition of one or two drops of the solution to the sample by a glass pipette 

(York-Andersen et al., 2016).  

For osmolarity experiments, sucrose (Sigma-Aldrich) was directly dissolved into 

distilled water and the osmolarity was measured by an osmometer (Loser 

Osmometer MOD200Plus). The osmolarity range used was 0-570 mOsm. NaCl 

and KCl were used at a concentration of 25-100mM. LiCl was used at the final 

concentration of 100mM. The stock solutions of Thapsigargin, Cytochalasin-D 

and Latrunculin-A were dissolved in ethanol, and then added to AB to achieve 

the required final concentration. BAPTA, Sodium Orthanovanadate and 

Phalloidin were directly dissolved into AB.  
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2.5 Heat shock treatment 

The mature oocytes were dissected onto a 22 x 40 cover slip. The cover slip 

was placed on the heat block for 10-40 minutes at 40°C. Alternatively, the whole 

fly was placed into the 1.5ml eppendorf tube in the hot-water bath at 40°C for 40 

minutes. After incubation of a whole fly, the mature oocytes were dissected onto 

the cover slip for imaging as described above. 

2.6 Imaging  

The protocol was adapted from York-Andersen et al., 2016. Time-series of the 

calcium wave at ex vivo activation were acquired with an inverted Leica SP5, 

under 20x 0.7 NA Oil immersion objective with acquisition parameters for 488 

excitation and 500-570nm emission, 400Hz. Similar settings were used for: (1) 

F-tractin and Lifeact, for 561 excitation and 570-700nm emission, 400Hz; and 

(2) P bodies, for 488 excitation of 500-570nm, 200Hz. The Z-stack was taken 

from the shallowest visible plane of the oocyte and was acquired at 2µm per 

frame, 40µm deep, with a total of 20 scans per frame. The first two Z-stacks 

were acquired before the addition of AB and the rest of Z-stacks were acquired 

for a total time of 20 minutes. The time-series were presented as maximum 

projections of 40µm, unless stated otherwise. (York-Andersen et al., 2016).  

Fluorescence recovery after photobleaching (FRAP) (Lippincott-Schwartz et al., 

2001) was carried out on the cortex of the mature oocyte using a UV laser on 

the Olympus FV3000 microscope for 15 seconds. The photo-bleached area was 
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Pharmacological agent Function Final concentration Company/Reference

1 BAPTA Calcium chelator 10mM Sigma

2 Thapsigargin SERCA inhibitor 10µM Sigma

3 Sodium Orthanovanodate ATPase inhibitor 10mM Sigma

4 Cytochalisin-D Actin-capping agent 10µg/ml Sigma

5 Phalloidin Actin-stabilising agent 1:2000 Roche

6 Latrunculin-A G-actin binding agent 10µg/ml Isa Palacios Lab
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Table 2.2 The list of pharmacological agents and final concentrations used in this 
project.



approximately 30µm x 10µm. The fluorescence recovery was recorded using  

the Olympus FV3000 for 20 minutes, with acquisition parameters for 488 

excitation of 500-570nm, 400Hz. 

All hemocyte images were acquired with an inverted Leica SP5 Confocal 

microscope under a 63x 1.4NA immersion objective at zoom 3.3. Acquisition 

parameters included two channels with emissions collection spectrums of 

500-565nm and 570-655nm,1024x1024 and 10Hz, which were kept constant. 

The time-series were acquired at a single plane. All the acquired images were 

analysed with FIJI (Image J) and Affinity Designer. 

2.7 Embryo collection and fixation  

For embryo collection, 100-150 flies were placed in a large plastic cage with a 

yeasted apple juice agar plate placed at the bottom. Embryos were collected 

overnight at room temperature. The plate with fresh yeast was replaced on a 

daily basis. Embryos were washed with water into the plastic sieve and 

collected with a paint brush. Embryos were then dechorionated for 2-3 minutes 

in 50% bleach, rinsed with water to remove the bleach and carefully dried with a 

tissue at the bottom of the sieve (Kiehart et al., 2007). For live imaging, the 

embryos were placed directly on a 20x50 coverslip and covered with series 700 

halocarbon oil. 

Otherwise, embryos were fixed with 500µl of 4% paraformaldehyde (Sigma) and  

500µl  of heptane in 1.5ml eppendorf tube, and left on the rotator for 15 minutes 

(PTR-35 360° vertical multi-function rotator, Thomas Scientific). The bottom 

phase was then carefully removed and 500µl of methanol was added to the 

same eppendorf tube with embryo samples. Excess solution was removed from 

the tube and was washed with 1ml of 0.1% PBST for 30 minutes.  

For some experiments, the fixation protocol was modified: (1) to contain 15% of 

sucrose added to 2% paraformaldehyde, compared to 4% paraformaldehyde 

only (Hollenbeck et al., 1987; Campbell and Holt, 2001); (2) length of fixation 

with 4% paraformaldehyde was reduced to 1 or 5 minutes; (3) all the stages of 

the protocol were carried out at  4°C. 
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2.8 Design of anti-sense and sense probes  

Bacteria with required cDNA plasmids was acquired from the Berkeley 

Drosophila Genome Project - Drosophila Gold Collection (Table 2.3) kept at 

-80°C and grown in 5ml of standard Lysogeny broth (LB) medium (Bertani, 

1951) in 10ml plastic tube with Ampicillin (1:1000) (Sigma-Aldrich) or 

Chloramphenicol (1:2000) (Sigma-Aldrich). The bacterial colony was picked 

with a disinfected 200µl pipette tip and placed into prepared LB medium. The 

tube with bacteria was left overnight in the shaker at 37°C.  After the incubation, 

the bacterial solution was centrifuged at 13000 rpm for 10 minutes and the 

supernatant was removed.  

cDNA was purified using a New England Biolab plasmid purification kit 

(T1010S). cDNA was then precipitated using a standard protocol from Green 

and Sambrook, 2016. To generate a linear cDNA for anti-sense and sense 

probes, the reaction mix contained: 1µl of enzymatic buffer (New England 

BioLabs); 1µl of the desired restriction enzyme (Table 2.4) (New England 

BioLabs); 1µg of cDNA; and the rest of the volume was matched with ultra pure 

water to give a total volume of 10µl. The linearisation reaction mix was left to 

incubate at 37°C for 2 hours. The cDNA was then purified with the Zymo 

Research DNA concentrator kit (D4003). The probe was labelled with DIG-RNA 

labelling kit for 2 hours, which included 700-1000ng purified cDNA template, 2µl 

10x Transcription Buffer  (Roche), 2µl DIG RNA labelling mix (Sigma-Aldrich), 

2µl SP6, T7 or T3 RNA polymerase (Thermo Fisher Scientific) and 1µl of 

Protector RNase inhibitor (Sigma-Aldrich).  
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Table 1

Gene name Plate number Well number Gene 
number

Transcript ID Clone ID Vector Antibiotic Insert size

actin-42A AU.66 18 CG12051 A LD18090 pBS SK- Amp 1645

actin-79B AU.63 13 CG7478 A GH04529 pOT2 Chlor 1542

actin-87E AU.47 96 CG18290 A RE14441 pFlc-1 Amp 1582

SCAR AU.39 87 CG4636 A SD02991 pOT2 Chlor 2308
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Table 2.3 The list of cDNA used in this project from the Berkeley Drosophila Genome 
Project - Drosophila Gold Collection.



2.9 In situ hybridisation  

The protocol for in situ hybridisation was adapted from Lecuyer et al., 2008. 

Following embryo collection and fixation protocol from the section 2.6, embryos 

were treated with proteinase K (Roche) at 1:2000 dilution in 1ml 1xPBS and 

0.1%Tween-20 solution (PBT) for 2 minutes at room temperature and then the 

reaction was stopped with 2 mg/ml glycine (Sigma-Aldrich) in PBT. The 

embryos were then fixed in 4% paraformaldehyde for a further 10 minutes and 

subsequently washed five times with 1ml PBT 2 minutes per wash. Embryos  

were then hybridised with a probe (1:20) in hybridisation buffer 100µl overnight 

at 55°C. Subsequent washes were performed with hybridisation buffer for 3 x 20 

minutes at room temperature and then 3 x 20 minutes with PBT. The samples 

were incubated with anti-Digoxigenin-AP for 2-3 hours (conjugated to alkaline 

phosphatase) (1:2000) (Sigma-Aldrich) and then washed with PBT for 3 x 10 

minutes. Embryos were then transferred to a siliconised watch glass 2cm x 2cm 

and incubated with Fast Red tablets solution (1 Fast Red tablet fully dissolved in 

2ml 0.1M Tris pH 8) (Sigma-Aldrich). The solution was added to cover the 

embryos and the signal was developed in darkness for 30-60 minutes. Excess 

solution was removed and the embryos were transferred to be mounted on a 

slide with 15µl ProLong Gold Antifade Mountant (Thermo Fisher Scientific) and 

a 20 x 20 cover slip. The edges were secured with nail polish. The slides were 

left overnight at 4°C. 
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Table 1

Gene name Reverse (antisense) 
promoter

Restriction enzyme 
for antisense probe 

Forward (sense) 
promoter

Restriction enzyme for 
sense probe 

actin-42A T7 EcoRI T3 XhoI

actin-79B SP6 EcoRI T7 XhoI

actin-87E T3 Xhol T7 BamHI

SCAR SP6 EcoRV T7 XhoI
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Table 2.4 The list of restriction enzymes used to design antisense and sense mRNA 
probes for in situ hybridisation.



2.10 Antibody staining of embryonic hemocytes 

Embryos were incubated with the primary goat anti-GFP (1:500) (Abcam, 

Ab6673) in PBT for 2-3 hours at room temperature. If the in situ hybridisation 

had to be performed alongside antibody staining of hemocytes, primary goat 

anti-GFP antibody was added together with anti-Digoxigenin-AP (section 2.9). 

Embryos were then washed with PBT 5 x 5 minutes. Subsequently, embryos 

were incubated with chicken anti-goat (488) secondary antibody (1:200) 

(Thermo Fisher Scientific) in PBT for 1 hour at room temperature. 

2.11 Quantifications and statistical tests  

The calcium wave data was analysed statistically using Fisher’s exact test with 

P-values based on previous statistics from the Wolfner lab (P<0.05 considered 

significantly different) (Kaneuchi et al, 2015). The spindle dimensions and 

calcium recovery time were quantified and statistically analysed using an 

unpaired T-test with p<0.05 values showing significant difference. The number 

of asterisks represents the P-value: (*)  P≤ 0.05; (**) P≤ 0.01; (***)  P≤ 0.001. 

F-tractin and photo-bleached area mean fluorescence intensity were quantified 

using Fiji tool (mean pixel value). A box of the same area was used to measure 

intensity at the anterior and posterior poles to avoid any dark unrepresentative 

areas. The values were then plotted over time in seconds.  

mRNA enrichment in embryonic hemocytes was quantified by comparing 

antisense and sense images. Visible clumps of mRNA were identified and the 

number of pixels were counted within hemocytes. The particles of three pixels 

or less were excluded from the quantifications. 
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Chapter 3  

Establishing the mechanism of the 
initiation of the calcium wave at 

Drosophila egg activation
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3.1 Introduction 

3.1.1 Chapter overview 

Drosophila early development is divided into several stages: (1) the formation of 

the germarium;  (2) selection of the oocyte; (3) early-mid oogenesis and (4) late 

oogenesis. These processes will be discussed in this introduction, which will 

provide a better understanding of how Drosophila form a mature oocyte that is 

able to undergo egg activation. Furthermore, this section will highlight the 

molecular processes that are associated with Drosophila egg activation, 

compare the differences between in vivo and ex vivo experimental approaches 

and discuss the current models on how egg activation is initiated in Drosophila.  

3.1.2 Formation of the germarium 

Drosophila early development occurs in the female reproductive machinery, 

which is composed of two ovaries, common and lateral oviducts, seminal 

receptacle, spermatheca, accessory gland and uterus (Hughes et al., 2018). 

The ovary consists of approximately 12-16 ovarioles, with the germarium at the 

anterior half of the ovary, and the egg chambers undergoing development 

towards the posterior end of the ovary (Figure 3.1A) (reviewed in Kirilly and Xie, 

2007). The germarium is considered as the starting point of Drosophila 

oogenesis, with the stem cells in the anterior dividing asymmetrically to produce 

a daughter germ stem cell and a cystoblast (Lin and Spradling, 1993). The 

cystoblast subsequently undergoes four mitotic divisions to produce 16 cells, 

which arrest at prophase I (Lin and Spradling, 1993; Page and Hawley, 2001; 

Resnick et al., 2009). The 16 cells undergo incomplete cytokinesis and are 

connected by actin-rich cytoplasmic bridges known as ring canals (Figure 3.1B). 

The number of ring canals differs between the cells. The first two cells 

generated have four ring canals, one of which is selected to become an oocyte. 
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Figure 3.1. Drosophila oogenesis and female reproductive system. 
(A) Adapted from Hughes et al., 2018. Drosophila female reproductive machinery is 
composed of two ovaries, two lateral oviducts joined into one common oviduct, seminal 
receptacle, uterus, accessory gland and spermatheca. The anterior of the ovary 
contains younger stages of egg chambers in the germarium, with older stages closer to 
the posterior of an ovary. Stage 14 oocytes are located near the entrance to the lateral 
oviduct with their posterior poles pointing towards the oviduct.  
(B) Adapted from Becalska and Gavis, 2009. Drosophila oogenesis is divided into 14 
morphological stages. The nurse cells nuclei are represented in blue. The nurse cells 
and the oocyte are encompassed by an epithelial monolayer of follicle cells. The final 
stage of oogenesis is referred as stage 14.
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3.1.3 Selection of the oocyte 

The specification and selection of the oocyte is not a well-understood process, 

but is suggested to depend on the intrinsic polarity of the fusome, a cellular 

structure that interconnects the cells via the ring canals (Lin and Spradling, 

1995; Mckeavin, 1997; de Cuevas and Spradling, 1998). It is proposed that the 

fusome organises the polarity of the microtubule cytoskeleton and becomes 

separated between all cells within a cyst. The pro-oocyte that inherits the most 

fusome material is likely to be specified as the oocyte. Further work has 

highlighted the requirement of Egalitarian and Bicaudal-D proteins in the oocyte 

selection, as the mutants of these factors form cysts with 16 nurse cells without 

the oocyte (Bolivar et al., 2001). These factors are hypothesised to aid the 

oocyte selection by the organisation of the microtubule cytoskeleton (Bolivar et 

al., 2001). The final product of this process results in the specification of one 

oocyte, with the remaining 15 cells adopting the fate of the nurse cells. The 

oocyte undergoes budding off at the posterior of the germarium and marks the 

beginning of oogenesis. 

3.1.4 Drosophila early-mid oogenesis 

After leaving the germarium surrounded by somatic follicle cells, the egg 

chamber undergoes coordinated development, which is classified by 14 

morphological stages of oogenesis: early oogenesis (stage 1-6); mid-oogenesis 

(stage 7-10); late oogenesis (stage 11-14) (Weil, 2014). The egg chamber 

consists of the oocyte, 15 nurse cells and follicle cells. Nurse cells play an 

essential role in producing maternal transcripts and proteins to support an 

embryo until the activation of the zygotic genome (Lasko, 2012). Follicle cells 

form a protective monolayer of epithelial cells around the egg chamber and play 

a role in patterning of the embryonic axes (Wu et al., 2008).  

One of the key events in early oogenesis is the localisation of gurken (grk) 

mRNA to the posterior pole of the oocyte. This localisation has been shown to 

occur by the action of dynein on the microtubule cytoskeleton (Gonzalez-Reys 

et al., 1995; Duncan and Warrior, 2002; Januschke et al., 2006). Once localised, 
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grk mRNA is translated to Grk protein and is secreted across the membrane to 

signal on the follicle cells at the posterior pole (Peri et al., 1999; Chang et al., 

2008). The follicle cells that receive Grk protein acquire their fate to become the 

posterior follicle cells (PFC) at stage 6 of oogenesis (Neuman-Silberberg and 

Schupbach, 1993; Gonzalez-reys et al., 1995). Following the differentiation, 

PFCs send an unknown signal back and induce re-organisation of the 

microtubule cytoskeleton in the oocyte, with minus-ends originating from the 

oocyte posterior and plus-ends protruding into the nurse cells (Gonzalez-Reys 

and St Johnston, 1998). This results in the migration of the nucleus and re-

localisation of grk mRNA to the dorsal-anterior corner of the oocyte, which is a 

key step in dorsal-ventral axis patterning (Neuman-Silberberg and Schupbach, 

1993; Gonzalez-Reys et al., 1995; Zhao et al., 2012). The microtubule re-

polarisation also establishes a microtubule network which facilitates mRNA 

active transport from the nurse cells into the oocyte from stage 7 onwards 

(Saxton, 2001; Weil et al., 2006; Zimyanin et al., 2008). 

During mid-oogenesis (7-10a), oskar (osk) mRNA becomes localised at the 

posterior pole (Kim-Ha et al., 1991; Zimyanin et al., 2008). The visualisation  of 

osk mRNA by in situ hybridisation in wild-type and various mutant backgrounds 

have shown that osk mRNA is responsible for mediating the anterior-posterior 

patterning, which includes localisation of nanos (nos) mRNA and the formation 

of the pole plasm at the posterior pole (Ephrussi et al., 1991; Rongo et al., 

1995; Vanso and Ephrussi, 2002). Visualisation of osk mRNA using the MS2-

system in live oocytes has shown that osk undergoes active movement in both 

direction on the microtubules via dynein and kinesin motors, which results in 

“Biased Random Walk” of osk to the posterior pole (Zimyanin et al., 2008). The 

posterior localisation is also ensured by a variety of factors, including 

Tropomyosin II, Barentsz and Staufen (Ephrussi et al., 1991; Micklem et al., 

2000; Zimyanin et al., 2008).  

In comparison to the active transport of grk and osk, pharmacological studies 

have shown that nos mRNA becomes localised at the posterior by passive-

diffusion and an actin entrapment mechanism (Forrest and Gavis, 2003). 

However, this process is considered inefficient as approximately 96% of nos 

mRNA become degraded during embryogenesis (Bergsten and Gavis, 1999). 
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nos mRNA plays an important role in the formation of the pole plasm, which 

specifies the germline lineage in flies (Ephrussi et al., 1991; Trcek et al., 2015) . 

In contrast to osk, grk and nos, the majority of bicoid (bcd) mRNA is localised to 

the anterior of the oocyte during late oogenesis from stage 10b-14 (Weil et al., 

2006). bcd mRNA is transported on the microtubule tracks by a dynein motor 

and becomes anchored by the actin cytoskeleton at the end of oogenesis (Weil 

et al., 2006). Genetic studies have shown that this localisation requires direct 

and indirect factors, including Swallow, Exuperantia and Staufen (St Johnston et 

al., 1989; Weil et al., 2010). Co-visualisation and pharmacological studies have 

shown that bcd mRNA, together with a direct factor Staufen, is transported on 

the microtubules and localised to the anterior of the oocyte (Weil et al., 2006). 

The mutant background of an indirect factor Swallow has been shown to result 

in mislocalisation of bcd mRNA in mid-oogenesis, but not directly involved in 

transport of bcd  (Weil et al., 2010). It is hypothesised that Swallow is instead 

involved in modulating the cortical actin cytoskeleton at the membrane, thus 

indirectly coordinating bcd localisation at the anterior (Weil et al., 2010). 

Together, these findings highlight the importance of mRNA localisation at the 

anterior and posterior poles of the oocyte in setting up future embryonic axes of 

the Drosophila oocyte. 

3.1.5 Drosophila late oogenesis and morphology of the mature oocyte 

Towards the completion of oogenesis, nurse cells extrude their cytoplasm into 

the oocyte in the coordinated process called nurse cell dumping and 

subsequently undergo programmed cell death (King, 1970; Spradling 1993; 

Peterson and McCall, 2013). Although this mechanism is not fully-understood to 

date, it is proposed that nurse cell death is mediated by redundant interactions 

between apoptosis, cell autophagy and programmed necrosis (Cummings and 

King, 1970; McCall, 2004; Bass et al., 2009). By the last stage of oogenesis, the 

nurse cell nuclei are degraded, resulting in a mature oocyte surrounded by a 

layer of the follicle cells  (stage 14 egg chamber) (Figure 3.2).  

The follicle cells play an important role in the formation of numerous structures 

characteristic of the mature oocyte: (1) perivitelline membrane; (2) outer 
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eggshell layer chorion; (3) dorsal appendages; and (4) micropyle (Figure 3.2). 

During late oogenesis, the follicle cells are responsible for building a protective 

layer for the oocyte, which consists of the perivitelline membrane and the outer 

chorion layer (King, 1970; Mahowald and Kambysellis, 1980). The follicle cells 

secrete a vast number of factors into the extracellular matrix via the vitelline 

body vesicles, which coordinate production of the outer layer of a mature oocyte 

(Margaritis et al., 1980; Margaritis, 1985; Cavaliere et al., 2008). As the 

perivitelline membrane surrounds the oocyte by stage 14, it forms a perivitelline  

space between the oocyte and itself (Figure 3.2). The composition of the 

perivitelline space in the oocyte is currently unknown, but has been shown to 

consist of different ions, including calcium, in the early Drosophila embryo (Van 

der Meer and Jaffe, 1983). 

In addition, the specialised type of follicle cells, roof and floor cells, are 

responsible for the formation of the dorsal appendages (breathing tubes) at the 

anterior pole of an oocyte (Ward and Berg, 2005). These cells become specified 

earlier in oogenesis by Grk protein, which upregulates RAS/RAF/MAPK 

pathways (Perri et al., 1999). Immunostaining and visualisation data have 

shown that these epithelial cells subsequently undergo extensive 

morphogenetic movements, resulting in the elongated tubule formation of the 

dorsal appendages (Ward and Berg, 2005). A different population of the follicle 

cells, known as border cells, undergo centripetal movement towards the anterior 

pole of an egg chamber and form a micropyle, a site of the sperm entry (Montell 

et al, 1992; Montell et al., 2012). Previous work has shown that the laser 

ablation of the border cells disrupts the micropyle at the anterior (Montell et al., 

1992). Further experiments have shown that overexpression of the factors in 

JNK pathway, such as puckered, in non-differentiated follicle cells, results in the 

formation of the micropyle-like structure (Suzanne et al., 2001). Therefore, the 

follicle cells adopt different fates depending on the signal they receive and 

coordinate development of many essential structures within an oocyte to 

support early embryogenesis.  

With the removal of nurse cells and the coordinated events of the follicle cells, 

the final product of oogenesis is a mature oocyte located at the posterior of the 
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ovaries near the entrance to the lateral oviduct, awaiting to undergo egg 

activation (Figure 3.1 A).  

3.1.6 Resumption of the cell cycle at Drosophila egg activation 

In Drosophila, egg activation is independent of fertilisation, and occurs in the 

female oviduct at ovulation (Doane, 1960; Heifeitz et al., 2001). Prior to egg 

activation, Drosophila developmental arrest at metaphase I of meiosis, 

otherwise known as oocyte maturation, depends on the elevated activity of 

Cdk1/Cyclin B (Von Stetina et al., 2008). This is evidenced by oocytes that lack 

Cdk1, or co-regulators of Cdk1, which exhibit disrupted meiotic maturation 

(Xiang et al., 2007; Von Stetina et al., 2008). The resumption of meiosis occurs 

at egg activation and is coordinated by the degradation of Cyclin B, which is a 

conserved event in most of the eggs (Swan and Schupbach, 2007). Previous 

work has shown that oocytes that are unable to degrade Cyclin B do not 

resume meiosis and remain arrested in metaphase I (Swan and Schupbach, 

2007). The degradation of Cyclin B is mediated by APC/C, which is activated by 

a factor called Cortex Cdc20, a specific oocyte isoform (Pesin and Orr-Weaver, 

2007). However, APC/C does not become activated in the mutants of 

Drosophila calcipressin, Sarah, and the oocytes are only able to progress up to 
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Figure 3.2. Drosophila mature oocyte morphology. 
Adapted from Biol 202 notes, lecture 21, 2013. Drosophila mature oocyte (stage 14) is 
encompassed perivitelline space, formed by the perivitelline membrane (darker green). 
The outer layer is the chorion eggshell (lighter green). The micropyle and the dorsal 
appendages are at the anterior of the oocyte. The oocyte nucleus (red) is arrested at the 
Metaphase I and is located near the cortex towards the dorsal appendages.

Micropyle

Dorsal appendages



anaphase I, suggesting a link with calcium signalling at egg activation (Takeo et 

al., 2006; Horner et al., 2006). 

3.1.7 mRNA translation at Drosophila egg activation 

Another essential process of egg activation is the translation of maternal 

mRNAs (Stricker, 1999; Weil et al., 2008). It was shown that Drosophila mature 

oocytes are pre-loaded with maternal transcripts of 55% of the genome, many 

of which become translated within 30 min of deposition, suggesting a major 

translational activation upon egg activation (Tadros et al., 2007, Horner and 

Wolfner, 2008). Previous work has also shown that the number of ribosomes 

increases by approximately 20% following egg activation (Mahowald et al., 

1983). The examples of maternal transcripts that become translated at egg 

activation include bcd, hunchback, torso, smaug and string (Tadros and 

Lipshitz, 2005; Tadros et al., 2007).  

bcd mRNA is usually found to be localised to sites of translational repression 

called Processing bodies (P bodies) (Weil et al., 2012). These  sites are known 

to lack ribosomes and to consist of numerous factors that repress the 

translation of mRNA. Using super-resolution microscopy, bcd was shown to be 

enriched in P bodies, but become released and translated in early 

embryogenesis (Weil et al., 2012). Upon egg activation, bcd mRNA becomes 

translated and forms a morphogen gradient opposing a gradient of Nanos 

protein emanating from the posterior, which establishes the anterior-posterior 

axis of the future embryo (Gregor et al., 2007; Lipshitz, 2009; Sprirov et al., 

2009). It is well-understood that egg activation acts as a signal to initiate the 

translation of many transcripts (Tadros and Lipshitz, 2005). It has been 

suggested that calcium might be key in mediating this translation at egg 

activation as Sarah mutants fail to translate bcd at egg activation (Horner et al., 

2006).  
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3.1.8 The visualisation of the calcium wave at Drosophila egg activation 

  

Despite decades of research, an increase in intracellular calcium in the mature 

oocyte had not been documented until recently. Similar to other model systems, 

Drosophila egg activation is associated with an increase of intracellular calcium, 

which takes a form of a single wavefront (York-Andersen et al., 2015; Kaneuchi 

et al., 2015). The presence of the calcium wave at egg activation has been 

visualised in ex vivo dissected mature oocytes. The ex vivo activation is 

achieved by the application of hypotonic solution, called activation buffer (AB) 

(Mahaowald et al., 1983; York-Andersen et al., 2016), which results in the 

morphological changes associated with Drosophila egg activation, such as 

swelling and increased cross-linking of the vitelline membrane (Mahowald et al., 

1983). The in vivo visualisation of the calcium wave in the oviduct of a fly was 

also attempted and showed an intracellular calcium increase in the mature 

oocyte (Kaneuchi et al., 2015). However, this approach was found to be not 

optimal as the anaesthetic agent “FlyNap” was used and resulted in the 

“unnatural” relaxation of the oviduct muscles. It was also challenging to 

visualise an in vivo increase in calcium as the fly twitched its abdomen. 

Therefore, the ex vivo egg activation was found to be a more suitable 

experimental approach to investigate the mechanism of the calcium increase in 

the Drosophila mature oocyte. 

This calcium wave typically starts from the posterior pole of the mature oocyte 

and has a speed of around 1.5 µm/sec (York-Andersen et al., 2015). The 

calcium wave was initially visualised by the injection of calcium dyes, 

conjugated to fluorophores. The mature oocytes were activated ex vivo using 

AB. Ratiometric imaging showed the initiation and propagation of the calcium 

wave from the posterior pole upon the addition of AB (York-Andersen et al., 

2015). However, this visualisation approach was not sustainable to perform 

further studies due to the leakage of the cytoplasm at the point of the injection.  

Therefore, I utilised a less invasive approach by visualising calcium increase  

with a genetically encoded calcium indicator (GECI). Previous work has 

developed a new calcium genetic sensor GCaMP, which is composed from a 

circularly permutated EGFP, myosin light chain kinase fragment (M13) and a 
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calcium-binding protein Calmodulin (Figure 3.3) (Nakai et al., 2001). Upon an 

intracellular calcium increase, Calmodulin binds calcium ions and induces 

GCaMP to undergo a conformational change, resulting in an excitable 

fluorescence state (Nakai et al., 2001). Random-site mutagenesis has allowed 

the development of newly improved GCaMP lines in different tissues with higher 

calcium sensitivity and a high signal-to-noise ratio (Chen et al., 2013; Yang et 

al., 2018). 

There are two GCaMP lines that have been used to visualise the calcium wave 

at Drosophila egg activation (Kaneuchi et al., 2015; York-Andersen et al., 2015).  

One of them being Myristoylated GCaMP5 (MyrGCaMP5), which is associated 

with the plasma membrane due to the myristoylation modification (Melom et al., 

2013). MyrGCaMP5 was originally designed to be expressed in the somatic  

nervous system under the GaL4 promoter (Melom et al., 2013). However, 

MyrGCaMP5 was expressed in the germline and was found to be optimal for 

visualising the calcium wave at Drosophila egg activation (York-Andersen et al., 

2015). At the same time, the Wolfner Lab developed a new recombined form of 

GCaMP3 that is specifically expressed in the fly germline  under the germline-

specific GaL4 promoter (Kaneuchi et al., 2015). Both of the indicators were 

compared and showed a similar calcium wave at egg activation. Therefore, for 

the purpose of this project, I used both of the constructs to visualise the calcium 
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Figure 3.3. Diagram of GCaMP structure and conformational change. 
Adapted from Iino Laboratory website (Oda et al., 2011; Satoh et al., 2014). GCaMP in 
inactive state is composed from a circularly permutated EGFP (cpEGFP) (dark green), 
myosin light chain kinase fragment (M13) (yellow) and a calcium-binding protein 
Calmodulin (blue). Upon an increase in calcium, Calmodulin binds calcium and 
undergoes a conformational change, which results in M13 binding and excited stage of 
cpEGP.



wave at egg activation depending on the experimental design, such as the 

genetic set-up. 

3.1.9 The models for egg activation initiation in Drosophila 

Similarly to other insects, egg activation in Drosophila is independent of 

fertilisation and was shown to occur during passage through the oviduct 

(Doane, 1960). There are two models in the field for Drosophila egg activation: 

(1) the physical pressure model; and (2) the osmotic pressure model. The 

physical pressure model proposes that the pressure exerted by the oviduct on 

the mature oocyte results in egg activation. The evidence supporting this 

hypothesis originated when the physical pulling on the dorsal appendages 

resulted in the resumption of the cell cycle (Endow and Komma, 1997). The 

model was further supported by experiments in which application of hydrostatic 

pressure on ex vivo oocytes resulted in increased cross-linking of the outer 

membrane tested by resistance to bleach (Horner and Wolfner 2008; Sartain 

and Wolfner 2013). However, my previous work has shown that physical 

pressure on its own is not a sufficient trigger for Drosophila egg activation, as 

suction pressure on the posterior pole did not result in any intracellular calcium 

changes (York-Andersen et al., 2015).  

The osmotic pressure model proposes that the mature oocyte uptakes the fluid 

from the epithelial oviduct, which results in the oocyte swelling. This model was 

supported by observations that the oocytes are visibly dehydrated whilst in the 

ovaries, but undergo an increase in volume by the time they are deposited. In 

addition, the exposure of isolated mature oocytes to the external hypotonic 

solutions causes them to swell and initiate the calcium wave (Mahowald et al., 

1983; York-Andersen et al., 2015; Kaneuchi et al., 2015). My previous work 

supports this model, as when the mature oocytes are exposed to distilled water, 

rapid swelling is observed and an increase in intracellular calcium from all over 

the cortex is evident (York-Andersen et al., 2015). The initiation mechanism of 

Drosophila egg activation remains unestablished. This chapter will focus on  

further exploring this model. 
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3.2 Aims of this chapter 

1. To establish the potential initiation cue of Drosophila egg activation. 

2. To address whether the calcium wave depends on the extracellular 

ionic composition. 

3. To establish the potential source of calcium at Drosophila egg 

activation. 

�35



3.3 Results 

3.3.1 Calcium wave phenotypes at Drosophila egg activation 

Depending on the experimental design, the calcium waves can exhibit different 

phenotypes, which I classified as a full wave, partial wave, cortical increase or 

no wave. The “full wave” phenotype describes the calcium wave that initiates 

from the posterior pole and propagates across an entire oocyte (Figure 3.4A, 

3.5A). This is a wild-type phenotype of the calcium wave, which is observed in 

85% of the mature oocytes at ex vivo egg activation. In contrast, the “partial 

wave” phenotype describes the calcium wave that initiates from the posterior, 

but does not propagate across the entire oocyte and/or recovers prematurely 

(Figure 3.4B, 3.5B). This phenotype happens in 5% of the wild-type 

experiments. The “cortical increase" is classified by an increase of calcium from 

all round the cortex, rather than in a wavefront manner (Figure 3.4C, 3.5C). This 

phenotype was originally observed when the oocytes were activated with  

distilled water (York-Andersen et al., 2015). The “no wave” phenotype, which 

describes an absence of the calcium wave is observed in 10% of the wild-type 

experiments. (Figure 3.4D, 3.5D). I use this classification of the calcium wave 

phenotype, because it helps to quantify and analyse the mechanism of the 

calcium wave in a consistent manner across different experimental approaches. 
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Figure 3.4. Calcium wave phenotypes in the Drosophila mature oocyte. 
(A-D) Time-series of ex vivo mature oocytes expressing UAS-myrGCaMP5 following the 
addition of AB. (A) shows a full calcium wave; (B) shows a partial calcium wave; (C) 
shows a cortical calcium increase; (D) shows no calcium wave phenotype. Scale bar 
60µm. Maximum projection = 40µm.
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Figure 3.5. Calcium wave phenotypes in the Drosophila mature oocyte. 
(A-D) Time-series of ex vivo mature oocytes expressing UAS-GCaMP3 following the 
addition of AB. (A) shows a full calcium wave; (B) shows a partial calcium wave; (C) 
shows a cortical calcium increase; (D) shows no calcium wave phenotype. Scale bar 
60µm. Maximum projection = 40µm.



3.3.2 Swelling is required for the calcium wave initiation and propagation 

My previous work has shown that physical pressure applied to the posterior 

pole is not sufficient to initiate the calcium wave (York-Andersen et al., 2015). 

This evidence, together with the observation that the mature oocytes appear 

dehydrated whilst in the ovary, but are swollen by the time they are deposited, 

suggests that swelling might play a role in the initiation and the propagation of 

the calcium wave at egg activation. In order to test this hypothesis, a 125 µm 

diameter tube was used to secure the anterior half of the mature oocyte, with 

the posterior pole being exposed. Upon the addition of AB, the calcium wave 

initiated as normal from the posterior, but did not propagate past the tube 

(Figure 3.6, n=15). Similarly, when the whole oocyte was placed in the tube, the 

calcium wave did not initiate upon the addition of AB (data not shown). The 

calcium wave normally encompasses the whole oocyte by 3.5 minutes, but in 

this case the wave did not propagate until the tube was removed. This suggests 

that swelling is required for the initiation and propagation of the calcium wave. 
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Figure 3.6 Inhibition of swelling results in the perturbed propagation of the 
calcium wave. 
(A) Bright-field image of an ex vivo mature oocyte, expressing UAS-myrGCaMP5, 
placed in a 125 µm diameter tube. (B-C) Time-series of the same oocyte in the 
tube, with half of the posterior pole exposed to AB. The calcium wave initiates 
normally, but does not propagate past the point of the tube after 10 minutes. Scale 
bar 60µm. Single plane.



3.3.3 Osmotic pressure initiates the calcium wave in Drosophila mature 

oocytes 

The above evidence is indicative of the requirement of swelling for the calcium 

wave to occur at egg activation. It is possible that, once the mature oocyte 

leaves the ovary and enters the oviduct, the oocyte uptakes the oviduct fluid 

and undergoes swelling. To test whether or not the uptake of external fluid could 

act as an initiation cue for the calcium wave at egg activation, ex vivo mature 

oocytes were treated with a water and sucrose solution of the same solute 

content as AB, measured in osmolarity (260mOsm). Sucrose is highly soluble in 

water and is neutrally charged, which makes it a suitable candidate for varying 

the osmolarity of the solution. Upon observation, the oocytes exhibited a similar 

proportion of the calcium wave phenotypes to AB (Figure 3.7A), suggesting that 

water and sucrose solution of the osmolarity 260mOsm is sufficient to cause the 

calcium wave at egg activation.  

To further test whether the osmolarity of an external solution is important for the 

initiation of the calcium wave, mature oocytes were exposed to water and 

sucrose solutions of different osmolarities. Upon the addition of solution to the 

oocytes, the calcium wave phenotypes were analysed and quantified. The 

highest number of full calcium waves of 81% was observed at 300 mOsm, with 

this number declining rapidly by 573 mOsm (Figure 3.7B, blue). The highest 

proportion of the “cortical increase” was detected at 0 mOsm (Figure 3.7B, 

green). The number of oocytes with a “cortical increase” went down as the 

solute concentration increased (Figure 3.7B, green). The “partial” and “no wave" 

calcium phenotypes became more predominant with an increase in the 

osmolarity. This suggests that the solution of 450mOsm and higher is unable to 

support a calcium wave at Drosophila egg activation. Together, these findings 

suggests that the external osmolarity can impact the initiation of the calcium 

wave at egg activation. 
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Figure 3.7 Quantification of the calcium wave phenotypes upon treatment with a 
solution of distilled water with sucrose. 
The graph shows that AB, or water and sucrose, of 260mOsm result in a similar percentage 
distribution of the calcium wave phenotypes. Full wave (blue), cortical increase (green), partial 
wave (yellow) and no wave phenotype (red). (B) The graph shows the number of the mature 
oocytes activated with water and sucrose solution only, with a range of osmolarities from 
0-570 mOsm. The number of full waves increases from 0mOsm, peaks at 300 mOsm and 
then decreases with an increase in osmolarity. The proportion of eggs that burst peaks at 
0mOsm and then decreases with increase in osmolarity. The proportion of a partial wave 
increases with increase in osmolarity. The proportion of no wave increases with an increase in 
osmolarity. 300-350 mOSm is an optimal osmolarity of an external solution to cause the 
initiation and propagation of the calcium wave. n = 30 of oocytes per osmolarity. This data was 
analysed statistically using Fisher’s exact test with P<0.05 considered significant. The 
proportion of full calcium waves observed at 300mOsm is significantly higher (P<0.02) than 
full waves at all measured osmolarities, except 350mOsm. The proportion of bursts observed 
at 0mOsm is significantly higher (P<0.01) than bursts at all measured osmolarities, except 
135mOsm. The proportion of partial waves observed at 570mOsm is significantly higher 
(P<0.01) than partial waves at all measured osmolarities, except 450mOsm. The proportion of 
no waves observed at 570mOsm is significantly higher (P<0.001) than no waves at all 
measured osmolarities.  In collaboration with Part II student 2015-2016 Alex Berry.
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3.3.4 Osmotic pressure results in the metaphase I to anaphase I spindle 

transition 

The meiotic spindle structure and dynamics have been well-characterised at 

Drosophila egg activation (Page and Orr-Weaver, 1997, Endow and Komma, 

1997, Heifeitz et al., 2001). In a non-activated oocyte, the spindle is parallel to 

the cortex and is generally near the base of the dorsal appendages at the 

anterior pole. Previous work has shown that, upon egg activation, the meiotic 

spindle undergoes a dynamic morphological change within 10 minutes (Endow 

and Komma, 1997). This change involves contraction and an initial pivoting of 

the spindle and is indicative of the resumption of the cell cycle at Drosophila 

egg activation (Endow and Komma, 1997).  

To address whether osmotic pressure results in the morphological change in the 

spindle associated with the resumption of the cell cycle, the meiotic spindle was 

visualised using Jupiter-mCherry and the mature oocytes were incubated with 

distilled water and sucrose at 260mOsm. Before activation, the spindle is of an 

ellipse shape (n=15) (Figure 3.8A-E), with a dark region in the middle, where 

the DNA is likely to reside. Upon addition of AB, or distilled water and sucrose, 

the spindle became more rounded with a significant increase in width (Figure 

3.8B,D,G), which is indicative of spindle contraction at anaphase I. When 

treated with a control solution, Schneider’s Insect medium, the spindles did not 

undergo any morphological change (Figure 3.8E-G).  

In order to quantify this morphological change, the spindle width and length 

were measured before and after 10 min of activation. The width was measured 

at the widest point - halfway through the spindle length. Upon addition of AB or 

water and sucrose, the spindle length did not show any significant change and 

remained approximately 12µm, whereas the width increased by about 70% 

(2.1µm) (Figure 3.8G). Together, this evidence supports that osmotic pressure 

caused by distilled water with sucrose of 260mOsm results not only in the 

initiation of the calcium wave, but also  in meiotic spindle transition to anaphase 

I.  
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Figure 3.8. Meiotic spindle undergoes increase in a width upon osmotic 
pressure. 
Mature oocytes expressing Jupiter::mCherry.The spindle shows a significant 
increase in a width by 70% upon addition of AB (A-B) or distilled water and sucrose 
(C-D) (260mOsm). The spindle width does not change upon the addition of 
Schneider’s medium (E-F). Scale bar 2µm. Max projection 3µm. (G) The spindle 
width shows a significant increase after 10 minutes of egg activation by about 2.1 µm 
(70%), when the oocyte is treated with AB or distilled water with sucrose 
(260mOsm). No significant changes are observed with Schneider’s incubation.



3.3.5 Osmotic pressure results in the dispersion of P bodies in Drosophila 

mature oocytes 

My previous work has shown that P bodies are present uniformly in the 

Drosophila mature oocyte, resembling granular distribution (Weil et al., 2012; 

York-Andersen et al., 2015). Upon egg activation, this distribution becomes 

dispersed and is thought to release mRNAs from the P bodies and allow for 

their translation (Weil et al., 2012; York-Andersen et al., 2015). However, the 

cue of P bodies’ dispersion remains unknown. To understand whether it is 

osmotic pressure that results in the dispersion of P bodies at Drosophila egg 

activation, the mature oocytes were treated with water and sucrose solution of a 

similar osmolarity to AB. Upon the addition of the solution, the mature oocytes 

swelled, as expected, and showed dispersion of P bodies (Figure 3.9). This 

suggests that osmotic pressure results in the dispersion of P bodies, a possible 

mechanism for the initiation of maternal transcripts at egg activation. It appears 

that external solution with a minimal content of ions and of osmolarity range 

250-350mOsm is sufficient to cause the calcium wave at Drosophila egg 

activation and some downstream processes. 
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Figure 3.9. P bodies disperse upon the addition of water and sucrose of a similar 
osmolarity to AB. 
(A-D) Time-series of ex vivo mature oocytes expressing Me31B::GFP following the addition 
of water and sucrose (260mOsm). P bodies disperse after 4 min 30 sec. Scale bar 60µm. 
Maximum projection = 40µm.



3.3.6 High ratio of sodium ions is non-facilitatory of the calcium wave 

To test whether the external solution of a certain osmolarity range is sufficient to 

initiate the calcium wave in the mature oocyte, Schneider’s control medium was 

diluted to the same osmolarity as AB (260mOsm). Upon addition of Schneider’s 

medium, the mature oocytes swelled as expected, but did not show any calcium 

wave (n=46/53, 87%) (Figure 3.10A). These findings were unexpected and 

contradictory to the osmotic pressure model.  

In order to better understand this finding, the recipe of Schneider’s medium was 

analysed and it was noted that Schneider’s has a higher ratio of sodium ions to 

potassium ions (5:1) compared to AB ratio (1:5). To investigate whether it is the 

high content of sodium ions that is resulting in no calcium wave, the mature 

oocytes were incubated with NaCl (50mM, 260mOsm). Upon addition of the 

solution, the oocytes swelled, but did not show a calcium response of any 

phenotype (Figure 3.10B). Similar results were observed with other high sodium 

content solutions, such as Acidic Tyrode solution (260mOsm) (solution used to 

activate mammalian eggs (Yamatoya et al., 2010) and Isolation buffer 

(260mOsm) (control solution) (data not shown). 

To test whether it is the presence of sodium ions, or the aforementioned ratio 

between potassium and sodium ions that has an effect on the calcium wave at 

egg activation, the mature oocytes were treated with NaCl solution of different 

concentrations (260mOsm) alongside solutions containing different ratios of 

sodium to potassium. Upon the addition of NaCl, the oocytes swelled as normal, 

but the calcium wave was only present in approximately 5% of the eggs, 

compared to the wild-type of 85% (Figure 3.11A). This suggests that the 

presence of sodium in the external solution is inhibitory to the calcium wave at 

egg activation. This inhibitory affect was off-set by the presence of potassium 

ions at 25:75 Na:K ratio (Figure 3.11B). Therefore, the interplay between 

sodium and potassium in the external solution plays a role at Drosophila egg 

activation. It is possible that the ratio of sodium and potassium ions in the 

external solution plays a role in mediating a change in the membrane potential, 

which has been shown to associate with egg activation in other organisms 

(Stricker, 1999). 
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Figure 3.10. Diluted Schneider’s Insect medium and NaCL do not result in the calcium 
wave in the mature oocyte. 
(A-B) Time-series of ex vivo mature oocytes expressing UAS-myrGCaMP5 following the 
addition of (A) diluted Schneider’s Insect medium (260mOsm) and (B) NaCl (50mM, 
260mOsm). Both oocytes swell but there is no increase in the calcium levels. Scale bar 
60µm. Maximum projection = 40µm.
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Figure 3.11. Sodium or high ratio of sodium ion solutions inhibit the calcium wave 
at egg activation. 
(A) The graph show the calcium wave presence in the mature oocytes treated with NaCl 
at different concentrations. The NaCl is inhibitory to the calcium wave at 25mM-100mM  
concentrations. (B) The graph shows the presence of the calcium wave in NaCl and KCl 
solution. The presence of the calcium wave decreases from 50:50 sodium : potassium 
solution to about 5%, as observed with NaCl only. n=30 for each treatment.
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3.3.7 Aquaporin channels are required for water homeostasis at egg 

activation 

The intracellular water levels have to be maintained to ensure the optimal 

environment for biological functions. To do this, cells mediate water transport via 

the lipid bilayer and/or water-pore channels aquaporins. The aquaporins are 

known to coordinate rapid uptake or export of water molecules (Verkman, 2011; 

Verkman et al., 2014). Since my data suggests that the osmotic pressure acts 

as an initiation cue of Drosophila egg activation, I next tested the requirement of 

aquaporins in mediating water entry in the mature oocyte. 

In order to investigate whether the aquaporins are required for the swelling of 

the mature oocyte at egg activation, I tested the effect of the broad aquaporin 

channel antagonist, copper sulphate (Verkman et al., 2014). Upon the addition 

of the AB with copper sulphate, the mature oocytes swelled, but did not show 

the calcium wave in ~ 70% of the eggs (n=44) (Figure 3.12B). This finding 

suggests that the aquaporin channels are not essential for swelling to occur, but 

are required for the calcium wave initiation. 

There is only one aquaporin channel Prip that is known to be expressed in the 

ovarian tissue (Drosophila Fly Atlas). To investigate the role of Prip at 

Drosophila egg activation, the presence of the calcium wave was tested in the 

homozygous mutant background of Prip. Since the homozygous mutant was 

lethal, I tested the requirement of Prip using knock-down tools in heterozygous 

deficiency or mutant backgrounds. There is currently only one RNAi line 

available for the germline knock-down of Prip (BL50695), and one for the 

germline and somatic Prip (BL44464). Upon the addition of AB, the number of 

oocytes with the calcium wave significantly decreased to 50% in the germline 

knockdown over the deficiency or mutant (Figure 3.12B, n=25 (P=0.014) and 

n=18 (P=0.001) respectively). A similar significant decrease was also observed 

with only one copy knock-down of both somatic and germline Prip (BL44464) 

(Figure 3.12B, n=13). Interestingly, the most extreme phenotype was observed 

in homozygous BL44464 RNAi background, where the ovaries did not form at 

all and exhibited severely disrupted phenotype (Figure 3.12A).  
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To further understand why the disruption of Prip results in a reduced number of 

the calcium waves, I investigated the morphology of the ex vivo mature oocytes 

with depleted Prip background. I found that about 50% of the oocytes burst or 

had cytoplasm leaking within 1.5 minutes after the addition of AB (n=123), 

compared to 3% bursts in wild-type oocytes. Some burst eggs were still able to 

show the calcium wave. This significant difference in bursts is likely indicative of 

a requirement for Prip in mediating water homeostasis during swelling at egg 

activation. 
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Figure 3.12. Aquaporin is required for the calcium wave at egg activation. 
(A) The bright-field image of the disrupted Drosophila ovary in the homozygous RNAi background, 
with the depletion of both the somatic and the germline tissues (n=5). The ovaries exhibit a vesicle 
phenotype. Scale bar 100µm. Single plane. (B) The graph shows the presence of the calcium 
wave in the aquaporin depleted backgrounds. The calcium wave number is significantly reduced 
in RNAi over aquaporin deficiency or mutant (P=0.014 and P=0.001 respectively). The aquaporin 
pharmacological blocker results in a significant decrease to approximately 30% (P=0.0001) 
(Fisher’s Exact Test).
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3.3.8 External calcium is not required for the initiation and propagation of 

the calcium wave at Drosophila egg activation 

In many animals, external calcium is required for the calcium rise at egg 

activation (Stricker, 1999). To test whether external calcium is required for the 

calcium wave at egg activation in Drosophila, ex vivo mature oocytes were 

treated with AB containing a calcium chelator BAPTA. These oocytes exhibited 

swelling and a full calcium wave in 89% of experiments (n=19) (Figure 3.13). 

Both the phenotype and percentage of calcium waves is similar in oocytes 

treated with AB. These findings suggest that external calcium is not required for 

the calcium wave initiation and propagation at egg activation. 

However, this contradicts data from another lab (Kaneuchi et al., 2015), where 

oocytes, pre-treated with high sodium hypertonic solution before activating them 

with AB, did not show a calcium wave in the presence of BAPTA. These 

differences in the results may be due to aspects of the protocol used for 

activation. Pre-incubation of the oocytes may result in BAPTA getting into the 

oocytes and depleting the intracellular calcium stores, or the control solution 

affecting the timing of the calcium wave. I believe that my approach is better, 

because the mature oocytes are treated with calcium depleted AB with no 

incubation time. My data suggests that the calcium wave initiation and 

propagation is mediated by the release of intracellular calcium into the mature 

oocyte at egg activation. 
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Figure 3.13. External calcium is not required for the initiation and propagation of the 
calcium wave at egg activation.
(A-E) Time-series of ex vivo mature oocyte expressing UAS-myrGCaMP5 following the 
addition AB and BAPTA. (B) Shows the calcium wave initiating from the posterior pole 
(t=1′00″), fully propagating across entire the oocyte (t=2′30″) and followed by the recovery 
(t=14′). Scale bars 60μm. Maximum projection = 40μm. 



3.3.9 Golgi is enriched at the posterior pole of the Drosophila mature 

oocyte 

The osmotic pressure model suggests that the posterior pole is the site that is 

exposed to the oviduct fluid first, and hence initiates the calcium wave from the 

posterior pole. However, this cannot explain my ex vivo data, where the calcium 

wave starts predominately from the posterior pole (~70%) in oocytes dissected 

into oil and treated with AB. This ex vivo data suggests that the posterior pole is 

able to initiate the calcium wave at egg activation independent of the oviduct 

tissue.  

A possible hypothesis is that the posterior pole in enriched with organelles that 

act as internal storage of calcium ions. These include the endoplasmic reticulum  

(ER), mitochondria and golgi. To investigate whether there is a particular 

distribution of these organelles in the mature oocyte, I utilised protein traps 

YFP::Rab6 to visualise the golgi, mRpS9::YFP to visualise the mitochondria and 

I(1)G0320::YFP to visualise the ER (Lye et al., 2014; Dunst et al., 2015). The 

ER and mitochondria showed a uniform distribution in the mature oocyte (Figure 

3.14C,F and Figure 3.14B,E respectively). In contrast, the golgi showed an 

enrichment at the posterior pole (Figure 3.14A,D). This enrichment seemed to 

concentrate in the follicle cells in particular (Figure 3.14D). This suggests a 

potential role of the posterior follicle cells in the initiation of the calcium wave at 

egg activation. Upon the addition of AB, the golgi remains enriched at the 

posterior pole, but becomes more dispersed after about 10 minutes (Figure 

3.15). It is possible that the golgi enrichment at the posterior of the mature 

oocyte may support the initial calcium influx or pre-load the perivitelline space 

with the required levels of calcium for egg activation.  
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Figure 3.14. Golgi, but not ER or mitochondria, is enriched at the posterior pole in the 
oocyte.
(A,D) The Golgi is labelled with YFP::Rab6; (B,E) mitochondria with mRpS9::YFP; (C,F) ER 
with I(1)G0320::YFP. Scale bars 60μm. The Golgi is enriched at the posterior pole (A,D). The 
ER is present in the posterior follicle cells, but it not enriched, compared to the Golgi (C,F). 
The mitochondria shows a wrinkled distribution (B), and does not show any particular 
enrichment (B, E). The bright spot at the anterior is auto fluorescence from the dorsal 
appendages (B). (A-C) Maximum projection = 40μm. Scale bar 60μm (D-F) Single plane. 
Scale bar 40μm. 
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Figure 3.15. The Golgi is enriched at the posterior and disperses at egg activation.
(A-D) Time-series of ex vivo mature oocyte expressing YFP::Rab6 following the addition AB. 
(A-D) shows the enrichment of Golgi at the posterior pole that disperses by t=23′30″. Scale 
bars 60μm. Maximum projection = 40μm. 



3.3.10 Posterior follicle cells are required for the initiation of the calcium 

wave from the posterior pole 

One of the features of the posterior pole is the presence of the posterior follicle 

cells (PFCs). PFCs are essential for symmetry breaking in the oocyte to 

generate the anterior-posterior (AP) axis (Neuman-Silberberg and Schupbach, 

1993; Gonzalez-reys et al., 1995). To investigate whether AP polarity plays a 

role in the initiation of the calcium wave at Drosophila egg activation, I tested 

the mature oocytes mutant for Gurken (Grk), which is required for the 

specification and differentiation of PFCs (reviewed in Roth and Lynch, 2009). 

These oocytes do not polarise and show two poles morphologically similar to 

each other. Upon the addition of AB, the mutant Grk oocytes swelled and 

showed a calcium wave at egg activation (Figure 3.16, n=10). However, the 

calcium wave initiated from the anterior and posterior poles at equal frequencies 

(Figure 3.16). This suggests that the polarity of the oocyte set by the Grk signal 

is required for the calcium wave initiation from the posterior pole at Drosophila 

egg activation.   
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Figure 3.16. Calcium wave initiates from the anterior pole in mature oocytes lacking the 
anterior-posterior polarity. 
Time-series of ex vivo mature oocytes expressing UAS-myrGCaMP5 in the Gurken depleted 
background. Following the addition of AB, the oocyte swells normally, but the calcium wave 
initiates from the anterior pole in 50% of the cases (n=10). Scale bar 60µm. Maximum projection 
= 40µm.



3.4 Discussion 

This chapter shows that the osmotic pressure acts as an initiation cue for the 

calcium wave at Drosophila egg activation and is sufficient to cause the 

downstream processes of egg activation. I show that the ionic composition of 

the external solution and the polarity of the oocyte are important for the calcium 

wave initiation, whilst the presence of external calcium is not. I provide evidence 

for the role of aquaporins in water homeostasis in the Drosophila mature oocyte 

undergoing egg activation. Finally, I show that the golgi is enriched at the 

posterior pole of the mature oocyte. 

3.4.1 Cell volume change and osmoregulation mechanisms 

My data shows that the osmotic pressure initiates the calcium wave at 

Drosophila egg activation. I hypothesise that once the oocyte enters the oviduct, 

it is most likely exposed to the epithelial fluid, which is lower in osmolarity 

compared to the cytoplasm of an egg. The oocyte uptakes the fluid and 

undergoes swelling, which results in membrane tension, the rearrangement of 

the actin cytoskeleton (Chapter 4), the activation of the mechanosensitive 

channels (Chapter 5) and the calcium influx. The mature oocyte is likely to 

mediate cell volume change by pumping water out and exporting solutes out of 

the cytoplasm, in a similar process to other systems. However, the mechanism 

of this process remains elusive. 

To mediate this change in volume, it is possible that the mature oocyte senses a 

difference in intracellular osmolarity and activates downstream processes to 

withstand the osmotic pressure, a response known as the regulatory volume 

decrease (RVD). In order to decrease its volume, a cell needs to reduce the 

number of intracellular solute molecules, which ensures the export of water. For 

example, RVD is known to activate the Na-K-2Cl co-transporter, and/or the Na/

H exchanger, in response to the osmotic pressure in many cells (Hall et al 1995; 

Hall et al., 1996). These channels facilitate the export of potassium and chloride 

ions, thus decreasing the solute concentration. Therefore, the Drosophila 

mature oocyte could also export potassium and chloride ions to keep the 
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volume of the oocyte at physiological levels. Genetic manipulation of these 

channels should clarify their role at egg activation. 

Apart from regulating potassium and chloride concentrations, the RVD has also 

been shown to result in an increase in intracellular calcium following osmotic 

stress in many cells, including intestinal epithelial cells, human osteoblast-like 

cells, rat astrocytes, and cancer cell lines (O’Connor and Kimelberg, 1993; 

Sauer et al., 1998; MacLeod and Hamilton, 1999; Weskamp et al., 2000; Shen 

et al., 2001). The general mechanism that is suggested to cause this calcium 

increase is via the mechanosensitive channels able to regulate calcium influx or 

potassium export. It is also hypothesised that other cells might sense an 

increase in cell volume via intracellular solute sensors, membrane-bound 

sensors or cytoskeletal sensors (Kultz and Burg, 1998). Hence, it is possible 

that the Drosophila mature oocyte undergoes tension in the lipid bilayer, which 

results in the reorganisation in the cortical actin cytoskeleton and transcriptional 

upregulation in response to prolonged osmotic stress at egg activation. Future 

work should focus on measuring the osmolarity of the oocyte and the oviduct 

fluid. The extraction of which proved quite challenging so far, because of the 

difficulties in getting a sufficient amount of the fluid to assess its osmolarity. This 

finding would provide further support for the osmotic pressure for the initiation of 

Drosophila egg activation. 

3.4.2 Aquaporin requirement in water homeostasis 

Aquaporin channels have been identified in many model systems, including 

yeast, bacteria, plants and mammals (Magni et al., 2006). The aquaporins have 

been shown to be involved in many cellular functions, such as cell migration, 

neuroexcitation, cell proliferation, epithelial fluid transport and brain swelling 

(Verkman 2011). For example, knock-out studies in mice have indicated the 

requirement of the aquaporin 1 (AQP1) for fluid absorption in the kidney 

proximal tubule (Schnermann et al., 1998) and AQP5 for secretion of saliva (Ma 

et al., 1999). Interestingly, AQP1 was also shown to be involved in cancer cell 

migration (Saadoun et al., 2005) with the localisation of the protein to the 
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leading edge of the migrating cell (Papadopoulos et al., 2008; Loitto et al., 

2009), proposing a mechanism for localised volume change. 

In Drosophila, aquaporin channels are also known to mediate water 

homeostasis. There are seven aquaporin channels that are present in the 

Drosophila genome (Drosophila FlyAtlas). However, it is not well-understood 

whether aquaporins also mediate water homeostasis in other fly tissues, 

including the Drosophila egg chamber. My findings suggest that the aquaporin 

Prip is required for successful Drosophila egg activation and initiation of the 

calcium wave. The significant increase in the number of oocytes bursting in the 

aquaporin depleted background is indicative of the aquaporin requirement in 

mediating water homeostasis. Since aquaporins are able to transport water in 

both directions, it is likely that Prip pumps water out of the activated egg to 

maintain physiological levels of fluid inside the oocyte without causing a burst. 

The observation that some oocytes did not burst or showed a calcium wave can 

be explained by possible residual levels of Prip after knock-down. The most 

severe phenotype was observed with the knock-down of Prip in somatic and 

germline tissues together. Previous in situ hybridisation experiments have 

highlighted the presence of Prip in the follicle cells in the Drosophila mature 

oocyte (Arbeitman et al., 2004). The follicle cells are somatic epithelial cells with 

their apical membranes orientated towards the oocyte. Therefore, it is possible 

that the presence of Prip in the follicle cells is required for the water transport at 

egg activation. Interestingly, Prip was also expressed in the oviduct, which could 

point towards a mechanism of oviduct fluid production. Together, it is clear that 

Prip plays a role at Drosophila egg activation whether expressed in the somatic 

or germline tissues. 

3.4.3 The source of calcium at Drosophila egg activation 

Calcium waves at egg activation can be mediated by intracellular and/or 

external calcium sources (Stricker, 1999). In Drosophila, my data has shown 

that the external calcium is not required for the calcium wave initiation and 

propagation at egg activation. This points towards the need for intracellular 

stores to mediate the calcium wave. The possible intracellular stores are the 
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ER, golgi, mitochondria and perivitelline space. If the ER is responsible for the 

calcium influx at egg activation, the possible calcium channels to mediate this 

influx are RyR and IP3 receptors. RyR is not expressed in the Drosophila 

ovaries (Drosophila Fly Atlas), and a possible involvement of the IP3 receptor 

will be discussed in the next chapter. However, IP3 is unlikely to mediate the 

calcium wave as it is broken down at a much faster rate, than the propagation 

speed of the calcium wave (Wang et al., 1995). Therefore, the calcium wave is 

unlikely to be mediated by the calcium release from the ER.  

In contrast, golgi has been shown to play an active role in calcium signalling 

(reviewed in Pizzo et al., 2011). The primary role of golgi is to modify and to sort 

proteins for trafficking. Its role as a calcium store has emerged with the 

invention of the golgi-specific aequorin, which showed that there is high 

concentration of calcium ions inside the golgi (Pinton et al., 1998). Golgi was 

shown to have similar properties to the ER in the timing of the calcium release, 

but differs with a much faster calcium sequestration nature (Missiaen et al., 

2004). Golgi was also shown to express IP3 receptors similar to the ER, which 

release calcium into the cytoplasm (Yoshimoto et al., 1990; Pinton et al., 1998, 

Lin et al., 1999; Surroca and Wolff 2000). This calcium release is counteracted 

by the calcium sequestration in an ATP-dependent manner back into golgi and 

is mediated by SERCA and SPCA pumps (Pinton et al., 1998; Lin et al., 1999; 

Baelen et al., 2003). These findings primarily come from cultured cells, and a 

direct physiological role of golgi in the calcium release is not well-understood. In 

Drosophila, golgi might also act as an intracellular calcium store in the mature 

oocyte at egg activation. My findings have shown that golgi is enriched in PFCs 

of the mature oocyte. However, the enrichment does not prove the requirement, 

and further work should test knock-down lines or pharmacological inhibitors, to 

understand the role of golgi at egg activation. 

The perivitelline space is another, and in my opinion the most likely, source of 

intracellular calcium at egg activation. The perivitelline space lies between the 

plasma membrane of the oocyte and the perivitelline membrane. The 

composition of the perivitelline space in the egg chamber is currently unknown, 

but has been shown to consist of different ions, including calcium in the early 

Drosophila embryo (Van der Meer and Jaffe, 1983). It is possible that the 
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perivitelline space is pre-loaded with calcium during oogenesis. As the mature 

oocyte undergoes swelling, the activation of the mechanosensitive channels 

can mediate the calcium influx from the perivitelline space at egg activation 

(mechanosensitive channels are discussed in the Chapter 5). Calcium could 

also be pumped back into the perivitelline space (discussed in the Chapter 5), 

explaining the presence of calcium in early embryogenesis. The future focus 

should be to assess the role and composition of the perivitelline space in the 

mature oocyte, possibly by chemical degradation of the perivitelline membrane. 

3.4.4 The importance of the osmotic pressure at Drosophila egg activation 

From my data, it is evident that the osmotic pressure acts as an initiation cue of 

the calcium wave at Drosophila egg activation. My working model proposes 

that, once the oocyte enters the oviduct, it is exposed to a hypotonic solution 

that results in the swelling of the oocyte. This swelling results in increased 

membrane tension and the opening of mechanosensitive channels. The 

channels coordinate the calcium influx from the perivitelline space. Golgi might 

pre-load the perivitelline space with the required calcium ions.  

It is interesting that egg activation is independent of fertilisation in Drosophila, 

compared to other animals. It is possible that, as the fertilised eggs develop in 

the environment, egg activation needs sufficient time to prepare the oocyte. For 

example, egg activation would ensure that the oocyte had sufficient time to 

produce the chorion shell to withstand the external environment once deposited. 

Alternatively, egg activation might prepare the cytoplasm of the oocyte to 

ensure an accessible environment for the sperm entry from the spermatheca. 

Overall, the application of osmotic or mechanical pressure seems to be a 

common initiation cue in insects. Understanding this mechanism may improve 

the reproduction of many insects, or in contrast, may introduce a new form of 

insecticide, specifically targeting egg activation in parasitic insects that act as 

vectors of infections, like malaria. 
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Chapter 4  

Investigating the dynamics and 
function of the actin cytoskeleton 

at Drosophila egg activation
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4.1 Introduction 

4.1.1 Overview of the chapter 

The actin cytoskeleton is a major cellular network that regulates many biological 

processes, including cell division, directed cell migration, intracellular trafficking 

and cell shape changes (Dominguez and Holmes, 2011). The actin cytoskeleton 

is an ideal candidate to mediate various downstream processes due to its 

polymeric nature, intrinsic polarity and vast number of binding partners. 

Although these properties have been extensively studied in many model 

systems, the dynamics and function of the actin cytoskeleton at egg activation is 

not fully-understood. This introduction will discuss the mechanism of actin 

polymerisation and the role of the actin cytoskeleton during the early 

development of organisms, in particular its role at egg activation. 

4.1.2 The general structure and function of the actin cytoskeleton 

Actin is composed of globular-actin (G-actin) monomers, which are 43 kDaltons 

in size (343 amino acids). G-actin monomers bind to each other at the 

nucleation point to form a polymeric filamentous actin (F-actin) at a 166 degree 

angle (Holmes et al., 1990; Kabsch et al., 1990), giving it an appearance similar 

to the DNA double-helix molecule. The actin polymer is polarised and has two 

dynamically different ends, one barbed and one pointed (Pollard 1983, Pollard 

et al., 2000). The actin filament undergoes elongation at the barbed end and 

dissociation at the pointed end (Woodrum et al. 1975). These differences at the 

polarised ends can result in a treadmilling effect, which provide free monomers 

for polymerisation of actin. The G-actin monomers are found in the ATP-bound 

form, which is hydrolysed to ADP in filamentous actin. ATP hydrolysis is not 

essential for the monomers to bind, but was shown to increase the efficiency of 

the monomers attachment at the barbed end of the filament (Blanchoin and 

Pollard, 1999; Blanchoin and Pollard, 2002). Together, these events result in the 

formation of F-actin. 
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F-actin was shown to form a variety of morphological networks, including 

branched, cross linked, parallel and anti-parallel bundles (reviewed Blanchoin et 

al., 2014). These formations assemble depending on the G-actin monomer 

availability and the presence of actin-binding proteins (ABP), such as the Arp2/3 

complex and WAVE family complex, which together coordinate the formation of 

the branched F-actin (Machesky et al., 1994; Mullins et al., 1997; Mullins et al., 

1998). The branched F-actin is commonly formed in the leading edge of the 

migrating cells, providing mechanical force and contractions that pull a cell 

forward (Machesky et al., 1994; Mullins et al., 1997; Mullins et al., 1998).  

Non-branched F-actin forms parallel or anti-parallel actin bundles which are 

usually found in stress fibers or filopodia (Vignjevic et al., 2003; Barral and 

Martin, 2011). These bundles are formed and organised by formins and Eva/

Vasp protein complexes (Haviv et al., 2006; Dominguez, 2010; Breitsprecher et 

al., 2011). The F-actin bundles can result in the formation of thin protrusions 

within the plasma membrane. Cofilin is another example of an ABP that binds to 

the ADP-actin and modulates the dissociation of actin monomers from the 

pointed end (Pavlov et al., 2007). Together, these factors  and others coordinate 

the actin architecture in a highly temporal and spatially regulated manner. 
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Figure 4.1. Summary of F-actin polymerisation from G-actin monomers. 
Adapted from Wirth Lab and SMA Support UK Website. G-actin monomers bind each other to 
form polarised F-actin with plus and minus ends. G-actin monomers undergo ATP/ADP 
exchange, with ATP-bound G-actin associating with the plus end of F-actin and ADP-bound G-
actin with the minus end of F-actin.  



4.1.3 The role of the actin cytoskeleton in the acrosome reaction prior to 

egg activation  

One major role of the actin cytoskeleton in early development is the fusion of 

the sperm and egg gametes to result in successful fertilisation. The binding 

between the sperm and the egg results in the breakdown of the zona pellucida 

in mammals. (Brucker and Lipford, 1995). In the sperm, prior to this reaction, F-

actin undergoes depolymerisation, which is hypothesised to enable the outer 

acrosomal membrane and the overlying plasma membrane to come into close 

proximity and fuse (Breibart et al., 2005). The sperm head is filled with G-actin 

monomers which rapidly polymerise, aided by profilin, during the acrosome 

reaction to allow sperm membrane protrusion towards the egg (Breibart et al., 

2005). Pharmacological treatments and visualisation of calcium have shown 

that the sperm binding to the plasma membrane in mammals results in an 

intracellular calcium increase at the tip of the sperm, which is thought to activate 

protein kinase A pathway and actin polymerisation during the acrosome reaction 

(Heras et al., 1997; Cohen et al., 2004; Breibart et al., 2005, Pelletan et al., 

2015).  

In sea urchins, purification studies have identified Bindin protein in the sperm 

head that binds the actin-based microvilli structures on the membrane of an egg 

(Summers and Hylander 1975; Glabe and Vacquier et al., 1978; Schatten and 

Hulser 1983). Apart from the acrosome reaction, the binding of the sperm to the 

egg membrane has been shown to induce the aggregation of actin filaments at 

the entry point of the sperm in sea urchin oocytes (Terasakki, 1996). 

Immunofluorescence and electron microscopy observations have shown that  

this actin polymerisation results in the formation of a cytoplasmic bridge which 

mediates the transfer of the sperm nucleus into an oocyte (Tilney and Jaffe, 

1980; Gundersen et al., 1986). Similar actin structures, fertilisation cones, were 

identified by phalloidin staining in starfish oocytes (Puppo et al., 2008). The 

pharmacological induction of multiple actin cones was shown to result in 

polyspermy (Puppo et al., 2008). Together, these experiments suggest that the 

actin cytoskeleton is essential for successful fertilisation and transfer of paternal 

pronuclei. 
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4.1.4 The role of the actin cytoskeleton at egg activation 

Egg activation triggers ordered signalling processes, including cytoskeletal 

rearrangements, to prepare an egg for embryogenesis (Horner and Wolfner, 

2008). Cytoskeletal dynamics have been studied at this stage of development in 

a few model systems, with some of the most extensive research in starfish. 

Early ultrastructural analysis of the cultured starfish oocytes have shown that 

the cortex of an oocyte is composed of F-actin and microvilli filled with actin 

filaments, which become shorter at egg activation (Hirai and Shida 1979; Longo 

et al. 1995). More recently live imaging of F-actin has shown the centripetal 

movement associated with the internalisation of a sperm in starfish (Puppo et 

al., 2008; Vasilev et al., 2012). Interestingly in ascidian oocytes, the wave of 

myosin-dependent cortical contraction was observed at egg activation 

(McDougall and Sardet, 1995). Injection of membrane dyes has indicated that 

the endoplasmic reticulum accumulates at the vegetal pole following this 

contraction (Speksnijder et al., 1993), possibly to support further calcium 

oscillations. In Xenopus eggs, visualisation of actin with Lifeact and Utrophin in 

vivo actin marker revealed a “wave” of cortical F-actin at egg activation (Bement 

et al., 2015). This points towards conserved wave-like F-actin dynamics at egg 

activation. It was further demonstrated by live imaging and overexpression 

experiments that starfish and frog oocytes both exhibited a Rho-activity wave, 

where Rho activity up regulates F-actin polymerisation, but F-actin 

subsequently inhibits Rho (Bement et al., 2015). Both of these waves were 

suggested to be regulated by Cdk1 and Rho-GEF Ect2, and thus are thought to 

be linked to the regulation of the cell cycle. Research on actin waves is limited 

as the field has primarily focused on calcium signalling, and there is less data 

exploring actin dynamics at egg activation. 

4.1.5 The role of the actin cytoskeleton in cortical granule exocytosis after 

egg activation 

Cortical granule exocytosis is one of the essential downstream processes of 

egg activation which acts as a slow-block to polyspermy (Liu et al., 2011). In 

mature oocytes, the actin cytoskeleton acts as a physical barrier to the 
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exocytosis of cortical granules. Following egg activation, actin rearrangement 

facilitates the release of the cortical granules (Vitale et al., 1991; Trifaro et al., 

1992). Ultrastructural analysis of the cortex and live imaging of F-actin in 

starfish oocytes have demonstrated that the microvilli decrease their length 

allowing the cortical granules to move to the plasma membrane at egg 

activation (Santella et al., 1999). Furthermore, when mouse oocytes are 

incubated with an inhibitor of actin depolymerisation, it results in an increase of 

polyspermy (McAvey et al., 2002). This has led to a model proposing F-actin 

depolymerisation as a mandatory step in the release of cortical granules and a 

slow-block to polyspermy following egg activation (Lelkes et al., 1986; Muallem 

et al., 1995).   

4.1.6 Calcium signalling and actin rearrangement at egg activation 

It is hypothesised that an increase in intracellular calcium at egg activation 

results in the rearrangement of the actin cytoskeleton. This has been supported 

by evidence from starfish oocytes, where a pharmacologically-induced calcium 

increase resulted in the depolymerisation of cortical actin and the parallel 

polymerisation of cytosolic actin (Vasilev et al., 2012). In contrast, the 

pharmacological disruption of a calcium increase has been shown to result in 

the perturbed actin cytoskeleton, which fails to display the centripetal movement 

of F-actin (Vasilev et al., 2012). Further evidence has shown that the actin 

depolymerisation, in turn, results in the calcium influx and subsequent cortical 

granule exocytosis in the starfish oocyte (Lim et al., 2002). In Drosophila 

oocytes, the single calcium wave was perturbed when actin was inhibited with 

Cytochalasin D (actin polymerisation inhibitor) (York-Andersen et al., 2015). 

These findings suggest a model where calcium and actin display a co-

regulatory relationship at egg activation, which is not fully-understood.   

4.1.7 Visualisation of the actin cytoskeleton in Drosophila egg chamber 

The actin cytoskeleton distribution has been well-studied during early 

Drosophila development. Throughout Drosophila oogenesis, actin plays a role 
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in tissue morphogenesis, signalling cascades, localisation of mRNAs and 

maintaining the integrity of the cortex (Wang and Riechmann, 2007; Weil et al., 

2008 Spracklen et al., 2014). The actin distribution has been extensively 

visualised using fixed tissue and genetically-encoded markers (the summary of 

which is provided in Table 1) (Cavaliere et al., 2008). To test for function, 

pharmacological inhibitors, such as Cytochalisin D, Latrunculin-A and Phalloidin 

have been added to oocytes to disrupt actin. These inhibitors have unique 

properties that allow for different experimental tests. For example, Cytochalasin-

D acts by binding to the growing end of F-actin filaments and preventing 

addition of G-actin monomers (Lin and Lin, 1979; Brown and Spudich, 1979; 

Grumet and Lin, 1980; MacLean-Fletcher and Pollard, 1980). Phalloidin is a 

stabilising actin agent, from a class of phallotoxins isolated first from 

mushrooms, known to bind actin filaments with a higher affinity than the actin 

monomers (Copper, 1987). Therefore, these drugs are commonly used to study 

actin dynamics. 

Drosophila mature oocytes were shown to display a uniform distribution of F-

actin around the cortex (Cavaliere et al., 2008) and to have G-actin monomers 

in the cytoplasm (personal communication). Past work has potentially identified 

the requirement of dynamic actin at Drosophila egg activation (York-Andersen et 

al., 2015), however, a detailed study is sorely lacking. Therefore, the focus of 

this chapter is to understand the dynamic changes of actin at Drosophila egg 

activation. 
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Table 1

Actin Markers Fluorophore Expression Construct Type of actin Dispersion of 
actin (initial)

Actin increase 
after dispersion

Reference

Moesin GFP Protein trap GFP sequence 238 
amino acids 
conjugated with a 
C-terminus Moesin 
tail, which consists 
of extended helical 
regions and an 
actin-binding site.

Cortical actin Yes No Edwards et al., 
1997

Moesin mCherry UASp DNA encoding 
mCherry and the 
actin-binding 
domain of 
Drosophila Moesin 
(C-terminal 137 
residues)

Cortical actin Yes No Millard and Martin 
2008

F-tractin ddTomatoe UASp N-terminus 1-66 
amino acids of rat 
IP3K actin-binding 
domain fused to a 
fluorophore

F-actin Yes Yes - wavefront 
from posterior

Johnson and 
Schell, 2009

Lifeact mCherry UASp First 17 amino acids 
of yeast Abp 140 
protein

G-actin + F-actin Yes Yes - wavefront 
from posterior

Riedl et al., 2008

Utrophin GFP Endogeneous 
promoter

calponin homology 
domains of human 
ubiquitous 
dystrophin

F-actin Yes Can’t observe Burkel et al., 2007

Utrophin GFP UASp Human Utrophin 
residues

F-actin Yes Can’t observe Rauzi et al., 2010

�1

Table 4.1.Summary of genetically-encoded actin markers used in Drosophila in 
vivo imaging 



4.2  Aims of this chapter 

1. To determine to what extent the actin cytoskeleton undergoes a 

dynamic change at Drosophila egg activation. 

2. To address whether the actin cytoskeleton depends on the changes in 

intracellular calcium at Drosophila egg activation. 

3. To investigate whether the calcium wave depends on the actin 

cytoskeleton at Drosophila egg activation.  
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4.3 Results 

4.3.1 Visualisation of Moesin at Drosophila egg activation 

In order to test if cortical actin undergoes a rearrangement at Drosophila egg 

activation, I used a genetically-encoded actin marker GFP-Moesin (Table 1) 

(Edwards et al., 1997). This genetically-encoded marker belongs to the ERM 

(ezrin, radixin, moesin) family that is known to promote cortical actin assembly 

and to link transmembrane proteins with the F-actin cytoskeleton (Fievet et al., 

2007). This construct consists of a GFP sequence of 238 amino acids 

conjugated to the C-terminus tail of Moesin (Turunen et al., 1994).  

Before activation, Moesin showed a cortical distribution across the entire oocyte 

(n=15) (Figure 4.2A) (this is shown as a stack, so the image looks as though 

actin is in the centre, but is actually cortical). However, this distribution became 

less ordered and more diffuse 3 minutes after the addition of AB (Figure 4.2A). 

Taken together with my finding that osmotic pressure is required for egg 

activation to occur (Chapter 3), I hypothesise that cortical actin detects swelling 

of the oocyte as it generates membrane tension. Therefore, cortical actin can 

act as an osmosensor and relay a change in the oocyte volume via downstream 

signalling cascades. 

4.3.2 Visualisation of F-tractin at Drosophila egg activation 

To further verify the hypothesis that actin undergoes a rearrangement at 

Drosophila egg activation, I tested a different genetically-encoded actin indicator 

F-tractin. Comprised of the N-terminus of Inositol 1,4,5-Triphospate 3-kinase 

(IP3K) actin-binding domain fused to a fluorophore (Table 1) (Schell et al., 

2001), F-tractin has been shown to closely correlate with phalloidin staining 

(Schell et al., 2001; Spracklen et al., 2014). 

In contrast to GFP-Moesin, activation of egg chambers, expressing F-tractin-

tdTomato, showed an increase in F-tractin fluorescence starting from the 

posterior pole (Figure 4.2B) (n=20). The increase propagated across the oocyte 
�74



to the anterior pole in a wavefront manner and subsequently recovered after 

approximately 16 minutes (Figure 4.2B). This wavefront exhibited similar 

dynamics to the calcium wave previously characterised: the actin wavefront 

initiated from the posterior pole, traversed the oocyte at approximately 1.5 µm/

sec and took 12 minutes to recover following the initiation. Interestingly, this F-

tractin wavefront initiated at 5 minutes 30 seconds after addition of AB, on 

average 4 minutes after the calcium wave. This suggests that F-actin is possibly 

regulated downstream of the calcium wave. In some experiments, I observed a 

second increase in F-tractin initiating approximately 25 minutes after the 

addition of AB (data not shown) that also propagated across the oocyte from the 

posterior pole in a wavefront manner. The physiological significance of this 

second wavefront is not clear, but I hypothesise that it could ensure re-

organisation of actin following egg activation. 

4.3.3 Visualisation of Lifeact at Drosophila egg activation 

One possibility is that the F-tractin wavefront represents an IP3K activity instead 

of actin. This is due to the F-tractin structure, containing the actin-binding 

domain from  IP3K (Schell et al., 2001). In order to verify that there is an actin 

wavefront associated with Drosophila egg activation, I tested Lifeact, another 

genetically-encoded construct that has been shown to label actin in vivo in 

many model systems (Riedl et al., 2008; Bement et al., 2015) This construct 

consists of the first 17 amino acids of yeast Abp140 protein fused to GFP (Riedl 

et al., 2008). 

Prior to activation, the mature oocytes expressing Lifeact-mCherry showed a 

uniform cortical distribution, similar to GFP-Moesin and F-tractin-tdTomato 

(Figure 4.2A-C). At activation, Lifeact showed an initial dispersion that was 

followed by an increase in fluorescence from the posterior pole that propagated 

across the oocyte in a wavefront manner and recovered within 12 minutes of 

the initiation (Figure 4.2C). The average speed of Lifeact wavefront was 1.5 µm/

sec (n=10), similar to F-tractin. Together, these observations suggests that there 

is a non-cortical F-actin wavefront that is associated with Drosophila egg 

activation. As the Lifeact and F-tractin wavefronts are consistent, I conclude that 
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they represent a wave of F-actin rather than IP3K activity. In this chapter, F-

tractin and Lifeact are used interchangeably to visualise and analyse the non-

cortical wavefront. 

The visualisation of Moesin, F-tractin and Lifeact at egg activation suggests two 

different F-actin populations in the mature Drosophila oocyte: (1) cortical and (2) 

non-cortical wave. At the onset of egg activation, the cortical F-actin undergoes 

rearrangement in the form of dispersion (Figure 4.2A). This is then followed by 

the non-cortical F-actin wavefront starting from the posterior pole (Figure 4.2A-

B). However, it is still not clear whether these cortical and non-cortical actin 

dynamics are dependent on the calcium wave at egg activation. 
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Figure 4.2. Moesin undergoes global dispersion, whilst F-tractin and Lifeact show a 
wavefront associated with Drosophila egg activation. 
Mature oocyte expressing (A) GFP-Moesin, (B) UASp-F-tractin-tdTomato and and (C) UASp-
Lifeact-mCherry. (A) shows the dispersion of Moesin by about t = 3′ 00″. (B) shows the initiation 
of the F-tractin wavefront from the posterior pole at about t = 4′ 00″ that propagates and recovers 
by about t = 16′ 00″. (C) shows the initiation of Lifeact wavefront from the posterior pole at t = 3′  
00″ that propagates and recovers by t = 15′ 00″. Scale bar 60µm. Maximum projection = 40µm. 



4.3.4 Cortical actin dispersion is independent of the calcium wave 

It is not clear whether the initial dispersion of the cortical actin is dependent on 

the calcium wave at Drosophila egg activation. To address this, mature oocytes 

expressing GFP-Moesin were treated with (1) AB or distilled water, previously 

used to cause rapid swelling and a cortical increase of calcium at egg activation 

(York-Andersen et al., 2015), and (2) NaCl solution (260mOsm), which results in 

swelling of the oocyte, but does not support the calcium wave (Chapter 3).  

Addition of AB or distilled water resulted in a decreased concentration of Moesin 

at the cortex within 3 minutes (Figure 4.3A-B). The same change in phenotype 

in the cortical actin was also observed when the mature oocytes were treated 

with NaCl solution (Figure 4.3C). These findings suggest that the cortical actin 

undergoes a morphological change at the onset of egg activation following the 

volume change of the oocyte and is independent of the calcium wave. 

To investigate why the calcium wave starts at the posterior I asked whether the 

cortical actin is uniformly distributed across the mature oocyte. Visualisation of 

Moesin in the mature oocyte shows a lower concentration at the posterior pole 

compared to the lateral side (Figure 4.3D). To exclude the possibility that this 

observation might be due to the acquisition parameters, I tested the membrane 

marker Ressille::GFP as a negative control. Ressille showed a similar 

distribution at the posterior and lateral cortex with no visible decrease at the 

posterior pole (Figure 4.3E). These findings suggest that cortical actin 

organisation at the posterior pole could be a factor in the initiation of the calcium 

wave. It is possible that the cortical actin disperses faster at the posterior pole 

compared to the lateral sides, and hence results in the initiation of the calcium 

wave.  
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Figure 4.3. GFP-Moesin undergoes a dispersion of cortical actin at Drosophila egg 
activation. 
Mature oocyte expressing GFP-Moesin, following the addition of (A) AB, (B) distilled water and 
(C) NaCl (50mM). (A-C) shows the lateral side next to the posterior pole. (A-C  GFP-Moesin 
becomes more dispersed by t = 3′ 00″ following the addition of (A) AB, (B) distilled water and (C) 
NaCl (50mM). (D-E) shows the posterior pole of the mature oocyte before activation. (D) shows 
that GFP-Moesin is enriched less at the posterior pole cortex (white arrows). (E) shows 
membrane marker with the uniform distribution all around the cortex as a negative control.  (A-C) 
Scale bar 20 µm. (D) Scale bar 60 µm.  Single plane. 



4.3.5 Calcium and actin wave dynamics at Drosophila egg activation 

In order to test the relationship between calcium and actin at Drosophila egg 

activation, I visualised F-tractin and calcium simultaneously. Upon addition of 

AB, the mature oocyte showed a typical calcium wave (Figure 4.4.1A and 

4.4.2A). F-tractin intensity decreased initially, concomitant with the timing of the 

cortical actin dispersion. This was followed by the F-tractin wavefront after 4 

minutes of the initiation of the calcium wave (Figure 4.4.1C’ and 4.4.2C’), which 

terminated by approximately 15 minutes post-initiation of the calcium wave 

(Figure 4.4.1G’ and 4.4.2E’). The same F-actin wavefront was observed with 

Lifeact (data not shown). Together with my actin-only labeled experiments, 

these observations show that the F-actin wavefront follows the calcium wave 

with a similar speed and directionality. 

In order to better understand the dynamics of the actin cytoskeleton and the 

calcium wave, I quantified mean fluorescence levels of the actin over time. One 

technical challenge is that the oocytes would often move out of the plane of 

focus after the addition of AB, leaving a black oval shape in the middle of the 

oocyte, when Z-stacks were made (Figure 4.4A’-G’). Therefore, I quantified the 

mean fluorescence intensity of the posterior and anterior poles, where t=0 was 

selected as the initiation of the calcium wave. The intensity of F-tractin raises 

with the initiation of the calcium wave, reaching a peak at 6 minutes (Figure 

4.4.3A,B). This intensity then decreases to the basal levels over the subsequent 

5 minutes (Figure 4.4.3A,B). The F-actin wavefront initiates on average 4 

minutes after the initiation of the calcium wave. The wavefront reaches the other 

side of the oocyte on average by 9 minutes 30 seconds, and starts recovering 

within 1 minute after this. The full recovery is completed by 16 minutes 30 

seconds. Excluding the delay of 4 minutes, the timings of the propagation and 

recovery of the calcium and actin waves are very similar. 
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Figure 4.4.1 The Calcium wave is followed by an actin wavefront at Drosophila egg 
activation. 
(A-G) Time-series of a mature oocyte co-expressing UASp-GCaMP3 (cyan) and UASp-F-
tractin-tdTomato (magenta) (A’-G’) imaged sequentially to exclude a possibility of the bleed-
through of the channels. The calcium wave initiates from the posterior pole (A) and 
propagates across the oocyte (B-D). The wave recovers to the basal levels (F-G). The cortical 
actin disperses (B’-C’) and then followed by an actin wavefront initiating from the posterior 
pole (D’-F’). This wavefront recovers to the basal levels (G’). Scale bar 60µm. Maximum 
projection = 40µm. 
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Figure 4.4.2 Calcium wave is followed by the actin wavefront at Drosophila egg 
activation. 
(A-E) Time-series of a mature oocyte co-expressing UASp-GCaMP3 (cyan) and UASp-F-
tractin-tdTomato (magenta) (A’-E’) imaged simultaneously. The calcium wave initiates from the 
posterior pole (A) and propagates across the oocyte (B-D). The calcium wave recovers to the 
basal levels (D). The cortical actin disperses (B) and is then followed by an actin wavefront 
initiating from the posterior pole (C’). This wavefront recovers to the basal levels (E’). Scale 
bar 60µm. Maximum projection = 40µm. 
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Figure 4.4.3. Graph of F-actin wavefront and average times of calcium and 
actin waves at Drosophila egg activation. 
(A) Graph representing a mean fluorescence intensity of F-tractin measured over 
time in seconds. The sample area was the same for both anterior (red) and posterior 
(blue) poles. t=0 is the initiation of the calcium wave. The F-tractin shows an 
increase in the mean fluorescence intensity at 300-400 seconds after the initiation of 
the calcium wave, and then decreases after 500-600 seconds. There is a second 
increase in F-tractin at around 1200 seconds. The anterior line is shifted to the right 
of the posterior line, indicative of the F-tractin. (B) Comparison  of average times of 
the calcium wave and the F-actin wavefront. The summary shows that the F-actin 
initiates on average 3 min 30 sec after the calcium wave. In both cases, the recovery 
starts after 1 min after both waves reach the other side of the oocyte. The recovery 
takes 5-6 min in both cases. The calcium wave and the F-actin wavefront are similar 
in dynamics. 



4.3.6 F-actin wavefront initiates from the same site as the calcium wave 

The calcium wave primarily initiates from the posterior pole (70%, n=50), with a 

few experiments showing anterior pole (20%) and lateral side (10%) initiation. It 

is not clear, however, if the F-actin wave initiates from the same site as the 

calcium wave. To test this, F-actin and calcium were visualised simultaneously 

in the mature oocytes, where the calcium wave initiated from the anterior pole. 

This revealed that the F-actin wavefront also started from the anterior pole 

(Figure 4.5). The same dependancy was observed with oocytes expressing F-

tractin (data not shown). These findings show that the F-actin wavefront initiates 

and propagates in the same direction as the calcium wave, suggesting that the 

calcium wave plays a role in coordinating the F-actin wavefront . 

To investigate the F-actin phenotype with a non-wave calcium increase, the 

mature oocytes were treated with distilled water. The oocytes swelled, and 

calcium increase initiated from all over the cortex within 1 minute (Figure 4.6A-

E), and F-actin showed an increase from all over the cortex (Figure 4.6A’-E’). 

Interestingly, F-actin fluorescence was delayed on average by 4 minutes (Figure 

4.6), the same as with the waves. This suggests that calcium initiates the 

changes in F-actin and points towards the mechanistic dependence of F-actin 

on the intracellular calcium increase. 
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Figure 4.5. Anterior calcium wave is followed by the anterior F-actin wavefront at 
Drosophila egg activation. 
(A-B) Time-series of a mature oocyte co-expressing UASp-GCaMP3 and UASp-Lifeact-
mCherry. The calcium wave initiates from the anterior pole (A). The F-actin wavefront also 
initiates from the anterior pole following the calcium wave. Scale bar 60µm. Maximum 
projection = 40µm. 
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Figure 4.6. Cortical calcium increase is followed by the cortical actin increase at 
Drosophila egg activation. 
(A-E) Time-series of a mature oocyte co-expressing UASp-GCaMP3 (cyan) and UASp-F-
tractin-tdTomato (magenta) (A’-E’). Calcium increases from all over the cortex (A), which 
recovers back to the basal levels (C). The cortical actin disperses (B’) and then followed by an 
actin cortical increase (C’), which recovers to the basal levels (E’). Scale bar 60µm. Maximum 
projection = 40µm. 



4.3.7 F-actin wavefront is dependent on the calcium wave at egg activation 

To address if a rise in calcium is required for the F-actin wavefront, the mature 

oocytes were treated with NaCl solution. Upon addition of NaCl, the oocytes 

swelled as expected and showed a drop in cortical F-actin (Figure 4.7A’-B’). 

However, the calcium wave and the F-actin wavefront were absent (Figure 4.7). 

This suggests that the F-actin wavefront requires the calcium wave in order to 

initiate and propagate. 

My previous work has shown that the calcium wave does not occur in Sarah 

mutants, a key player in the calcium signalling pathway that inhibits calcineurin 

(York-Andersen et al., 2015). To genetically verify the requirement of a calcium 

increase for the F-actin wavefront, I visualised F-actin in a Sarah mutant 

background. Upon the addition of AB, the oocytes swelled normally, but there 

were no observed changes in F-actin (n=15) (Figure 4.8). This is consistent with 

NaCl data and supports a model where the F-actin wavefront requires an 

increase in intracellular calcium at Drosophila egg activation.  
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Figure 4.7. The F-actin wavefront is absent in the oocytes without a calcium increase at 
Drosophila egg activation. 
(A-E) Time-series of a mature oocyte co-expressing UASp-GCaMP3 (cyan) and UASp-F-
tractin-tdTomato (magenta). (A-E) The oocyte swells, but there is no change in intracellular 
calcium or F-actin observed. Scale bar 60µm. Maximum projection = 40µm. 
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Figure 4.8. The F-actin wavefront is absent in the oocytes with Sarah mutant 
background at Drosophila egg activation. 
(A-E) Time-series of a mature oocyte expressing and UASp-F-tractin-tdTomato. F-tractin 
disperses (A-B), but does not show the wavefront as in the wild-type oocytes at egg activation 
(C-E). The dark areas represent not displaced bubbles in oil. Scale bar 60µm. Maximum 
projection = 40µm. 



4.3.8 Stabilisation of the actin cytoskeleton is inhibitory to the calcium 

wave 

Calcium signalling and organisation of the actin cytoskeleton are two major 

cellular features that together coordinate numerous biological functions, 

including pollen tube growth in plants or vesicle secretion in mast cells 

(Cardenas et al., 2008; Wollman and Meyer, 2012; Wu et al., 2013). Drosophila 

mature oocytes provide an example, where the F-actin wavefront is dependent 

on the the presence of the calcium wave. However, it is not clear whether the 

calcium wave is also dependent on the changes in F-actin. 

To address whether the dynamic changes in F-actin are required for the calcium 

wave, mature oocytes were incubated with AB and the actin stabilising agent 

Phalloidin. To ensure Phalloidin entered the eggs, I used a form conjugated to a 

fluorophore. Within a couple of minutes, the oocyte swelled and an increase in 

fluorescence intensity was observed all around the cortex (data not shown), 

showing that Phalloidin was in the mature oocyte. With this knowledge, I tested 

the effect on the calcium wave and showed a perturbed calcium wave in 68% of 

the oocytes (Figure 4.9) (n=35). A similar result was also observed, when the 

actin growing ends were capped with Cytochalasin D, resulting in the disruption 

of the calcium in 77% of the oocytes (n=35) (Figure 4.9). This suggests that 

stabilisation of the F-actin cytoskeleton is inhibitory to the the calcium wave. 

To understand whether the calcium wave also requires free cytoplasmic G-actin 

monomers, the mature oocytes were treated with AB and Latrunculin A, which 

binds G-actin monomers (Yarmola et al., 2000). The experiments show that the 

oocytes swelled, as expected, and interestingly exhibited a full calcium wave in 

72% of the cases (n=20) (Figure 4.9). This suggests that the calcium wave 

requires F-actin, rather than free G-actin monomers. Together, these findings 

point towards a model, where cortical F-actin undergoes a dynamic 

rearrangement to open the mechanosensitive channels to allow the calcium 

influx into the oocyte at egg activation. 
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Figure 4.9. Quantification of the calcium wave phenotypes with perturbed actin 
cytoskeleton.  
Calcium wave phenotypes are classified as a full wave (blue); partial wave (green), when a 
wave does not propagate across an entire oocyte; no wave (red). The mature oocytes treated 
with AB only exhibit 82% of the full calcium wave phenotype (control). The mature oocytes 
treated with AB + Latrunculin A show non-significantly different number of full waves (75%)
(n=20, P=0.5). The mature oocytes treated with AB + Phallodin or AB + Cytochalasin D show 
a significant decrease of the full wave to approximately 35% (n=35, P=0.0001). Fisher’s exact 
statistical analysis, P>0.05 was considered significant.
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4.3.9 Cortical actin cytoskeleton is more dynamic following egg activation  

To test whether cortical actin becomes more dynamic at egg activation, I 

performed fluorescence recovery after photobleaching (FRAP) on oocytes 

expressing GFP-Moesin. FRAP is a commonly used technique in cellular 

biology to determine the rate of redistribution of a fluorescently-tagged protein 

(Lippincott-Schwartz et al., 2001). The principle behind it is that a certain area is 

photo-bleached, and the recovery rate of the fluorophore is measured, which 

gives an indication of the mobility rate of  proteins attached to the fluorophores. 

Photo-bleaching was carried out for 15 seconds on the cortex of mature oocytes 

prior to or after egg activation. Prior to egg activation, GFP-Moesin started to 

show the recovery within 2 minutes and exhibited full recovery 12 minutes after 

bleaching (Figure 4.10). Following the addition of AB, the recovery after photo 

bleaching happened much faster in activated oocytes and was fully completed 

within 1 minute and 30 seconds (Figure 4.10). It was difficult to visualise the 

bleached area in the activated oocyte for a long time due to continuous egg 

swelling and movement. The mean fluorescence intensity recovery rate was 

compared between non-activated (blue line) and activated (red line) mature 

oocytes, showing that the recovery of cortical actin happens much faster in the 

activated oocyte (Figure 4.10C). This strongly suggests that the cortical actin 

becomes more dynamic following egg activation and is possibly required for the 

opening of the mechanosensitive channels to allow initiation and propagation of 

the calcium wave. This model will be further discussed in the section below. 
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Figure 4.10. Moesin recovery after photo bleaching before and after egg activation.  
Panel (A) shows GFP-Moesin prior to egg activation and panel (B) shows GFP-Moesin after 
egg activation. GFP-moesin is photo bleached to approximately 25% of original mean 
fluorescence levels for 15″. Graph (C) shows the rate of recovery of GFP-Moesin   within first 
100 seconds. GFP-moesin recovers to 50% within 100 seconds prior to egg activation (blue 
line). In comparison, GFP-moesin recovers to 75% within 100 seconds after activation (red 
line). GFP-moesin recovers at a faster rate after egg activation in comparison to before egg 
activation. 



4.4 Discussion 

The data from this chapter provides evidence that there are different 

populations of actin in the Drosophila mature oocyte. One of these is the cortical 

F-actin that forms a uniform layer at the cortex, but is less enriched at the 

posterior pole. The cortical F-actin disperses at the onset of egg activation 

becoming more dynamic following egg activation. The second actin population 

is the non-cortical F-actin, which shows a wavefront that initiates and 

propagates across the mature oocyte. The F-actin wavefront is calcium-

dependent, has similar characteristics to the calcium wave and shares the same 

initiation pole. The calcium wave also depends on the dynamic F-actin 

cytoskeleton. The calcium wave does not occur when the F-actin is stabilised or 

not able to depolymerise. Together, these findings point towards highly co-

regulated calcium and actin signalling networks in Drosophila mature oocytes, 

where actin might play an important role in the downstream events of egg 

activation, which will be discussed below. 

4.4.1 Cortical actin as an osmotic sensor 

My data has shown that the osmotic pressure acts as an initiation cue for the 

calcium wave at egg activation (Chapter 3). One of the cellular components that 

is known to mediate adequate response to the osmotic pressure is the cortical 

actin (reviewed in Papakonstanti and Stournaras, 2007). A change in the 

cortical actin architecture is a common mechanism following the osmotic 

change within a cell. For example, in adipocyte cells, osmotic shock results in 

the remodelling of the cortical actin and subsequent movement of Glut4 protein 

to the plasma membrane (Gual et al., 2002). In yeast, the cortical actin is 

thought to form so-called cortical bundles and this is proposed to be as a result 

of osmosensation (Gustin et al., 1998). In contrast, hypertonicity and cell 

shrinkage is utilised by Magnocellular neurosecretory cells. In this case, an 

increase in external solute concentration causes a cell to shrink and 

subsequently activates non-selective ion channels. The flow of positively 

charged ions into the cell initiates firing of action potentials across the plasma 

membrane. The cell shrinkage is thought to result in the reorganisation of the 
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cortical F-actin and the activation of a mechanosensitive channel called Trpv1. 

The exact mechanism of the actin structural reorganisation is not known. 

The signalling pathways that connect the osmosensation and the cortical actin 

are still not well-understood. The osmosensitivity of the cell does depend on the 

intact actin as was shown in rat supraoptic nucleus neurones, where 

mechanosensitivity was disrupted in the presence of Cytochalasin-D (Zhang et 

al., 2007). One proposed mechanism is via an increase of Rho-GTP by Rho-

GTPases which induces the actin polymerisation and subsequent mechanical 

regulation of channels (Tilly et al., 1996; Prager-Khoutorsky and Bourge, 2009). 

PI3K is also to be implicated, as it is one of the candidates that is directly linked 

to the membrane. However, how exactly it is linked to osmosensation and the 

actin cytoskeleton is not clear. 

In Drosophila mature oocytes, it is also possible that cortical actin acts as an 

osmosensor to mediate its own remodelling in response to osmotic shock from 

the oviduct fluid. This would allow the oocyte to adapt and adjust to an increase 

in cell volume. This model would explain why Moesin becomes more dispersed 

within a couple of minutes of egg activation (Figure 4.3). Similarly to  the 

aforementioned increase in Rho-GTPase or PI3K, there can be an increase or 

activation of signalling molecules in the mature oocyte that could facilitate 

remodelling of the cortical actin. After an initial dispersion, there was no further 

visible change in the cortical actin reorganisation in the mature oocyte or early 

embryo (data not shown). This suggests that the cortical actin becomes more 

stabilised after the initial change in volume providing a new integrity to the 

oocyte.  

4.4.2 Cortical actin dispersion and activation of mechanosensitive 

channels 

An alternative hypothesis is that the cortical actin reorganisation is linked to 

downstream processes, such as the opening of the mechanosensitive channels. 

These include numerous subfamilies, with TRP channels and Deg/ENaC as 

well-known examples. There are several models arguing as to how these 

channels are activated. One suggested cue is a direct mechanical stress 
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applied on the plasma membrane, which creates tension in the membrane, 

opening the channels and allowing the influx of ions  (Christenen et al., 2007).  

The other proposed initiation cue of the mechanosensitive channels is via the 

actin cytoskeleton (Christensen and Corey, 2007). This role of actin was 

originally shown by electrophysiological studies (Sachs 1991; Sokabe et al., 

1991) where pipette suction was utilised to induce stress on the lipid bilayer. 

More recent work has developed a new system in cultured human umbilical vein 

endothelial cells, where the membrane tension was directly applied to the actin 

cytoskeleton by conjugating Phalloidin to fibro-nectin beads (Hayakawa et al., 

2008). Once injected, these beads bound actin and induced a direct stress by 

electrical current (Hayakawa et al., 2008). This resulted in the activation of the 

mechanosensitive channels and the calcium influx, suggesting that the 

mechanically-stressed actin cytoskeleton is sufficient to activate some of the 

mechanosensitive channels. 

Immunofluorescence and co-sedimentation techniques have shown that  F-actin 

directly binds a mechanosensitive ENaC channel via the C-terminus of the 

alpha-subunit in cultured kidney cells (Mazzochi et al., 2006). The same 

channel was also implicated in osmotic sensing in the Xenopus oocyte (Awayda 

et al., 1996). Other mechanosensitive channels can bind actin indirectly via 

actin-binding factors, such as alpha-Actinin-2, spectrin or filamin-A (Maruoka et 

al., 2000; Cukovic et al., 2001; Mazzochi et al., 2006). Although it is clear that 

some mechanosensitive channels interact with actin in some way, it is not well-

understood what causes these differences. There is not much evidence 

available for TRP channels’ interactions with the actin cytoskeleton, other than 

imaging data, where TRPN1 was shown to co-localise with actin in Xenopus 

cilia of epithelial cells (Shin et al., 2005), and TRPC6 to co-localise with 

regulators of the actin cytoskeleton (Dryer and Reiser, 2010). Interestingly, TRP 

channels seem to show the polarisation in their distribution in some cells. 

TRPV1 and TRPV4 were shown to be independently enriched at the tip of the 

filopodia (Goswami and Hucno, 2007; Goswani et al., 2010). 

Overall, this data suggests that the cortical actin is a suitable candidate to 

modulate the activity of the mechanosensitive channels and calcium influx in the 
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Drosophila mature oocyte at egg activation. The osmotic pressure could act by 

applying mechanical stress on the oocyte membrane and result in the opening 

of the mechanosensitive channels. Alternatively, the osmotic pressure could 

exert stress on the cortical actin cytoskeleton and activate channels via the 

actin cytoskeleton. This hypothesis is consistent with my data showing that 

direct pressure on the membrane can induce localised calcium response (York-

Andersen et al., 2015). This response can be due to the localised actin 

dispersion and subsequent activation of the mechanosensitive channels.  

4.4.3 Non-cortical actin wavefront role 

It is hypothesised that F-actin waves are essential for the actin self re-assembly 

after the initial dispersion at the cortex and are thought to mediate the 

polymerisation of actin. For example, pharmacological depolymerisation of actin 

resulted in an increased number of the actin waves in Dictystelium 

(Bretschneider et al., 2009). A similar observation was made in fibroblasts, 

where the actin waves take the form of “Circular Dorsal Ruffle (CDR)”, which 

are non-adhesive actin structures found on the dorsal side of some migrating 

cells (Chhabra and Higgs, 2007; Bernitt et al., 2015; Bernitt et al., 2017). In 

these papers, it was also argued that the wavefront of actin represents the F-

actin polymerisation. Interestingly, osmotic shock has been shown to induce an 

actin wave in macrophages as well (O’Frenkel et al., 2001). Together, this 

provides other examples of how the depolymerisation of F-actin can trigger the 

F-actin waves. Moreover, the F-actin wave is proposed to be associated with 

the actin-binding factors, including Arp2/3, Myosin B, CARMIL and coronin 

(Bretschneider et al., 2009; Khamviwath et al., 2013). Live visualisation of these 

factors in Dictyostelium cells have shown their enrichment at the front of the F-

actin wavefront (Bretschneider et al., 2009; Khamviwath et al., 2013). It is 

possible that the F-actin wave at Drosophila egg activation also has one or 

more of these factors associated with it. 
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4.4.4 Calcium and actin co-regulatory networks 

Calcium predominantly regulates the actin cytoskeleton via the actin-binding 

factors, including myosin, profilin and villin/gelsolin (Cardenas et al., 2008). 

Early experiments showed that calcium regulates muscle contractions via 

myosin V protein, rather than directly though actin (Szent-Gyorgi et al., 1975). In 

this case, calcium binds troponin that, in turn, binds tropomyosin to mediate the 

actin-myosin contraction cycle (Lehman et al., 1994). Similarly, plants utilise the 

actin-myosin network for cytoplasmic streaming, and actin is again regulated by 

calcium signalling via myosin XI (Tominaga et al., 2012). Calcium can also 

control actin dynamics via profilin, an actin-binding factor, which is required for 

F-actin polymerisation (Vidali and Helper, 2001). Experiments with profilin show 

that calcium inhibits F-actin polymerisation by sequestering actin monomers 

and profilin subunits, which are no longer able to form the actin filaments (Kovar 

et al., 2000). Calcium has the same depolymerisation or severing affect on the 

actin cytoskeleton via villin actin-binding factor, and was shown to aid the 

organisation of actin in epithelial intestinal cells (Walsh et al., 1984). Therefore, 

calcium is able to regulate the actin cytoskeleton via the actin-binding factors. 

Due to their vast number of interactions with a variety of factors, it is difficult to 

establish direct connections between calcium and actin networks (Veksler and 

Gov, 2009). The presence of calcium and actin waves and/or oscillations has 

been well-documented in numerous model systems. For example, the calcium 

oscillations were shown to result in actin oscillations in mast cells (Wollman and 

Meyer, 2012; Wu et al., 2013). The proposed link between the two systems is a 

phospholipid molecule PIP2, which is thought to recruit an actin-binding factor 

WASP. The actin oscillations are proposed to result in vesicle secretion via the 

plasma membrane. Other possible linking candidates are FBP17 and Cdc42 

that were shown to undergo oscillations in their intracellular levels at the cortex 

prior to actin waves in mast cells (Wu et al., 2013). 

Overall, my work provides evidence of the calcium requirement for the F-actin 

wavefront, and vice versa. The F-actin wavefront does not occur if the calcium 

wave is absent. Similarly, the calcium wave is perturbed in the disrupted actin 

background. A possible model that the cross-talk between calcium and actin is  
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coordinated by the factors discussed above. One attractive hypothesis is that 

the initial calcium influx into the oocyte might mediate subsequent cortical actin 

rearrangement via profilin or villin factors. 

4.4.5 The actin cytoskeleton importance in the egg activation field 

The actin cytoskeleton is essential for many cellular processes, including egg 

activation. The rearrangement of the cortical F-actin seems to be a common 

feature of some eggs undergoing activation. Examples include F-actin 

reorganising following exposure to osmotic pressure in zebrafish oocytes, which 

mediates the release of the cortical granules (Hart and Collins, 1991; Becker 

and Hart, 1999). More recent work has shown that Aura, an actin-binding factor 

mediates this reorganisation of actin (Eno et al., 2016). In the mutant Aura 

background, the F-actin does not rearrange, and cortical granule exocytosis is 

inhibited.  

The starfish oocytes also exhibit actin rearrangement at egg activation, which is 

required for the calcium influx (Kyozuka et al., 2008). The calcium wave was 

also shown to initiate the PIP2 increase at the starfish cortex in a biphasic 

manner, whilst pharmacological inhibition of PIP2 production results in a delayed 

calcium wave and disrupted actin (Chun et al., 2010). Therefore, the proposed 

link between the calcium and actin networks in the oocytes is PIP2. 

Pharmacologically-induced calcium results in the cortical actin dispersion, which 

is followed by the formation of cytoplasmic F-actin bundles within the cytoplasm 

(Vasilev et al., 2012). The conclusion from the paper was that there are two F-

actin populations in the starfish oocytes: cytoplasmic and cortical. Interestingly, 

the formation of F-actin bundles was observed within 5 minutes after egg 

activation. This timing and the presence of two actin populations seems to be 

similar to Drosophila mature oocytes.  

My data provides evidence for the initial dispersion of the cortical actin, which  

might possibly allow the calcium influx via the mechanosensitive channels. The 

F-actin wavefront is a first visualisation of an actin wave in the oocyte to my 

knowledge. This is interesting in its own right, and might provide a mechanism 
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of actin repolymerisation across an entire oocyte. The polymerisation of actin 

might mediate the closure of the mechanosensitive channels. Future work 

should focus on elucidating the link between calcium and actin networks in the 

Drosophila mature oocyte, including PIP2 and other actin-binding factors that 

were mentioned in this discussion.  

�98



Chapter 5  

Investigating the mechanism of 
calcium transport at Drosophila 

egg activation
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5.1 Introduction 

5.1.1 Overview of the chapter 

Calcium acts as an essential cellular messenger to mediate various biological 

functions. Cells are constantly exposed to a high extracellular calcium 

concentration, which is 10,000 times higher than the intracellular calcium 

concentration. Therefore, calcium flux must be controlled in a temporal and 

spatial manner utilising specialised channels, which are categorised by the 

activation stimuli: (1) voltage-gated; (2) mechanically-activated; (3) store-

operated; and (4) ligand-activated. This introduction will summarise the 

mechanism of how these channels collectively regulate calcium transport, with 

their role at egg activation highlighted in the discussion section.  

5.1.2 Voltage-gated calcium influx 

Voltage-gated calcium channels are activated by changes in the membrane 

potential and are usually found in excitable cells (reviewed in Catterall, 2011). 

Purification of the voltage-gated channel complex from skeletal muscle cells 

indicated it was comprised of five subunits: α1, α2, β, γ and δ (Flockerzi et al., 

1986; Takahashi et al., 1987; Award et al., 1996; Curtis and Catterall, 2002;). 

These studies demonstrated that the α1 subunit is composed of six 

transmembrane domains and acts as a central pore to mediate the calcium 

influx into the cell. The γ subunit has four transmembrane domains (Jay et al.,

1990). The β subunit binds the α1 subunit via the N-terminus and does not 

traverse the lipid bilayer (Ruth et al., 1989), whilst both α2 and δ are found on 

the extracellular side of the membrane bound via the δ subunit disulphide bonds 

(Gurnett et al. 1996). These subunits regulate an efficient entry of calcium ions 

in a voltage-dependent manner.  

The voltage-gated channels were subdivided into a further five families: L, T, N, 

P, Q (Catterall, 2011). The L-type channels are predominantly found in excitable 

cells, where the calcium current is activated by a high voltage stimulus, 

exhibiting prolonged duration (Church and Stanley, 1996). In contrast, the short 
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calcium inward current is mediated by T-type voltage-gated channels which 

were discovered in starfish eggs at egg activation (Hagiwara et al., 1975). 

These become activated at a lower membrane potential compared to the L-type 

channels (Carbone and Lux, 1984). The final four classes of voltage-gated 

channels, N, R, P and Q, are primarily found in neuronal cells and are 

differentiated by the inhibitory affects of toxins (Mintz et al. 1992; Randall and 

Tsien 1995; Wang et al., 1999). The voltage-gated channels together sense a 

range of membrane potentials and coordinate an adequate calcium influx into 

the cell. 

5.1.3 Ligand-operated calcium influx 

Ligand binding to the receptor is another mechanism to initiate the calcium 

influx into the cell. In this case, the ligand binds the extracellular domain of the 

calcium channel resulting in the conformational change and release of calcium 

into the cytoplasm. Well-known examples of these receptors include the inositol 

1,4,5-trisphosphate (IP3) and ryanodine (RyR) receptors found on the ER or 

sarcoplasmic reticulum in muscles. These receptors are regulated by IP3 or 

ryanodine ligand binding to the extracellular domain respectively.  

The IP3 receptor was originally identified and purified from the mammalian 

cerebellum (Maeda et al., 1988; Supathapone et al., 1988). In mammals, there 

are three isoforms of the IP3 receptor IP3R1, IP3R2 and IP3R3 (Taylor et al., 

1999), which can form a homotetrameric or heterotetrameric receptor (Taylor 

and Tovey, 2010). IP3 binding results in the conformational change in the 

receptor (Yoshikawa et al., 1996). It is hypothesised that IP3 binding displaces 

the N-terminus suppressor domain from the channel pore and exposes the 

calcium binding site. Subsequent calcium binding moves the suppressor 

domain from the “gatekeer” domain, allowing calcium influx into the cytoplasm 

(Taylor et al., 2004). IP3 initiates calcium release from the adjacent channels 

resulting in CICR propagation across the cell. 

A similar CICR response can be mediated by the RyR (Fabiato, 1983). In 

comparison to the IP3R ubiquitous expression, the RyR is more predominant in 
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the muscle and neuronal tissues (Bootman et al., 2012). The four RyR 

monomers bind together to form a homotetramer. RyR activation is regulated by 

ryanodine and calcium binding, but calcium is sufficient to activate the RyR on 

its own. Together, the IP3R and the RyR ensure an intracellular calcium increase 

in a form of CICR in response to an external stimuli.  

5.1.4 Store-operated calcium influx 

The prolonged activation of the IP3R and RyR can result in the depletion of the 

intracellular calcium stores. This depletion can activate store-operated 

channels, including Orai channels (Yeromin, et al., 2006). The role of Orai 

channels was discovered in T-cells in which mutational analysis disrupted the 

development and activation of these cells (Fanger, 1995; Hoth, 1995; Crabtree, 

1995, Lewis, 1995; Lewis, 2001). This evidence was reinforced by the 

identification of the same protein using an RNAi-wide screen in Drosophila S2 

cells (Feske et al., 2006; Peinelt, et al., 2006; Zhang et al., 2006). It was 

confirmed that mammals express three genes of Orai: Orai1, Orai2 and Orai3 

(Moccia et al., 2015). The depletion of calcium in the ER results in an Orai-

mediated calcium influx into the cytoplasm across the plasma membrane, which 

is coordinated by stromal-interacting molecules (STIM) (Moccia et al., 2015). 

STIM was identified in Drosophila S2 cells (Roos et al., 2005) and in 

mammalian cells (Liou et al., 2005). STIM is localised to the ER membrane with 

its N-terminus pointing to the ER lumen (Lewis, 2011). The N-terminus has two 

EF-hand domains that bind calcium ions when the ER stores are full of calcium. 

Once calcium is released into the cytoplasm, calcium dissociates from the EF-

domains, indicating the low levels of calcium within the ER lumen (Lewis, 2011). 

This results in STIM protein re-location within the ER closer to the plasma 

membrane to bind and activate Orai channels. The overexpression of both 

STIM and Orai1 in the mammalian cultured cells increased the inward calcium 

influx, indicating that Orai mediates the calcium entry from the extracellular 

environment (Mercer et al., 2006; Peinelt et al., 2006). The presence of STIM-

Orai protein complex allows a way of detecting the calcium concentration within 
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the intracellular stores and refilling these stores with upregulated calcium entry 

from the extracellular environment. 

5.1.5 Mechanically-gated calcium influx 

The fourth class of calcium channels are the mechanosensitive channels, which 

as the name suggests, are activated by a mechanical stimuli transduced via the 

lipid bilayer. The transient receptor potential (TRP) channels provide a great 

example of the mechanosensitive channels that mediate the calcium influx in 

response to a variety of stimuli. Mutational and complementation analysis in the 

fly visual system enabled the discovery of TRP channels (Cosens and Manning, 

1969; Montell et al., 1985; Montell, 2001; Montell et al., 2002). TRP channels 

are subdivided into a further seven families, based on sequence homology. 

These families include TRPC, TRPV, TRPM, TRPA,TRPP, TRPN and TRPML 

(Montell, 2005, Ramsey et al., 2006). The general structure of the TRP channel 

consists of six transmembrane spanning domains, with the pore domain formed 

between S5 and S6 loops. The TRP channels assemble from four subunits, 

which form a non-selective cation channel pore, with an exception of TRPV5 

and TRPV6 channels that are selective for calcium ions. 

The first activation by a mechanical stimulus was observed in Xenopus oocytes, 

which resulted in opening of TRPC1 (Methfessel et al., 1986). Mechanical 

stimuli also play a role in initiating TRPC3, TRV6, TRPV2 and TRPM4, which 

coordinate blood vessel constriction in the muscle and other tissues (Welsh et 

al., 2002; Earley et al., 2004; Dietrich et al., 2005). The mechanical stimuli may 

also be relayed indirectly via the osmotic pressure that causes the tension in the 

plasma membrane from inside the cell. TRPV4 and TRPV1 are examples of 

TRP channels that respond to external osmotic pressure in mammalian sensory 

neurones (Liedtke et al, 2000; Strotmann et al., 2000; Sharif Naeni et al., 2006; 

Ciura et al., 2011). Other potential initiation cues include nociception, taste and 

temperature (reviewed in Christensen and Corey, 2007). However, there is a 

great redundancy between the initiation cues and TRP channels, and therefore, 

it is difficult to place them into specific categories. 
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TRP channels have also been hypothesised to coordinate calcium influx via 

interaction with IP3 channels. This was shown to be the case with the human 

channel TRP3, where the IP3R was shown to physically bind and activate TRP 

in transfected cultured cells (Kiselyov et al., 1998; Kiselyov et al., 1999; Boulay 

et al., 1999). It is proposed that the IP3R is able to sense the ER depletion in 

calcium and bind to the nearest TRP channel in the plasma membrane (Putney, 

1999). Interestingly, all channels in the TRPC family are known to require PLC 

for their activation, suggesting a store-depletion activation mechanism 

(Venkatachalam et al., 2002; Montell, 2005). However, it is not quite clear 

whether this activation happens in vivo.  

Interestingly, TRP channel activation has also been linked to the PIP2 signalling 

pathway in fly phototransduction. It was shown that a G-protein coupled 

receptor (GPCR) is activated by light stimuli and results in the calcium influx via 

the PLC pathway. At the same time, mutations in the TRP channel results in a 

significant decrease in the calcium influx (Hardie and Minke, 1992; Montell, 

1999). One hypothesis is that the TRP channel can be activated by the PLC 

hydrolysis of PIP2, thus releasing a PIP2 inhibitory effect on the TRP channel. 

This was confirmed to be the case for the TRP channels in Drosophila retinal 

cells in two independent studies: where (1) PLC hydrolysis of PIP2 resulted in 

contractions of the bilayer and changes in gating of TRP channel (Hardie and 

Franze, 2012); and (2) depletion of PIP2 using genetic tools resulted in the 

disrupted calcium influx and retinal neurodegeneration (Sengupta et al., 2013). 

Together, this evidence highlights a potential link between TRP channels, the 

phosphoinositide pathway and calcium influx. Overall, this section shows that 

TRP channels are suitable candidates to mediate calcium influx in response to 

a variety of physical and molecular stimuli. 

5.1.6 Intracellular calcium removal by an electrochemical gradient 

Although, calcium acts as an important second-messenger regulating various 

downstream processes, prolonged exposure to calcium can result in cell 

dysfunction and cell death (Berridge et al., 2003). Cells have evolved numerous 

ways to remove cytosolic calcium and bring the concentration down to basal 
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level of approximately 100nM. Calcium can be pumped back to the intracellular 

stores, such as ER or mitochondria, or to the external environment (Berridge, 

2005; Clapham, 2007). As the extracellular and organelle calcium concentration 

is often higher than cytosolic concentration, the removal of calcium requires 

some form of energy.  

A common mechanism to remove cytosolic calcium is through the use of a 

previously established electrochemical gradient of a different ion. The Na+/Ca2+ 

exchanger (NCX) is an example of a channel that uses an electrochemical 

gradient of three sodium ions to pump one calcium out (Blaustein and Lederer 

1999; Kang et al., 2006); as at physiological levels the extracellular sodium 

concentration is higher than that of intracellular sodium, this gradient can be 

used to export calcium in a secondary active transport mechanism (Philipson et 

al., 2002). NCX has low affinity for calcium ions, and hence high-capacity to 

coordinate rapid removal of calcium out of the cell. It is generally considered 

that NCX is used to guide calcium out (“forward mode”). However, NCX is also 

able to transport calcium into a cell (“reverse mode”), when intracellular sodium 

is high (Philipson et al., 2002; Jeffs et al., 2007). NCX has been shown to play a 

role in most cells, including heart and muscle tissues, epithelial cells and 

neurones (Dipolo and Beauge, 2006; Balasubramaniam et al., 2015) and has 

been shown to associate with some pathological conditions, such as Alzheimers 

disease and cardiac failure (Langenbacher et al., 2005; Henok et al., 2016). 

Therefore, NCX is essential for mediating calcium homeostasis and normal 

physiological functions. 

5.1.7 Intracellular calcium removal by ATP hydrolysis 

An alternative mechanism to actively remove cytosolic calcium uses ATP 

hydrolysis. P-type ATPases are a class of transmembrane proteins that 

hydrolyse ATP to facilitate ion transport across a membrane (Apell, 2004). 

There are two calcium P-type ATPases, which remove calcium into the ER and 

the external environment: sarcoendoplasmic reticulum calcium-ATPase 

(SERCA) and plasma membrane calcium-ATPase (PMCA). They are activated 

by binding of calmodulin and by phosphorylation by protein kinase A and C 
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(Carafoli 1991; Carafoli 1992). In contrast to the Na+/Ca2+ exchanger, SERCA 

and PMCA have a high affinity for calcium, but low capacity, and hence these 

pumps are used for long-term removal of calcium (Clapham et al., 2007). 

The function of SERCA has been commonly studied using a pharmacological 

inhibitor called Thapsigargin, which binds stoichiometrically to all SERCAs and 

irreversibly inhibits SERCA to remain in the calcium-free state (Lytton et al.,

1991). The inhibition of SERCA by Thapsigargin was shown to activate calcium 

influx in an unfertilised mouse egg and to suppress repetitive calcium transients 

in the fertilised egg, suggesting that SERCA is required in the replenishment of 

calcium internal stores to support calcium oscillations in a mouse egg (Kline and 

Kline 1992). However, it is not clear whether SERCA is also required at 

Drosophila egg activation. 

Calcium can be extruded to the extracellular environment by another calcium-

ATPase, PMCA, which is essential for the control of the cytoplasmic calcium 

concentration (Stauffer et al., 1995). The mechanism of calcium removal for 

PMCA channels is similar to SERCA, except that PMCA extrudes one calcium 

ion per one ATP hydrolysed (Strehler and Treiman, 2004; Clapham et al., 2007). 

In an active form, PMCA has low calcium affinity and is inactive at the basal 

concentration of calcium (100nM). PMCA is activated by Calmodulin, which 

increases PMCA affinity for calcium (Carafoli 1992). PMCA is known to be 

expressed in a tissue-specific manner and has several isoforms created by 

alternative splicing (Strehler and Zacharias, 2001). Compared to four 

mammalian genes, Drosophila has only one gene that encodes for the PMCA 

protein which has been shown to play a role in the neuromuscular junction, 

synaptic terminals, muscle and heart tissue (Lnenicka et al., 2006; Desai-Shah 

et al., 2010; Desai et al., 2011). However, it is still not well-understood whether 

PMCA is required for the recovery at Drosophila egg activation. 
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5.1.8 Focus of this chapter 

This introduction provides an overview of the channels involved in calcium 

transport. In the table below I have summarised the relevant Drosophila 

homologues of these channels, and have highlighted those that are expressed 

in the ovarian tissue (Table 1). Due to time constraints of this project, I have 

selected the most likely candidates to investigate: (1) Painless; (2) Water-witch; 

(3) Trpm; (4) IP3 receptor; (5) NCX; (6) SERCA (Ca-P60A); and (7) PMCA. 
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Figure 5.1. Summary diagram of the channels that mediate calcium transport. 
Adapted from Harraz and Altier, Frontier Neuroscience, 2014. (A) The channels in the 
plasma membrane from left to right are: (1) Na+/Ca2+ exchanger (NCX); (2) Orai; (3) 
G-protein coupled receptor (GPCR); (4) Transient receptor potential (TRP); (5) 
Voltage-gated calcium channel (VGCC); (6) Ligand-gated channels; and (7) Plasma 
membrane calcium ATPase (PMCA). (B) Represent the endoplasmic reticulum inside 
the cell, starting from left with: (1) stomal-interacting molecule (STIM1); (2) ryanodine 
receptor (RyR); (3) IP3 receptor (IP3R); and (4) sarco-endoplasmic reticulum calcium 
ATPase (SERCA).
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Table 5.1. Summary of the possible Drosophila calcium influx channels and 
their expression levels in the ovarian tissue. 
Expression levels in the ovarian tissues based on the data from Drosophila FlyAtlas. 

Table 1

Protein name Gene name Annotation 
symbol

Expression in 
ovarian tissue

Level of 
expression

Type of the 
channel

1 Ryanodine Receptor rya-r44F CG10844 NO 5 ± 1 Ligand-operated

2 Flower fwe CG6151 YES 147 ± 5 Ligand-operated

3 IP3 receptor Itp-r83A CG1063 YES 42 ± 0 Ligand-operated

4 NMDA receptor 1 nmdar1 CG2902 NO 0 ± 0 Ligand-operated

5 NMDA receptor 2 nmdar2 CG33513 NO 0 ± 0 Ligand-operated

6 Orai-1 olf186-F CG11430 YES 362 ± 25 Store-operated

7 STIM Stim CG9126 YES 573 ± 5 Store-operated

8 Trpm trpm CG30079 YES 33 ± 1 Mechanosensitive 

9 Painless pain CG15860 YES 15 ± 1 Mechanosensitive 

10 Water-witch wtrw CG31284 YES 15 ± 1 Mechanosensitive 

11 Ripped-pocket rpk CG1058 YES 904 ± 10 Mechanosensitive 

12 Ca2+ channel α1 subunit D Ca-α1D CG4894 NO 0 ± 0 Voltage-gated

13 Ca2+-channel α1 subunit T Ca-α1T CG4894 NO 0 ± 0 Voltage-gated

14 Ca2+-channel-protein-β-
subunit

Ca-β CG42403 NO 1 ± 0 Voltage-gated

15 Cacophony cac CG43368 NO 5 ± 0 Voltage-gated

16 CG4587 CG4587 CG4587 NO 0 ± 0 Voltage-gated

17 Straightjacket stj CG12295 NO 2 ± 0 Voltage-gated

18 Organellar-type Ca-ATPase Ca-P60A CG3725 YES 543 ± 11 Calcium ATPase

19 Plasma membrane calcium 
ATPase

PMCA CG2165 YES 281 ± 4 Calcium ATPase

20 Na/Ca-exchange protein Calx CG5685 YES 42 ± 2 NCX
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5.2  Aims of this chapter 

1. To investigate the requirement of the mechanosensitive channels for 

calcium influx at Drosophila egg activation. 

2. To test the requirement of the IP3 channel for calcium influx at 

Drosophila egg activation. 

3. To address the requirement of the SERCA, PMCA and Na+/Ca2+ 

exchanger for the removal of calcium at Drosophila egg activation. 
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5.3 Results 

5.3.1 Trpm and Water-witch are possibly required for the calcium influx at 

Drosophila egg activation 

Drosophila expresses three TRP channels in the ovary: Painless, Water-witch 

and Trpm (Drosophila FlyAtlas). To address the requirement of these channels, I 

utilised mutant and RNAi lines to remove or knock-down the function of these 

genes. The first candidate I tested was Painless, which is part of the TRPA 

subfamily of channels. To address if Painless is required at egg activation, I  

tested the presence of the calcium wave in the mature oocytes expressing 

MyrGCaMP5 in a Painless mutant background (EP2251), which is a P-element 

insertion in the 5’- flanking region (Tracey et al., 2003). Upon the addition of AB, 

the mature oocytes swelled normally and showed the full calcium wave in 65% 

of the oocytes in the homozygous Painless background (n=17) (Figure 5.2) and 

70% in the heterozygous background (n=10) (Figure 5.2B). This is not 

significantly different compared to the number of the calcium waves present in 

the wild-type eggs (Figure 5.2B). This suggests that Painless is likely not 

required for the calcium wave at Drosophila egg activation. 

It is possible that Water-witch channels, instead, sense the change in the 

osmotic environment and mediate calcium influx at egg activation. To address 

this hypothesis, I expressed GCaMP3 in the homozygous Water-witch mutant 

background (EY20195), but this background was lethal. The heterozygous 

background of the same mutant showed the full calcium wave in 70% of the 

oocytes (n=10) (Figure 5.3A,D). Thus, I utilised an available RNAi knock-down 

line (BL51503), which is designed to reduce the Water-witch levels in somatic 

and germline tissues (in vivo fly RNAi TRiP collection). Upon the addition of AB 

to the mature oocytes expressing two copies of this RNAi line, the oocytes 

swelled as normal, but exhibited a slight, but significant decrease in the number 

of full calcium waves present at activation (50%, n=14, P=0.03) (Figure 5.3B,D). 

The expression of the Water-witch mutant with one copy of RNAi resulted in a 

decrease of the full calcium waves to 67% (n=9) (Figure 5.3C,D), which is not 

significant compared to the expression of both RNAi copies.  
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Figure 5.2. Full calcium wave is present in the Painless mutant background . 
(A) Time-series of ex vivo mature oocyte expressing UAS-MyrGCaMP5 following the 
addition of AB. The oocyte swells and shows the initiation and propagation of the 
calcium wave, similar to a wild-type calcium wave. The bright tissue around the egg is 
the ovarian tissue. Scale bar 60µm. Maximum projection = 40µm (B) Graph shows that 
the number of oocytes exhibiting the calcium wave is not significantly different between 
wild-type, heterozygous and homozygous Painless mutant (Fisher’s exact statistical 
test). 
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Interestingly, the expression of two RNAi copes, or one RNAi copy with a 

mutant, resulted in a more rounded shape and a decrease in the length of the 

oocyte by 40%. These oocytes became more rounded at swelling and lifted off 

the slide more frequently, making imaging more challenging. Thus, the region of 

imaging is reduced in comparison to wild-type (Figure 5.3B and 5.3C). These 

findings suggest that Water-witch is likely to mediate the calcium influx at egg 

activation. However, it is difficult to draw a definitive conclusion, as RNAi lines 

do not mediate a full knock-down of the gene. 

The final candidate that has been shown to be expressed in Drosophila ovarian 

tissue is Trpm (Drosophila Fly Atlas). To date, the role of Trpm has only been 

shown in calcium, magnesium and zinc ions’ homeostasis (Georgiev et al., 

2010; Hofmann et al., 2010). To investigate the role of Trpm in the calcium influx 

at Drosophila egg activation, I utilised a mis-expression line under the control of 

UASp from BDGP Gene Disruption Project (TrpmEY01618) (Bellen et al., 2004). 

TrpmEY01618 is a transposon P-element insertion in the 39th splice site of which 

results in an imprecise deletion of three exons of Trpm and subsequent mis-

expression of Trpm protein (Hofmann et al., 2010). I firstly expressed 

MyrGaMP5 in a homozygous TrpmEY01618 background. However, this cross 

turned out to be infertile. Therefore, I expressed only one copy of TrpmEY01618 

with GCaMP. Upon the addition of AB, the mature oocytes swelled as expected, 

but did not show the calcium wave in any experiments (n=14) (Figure 5.4). This 

would suggest that Trpm might be involved in regulating the entry of calcium 

into the mature oocyte. Interestingly, the mammalian homolog TRPM3 was also 

shown to be activated by hypotonic solution of 200mOsm, and to result in an 

intracellular calcium increase in HEK293 cells (Grimm et al., 2003). Therefore, 

Trpm is the best candidate investigated in this chapter to mediate the calcium 

influx in response to the osmotic pressure at Drosophila egg activation. 
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Figure 5.3. Full calcium wave is exhibited in Water-witch (Wtrw) depleted background at 
Drosophila egg activation. 
(A-C) Time-series of ex vivo mature oocyte expressing UAS-GCaMP3 following the addition of 
AB. (A-C) The oocyte swells and shows normal initiation and propagation of the calcium wave. 
(B-C) Water-witch RNAi background results in a reduced length of an oocyte. Upon the 
application of AB, the eggs were less stable on the slide, therefore the figure shows reduced 
area in panel B and C. (B). The dark lines or spots represent some extra tissue or bubbles. 
Scale bar 60µm. Maximum projection = 40µm. (D) Graph shows the number of the oocytes 
exhibiting the calcium wave. The significant difference is compared to the wild-type eggs 
expressing GCaMP only. Only two copies of Wtrw RNAi show a significant difference in the 
number of the full calcium wave present (P=0.03, Fisher’s exact test). 
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Figure 5.4. Heterozygous Trpm mutant results in no wave phenotype at egg activation . 
Time-series of ex vivo mature oocyte expressing UAS-MyrGCaMP5 following the addition of AB. 
The oocyte swells normally, but does not show the initiation or propagation of the calcium wave. 
Scale bar 60µm. Maximum projection = 40µm. 



5.3.2 RPK mechanosensitive DEG/ENaC channel results in a cortical 

calcium increase at Drosophila egg activation 

Another class of the mechanosensitive channels is DEGenerin/Epithelial Na+  

(DEG/ENaC) channels. These are important in transducing mechanical stimuli 

in many tissues, including neurones and epithelia.(Chalfie and Wolinsky, 1990; 

Driscoll and Chalfie, 1991; Garcia-Anoveros et al., 1995). In early development, 

DEG/ENaC channels have been shown to play an important role in the 

polyspermy block in Xenopus oocytes and in the blastocyst formation in 

mammals (Biggers and Powers, 1979; Robinson et al., 1991).  

Drosophila express two members of the DEG/ENaC channels family: 

Pickpocket and Ripped-pocket (RPK) (Adams et al., 1998; Darboux et al., 

1998). The RPK channel is specifically expressed in the oocytes from stage 5 to 

early embryos (Adams et al., 1998). To test whether RPK is required for egg 

activation, I utilised an RNAi line to knock-down RPK in somatic and germline 

tissues (BL39053). Upon the addition of AB to the oocytes expressing 

MyrGCaMP5 with two copies of RNAi, the mature oocytes exhibited the cortical 

calcium increase within the first 30 seconds, a lysing of the plasma membrane 

and a leaking of the cytoplasm in 74% of the oocytes (n=19) (Figure 5.5). This 

calcium phenotype is normally associated with the exposure of the oocyte to 

low osmolarity (Chapter 3), suggesting that RPK is required to mediate swelling 

of the oocyte at egg activation. 
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Figure 5.5. RPK knock-down results in the cortical calcium increase and a burst of the 
oocyte at egg activation. 
(A-B) Time-series of ex vivo mature oocyte expressing UAS-MyrGCaMP5 following the 
addition of AB.  The cortical increase appears within 30 seconds of the addition of AB, which is 
followed by the oocyte burst (white arrow). The dark spots represent excess tissue and 
bubbles around the oocyte. Scale bar 60µm. Maximum projection = 40µm. 



5.3.3 Possible IP3 receptor requirement at Drosophila egg activation 

The ER is a potential intracellular calcium store, which could coordinate the 

calcium influx via the IP3 and/or RyR receptors (Berridge, 2005; Clapham, 

2007). RyR is not expressed in Drosophila ovarian tissue (Drosophila Fly Atlas), 

and was shown not to be required for the calcium wave when inhibited with 

ruthenium red (Kaneuchi et al., 2015). Therefore, if the ER is essential for the 

Drosophila calcium wave, the IP3 receptor is the most likely candidate to 

mediate the calcium influx. 

    

To address this hypothesis, I observed the calcium wave phenotype in the IP3 

mutant background. I attempted to express GCaMP3 in an IP3 

transheterozygous mutant background, which is known to disrupt IP3-mediated 

calcium release (BL 30740 and BL30741). Since this genotype is lethal, I 

investigated the mature oocytes expressing only one copy of an IP3 mutant with 

GCaMP3 (BL 30741). Upon the addition of AB, I observed swelling and a full 

calcium wave in 80% of the oocytes, which was not significantly different to 

wild-type (n=10, P=0.6) (Figure 5.6). This does not prove that the IP3 receptor is 

not required for the calcium wave, as the calcium wave could have been 

rescued by the wild-type IP3 gene. Thus, to further investigate the IP3 receptor 

requirement for the calcium wave, I utilised IP3 RNAi lines expressed in the 

germline and somatic tissues (BL51795 and BL 51686). However, this genotype 

is also lethal. Therefore, it remains unclear whether the calcium wave depends 

on the IP3-mediated pathway at Drosophila egg activation. 
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Figure 5.6. Heterozygous IP3 mutant background displays a calcium wave at 
Drosophila egg activation. 
(A-E) Time-series of ex vivo mature oocyte expressing UAS-GCaMP3 following the addition of 
AB. The calcium wave initiates from the posterior within 1 minute of the addition of AB (B), 
propagates across the oocyte (C), initiates recovery at around 8 minutes 30 seconds (D) and 
is completed by 12 minutes (E). Scale bar 60µm. Maximum projection = 40µm. 



5.3.4 Misregulation of Na+/Ca2+ exchanger results in a reduced recovery 

time 

It is not clear how calcium concentration is brought to the basal levels after the 

propagation of the calcium wave at Drosophila egg activation. To investigate, 

whether the Na+/Ca2+ exchanger is required for the recovery of the calcium 

wave at Drosophila egg activation, the mature oocytes were incubated with LiCl 

(100mM, 260mOsm), a solution which increases calcium export (Flores-Soto et 

al., 2012). Upon addition of the solution, the calcium wave initiated within 30 

seconds and displayed a “cortical increase” (Figure 5.7). This calcium increase 

showed a significant decrease in recovery time, which on average was 

observed at 3 minutes (n=6, unpaired t-test, P=0.0006) (Figure 5.11), compared 

to the recovery time of 5 minutes 30 seconds in wild-type conditions. This 

decrease in the recovery time could be as a result of LiCl reversing the direction 

of Na+/Ca2+ exchanger, and pumping more calcium out, suggesting that the 

Na+/Ca2+ exchanger and external sodium concentration is important for a 

recovery of the calcium wave at Drosophila egg activation. 
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Figure 5.7. Na+/Ca2+ exchanger speeds up the entry and removal of calcium ions. 
Time-series of ex vivo mature oocyte expressing UAS-MyrGCaMP5 following the 
addition of LiCl (100mM). The oocyte swells normally and exhibits the initiation within 
30 seconds, and recovery by 5 minutes. Scale bar 60µm. Maximum projection = 40µm. 



5.3.5 Pharmacological inhibition and temperature-sensitive mutants of 

SERCA result in full recovery of the calcium wave 

In order to address whether the SERCA pump facilitates the recovery of the 

calcium wave at Drosophila egg activation, I incubated stage 14 oocytes in AB 

and Thapsigargin (10µM). Thapsigargin is a tumour-promoting sesquiterpene 

lactone that binds stoichiometrically to all SERCAs and irreversibly inhibits 

SERCA to remain in the calcium-free state (Lytton et al., 1991). Upon activation, 

the oocyte exhibited the full calcium wave that initiated from the posterior pole 

and propagated as normal (Figure 5.8) (n=11). Recovery time was 6 minutes 

and 45 seconds on average, which is consistent with standard AB experiments. 

This suggests that SERCA is not required for recovery of the calcium wave at 

egg activation. Although unlikely, there is still a possibility that Thapsigargin was 

not able to cross the plasma membrane due to the chorion and the vitelline 

membrane surrounding the mature oocyte. 

As an alternative approach, I tested the requirement of the SERCA pump using 

a temperature-sensitive mutant of SERCA CaP60AKum170 (Sanyal et al., 2005). 

This mutant was originally generated to investigate the role of SERCA in the 

larval neuromuscular junctions. It was shown that 3 minutes incubation at 40°C 

resulted in a paralysis of the CaP60AKum170 heterozygous flies (Sanyal et al., 

2005). Therefore, to test the function of SERCA in the recovery of the calcium 

wave at Drosophila egg activation, I adopted a protocol from Sanyal et al., 2005 

and incubated the mature oocytes, expressing CaP60AKum170 and GCaMP3, for 

10 min at 40°C. Upon activation, the incubated oocytes did not show any 

change in the recovery time of the calcium wave (data not shown). To ensure 

that the temperature-sensitive mutation was induced, I prolonged the incubation 

time to 40 minutes. This increase in the incubation time did not disrupt the 

morphology of the oocyte and did not cause a stress response, i.e. the 

formation of the P bodies aggregates (data not shown).  

Upon the addition of AB, the oocytes swelled and exhibited a calcium wave with 

a recovery time of 7′ 43″ ± 30″ (Figure 5.9) (n=6). Even with prolonged 

incubation for 60 minutes, I did not observe any change in the recovery time 

(data not shown). As an alternative heat-shock method, I incubated whole flies, 
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expressing CaP60AKum170 and GCaMP3,  for 40 minutes in a 40°C  hot-water 

bath. The oocytes from this fly also did not show any change in the recovery 

time, compared to the incubated oocytes. Interestingly, the incubation itself 

caused an increase in recovery time by 50% (n=7), compared to non-incubated 

wild-type oocytes. This would suggest that a change in temperature might be 

linked to the calcium recovery process in flies. Although both pharmacological 

and genetic approaches suggest that SERCA is not likely to play a role in 

removing cytosolic calcium at Drosophila egg activation, it is possible that heat-

shock treatment did not fully disrupt stability and perdurance of SERCA protein, 

therefore not showing any significant difference in calcium removal from the 

mature oocyte. Future research should focus on developing and testing RNAi 

lines specific to Drosophila germline tissues. 
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Figure 5.8. SERCA pump is not required for the recovery of the calcium wave at 
Drosophila egg activation. 
Time-series of ex vivo mature oocyte expressing UAS-myrGCaMP5, following the 
addition of  AB + Thapsigargin (10µM). The oocyte shows a calcium wave initiating from 
the posterior pole at 1 minute, fully propagating across entire the oocyte followed by the 
recovery within 20 minutes. Scale bars 60µm. Maximum projection = 40µm. 
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Figure 5.9 Temperature-sensitive SERCA mutation CaP60AKum170 shows normal 
recovery of the calcium wave at Drosophila egg activation. 
Time-series of ex vivo mature oocyte expressing UAS-GCaMP3 following the addition of 
AB. The oocyte swells and shows the initiation and propagation of the calcium wave 
within 2 minutes of activation. The calcium wave recovers fully within 13 minutes. Scale 
bar 60µm. Maximum projection = 40µm. 



5.3.6 PMCA is required for recovery of the calcium wave 

To test the function of PMCA at egg activation, mature oocytes were incubated 

in AB with sodium orthanovanadate (10mM, 260mOsm), a commonly used 

ATPase inhibitor (Lajas et al., 2001). Upon activation, oocytes swelled and 

showed a full calcium wave, with initiation delayed to 7 minutes and a “cortical 

increase” (Figure 5.10). In addition, the calcium wave did not recover in 85% of 

the oocytes, even after 90 minutes (Figure 5.10, n=12). This suggests a 

requirement for PMCA for the recovery of the calcium wave at egg activation. 

Whilst it is possible that sodium orthanovanadate blocked the recovery of the 

calcium wave by inhibiting SERCA, my data suggests that SERCA is not 

required for the recovery. Overall, my findings point towards an ATPase as the 

main channel for recovery of the calcium wave at Drosophila egg activation, 

potentially pumping calcium ions to the perivitelline space. Further work should 

test a more specific PMCA inhibitor caloxin (Griff et al., 2012) or an RNAi to 

verify PMCA function in Drosophila mature oocytes. 
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Figure 5.10 Inhibition of PMCA with sodium orthanovanadate results in a full 
inhibition of  calcium wave recovery . 
(A-E) Time-series of ex vivo mature oocyte expressing UAS-GCaMP3 following the 
addition of AB + sodium orthanovanadate (10mM). The oocyte swells and shows a 
delayed initiation and propagation of the calcium wave at around 7 minutes (B). At 40 
minutes, the oocytes does not show any decrease in calcium levels. Scale bar 100µm. 
Maximum projection = 40µm. 



 

�127

Incubation Solution Percentage of oocytes 
that recovered

Average recovery time

AB only 100% (n=10) 5 min 25 sec

AB + Thapsigargin (10μM) 100% (n=9) 6 min 45 sec

LiCl (100mM) 100% (n=6) 2 min 50 sec

AB + Sodium 
orthanovanadate (10mM)

25% (n=12) ∞ (infinite)

AB only Thapsigargin LiCl
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Figure 5.11. Comparison of the average calcium recovery times in inhibited 
backgrounds. 
(A) Dot plot of mean recovery time in different conditions: AB only (blue), AB + 
Thapsigargin (red) and LiCl (green). There is no significant difference in the recovery 
time in the oocytes treated with AB only or AB + Thapsigargin (p=0.12). But there is a 
significant decrease in the recovery time in LiCl treated oocytes compared to oocytes 
treated with AB only (p=0.02). AB only (n=7), AB + Thapsigargin (n=8) and LiCl (n=3). 
The data was analysed statistically using unpaired T-test with p<0.05 values showing 
significant difference. (B) Table provides a summary and quantification of the recovery 
times upon different pharmacological treatments. The mature oocytes treated with AB 
only, AB + Thapsigargin and LiCl all showed 100% recovery of the calcium wave. 85% of 
oocytes did not recover, when treated with AB + sodium orthanovanadate. The incubation 
of the mature oocytes with AB +Thapsigargin does not show a significant difference in 
the recovery time compared to AB only.



5.4 Discussion 

The data from this chapter shows that the calcium influx depends on TRPM and 

Water-witch channels and RPK DEG/ENaC channels at egg activation. I provide 

evidence for the requirement of ATPases for the removal of intracellular 

calcium, most likely mediated by the PMCA pump. 

5.4.1 Calcium influx at egg activation 

The entry of the calcium can be mediated from the extracellular environment via 

voltage-gated, mechanosensitive and store-operate channels. My data shows 

that external calcium is not required for the calcium wave at Drosophila egg 

activation (Chapter 3). However, the calcium influx can still be coordinated via 

these channels from the outer perivitelline space in the mature oocyte. 

5.4.1.1 The role of voltage-gated channels at egg activation 

Previous work has shown that a voltage change across the lipid bilayer may 

play a role in regulating the calcium influx channels in worm eggs of phyla 

Nemertea, Mollusca and Annelida (Stricker, 1999). In these studies, the eggs 

were treated with potassium buffers to induce the depolarisation of the lipid 

bilayer. The addition of the potassium buffer caused a “cortical flash”, rather 

than the calcium oscillations, suggesting that the voltage-change is required for  

calcium influx. 

More specifically, L-type voltage-gated calcium channels have been shown to 

be implicated in the resumption of the cell in many oocytes, including mussels, 

ascidians and mice (Murnane et al., 1988, Dale et al., 1991, Tomkoviak et al, 

1997). The T-type voltage-gated channel is also present in mouse eggs, but 

whether it is linked to the calcium oscillations at egg activation remains 

controversial, as mutant female mice are still fertile (Chen et al., 2003). 

However, it is not clear whether the voltage-gated calcium channels play a role 

in initiating the calcium influx in the Drosophila oocytes. It is possible that a 
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change in the membrane potential indirectly feeds into calcium signalling via 

other voltage-gated channels, including potassium and sodium channels. 

Therefore, I tested if there is a voltage change associated with egg activation 

using a genetically-encoded indicator Arclight, which did not show any visible 

change in fluorescence (data not shown). Further work should focus on injecting 

voltage indicators to clarify whether there is a change in voltage across the 

plasma membrane at Drosophila egg activation. 

5.4.1.2 The role of TRP channels at egg activation 

The influx of extracellular calcium can also be mediated via mechanosensitive 

TRP channels. The majority of findings related to the TRP channels have come 

from mouse oocytes. Recent work has shown the requirement of TRPV3 

channel for the calcium influx in mouse eggs (Lee et al., 2016). This channel 

was activated by the overexpression and the application of 2-ABP (Lee et al., 

2016). However, the role of TRPV3 is debatable, because another recent study 

has suggested the requirement of the TRPM7 channel instead of TRPV3 

(Carvacho et al., 2016). TRPM7 was shown to be essential for the calcium 

influx at egg activation using pharmacological blockers, and important for the 

pre-implantation of a fertilised mouse egg (Carvacho et al., 2016). Interestingly, 

sperm can facilitate the influx of external calcium at the site of fertilisation by 

passing TRP channels to the plasma membrane of the oocyte. This was shown 

to be true for C.elegans, where the mutant for TRP3 channel failed to exhibit a 

calcium raise at egg activation (Takayama and Onami, 2016). Therefore, TRP 

channels play an important role in numerous model systems at egg activation. 

My work shows that Trpm and possibly Water-witch are required for the calcium 

wave initiation at Drosophila egg activation. The common activation cues for 

these channels are osmotic shock or hydrostatic pressure (Grimm et al., 2003; 

Liu et al., 2007). These TRP channels might mediate the calcium influx in a 

redundant manner, therefore ensuring that a calcium increase occurs at egg 

activation. In Drosophila, a hypothesis would be that the mature oocyte is 

exposed to the osmotic pressure in the oviduct, resulting in the activation of 

Trpm and Water-witch, and a subsequent calcium influx. However, it is possible 
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that the RNAi lines used in this chapter might not have resulted in a complete 

knock-down. Therefore, it is important to keep in mind that other channels may 

play a role in mediating the calcium influx at Drosophila egg activation. Thus, 

future work should focus on understanding how Trpm, Water-witch and other 

possible candidates are activated in response to the oocyte swelling and how 

their activation results in the relay of the calcium influx in the form of a 

wavefront. 

5.4.1.3 The role of store-operated channels at egg activation 

Another class of calcium channels that regulate the calcium influx from the 

extracellular environment is the store-operated channels. Mammalian eggs 

undergo prolonged calcium oscillations for up to four hours at egg activation. It 

has been proposed that the levels of the intracellular calcium stores are 

maintained by the Orai/STIM complex. The original evidence for this hypothesis 

came from experiments that involved the treatment of mouse eggs with 

thapsigargin, which is known to deplete the ER (Kline and Kline, 1992; Machaty 

et al., 2002). This resulted in the calcium influx after adding more calcium to the 

external environment (Kline and Kline, 1992; Machaty et al., 2002). Further 

evidence highlighted the presence of Orai and STIM1 proteins in the mouse, 

porcine and human oocytes (Machaty et al., 2017). However, a more recent 

study contradicts this data by showing that the calcium influx is not affected in in 

the mutant backgrounds of Orai1, STIM1 or STIM2, and strongly points towards 

the TRPM7 requirement instead (Bernhardt et al., 2017). In Drosophila, Orai-1 

and STIM channels are highly enriched in the ovarian tissue (Table 1) 

(Drosophila Fly Atlas). It is possible that this protein complex might mediate the 

calcium influx at Drosophila egg activation. Therefore, future work should focus 

on testing the function of these proteins with the mutant and RNAi lines 

available. 
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5.4.2 Calcium release by IP3 receptors at egg activation 

Although, the entry of calcium from the external environment plays an important 

role in many eggs, the release of calcium from the intracellular stores, via the 

IP3 receptors (IP3R) seems to be a predominant mechanism for the calcium 

influx at egg activation. The initial requirement for the phosphoinositide pathway 

came from studies on sea urchin oocytes, where PIP2 was shown to increase at 

fertilisation (Turner et al., 1984). This was followed by the studies in sea urchin 

and golden hamster eggs, where the injection of purified IP3 resulted in the 

calcium wave and downstream processes of egg activation (Whitaker and 

Irvine, 1984; Swann and Whitaker, 1986; Miyazaki et al., 1988). The later 

identification of the IP3R structure enabled the testing of the direct role of the 

receptor in releasing calcium at egg activation (Furuichi et al., 1989). IP3R 

inhibition was achieved by the application of the antagonist heparin and the 

injection of an IP3 antibody specifically targeting the C-terminus of IP3R 

(Miyazaki et al., 1992). The inhibition of IP3R resulted in the disruption of 

calcium oscillations and downstream processes of egg activation (Miyazaki et 

al., 1992; Xu et al., 1994). Since then, IP3R was shown to be essential in the 

calcium release in the eggs of most animals, including frogs, starfish, sea 

urchins, ascidians, mice and human (Parys et al. 1994; Thomas et al. 1998; 

Yoshida et al. 1998; Runft et al. 1999; Goud et al. 2002; Iwasaki et al. 2002). 

These findings in the fertilisation field highlight an essential role that IP3R plays 

in mediating the calcium release from the ER at egg activation and fertilisation.  

It is not clear whether IP3R coordinates the calcium influx at Drosophila egg 

activation. My findings show that the homozygous mutant and RNAi fly lines are 

lethal, making it difficult to access the role of IP3R in the mature oocytes. 

Therefore, future experiments should test the IP3R function with the 

pharmacological antagonist heparin or the injection of antibodies against IP3R 

into the mature oocyte. The life-time of the IP3 ligand is 9/sec (Wang et al., 

1995), which is much faster compared to the speed of the calcium wave (1.5µm/

s) at egg activation. Therefore, it is unlikely that IP3R mediates the calcium 

influx at egg activation, with an alternative mechanism proposed in Chapter 7. 
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5.4.3 Calcium removal mechanisms at egg activation 

It is essential to efficiently remove calcium from the oocyte to maintain calcium 

homeostasis for further development of the embryo. The calcium removal can 

be mediated by ATPases, SERCA and PMCA, which use energy in the form of 

ATP to pump calcium out of the cytoplasm. Currently, there is limited evidence 

available on how calcium is removed from eggs after the calcium rise. For 

example, SERCA pumps were shown to play an important role in mouse 

oocytes, where SERCA was inhibited by thapsigargin blocker and resulted in 

the shorter calcium oscillations (Kline and Kiline, 1992). SERCA was also 

shown to undergo reorganisation in its redistribution in the ER in the frog 

oocytes, but the functional relevance of this is not yet clear (El-Jouni et al., 

2005). The involvement of PMCA ATPase is also somewhat elusive, but the 

inhibition of PMCA was shown to prolong the calcium recovery in Xenopus 

oocytes (El-Jouni et al., 2008). Alternatively, the cells can export calcium using 

the inward sodium chemical gradient by Na+/Ca2+ exchanger. The removal of 

external sodium ions can reverse the action of the exchanger and this was 

shown to be the case in mouse oocytes, where the calcium oscillations were 

faster (Pepperell et al., 1999; Carroll, 2000), a similar finding to what I observed 

with Drosophila oocytes.  

My findings suggest that PMCA ATPase, rather than SERCA, is required for the 

recovery of the calcium wave at Drosophila egg activation. The calcium is likely 

to be pumped out into the perivitelline space, as the presence of calcium ions 

has been documented in early Drosophila embryos (Stein and Nusslein-

Volhard, 1992). Further work should test a more specific PMCA inhibitor caloxin 

or RNAi against PMCA to verify its function at Drosophila egg activation. 
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Chapter 6  

Investigating mRNA localisation in 
Drosophila embryonic hemocytes
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6.1 Introduction 

6.1.1 Targeted protein expression via mRNA localisation 

Many biological processes require cells to mediate complex changes in 

response to internal and external cues. These processes include the 

development of the nervous system, tissue regeneration, wound healing, egg 

activation and fertilisation. While these are highly coordinated events, precisely 

how cells achieve this regulation is not fully understood.  

One way in which cells can mediate complex changes is through the spatial-

temporal regulation of protein expression. Asymmetric localisation of mRNA is a 

conserved mechanism for targeted protein expression and is required  for many 

cellular events: in budding yeast, ash1 mRNA is localised to the tip of the 

daughter cell and represses mating-type switching; in Xenopus, vegetal1 (vg1) 

mRNA is localised to the vegetal pole of an oocyte and is essential in axis 

determination and mesoderm signalling; in Drosophila, bicoid (bcd), oskar (osk), 

gurken (grk) and nanos (nos) mRNAs are localised to different regions of the 

oocyte and are essential for patterning the body axes (Martin and Ephrussi, 

2009; Medioni et al, 2012). Moreover, in humans, misregulation or disruption of 

mRNA translation has been shown to be involved in Alzheimer’s disease, 

Fragile-X syndrome and disease pathogenesis (Mus et al., 2007; Bassell et al., 

2008). Although targeting of transcripts within a cell is a commonly-used 

process, it is still not fully understood how mRNAs are differentially localised in 

a cell. 

mRNA undergo many events in the time from transcription to degradation. Once 

transcribed, an mRNA undergoes post-transcriptional splicing and is bound by 

numerous trans-acting factors to form a ribonucleoprotein complex (RNP) 

(Parton et al., 2014). It has been suggested that there are several mRNA 

molecules of the same species that are co-packaged in a RNP, as oskar mRNA 

was shown to multimerise in Drosophila oocytes (Hachet and Ephrussi, 2004; 

Jambor et al., 2011). However, mRNA particles are thought be individual in 

mammalian dendrites (Mikl et al., 2011). Subsequently, mRNAs exit nucleus via 
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the nuclear pores and travel to the required destination to become localised 

until the translation (Carmody and Wentle, 2009). 

6.1.2 mRNA localisation mechanisms 

There are several well-established mechanisms for RNPs localisation including 

diffusion-coupled local entrapment, local protection and active transport 

(Medioni et al., 2012). Diffusion-coupled local entrapment involves diffusion of 

mRNAs to the desired location and anchoring by the cytoskeleton (Medioni et 

al., 2012). Live imaging and pharmacological tools have shown that nanos (nos) 

mRNA diffuses to the posterior pole and becomes entrapped by actin in the 

Drosophila oocyte. Similar mechanism was observed when fluorescently 

labelled Xcat2 mRNA was injected into a Xenopus oocyte (Chang et al., 2004). 

Alternatively, local protection together with degradation has been shown to be 

involved in localisation of Hsp83 transcripts in Drosophila early embryogenesis 

(Ding et al., 1993). Mutant analysis have shown that Hsp83 mRNA localisation 

at the posterior is lost in Smaug depleted background (Semotok et al., 2005).  

The most common mechanism is active transport, where molecular motors 

move RNPs on polarised cytoskeletal tracks. Live imaging and 

immunoprecipitation analysis have shown that Kinesin-1 motor is required to 

transport numerous mRNAs to the plus-end of the microtubule (MT) 

cytoskeleton in mammalian dendrites (Kanai et al., 2004). Dynein, the minus-

end-directed MT-based motor was originally shown to function in Drosophila 

embryos, where transcripts of pair-rule genes, such as wingless, hairy and ftz, 

are localised to the apical cytoplasm (Bullock and Ish-Horowicz, 2001; Wilkie 

and Davis, 2001; Bullock et al., 2004). In addition, colcemid disruption of 

microtubules together with hypomorphic Dynein mutants have highlighted the 

important of active transport in localisation of bcd mRNA (Weil et al., 2006). 

While the prevailing model is that RNP is transported unidirectionally by a single 

motor to its destination, recent research on vg1 mRNA in Xenopus oocytes 

shows that mRNA can be transported bi-directionally using multiple types of 

motors (Gagnon et al., 2013). Together, these findings show that mRNAs utilise 

different mechanisms to ensure localisation until the translation. 
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6.1.3 mRNA translation 

To ensure localised protein synthesis, mRNA translation is thought to be 

repressed during the transport. This is thought to be achieved by the binding of 

a repressor protein to a cis-element in the mRNA (Besse and Ephrussi, 2008; 

Parton et al., 2014). The classic model of eukaryotic translation involves a step-

wise recruitment of trans-acting proteins, such as eIF4F factors, to cis-elements 

in the mRNA sequences that together initiate the translation (Jackson et al., 

2010). The step that is frequently targeted by trans-regulatory translational 

repressors is the binding of an initiation factor eIF4G to eIF4E, where eIF4E-

binding proteins compete with eIF4G binding (Besse and Ephrussi, 2008). For 

example, Cup is a Drosophila eIF4E-binding protein that repress translation of 

oskar mRNA by binding repressor Bruno at 3’-UTR. Previous work has shown 

that disruption of Cup-eIF4E interaction leads to a premature translation of 

oskar mRNA (Nakamura et al., 2004). Other mechanisms have been shown to 

repress translation, including regulation of polyadenine(A)-tail length or by 

blocking recruitment of ribosomal subunits (Castagnetti and Ephrussi, 2003; 

Zaessinger et al., 2006; Deng et al., 2008). Therefore, mRNA translational 

repression in ensured until the right time. 

6.1.4 mRNA localisation in migrating cells 

Migrating cells have been well-characterised and exhibit prominent structures 

that aid their movement. These include the lamellipodium - the leading edge; 

the filopodia - the membrane projections; and the retracting edge (Vicente-

Manzanares et al., 2005). The lamellipodium is known to provide the force for 

cell movement and is filled with actin branched networks (Machesky et al., 

1994; Mullins et al., 1997; Mullins et al., 1998). The branched actin is formed by 

the protein complex, called Arp2/3, that is in turn is regulated by another protein 

complex WAVE/Scar (Weaver et al., 2003). A more detailed discussion of the 

actin structure and the actin binding factors can be found in Chapter 4. The 

enrichment of actin and localisation of these factors, and many others, to the 

leading edge facilitates the rapid formation and turnover of the branched actin 

networks to coordinate directed cell movement (Bailly et al., 1999; Svitkina and 
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Borisy, 1999; Niggli, 2014). For example, recent study in cultured mouse neural 

progenitors has shown that genetic ablation of Arp2/3 results  in a reduced 

formation of the leading edge and slower movement of the cells (Wang et al., 

2016). Although actin and some actin-binding factors are enriched at the leading 

edge of the migrating cells, it is not well-understood whether mRNA localisation 

of actin or these factors in the leading edge plays a role in coordinating cell 

migration. 

 

Previous work has shown that β-actin mRNA localises to the leading edge and 

is required for the adequate cell movement in cultured chicken fibroblasts and 

myoblasts (Lawrence and Singer, 1986; Kislauskis et al., 1994; Kislauskis et al., 

1997; Bassell and Singer, 2001).  β-actin mRNA is proposed to be transported 

by Myosin motor proteins along the actin filaments to the leading edge, 

suggesting a conserved role of the cytoskeleton in transporting mRNA 

molecules. Once β-actin mRNA is transported to the required site, it is anchored 

by EF1α to the actin cytoskeleton (Liu et al., 2002). Transfection with the 

antisense oligonucleotides have shown the requirement of a zipcode sequence 

located in the 3’-UTR to translationally-repress β-actin mRNA (Kislauskis et al., 

1994). Further studies using electrophoretic mobility shift assay together with 

the crystallography have shown that this zipcode sequence is bound by the 

Zipcode binding protein 1 (ZBP1), which induces morphological looping of 

mRNA (Farina et al., 2003; Chao et al., 2010). It is proposed that ZBP1 is 

phosphorylated by Src kinase, which facilitates the dissociation of ZBP1 from 
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Figure 6.1. Diagram of a migrating fibroblast.
Adapted from Medioni et al., 2012. Fibroblast migrating to the right direction. Arp2/3 proteins 
are enriched in the leading edge (lamellipodium) of the fibroblast. Arp2/3 and β-actin mRNA 
are also localised to the leading edge of the migrating fibroblast.

Lamellipodium



the mRNA zipcode sequence, which upregulates the translation of β-actin 

mRNA (Huttelmaier et al., 2005).  

Actin-binding factors have also been shown to localise with actin transcripts. 

The nucleating factor, arp2/3 mRNA, was shown by fluorescent in situ 

hybridisation to localise to the leading edge in embryonic chicken fibroblasts 

and Dictyostelium (Mingle et al., 2005). This localisation was suggested to 

require an activity of Rho, as the overexpression of the Rho resulted in the 

delocalisation of arp2/3 mRNA, suggesting that this localisation requires an 

activity of Rho (Mingle et al., 2009).  

A different study has utilised a method where fibroblasts were placed on the 

microporous gel and were treated with a migratory stimuli, inducing 

pseudopodia extensions into the gel (Mili et al., 2008). Further fractionation and 

microarray analysis allowed a genome-wide screen in fibroblasts, which 

identified many (more than 50) different mRNAs that localise to extending 

pseudopodia (Mili et al., 2008). Overall, these findings suggest that mRNA 

localisation of the actin and actin-binding factors may play a role in mediating 

successful cell movement in response to stimuli. While these, and other, studies 

show that mRNA plays a role in coordinated cell movement in tissue culture, an 

in vivo dynamic cell model has yet to be explored. 

6.1.5 Drosophila embryonic hemocytes as a system to study cell 

migration 

Drosophila embryonic hemocytes are a well-established system used to study 

coordinated cell migration, chemotaxis during inflammation and apoptotic 

clearance (Wood et al., 2006; Wood and Jackinto, 2007; Ratheesh et al., 2015). 

Hemocytes are the motile cells of the immune system that are required for 

embryonic development and phagocytosis of pathogens (Wood and Jackinto, 

2007). Immunohistochemistry and live imaging experiments have identified that 

hemocytes originate from the head mesoderm at stage 10 of embryogenesis 

and start dispersing across the entire embryo following specific migratory routes 

at 0.4µm/min (Figure 6.2) (Tepass et al., 1994, Wood et al., 2006). Hemocytes 
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form a single line at stage 14 on the ventral side of an embryo, which is followed 

by alignment of the hemocytes into three parallel lines by stage 16 (Figure 6.2) 

(Tepass et al., 1994, Wood et al., 2006). The hemocyte migration is mediated by 

PDGF/Vegf-regulated ligands (Pvfs) , which were shown by in situ hybridisation 

to mimic the migratory routes of hemocytes in the embryo. Further mutant 

analysis have shown that Pvfs act as chemoattractants to direct hemocyte 

movement (Cho et al., 2002; Wood et al., 2006). Interestingly, hemocytes 

become highly polarised with a persistent leading edge of 20µm and increase 

their velocity to 1.8µm/min during lateral migration from stage 14 onwards 

(Wood et al., 2006), suggesting that there is a change in the morphology and 

dynamics of the hemocytes. 
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Figure 6.2. Hemocytes distribution and migratory routes at Drosophila embryogenesis.
Adapted from Wood and Jackinto 2007. Left column shows hemocyte distribution from stages 
10-16 of embryogenesis from the lateral-view. Right column shows hemocyte distribution from 
stage 10-16 of embryogenesis from the ventral view. Red boxes highlight the areas of interest 
for examination of mRNA localisation in hemocytes.



To sense this signal, hemocytes express the Pvr receptor that senses Pvfs 

ligands and is required for the migration and survival of the hemocytes (Cho et 

al., 2002; Sears et al., 2003). The hemocytes depleted of Pvr receptor do not 

undergo the migration and remain in the head mesoderm (Cho et al., 2002; 

Sears et al., 2003). Further mutant analysis with immunofluorescence has 

shown that Pvr is required for the anti-apoptotic survival of the hemocytes, and 

suggests that the aggregation of the hemocytes is caused by cells engulfing 

and clearing the apoptotic derby (Bruckner et al., 2004). As the hemocytes 

follow pre-determined routes within an embryo, it provides a well-characterised 

model system to study cell migration in vivo. Whilst, there has been extensive 

research into the mechanism of hemocyte cell movement, it is currently 

unknown whether mRNA localisation plays a role in mediating this movement, 

as in the cultured systems. 

6.1.6 Selection of mRNA candidates to visualise in embryonic hemocytes 

It is well-established that actin is required for cell movement and is enriched at 

the leading edge of hemocytes (Vicente-Manzanares et al., 2005; Zanet et al., 

2009). However, it is not known which actin is required for hemocyte movement. 

There are six actin genes in Drosophila: Act5C, Act42A, Act79B, Act87E, Act57A 

and Act88F (Fyrberg et al., 1983). Biochemical approach with blot analysis has 

showed that: (1) Act42A and Act5C encode cytoplasmic and cytoskeletal actin, 

and are present in all developmental stages; (2) Act57A and Act87E transcripts 

are abundant during late embryogenesis, and correlate their expression with 

larval musculature differentiation; and (3) Act79B and Act88F show maximal 

levels of expression during mid-to-late pupal development (Crossley, 1978; 

Fyrberg et al., 1983). Based on this data, I selected act42A, act87E as 

experimental and act79B as a control in this candidate approach to investigate if 

actin mRNA exhibits any localisation in embryonic hemocytes. In addition, I 

tested the localisation of a conserved factor SCAR, which is known to regulate 

polymerisation of actin and is required for hemocyte movement  (Mus et al., 

2007; Pollitt et al., 2009; Evans et al., 2013). 
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6.2 Aims of this chapter 

1. To address whether transcripts of actin and/or actin-binding factor 

localise to the leading edge of Drosophila embryonic hemocytes. 

2. To optimise fixing conditions to visualise mRNA using in situ 

hybridisation in Drosophila embryonic hemocytes. 
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6.3 Results 

6.3.1 Visualisation of mRNA in embryonic hemocytes 

To address whether some actin and/or actin-binding factor’s transcripts are 

enriched in hemocytes, mRNA was initially visualised using in situ hybridisation. 

Hemocytes were visualised by antibody staining against GFP expressed in 

hemocytes via the UAS/GAL4 system. The enrichment of mRNA was compared 

in hemocytes in the embryonic head region at stage 12 to the ventral side at 

stage 15, which are known to be more polarised and show a larger leading 

edge (Figure 6.2, highlighted in the red box) (Wood et al., 2006; Wood and 

Jackinto, 2007). The enrichment of mRNAs was used to describe the presence 

of visible “clumps” within hemocytes, which are bigger than four pixels. The 

number of hemocytes with mRNA enrichment was compared to the total 

number of hemocytes observed in a single plane. As act79B mRNA was used 

as a control, the enrichment level of this transcript was used to determine 

whether other mRNA candidates were enriched in hemocytes. 

Upon visualisation, act42A mRNA was found to be enriched in hemocytes at 

both stages (Figure 6.3-6.4), while act87E and act79B did not show any 

enrichment at either of the stages as expected (Figure 6.5-6.8). In contrast, 

SCAR mRNA was found to be enriched in hemocytes and form five times bigger 

mRNA particles at stage 15 (Figure 6.10), suggesting that its activity might be 

unregulated in more polarised and faster hemocytes. The enrichment was 

quantified for all transcripts and act42A was found to be enriched in 77% of 

hemocytes at stage 12 and 79% at stage 15 (Table 6.1). SCAR mRNA was only 

enriched in 33% of hemocytes at stage 12, but in 72% at stage 15 (Table 6.1). 

Both act87E and act79B were present in no more than 30% hemocytes at both 

stages (Table 6.1). Together these findings suggest that act42A and SCAR 

mRNA are both enriched in hemocytes, however, it is unclear whether they 

show any particular localisation, such as at the leading edge. 
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Figure 6.3. act42A mRNA is enriched in hemocytes at stage 12 of embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP 
antibody (cyan) shows hemocyte distribution. (B,E) In situ hybridisation of act42a mRNA 
(magenta). (C,F) Merge. (B) Antisense show enrichment of act42A mRNA in puncta 
within hemocytes, whereas sense does not. White arrows point at act42A mRNA 
enriched in hemocytes. Single frame. Scale bar 10µm.

Figure 6.4.act42A mRNA is enriched in hemocytes at stage 15 of embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP 
antibody (cyan) shows hemocyte distribution. (B,E) In situ hybridisation of act42a 
mRNA (magenta). (C,F) Merge. (B) Antisense show enrichment of act42A mRNA in 
puncta within hemocytes, whereas sense does not. White arrows point at act42A 
mRNA enriched in hemocytes. Single frame. Scale bar 10µm.
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Figure 6.6.act87E mRNA is not enriched in hemocytes at stage 15 of 
embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP 
antibody (cyan) shows hemocyte distribution. (B,E) In situ hybridisation of act42a mRNA 
(magenta). (C,F) Merge. (B) Antisense shows no enrichment of act87E mRNA. Single 
frame. Scale bar 10µm.

Figure 6.5.act87E mRNA is not enriched in hemocytes at stage 12 of 
embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP 
antibody (cyan) shows hemocyte distribution. (B,E) In situ hybridisation of act42a mRNA 
(magenta). (C,F) Merge. (B) Antisense show no enrichment of act87E mRNA. Single 
frame. Scale bar 10µm.
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Figure 6.7.act79B mRNA is not enriched in hemocytes at stage 12 of embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP antibody 
(cyan) shows hemocyte distribution. (B,E) In situ hybridisation of act79B mRNA (magenta). 
(C,F) Merge. (B) Antisense shows no enrichment of act79B mRNA. Single frame. Scale bar 
10µm.

Figure 6.8.act79B mRNA is not enriched in hemocytes at stage 15 of embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP antibody 
(cyan) shows hemocyte distribution. (B,E) In situ hybridisation of act79B mRNA (magenta). 
(C,F) Merge. (B) Antisense shows no enrichment of act79B mRNA. Single frame. Scale bar 
10µm.
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Figure 6.10. SCAR mRNA is enriched in hemocytes at stage 15 of embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP 
antibody (cyan) shows hemocyte distribution. (B,E) In situ hybridisation of SCAR mRNA 
(magenta). (C,F) Merge. (B) Antisense shows enrichment of SCAR mRNA. White arrows 
point at SCAR mRNA enriched in hemocytes. Single frame. Scale bar 10µm.

Figure 6.9. SCAR mRNA is not enriched in hemocytes at stage 12 of embryogenesis. 
Embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A,D) Anti-GFP antibody 
(cyan) shows hemocyte distribution. (B,E) In situ hybridisation of SCAR mRNA (magenta). 
(C,F) Merge. (B) Antisense shows no enrichment of SCAR mRNA. Single frame. Scale bar 
10µm.



6.3.2 Fixation results in a loss of the leading edge in embryonic 
hemocytes 

Cells are highly polarised during migration with a leading edge protruding at the 

front of a cell (Figure 6.12A). The leading edge is driven by actin polymerisation 

and is thought to pull a migrating cell forward (Ananthakrishnan and Ehrlicher, 

2007). Drosophila hemocytes have a leading edge, which extends up to 20µm 

from the cell body from stage 14 of embryogenesis (Wood et al., 2006). This 

edge was not observed during embryo fixation in the data above. Instead, 

hemocytes adopted a rounded and less polarised shape. With the prediction 

that mRNA localisation of actin would occur in the leading edge, based on 

fibroblasts data, I sought to preserve these structures during the in situ 

hybridisation protocol.  

Previous work has shown that the addition of sucrose into fixative medium can 

preserve cells in neuronal tissue (Hollenbeck et al., 1987). Following a protocol 

from the Holt Lab (Cambridge) (Campbell and Holt, 2001), I added 15% sucrose 

into original 2% paraformaldehyde solution in order to fix Drosophila embryos. 

However, these conditions again did not preserve a leading edge in hemocytes. 

Moreover, this created a speckled-background in the cells and made it difficult 

to analyse hemocytes (Figure 6.12B). Another known structural preservation 

method is to perform the fixation protocol at 4°C (Figure 6.12C). However, this 

protocol also did not preserve the leading edge. Furthermore, the length of 

fixation was also modified from 15 minutes to 5 minutes and 1 minute in an 

attempt to preserve the leading edge of hemocytes. However, despite this, 

hemocytes remained rounded after fixation with no distinct polarisation. Further 
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Table 6.1. Quantification of mRNA from in situ hybridisation data.
The percentage represents the proportion of hemocytes out of a total number of hemocytes 
showing an enrichment for the mRNA. act42A mRNA is highly enriched at stage 12 and 15. 
act87E and act79B mRNA show low enrichment at both stages. SCAR mRNA is highly enriched 
in hemocytes at stage 15, but less at stage 12. 



personal communication confirmed that the loss of a leading edge in fixed 

tissue is a recurring problem in the field. I conclude that fixation of embryos 

which is required for the in situ hybridisation is not an optimal approach as it is 

difficult to establish if mRNA localises to the leading edge.  
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Figure 6.13. Hemocyte leading edge is lost during fixation protocol.
Stage 15 embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A-C) Fixed 
embryos stained with anti-GFP antibody (cyan) shows hemocytes. (A) Embryos fixed for 1min, 
(B) embryos fixed for 5min, (C) embryos fixed for 15min. Hemocyte leading edge was not 
observed at any timings (A-C). Single frame. Scale bar 10μm.

Figure 6.12. Hemocyte leading edge is lost during fixation protocol.
Stage 15 embryos expressing UAS-GFP driven by srp-GAL4 and crq-GAL4. (A) Live 
hemocytes. (B-C) Fixed embryos stained with anti-GFP antibody (cyan) shows hemocytes. (B) 
Embryos fixed with 15% sucrose, (C) embryos fixed at 4°C. Hemocyte leading edge was 
observed only in live hemocytes (A), but not in (B-C). White arrows are pointing at the 
hemocyte leading edge. Single frame. Scale bar 10μm.



6.3.3 Visualisation of mRNA in live hemocytes with MS2-system 

An alternative approach to in situ hybridisation is to visualise mRNA live with the 

MS2-system (reviewed in Weil et al., 2010). This system involves two 

transgenic constructs. The first is made by introducing multiple copies of the 

MS2 stem-loops binding sites in the 3’-UTR of mRNA of interest. The second 

construct expresses the MS2 coat protein fused to a fluorescent protein (Weil et 

al., 2010). Expression of both constructs in the same animal allows the 

visualisation of mRNA in living tissue, which was originally shown with ash1 

mRNA in yeast and nanos mRNA in flies (Bertrand et al., 1998; Forrest and 

Gavies, 2003; Weil et al., 2006).  

As act42A mRNA was found to be enriched in fixed hemocytes, act42A mRNA 

was visualised in live hemocytes using the MS2-system. The fly lines were 

obtained from the St Johnston Lab (Cambridge), which had been developed as 

part of the screen in oogenesis. Although the construct was designed to be 

expressed in the germline with UAS/GaL4 system, I tested if it could be driven 

in hemocytes. I visualised ac42A-GFP in live hemocytes at stage 15 of 

embryogenesis and found that act42A mRNA exhibited rounded “clumps” 

across the entire area of the hemocyte (Figure 6.14A). To address whether 

act42A mRNA exhibits a greater localisation at the leading edge, I attempted to 

express an RFP marker, together with act42-GFP, to visualise the leading edge 

of the hemocytes. Unfortunately, the marker did not show any expression in the 

hemocytes. Recent work has designed new hemocyte markers with much 

brighter levels of mCherry in the hemocytes (Gyoergy et al., 2018). Future work 

on this project could test these markers with act42a MS2 lines. 
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Figure 6.14. Visualisation of act42A mRNA in live hemocyte at stage 15.
(A) Stage 15 embryo expressing UAS-act42AMS2 and UAS-MCP-GFP driven by crq-
GAL4. (B) Stage 15 embryo expressing control UAS-MCP-GFP only. (A) shows 
act42A mRNA puncta compared to the control (B). White arrows are pointing at 
act42A mRNA. Single frame. Scale bar 1μm.



6.4 Discussion 

In summary, the data from this chapter shows that act42A mRNA is enriched in 

both stage 12 and 15 embryonic hemocytes, whilst SCAR mRNA is highly 

present in more polarised stage 15 hemocytes. My findings show that in situ 

hybridisation is not an optimal technique to study mRNA localisation in 

embryonic hemocytes. Instead, the MS2-system provides a possible suitable 

alternative to visualise mRNA live in Drosophila embryonic hemocytes. 

Drosophila embryonic hemocytes could provide a suitable in vivo model system 

to study the role of mRNA localisation in cell migration. Although in situ 

hybridisation is a quicker way to visualise the transcripts in hemocytes, it results 

in a loss of the leading edge and it is not possible to determine whether the 

mRNAs show any particular localisation within a cell. Therefore, I would 

propose to utilise the MS2-system to visualise act42A and SCAR mRNAs in live 

hemocytes. Currently, there are no constructs designed for expression in 

hemocytes (personal communication). A different lab attempted to build the 

hemocyte-specific constructs to visualise some transcripts that might be 

involved in cell movement (personal communication). Unfortunately, these lines 

did not work and did not show any expression, likely due to mRNA construct 

issues. An alternative solution would be to use CRISPR system to guide and 

insert the stem-loops into the mRNAs candidates. 

6.4.1 Wounding assay to study mRNA localisation in directed hemocyte 

migration  

During hemocyte migration along the developmental routes, the hemocytes are 

able to detect wounds in the Drosophila embryo. They respond by diverting 

from their characteristic route and rapidly migrate towards the wound. This 

process allowed the design of the wounding assay, where laser ablation of an 

epithelial layer induces directed hemocyte migration towards the wound 

(Stramer et al., 2005).  
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Compared to migrating hemocytes, wound-induced hemocytes are considered 

faster and more-directed and are recruited to the site within 30 minutes of 

ablation (Wood et al., 2006). These hemocytes require the formation of the actin 

protrusions in the leading edge, as the pharmacological disruption of actin 

resulted in the failure of the hemocytes to reach the wound site (Wood et al., 

2006). They do not depend on Pvf signalling as in the migrating hemocyte at 

stage 15 (Wood et al., 2006), and instead, sense and move towards hydrogen 

peroxide released from the wound site.  

Previous work has shown that hydrogen peroxide is generated by the enzyme 

NADPH oxidase (DUOX) which has two EF hand domains that bind calcium, 

thus linking calcium and the wound-induced hemocyte migration (Moreira et al., 

2010). The visualisation of calcium by genetically-encoded indicator GCaMP 

has shown that there is an increase in calcium in the form of a “flash” at the 

wound (Razzell et al., 2013). The calcium increase was shown to travel across 

the epithelial cells via innexins and to last up to 15 minutes (Razzell et al., 

2013). The reduction in calcium levels by pharmacological agents, Thapsigargin 

or EGTA, significantly decreased the number of hemocytes recruited to the 

wound (Razzell et al., 2013). A similar finding was shown with Trpm channel 

knock-down, which resulted in a decrease of calcium and a reduced number of 

recruited hemocytes (Razzell et al., 2013). My findings from Chapter 5 have 

shown that Trpm is also required for the initiation and propagation of the 

calcium at Drosophila egg activation. Therefore, it is possible that the laser 

ablation of the outer epithelial layer in embryos results in the additional calcium 

influx from the extracellular space to support the propagation of a calcium wave 

across the epithelial cells.  

I would propose to investigate mRNA localisation using the wounding assay, by 

ablating the ventral side of an embryo and following act42A or SCAR mRNA 

with MS2-system. It is possible that mRNA localisation is more prominent in the 

hemocyte leading edge during wound-induced migration, compared to the 

hemocytes at stage 15 of embryogenesis. The differences in mRNA enrichment 

should be compared between hemocyte populations to assess potential 

changes in the mechanism of mRNA transport, anchoring or localisation. In 
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summary, Drosophila embryonic hemocytes provide a suitable in vivo model 

system with the development of new tools to study directed cell migration. 

Further understanding of the mRNA localisation in the embryonic hemocytes 

should highlight some conserved similarities  with vertebrate macrophages.  
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Chapter 7  

Discussion 
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7.1 Summary and model for Drosophila egg activation   

In summary, my data shows that the calcium wave associated with egg 

activation is initiated by osmotic pressure, which likely comes from hypotonic 

external fluid. The osmotic pressure is sufficient to mediate the dispersion of P 

bodies, a likely mechanism for the translation of maternal transcripts, and the 

metaphase-to-anaphase transition of the meiotic spindle, which is indicative of 

the resumption of the cell cycle. My data provides further evidence of a possible 

role for the aquaporin channels in mediating water homeostasis to withstand the 

osmotic pressure at Drosophila egg activation. Furthermore, I show that the 

osmotic pressure results in the dispersion of the cortical actin cytoskeleton, 

which is a likely mechanism leading to the activation of the mechanosensitive 

channels and the influx of calcium at egg activation. I show the requirement of 

Trpm and RPK channels in coordinating the initiation of the calcium wave, whilst 

eliminating the role of other calcium channels. Finally, I show that the calcium 

wave is followed by the non-cortical F-actin wavefront. This F-actin wavefront is 

calcium-dependent and exhibits similar dynamics to the calcium wave. 

Together with the work of others, this data suggests a model for the mechanism 

of Drosophila egg activation (Figure 7.1). Once the female fly undergoes 

ovulation, the meiotically-arrested mature oocyte passes into the female 

oviduct. The mature oocyte is exposed to the osmotic pressure from the 

hypotonic oviduct fluid, which causes the oocyte to swell. The swelling results in  

uniform tension of the plasma membrane and the dispersion of the cortical 

actin. The decreased density of cortical actin at the posterior pole results in 

faster dispersion of this actin and initial opening of mechanosensitive channels 

such as Trpm via the internal domain of the channels. This results in the initial 

calcium influx from the perivitelline space at the posterior pole. Further 

increases in intracellular calcium are relayed across the oocyte by the activation 

of the neighbouring mechanosensitive channels via the dispersion of the cortical 

actin cytoskeleton at the lateral sides, resulting in the calcium wave propagation 

across the oocyte. The calcium wave is then followed by the F-actin wavefront, 

which ensures the restructuring or repolymerisation of cortical F-actin across 

the oocyte, deactivating the calcium influx channels. The recovery of the 

calcium wave is mediated by PMCA, which pumps calcium back into the 
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perivitelline space. Overall, a single calcium wave prepares a Drosophila 

mature oocyte to undergo successful embryogenesis, independent of 

fertilisation. 
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7.2 Drosophila calcium wave as a slow calcium wave 

Calcium waves can be classified by how fast they traverse the cell: ultrafast, 

fast, slow and ultra slow (Jaffe, 2008). In most animals, calcium waves travel at 

10-30 µm/sec during egg activation, which is a typical speed range for fast 

calcium waves (Jaffe, 2002). However, some oocytes exhibit slow calcium 

waves, which propagate across an egg at 0.2 - 2 µm/sec. The slow calcium 

waves are usually associated with a morphological change, such as indentation 

in the plasma membrane like furrow cleavage. For example, the first 

visualisation of such a wave was achieved by the injection of aequorin into 

medaka fish eggs undergoing furrow cleavage (Fluck et al., 1991). Similar 

calcium waves were also observed in the eggs of Xenopus and zebrafish (Muto 

et al., 1996; Creton et al., 1998). 

Although there are numerous examples of slow calcium waves that are known 

to associate with developing eggs after activation, only maize eggs exhibit a 

slow calcium wave at egg activation (Antoine et al., 2000). This slow calcium 

wave was shown to propagate at 1 µm/sec (Antoine et al., 2000). It is currently 

unknown why maize eggs have evolved to have a slow calcium wave at egg 

activation. One possibility is that the maize eggs do not undergo cortical  

granule exocytosis to prevent polyspermy at egg activation. Thus, there might 

not be a need for the maize eggs to invest extra energy and cellular resources 

to coordinate the fast calcium wave. In contrast, ascidian oocytes display a fast 
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Figure 7.1. Model diagram summarising the events of Drosophila egg activation. 
(A) Before egg activation, meiotically-arrested mature oocyte is in the posterior half of the 
ovary. The cortical actin (cyan blue) is found in a tight band at the plasma membrane of the 
oocyte. The calcium channels are in a closed formation and there is no calcium influx from the 
perivitelline space. (B) 1 minute post egg activation, the mature oocyte enters the oviduct and 
uptakes oviduct fluid, which results in swelling (purple arrows outside the oocyte) of the oocyte 
promoted by aquaporin channels (blue). Subsequently, cortical actin undergoes dynamic 
dispersal (cyan blue dashed line and cyan arrows), resulting in the opening of the 
mechanosensitive channels TRP (orange), initiating calcium influx from the posterior pole. 
Calcium wave (blue) is propagated to the anterior pole by additional calcium influx from nearby 
TRP channels. Mechanosensitive RPK (yellow) and NCK (green) channels mediate sodium 
homeostasis. (C) 5 minutes post egg activation, F-actin wavefront (purple) initiates from the 
posterior pole following the calcium wave, allowing the repolymerisation of cortical actin (cyan 
arrows) after the initial cortical actin dispersion and closing of TRP channels. Calcium wave 
recovery is mediated by PMCA transporting calcium back to the perivitelline space. Together, 
these events result in the processes of egg activation, such the resumption of cell cycle, 
translation of mRNAs and cross-linking of the chorion layer.



calcium wave at egg activation, but do not undergo exocytosis of cortical 

granules, suggesting that these two processes are not necessarily linked 

(Speksnijder et al., 1990). Drosophila oocytes do not use cortical exocytosis to 

prevent polyspermy. Instead, the mature oocytes ensure monospermy by the 

presence of a single site for sperm entry and direct competition between sperm 

cells (Loppin et al., 2015). Similarly to maize eggs, it is possible that Drosophila 

oocytes do not require the fast calcium wave at egg activation and instead 

evolved to have a slow calcium wave, which propagates at a speed of 1.5 µm/

sec.  

The proposed mechanism for the slow calcium wave propagation involves the 

activation of the mechanosensitive channels, compared to the IP3-mediated fast 

calcium wave (Jaffe, 2008). The opening of the mechanosensitive channels is 

mediated by tension in the plasma membrane and results in the influx of 

calcium. The slow calcium wave propagation is then coordinated by the opening 

of the neighbouring channels via changes in the actin cytoskeleton and myosin 

networks. The calcium wave associated with Drosophila egg activation appears 

to be another example of a slow calcium wave, which uses a similar mechanism 

for the propagation.  

In Drosophila, the calcium wave initiates from the posterior pole upon the 

exposure of the oocyte to the oviduct fluid. The mature oocyte swells, which 

introduces tension to the plasma membrane and results in the dispersion of the 

actin cytoskeleton, initially at the posterior pole. Both of these are likely to act as 

an activation cue for the mechanosensitive channel, Trpm, and potentially other 

candidates (Chapter 5). The calcium wave is then relayed by the opening of the 

neighbouring mechanosensitive channels towards the anterior pole. It remains 

unclear why the slow calcium wave is beneficial to Drosophila oocytes at egg 

activation. It is possible that the slow calcium wave prepares the mature oocyte 

for fertilisation, creating a favourable environment for the sperm to enter the 

egg. Although, the oocyte does not undergo cortical granule exocytosis, egg 

activation results in the cross-linking and hardening of the outer shell chorion. It 

is possible that the slow calcium wave ensures prolonged presence of the 

oocyte within a female fly, in order to prepare the oocyte against the 

extracellular environment once deposited. Overall, it is clear that the calcium 
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wave at Drosophila egg activation presents a new example of the slow calcium 

wave, with more apparent similarities to plant rather than vertebrate eggs. 

7.3 Plant egg activation vs Drosophila egg activation 

Plants provide an interesting class of organisms due to the presence of double-

fertilisation. Plant sperm cells are immobile and are brought into close proximity 

to an egg via the pollen tube. Two sperm cells are released and bind to two 

female gametes: the egg and central cell. The release of sperm cells from the 

pollen tube is thought to result in the initial events of egg activation and an 

increase in intracellular calcium (Denninger et al., 2014; Hamamura et al., 

2014). 

The first observation of a calcium increase was visualised in maize eggs, where 

the calcium wave was shown to take on average 24 minutes to propagate at 

1.13 µm/sec and then recover (Digonnet et al., 1997; Antoine et al., 2001). 

Previous work has shown that the calcium wave initiates after the fusion of 

sperm with the oocyte and requires mechanosensitive channels for the initiation 

and propagation of the calcium wave (Antoine et al., 2001). In the case of Fucus 

Rhizoid zygotes, the calcium wave is induced by hypo-osmotic shock and is 

also dependent on mechanosensitive channels, as the treatment with 

gadolinium chloride causes the inhibition of the calcium influx (Taylor et al., 

1996).  

The mechanism of a calcium increase seems to differ in the eggs of flowering 

plants. For example, Arabidopsis oocytes exhibit a shorter calcium increase 

upon fertilisation, which on average lasts up to 3 minutes (Denninger et al., 

2014; Hamamura et al., 2014). There are two calcium increases that have been 

shown to associate with Arabidopsis egg activation (Hamamura et al., 2014). 

The first calcium increase has been shown to be concomitant with the release 

of the pollen from the pollen tube, and the second calcium increase to correlate 

with the fusion of sperm with an egg (Hamamura et al., 2014). It is hypothesised 

that the first calcium increase is caused by the mechanical pressure generated 

by the pollen tube discharge (Hamamura et al., 2011).  
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Together, this evidence highlights many parallels between Drosophila and non-

flowering plant egg activation. These include the propagation speed of the 

calcium wave, potential involvement of the mechanosensitive channels to 

mediate the calcium influx and the absence of cortical granule exocytosis to 

prevent polyspermy. 

7.4 The importance of Drosophila egg activation and parallels with other 

insects 

A common theme has emerged, where insect egg activation is independent of 

fertilisation and, instead, depends on the deformation of the oocyte’s plasma 

membrane. Egg activation has been studied in many insects, including 

honeybees, mosquitos and turnip sawfly (Sawa and Oishi, 1989; Sasaki and 

Obara, 2002; Yamamoto et al., 2013). Many of these insects undergo 

parthenogenetic development, where haploid eggs develop into males.  

Previous work has shown that the immersion of the oviposited mature oocytes 

of yellow fever mosquito into water can resume the oocyte development 

(Kliewer, 1961). A similar scenario was shown to occur in the oocytes of turnip 

sawfly and in the malaria vector mosquito, where egg activation was initiated by 

placing the oocytes into water (Sawa and Oishi, 1989; Yamamoto et al., 2013). 

It is likely that the osmotic pressure from water causes the mature oocytes to 

swell, stretching the plasma membrane of the oocyte, initiating an increase in 

intracellular calcium and resuming downstream processes of egg activation. 

Another form of tension can be applied on the oocyte during the passage 

through the insect female oviduct. Previous work has shown that the eggs of 

honeybees can be activated by placing them into a glass capillary tube imitating 

the pressure from the oviduct (Sasaki and Obara, 2002). Similar mechanical 

pressure from the oviduct acts as an initiation cue for egg activation in eggs of 

the parasitic ichneumon wasp (Went and Krause, 1973; Went and Krause, 

1982). Therefore, osmotic and physical pressures seem to be predominant 

initiation cues of egg activation in insects. 
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Drosophila is currently the only example of an insect in which the mature 

oocytes have been shown to exhibit an increase in intracellular calcium at egg 

activation (York-Andersen et al., 2015; Kaneuchi et al., 2015). Future work 

should focus on understanding the parallels between insect, plant and 

mammalian mechanisms of egg activation. Understanding the conserved 

pathways will provide better insights on the evolution of fertilisation and egg 

activation, which can facilitate the development of the in vitro fertilisation 

techniques in many species. One should not forget that understanding the 

insect egg activation in particular may help in the discovery of an insecticide 

which can target egg activation as an early stage of insect development. 

Overall, my work has laid the foundation of the model system for studying insect 

egg activation, which can be used to study egg activation in Tribolium, butterfly 

and mosquito eggs. 
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(Adapted for figure 3.2). 

https://fgr.hms.harvard.edu/fly-in-vivo-rnai (in vivo fly RNAi (TRiP)) 
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