
Distributional and relational

inductive biases for graph

representation learning in

biomedicine

Paul Morio Scherer

Gonville and Caius College

This dissertation is submitted on May, 2023 for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of

work done in collaboration except as declared in the Preface and specified in the text. It is

not substantially the same as any that I have submitted, or am concurrently submitting, for a

degree or diploma or other qualification at the University of Cambridge or any other University

or similar institution except as declared in the Preface and specified in the text. I further state

that no substantial part of my dissertation has already been submitted, or is being concurrently

submitted, for any such degree, diploma or other qualification at the University of Cambridge or

any other University or similar institution except as declared in the Preface and specified in the

text. This dissertation does not exceed the prescribed limit of 60 000 words.

Paul Morio Scherer

May, 2023

Abstract

Distributional and relational inductive biases for graph representation learning

in biomedicine

Paul Morio Scherer

The immense complexity in which DNAs, RNAs, proteins and other biomolecules interact

amongst themselves, with one another, and the environment to bring about life processes

motivates the mass collection of biomolecular data and data-driven modelling to gain insights into

physiological phenomena. Recent predictive modelling efforts have focused on deep representation

learning methods which offer a flexible modelling paradigm to handling high dimensional data

at scale and incorporating inductive biases. The emerging field of representation learning on

graph structured data opens opportunities to leverage the abundance of structured biomedical

knowledge and data to improve model performance.

Grand international initiatives have been coordinated to organise and structure our growing

knowledge about the interactions and putative functions of biomolecular entities using graphs and

networks. This dissertation considers how we may use the inductive biases within recent graph

representation learning methods to leverage these structures and incorporate biologically relevant

relational priors into machine learning methods for biomedicine. We present contributions in two

parts with the aim to foster research in this multidisciplinary domain and present novel methods

that achieve strong performance through the use of distributional and relational inductive biases

operating on graph-structured biomedical knowledge and data.

The first part is concerned with consolidating and expanding the current ecosystem of practical

frameworks dedicated to graph representation learning. Our first contribution presents Geo2DR,

the first practical framework and software library for constructing methods capable of learning

distributed representations of graphs. Our second contribution, Pytorch Geometric Temporal, is

the first open source representation learning library for dynamic graphs, expanding the scope of

research software on graph neural networks that were previously limited to static graphs.

The second part presents three methods wherein each contribution tackles an active biomedical

research problem using relational structures that exist within different aspects of the data. First

we present a methodology for learning distributed representations of molecular graphs in the

context of drug pair scoring. Next, we present a method for leveraging structured knowledge

on the variables of gene expression profiles to automatically construct sparse neural models for

cancer subtyping. Finally, we present a state-of-the-art cell deconvolution model for spatial

transcriptomics data using the positional relationships between observations in the dataset.

Acknowledgements

First and foremost, I would like to acknowledge my supervisors Pietro Liò and Mateja Jamnik.

Your mentorship, constructive feedback, and infectious enthusiasm for research have profoundly

influenced both my academic and personal growth, for which I am deeply grateful. I believe

that our talented, but more importantly, amazingly collaborative and supportive group is a

testament to your positive influence on everyone in the lab. I cannot thank you both enough for

this journey and the privilege to be part of the lovely groups you have fostered.

Throughout the PhD, I have had the privilege of meeting and collaborating with exceptionally

bright and kind individuals, many of whom I now call dear friends. I would like to extend special

acknowledgements to: Nikola Simidjievski, Ramon Viñas Torné, and Benedek Rozemberczki.

Thank you for our engaging discussions on biology, physics, and machine learning, as well as our

many digressions and rants into other topics. An extra special thanks goes to Nikola Simidjievski

for reading all of my work multiple times, inspiring confidence when I needed it most, and

providing invaluable research advice. Sharing this journey with all of you has made it infinitely

more enjoyable and fulfilling.

To all the members of the AI group and the wider Computer Laboratory, thank you for the

camaraderie, shared experiences, and support throughout this journey. In no particular order,

I want to mention: Helena Andrés Terre, Ben Day, Arian Jamasb, Emma Rocheteau, Petar

Velic̆ković, Cristian Bodnar, Jacob Deasy, Jacob Moss, Konstantin Hemker, Mateo Espinosa

Zarlenga, Felix Opolka, Dobrik Georgiev, Botty Dimanov, Simeon Spasov, Tiago Azevedo,

Giovanna Maria Dimitri, Cătălina Cangea, Duo Wang, Apinan Hasthanasombat, Chaitanya

Joshi, Charlie Harris, Iulia Duta, Urs̆ka Matjas̆ec, Julia Komorowska, Pietro Barbiero, Simon

Mathis, Agnieszka S lowik, Alexander Norcliffe, Andrei Margeloiu, Francisco Vargas, Aditya

Ravuri, Charlotte Magister, and Fredrik Rømming. Your enthusiasm for research, collaborative

spirit, and commitment to advancing knowledge has been a constant source of inspiration. I have

the deepest respect for you all and wish you continued success in all your endeavours.

The Computer Laboratory would not be able to function without the invaluable support of

the postgraduate and systems administration team. I would like to acknowledge Lise Gough,

Joy Rook, Marketa Green, Malcolm Scott, and Mark Cresham. They have always been there to

provide a helping hand or advice since I joined the CL as an MPhil student many years ago.

I express my gratitude to the University of Cambridge, with special acknowledgment to

Gonville and Caius College, for providing a stimulating academic environment, state-of-the-art

resources, and a supportive community. A significant portion of my PhD was completed during

the COVID-19 pandemic. During this uncertain time, Gonville and Caius College was a constant,

reassuring presence that offered the welfare support I needed to focus on my work. Additionally,

I extend my appreciation to the W.D. Armstrong Trust and the School of Technology for funding

my research and providing me with this great opportunity.

A special mention goes to Yana Lishkova — thank you for the countless all-nighters at the

library, motivation during the lowest lows, and constant reminders to take care of myself. In the

numerous times I contemplated giving up this pursuit, you helped me get back on my feet to try

again. I have no doubt that your ever-present friendship and support over the last decade has

made this achievement possible.

Finally, I am deeply grateful to everyone in my family. Their encouragement and understanding

in my pursuits have been my anchor throughout this demanding journey. I dedicate this

achievement to them.

Contents

1 Introduction 15

1.1 Motivation and overview . 15

1.2 Research questions . 18

1.3 Contributions and thesis outline . 20

1.4 List of publications . 23

2 Background 27

2.1 Machine learning essentials . 27

2.1.1 Data representations . 28

2.1.2 Neural networks . 28

2.1.3 Inductive biases . 31

2.2 Graphs . 32

2.3 Machine learning on graph-structured data . 33

2.4 Substructure-level learning . 34

2.4.1 Neighbourhood reconstruction methods 35

2.4.1.1 Factorisation based methods . 35

2.4.1.2 Random walk distributed embeddings 37

2.4.1.3 Strengths and limitations of factorisation and random walk based

embeddings . 37

2.4.2 Graph neural networks . 38

2.4.2.1 MPNN framework . 40

2.5 Graph-level learning . 41

2.5.1 Kernel based methods . 42

2.5.2 GNNs for graph-level learning . 43

2.6 Research software . 45

2.6.1 Software libraries for graph machine learning research 45

3 Learning distributed representations of graphs 49

3.1 Overview and contributions . 49

3.2 Introduction . 50

3.3 Background . 50

3.4 A conceptual framework for learning distributed representations of graphs 51

3.5 Overview of Geo2DR . 53

3.6 Annotated coding example . 55

3.7 Empirical evaluation . 57

3.8 Related work . 60

3.9 Maintaining Geo2DR . 60

3.10 Summary . 61

4 Towards representation learning on dynamic graphs 63

4.1 Overview and contributions . 63

4.2 Dynamic graphs and spatio-temporal graphs . 65

4.3 GNN based methods for spatio-temporal graphs 67

4.3.1 Sequence models . 68

4.3.2 GNNs in sequence models . 70

4.4 Existing software for learning on dynamic graphs 71

4.5 PyTorch Geometric Temporal . 72

4.5.1 Neural network layer design . 72

4.5.2 Data structures for spatio-temporal graphs 73

4.5.3 Datasets . 76

4.6 Annotated coding example . 77

4.6.1 Coding example: cumulative model training on CPU 78

4.6.2 Coding example: incremental model training with GPU 80

4.7 Empirical evaluation . 81

4.7.1 Experiment setup . 81

4.7.2 Validation and comparative analysis of methods 81

4.7.3 Runtime performance . 82

4.7.3.1 Experimental findings . 83

4.8 Maintaining PyTorch Geometric Temporal . 83

4.9 Summary . 84

5 Distributed representations of graphs for drug pair scoring 85

5.1 Overview and contributions . 85

5.2 Introduction . 86

5.3 Background and related work . 87

5.3.1 Unified framework for drug pair scoring 87

5.3.2 Representations for drugs . 88

5.3.3 Neural models for drug pair scoring . 89

5.4 Study and methods . 90

5.4.1 Distributed representations of graphs . 90

5.4.2 Arguing for the use of distributed representations of drugs in drug pair

scoring pipelines . 91

5.4.3 Incorporating distributed representations of graphs into existing drug pair

scoring pipelines . 92

5.5 Experimental setup . 94

5.6 Results and discussion . 95

5.6.1 Additional experiments . 96

5.6.1.1 Additional experiments: prediction on unseen drugs 96

5.6.1.2 Additional experiments: transfer learning and distributional shift

in substructure patterns . 97

5.6.1.3 Ablation study on hyperparameters of learning distributed repre-

sentations . 99

5.7 Summary . 99

6 Structural inductive biases for gene expression profiles using external interac-

tion networks 101

6.1 Overview and contributions . 101

6.2 Methods . 102

6.2.1 Processing and generating case study PPI networks 104

6.2.2 Protein complex discovery . 104

6.2.3 Computational graph construction and predictive models 105

6.2.4 Experimental setup . 106

6.3 Results . 108

6.3.1 Factor graphs produced by GINCCo are considerably sparser than fully

connected network models . 108

6.3.2 Empirical results show integration of prior biological knowledge yields

strong predictive performance . 109

6.3.3 Experiments against randomly structured computational graphs show

GINCCo models capture useful parameterisations 110

6.4 Related work and discussion . 111

6.5 Summary . 115

7 Relational inductive biases for spatial cell type deconvolution 117

7.1 Overview and contributions . 117

7.2 Background . 118

7.3 Cell2Location . 119

7.3.1 Description of Cell2Location deconvolution pipeline 123

7.3.1.1 Computing reference cell type signatures 124

7.3.1.2 Inference . 125

7.4 MPNN-C2L: spatially aware spatial cell deconvolution 125

7.4.1 Constructing a spatial proximity graph on the spatial RNA-seq output . . 125

7.4.2 MPNN-C2L . 126

7.5 Experimental setup . 129

7.6 Results . 130

7.6.1 Comparative analysis on synthetic data 130

7.6.2 Analysis of human lymph node sample . 132

7.7 Discussion . 134

7.8 Summary . 135

8 Conclusion 137

8.1 Summaries of contribution chapters . 138

8.2 Outlook . 139

References 143

A Graph statistics and deterministic quantification of node similarities 171

B R-Convolutional graph kernels 175

B.1 Subgraph based graph kernels . 175

B.2 Subtree pattern based graph kernels . 175

B.3 Walk and path based graph kernels . 176

C Supplementary materials to Chapter 3 177

C.1 Dataset details . 177

C.2 Hyperparameter selections of re-implemented methods 178

C.2.1 Graph kernels . 178

C.2.2 Deep graph kernels and graph embeddings 178

D Supplementary materials to Chapter 5 181

D.1 Ablation study over the two hyperparameters in learning distributed representations181

D.1.1 Dimensionality of distributed representations 181

D.1.2 Number of training epochs for distributed representations 182

E Supplementary materials to Chapter 6 183

E.1 Sample-label distributions . 183

E.2 Additional metrics . 184

E.3 Statistical significance tests . 186

F Supplementary materials to Chapter 7 187

F.1 Directed graphical model . 187

F.2 Effect of increasing neighbourhood size . 187

CHAPTER 1

Introduction

.

1.1 Motivation and overview

Modern research in the life sciences is characterised by an ongoing quest to elucidate and quantify

the various biomolecular entities distributed inside of organisms. Alongside advancements in

engineering and informatics, this quest has led to an explosion of new sequencing technologies and

experimental protocols which let us capture genomic, transcriptomic, proteomic, and metabolomic

entities within organisms at ever higher fidelities and scales. These technologies have given

us glimpses into the incredibly complex manner in which DNAs, RNAs, proteins and other

biomolecules interact amongst themselves, with one another, and the environment which they

operate in to bring about life processes [1].

At the same time, our growing ability to take apart living systems and capture the distributions

of biomolecular entities within them prompts an equal effort to understand how they coalesce

to bring about physiological phenomena. Part of this effort has focused on the development of

data-driven machine learning methods to model the relationships between the many biomolecular

signals we can measure with the underlying biological phenomena of interest.

Developments in this form of predictive modelling have recently focused on the design of

deep representation learning methods, because of their ability to extract salient features and

build increasingly useful vector space representations of high dimensional input data at scale [2].

Furthermore, inductive biases achieved through the incorporation of specialised differentiable

operations and objective functions enable modellers to incorporate useful priors about the input

data such as structure into the learning process. The development of these operators is relevant in

biomedical learning applications, as they often operate in low data regimes wherein the number of

observations is dwarfed by the high dimensionality of associated feature vectors and such inductive

biases can help learning methods perform better in specific tasks. Indeed, many useful inductive

biases on regularly structured data such as grids and sequences have enabled practitioners to

devise useful deep learning methods for biomedical image data such as mammograms [3] and

longitudinal patient data for ICU length-of-stay prediction [4].

However, the nascent nature of representation learning on graph-structured data has meant

15

that few deep learning applications exist which leverage the abundance of structured biomedical

data and knowledge that can be used to better represent input data and improve model per-

formance. Great international research efforts have been coordinated to combine and structure

our growing knowledge about the interactions and putative functions of biomolecular entities

using graphs and networks. These graphs and networks exist at multiple scales and contexts. For

example, at the molecular scale we may find molecular graphs representing entities such as drugs

[5–7]. At interactome scales we can find networks of interacting entities such as protein-protein

interaction networks (PPI), which are painstakingly crafted and curated to record interactions

between proteins, and can be analysed to discover functional groups and modules [8, 9]. Even

knowledge is structured, such as in the Gene Ontology, which provides functional annotations

and relationships between genes and gene products within a directed acyclic graph [10].

Therefore, research and development of explicit inductive biases for graph-structured data

offers opportunities to utilise the relational structures of input data and knowledge to incorporate

biologically relevant priors into the learning process. Naturally, this leads to the overarching

research question of this thesis:

How can we leverage the relational structures in biomedical knowledge and data

to incorporate biologically relevant inductive biases into neural machine learning

methods?

This thesis approaches this question in two parts in order to present contributions that will 1)

foster and democratise research in this domain as well as 2) describe novel methods which utilise

relational structures existing in different aspects of the input data to create performant models.

Part 1: In order to construct biologically relevant relational priors we must be able to align

the assumption which we believe to be useful for the representation learning process with the

mechanism supposed to enact it. This requires a practical understanding of existing graph repre-

sentation learning methods from the perspective of the underlying inductive biases incorporated

in them. Similarly, as translational research is a fundamentally applied science we also require

the tools and software packages to translate theory into practical applications operating on

real-world hardware.

The first part is thus dedicated to contributions consolidating and expanding the current

landscape of practical frameworks dedicated to graph representation learning. So far, large

scale efforts to consolidate, organise, and standardise different GRL methods has led to the

construction of theoretical frameworks and efficient software libraries, especially in the domain

of message passing based graph neural networks (GNN). However, the nascent nature of the

field means that there are still numerous gaps to be filled. Such gaps include frameworks for

describing methods utilising distributional inductive biases or software libraries for constructing

representation learning methods for dynamic graphs. Addressing these gaps is important, as

conceptual frameworks enable more understanding and effective communication about existing

methodologies. By addressing these gaps, we may consider the strengths and limitations of

methods within the applications we want to deploy them in. Similarly, the construction of software

toolkits enables more effective translation of theoretical hypotheses into concrete realisations

16

operating on real-world hardware. Not addressing these concerns in a fundamentally applied

science like biomedical informatics and machine learning would hinder progress — and even

worse, acts as a barrier to researchers who stand to contribute greatly to this emerging field.

To this aim, the thesis presents a background chapter and two core chapters with new

contributions. Chapter 2 serves to give a comprehensive summary of key graph representation

learning approaches from early graph kernel approaches to current trends in GNNs from the

perspective of the inductive biases incorporated into them. In Chapter 3, we present Geo2DR, a

conceptual framework for defining methods capable of learning distributed representations of

graphs built on extending the R-Convolutional kernel for discrete structures [11]. An associated

software library of the same name utilises this framework to allow rapid re-implementation of

all existing methods and construction of novel methods. Chapter 4 presents Pytorch Geometric

Temporal, the first open source library for neural representation learning of spatio-temporal

graphs. Through stratification of different dynamic graph types, we present memory efficient

data structures for realising a variety of dynamic graphs with rich attributed data and temporal

patterns. Alongside the data structures, and efficient implementations of various GNNs for

spatio-temporal graphs, the library introduces a number of real-world datasets to foster research

progress and translational research in this promising avenue of research.

Part 2: The second part of this thesis is dedicated to presenting novel methods employing

distributional and relational inductive biases in biomedical contexts. Three core chapters are

dedicated to this part each tackling an active biomedical modelling problem with a novel GRL

based method and a different aspect of relational structure in the input data.

Chapter 5 considers representation learning for observations which are graphs. We introduce

a methodology for learning distributed representations of graphs in the context of drug pair

scoring, wherein each observation is a drug represented by its molecular graph. Chapter 6

considers the utilisation of known relationships between features in the feature vectors associated

with observations. For this, we introduce a novel methodology which incorporates external

interactomics data to automatically guide and construct sparse predictive models applicable on

gene expression profiles. Finally, in Chapter 7 we look at utilising the relational structures between

observations within a dataset to inductively bias a model. Herein, we construct relationships

based on the positional proximities of gene expression readings obtained in spatial transcriptomics

sequencing of tissue samples to develop a spatially aware generative model for in situ cell-type

deconvolution.

A recurring theme across these contributions is the construction of explicit inductive biases

enacting biologically relevant priors into the neural models to better characterise observations

and improve performance. The contributions of part 2 serve to frame the different relational

structures and learning mechanisms that can be utilised to enact useful priors. Together with

the contributions of part 1, the thesis contributions will give future practitioners the tools and

methodologies to implement their own approaches and extensions to this important domain.

17

1.2 Research questions

As mentioned previously, in this thesis we expand and build upon existing frameworks for graph

representation learning, analyse their capabilities within the demanding contexts of biomedical

applications, and construct models employing advanced distributional and relational inductive

biases to improve performance in existing and novel biomedical applications. Broadly speaking,

we frame our work into two parts contextualised within existing and concurrent research through

5 research questions. The first part aims to present novel frameworks and corresponding software

libraries that expand our current zoo of graph representation learning methods, and highlight

different inductive biases operating within them. The second part aims to present 3 applications

of GRL within biomedical contexts, each showcasing a different scenario in which relational

structure in data can be utilised to create novel and performant deep learning models. These 3

methods show how to:

1. Utilise GRL to construct representations wherein each observation is associated with a

graph.

2. Utilise knowledge of relationships between the features of feature vectors in the representa-

tion learning process.

3. Utilise relationships between observations in the dataset during representation learning.

Five fine-grained research questions contextualise our contributions within existing research

efforts to create frameworks in GRL and address concrete biomedical problems. The first two

questions apply to the first part, and the latter three questions apply to the second part.

Research Question 1: How can we develop a practical framework for learning distributed

representations of graphs? Can we translate these abstractions into GPU ready software packages

for research purposes?

The state-of-the-art for machine learning on graph-structured data is dominated by graph

kernels and more recently by Graph Neural Networks (GNNs). The latter are particularly well

characterised through the relational message passing based framework and its generalisations

presented by Gilmer et al. [12], Battaglia et al. [13], and Fey [14]. GNNs are also extremely

well represented practically through research software packages such as PyTorch Geometric [15],

DGL [16], Jraph [17], and Spektral [18] to just name a few. Concurrent efforts in extending

graph kernels using the distributional hypothesis to learn continuous vector representations have

not had the same treatment despite their state-of-the-art performance across many tasks and

domains [19–21]. Naturally, this leads to the question of how we may consolidate existing and

novel methods for learning distributed representations under a general framework that can also

be realised in an efficient software package for research.

Research Question 2: How can we practically extend and implement GNNs to learn on

dynamic graphs?

18

Current GNN research is heavily focused on static graphs — graphs whose nodes and/or edges,

and their features do not change over time. However, there are numerous phenomena that are

better represented using dynamic graphs. This gap can be attributed to the notorious difficulty

of implementing efficient data structures and learning algorithms for dynamic graphs and the

complete lack of research toolkits for neural representation learning on dynamic graphs. To

construct learning methods that are scalable, we must construct memory efficient data structures

based on the stratification of various types of dynamic graphs. We must also characterise the

inductive biases and neural operators within GNN methods applicable to dynamic graphs.

Research Question 3: How can we learn and then incorporate distributed representations of

drugs into drug pair scoring pipelines? Do the theoretical properties of the inductive biases imply

competitive performance in practice?

Drug pair scoring refers to the prediction tasks that answer questions about the consequences

of administering a pair of drugs at the same time such as drug synergy prediction, polypharmacy

prediction, and predicting drug-drug interaction types which are of great interest in the treatment

of diseases.

A key component to modelling drug pairs is finding useful representations of the drugs to

input into the drug pair scoring models. Traditional supervised machine learning methods for

drug pair scoring rely on carefully crafted descriptors and molecular fingerprinting techniques.

More recently, graph neural network layers and permutation invariant pooling operators have

enabled inputting the molecular graphs of drugs directly to learn task oriented representations

in an end-to-end manner. Interestingly, graph kernel techniques and specifically distributed

representations of graphs were not considered at all for inclusion in drug pair scoring pipelines

to the best of our knowledge — despite their good performance in other quantitative structure-

relationship modelling tasks. Constructing methods applicable in the general framework of

drug pair scoring would allow us to study the utility of distributed representations across tasks

such drug synergy, polypharmacy, and drug-drug interaction prediction. Furthermore, good

performance in these tasks could also imply gains in other biochemical applications.

Research Question 4: How can we incorporate relational information about genes and

gene products within external interactome data into the design of neural network models for

transcriptomics data?

The success of deep learning algorithms has often been fueled by availability of large annotated

datasets and a growing ability to leverage computation. Unfortunately, in many important

domains, such as chemistry, biology, and in particular clinical medicine the collection of large

datasets is often infeasible due to political, economic and contextual reasons. For example, for any

given translational study involving data from clinical trials on rare diseases it is constrained to the

number of study participants, measurements that were possible at the time, and data governance

policies (and publishing goals that discourage sharing) that may constrain the availability of

data from other research groups around the world. On the other hand, the goal of precision

medicine leads to an increasing amount of multi-modal measurements at increasing levels of

fidelity, typically expressed as high dimensional feature vectors.

19

In our case study we are interested in modelling gene expression data at its full measured

resolution of 20,000+ genes, within the larger scope of integrative approaches to breast cancer

subtyping. We are interested in looking at using network analysis techniques to incorporate

structured functional knowledge contained within external interactomics. Our hypothesis is that

the use of such knowledge can help constrain the space of possible differentiable models which

could improve performance, or offer additional insights into the functional roles of the measured

biomolecular entities.

Research Question 5: Does utilisation of spatial relationships between observations of single

cell RNA-seq readouts realised through GNNs improve our ability to perform spatial single-cell

deconvolution?

Recent advancements in spatial transcriptomics (ST) technologies have enabled new capabili-

ties to measure gene expressions along with the locations at which these expressions arise on

tissues. This enables us to understand various biological processes that underlie physiological

phenomena such as cell signalling which is integral to the prevention of cancers, autoimmune

dysfunction, and diabetes. An important step before this is the elucidation of cell types and

their distributions across locations of the tissues whose mRNA expressions are measured, as the

ST measurements are still done at multi-cellular resolution. This process, known as spatial cell

deconvolution, is an active point of research where the state-of-the-art set in 2021 is a hand

crafted hierarchical probabilistic model known as Cell2Location. We ask how and whether the

incorporation of spatial structure between observations attenuated by graph neural networks will

improve model performance based on historical observations that cell types exhibit non-random

colocation patterns.

1.3 Contributions and thesis outline

This thesis contains contributions with the broad aim of democratising graph representation

learning for both ML practitioners and biomedical researchers through practical frameworks

and examples through which graph-structured biomedical data can be effectively used to create

performant representation learning methods. Our contributions take steps to this aim by

addressing the aformentioned research questions. A diagrammatic overview of all the different

main contributions and chapters of this thesis is given in Figure 1.1.

In Chapter 2, we present a distilled overview of machine learning methods on graph-structured

data. We define key characteristics of graphs and graph-structured data which allow us to

efficiently communicate about observations and data representations. In particular, we will

distinguish learning tasks between substructure and graph level learning tasks. With this

in mind, we will cover seminal literature from classic graph machine learning towards deep

graph representation learning methods from perspective of the assumptions and inductive biases

incorporated into their design. This chapter will also introduce a unified framework for message

passing GNNs which are currently the most popular realisation of GRL [14]. Finally, we also

look at the current landscape of open source research software for graph representation learning,

analysing their features and current gaps.

20

GRL of graph structured
observations

GRL utilising relational information
over the features of the observations

GRL utilising relational information
between observations

Chapter 5 Chapter 6 Chapter 7

Chapter 3

Learning distributed
representations of graphs

Chapter 2

Machine learning and representation learning on graph
structured data

Representation learning on dynamic graphs with GNNs

Chapter 4

A
pplied &

translational science
(in biom

edicine)

B
asic m

achine
learning science

Distributed representations of graphs for
drug pair scoring

Structural inductive biases for gene
expression profiles using external

interaction networks

Relational inductive biases for spatial cell
type deconvolution

Figure 1.1: A diagrammatic breakdown of the various chapters and contributions of this thesis. Chapter
2 provides a distilled overview of machine learning on graph-structured data up to the current trends in
graph representation learning with GNNs, and the plethora of message passing based toolkits which exist
to support this approach to GRL. Chapter 3, presents a conceptual framework and associated software
package for utilising the distributional inductive biases to learn representations of graphs, horizontally
extending our current scope of representation learning frameworks. Chapter 4, builds upon the message
passing paradigm for learning representations of dynamic graphs. Hence both Chapters 3 and 4 extend and
fortify our understanding of inductive biases and learning methods for graph-structured data in general.
These help us align biologically relevant assumptions with the mechanisms that can enact them as inductive
biases (bottom boxes support the upper boxes). Chapters 5-7 each explore open biomedical research
tasks with novel GRL methods that utilise different aspects of relational structure within observations
and datasets. In Chapter 5 (blue box) we explore learning representations of observations that are (or
associated with) graphs within the context of drug pair scoring. In Chapter 6, we will explore using
relational information on the features of feature vectors as explicit priors in constructing predictive models
for breast cancer subtyping with gene expression profiles. Finally, in Chapter 7 we will explore utilising
relationships between observations within a dataset to improve model performance in spatial cell type
deconvolution.

21

In Chapter 3, we present a unifying practical framework for constructing methods capable of

learning distributed representations of graphs. This is based on extending the R-convolutional

kernel for graphs and enables characterisation of all existing methods and the definition of many

more novel ones. This framework is realised through Geo2DR, the first open source research

library dedicated to the rapid and reliable construction of these methods. This GPU ready

software package includes efficient re-implementations of existing methods and novel methods for

graph kernels and neural methods employing the distributional hypothesis (Research Question

1). Also included is a comprehensive comparative analysis of existing methods across datasets of

different domains allowing horizontal comparison between these methods.

In Chapter 4, we present PyTorch Geometric Temporal (PyG-T), an open source GPU-

ready research software package for constructing GNN methods applicable to spatio-temporal

graphs. Through the stratification of dynamic graphs by what structures and features change, we

propose several memory efficient data structures for the class of temporal graphs. Subsequently,

we identify common design patterns and the inductive biases within them that are used to

learn representations of the temporal graphs (Research Question 2). This enables the re-

implementation of many existing GNN methods and rapid implementation of new ones. The

library is supplemented by a curated set of existing and novel public datasets we introduce

alongside the library with academic and industry collaborators. A comparative analysis of these

methods is made across these datasets to highlight the variety of performances achieved by

different methods. We also conduct a performance analysis to show our implementations are

scalable and work on different hardware. This lays the foundation for continued work on scalable

dynamic graph representation learning.

In Chapter 5, we study the representation learning of observations, each of which are graphs.

In particular, we study the practicality and usefulness of incorporating distributed representations

of molecular graphs into models within the context of drug pair scoring. We argue that the

real world growth and update cycles of drug pair scoring datasets subvert the limitations of

transductive learning associated with distributed representations. Furthermore, we argue that

the vocabulary of discrete substructure patterns induced over drug sets is not dramatically large

due to the limited set of atom types and constraints on bonding patterns enforced by chemistry.

Under this pretext, we explore the effectiveness of distributed representations of the molecular

graphs of drugs in drug pair scoring tasks such as drug synergy, polypharmacy, and drug-drug

interaction prediction. To achieve this, we present a methodology for learning and incorporating

distributed representations of graphs within a unified framework for drug pair scoring (Research

Question 3). Subsequently, we augment a number of recent and state-of-the-art models to utilise

our embeddings. We empirically show that the incorporation of these embeddings improves

downstream performance of almost every model across different drug pair scoring tasks, even

those the original model was not designed for.

In Chapter 6, we study inductive biases to utilise relationships between the features of

observations to improve model performance. We present an approach that automatically con-

structs sparse computational graph models for transcriptomics data, through the additional

integration of external interactomics data and functional module discovery algorithms. Using

protein interaction networks in our case study, we map each of the (gene-activity) features of the

22

transcriptomic profiles to corresponding genes/gene products in the network. Subsequently, we

run structure-based protein complex discovery algorithms on the integrated network to identify

potential functional modules relevant to modelling our task. Constructing a computational

graph over this integrated network allows us to explicitly model the relationships between genes,

identified functional modules, and the target phenotype in a biologically motivated manner

(Research Question 4). This methodology results in the construction of neural network

architectures yielding strong predictive performance, whilst drastically reducing the number of

parameters. Moreover, our proposed methodology also enables post-hoc enrichment analyses

of influential gene sets with respect to the target phenotype we are interested in. This is not

possible with the previous deep learning approaches utilising hidden layer nodes with arbitrary

meaning.

In Chapter 7, we explore relational inductive biases to utilise relationships between obser-

vations to improve learning performance. We study the incorporation of GNNs for spatial

cell type deconvolution using spatial RNA-seq readouts. Through the construction of spatial

graphs over the irregularly structured spatial RNA-seq readouts, we are able to localise spatial

neighbourhoods explicitly. Subsequently, we build upon the state-of-the-art spatial deconvolution

model, Cell2Location [22], by incorporating GNN architectures into the hierarchical generative

model. Our proposed models are comparatively evaluated quantitatively on a synthetic dataset

(the current gold standard), outperforming existing models and variants which do not utilise our

relational priors (Research Question 5). Additional qualitative experiments on real lymph

node data shows alignment with histological annotations of microstructures and their cell types.

Furthermore, we showcase how the model may be utilised to infer cell type specific expression

patterns that can be used in other downstream applications and pipelines.

Finally, after presenting the main body of our work, Chapter 8 will conclude and describe

interesting directions for future work, which can be explored by extending the contributions of

this thesis.

1.4 List of publications

The work in this dissertation has been published in a number of articles. For each publication

we list its placement in the thesis and original appearance. * denotes co-first authorship.

In Chapter 3:

Paul Scherer and Pietro Liò. “Learning distributed representations of graphs with

Geo2DR”. In ICML 2020 Graph Representation Learning and Beyond Workshop. Selected

for Poster Presentation. Also selected as a spotlight poster at KDD 2020 DLG and MLG

Workshops. [23]

In Chapter 4:

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander

Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzmán López, Nicolas Collignon,

Rik Sarkar. “Pytorch geometric temporal: spatiotemporal signal processing with neural

23

machine learning models”. In CIKM 2021 as poster presentation and selected for best

resource paper award. [24]

In Chapter 5:

Paul Scherer, Pietro Liò, Mateja Jamnik. “Distributed representations of graphs for drug

pair scoring”. In LoG 2022. Selected for poster presentation. [25]

In Chapter 6:

Paul Scherer, Maja Trȩbacz, Nikola Simidjievski, Ramon Viñas Torné, Zohreh Shams,

Helena Andres Terre, Mateja Jamnik, Pietro Liò. “Unsupervised construction of computa-

tional graphs for gene expression data with explicit structural inductive biases”. In OUP

Bioinformatics. An earlier version was also selected as a poster in MLCB 2020. [26]

In Chapter 7:

Ramon Viñas Torné*, Paul Scherer*, Nikola Simidjievski, Mateja Jamnik, Pietro Liò.

“Spatio-relational inductive biases in spatial cell-type deconvolution”. In ICML2023 Work-

shop on Computational Biology. Selected for poster presentation [27].

The following articles completed during this PhD are related, but will not be extensively

discussed in this thesis:

Nikola Simidjievski, Cristian Bodnar, Ifrah Tariq, Paul Scherer, Helena Andres Terre,

Zohreh Shams, Mateja Jamnik, Pietro Liò. “Variational autoencoders for cancer data

integration: design principles and computational practice”. In Frontiers in Genetics 2019.

[28]

Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, Tamas Ferenci. “Chicken-

pox Cases in Hungary: a Benchmark Dataset for Spatiotemporal Signal Processing with

Graph Neural Networks”. In WWW 2021 Graph Learning Benchmarks Workshop. Selected

as poster. [29]

Maja Trȩbacz, Zohreh Shams, Mateja Jamnik, Paul Scherer, Nikola Simidjievski, Helena

Andres Terre, Pietro Liò. “Using ontology embeddings for structural inductive bias in gene

expression data analysis”. In MLCB 2020. Selected for poster presentation. [30]

Zohreh Shams, Botty Dimanov, Sumaiyah Kola, Nikola Simidjievski, Helena Andres Terre,

Paul Scherer, Urška Matjašec, Jean Abraham, Mateja Jamnik, Pietro Liò. “REM: An

integrative rule extraction methodology for explainable data analysis in healthcare”. Under

review. [31]

Paul Scherer, Thomas Gaudelet, Alison Pouplin, Jyothish Soman, Lindsay Edwards, Jake

P Taylor-King. “PyRelationAL: A Library for Active Learning Research and Development”.

Under review in JMLR MLOSS. [32]

24

Finally, whilst not directly relevant to this thesis, the following article has also been completed

during the PhD:

• Yana Lishkova*, Paul Scherer*, Steffen Ridderbusch, Mateja Jamnik, Pietro Liò, Sina

Ober-Blöbaum, Christian Offen. “Discrete Lagrangian Neural Networks with Automatic

Symmetry Discovery”. Accepted into IFAC2023 to be presented as full paper. [33]

• Heeseo Rain Kwon, Elisabete Silva, Paul Scherer “Linking Types of Behavior with

Theories, Rules and Research Methods for a Cellular Automata-Agent Based Model (CA-

ABM) Building on SLEUTH.” Under review in Journal of Geographical Systems.

25

26

CHAPTER 2

Background

The majority of this thesis and our contributions focuses on the design of machine learning

algorithms applicable to graph-structured data. Hence, this chapter is dedicated to establishing

fundamental concepts within machine learning, inductive biases, and graphs. We start by

outlining the essentials of machine learning and neural networks focusing on commonly utilised

architectures from the perspective of the inductive biases incorporated into their design. Moving

on to graphs we will formally define key characteristics and properties of graphs as relevant

to our contributions. We formally describe the various graph learning tasks that arise out of

the different ways relational structures make their appearance in datasets. Finally, we describe

some of the dominant approaches to graph representation learning and historical notes on the

development of software libraries that have come to support these approaches.

2.1 Machine learning essentials

Machine learning as a field predominantly concerns itself with the study of algorithms and models

which can learn to perform useful tasks given input training data. Such learning algorithms

rely on recognising patterns of observations within the input data to construct a model which is

useful to a chosen machine learning task [34].

In the simplest definition, machine learning tasks can be classified into two broad categories.

The first, supervised learning, corresponds to tasks where the learning algorithm is provided

labeled training data — data where the input data is paired with the desired target output —

and the algorithm is tasked with building a model using this training data to infer output

values for new unseen input observations in a testing phase. Common tasks that fall under the

supervised learning category are classification, which deals with inferring the right category or

class an input observation belongs to, and regression which finds relationships between input

variables to a continuous target. In supervised learning, the effectiveness of the learning algorithm

can be measured empirically by the accuracy of the inferred classifications made in held-out

test data, or with the mean error for regression. The second category, unsupervised learning,

corresponds to tasks where the input data has no target labels and is tasked with finding patterns

or structure to this input. Common tasks include clustering and density estimation [35]. Finding

the effectiveness of these algorithms is significantly more challenging as there are no universal

27

criteria to judge whether the conclusions made by such algorithms are “correct” or “incorrect”.

2.1.1 Data representations

For a machine learning algorithm to find and analyse relations for observations such as clas-

sifications, rankings, clusters, and correlations it must be able to compare observations. To

compare observations, we must find appropriate data representations that will be compatible

with our machine learning algorithms. The most common approach is to construct a feature

vector representation for each observation. This is a vector where each element corresponds to

a descriptive feature of the observation. With such a data representation, we may intuitively

compare the similarity between observations via the “distance” between these vectors. Various

functions can then be defined to compute the comparability of pairs of observations: from

simple euclidean distance measures to bespoke kernels which are especially useful when the

features are not numeric. Naturally, we may use other data representations. For example, a

digital colour image, can be represented in data using a 3D tensor, ximage ∈ Rheight×width×3,

where the first two dimensions correspond to the position of an RGB pixel feature represented

using a R3 vector. A colour video can be represented as a sequence of these images such that

xmovie ∈ Rlength×height×width×3. Different data representations and features encodings will enable

different ways of comparing observations and we will get an introduction to data representations

for graphs in Section 2.2.

To a machine learning algorithm, the features encoded within a data representation contain

the only vantage points into the key differentiating qualities of our observations. Different

representations can entangle and hide more or less the different explanatory factors of variation

in the dataset the algorithm learns from to produce a model [36]. As such, much of the effort

in deploying machine learning algorithms actually goes into the development of pre-processing

pipelines and data transformations that result in a representation of the data that lead to

effective machine learning. The practice of engineering useful features has predominantly been

done manually to take advantage of prior human domain knowledge and to compensate for

the inability of many machine learning algorithms to extract and organise salient features from

input observations by themselves. Although manual feature engineering can be effective — and

certainly is not to be ignored as a tool in practice — it is inherently laborious and stands in

the way of expanding the scope and ease of applicability of machine learning algorithms. This

view drives the development of representation learning methods which can automatically learn

effective representations of the raw input data. Among the various approaches to representation

learning, one of the most intuitive and popular has been neural networks. This family of models

can learn complex features directly from the raw input feature vectors towards the optimisation

of the objective function in an end-to-end fashion [2, 36].

2.1.2 Neural networks

Neural networks are a well established family of parametric models for machine learning. These

consist of interconnected processing units known as perceptrons whose function is to compute

affine transformations of their vector valued inputs followed by the elementwise application of a

28

Input

Input
layer

Hidden
layers

Output
layer

Perceptron MLP

Figure 2.1: A perceptron and a multi-layer perceptron (MLP), which is a feed-forward arrangement of
fully connected perceptrons.

non-linear activation function. This can be shown diagramatically as in Figure 2.1 and expressed

in the equation:

h = σ
(n∑
i=1

wixi + b
)

= σ
(
wTx + b

)
(2.1)

where x = (x1, x2, · · · , xn) denotes an n-element vector of inputs, w = (w1, w2, · · · , wn) is an

n-element vector of weight parameters, b is the bias parameter, σ(·) is a non-linear activation

function such as the tanh or ReLU function, and h is the output of the perceptron.

These perceptrons can be arranged and linked in a specific order to define a computational

graph model.1 The most common arrangement is the multi-layer perceptron (MLP) consisting

of a feed-forward arrangement of layers of perceptrons where the outputs of one layer are fully

connected to inputs of the next layer as shown on the right in Figure 2.1. Namely, the output

vector hi of the ith layer in a MLP can be written as:

hi = σ
(
Wi−1hi−1 + bi−1

)
(2.2)

where Wi−1 is a matrix of weight parameters for the ith layer and bi−1 a bias vector, generalising

Equation 2.1 to vector inputs and outputs. As before, σ is an elementwise non-linear activation

function.

MLP architectures are often characterised by how wide and deep they are. The width of an

MLP is determined by the dimensionality of its intermediate or hidden layers2. The depth of an

MLP is determined by the number of these hidden layers. We can trivially increase the depth of

an MLP by composing multiple layers successively as set out in Equation 2.2. If there is more

than one hidden layer the neural network is called a Deep Neural Network (DNN).

From a representation learning perspective, MLPs are composed of stacks of feature-extracting

1This gives rise to the name neural network and network architectures to differentiate various arrangements of
its constituent perceptrons.

2The intermediate layers of a neural network are called “hidden” because the training data does not show the
desired output for each of these layers.

29

layers, with the first layer processing the raw inputs, and each subsequent layer receiving the

output of the previous layer. During training, the weights and biases of each layer are tuned

to optimise an objective function intimately related to the machine learning task — typically

achieved through some variant of a gradient descent algorithm. In this sense, the neural network

gradually builds more complex representations of the input in a hierarchical manner, seemingly

eliminating the need for manual feature extraction.

To briefly elaborate on this, let us look towards supervised learning problems. We have a

training dataset (X,Y), where X is a matrix containing the input feature vectors and Y contains

the targets. Given a parameterised function fθ (the model, in our case a neural network) with

parameters θ, our aim is to tune these parameters such that the function can accurately map

inputs to their corresponding labels in the training set, and generalise to new instances in a

(held-out) test set. A common supervised task is regression, where fθ(x) predicts a d-dimensional

vector ŷ ∈ Rd that is as close as possible to a d-dimensional target y ∈ Rd. In this case, we train

the model to minimise a loss such as the mean square error (MSE) between fθ(x) and y, as in

Equation 2.3:

LMSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2 =

1

N
||y − ŷ)||22 (2.3)

where N denotes the number of observations. Classification is another common supervised

learning task, where y ∈ {0, 1}C denotes a one-hot “classification label” of instance x for C

different available classes. A typical modelling approach would construct fθ(x) = ŷ to output a

probability distribution over the possible classes by applying a Softmax function on the output

ŷ ∈ RC of the neural network. The cross-entropy between the output and the true values then

forms a suitable differentiable objective function for the model:

LCE(y, ŷ) =
1

N

N∑
i=1

C∑
j=1

yi,j log ŷi,j (2.4)

As mentioned previously, neural networks are typically trained using gradient descent algo-

rithms to update the weights for a given number of epochs or until convergence. In this scheme,

we iteratively calculate the gradient of the loss function with respect to θ, and update those

values using the following update rule:

θ ← θ − αδL
δθ

(2.5)

where α is a scalar known as the learning rate. We use backpropagation [37] to obtain the

gradients δL
δθ . This procedure is automated using automatic differentiation software, hence modern

construction of neural networks is intimately tied with the differentiable programming paradigm

supported by a plethora of autodiff frameworks [38–40]. We refer the reader to Goodfellow et al.

[2] and Russell and Norvig [34] for a broader and better coverage of neural networks including

more advanced optimisation and regularisation techniques, objective functions, and so on.

30

Figure 2.2: Diagram of the 2D convolution operating within CNNs. A parameterised red kernel matrix
slides across the input matrix outputting an affine transformation over the blue local perceptive field
which the kernel is currently residing over. The resulting purple element contains aggregated information
over an area of the input rather than an individual pixel.

2.1.3 Inductive biases

Deep MLP networks have become staple tools in the machine learning practitioner’s toolkit.

This is because they excel in automatically building high level data-driven representations from

their raw feature vector inputs when given large datasets with expressive features. A classic

pedagogic example of this can be found in the classification of digits in images as set out in the

MNIST digit recognition task [41]. Here each image of a handwritten digit is represented by a

28× 28 matrix of grey-scale pixel values flattened into a 784 element vector for input into a MLP

network. Without any further processing of the data, even a simple 3 layer “deep” MLP trained

with stochastic gradient descent using a fixed learning rate, random weight initialisations, and

sigmoid activation functions, can be expected to output strong performance in this task, that

is already better than other learning algorithms including SVMs with specially designed data

perturbations and kernel functions which were considered the previous state of the art [42].

However, one can do even better by utilising assumptions and knowledge about the context

(and in this case, structure) of the data. We know that originally each digit is represented by a

two-dimensional matrix of pixel values and that any pixel in this matrix is best contextualised

by its immediately adjacent pixels or local receptive field [43]. We can capture and use such

knowledge through the purposeful introduction of inductive biases into the model via constraints

or operations[44]. These inductive biases would encourage model solutions that exhibit desirable

traits. For our image example, LeCun et al. [45] introduced a 2-dimensional convolutional neural

network layer, which operates on pixels and their local receptive fields, to construct higher level

representations of them.

As shown in Figure 2.2 the convolution layer operates by sliding a small parameterised kernel

matrix K ∈ Rn×m over the input matrix X ∈ Rh×w to create higher-level features based on a

pixel and its local receptive field which get combined through a convolution to create a new

higher-level image X′, where.

31

X′
a,b =

n∑
i=1

m∑
j=1

Ki,j ·Xa+i−1,b+j−1 (2.6)

This inductive bias to encourage creating features based on a pixel’s local receptive field was

used to create higher level features consisting of shapes useful for recognising digits [46]. The

resulting convolutional neural network (CNN) has become the de-facto approach for learning

neural representations of grid-structured data and revolutionised the application of neural

networks on image data.

The incorporation of inductive biases in neural networks shows us that deep learning is not

completely bereft of feature engineering, despite its promise of completely automated feature

extraction and representation learning. In fact, we would argue that for neural network research,

the discipline of manual feature extraction and imputing human domain knowledge has simply

evolved into the design of useful operators to guide neural networks towards producing solutions

with favourable characteristics. This thesis studies the design and implementation of methods

for inducing useful biases for graph-structured data and graph representation learning. Hence,

we will now shift attention towards formalising our notion of graphs and machine learning on

graph-structured data.

2.2 Graphs

Many real world phenomena such as molecules [47], proteins [48], application process calls [49],

and social networks [21] can be naturally represented using graphs. For example, in chemistry

the molecular graph makes an intuitive representation for molecules where nodes represent atoms

and edges represent the bonds between them. Here, the graph is an appropriate representation

as it captures not only the presence of the atoms in the molecule, but the edges also capture

the specific bonding patterns between the atoms which is important for distinguishing isomers

that a classical empirical or molecular formula cannot capture [47] as we show in Figure 2.3. In

other words, the resulting graph topology created by the relationships between the nodes in a

graph reveals a structural complexity that can be analysed as a source of information in pattern

recognition problems.

Described more formally, a graph is an abstract structure which defines a set of entities which

are related in some way. Graphs contain nodes representing said entities with related nodes being

connected by an edge which records the relation. We define G = (V, E) as a graph where V is a

set of nodes and E ⊆ (V × V) is a 2-tuple set of edges in the graph. Edges can either be directed

or undirected. Directed edges are uni-directional relations from a starting node u to a target

node v and recorded as (u, v) ∈ E and (u, v) ̸= (v, u). Undirected edges describe bi-directional

relationships between nodes u and v, hence (u, v) = (v, u). The neighbours of a node u in graph

G, is the set of nodes which share an edge with u, denoted N (u) = {v|(u, v) ∈ E}∪{v|(v, u) ∈ E}.
On the right hand-side of this definition the first set would be called the out-neighbours, and the

second set the in-neighbours.

Graphs can be categorised depending on the properties of the nodes and edges. A labelled

graph is a graph whose nodes or edges have discrete labels, which may or may not be unique.

32

CH2CH3 CH3

CH2 CH2

CH3

CH

CH3

CH2

CH3

C

CH3

H3C

CH3

CH3

n-pentane isopentane neopentane

Figure 2.3: Three isomers of pentane (C5H12). Isomers are interesting as even slight changes in structure
can yield significantly different chemical and physical properties. For example in this case, the boiling
points of n-pentane, isopentane, and neopentane at 1 atm are 36.1°C, 27.8°C, and 9.5°C respectively.

Nodes and/or edges can be labelled, with the graphs then being called node- or edge-labelled

graphs respectively. Hence the graphs of the isomers in Figure 2.3 are node-labelled graphs with

non-unique node labels corresponding to the atom types. Otherwise it is simply known as an

unlabelled graph. A graph is called undirected if all of its edges are undirected, otherwise it is a

directed graph.

Graphs and their properties can alternatively be represented by matrices. For a graph with

n nodes, A ∈ Rn×n is an adjacency matrix where ai,j is the weight of the edge between nodes i

and j. If (i, j) /∈ E then ai,j = 0. A diagonal degree matrix D ∈ Rn×n is defined as the matrix

where each entry on the diagonal is the row-sum of the adjacency matrix. For graphs with node

features, each node vi ∈ V has an associated d-dimensional feature vector xi ∈ Rd. Then the

feature matrix X ∈ Rn×d can be used to represent feature vectors for every node in the graph.

We may describe a matrix of d-dimensional feature vectors associated to edges in the same way

X ∈ R|E|×d.

Our description so far applies to static homogeneous graphs whose nodes and edges are

untyped. In many real world graphs such as social networks, users may interact with other

users in different ways requiring different types of edges between entities. Users may also

interact with nodes of a different type such as groups and events requiring different node types.

Representing these would require a heterogeneous graph which encodes a relation type r for every

edge (u, v, r) ∈ E . We have also not discussed dynamic graphs, whose propertieschange over

time. We will discuss dynamic graphs and how we can construct representation learning methods

applicable to them in Chapter 4. For now, we will cover how we may perform machine learning

on static graph-structured data.

2.3 Machine learning on graph-structured data

In this section, we introduce substructure-level learning and graph-level learning as two different

scenarios in which we can find learning tasks involving graph-structured data. Building upon

this, we will introduce graph representation learning methods applicable in these scenarios from

the perspective of the operating assumptions and associated inductive biases proposed within

them.

1. Substructure-level learning

33

• Graphs are composed of substructures such as nodes, edges, and subgraphs. Hence

in substructure-level learning we refer to learning problems where the observations

are related to other observations in a dataset (becoming nodes) and the dataset as a

whole constitutes a single graph.

• Common tasks involved are node classification and regression, link prediction, and

node clustering.

2. Graph-level learning

• Here each observation in a dataset itself is a graph.

• The most common tasks in this family are graph classification and regression.

2.4 Substructure-level learning

Recall from our discussion on data representations (Section 2.1.1) that a learning algorithm’s

ability to produce effective solutions hinges upon its ability to compare observations and the

relevance of this comparison to the task of interest. An operating assumption that exists in

most node learning methods is that similar nodes would have similar local receptive fields

or neighbourhoods. Early learning algorithms encapsulated this directly by defining various

neighbourhood overlap statistics as measures of similarity between nodes. For example, one

simple neighbourhood overlap measure would simply count the number of shared neighbours

between nodes.

S(u, v) = |N (u)
⋂
N (v)| (2.7)

where we use S(u, v) to denote the value quantifying the relationship between nodes u and v.

Let S ∈ R|V|×|V| denote the similarity matrix summarising all the pairwise node similarities such

that Su,v = S(u, v). Given a neighbourhood overlap statistic Su,v we can perform a task such as

link prediction by assuming that the likelihood of an edge (u, v) is proportional to Su,v:

P (Au,v = 1) ∝ Su,v (2.8)

This principle can be extended a little further into useful local overlap measures which are

simply functions of the number of common neighbours two nodes share. For example, the

Sorensen index defines a matrix SSorensen ∈ R|V|×|V| of node-node neighbourhood overlaps

SSorensen(u, v) =
2|N (u)

⋂
N (v)|

du + dv
(2.9)

where du and dv denote the degrees of nodes u and v respectively. This measure normalises

the count of common neighbours we saw in Equation 2.7 by the sum of the node degrees.

This normalisation helps reduce bias towards predicting edges on nodes of high degrees in link

prediction tasks. Other such local and global neighbourhood overlap measures are provided in

Appendix A.

34

From the representation learning perspective, the operating assumption of similarity by

common associations would translate into designing inductive biases that favours learning vector

representations of nodes that have neighbourhood information embedded in them. The aim would

be to produce vector representations of nodes that are similar if they have similar neighbourhoods.

Two dominant approaches have developed in this regard. The first involves neighbourhood

reconstruction methods using deterministic and stochastic measures of neighbourhood overlap

covered next. The second involves the broad class of graph neural networks (GNNs) which we

will formalise under a message passing framework [12, 13] in Section 2.4.2.

2.4.1 Neighbourhood reconstruction methods

We will organise our discussion of neighbourhood reconstruction methods around the narrative

of encoding and decoding nodes as in Hamilton [50]. In this framework we are interested in

finding an encoder function f(·) : V 7→ Rd that maps each node v ∈ V to a d-dimensional vector

or embedding zv ∈ Rd. Subsequently a decoder function uses the outputs of the encoder to

reconstruct information about each of the nodes’ neighbourhoods, which is why these methods

are called neighbourhood reconstruction methods. As an example, given a node embedding zv

the decoder may predict the neighbours of v. Standard practice is to define a pairwise decoder

g(·, ·) : Rd ×Rd 7→ R+. This function can be interpreted as predicting the relationship or affinity

between a pair of nodes u, v ∈ V when we use g to predict a similarity measure S(u, v) such

as the adjacency or any of the neighbourhood overlap measures we saw previously. Therefore,

our goal for the encoder and decoder is to minimise a reconstruction loss so that the decoder

approximates a similarity measure:

g(f(u), f(v)) = g(zu, zv) ≈ S(u, v) (2.10)

From the perspective of machine learning with parametric models we are interested in tuning

the parameters of the encoder and decoder as to minimise the reconstruction loss:

L =
∑

(u,v)∈D

l
(
g(zu, zv), S(u, v)

)
(2.11)

where l is a loss function, such as the mean square error for regression tasks or a classification

error such as the cross entropy, depending on the definition of the decoder g and the target values

S(u, v). The loss is minimised empirically over the dataset of node pairs (u, v) ∈ D. In the case

of these embedding methods, the embeddings themselves Z ∈ R|V|×d are the parameters we wish

to optimise and output. Hence, we may formulate our optimisation problem as finding

Z∗ = argmin
Z

∑
(u,v)∈D

l
(
g(zu, zv), S(u, v)

)
(2.12)

2.4.1.1 Factorisation based methods

For a subset of methods we can view the narrative of encoding and decoding nodes as a form of

matrix factorisation. The challenge of decoding local neighbourhood topologies from a node’s

35

embedding is closely related to reconstructing entries in the original graph’s adjacency matrix.

More generally, we can view this task as learning a low dimensional approximation of a node

similarity matrix S whose entries Su,v correspond to a node similarity function Su,v = S(u, v) for

nodes u, v ∈ V.

Laplacian eigenmaps [51] is one such factorisation based method. Here the decoder computes

the L2 distance of pairs of node embeddings:

g(zu, zv) = ||zu − zv||22 (2.13)

and the reconstruction loss weighs pairs of nodes according to their similarity in the graph:

L =
∑

(u,v)∈D

g(zu, zv) · Su,v (2.14)

In this formulation Equation 2.14 has a trivial solution for decoders which output 0. To avoid

this Belkin and Niyogi [51] propose constraints ZTDZ = I and ZTDI = 0. More important, is

understanding that this objective penalises the model when similar nodes are far apart.

In Belkin and Niyogi [51], they set S = L as a normalised graph Laplacian, L = I−D−1A.

In this case, the optimal embeddings for the objective (Equation 2.14), turns out to be the d

eigenvectors of L corresponding to the second to d+ 1st smallest eigenvalues. This solution is

what gives the Laplacian eigenmaps method its name but Equation 2.14 provides more flexibility

in modelling choices through variation in the definition of S.

Subsequent works generally employ an inner product decoder:

g(zu, zv) = zTu zv (2.15)

which intends to expresses that the similarity of neighbourhoods of u and v is proportional to

the dot product of their embeddings.

Seminal methods employing this decoder include Graph Factorisation (GF) [52], GraRep [53],

and HOPE [54]. They use the inner product decoder with the mean square error to define their

loss:

L =
∑

(u,v)∈D

||zTu zv − Su,v||22 (2.16)

where each of the methods differentiate mainly on the definition of their similarity matrix S.

The Laplacian eigenmaps, GF, Grarep and HOPE all fall under the family of factorisation based

approaches as their optimal solution can be found using matrix factorisation techniques such as

singular value decomposition (SVD). In particular, stacking the node embeddings zv ∈ Rd into a

matrix Z ∈ R|V|×d the reconstruction loss for the above methods can be rewritten as

L = ||ZTZ− S||22 (2.17)

The optimisation of this objective corresponds to a low dimensional factorisation of the

matrix S which we may achieve through SVD.

36

2.4.1.2 Random walk distributed embeddings

Following in the footsteps of GF, GraRep, and HOPE; DeepWalk [55] and node2vec [56]

introduced random walk based embeddings. These methods utilise stochastic measures of node-

node similarity in place of the deterministic measures used previously. The aim in these methods

is to have similar node embeddings if random walks emanating from the nodes contain similar

nodes.

Node2vec achieves this through exploiting the distributive hypothesis, originally developed

for semantic modelling in linguistics and later used successfully in natural language processing

[57–59]. The distributive hypothesis stipulates that words which are used and exist in the same

context have similar meanings [57]. In the same manner, two nodes would have similar “meanings”

if their contexts, or the nodes that are encountered during random walks, are similar. Due to

this hypothesis, the vector representations learned by using the distributive hypothesis as an

inductive bias are often called distributed representations.

We can define a random walk based “node contexts” dataset D constructed from pairs of

nodes (u, v) ∈ D if a series of T ∈ Z+ random walks emanating from u includes v. This is

performed for all nodes in the graph. Node2vec then utilises a noise contrastive objective inspired

by the skipgram model of word2vec [58] to learn distributed representations.

L =
∑

(u,v)∈D

− log
(
σ(zTu zv)

)
− γEvn∼Pn(v)

[
log

(
− σ(zTu zvn))

)]
(2.18)

Here we use σ to denote the logistic function, Pn(v) to denote a distribution of negative node

samples that are not encountered in the random walks, and γ > 0 to be some hyperparameter.

In practice, Pn(v) is uniformly distributed and the expectation is approximated using Monte

Carlo sampling.

2.4.1.3 Strengths and limitations of factorisation and random walk based embed-

dings

The factorisation and random walk based distributed embeddings of nodes have several distinct

advantages over algorithms that rely solely on the deterministic measures of neighbourhood

overlap. Unlike the neighbourhood overlap measures, the embeddings can be adapted through

the learning process, and the vector representation makes them amenable for use downstream in

any machine learning algorithm that takes vectors as input. Furthermore, the representations

are learned in an unsupervised manner, making the representations task agnostic. As a result,

these methods have achieved many successes in the past decade, and have been adapted to

heterogeneuous graphs [60] and dynamic graphs [61].

However, these embedding methods also have 3 important limitations that affect their

practical applicability in certain situations. The first issue is that these embedding methods are

inherently transductive: they directly optimise a unique embedding for each node, hence they

can only generate embeddings for nodes that were present (or seen) during the training phase

without additional heuristics and optimisations. This prevents the methods from being used in

inductive settings, where we wish to generalise node-level predictions for nodes that the learning

37

algorithm has not seen before. A related issue arises in that embedding methods do not share any

parameters between nodes in the encoder, because each node is given a unique embedding vector.

The lack of parameter sharing is statistically inefficient as parameter sharing typically acts as an

effective form of regularisation, as seen in convolutional neural networks [41, 45]. Furthermore,

the lack of parameter sharing is computationally inefficient as the use of unique node embeddings

means that the number of parameters increases O(|V|).3 Finally, the methods we have mentioned

thus far are unable to leverage feature vectors associated with nodes. At best, they may use

the discrete node labels or rely on hashing functions for continuous features that map them to

discrete labels [62, 63]. Many graph datasets have rich features associated with nodes, edges, and

other substructures that are essentially ignored by the embedding methods. More sophisticated

encoders are required to create vector representations that depend on the structure and also

attributes associated with the graph substructures. In the next sections, we will look at the most

popular family of encoders that have come forward to address this task: graph neural networks.

2.4.2 Graph neural networks

As previously discussed, the operating assumption in substructure learning is that related entities

are similar to each other. In the context of node classification this means that nodes related

to each other are likely to have similar classification labels. This assumption is most evidently

interpreted in label propagation algorithms [64, 65], wherein the known labels of observations

are propagated along the edges to label nodes which are not labeled.4

However, one key limitation of the label propagation based methods and the factorisation

based methods we have covered above is that they cannot utilise feature vectors associated with

nodes and are transductive learning algorithms in their default settings. The utilisation of feature

vectors can produce rich associations between observations which are successfully exploited in

neural networks. Unfortunately, standard MLP networks are ill-posed to handle the structural

relations between observations as they are designed to handle unstructured data producing a gap

between neural networks and algorithms like label propagation. Hence, this drives the need for

inductive biases on neural networks which build representations upon feature vectors which take

these relational aspects of the dataset into account. Here, we will build towards the definition of

generalised graph neural networks under a message passing framework starting from MLPs.

We will motivate graph neural networks through example. Suppose we are given a citation

network G = (V, E) such as the Cora network [66] shown in Figure 2.4 of n academic research

articles from a set Y of 7 different research topics such as “Theory”, “Reinforcement learning”,

and “Neural networks”. Each paper vi ∈ V, i ∈ {1, 2, ..., n} is associated with a d-dimensional

bag-of-words vector representation xi such that X ∈ R|V|×d is a matrix of feature vectors for each

of the papers in the network. Suppose undirected edges are drawn between papers (vi, vj) ∈ E if

either one cites the other. This information can be summarised in an n× n binary symmetric

adjacency matrix A. Given a subset of labelled paper/research domain pairs (vi, yi) ∈ D with

3We will, however, see in Chapter 5 that in some real world applications this is more of a theoretical limitation
than a debilitating issue.

4The interested reader can find a Python re-implementation of Zhu and Ghahramani’s label propagation
algorithm [64, 65] we have made available here: https://github.com/paulmorio/label_diffusion.

38

https://github.com/paulmorio/label_diffusion

Figure 2.4: A visualisation of the Cora network with the 10 nodes with the highest degree highlighted in
yellow. The right side depicts a zoomed in subgraph showing nodes with associated node feature vectors.

vi ∈ V and yi ∈ Y , our task is to classify unseen papers.

The first instinct of a deep learning practitioner would be to use an MLP on the feature vectors

associated to each of the papers to learn a mapping from the feature vector to its target paper

domain — leaving the neural network to its devices to learn useful intermediate representations

of the bag-of-words vector inputs through the series of feature extracting layers. Recall from

Section 2.1.2 that the ith MLP layer makes an affine transformation of the input feature vector

hi−1 followed by a non-linear activation function:

hi = σ
(
Wi−1hi−1 + bi−1

)
(2.19)

where W contains the layer weight parameters, b is a bias parameter, and σ is some elementwise

non-linear activation like a logistic sigmoid function or ReLU. Unfortunately, the MLP does not

utilise additional information about the relations (citations) between each of the observations

which may better characterise the phenomena we are observing and our intent to classify topics.

To counter this we can define a simple graph neural network layer called the graph convolutional

layer or GCN [67]:

H = σ
(
D̃− 1

2 ÃD̃− 1
2XW + b

)
(2.20)

Here Ã = A + I is an adjacency matrix with self loops added in, and D̃ is the corresponding

degree matrix to Ã. W and b correspond to the layer’s weights and bias parameters and σ is an

elementwise non-linear activation function. What is new and interesting here is the renormalised

adjacency matrix D̃− 1
2 ÃD̃− 1

2 and how it transforms the representations in X. On the level of a

single node representation, the application of the renormalised adjacency matrix on X performs

the following:

x′
i =

1

di + 1
xi +

∑
xj∈N (vi)

ai,j√
(di + 1)(dj + 1)

xj (2.21)

which has the effect of making the resulting node representation coming out of the GCN depend

39

Figure 2.5: A visualisation of the message passing operations within a GCN layer for the calculation of
the output of h1.

on a sum of itself and the representations of its neighbours normalised by the connectivity of the

graph. We show this effect on a small graph in Figure 2.5. Effectively, we are inductively biasing

representations to become more similar to the members of their receptive field (the immediate

local neighbourhood). This propagation of the features is analogous to label propagation and is

the driving mechanism for the performance increases reported in GCNs [67]. As discussed in

Wu et al. [68] and Scherer et al. [69], the association of similarity between related observations

(homophily) was useful within each of the datasets and tasks that it was applied to. Subsequent

application of the layers enlarges the receptive field over which the representations are constructed

as representations of the previous layers embeds the neighbourhood information of the previous

layer [67, 68].

2.4.2.1 MPNN framework

We can generalise our notion of graph neural networks beyond the GCN formulation under the

framework of message passing neural networks (MPNN) introduced in Gilmer et al. [12] and

refined in the Graph Networks framework of Battaglia et al. [13] (which shares some of the

authors). Under the message passing neural network framework the lth layer node representation

is defined as:

xl
i = ϕl

(
xl−1
i ,

⊕
vj∈N (vi)

ψl(xl−1
i ,xl−1

j , ej,i)
)

(2.22)

where ϕ(·) and ψ(·) are functions that are often parameterised by neural networks,
⊕

(·) is a

permutation invariant operator such as a sum, max or an average, and ej,i is a feature vector

associated with the edge from node j to node i (if it exists). We can interpret this layer as the

combination of the previous node representation xl−1
i and a permutation invariant aggregation of

messages computed between a node and its neighbours ψl(xl−1
i ,xl−1

j , ej,i).
5 Typically, the inputs

to ϕl(·, ·) are concatenated and fed into an MLP network. The flexibility around the definition of

5Hence message passing neural network.

40

Figure 2.6: A diagram of the message passing framework on the same graph as in Figure 2.5. The
dotted line indicates that the self message is optional.

Table 2.1: Table of popular GNN layers with their definitions for the computation of node i’s lth layer
representation xl

i in a neural network. Additional notes on their significance or interpretation are also
given. Note that these are all instances of the general MPNN framework.

Name Definition Notes

GCN [67] xl
i = ϕ

(
1

di+1x
l−1
i +

∑
vj∈N (vi)

ψl
GCN(xl−1

i ,xl−1
j , ej,i)

)
The most popular GNN layer. Formally defined for graphs with
self loops. Can be considered an instantiation of ChebNet with K = 1.

GIN [63] xl
i = ϕ

(
(1 + ϵ)xl−1

i +
∑

j∈N (i) x
l−1
j

)
ϵ may be fixed or set as a learnable parameter.

GraphSAGE [70] xl
i = ϕ(xl−1

i +
⊕

j∈N (i) ψ(xl−1
j)

⊕
is set as a mean or max in the paper. The originating paper

is notable for its introduction of inductive node representation learning
through the use of neighbourhood sampling when computing a
node representation.

GAT [71] xl
i = αi,iψ(xl−1

i) +
∑

j∈N (i) αi,jψ(xl−1
j)

αi,j =
exp

(
LeakyReLU(aT [xi||xj])

)
∑

k∈{N (i)∪{i}} exp
(
LeakyReLU(aT [xi||xk]

) . Intuitively the attention

coefficient can be interpreted as a learnable weight on the edge weighting
the importance of the incoming node message. Common to use multiple
attention heads and concatenate the results.

GATv2 [72] xl
i = αi,iψ(xl−1

i) +
∑

j∈N (i) αi,jψ(xl−1
j)

αi,j =
exp

(
aTLeakyReLU([xi||xj])

)
∑

k∈{N (i)∪{i}} exp
(
aTLeakyReLU([xi||xk]

) . Sets a dynamic attention coefficient

that is provably more expressive than in the original GAT. However, this
additional expressivity comes at the expense of increased variance.

MPNN [12] xl
i = ϕl

(
xl−1
i ,

⊕
vj∈N (vi)

ψl(xl−1
i ,xl−1

j , ej,i)
) As in Equation 2.22. A generic framework which allows us to instantiate

all of the above.

the messages allows us to define a variety of different relational inductive biases (see Figure 2.6)

and graph neural networks as shown in Table 2.1.

2.5 Graph-level learning

When working with observations which are each entire graphs, it is typically assumed that graphs

representing similar entities and phenomena should have similar topological properties. Hence,

the ability to quantify the similarity of graph topologies is of central importance in developing

graph learning algorithms. As topological patterns are not intuitively well represented using

classic feature vectors, earlier approaches predominantly focused on using kernel based methods

for machine learning tasks involving graph observations. As the name suggests, kernel methods

are machine learning algorithms which rely on a kernel for the pattern recognition task. Kernels

are functions which define a relation, or more contextually, a similarity over pairs of data points

using their raw representations. Subsequently, one can use kernel methods which can operate on

41

the gram matrices6 produced by such kernels, such as support vector machines (SVM) [21].

2.5.1 Kernel based methods

Ideally a kernel would be a similarity function sim(G,G′) = d, d ∈ R+ where d, or the “distance”

between graphs G and G′, is small if they have similar structural properties, or a larger distance

otherwise. The most intuitive measure of similarity is the binary indication of whether two

graphs are topologically identical or isomorphic

simGI(G,G′) =

1, if G and G′ are isomorphic

0, otherwise
(2.23)

This is also known as the Graph Isomorphism (GI) test. Despite being a rudimentary measure

of similarity, the complexity of the GI test is in NP and has neither been proven to be NP-complete

nor solved by a polynomial time algorithm [73]. In addition to being computationally expensive,

the binary measure of similarity provided by GI based measures requires graphs to be identical

or contain large identical subgraphs in order to be considered similar. This is too restrictive to

be used effectively by machine learning methods. As a result, a number of more flexible kernels

based on approximate and inexact matching of graphs were proposed to address this problem.

Examples of these approximate kernels include graph edit distance methods and invariant

based methods. Graph edit distance methods as proposed by [74, 75] define a set of graph edit

operations and associate a “cost” with each operation. The distance between the graphs can

then be approximated by the minimum number and cost of edits needed to transform one graph

into another. Slightly less intuitive, but powerful kernels exploit graph invariants. For example,

Kondor and Borgwardt [76] introduced the skew spectrum where the invariant feature, known as

the graph skew, is computed from the graph and extracted bispectral invariants can be compared

to compute a kernel value. Barely a year later, Kondor et al. [77] proposed the graphlet spectrum

which computes a spectrum of matrices relative to a set of subgraphs. These features capture

the number and position of the subgraphs which could then be compared between graphs.

Yanardag and Vishwanathan [21] noted that kernel methods such as the graphlet spectrum

are part of a larger family of R-Convolutional kernels which evaluate the similarity between

discrete structures such as graphs G and G′ by decomposing them into atomic substructures such

as random walks, shortest paths, graphlets, and other subgraph patterns. The kernel value is

then calculated by some function such as counting the number of common substructures over G
and G′. These kernel values would then be exploited by kernel methods performing the machine

learning task. Such count-based graph kernels can largely be grouped into three major families:

those based on finite size subgraphs [77–79], subtree patterns [62, 80, 81], and walks or paths

[82–84]. More detail on each of these kernels has been provided in Appendix B.

Graph kernels are intuitive, efficient, and perform well on smaller benchmark datasets, but

exhibit two limitations. Firstly, most kernels do not create explicit graph embeddings. This

makes many out-of-the-box machine learning algorithms that rely on vector embeddings, such as

6For a dataset with m points and a given kernel function, this is an m×m symmetric, positive semi-definite
matrix where each element corresponds to the kernel value computed between a pair of observations.

42

Random Forests, Neural Networks, Naive Bayes, and so on, unable to work with graph data.

Secondly, the substructures which the graphs are decomposed to have to be determined manually

with well-defined functions that help extracting such substructures from graphs. When such

substructures are used in very large datasets this can lead to building extremely high-dimensional,

sparse, and non-smooth representations of graphs [19]. As a result of this, they also begin to show

a phenomenon known as diagonal dominance, wherein graphs become more similar to themselves

and distant from others [21]. In Chapter 3, we introduce a unified framework for learning smooth

low dimensional distributed representations of graphs based on the R-convolutional framework

[11] to tackle this. This is presented with an associated GPU ready software package that makes

it trivial to implement existing and entirely novel methods for learning distributed representations

of graphs. In Chapter 5, we show how understanding the strengths and limitations of distributed

representations of graphs allows us to improve existing methods and obtain state-of-the-art

performance in drug-pair scoring tasks.

2.5.2 GNNs for graph-level learning

GNNs can be used for graph level learning through the use of pooling operations, which are

analogous to the pooling operators of CNNs. The principal aim is to aggregate the information

from all the substructure representations into a single vector representation for the whole graph

— for simplicity, we will stick to nodes as the sole substructure of interest. The simplest pooling

operators for graphs include permutation invariant operations over the set of node representations

in the graph such as a sum, product, or mean. To formalise this, let X ∈ R|V|×d be the matrix

of node representations for graph G = (V, E). A permutation matrix P is a |V| × |V| matrix

which changes the node order in X when left-multiplied. These matrices have exactly one 1 in

every row and column, 0s elsewhere (thus there are |V| ! of these permutations for any graph). A

function f over X is permutation invariant if applying a permutation matrix on the input does

not modify the result.

f(PX) = f(X) (2.24)

We can see that the simple sum, product or mean of the node expressed as
⊕

vi∈|V|X satisfies

Equation 2.24. Inevitably, there is information loss in this crude aggregation, but it is still used

prominently in GNN archictures for graph-level outputs, such as the state-of-the-art GNN based

models for drug pair scoring which we will present in Chapter 5. However, the importance of this

operation warrants more sophisticated pooling approaches which we will describe in a practical

manner using Grattarola et al’s Selection/Reduction/Connection (SRC) framework [85].

The SRC framework is a useful mental framework and taxonomy for describing pooling

operations. It factorises pooling operators into compositions of three operations: selection,

reduction, and connection.

1. The selection groups nodes of the input graph into subsets of supernodes.

2. The reduction operation aggregates the information (the set of node representations) within

each supernode.

43

Table 2.2: Prominent pooling methods described using the SRC framework.

Method Selection Reduction Connection

DiffPool [86] S = GNN(A,X) X′ = ST ·GNN2(A,X) A′ = STAS
MinCut [87] S = MLP(X) X′ = STX A′ = STAS
NMF [88] Factorise : A = WH→ S = HT X′ = STX A′ = STAS

GraClus [89] Si = {xu,xv|argmaxv(
Au,v

Du,u
+

Au,v

Dv,v
)} X′ = STX METIS [90]

Top-K [91] y = Xp
||p|| ; i = topK(y) X′ = (X⊙ σ(y))i A′ = Ai,i

SAGPool [92] y = GNN(A,X); topK(y) X′ = (X⊙ σ(y))i A′ = Ai,i

3. Finally the connection links the reduced nodes and outputs a coarsened graph.

Let a graph pooling operator be loosely defined as any function POOL that maps a graph

G = (V, E) of |V| = n nodes to a new coarsened graph G′ = (V ′, E ′) with associated node feature

matrix X′. The goal of this operator is to reduce the number of nodes from n to k < n nodes.

With selection, SEL : G 7→ S = {S1,S2, ...,Sk}, the function computes k subsets of the nodes,

each associated with one node of the output supernode in the output graph G′. In reduction,

RED : G × Si 7→ x′
i, the function aggregates the node features within each supernode to obtain

node attributes of G′. Finally, the connection function, CON : G × Si × Sj 7→ e′i,j , determines

whether a link exists for each pair of supernodes Si,Sj . The SRC framework then describes

POOL as the composition of

S = {Si}i=1:k = SEL(G) ; X′ = {RED(G,Si)}i=1:k ; E ′ = {CON(G,Si,Sj)}i,j∈{1,...,k} (2.25)

This framework allows us to conveniently define the most popular and powerful pooling

operators as in Table 2.2. Notably the selection operation is also commonly computed to output

a matrix S ∈ Rn×k, where Si,j indicates the membership of node i to a supernode j, and Si,j = 0

indicates that node i is not assigned to supernode j.

Naturally, to achieve the end goal of obtaining a single vector representation for the graph we

will eventually have to perform some form of global pooling. This corresponds to a final pooling

operation which results in a singleton supernode — aggregating all the information of the tree

of operations performed up until this point. This global pooling is often one of the sum, mean,

or average aggregations we covered in the beginning of this subsection. The hope is that the

coarsening actions will filter relevant signals for the task before this point to reduce the effect of

salient information loss. Current research focuses on developing differentiable parametric pooling

operations that can be tuned during the learning process as well as more adaptive readout

functions that relax the permutation invariance condition [93]. This is an area of intense research

as GNN based methods still struggle to outperform many baseline MLP, kernel, and embedding

based methods in graph classification tasks [94, 95].

44

2.6 Research software

As an applied science, a core part of machine learning is the translation of theory to practice,

typically in the form of evaluating a proposed method empirically against a range of established

benchmarks and/or an instance of a new application if that is the focus. This necessitates

code implementations containing a delicate interplay of data loading, transformations, collation

functions, numerically intensive forward and backward computations, logging features, and more.

These are notoriously difficult to implement in a scalable and efficient manner for graphs —

doubly so when taking into account different hardware (e.g. CPU/GPU/TPU/IPU) capabilities

[96].

Hardware limitations and laborious proprietary GPU programming were a staple of early

and influential neural network papers [41, 45, 97]. Fortunately, major open source efforts such

as TensorFlow [40], PyTorch [38], Jax [39], have abstracted much of the low-level complexity

underlying the differentiable programming paradigm and allowed for efficient computation across

hardware. In addition to furthering research and standardisation across industry and academia,

these libraries have had important socio-economic ramifications in lowering the barrier of access

to individuals of any background through the provisions of extensive documentation, and the

ability to inspect and extend implementations to novel solutions. It would not be surprising to

find that the unprecedented proliferation of ML research from all the basic and applied sciences

is due in no small part to the rich ecosystem of open source software for machine learning [38, 98].

Hence, we finish off this chapter by looking at the landscape of open source software dedicated

to machine learning research on graph-structured data and our contributions to this effort. This

will also cover some prominent network analysis software, as this often interleaves with machine

learning software and contain functions often utilised in biomedical informatics.

2.6.1 Software libraries for graph machine learning research

A comprehensive table of open source libraries for research on graph-structured data is shown in

Table 2.3, based on Rozemberczki’s listing [99]. The bullets highlight domains and tasks that

the implemented methods within the libraries focus upon solving. Network analysis software is

often used at the beginning and end of graph machine learning pipelines, as inputs are processed

by them and outputs of learning algorithms are fed back into them for further adjustment and

for visualisations [100–102]. Examples of input processing would be the computation of node

statistics such as degrees, centralities, densities, cluster assignments, etc. as they may form node

features, and the same for other substructures. Many bioinformatics tasks such as protein cluster

identification are based upon adapting analytics algorithms such as the identification of k-cores

and cliques within interactomics data. For example, ProtClus [26] is a library of seminal protein

cluster identification algorithms based in structural analysis, which we have released as part of

our proposed methodology to automatically create predictive models for gene expression profiles

in Chapter 6.

Several observations can be made using Table 2.3. First and foremost is the dominance of

the Python language in the graph processing landscape. Due to this dominance we have based

45

the implementation of our frameworks and libraries in Python as well. Secondly, within the

graph machine learning packages there is a strong focus on learning node embeddings and using

graph neural networks on static graphs. Of these DGL, and PyTorch Geometric especially, have

become important tools within the GRL practitioners toolkit based on citation count and number

of GitHub stars in the last 3 years. Geo2DR [23] which we will cover in Chapter 3 addresses

an unfilled gap at the intersection of learning distributed representations of graphs and graph

kernels. Thirdly, most of the graph learning packages focus on methods for static graphs and

are incompatible with processing dynamic graph data and methods applicable to them. To this

end part of the contribution of this thesis includes collaborative work on the PyTorch Geometric

Temporal package, which is the sole graph learning package for MPNNs on dynamic graphs. We

will cover the identification of different dynamic graphs and memory efficient data structures

and learning algorithms applicable to them in Chapter 4.

46

Table 2.3: Table of open source software dedicated to network analytics (top half) or machine learning
(bottom half) on graph-structured data. The italicised software libraries represent contributions that
form part of this thesis. Geo2DR presented in Chapter 3 fills a gap in research software dedicated to the
construction of methods capable of learning distributed representations of graphs. Geo2DR shares some
methods with KarateClub [103] for graph embeddings such as Graph2Vec [19]. Geo2DR differentiates itself
based on its self contained PyTorch [38] implementations of distributed embedding methods compared
to gensim [104] for embedding which enables the usage of different hardware accelerators and simpler
extensions. Furthermore, its implementation of the framework and flexible APIs are designed to encourage
the creation of novel methods and extensions for existing methods rather than calling upon specific
instantiations of the model framework. PyTorch Geometric Temporal, presented in Chapter 4, is the first
and still only neural representation learning library for dynamic graphs at the time of writing.

Reference Year Time Analytics Machine Learning Languages

S
ta

ti
c

D
y
n

am
ic

S
h

or
te

st
P

at
h

C
en

tr
al

it
y

T
ra

n
si

ti
v
it

y

k
-c

o
re

s

C
a
sc

ad
es

S
am

p
li

n
g

C
om

m
u

n
it

y
D

et
ec

ti
on

N
o
d

e
E

m
b

ed
d

in
g

G
ra

p
h

E
m

b
ed

d
in

g

L
in

k
P

re
d

ic
ti

on

G
ra

p
h

N
eu

ra
l

N
et

w
or

k
s

G
ra

p
h

K
er

n
el

s

P
y
th

on

R

J
u

li
a

C
+

+

IGraph [101] 2006 • • • • • • • • •
NetworkX [100] 2008 • • • • • • •
SNAP [105] 2014 • • • • • • • • • • •
GraphTool [106] 2014 • • • • • • • • •
NetworKit [107] 2016 • • • • • • • • • • •
DyNetX [108] 2016 • • •
LightGraphs [109] 2017 • • • • •
ND-Lib [110] 2018 • • •
Little Ball of Fur [111] 2020 • • •
ProtClus [26] 2020 • • • •

GraphKernels [112] 2017 • • • • •
OpenNE [113] 2018 • • • •
OpenKE [114] 2018 • • • •
DGL [16] 2019 • • • •
Euler [115] 2019 • • • •
EvalNE [116] 2019 • • • •
CDLib [117] 2019 • • •
Torch Geometric [15] 2019 • • • •
Geo2DR [23] 2020 • • • • • •
Google AI GCNN [118] 2020 • • • •
Spektral [18] 2020 • • • •
Karate Club [103] 2020 • • • • •
GraphKit-Learn [119] 2020 • • •
GraKel [120] 2020 • • •
PyTorch Geometric Temporal [24] 2021 • • • •
DeepMind Jraph [17] 2021 • • •

47

48

CHAPTER 3

Learning distributed representations of

graphs

3.1 Overview and contributions

In Section 2.4.1 of the previous chapter, we looked at embedding methods for substructures,

specifically node embedding methods such as node2vec [56]. Node2vec operates on the assumption

that a node is better contextualised by its neighbours. It implements this assumption using the

distributive hypothesis [57, 58] with contextual neighbours sampled via random walks involving

the node in question. Whilst for graph level representations the operating assumptions are

different than for nodes, we can employ the distributed hypothesis here as well. Several methods

have been proposed such as DGK-GK, DGK-SP, AWE, Graph2Vec [19–21], yet little work has

been done to generalise and consolidate the individual approaches, nor studied comparatively in

empirical or theoretical settings. This chapter aims to abstract and generalise existing methods

into a practical framework for learning distributed representations of graphs, and present an

associated software library which implements this framework for the rapid construction of existing

and entirely novel methods.

To summarise, our contributions are:

• A novel practical framework that extends the R-Convolutional Kernel [11] for graph kernels

to distributed representations, enabling us to characterise existing methods and entirely

novel ones.

• A GPU ready software library, Geo2DR, implementing this framework where each method

can be defined as a composition of 3 modules.

• Comparative evaluation of all existing methods on a range of benchmarks, which validate

existing results but also highlight how they actually compare against each other in controlled

settings.

The work in this chapter was presented as a poster in 3 workshops under the title “Learning

distributed representations of graphs using Geo2DR”. The first iteration was presented at the

ICML 2020 Graph Representation Learning and Beyond Workshop as poster. Subsequent editions

49

were selected as spotlighted posters at the KDD 2020 Deep Learning on Graphs (DLG) and

Machine learning on Graphs (MLG) workshops. The work in this chapter will also appear again

in Chapter 5 when through understanding of the strengths and shortcomings of this approach

we are able to improve state-of-the-art drug pair scoring models.

3.2 Introduction

The difficulty of reliably constructing GNN models has driven the need for toolkits and libraries

to facilitate their development for replication, extension and creation of new models. Several

such libraries have been made such as: Graph Nets introduced by Battaglia et al. [13], DGL by

Wang et al. [16], GEM by Goyal et al. [121], and most recently PyTorch Geometric by Fey and

Lenssen [15]. These libraries have greatly contributed to lowering the barrier of entry into GNN

research, fueling the development of novel methods and libraries supporting them in a healthy

feedback cycle.

Alongside ongoing research into GNNs, another approach has focused on extending graph

kernel methods with neural language embedding methods [19–21] that exploit the distributive

hypothesis to learn representations of graphs. This is a useful alternative inductive bias to model

the vector space embeddings of graphs over the distribution of the discrete substructure patterns

contextualising them. Much like how the semantic meaning of words is similar to words that

have similar context words around them [57], comparability can also be defined for graphs with

the appropriate specification of what constitutes context and the entities (nodes, subgraphs,

substructure patterns) that are involved. Such vector representations of graphs are inductively

biased to be close when they contain similar substructure patterns, and distant when they do not.

This is inline with many of the graph kernel methods which they build upon and the underlying

assumptions about useful priors embedded in the kernel functions. This perspective enables the

construction of a powerful class of unsupervised representation learning methods.

At this point, there are multiple excellent GNN and Graph kernel specific libraries for calling

specific implementations of existing methods (see Table 2.3). Some GNN focused libraries such

as PyTorch Geometric [15] even allow composing new methods by interfacing with extensible

message-passing or pooling modules. However, to our knowledge, no framework or toolkit

currently exists for rapidly composing new methods capable of learning representations of graphs

using distributional inductive biases. Geo2DR (Geometric to D istributed Representations),

aims to fill this gap by providing a modular set of building blocks built around a conceptual

framework that is applicable to existing methods and an even greater number of unexplored

ones. The Geo2DR library along with links to documentation, example method reimplementa-

tions, experiment replication, and supporting material can be found on the GitHub repository

(https://github.com/paulmorio/geo2dr) with stable package releases on PyPI.

3.3 Background

The approach towards distributive modelling of graphs was pioneered by Yanardag and Vish-

wanathan [21]. They observed that many graph kernel methods can be formulated as instances of

50

the R-convolutional framework [11]. Herein, the similarity between different graphs is computed

by decomposing graphs into discrete substructure patterns such as graphlets, shortest paths, and

rooted subgraphs as we have seen previously in Chapter 2 and in Appendix B. This produces a

|V|-dimensional bag-of-words or pattern frequency vectors for each graph where V is the set

of the unique patterns induced over all the graphs in a dataset. The graphs and their induced

substructure patterns are input to a function which computes the comparability of the two graphs,

such as counting the common substructures across pattern frequency vectors. This defines the

relation or similarity measure between the graphs to construct the kernel matrix for use with

kernel methods such as SVMs.

Yanardag and Vishwanathan [21] further observed that as the size of graphs and the specificity

of substructure patterns to be induced from graphs increases (by lengthening walks/paths,

increasing the number of nodes in graphlet patterns) — graphs become represented by extremely

high dimensional pattern frequency vectors. As a result, only a few substructure patterns are

common across any given set of graphs. This leads to sparse solutions where each graph is more

similar to itself, a phenomenon known as diagonal dominance. To tackle this issue the authors

proposed the use of neural language models, which exploit the distributive hypothesis [57] to learn

smooth low dimensional distributed representations of the substructures and construct graph

kernel matrices. This was quickly followed up by works such as the aptly named Graph2Vec [19]

and Anonymous Walk Embeddings [20] (AWE). These proposed different substructure patterns to

induce over the graphs and the use of Doc2Vec variants [59] to build distributed representations

of whole graphs directly.

3.4 A conceptual framework for learning distributed representa-

tions of graphs

Here we present a conceptual framework for creating methods capable of learning distributed

representations of graphs, also pictured in Figure 3.1. Given a set of n graphs in the dataset

G = {G1,G2, ...,Gn} one can induce discrete substructure patterns such as shortest paths, rooted

subgraphs, graphlets, and so on by using side effects of algorithms such as Floyd-Warshall

[122–124] or the Weisfeiler-Lehmann graph isomorphism test [125]. This can be used to produce

pattern frequency vectors X = {x1, x2, ..., xn} describing the occurrence frequency of substructure

patterns for every graph over a shared vocabulary V. V is the set of unique substructure patterns

induced over all graphs Gi ∈ G.

One may, of course, directly use these pattern frequency vectors within standard machine

learning algorithms or construct kernels to perform some task. This has been the approach

used by many state-of-the-art graph kernel methods [84, 126]. Unfortunately, as the number,

complexity, and size of graphs in G increases so does the number of induced substructure patterns

— often dramatically [23, 84, 126]. This, in turn, causes the pattern frequency vectors of X to

be extremely sparse and high dimensional, both of which are detrimental to the performance of

estimators. Furthermore, the high specificity of the patterns and the sparsity causes diagonal

dominance across kernel matrices wherein each graph becomes more similar to itself and dissimilar

51

Figure 3.1: A conceptual framework for how methods for learning distributed representations of graphs
are constructed, which guides the method design principles in Geo2DR.

from others, thus degrading machine learning performance.

To address this issue it is possible to learn dense and low dimensional distributed representa-

tions of graphs that are inductively biased to be similar when they contain similar substructure

patterns and dissimilar if they do not in a self supervised manner. To achieve this we need to

construct a corpus dataset R that details the target-context relationship between a graph and

its induced substructure patterns. In the simplest form for graph level representation learning,

we can specify R as the set of tuples (Gi, p) ∈ R,Gi ∈ G where p is a substructure pattern that

is part of the shared vocabulary p ∈ V and can be induced from Gi which we denote p ∈ Gi.
The corpus can then be used to learn embeddings via a method that incorporates Harris’

distributive hypothesis [57] to learn the distributed representations. Methods such as Skipgram,

CBOW, PV-DM, PV-DBOW, and GLoVE are some examples of neural embedding methods

that utilise this inductive bias [58, 59, 127]. The following objective encapsulates Skipgram with

negative sampling.

L =
∑
Gi∈G

∑
p∈V
|{(Gi, p) ∈ R}|(log σ(Φi · Sp)) + Ep−∈V[log σ(−Φi · Sp−)] (3.1)

Here Φ ∈ R|G|×d is the d-dimensional matrix of graph embeddings we desire of the set of graphs G,

and Φi is the embedding for Gi ∈ G. In similar vein, S ∈ R|V|×d are the d-dimensional embeddings

of the substructure patterns such that Sp represents the vector embedding corresponding to the

substructure pattern p ∈ V. Whilst these embeddings are tuned as well during the optimisation

of Equation 3.1, ultimately, these substructure embeddings are not used in our case as we are

interested in the graph embeddings. The cardinality of the set |{(Gi, p) ∈ R}| indicates the

number of times a positive substructure pattern is induced in the graph to tighten the association

of the pattern to the graph. p− ∈ V denotes a negative context pattern that is drawn from the

empirical unigram distribution

PR(p) =
|{p|∀Gi ∈ G, (Gi, p) ∈ R}|

|R|
(3.2)

52

and the expectation is typically approximated using Monte Carlo sampling as in Mikolov et al.

[58].

The optimisation of the above objective creates the desired distributed representations in

Φ. The distributed representations benefit from having lower dimensionality than the pattern

frequency vectors, in other words |V| >> d, being non-sparse, and being inductively biased

via the distributive hypothesis. A more thorough treatment of the distributive hypothesis and

in-depth interpretation of the embedding methods in this family can be found in [57, 58, 128].

Various instances of models for learning distributed representations of graphs following our

description have been made such as Graph2Vec [19], DGK-WL/SP/GK [126], and AWE [20].

These differentiate primarily on the type of substructure pattern that is induced over G. These

have shown strong performance in graph classification tasks, often performing on par with modern

graph neural networks despite using significantly fewer features and parameters, whilst operating

in an unsupervised fashion.

Geo2DR provides various modules that can be used as “building blocks” to rapidly construct

systems capable of learning such distributed representations, of both substructure patterns and

whole graphs of arbitrary size. Existing libraries for GNNs [13, 15, 16, 121] would require a

substantial shift in philosophical focus from constructing message passing schemes and pooling

methods to accommodate these methods. Hence, Geo2DR is a complementary library alongside

existing toolkits giving researchers a broader range of options and tools for graph representation

learning. A brief comparison of existing libraries for graph representation learning is provided in

Section 3.8 after describing the structure and usage of Geo2DR for better exposition.

3.5 Overview of Geo2DR

Geo2DR is a Python library containing various modules to support rapid composition of methods

capable of learning distributed representations of graphs. This framework for self supervised

learning of substructures and entire graphs is based around simplifying the conceptual framework

of Section 3.4 into a simple two stage methodology for users to concretise as summarised in

Figure 3.2.

• Induction of descriptive substructure patterns: The first step consists of inducing

discrete substructure patterns such as graphlets, rooted subgraphs, or anonymous walks

within and across the dataset of graphs to construct a shared vocabulary and corpus dataset

contextualising the patterns and graphs. One may also use the output pattern distributions

at this stage to construct a variety of graph kernels.

• Learning distributed vector representations: The second stage consists of utilising

the distributive hypothesis [57] to learn distributed representations of graphs contextualised

by the induced substructure patterns. Embedding methods which exploit the distributive

hypothesis such as skipgram [58] can be used to learn fixed-size vector embeddings of

substructure patterns or whole graph in an unsupervised manner.

The two stage methodology allows for the succinct description of existing methods as compo-

sitions of what substructure patterns are being induced across the graphs, and the specification of

53

Figure 3.2: The two-stage design methodology for creating distributed representations of graphs and the
various modules (in rectangles) included in Geo2DR to support this process. All modules were designed
with consistent interfaces so that they may be mixed and matched to create existing and novel methods,
as well as simplify integration of custom modules.

the target-context relationships as implied by the distributive neural embedding method. Hence,

a combination of Geo2DR’s modules for decomposition and distributed representation learning

can be used to quickly replicate existing methods such as those shown in Table 3.1. Just as

importantly, it highlights the vast possibilities for the development of novel methods intersecting

ongoing research in graph theory and distributive modelling through focused development of the

modules.

Consistent input/output interfaces were implemented across modules to encourage creation

of novel methods. For example, one could create a “novel” unpublished method combining

existing modules on inducing shortest path patterns and learning graph-level embeddings with

PV-DBOW. This form of light experimentation fosters understanding and control of the various

inductive biases involved when building such models. However, in a more far-sighted view, we

hope it would also encourage the creation of custom modules that can plug and play with the

rest of the framework to create truly novel methods down the line.

Practically, the library is centered around three subpackages under Geo2DR. The data

subpackage contains modules for transforming data formats used by popular dataset repositories

such as Kersting et al. [129] into consistent formats used by the decomposition algorithms

implemented in Geo2DR. In Geo2DR, we chose to use the GEXF (Graph Exchange XML Format)

as the permanent storage format for individual instances of the graphs. This is because the

format is compatible with network analysis software such as Gephi [102] and NetworkX [100] for

detailed inspection and visualisation.

The modules within the decomposition subpackage contain algorithms for inducing the

substructure patterns in the graphs and forming vocabularies. The outputs of these algorithms

are directly compatible with our PyTorch implementations of neural language models (which can

leverage GPUs), as well as the CPU optimised implementations available in Gensim [104]. This

essentially describes the packages and modules necessary for Step 1 of the process. The final

subpackage embedding methods contains modules for constructing corpus datasets and neural

language models to build the distributed representation learning methods of Step 2. Several

54

Table 3.1: Table characterising each of the existing published methods by the substructure patterns
induced and associated embedding method to create the graph kernel matrix (for DGK models) or graph
embeddings.

Method Induced substructure pattern Embedding method Object embedded

DGK-WL WL rooted subgraphs Skipgram or CBOW Substructure patterns
DGK-SP Shortest paths Skipgram or CBOW Substructure patterns
DGK-GK Graphlets Skipgram or CBOW Substructure patterns
Graph2Vec WL rooted subgraphs PV-DBOW Whole graphs
AWE-DD Anonymous walks PV-DM Whole graphs

Trainer classes are also included which serve as convenient corpus and neural net combinations

that can be used to construct common architecture setups.

Existing methods for learning distributed representations as in Table 3.1 and several graph

kernels can all be implemented using the modules and frameworks presented. We have included

all these methods as examples within the repository to get users started on creating their own

variations.

3.6 Annotated coding example

In this section we will demonstrate Geo2DR’s usability with an annotated code example learning

the distributed representations of nitroaromatic compounds using their molecular graphs and

apply it on a downstream task to predict their mutagenicity on Salmonella typhimurium.

Data formatting for different sources. This dataset studying mutagenicity, called MUTAG

[130], is available from the TU Dortmund repository of datasets for graph kernels [129]. Using data

processing and formatting tools included in the geometric2dr.data subpackage, we instantiate a

geometric2dr.data.DortmundGexf object to format the dataset into a set of GEXF files under

the data/MUTAG directory that can be analysed using various network analysis software such as

Gephi [102] and NetworkX [100]. This object can also be used to generate other formats.

1 from geometric2dr.data import DortmundGexf

2

3 dataset = "MUTAG"

4 corpus_data_dir = "data/" + dataset

5

6 gexifier = DortmundGexf(data, "dortmund_data/", "/tmp/")

7 gexifier.format_dataset()

Listing 1: Using the geometric2dr.data subpackage to preprocess and format datasets into GEXF
format.

Step 1: Corpus construction through induction of substructure patterns. We will

re-implement Graph2Vec [19] in this example using Geo2DR, which as one can see in Table

3.1 is a combination of using WL-rooted subtree patterns and skipgram. Using the two stage

55

methodology we covered in Section 3.5 we first construct a corpus dataset of rooted subtree

patterns up to depth 2 using the iterative multiset relabelling of nodes in the Weisfeiler-Lehman

graph isomorphism test and store them as graph documents detailing the substructure patterns

associated with each task.

1 from geometric2dr.decomposition.weisfeiler_lehman_patterns import wl_corpus

2 import geometric2dr.embedding_methods.utils as utils

3

4 #######

5 # Step 1 Create corpus data for neural language model using decomposition

6 # We keep permanent files for sake of deeper post-hoc analysis

7 #######

8 wl_depth = 2

9 graph_files = utils.get_files(corpus_data_dir, ".gexf", max_files=0)

10 wl_corpus(graph_files, wl_depth)

11 extension = ".wld" + str(wl_depth) # Extension used for the graph documents

Listing 2: Using the geometric2dr.data subpackage to preprocess and format datasets into GEXF
format.

Step 2: Learning distributed representations with corpus. The second stage of

Graph2Vec involves the use of a skipgram model to learn embeddings using the corpus. For con-

venience, this can be achieved using a Trainer object that encapsulates an efficient data loader,

the model, and optimisation algorithm into a single object with other utility methods. Of course,

each of the components are also available on their own with consistent interfaces for those wishing

to customise any of these. We distinguish the implementation of the InMemoryTrainer and

Trainer classes as the former will load the dataset into memory and the latter loads observations

from storage allowing diverse hardware and scaling to the number of graph observations. All of

the neural embedding methods are implemented using PyTorch allowing for efficient numerical

computation using CPU/GPU/IPU/TPU hardware. The embeddings will be saved to a JSON

file after training is completed.

1 from geometric2dr.embedding_methods.pvdbow_trainer import InMemoryTrainer

2

3 ######

4 # Step 2 Train a neural language model to learn distributed representations

5 # of the graphs directly or of its substructures. Here we learn it directly

6 # for an example of the latter check out the DGK models.

7 ######

8 output_embedding_fh = "Graph2Vec_Embeddings.json"

9 trainer = InMemoryTrainer(corpus_dir=corpus_data_dir,

10 extension=extension,

11 max_files=0,

12 emb_dimension=32,

13 batch_size=128,

14 epochs=250,

15 initial_lr=0.1,

56

16 min_count=0,

17 output_fh=output_embedding_fh)

18 trainer.train()

Listing 3: Using corpus to learn distributed representations.

Downstream processing and tasks. The distributed representations can be used to perform

any downstream task such as inferring the mutagenicity of the compounds to Salmonella

typhimurium. In this case we evaluate the downstream performance of the embeddings using a

SVM with 10 fold cross validation and print the results.

1 from geometric2dr.embedding_methods.classify import cross_val_accuracy

2

3 #######

4 # Downstream processing. In this case we will perform

5 # graph classification using an SVM.

6 #######

7 final_embeddings = trainer.skipgram.give_target_embeddings()

8 graph_files = trainer.corpus.graph_fname_list

9 class_labels_fname = corpus_data_dir + ".Labels"

10 classify_scores = cross_val_accuracy(corpus_dir=corpus_data_dir,

11 extension=trainer.corpus.extension,

12 embedding_fname=trainer.output_fh,

13 class_labels_fname=class_labels_fname)

14 mean_acc, std_dev = classify_scores

15 print("Mean accuracy using 10 cross fold accuracy: %s with std %s" \

16 % (mean_acc, std_dev))

17

Listing 4: Downstream usage of the distributed representations.

3.7 Empirical evaluation

As a form of validation on the correctness for the various implemented modules, we empirically

evaluate re-implementations of existing models using Geo2DR. Table 3.1 describes the induced

substructure pattern and neural language model driving each method. We performed a series of

common benchmark graph classification tasks under homogeneous data and evaluation scenarios

giving a fairer picture of how they compare.

All datasets were downloaded from the benchmark dataset repository by Kersting et al. [129]

and processed into the format used by Geo2DR with the included data formatter. In each of the

datasets the discrete node labels are exposed, but not the edge labels. For unlabelled datasets

such as REDDIT-B, the node was labelled by their degree following Shervashidze et al. [62] to

enable methods such as the WL rooted subgraph decomposition to induce patterns in the graphs;

this was also applied to methods which can directly handle unlabelled graphs for conformity. As

these datasets are standard benchmarks we have left specific descriptive details in Appendix C.1.

57

Table 3.2: Random-split 10 fold cross-validation performance of SVM using RBF kernel on bag-of-words
vectors of normalised frequencies of substructure patterns. Best scores or those within error of best are
bolded. OOM denotes out-of-memory.

Substructure pattern MUTAG ENZYMES PROTEINS NCI1 REDDIT-B IMDB-M

WL Rooted Subgraphs 88.95 ± 7.96 56.33 ± 6.18 74.29 ± 2.55 83.94 ± 1.99 77.35 ± 4.35 48.60 ± 4.33
Shortest Paths 83.68 ± 7.24 41.67 ± 4.83 74.73 ± 2.04 70.95 ± 1.95 OOM 50.20 ± 3.84
Graphlets 83.16 ± 6.16 25.33 ± 3.48 70.36 ± 3.59 54.09 ± 7.61 78.25 ± 2.71 44.40 ± 4.17
Anonymous Walks 80.53 ± 6.68 27.33 ± 6.23 71.87 ± 2.05 66.08 ± 2.21 81.30 ± 2.49 38.20 ± 3.91

Table 3.3: Graph classification performance over random-split 10 fold cross-validation in each of the
re-implemented methods with standard deviation. Best scores or those within error of best are bolded.
OOM denotes out-of-memory.

Method MUTAG ENZYMES PROTEINS NCI1 REDDIT-B IMDB-M

DGK-WL 88.42 ± 8.42 41.00 ± 1.83 72.08 ± 0.74 77.54 ± 3.91 OOM 47.82 ± 0.79
DGK-SP 84.03 ± 7.16 44.27 ± 2.26 76.93 ± 2.56 69.22 ± 5.29 OOM 49.71 ± 1.18
DGK-GK 84.21 ± 6.74 23.61 ± 3.14 69.77 ± 3.13 53.92 ± 4.81 78.32 ± 1.92 44.40 ± 4.18

Graph2Vec 84.91 ± 2.79 51.77 ± 1.75 74.05 ± 2.28 71.34 ± 2.12 81.25 ± 2.64 47.11 ± 1.42
AWE-DD 79.29 ± 2.92 23.76 ± 1.74 69.70 ± 1.29 63.54 ± 1.82 81.46 ± 1.75 40.53 ± 6.42

For all experiments, attempts were made to follow the best performing hyperparameter

setups described in the published papers of the original methods, and communications with

the authors or their code repositories. As we look at several kernels and embedding models,

specific hyperparameter ranges can be found in Appendix C.2. In all cases, the same off-the-shelf

support vector machine implemented in SciKit-Learn [131] was used with an RBF kernel for the

supervised classification task on the graph embeddings learned. This SVM was chosen on the

basis that all works used SVMs in their downstream classification tasks. The C hyperparameter

was evaluated over the set (0.001, 0.01, 0.1, 1, 10, 100), and the same scaled γ = 1
d·Var(Φ) was

used in the RBF kernel, where Var(·) computes the variance of the embeddings. We report the

average score and standard deviation from random split 10-fold cross validation. The exact

setups of the experiments can be replicated using the experiment replication code provided within

the Github repository1.

Graph kernels: We start with an experiment suite based on the substructure patterns alone,

using the decomposition algorithms to construct normalised bag-of-words frequency vectors for

each of the graphs. Table 3.2 records the mean and standard deviation of randomly split 10-fold

cross-validation using the SVM described above. The results closely match that of the published

methods in [20, 21, 62, 82]. The fact that different substructure patterns excel in classifying some

datasets and do not perform as well in others suggests that topological characteristics which are

useful for characterising graphs are not found in just one substructure pattern. The study of

other patterns and combinations thereof is an interesting future avenue of work.

Deep graph kernels and graph embeddings: Most of our experiments in Table 3.3 show

a high reproducibility of the results published by the original proposers. Some discrepancies

are to be expected due to the homogenised data setup, unpublished hyperparameter settings,

1https://github.com/paulmorio/geo2dr/tree/master/replication

58

Table 3.4: Total training run time (seconds) over 100 epochs on MUTAG. Bold text refers to lowest
time taken for training or, time within error bounds of being the fastest.

Method
Original
reference
implementation

Only Geo2DR
PyTorch modules

Geo2DR with
compatible libraries
Gensim/TensorFlow

DGK-WL 3.06 ± 0.15 3.33 ± 0.07 3.19 ± 0.08
DGK-SP 6.95 ± 0.23 6.86 ± 0.27 7.39 ± 0.08
DGK-GK 9.46 ± 0.69 19.41 ± 0.49 9.89 ± 0.74
Graph2Vec 8.86 ± 0.05 10.64 ± 0.11 8.88 ± 0.06
AWE-DD 1231.75 ± 21.81 314.84 ± 8.91 NA

Table 3.5: This table is a simplified summary of core competencies of existing graph-level representation
learning libraries. The column on method construction notes the style in which methods can be created.
Composite refers to the creation of methods via composition of transformations, decompositions, and
neural network modules in the library by the user. On the other hand API refers to API-oriented
“single-line” calls to specific implementations of methods, architectures, and so on.

Message passing
network models

Graph Kernels
Distributed
Representations
of Graphs

Method Construction
Style

GraphNets [13] • Composite
DGL [16] • Composite
Pytorch Geometric [15] • Composite
Grakel [120] • API
Graphkernels [112] • API
Karate Club [103] • API
Geo2DR • • Composite

and standardised neural architectures, but best effort was made through consulting original

source code and communications with the authors. In particular, for AWE-DD, we do not use

edge-labels for homogeneity of the experimental evaluation whilst the original paper used them

if they provided a better performance.

Runtime experiments and improvements in Geo2DR: Table 3.4 contains the total

time incurred over 100 epochs of training. We report the average time in seconds along with the

standard deviation over 10 repeated runs. Comparison is drawn between the original reference

implementation made available by each of the original papers and its re-implemented counterpart

in Geo2DR. All methods were trained and compared on the MUTAG dataset as this was the

only common dataset included in the reference implementations. None of the original reference

implementations have scripts or tools to transform the publicly available datasets they used

into the proprietary formats used by their own implementations, making reproduction difficult.

This is why we have included data processing tools for popular public datasets directly into the

Geo2DR library within the data subpackage to address this common limitation for the future.

59

3.8 Related work

Table 3.5 provides a summary of the core competencies of existing graph learning libraries. To

briefly elaborate, recent libraries for MPNN research such as GraphNets [13], DGL [16] and

PyTorch Geometric [15] are characterised by a composite construction style of the message

passing neural networks. Each method is constructed through the composition of convolution

or pooling layers in the neural network and other preprocessing steps by the user. In contrast,

graph kernel libraries such as GraKel [120] and GraphKernels [112], are API-oriented, with single

line calls to specific implementations, where GraKel specifically follows the usage style of SciKit

Learn [131] for compatibility. The recently released Karate Club [103] (its paper released the

same week as Geo2DR) is an excellent API-oriented community detection and graph embedding

library, which implements several methods for distributed representations of graphs, such as

Graph2Vec and GL2Vec.

Geo2DR’s underpinning design philosophy around composition of modules for method con-

struction differentiates it from Karate Club. As stated in Section 3.5, the core focus is on the

flexible yet rapid construction of methods with building blocks inspired by method creation in

PyTorch and recent MPNN libraries. It allows greater room for constructing novel methods in a

modular fashion to encourage research and exploration. Ultimately, each of the libraries covers

specific competencies with its own usage philosophy, and we believe Geo2DR fills an important

gap in supporting research on methods capable of learning distributed representations of graphs.

3.9 Maintaining Geo2DR

Distributed representations offer a different approach to learning representations compared to

graph kernels and message passing with pooling methods with state-of-the-art performance across

various tasks. As such we consider their study important in furthering our understanding of

structured representation learning. Hence, modern open source software engineering practices

were adopted in order to promote robustness and reliability of the package whilst maintaining an

open policy towards contributions over the long term vision we have for the project.

Open sourcing, package indexing, and contributing Geo2DR is made available open

source under a permissive MIT license with stable releases made on the Python Package Index

(PyPI) for easy installation. To introduce new users to the package we created an extensive set of

examples, tutorials, and supplementary materials linked through the main README including

developer setups for contributors. An inclusive code of conduct for contributors and users was

set up to facilitate fair treatment and guidelines for contributing. Furthermore, a contributors

guide is provided describing the expected workflows, testing, and code quality expectations for

pull requests into the package.

Documentation All modules are accompanied by Numpy style docstrings and comments to

maintain documentation of the library. This approach maintains an up to date reference of the

API, which is compiled and rendered via Sphinx to be hosted online on ReadTheDocs for every

60

update accepted into the main branch.2 In addition to the API reference, our documentation

website is accompanied by various supplementary tutorials, examples, and information about

learning distributed representations within the library to help get users started and advanced

users to extend the library to fit their needs and research endeavours.

Code quality, testing and continuous integration To ensure consistent code quality

throughout the package, we ensure that source code is PEP 8 compliant via a linter that is

checked automatically before a pull request can be approved. We make pre-commit hooks

available that can format the code using tools, such as the Black package. All important modules

and classes are extensively tested through unit tests to ensure consistent behaviour. Code

coverage reports are available on the repository as a measure of the health of the package. A

continuous integration setup ensures that any update to the code base is tested across different

environments and can be installed reliably.

3.10 Summary

Through the characterisation of existing methods, and the reproduction of their results in

Geo2DR, we have shown that the library is a successful amalgamation of the various components

that enable learning distributed representations of graphs. We therefore successfully answered

Research Question 1. Using the simple design methodology, one can quickly re-implement

existing models, which is becoming an increasingly important part of reproducible research and

designing novel architectures. By exploiting the modular structure and compatibility with other

software and libraries the set of tools for constructing learning methods is broadened without

having to deal with different data formats, language paradigms and workflows used by individual

implementations. Using a host of re-implemented methods also allows for more homogenised

experiment suites that can be used to more fairly compare existing and new methods in future

research efforts. Geo2DR is now available with detailed documentation and examples as a starting

point. The library will continue to evolve to add new components, compatibility with other

libraries, tutorials, and accommodate new developments in the field.

2https://geo2dr.readthedocs.io/en/latest/

61

https://geo2dr.readthedocs.io/en/latest/

62

CHAPTER 4

Towards representation learning on

dynamic graphs

4.1 Overview and contributions

In the previous chapter we looked at Geo2DR, a library for learning distributed representations

of graphs, offering an alternative graph representation learning framework alongside libraries

such as DGL [16] and PyTorch Geometric [15] (shortened to PyG) for constructing GNNs. A

notable omission amongst all of the existing libraries for machine learning on graphs, as shown

in Table 2.3, are tools for processing dynamic graphs and constructing graph representation

learning algorithms for them. All of the methods presented in the libraries before focus upon

static graphs whose nodes, edges, and features do not change over time.

However, many phenomena can be modelled using graph structures that change over time.

Obvious examples include: traffic networks, email and other communication networks, and

supply chain networks. Use cases that have been extensively studied with machine learning

using static networks, such as social networks, citation networks, recommender systems are also

more realistically represented using dynamic graphs. In social media, communication events

such as emails, interactions, and text messages are streaming while friendship relations evolve,

changing the structure and dynamics of the network. In recommender systems, as often seen in

e-commerce applications, new products, new users, and new ratings appear every day [132].

Dynamic networks are particularly pertinent in biomedical applications as life is rarely static.

Biomolecular entities constantly interact and the structure of interactome data such as protein-

protein interaction networks change under different transcriptional/translational conditions

[133, 134]. At present, most studies using interactome data focus on static snapshots of small

parts of the interactome, with some methods focusing on using the entire interactome regardless

of time or condition as we show in Chapter 6. On a higher level, cell communication networks

change over time. The spatio-temporal composition of cell types and gene expression patterns

will change in tissue, dependent on various internal and external factors giving rise to different

conditions. On an even higher level, we may find ecological networks or networks relevant to

public health being modelled on dynamic networks. There are still numerous challenges in

63

obtaining spatio-temporal data for biomolecular entities such as tissues, but if the advent of

spatial transcriptomics [135] and advances in transcriptomic profiling within live tissues [136]

are anything to go by, the ability to perform spatio-temporal modelling of single-cell data and

beyond is a question of ‘when’ rather than ‘if’. Great strides have already been taken to model

biological phenomena using static networks, helped largely by interdisciplinary researchers who

stood to capitalise on their application domain knowledge [12]. Being able to process these in

situ and in time stands to unlock new insights into biological processes in motion.

To accelerate research into machine learning on dynamic graphs and its various applicable

domains we require a modular toolkit which allows us to process such graphs and construct

learning algorithms for them reliably and efficiently. This chapter presents PyTorch Geometric

Temporal (shortened to PyG-T), a library for rapidly composing GNNs capable of learning

representations for temporal graphs. Based on a characterisation of the different ways in which

temporal graph data exist we propose different data structures that can be used to store and

process such dynamic graph instances in a memory efficient manner that is also compatible and

consistent with the extensive PyTorch data loading interface. Subsequently, we implemented

various modular building blocks based on breaking down existing GNNs for temporal graphs and

characterising common design patterns. To encourage research and inspiration in this domain,

various datasets were collected and processed from existing public databases as well as new

datasets ranging from chicken pox spread to hourly passenger inflow on bus networks. This allows

us to conduct evaluations of the existing methods across a variety of existing and new datasets.

Finally, sensitivity analysis of runtimes shows that the framework can potentially operate on

web-scale datasets with rich temporal features and spatial structures.

This large undertaking was developed in collaboration with Benedek Rozemberczski (Univer-

sity of Edinburgh) who led the project, myself, and Yixuan He (University of Oxford) with data

providers such as George Panagopoulos (École Polytechnique), Alexander Riedel (Ernst-Abbe

University for Applied Sciences), Maria Astefanoaei (IT University of Copenhagen), Oliver

Kiss (Central European University), Ferenc Beres (ELKH SZTAKI), Guzmán López (Tryolabs),

Nicolas Collignon (Pedal Me), and Rik Sarkar (University of Edinburgh, supervisor of Rozem-

berczki). My contributions begin at the beginning of the project with Benedek Rozemberczki

after conversations about Geo2DR (Chapter 3) and Little Ball of Fur [111] at the KDD 2020

conference. I participated in the design discussions of data structures and the library, and early

development of methods such as the DCRNN and ST-GCN, and dataset processing for public

datasets such as METR-LA and PEMS-BAY which are used as templates for other methods and

datasets in the library. Additional work was put in participation of writing the manuscript and

presenting the accepted poster as one of the principal authors at the CIKM 2021 conference.

The work of this chapter was accepted as a conference paper at CIKM 2021 under the title:

“PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning

Models” [24] where it was given a best paper award. The associated GitHub repository has over

2000 stars as of writing and over 67,000 package downloads, and is part of the official PyTorch

ecosystem. Furthermore, the work has helped in the development of numerous new methods such

as DynGESN [137], PIDGeuN [138], and GraphCoReg [139], as well as applications of temporal

GNNs in new domains such as Chickenpox case modelling [29], meteorological forecasting [140],

64

and navigation for ships via identification of gateway ports [141]. These examples strengthen our

view on the positive role of libraries in fostering both basic and applied research.

4.2 Dynamic graphs and spatio-temporal graphs

We start our discussion of dynamic graphs by reviewing static graphs and the notation used

therein. We define G = (V, E) as a (static) graph where V is a set of nodes and E ⊆ (V × V) is a

2-tuple set of edges in the graph. We can associate several matrices with a graph such as an

adjacency matrix A ∈ R|V|×|V|, a diagonal degree matrix D ∈ R|V|×|V| with Di,i =
∑|V|

j=1Ai,j ,

and a graph Laplacian L = D −A. Attributed graphs with d-dimensional node features are

associated with a node feature matrix X ∈ R|V|×d. We may extend these to have edge features

with another matrix.

There are some special types of graphs based on the properties of the nodes and edges, which

have corresponding special names, which supplement those we mentioned in Chapter 2. Graphs

containing only undirected edges are undirected graphs otherwise they are directed graphs (also

called digraphs). A graph is bipartite if the nodes can be split into two groups where there is no

edge between any pair of nodes in the same group. A multigraph is a graph where multiple edges

can exist between two nodes. Graphs with attributes (features) for nodes and/or edges are called

attributed graphs, however this is not often used as it is implied in most of our case studies.

(Static) heterogeneous graphs1 are multi-digraphs with labeled edges, where the labels

represent the types of the relationships. Let R = {r1, r2, ..., r|R|} be a set of relation types. Then

for heterogeneous graph G = (V, E), E ⊆ V × V × R, which translates into each edge being a

triple of (u, v, ri), ri ∈ R. For most of our discussions, we will focus on homogeneous graphs and

the methods applicable to them (these can be extended to heterogeneous graphs with simple

additional steps as described in [50]).

Dynamic graphs are graphs whose topology and attributes change over time. We will frame

our definitions from the most general to specific sub-cases that commonly exist within datasets

based on an adaptation of Kazemi et al’s survey and taxonomy [132]. This taxonomy is depicted

diagrammatically in Figure 4.1. A continuous-time dynamic graph (CTDG) is a pair (G,O) where

G is a static graph representing an initial state of a dynamic graph at time t0 and O is a set of

observations or events where each observation is a tuple of the form (eventtype, event, timestamp).

An event type can be an edge addition/deletion, node addition/deletion, node splitting, node

merging, etc. At any point t ≥ t0 in time, a snapshot Gt corresponding to a static graph can be

obtained from a CTDG by updating G sequentially according to O that occurred before time t.

A discrete-time dynamic graph (DTDG) is a sequence of snapshots from a dynamic graph

sampled at (typically) regularly-spaced times. Formalising this, a DTDG can be represented

as a set {G1,G2, ...,GT } where Gt = (Vt, E t) is the graph at snapshot t with the corresponding

node and edge sets at that time. Compared to a CTDG, a DTDG may lose some fidelity and

granularity of information by looking only at regular snapshots over time, but is generally easier

to develop.

1These are also known as knowledge graphs and ontologies in different communities [132].

65

...

... ...

...

C
T
D
G

D
T
D
G

Sp
at
io
-t
em

po
ra
l

Figure 4.1: Depiction of the different kinds of dynamic graphs. For each of the different classes of
dynamic graphs we highlight how the node features or structure of the graph can change over regular
or irregular timesteps. The CTDG represents the most granular form with irregular update times that
may affect structure and attributes of the substructures within. The DTDG also considers changes in
structure and attributes but at (typically) regular discrete time steps which may hence aggregate events
occuring between steps. Finally, the class of spatio-temporal dynamic graphs does not consider changes to
the structure of the graph and only on the attributes of its substructures at regular intervals.

66

A subclass of DTDGs, known as Spatio-Temporal (or just Temporal) graphs exist borne out of

the context which we typically find them in such as traffic networks [142] that detail positioning

of entities via nodes and temporal aspect refers to the dynamic nature of relations and attributes

of the nodes. Importantly, these dynamic graphs do not have node addition/deletion events and

the only structures that change within them are relations and substructure attributes. Despite

this limitation, these are amongst the most common format in which we find dynamic graph

data due to the modelling decisions of case studies and the amount of control we may exert

over experiments and measurements [132]. Our proposed library, PyTorch Geometric Temporal,

is a toolkit for developing neural representation learning methods applicable to the class of

spatio-temporal graphs [24].

Downstream tasks involving dynamic graphs generally focus on substructure prediction tasks

such as node classification, node regression, and link prediction. Amongst this set, node regression

on spatio-temporal graphs is particularly common [132]. These would typically be formulated

in a sequence-to-sequence (Seq2Seq) setup. Using our running traffic network example, we are

interested in learning a function f(·) which maps the node features at time t from the previous p

steps to the next p steps, whilst considering the graph structure G.

[
Xt−p+1, · · · ,Xt;G

] f(·)−−→
[
Xt+1, · · · ,Xt+p

]
(4.1)

In this traffic network example the graph topology does not change, hence we only specify G
without reference to time. More generally, if the topology does change over time, we would be

given a sequence of graph snapshots and tasked with predicting future graph snapshots.[(
Xt−p+1,Gt−p+1

)
, · · · ,

(
Xt,Gt

)] f(·)−−→
[
Xt+1, · · · ,Xt+p

]
(4.2)

These are currently the most common task formulations involving dynamic graphs. However,

it is also easy to formulate other graph-level tasks as well. For example, we can formulate the

prediction of whether a sequence p traffic network measurements was made on a week day or

weekend using the following:[(
Xt−p+1,Gt−p+1

)
, · · · ,

(
Xt,Gt

)] g(·)−−→ c (4.3)

Here, we would be interested in learning a classifier g(·), mapping the sequence of graph

snapshots on the left hand side, to binary class label c ∈ 0, 1. c specifies whether the sequence

corresponds to measurements seen on a week day or weekend. Each of these task formulations

can be set up easily within PyTorch Geometric Temporal, with f(·) and g(·) being parameterised

by message passing neural networks.

4.3 GNN based methods for spatio-temporal graphs

Existing GNN based representation learning methods for spatio-temporal graphs are based on

the amalgamation of GNNs to handle the “spatial” aspect and sequence models to handle the

“temporal” aspect. Hence, we will centre our discussion on introducing sequence models and then

67

Rolled up

Figure 4.2: Diagram of 3 repeated RNN layers applied on a sequence of inputs. Note the shared weights
between each application of the RNN layer to the next sequence element and the previous memory output.
As a result, it is common to draw an RNN “rolled up” with a loop on hidden memory state.

how GNNs are integrated into their representation learning framework.

4.3.1 Sequence models

In dynamic environments, data is often presented as sequences of observations with varying

lengths instead of fixed lengths. Numerous models have been proposed to handle these sort of

data samples including auto-regressive models [143], that predict observations based on a window

of previous observations. This also includes hidden Markov models [144] which use hidden states

to capture relevant past temporal information at arbitrary lengths. Recurrent neural networks

(RNNs) translate this latter approach of using hidden states to the paradigm of neural networks.

The core component of an RNN layer is that its input is a function of the current observation in

the sequence as well as a history (could be regarded as a memory) of previous inputs encoded

within a vector. A simple RNN layer can be defined as:

ht = σ(Wix
t + Whh

t−1 + b) (4.4)

ot = σ(Woh
t + c) (4.5)

Where xt ∈ Rdin is the input at position t in the sequence, ht−1 ∈ Rd is a hidden representation

containing information about the sequence of inputs until t − 1 (often initialised as 0 for h0).

Wi ∈ Rd×din and Wh ∈ Rd×d are weight matrices, ht ∈ Rd is an updated hidden representation

ready to be used in the next iteration t+ 1. An output ot is created with another parameterised

affine transformation with Wo ∈ Rdout×d and bias c ∈ Rdout . This is depicted diagrammatically

in Figure 4.2. Looking at this mechanistically, Equation 4.4 inductively biases the hidden

representation to be recursive and sequential, where each output is dependent on the same

operation being performed in sequential order.

Long short term memory (LSTM) [145] layers extend RNNs to improve their performance over

longer sequences, where an RNN’s latent memory ht is overloaded through too many iterations

of Equation 4.4. LSTMs overcome this through a series of parameterised gating functions that

control the information flow to the hidden memory states. The LSTM layer or block is defined

through the following equations:

68

it = σ
(
Wiix

t + Wihh
t−1 + bi

)
(4.6)

f t = σ
(
Wfix

t + Wfhh
t−1 + bf

)
(4.7)

ct = f t ⊙ ct−1 + it ⊙ Tanh
(
Wcix

t + Wchh
t−1 + bc

)
(4.8)

ot = σ
(
Woix

t + Wohh
t−1 + bo

)
(4.9)

ht = ot ⊙ Tanh(ct) (4.10)

where it, f t, and ot represent the input, forget and output gates respectively, ct is the memory

cell and ht is the hidden state. σ and Tanh are the elementwise sigmoid and hyperbolic tangent

functions respectively. Gated recurrent units (GRUs) [146] are another popular choice based

on the same concept of gating functions within a recurrent neural network architecture. Both

the LSTM and GRU are commonly used within sequence modelling architectures and can be

extended to incorporate relational inductive biases as we will show in the next subsection.

Attention based models are also becoming more commonly used for sequence modelling tasks

due to our increasing compute capabilities and their ability to leverage information from all

aspects of the sequence [147]. Instead of using recurrence, these models rely on (self) attention

over the sequence. Let Xin ∈ RT×d represent a sequence containing T observations each with an

associated d-dimensional feature vector input. The output for a given row in Xin is updated

with respect to all of the other rows (and itself). Let X̄in = Xin + P where P ∈ RT×d is a

positional encoding matrix which carries information about the position of each element in the

sequence. Then X̄in is projected into a query matrix Q = X̄inWQ ∈ RT×dk , a key matrix

K = X̄inWK ∈ RT×dk , and a values matrix V = X̄inWV ∈ RT×dv , where WQ,WK ∈ Rd×dk

and WV ∈ Rd×dv are learnable parameters. Then each row of the matrix X̄in is updated by

taking a weighted sum of the rows in V. The weights of this sum are computed using the query

and key matrices, such that the output (updated) matrix Xout ∈ RT×dv is computed as follows:

Xout = Attention(Q,K,V) = softmax
(QK′
√
dk

V
)

(4.11)

where K′ is K transposed (temporary notational abuse as we are using T to denote the length of

the sequence). Softmax performs a row-wise normalisation of the input matrix, thus softmax
(QK′
√
dk

)
creating the weights of the weighted sum. A mask can be used on Equation 4.11, in order to

make sure that at time of interest t, we can only attend to the observations before it. Multi-head

self attention can be defined through multiple instances of self attention blocks (Equation 4.11)

each with different weight matrices and concatenating the results.

69

4.3.2 GNNs in sequence models

Spatio-temporal GNNs can be constructed naturally by extending sequence models with relational

inductive biases, particularly with message passing neural network layers. Indeed, RNNs have

been a common modelling framework for extending sequence models to DTDGs and CTDGs.

Recall our use of the encoder-decoder framework for graph-structured data from Chapter 2.

Consider a DTDG as a sequence of graph snapshots {G1,G2, ...,GT }. Let ψ(·) be a differentiable

encoder, such that given a static graph Gt it outputs a vector representation for every node. A

simple way of incorporating this encoder into an RNN is to apply ψ on each graph snapshot and

obtain a sequence {z1v, z2v, ...zTv } of vector representations for each node v. A RNN is then used

to process this sequence. A separate decoder can be used to perform any downstream task of

interest. In other words:

ztv1 , ...z
t
v|Vt|

= ψ(Gt) (4.12)

ht
vj = RNN(ht−1

vj , ztvj), j ∈ [1, |Vt|] (4.13)

which is also equivalent to

Zt = ψ(Gt) (4.14)

H = RNN(Ht−1,Zt) (4.15)

where Z ∈ R|Vt|×d are the d-dimensional node representations in the graph at snapshot t and

Ht ∈ R|Vt|×d is the matrix of memory states for each of nodes. Through this construction, ψ(·)
serves to capture the structural (“spatial”) information for each node at each snapshot and the

RNN aims to capture the “temporal” information. This construction has been used multiple

times with differing variations of RNN implementation and definition of ψ(·). For example, Seo et

al. [148], introduced the GConvLSTM and GConvGRU architectures which utilises Deferrard et

al’s ChebNet [149] as ψ(·) and the LSTM and GRU respectively for the RNN function. Similarly

Narayan and Roe [150] use this setup with Niepert et al.’s PSCN [151] and an LSTM. Manessi et

al. [152] slightly modifies this by introducing skip-connections in the GNN, and there are more

variants beyond this. Attention models can also work in this format, such as DySAT by Sankar

et al. [153] which utilises a GAT [71] for ψ(·) and applies the transformer based multi-head self

attention we discussed previously (Equation 4.11).

In these aforementioned approaches ψ(·) is not part of the RNN. In other words, the vector

representations for nodes provided by ψ(·) are independent of the node memory states captured

in ht
vj , j ∈ [1, |Vt|]. We can rectify this by incorporating the (differentiable) encoder into the RNN

framework. This was the approach taken by Chen et al. in GC-LSTM [154] which incorporates

multiple ChebNet layers within an LSTM block in the following manner:

it = σ
(
WiiA

t
j + ψ1(Gtvj) + bi

)
(4.16)

70

f t = σ
(
WfiA

t
j + ψ2(Gtvj) + bf

)
(4.17)

Ct
vj = f t ⊙ ψ3(Gtvj) + it ⊙ Tanh

(
WciA

t
j + ψ4(Gtvj) + bc

)
(4.18)

ot = σ
(
WoiA

t
j + ψ5(Gtvj) + bo

)
(4.19)

Ht
vj = ot ⊙ Tanh(Ct

vj) (4.20)

where At is the adjacency matrix for Gt, and At
j is the jth row of At corresponding to the

neighbourhood of node vj . Correspondingly, Ct
vj and Ht

vj represent the moment and hidden

state of the LSTM at time t for node vj . ψi, (·), i ∈ [1, 5] are five ChebNet layer instances.

Node representations for ψ1, ψ2, ψ4 and ψ5 are initialised according to Ht−1 and by Ct−1 for

ψ3. Whether the GNN is embedded within a sequence model or not, these compositions allow

for sharing of salient temporal and spatial autocorrelation information across the nodes of the

dynamic graph substructures.

4.4 Existing software for learning on dynamic graphs

Before delving into our contributions we will look towards the current landscape of software

for graph representation learning and software for storing and performing analytics on spatio-

temporal data. As discussed previously at the end of Chapter 2 and in Chapter 3, the current

graph representation learning software landscape is heavily focused on the construction of MPNNs.

These differentiate on the basis of which auto-differentiation framework they extend such as

TensorFlow [40], PyTorch [155], MxNet [156], and JAX [39]. Our work also does the same

building upon the PyTorch ecosystem. The key properties of these libraries are summarised in

Table 4.1. This table compares the libraries based on: the automatic differentiation backend used,

presence of supervised training functionality, presence of temporal models, and GPU support.

Importantly, PyG-T is the only one to date which allows the supervised training of temporal

graph representations learning models with GPU acceleration.

The open source landscape for spatio-temporal data processing at the time of this project’s

release (and to some extent still) consists of specialised database management systems, analytical

tools and machine learning libraries. Characteristics of the most popular packages are summarised

in Table 4.2 with respect to year of release, purpose of the package, source code language, and

support for GPU acceleration.

Looking at Table 4.2, it is apparent that most spatio-temporal data processing tools were

released fairly recently, suggesting the nascent nature of research in this field and the many

possible opportunities for further research. Moreover, the database systems are written in

high-performance languages whilst the analytics and machine learning oriented toolkits utilise

Python/R, to cater to their respective audiences. Finally, the use of GPU acceleration is not

widespread. Once again the proposed library PyTorch Geometric Temporal is the first open

71

Table 4.1: Table of current open source deep learning libraries applicable to graph-structured data.

Library Backend Supervised Temporal GPU
PT Geometric [15] PT • •
Geometric2DR [23] PT •
CogDL [157] PT • •
Spektral [18] TF • •
TF Geometric [158] TF • •
StellarGraph [159] TF • •
DGL [160] TF/PT/MX • •
DIG [161] PT • •
Jraph [17] JAX • •
Graph-Learn [162] Custom • •
GEM [163] TF •
DynamicGEM [164] TF • •
OpenNE [113] Custom
Karate Club [103] Custom
PyG-T PT • • •

Table 4.2: A multi-aspect comparison of open-source spatio-temporal database systems, data analytics
libraries and machine learning frameworks.

Library Year Purpose Language GPU
GeoWave [165] 2016 Database Java
StacSpec [166] 2017 Database Javascript
MobilityDB [167] 2019 Database C
PyStac [168] 2020 Database Python
StaRs [169] 2017 Analytics R
CuSpatial [170] 2019 Analytics Python •
PySAL [171] 2017 Machine Learning Python
STDMTMB [172] 2018 Machine Learning R
PyG-T 2021 Machine Learning Python •

source GPU accelerated machine learning library for graph-structured spatio-temporal data.

4.5 PyTorch Geometric Temporal

PyG-T is an open source library that utilises the natural compositions of existing neural network

layers for sequence and graph-structured data to provide deep learning models capable of learning

on spatio-temporal graph data. Table 4.3 lists part of a growing list of methods implemented in

the library along with categorisation on the nature of their temporal and GNN blocks utilised,

the order of spatial proximity, and heterogeneity of the edge set.

4.5.1 Neural network layer design

Each of the spatio-temporal neural network layers are implemented as classes in the framework.

In this section we outline the design principles which drives the implementations of the layers.

Non-proliferation of classes PyG-T leverages and reuses existing high level neural network

layer classes as building blocks from the PyTorch and Pytorch Geometric ecosystems. The goal

of the library is not to replace these frameworks, but to build upon them. This design strategy

72

ensures that the number of auxiliary classes in the framework is kept low (and focus is put on the

right domain), and that the framework interfaces well with the rest of the dominant ecosystem

of graph representation learning.

Hyperparameter inspection and type hinting The neural network layers do not have

default hyperparameter settings as some of these have to be set in a dataset/task dependent

manner. To help with this, the layer hyperparameters are stored as public class attributes and

they are available for inspection. Moreover, the constructures of the neural network layers use

type hinting which helps the end users set the hyperparameters, as well as lending itself to static

typechecking with tools such as MyPy.

Limited number of public methods The spatio-temporal neural network layers in PyG-

T have a limited number of public methods for simplicity. For example, the auxiliary layer

initialisation methods and other internal model mechanics are implemented as private methods.

All of the layers provide a forward method (a convention within PyTorch) and those which use

the message passing scheme in PyTorch Geometric provide a corresponding message method.

Auxiliary layers The auxiliary neural network layers which are not part of the PyTorch

Geometric ecosystem such as diffusion convolutional graph neural network [173] are implemented

as standalone neural network layers in the framework, but completely compatible with PyG

API. These layers are available for the design of existing and novel architectures as individual

components.

4.5.2 Data structures for spatio-temporal graphs

Our framework breaks down spatio-temporal graph sequences into 3 cases which differ in terms

of the dynamics of the graph structure and that of the node attributes. We define the following

which are also represented diagrammatically in Figure 4.3:

Definition 4.1. Dynamic graph with temporal signal A dynamic graph with a temporal

signal is the ordered set of graph and node feature matrix tuples D =
{

(G1,X1), . . . , (GT ,XT)
}

where the vertex sets satisfy that Vt = V, ∀t ∈ {1, . . . , T} and the node feature matrices that

Xt ∈ R|V|×d, ∀t ∈ {1, . . . , T} .

Definition 4.2. Dynamic graph with static signal. A dynamic graph with a static signal

is the ordered set of graph and node feature matrix tuples D =
{

(G1,X), . . . , (GT ,X)
}

where

vertex sets satisfy Vt = V, ∀t ∈ {1, . . . , T} and the node feature matrix that X ∈ R|V|×d.

Definition 4.3. Static graph with temporal signal. A static graph with a temporal signal

is the ordered set of graph and node feature matrix tuples D =
{

(G,X1), . . . , (G,XT)
}

where

the node feature matrix satisfies that Xt ∈ R|V|×d, ∀t ∈ {1, . . . , T} .

Spatio-temporal signal iterators Representing spatio-temporal data based on these theoreti-

cal concepts allows us the creation of bespoke memory-efficient data structures which encapsulate

73

...

St
at

ic
 g

ra
ph

 w
ith

te
m

po
ra

l s
ig

na
l

D
yn

am
ic

 g
ra

ph
w

ith
 st

at
ic

 si
gn

al

...

D
yn

am
ic

 g
ra

ph
 w

ith
te

m
po

ra
l s

ig
na

l

...

Figure 4.3: Figure of the different spatio-temporal graph iterators available for homogenous graphs in
PyG-T. In the Dynamic graph with temporal signal, the edge/node attributes may change as well as the
edge set. It fulfills a DTDG in all respects except the addition or deletion of nodes. The Dynamic graph
with static signal denotes a graph whose topology (edge sets) may change but the node/edge features stay
static. Finally, the static graph with temporal signal denotes a dynamic graph whose topology does not
change but its node/edge features do.

74

Table 4.3: A comparison of spatio-temporal deep learning models in PyTorch Geometric Temporal based
on the temporal and spatial block used.

Model Temporal Layer GNN Layer
DCRNN [173] GRU DiffConv

GConvGRU [148] GRU Chebyshev

GConvLSTM [148] LSTM Chebyshev

GC-LSTM [154] LSTM Chebyshev

DyGrAE [174, 175] LSTM GGCN

LRGCN [176] LSTM RGCN

EGCN-H [177] GRU GCN

EGCN-O [177] LSTM GCN

T-GCN [178] GRU GCN

A3T-GCN [179] GRU GCN

AGCRN [180] GRU Chebyshev

MPNN LSTM [181] LSTM GCN

STGCN [182] Attention Chebyshev

ASTGCN [183] Attention Chebyshev

MSTGCN [183] Attention Chebyshev

GMAN [184] Attention Custom

MTGNN [185] Attention Custom

AAGCN [186] Attention Custom

DNNTSP [187] Attention GCN

these definitions well in practice and provide temporally ordered snapshots for batching. In

particular, each of the 3 defined subtypes of spatio-temporal graphs correspond to respective

Spatio-temporal signal iterators. These iterators are designed to store spatio-temporal datasets

without redundancy. For example, a Static graph temporal signal iterator will not store the

edge indices and weights for each time period in order to save memory. By iterating over a

spatio-temporal signal iterator at each step a graph snapshot is instantiated which describes the

graph of interest at the given point in time. Graph snapshots are returned in temporal order by

the iterators. Of course, the iterators can be indexed directly to access a specific graph snapshot

— which was designed to allow for introspective study and the design of more advanced temporal

batching strategies.

Graph snapshots The time period specific snapshots, which consist of targets, features, edge

indices, and weights are stored within NumPy and Torch arrays in memory, but instantiated

into graph snapshots as PyTorch Geometric Data instances within the Spatio-temporal signal

iterators. This design choice leverages access to the efficient scatter and clustering algorithms

within PyTorch Geometric for the construction of GNNs and widely used data loading facilities

of the larger PyTorch ecosystem (which is famously also used within competing frameworks such

as JAX).

Train-test splits The library is packaged with utilities for temporal train-test splitting which

creates train and test snapshot iterators from the aforementioned spatio-temporal signal iterators

75

Table 4.4: Properties and granularity of the spatio-temporal datasets introduced in the library with
information about the number of time periods (T) and spatial units (|V |).

Dataset Signal Graph Frequency T |V |
Chickenpox Hungary Temporal Static Weekly 522 20

Windmill Large Temporal Static Hourly 17,472 319
Windmill Medium Temporal Static Hourly 17,472 26

Windmill Small Temporal Static Hourly 17,472 11
Pedal Me Deliveries Temporal Static Weekly 36 15

Wikipedia Math Temporal Static Daily 731 1,068
Twitter Tennis RG Static Dynamic Hourly 120 1000
Twitter Tennis UO Static Dynamic Hourly 112 1000
Covid19 England Temporal Dynamic Daily 61 129
Montevideo Buses Temporal Static Hourly 744 675

MTM-1 Hand Motions Temporal Static 1/24 Seconds 14,469 21

given a test dataset ratio. This parameter of the splitting utility decides the fraction of data

that is separated from the end of the spatio-temporal graph snapshot sequence for testing. The

returned iterators have the same type as the input iterator. Importantly, this splitting does not

influence the applicability of masking strategies as widely used within semi-supervised graph

learning tasks.

Integrated benchmark dataset loaders The library provides a “battery-included” expe-

rience through the incorporation of practical data loaders on widely used existing datasets

and datasets that have been introduced through this package (which we showcase in the next

subsection). Each loader returns spatio-temporal signal iterators which can be used for training

existing and bespoke spatio-temporal deep learning architectures to solve supervised machine

learning problems.

4.5.3 Datasets

PyG-T introduces new spatio-temporal datasets that can be used to test existing and novel

models on node level classification and regression tasks. The descriptive statistics and properties

of these datasets are summarised in Table 4.4 with descriptions as follows:

• Chickenpox Hungary. A spatio-temporal dataset about the officially reported cases of

chickenpox in Hungary. The nodes are counties and edges describe direct neighborhood

relationships. The dataset covers the weeks between 2005 and 2015 without missingness.

• Windmill Output Datasets. An hourly windfarm energy output dataset covering 2

years from a European country. Edge weights are calculated from the proximity of the

windmills – high weights imply that two windmill stations are in close vicinity. The size of

the dataset relates to the grouping of wind farms considered; the smaller datasets are more

localised to a single region.

• Pedal Me Deliveries. A dataset about the number of weekly bicycle package deliveries

by Pedal Me in London during 2020 and 2021. Nodes in the graph represent geographical

76

units and edges are proximity-based mutual adjacency relationships.

• Wikipedia Math. Contains Wikipedia pages about popular mathematics topics and

edges describe the links from one page to another. Features describe the number of daily

visits between March 2019 and March 2021.

• Twitter Tennis RG and UO. Twitter mention graphs of major tennis tournaments

from 2017. Each snapshot contains the graph of popular player or sport news accounts and

mentions between them [188, 189]. Node labels encode the number of mentions received

and vertex features are structural properties.

• Covid19 England. A dataset about mass mobility between regions in England and the

number of confirmed COVID-19 cases from March to May 2020 [181]. Each day contains a

different mobility graph and node features corresponding to the number of cases in the

previous days. Mobility stems from Facebook Data For Good2 and cases from gov.uk.3

• Montevideo Buses. A dataset about the hourly passenger inflow at bus stop level for

eleven bus lines from the city of Montevideo. Nodes are bus stops and edges represent

connections between the stops; the dataset covers a whole month of traffic patterns.

• MTM-1 Hand Motions. A temporal dataset of Methods-Time Measurement-1 [190]

motions, signaled as consecutive graph frames of 21 3D hand key points that were acquired

via MediaPipe Hands [191] from original RGB-Video material. Node features encode the

normalised 3D-coordinates of each finger joint and the vertices are connected according to

the human hand structure.

4.6 Annotated coding example

In the following, we will cover a simple end-to-end machine learning pipeline designed with

PyG-T. The task will involve a practical epidemiological forecasting problem of predicting the

weekly number of chickenpox cases in Hungary [29]. The pipeline consists of data preparation,

model definition, training, and evaluation phases. Notably, for the training phase we would like

to highlight two different backpropagation schemes used to update the recurrent models.

• Cumulative: When the loss from every temporal snapshot is aggregated, it is backpropa-

gated, and weights are updated with the optimiser. This requires only one weight update

step per epoch.

• Incremental: After each temporal snapshot the loss is backpropagated and model weights

are updated. This would need as many weight updates as the number of temporal snapshots.

We will present both of these approaches in the coding snippets next.

2https://dataforgood.fb.com/
3https://coronavirus.data.gov.uk/

77

 https://dataforgood.fb.com/
https://coronavirus.data.gov.uk/

4.6.1 Coding example: cumulative model training on CPU

Dataset loading and splitting In Listings 5 as a first step, we import the Hungarian

chickenpox cases benchmark dataset loader and the temporal train test splitter function (lines

1-2). We define the dataset loader (line 4) and use the get dataset() class method to return

a temporal signal iterator (line 5). Finally, we create a train-test split of the spatio-temporal

dataset by using the splitting function and retain 10% of the temporal snapshots for model

performance evaluation (line 6).

1 from torch_geometric_temporal import ChickenpoxDatasetLoader

2 from torch_geometric_temporal import temporal_signal_split

3

4 loader = ChickenpoxDatasetLoader()

5 dataset = loader.get_dataset()

6 train, test = temporal_signal_split(dataset, train_ratio=0.9)

Listing 5: Loading a default benchmark dataset and creating a temporal split with PyTorch Geometric
Temporal.

Recurrent graph convolutional model definition We define a recurrent graph convolutional

neural network model in Listings 6. We import the base and functional programming PyTorch

libraries and one of the neural network layers from PyTorch Geometric Temporal (lines 1-3).

The model requires a node feature count and convolutional filter parameter in the constructor

(line 6). The model consists of a one-hop Diffusion Convolutional Recurrent Neural Network

layer [173] and a fully connected layer with a single neuron output (lines 8-9).

In the forward pass method of the neural network, the model uses the vertex features, edges,

and optional edge weights (line 11). The initial recurrent graph convolution-based aggregation

(line 12) is followed by a rectified linear unit activation function [192] and dropout [193] for

regularisation (lines 13-14). Using the fully connected layer, the model outputs a single score for

each spatial unit (lines 15-16).

1 import torch

2 import torch.nn.functional as F

3 from torch_geometric_temporal.nn.recurrent import DCRNN

4

5 class RecurrentGCN(torch.nn.Module):

6 def __init__(self, node_features, filters):

7 super(RecurrentGCN, self).__init__()

8 self.recurrent = DCRNN(node_features, filters, 1)

9 self.linear = torch.nn.Linear(filters, 1)

10

11 def forward(self, x, edge_index, edge_weight):

12 h = self.recurrent(x, edge_index, edge_weight)

13 h = F.relu(h)

14 h = F.dropout(h, training=self.training)

15 h = self.linear(h)

16 return h

78

Listing 6: Defining a recurrent graph convolutonal neural network using PyTorch Geometric Temporal
consisting of a diffusion convolutional spatiotemporal layer followed by rectified linear unit activation,
dropout and a feedforward neural network layer.

Model training Using the dataset split and the model definition we can turn our attention

to training a regressor. In Listings 7 we create a model instance (line 1), transfer the model

parameters (line 2) to the Adam optimiser [194] which uses a learning rate of 0.01 and set the

model to be trainable (line 3). In each epoch, we set the accumulated cost to be zero (line 6),

iterate over the temporal snapshots in the training data (line 7), make forward passes with the

model on each temporal snapshot, and accumulate the spatial unit-specific mean squared errors

(lines 7-8). We normalise the cost, backpropagate and update the model parameters (lines 10-13).

1 model = RecurrentGCN(node_features=8, filters=32)

2 optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

3 model.train()

4

5 for epoch in range(200):

6 cost = 0

7 for time, snapshot in enumerate(train):

8 y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)

9 cost = cost + torch.mean((y_hat-snapshot.y)**2)

10 cost = cost / (time+1)

11 cost.backward()

12 optimizer.step()

13 optimizer.zero_grad()

Listing 7: Creating a recurrent graph convolutional neural network and training it by cumulative weight
updates.

Model evaluation The scoring of the trained recurrent graph neural network in Listings 8

uses the snapshots in the test dataset. We set the model to be non-trainable and the accumulated

squared errors as zero (lines 1-2). We iterate over the test spatio-temporal snapshots, make

forward passes to predict the number of chickenpox cases, and accumulate the squared error

(lines 3-5). The accumulated errors are normalised and we can print the mean squared error

calculated on the whole test horizon (lines 6-8).

1 model.eval()

2 cost = 0

3 for time, snapshot in enumerate(test):

4 y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)

5 cost = cost + torch.mean((y_hat-snapshot.y)**2)

6 cost = cost / (time+1)

7 cost = cost.item()

8 print("MSE: {:.4f}".format(cost))

79

Listing 8: Evaluating the recurrent graph convolutional neural network on the test portion of the
spatiotemporal dataset using the time unit averaged mean squared error.

4.6.2 Coding example: incremental model training with GPU

Exploiting the power of GPU-based acceleration of computations happens at the training and

evaluation steps of the PyTorch Geometric Temporal pipelines. In this case study, we assume

that the Hungarian Chickenpox cases dataset is already loaded in memory, the temporal split

happened and a model class was defined by the code snippets in Listings 5 and 6. Moreover,

we assume that the machine used for training the neural network can access a single CUDA

compatible GPU device [195].

Model training In Listings 9 we demonstrate accelerated training with incremental weight

updates. The model of interest and the device used for training are defined while the model is

transferred to the GPU (lines 1-3). The optimiser registers the model parameters and the model

parameters are set to be trainable (lines 4-5). We iterate over the temporal snapshot iterator

200 times, and the iterator returns a temporal snapshot in each step. Importantly the snapshots

which are PyTorch Geometric Data objects are transferred to the GPU (lines 8-9). The use of

PyTorch Geometric Data objects as temporal snapshots enables the transfer of the time period

specific edges, node features, and target vector with a single command. Using the input data, a

forward pass is made, the loss is accumulated and weight updates happen using the optimiser

in each time period (lines 10-14). Compared to the cumulative backpropagation-based training

approach discussed in Subsection 4.6.1 this backpropagation strategy is slower, as weight updates

happen at each time step, not just at the end of training epochs.

1 model = RecurrentGCN(node_features=8, filters=32)

2 device = torch.device('cuda')

3 model = model.to(device)

4 optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

5 model.train()

6

7 for epoch in range(200):

8 for snapshot in train:

9 snapshot = snapshot.to(device)

10 y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)

11 cost = torch.mean((y_hat-snapshot.y)**2)

12 cost.backward()

13 optimizer.step()

14 optimizer.zero_grad()

Listing 9: Creating a recurrent graph convolutional neural network instance and training it by incremental
weight updates on a GPU.

Model evaluation During model scoring the GPU can be utilised again. The snippet in

Listings 10 demonstrates that the only modification needed for accelerated evaluation is the

80

transfer of snapshots to the GPU. In each time period, we move the temporal snapshot to the

device to do the forward pass (line 4). We do the forward pass with the model and the snapshot

on the GPU and accumulate the loss (lines 5-6). The loss value is averaged out and detached

from the GPU for printing (lines 7-9).

1 model.eval()

2 cost = 0

3 for time, snapshot in enumerate(test):

4 snapshot = snapshot.to(device)

5 y_hat = model(snapshot.x, snapshot.edge_index, snapshot.edge_attr)

6 cost = cost + torch.mean((y_hat-snapshot.y)**2)

7 cost = cost / (time+1)

8 cost = cost.item()

9 print("MSE: {:.4f}".format(cost))

Listing 10: Evaluating the recurrent graph convolutional neural network with GPU based acceleration.

4.7 Empirical evaluation

PyG-T was evaluated on node level regression tasks using the novel datasets released alongside

the library. We also evaluate the effect of the previously covered backpropagation schemes on

the predictive performance and run time of implemented models.

4.7.1 Experiment setup

Using 90% of the temporal snapshots for training, we evaluated the forecasting performance

on the last 10% by calculating the average mean squared error from 10 experimental runs. We

used models with a recurrent graph convolutional layer which had 32 convolutional filters. The

spatio-temporal layer was followed by the rectified linear unit [192] activation function and during

training time we used a dropout of 0.5 for regularisation [193] after the spatio-temporal layer.

The hidden representations were fed to a fully connected feedforward layer which outputted the

predicted scores for each spatial unit. The recurrent models were trained for 100 epochs with the

Adam optimiser [194] which used a learning rate of 10−2 to minimise the mean squared error.

4.7.2 Validation and comparative analysis of methods

Results are presented in Table 4.5 where we also report standard deviations around the test set

mean squared error and bold numbers denote the best performing model under each training

regime on a dataset. Our experimental findings demonstrate multiple empirical regularities which

have important practical implications, namely:

1. Most recurrent graph neural networks have a similar predictive performance on these

regression tasks. In simple terms, there is not a single model which acts as a silver bullet.

This also postulates that the model with the lowest training time is likely to be as good as

the slowest one.

81

Table 4.5: The predictive performance of spatiotemporal neural networks evaluated by average mean
squared error. We report average performances calculated from 10 experimental repetitions with standard
deviations around the average mean squared error calculated on 10% forecasting horizons. We use the
incremental and cumulative backpropagation strategies. Bold numbers denote the best performance on
each dataset given a training approach. We can see

Chickenpox Hungary Twitter Tennis RG PedalMe London Wikipedia Math

Incremental Cumulative Incremental Cumulative Incremental Cumulative Incremental Cumulative
DCRNN [173] 1.124± 0.015 1.123± 0.014 2.049± 0.023 2.043± 0.016 1.463± 0.019 1.450± 0.024 0.679± 0.020 0.803± 0.018

GConvGRU [148] 1.128± 0.011 1.132± 0.023 2.051± 0.020 2.007± 0.022 1.622± 0.032 1.944± 0.013 0.657± 0.015 0.837± 0.021

GConvLSTM [148] 1.121± 0.014 1.119± 0.022 2.049± 0.024 2.007± 0.012 1.442± 0.028 1.433± 0.020 0.777± 0.021 0.868± 0.018

GC-LSTM [154] 1.115± 0.014 1.116± 0.023 2.053± 0.024 2.032± 0.015 1.455± 0.023 1.468± 0.025 0.779± 0.023 0.852± 0.016

DyGrAE [174, 175] 1.120± 0.021 1.118± 0.015 2.031± 0.006 2.007± 0.004 1.455± 0.031 1.456± 0.019 0.773± 0.009 0.816± 0.016

EGCN-H [177] 1.113± 0.016 1.104± 0.024 2.040± 0.018 2.006± 0.008 1.467± 0.026 1.436± 0.017 0.775± 0.022 0.857± 0.022

EGCN-O [177] 1.124± 0.009 1.119± 0.020 2.055± 0.020 2.010± 0.014 1.491± 0.024 1.430± 0.023 0.750± 0.014 0.823± 0.014

A3T-GCN[179] 1.114± 0.008 1.119± 0.018 2.045± 0.021 2.008± 0.016 1.469± 0.027 1.475± 0.029 0.781± 0.011 0.872± 0.017

T-GCN [178] 1.117± 0.011 1.111± 0.022 2.045± 0.027 2.008± 0.017 1.479± 0.012 1.481± 0.029 0.764± 0.011 0.846± 0.020

MPNN LSTM [181] 1.116± 0.023 1.129± 0.021 2.053± 0.041 2.007± 0.010 1.485± 0.028 1.458± 0.013 0.795± 0.010 0.905± 0.017

AGCRN [180] 1.120± 0.010 1.116± 0.017 2.039± 0.022 2.010± 0.009 1.469± 0.030 1.465± 0.026 0.788± 0.011 0.832± 0.020

2. Results on the Wikipedia Math dataset imply that a cumulative backpropagation strategy

can have a detrimental effect on the predictive performance of a recurrent graph neural

network. When computation resources are not a bottleneck, an incremental strategy can

be significantly better.

4.7.3 Runtime performance

The evaluation of the PyTorch Geometric Temporal runtime performance focuses on manipulating

the input size and measuring the time needed to complete a training epoch. We investigate the

runtime under the incremental and cumulative backpropagation strategies.

8 9 10 11 12

0

8

16

24

log2 Number of nodes

R
u
n
ti
m
e
in

se
co
n
d
s

2 3 4 5 6
log2 Number of edges per node

3 4 5 6 7

0

8

16

24

log2 Number of node features

R
u
n
ti
m
e
in

se
co
n
d
s

2 3 4 5 6
log2 Number of filters

Incremental CPU Cumulative CPU Incremental GPU Cumulative GPU

Figure 4.4: The average time needed for doing an epoch on a dynamic graph – temporal signal iterator
of Watts Strogatz graphs with a recurrent graph convolutional model.

82

Experimental settings The runtime evaluation used the GConvGRU model [148] with the

hyperparameter settings described in Subsection 4.7.1. We measured the time needed for doing a

single epoch over a sequence of 100 synthetic graphs. Reference Watts-Strogatz graphs in the

snapshots of the dynamic graph with temporal signal iterator have binary labels, 210 nodes, 25

edges per node, and 25 node features. Runtimes were measured on the following hardware:

• CPU: The machine used for benchmarking had an Intel i5-1035G1 processor.

• GPU: We utilised a machine with a single Tesla V-100 graphics card for the experiments.

4.7.3.1 Experimental findings

We plot the average runtime calculated from 10 experimental runs on Figure 4.4 for each input

size. Our results about runtime have two important implications about the practical application

of our framework:

1. The use of a cumulative backpropagation strategy only results in marginal computation

gains compared to the incremental one.

2. On temporal sequences of large dynamically changing graphs the GPU-aided training can

reduce the time needed to do an epoch by a whole magnitude.

4.8 Maintaining PyTorch Geometric Temporal

The long-term viability of the project is made possible by the open-source code, version control,

public releases, automatically generated documentation, continuous integration, and near 100%

test coverage alongside an inclusive code-of-conduct and contributing guidelines.

Open sourcing, package indexing, and contributing Pytorch Geometric Temporal is

made available open source under a permissive MIT license on GitHub4 with stable releases

made on PyPI for easy installation using pip. To introduce new users to the package we created

an extensive set of examples, tutorials, and supplementary materials linked through the main

README including developer setups for contributors (found in the CONTRIBUTING.md file). The

contributors guide describes the expected workflows, testing, and code quality expectations for

pull requests into the package.

Documentation The source-code of PyTorch Geometric Temporal and Sphinx are used to

generate publicly available documentation of the library.5 This documentation is automatically

created every time when the codebase changes in the public repository. The documentation covers

the constructors and public methods of neural network layers, temporal signal iterators, public

dataset loaders, and splitters. It also includes: a list of relevant research papers, an in-depth

installation guide, a detailed getting-started tutorial, and a list of the integrated benchmark

datasets.

4https://github.com/benedekrozemberczki/pytorch_geometric_temporal
5https://pytorch-geometric-temporal.readthedocs.io

83

https://github.com/benedekrozemberczki/pytorch_geometric_temporal
https://pytorch-geometric-temporal.readthedocs.io

Code quality, testing and continuous integration We provide continuous integration

for PyTorch Geometric Temporal with GitHub Actions which are available for free on GitHub

without limitations on the number of builds. When the code is updated on any branch of the

GitHub repository the build process is triggered and the library is deployed on Linux, Windows

and macOS virtual machines to test functionality across operating systems. The temporal graph

neural network layers, custom data structures, and benchmark dataset loaders are all covered by

unit tests. These unit tests can be executed locally using the source code. Unit tests are also

triggered by the continuous integration provided by GitHub Actions. When the master branch of

the open-source GitHub repository is updated, the build is successful, and all of the unit tests

pass a coverage report is generated by CodeCov.

4.9 Summary

In this chapter we introduced PyTorch Geometric Temporal, the first deep learning library

designed for spatio-temporal graph representation learning, answering Research Question 2.

Through the comprehensive characterisation of dynamic graphs and the representation learning

methods applicable to them, we clearly outline our contributions in this space as well as potential

future work which we discuss in the conclusion of this thesis. We provided a taxonomy of different

dynamic graph constructions such as CTDGs, DTDGs, and spatio-temporal dynamic graphs as

well as memory efficient data structures for the latter. We covered how sequence models such as

RNNs and attention blocks can be combined with GNNs to extract salient spatial and temporal

information within dynamic graphs and perform representation learning. The library presents

numerous existing operators, layers, and models for spatio-temporal representation learning. To

stimulate further research into this burgeoning avenue of research, the library is also packaged

with existing and new benchmark datasets. Empirical evaluation with existing models on these

datasets highlights their viability for use in different real-world contexts and as benchmarks.

Runtime performance experiments highlight the benefits of GPU acceleration that is optionally

available in our implementations and the scalability of our implementations.

Our contributions of Chapter 3 and 4 expand and fortify our understanding of different graph

representation learning methods and the underlying inductive biases within them. Furthermore,

they provide a means to implement and experiment with them in practice — crucial within any

applied or translational science. The remaining 3 chapters we will look at three applications of

graph representation learning in biomedical contexts. Each of the chapters present a method

utilising GRL to achieve a different utilisation of structure within the representation learning

objective. Chapter 5 will explore graph-level representation learning with distributed representa-

tions of graphs. Chapter 6 will explore a novel method for designing neural computational graphs

based on exploiting structured knowledge about the elements within feature vector representations

of observations. Finally, in Chapter 7 we will look at a GRL method which takes advantage of

relational information between observations to augment the latent variables of a graphical model.

84

CHAPTER 5

Distributed representations of graphs for

drug pair scoring

5.1 Overview and contributions

In Chapter 3 we introduced a framework for learning distributed representations of graphs.

Methods belonging to this family learn smooth low-dimensional embeddings of graphs whose

similarity is dictated by the frequencies of similar substructure patterns within them. We

have found that they are able to enhance the strengths of graph kernels that implement the

R-convolutional kernel pattern by tackling the issue of diagonal dominance that can arise amidst

large sets of graphs and substucture pattern diversity. This is of great use to the practitioner, as

it has the potential to further improve the state-of-the-art performance of these kernel methods

and broaden the scope of their applications. However, we have also found that in standard

settings these methods operate within the transductive learning paradigm and are unable to

learn over continuous features for most substructure decomposition algorithms (see Chapter 2).

For these reasons, these embedding methods have not garnered as much attention as GNNs

which can operate under inductive task settings.

This chapter shows that the appreciation of these strengths and limitations allows us to

identify circumstances, tasks, and model design patterns to which distributed representations

are useful. The case study presented in this chapter highlights the usage of GRL to learn

representations in a biomedical task where each observation is a graph, and we want to utilise

this structure as part of the representation learning process. The case study will explore the

application of distributional inductive biases to learn representations of molecular graphs of

drugs for drug pair scoring, which has not been explored previously to the best of our knowledge.

The work presented in this chapter was published as a conference paper at the 1st Learning

on Graphs conference 2022 (LoG 2022), under the title: “Distributed representations of graphs

for drug pair scoring” and was also presented at the Cambridge LoG meetup.

85

5.2 Introduction

Recent advancements in graph representation learning (GRL) — particularly in message passing

based graph neural networks — have enabled new ways of modelling natural phenomena and

tackling learning tasks on graph-structured data. One of the areas which now sees application of

graph neural networks is drug pair scoring [196]. Drug pair scoring refers to the prediction tasks

that answer questions about the consequences of administering a pair of drugs at the same time

such as drug synergy prediction, polypharmacy prediction, and predicting drug-drug interaction

types which are of great interest in the treatment of diseases. One of the primary challenges

in elucidating and discovering the effects of drug combinations is the dramatically growing

combinatorial space of drug pairs. Furthermore, reliance on human trials (in polypharmacy), and

proneness to human error [5] makes manual/experimental discovery of useful drug combinations

difficult without even considering the prohibitive financial and labour costs that make it only

possible on small sets of drugs. Such conditions make in silico modelling of drug combinations

an attractive solution.

A key component to modelling drug pairs is finding useful representations of the drugs to

input into the drug pair scoring models. Traditional supervised machine learning methods for

drug pair scoring rely on carefully crafted descriptors such as MDL descriptor keysets [197] and

fingerprinting techniques such as Morgan fingerprinting [198]. More recently, graph neural network

layers and permutation invariant pooling operators have enabled inputting the molecular graphs

of drugs directly to learn task oriented representations in an end-to-end manner. Interestingly,

graph kernel techniques and specifically distributed representations of graphs were not considered

at all for inclusion in drug pair scoring pipelines to the best of our knowledge. We may only

speculate to the reasons for this such as publication biases or its limitations in not using node

feature vectors and the transductive nature that have made these approaches less appropriate in

observations with rich/continuous node features and dynamic graphs [50, 199].

However, we will argue that the transductive learning of distributed representations is hardly

a limitation in the context of drug pair scoring tasks in Section 5.4.2. This is primarily because

we are learning the representations of the drugs whose number in the real world rises in the

timescale of many years and immense investment [200, 201]. Furthermore, as the set of atom

types and bonding patterns of drugs are strictly constrained by the rules of chemistry, the number

of generic substructure patterns that may be induced over the molecular graphs of a drug set

are much smaller than the theoretically possible set of combinations. Additionally, as the self

supervised learning objective is agnostic to the downstream task, the drug embeddings may be

transferred trivially making distributed representations an attractive modelling proposition for

representation learning of structural patterns for drug pair scoring.

Under this pretext our research questions are: “How can we learn and then incorporate the

distributed representations of the drugs into drug pair scoring pipelines?” and “Are distributed

representations of graphs useful in drug pair scoring tasks?”. To answer these questions, we

describe a methodology for learning distributed representations of graphs and their inclusion

within a unified framework applicable to all drug pair scoring tasks in Section 5.4.3. Subsequently,

we create a simple MLP model based solely on the distributed representations of the drugs and

86

show that this performs considerably better than random suggesting the usefulness of discrete

substructure affinities of the drugs in drug pair scoring. Building upon this, we augment a number

of recent and state-of-the-art models for drug pair scoring tasks to utilise our drug embeddings.

Empirical results show that the incorporation of the distributed representations improves the

performance of almost every model across synergy, polypharmacy, and drug interaction prediction

tasks in Section 5.6. To the best of our knowledge, this is the first application and study of

distributed representations of molecular drug graphs for drug pair scoring. To help further

research and inclusion of these distributed representations, we publicly release all of the drug

embeddings as learned and utilised in this study.

5.3 Background and related work

In drug pair scoring tasks, we are concerned with learning a function which predicts scores for

pairs of drugs in a biological or chemical context. Naturally, within the domain of deep learning

this learned function takes on the form of a neural network. Drug pair scoring has three main

applications and questions which models are designed to answer [196]:

• Inferring drug synergy : Do drugs i and j have a synergistic effect on treatment of

disease k?

• Inferring polypharmacy side effects : Does the simultaneous use of drugs i and j have

a propensity for causing side effect k?

• Inferring drug-drug interaction types: Do drugs i and j have a k type interaction?

5.3.1 Unified framework for drug pair scoring

The machine learning tasks born out of the questions above can be generalised and formalised

with a unified view of drug pair scoring described in Rozemberczki et al. [196]. We briefly

reiterate this framework below to build upon in our work in the next section.

Assume there is a set of n drugs D = {d1, d2, ..., dn} for which we know the chemical structure

of molecules and a set of classes C = {c1, c2, ..., cp} that provides information on the contexts

under which a drug pair can be administered.

A drug feature set is the set of tuples (xd,Gd,Xd
N ,X

d
E) ∈ XD,∀d ∈ D, where xd is the

molecular feature vector, Gd is the molecular graph of the drug, Xd
N is the node/atom feature

matrix and Xd
E the edge/bond feature matrix. In this setup, drugs can be attributed with 4 types

of information: (i) Molecular features which give high-level information about the molecules such

as measures of charge. (ii) The molecular graph in which nodes are atoms and edges describe

bonding patterns. (iii) Node features in the molecular graph can give us information such as the

type of atom or whether it is in a ring. (iv) Edge features which can provide context such as the

type of bond that exists between atoms in the molecule.

A context feature set is the set of context feature vectors xc ∈ XC ,∀c ∈ C associated with

the context classes C. This set allows for making context specific predictions that take into

87

account the similarity of the contexts. For example, in a synergy prediction scenario the context

features can describe the gene expressions in a targeted cancer cell.

The labeled drug-pair and context triple set is a set of tuples (d, d′, c, yd,d
′,c) ∈ Y where

d, d′ ∈ D, c ∈ C and yd,d
′,c ∈ {0, 1}. This set of observations associates a drug pair within a

specific biological or chemical context with a binary target. This target could specify whether a

pair of drugs is synergistic in terminating a cancer cell type or have a certain drug-drug interaction

type. Naturally, it is also common to have continuous targets yd,d
′,c ∈ R. The machine learning

practitioner is tasked with constructing predictive models f(·) such that ŷd,d
′,c = f(d, d′, c) for

these drug-pair context observations.

5.3.2 Representations for drugs

A major source of research interest is the study and development of drug feature vectors and

representations, as they form inputs into various drug learning tasks. In our case, these form

integral parts of the molecular feature vector xd in the drug feature set (see Section 5.3.1) often

arising from the molecular graph of the drugs.

Two dimensional representations and diagrams of the structure of molecules are often used

as a convenient representation for their 3-dimensional structures and electrostatic properties

that give rise to their biological activities. Whilst this abstraction is useful for communication

in person, technical limitations drove the development of linear string based representations

including SMILES [202] and InChI [203] which are present across many popular chemical

information systems today. Language models have been applied onto such molecular strings to

learn embeddings such as in Bombarelli et al. [204] which utilises the SMILES strings within a

VAE framework to sample low dimensional continuous vector representations of the drugs. The

success of this inspired similar work such as DeepSMILES [205] and SELFIES [206].

Two dimensional graph structures have been used before to generate discrete bag-of-words

type feature vectors of molecules based on the presence of a specified vocabulary of descriptive

substructures as in Morgan’s work in 1965 [207]. Subsequent years saw efforts in finding different

descriptive properties within the molecule structures or optimising existing sets of descriptive

substructures. Examples of such efforts include Durant et al. [197] which optimised the set

of substructure based 2D descriptors from MDL keysets for drug discovery pipelines. The use

of molecular fingerprints such as Morgan/Circular fingerprints [198] continues this branch of

constructing descriptors and kernels for molecules. Concurrent research efforts have recently

focused on end-to-end neural models involving graph neural network operators [196, 208]. Here

graph neural networks operate over the molecular graph of the drug such that atoms are treated

as nodes and bonds are the edges. Node level representations are updated through a series of

message passing layers as in Equation 5.1 which we have previously covered in Chapter 2:

hl
i = ϕ

(
hl−1
i ,

⊕
j∈Ni

ψ(hl−1
i ,hl−1

j)
)

(5.1)

To reiterate, here hl
i is the lth layer representation of the features associated with node i

(in our context these would be atom features arising from message passing using Xd
N and Xd

E).

88

hl
i is the output of the local permutation invariant function composed of the node i’s previous

feature representation hl−1
i and its neighbours j ∈ Ni with ψ(hl−1

i ,hl−1
j) being the message

computed via function ψ and
⊕

is some permutation invariant aggregation for the messages

such as a sum, product, or average. ϕ and ψ are typically neural networks. Subsequently, the

node level representations are aggregated via permutation invariant pooling operations to form

graph-level drug representations. For example, the EPGCN-DS model [209] utilises GCN layers

[67] to produce higher level node representations of the atoms in the molecular graphs. The drug

representations are then computed via a global mean aggregation of the node representations.

Such operators have become prevalent in recent proposals of drug pair scoring models with

primary distinction being the form of ψ in the message passing layers [196, 209–211].

Our proposed system lies somewhere in between, and in parallel, to these efforts. We learn

low dimensional continuous distributed representations (described in Section 5.4.1) of the drugs

within the drug pair scoring dataset. These form additional drug features that can be utilised in

augmented versions of existing drug pair scoring models. To the best of our knowledge, this is

the first application of distributed representations of drugs within drug pair scoring.

5.3.3 Neural models for drug pair scoring

All recent neural models for drug pair scoring can be described with an encoder-decoder framework

typically involving 3 parametric functions: (i) a drug encoder, (ii) an encoder for contextual

features, and (iii) a decoder which infers the target value. We describe each component below,

followed by how some state-of-the-art models can be instantiated out of this framework. A more

thorough treatment of this can be found in Rozemberczki et al. [196].

The drug encoder is the parametric function fθD(·) in Equation 5.2 that takes the drug

feature set as input and produces a vector representation of the drug d called hd. fθD(·) maps the

molecular features of the drug into a low dimensional vector space, this can incorporate various

neural operators such as feed forward multi-layer perceptron layers as in DeepSynergy [212] and

MatchMaker [213] or graph neural network layers as in DeepDDS [210] and DeepDrug [211].

Differences in the architecture of the encoder such as the flavour of message passing network is

typically the main differentiator between current existing methods:

hd = fθD(xd,Gd,Xd
N ,X

d
E), ∀d ∈ D (5.2)

The context encoder fθC (·) in Equation 5.3 is a neural network that outputs a low dimensional

representation of the contextual feature set xc. This component does not feature in all of the

models we will discuss, but plays a prominent part in DeepSynergy [212], MatchMaker [213], and

DeepDDS [210].

hc = fθC(xc), ∀c ∈ C (5.3)

Finally, the decoder or head of the model fθH (·) in Equation 5.4 combines the outputs of the

drug and context encoders (hd,hd′ ,hc) and outputs the predicted probability for a positive label

for the drug-pair context triple ŷd,d
′,c:

89

ŷd,d
′,c = fθH (hd,hd′ ,hc),∀d, d′ ∈ D,∀c ∈ C (5.4)

Training the models in the framework described involves minimising the binary cross entropy

for the binary targets or mean absolute error for regression targets with respect to the θD, θC ,

and θH parameters using gradient descent algorithms as expressed generically in Equation 5.5:

L =
∑

(d,d′,c,yd,d′,c)∈Y

l(ŷd,d
′,c, yd,d

′,c) (5.5)

5.4 Study and methods

5.4.1 Distributed representations of graphs

We adapt the Geo2DR framework from Chapter 3 for describing distributed representations of

graphs based on the R-Convolutional framework for graph kernels [126]. Given a set of n molecular

graphs for the drugs in the dataset G = {Gd1 ,Gd2 , ...,Gdn} one can induce discrete substructure

patterns such as shortest paths, rooted subgraphs, graphlets, and so on using side effects of

algorithms such as Floyd-Warshall [122–124] or the Weisfeiler-Lehmann graph isomorphism test

[125]. This can be used to produce pattern frequency vectors X = {xd1 , xd2 , ..., xdn} describing

the occurrence frequency of substructure patterns for every graph over a shared vocabulary V. V
is the set of unique substructure patterns induced over all graphs Gd ∈ G.

Classically, one may directly use these pattern frequency vectors within standard machine

learning algorithms or construct kernels to perform some task. This has been the approach

taken by many state of the art graph kernels in classification tasks [84, 126]. Unfortunately,

as the number, complexity, and size of graphs in G increases so does the number of induced

substructure patterns — often dramatically [23, 84, 126]. This, in turn, causes the pattern

frequency vectors of X to be extremely sparse and high dimensional both of which are detrimental

to the performance of estimators. Furthermore, the high specificity of the patterns and the

sparsity cause a phenomenon known as diagonal dominance across kernel matrices wherein each

graph becomes more similar to itself and dissimilar from others, degrading machine learning

performance.

To address this issue, it is possible to learn dense and low dimensional distributed representa-

tions of graphs that are inductively biased to be similar when they contain similar substructure

patterns and dissimilar if they do not in a self supervised manner. To achieve this, we need to

construct a corpus dataset R that details the target-context relationship between a graph and

its induced substructure patterns. In the simplest form for graph level representation learning,

we can specify R as the set of tuples (Gd, p) ∈ R where p is a substructure pattern that is part

of the shared vocabulary p ∈ V and can be induced from Gd which we denote p ∈ Gd.

The corpus can then be used to learn embeddings via a method that incorporates Harris’

distributive hypothesis [57] to learn the distributed representations. Methods such as Skipgram,

CBOW, PV-DM, PV-DBOW, and GLoVE are some examples of neural embedding methods

that utilise this inductive bias [58, 59, 127]. In our study, we implement Skipgram with negative

90

sampling which optimises the following objective function:

L =
∑
Gd∈G

∑
p∈V
|{(Gd, p) ∈ R}|(log σ(Φd · Sp)) + Ep−∈V[log σ(−Φd · Sp−)] (5.6)

Here Φ ∈ R|G|×z is the z-dimensional matrix of graph embeddings we desire of the set of

drug graphs G, and Φd is the embedding for Gd ∈ G. In similar vein, S ∈ R|V |×z are the

z-dimensional embeddings of the substructure patterns such that Sp represents the vector

embedding corresponding to the substructure pattern p ∈ V. Whilst these embeddings are tuned

as well during the optimisation of Equation 5.6, ultimately, these substructure embeddings are

not used in our case as we are interested in the drug embeddings. The cardinality of the set

|{(Gd, p) ∈ R}| indicates the number of times a positive substructure pattern is induced in the

graph to tighten the association of the pattern to the graph. p− ∈ V denotes a negative context

pattern that is drawn from the empirical unigram distribution PR(p) = |{p|∀Gd∈G,(Gd,p)∈R}|
|R| and

the expectation is approximated using 10 Monte Carlo samples as originally devised in Mikolov

et al. [58].

The optimisation of the above objective creates the desired distributed representations in

Φ, in this case graph-level drug embeddings. These may be used as additional drug features

in the drug feature set as we show in Section 5.4.3. The distributed representations benefit

from having lower dimensionality than the pattern frequency vectors, in other words |V | >> z,

being non-sparse, and being inductively biased via the distributive hypothesis. A more thorough

treatment of the distributive hypothesis and in-depth interpretation of the embedding methods

in this family can be found in [57, 58, 128].

Various instances of models for learning distributed representations of graphs following our

description have been made such as Graph2Vec [19], DGK-WL/SP/GK [126], and AWE [20].

These differentiate primarily on the type of substructure pattern is induced over G. These

have shown strong performance in graph classification tasks, still often performing on par

with modern graph neural networks despite using significantly less features and parameters.

However, limitations such as the dependency on a set vocabulary and inability to inductively infer

representations for new subgraph patterns and new graphs (at least in their standard definitions),

coupled with difficulty in scaling to large graphs with many millions of nodes, have led to less

attention on these methods. We speculate this has led to developments of deep drug pair score

models completely ignoring distributed representations of graphs as part of the pipeline.

5.4.2 Arguing for the use of distributed representations of drugs in drug pair

scoring pipelines

Here we show that the use of distributed representations of graphs to construct additional drug

features is sensible in drug pair scoring tasks. As discussed in Section 5.3.1 a drug score pairing

model is tasked with learning the function f(d, d′, c) = yd,d
′,c from the labelled drug-pair context

triples in Y. Looking at the statistics of drug pair scoring datasets in Table 5.1, we can see

that the number of drugs and contexts is far lower than the number of triple observations. The

huge and complex combinatorial space of drug-pair contexts (without even considering dosage

91

Table 5.1: Dataset details containing information on the application domain, and summary statistics
on the number of drugs, context types, and drug pair context triples. Additional columns highlight the
number of unique substructure patterns found across the molecular graphs of the drugs in the dataset
based on the substructure patterns induced. |D| represents the number of unique drugs. |C| represents
the set of unique contexts. |Y| represents the number of labeled drug-drug context triples. The remaining
columns indicate the number of unique substructure patterns found in the drugs with respect to the
corresponding substructure patterns extracted: WL (k = 2) is the number of discrete rooted subtrees up
to depth 2, WL (k = 3) for rooted subgraphs up to depth 3, and the shortest paths.

Dataset Task |D| |C| |Y| WL (k = 2) WL (k = 3) Shortest paths

DrugCombDB [5] Synergy 2956 112 191,391 70 1591 1310
DrugComb [6, 214] Synergy 4146 288 659,333 70 1651 1432
DrugbankDDI [7] Interaction 1706 86 383,496 74 1287 2710
TwoSides [215] Polypharmacy 644 10 499,582 64 934 8070

effects) as well as the time/cost associated with experimenting more triples is a motivating factor

for machine learning models. In practice, when such databases are updated it is through the

addition of more labelled drug-pair context observations for better coverage [216]. The number

of drugs considered rarely increases, as drugs can take many years of development, clinical trials,

massive investment and regulatory processes before they enter studies for application domains of

drug pair scoring [200, 201].

Therefore, we can argue that learning distributed representations of the molecular graphs of

the drugs in drug pair scoring tasks is sensible. Importantly, the number of discrete substructure

patterns grows with the number of unique drugs, not the number of drug-pair-context observations

within the dataset. Hence, as long as the number of drugs stays the same, trained drug embeddings

can be carried over to any model being trained over the drug-pair context triples with minimal

augmentation as we show in Section 5.4.3. To add further motivation, the number of discrete

substructure patterns in the considered set of drugs is driven by the unique atom types and

substructure patterns arising out of the bonded atoms. This set of unique atom types is

theoretically limited to the periodic table and is obviously a limited subset of this in drugs.

Furthermore, the size of the molecular graphs tend to be considerably smaller than social network

scale graphs and less random due to chemical bonding rules. Hence, the resulting substructure

patterns are fewer and more informative, which makes them suitable descriptors in these settings

[62, 84, 126].

5.4.3 Incorporating distributed representations of graphs into existing drug

pair scoring pipelines

Through retrieval of the SMILES strings, we generated the molecular graphs for each of the drugs

G = {Gd|d ∈ D} using TorchDrug [217] and RDKit [218]. Given this set of graphs we considered

two discrete substructure patterns to induce over the graphs. For the first substructure pattern

we considered rooted subgraphs at different depth k = 3. These may be induced as a side effect

of the Weisfeiler-Lehman graph isomorphism test [62, 125]. The second substructure pattern we

considered were all the shortest paths of the molecular graph which may be induced using the

Floyd-Warshall algorithm [122–124]. Both choices were made based on their completeness and

92

Substructure
pattern

induction
algorithm

e.g. WL rooted
subtrees or

shortest paths

Corpus dataset construction with
appropriate target-context pairs

e.g.

with and in and

Neural model
using distributed

hypothesis

e.g. Skipgram

-dimensional substructure

pattern frequency vectors

Drug feature set

Drug feature set

Context feature
vector

Extended models

utilising distributed

representations of drugs

Predictions for the drug

pair scoring task:

synergy, polypharmacy

drug-drug interaction

D
ru

g
D

ru
g

C
on

te
xt

(o

pt
io

na
l)

Drug molecular

graph set

-dimensional distributed

representations of drugs

Figure 5.1: A summary of the proposed pipeline for learning and utilising distributed representations
of drugs for drug pair scoring. The pipeline consists of two main stages: the learning of the distributed
representations and the augmentation of existing models to utilise the new drug embeddings Φ which
become part of the drug feature set described in Section 5.3.1. As the learning of the distributed
representations is separate from the drug pair scoring task, we may transfer the embeddings into the drug
feature set of any existing drug pair scoring model without retraining.

deterministic nature of their inducing algorithms for which there are also fast implementations

[23, 100].

In either case, the set of unique substructure patterns found across all molecular graphs in D
gives us the molecular substructure vocabulary V. We construct a target-context corpus of the

drugs RD = {(Gd, p)|Gd ∈ G, p ∈ Gd, p ∈ V}. We use a skipgram model with negative sampling

to learn the desired drug embeddings, optimising the objective function in Equation 5.6.

After training and obtaining the distributed representations of drugs Φ, we add the embeddings

to the drug feature set (xd,Φd,Gd,Xd
N ,X

d
E) ∈ XD,∀d ∈ D. The remaining task is to develop

downstream models which utilise the distributed representations. As the self supervised learning

of the distributed representations is separate from the learning for the drug pair scoring task, we

may transfer the embeddings into any of the existing drug pair scoring models. A diagram of

this workflow can be seen in Figure 5.1.

In order to validate the usefulness of the distributed representations we chose to extend

93

existing drug pair scoring models from different application domains. As a sanity check to see

whether the distributed representations carry any useful signal we also implemented a simple

MLP with three hidden layers based on DeepSynergy called DROnly which only utilises the

embeddings learned. We took seminal models representing the state of the art and recent models

containing graph neural networks that operate over the molecular graphs of the drugs. Each

augmented model we propose takes the original name of the model and is suffixed with “DR”

and the substructure pattern induced over the graphs (WL or SP for rooted subgraphs and

shortest paths respectively). In most cases, we simply concatenate the distributed representation

of the first and second drug (drugs α and β in Figure 5.1) to the corresponding molecular feature

vectors being used in the model. In the case of EPGCN-DS-DR and DeepDrugDR the left

and right drug embeddings are concatenated to the outputs of the graph neural network drug

encoders and fed into the decoder.

5.5 Experimental setup

We empirically validate the usefulness of the distributed drug representations in downstream

drug pair scoring tasks. We consider 4 datasets from the domains of drug synergy prediction,

polypharmacy prediction, and drug interaction to evaluate our augmented models, which we have

previously outlined in Table 5.1. Five seeded random 0.5/0.5 train and test set splits were made

and the average AUROC performance was evaluated over the hold-out test set with standard

deviation in Table 5.3 following previous literature [219].

For the distributed representations of the graphs we set the desired dimensionality at z = 64

and the Skipgram model was trained for 1000 epochs. These hyperparameter values were chosen

arbitrarily to simplify the following comparative analysis, however we explore their effects on

downstream performance in an ablation study in Appendix D.

To obtain the non-DR drug-level features as used in DeepSynergy and MatchMaker we

retrieved the canonical SMILES strings [202] for each of the drugs in the labeled drug-pair

context triples. 256-dimensional Morgan fingerprints [198] were computed for each drug with a

radius of 2. Molecular graphs for entry into models with GNNs were generated using TorchDrug

(and the underlying RDKit utilities) from the SMILES strings for each drug.

We utilised the published hyperparameter settings for each of the drug pair scoring models

found in [219] which are summarised in Table 5.2. Augmentation of the models affects the input

shapes of the drug encoders or the final decoder by the chosen dimensionality of the distributed

representations, but does not affect any other original model hyperparameters.

Optimisation hyperparameters for training of the models were all kept the same. All drug

pair scoring models were trained using an Adam optimiser [194] for 250 epochs with a batch

size of 8192 observations, an initial learning rate of 10−2, β1 was set to 0.9 with β2 set to 0.99,

ϵ = 10−7 and finally a weight decay of 10−5 was added. A dropout rate of 0.5 was applied for

regularisation.

Naturally in addition to these details we make all of our code containing all implementations

and scripts for evaluation available on https://github.com/paulmorio/DrugPairScoringDR

for reproducibility and further development.

94

https://github.com/paulmorio/DrugPairScoringDR

Table 5.2: A breakdown of the hyperparameters in each of the drug pair scoring models. Note that these
are the same for each of the augmented versions with distributed representations that we propose.

Model Hyperparameter Values

DeepSynergy
Drug encoder channels

Context encoder channels
Hidden layer channels

128
128

(32, 32, 32)

EPGCN-DS
Drug encoder channels
Hidden layer channels

128
(32, 32)

DeepDrug
Drug encoder channels
Hidden layer channels

(32, 32, 32, 32)
64

DeepDDS
Context encoder channels

Hidden layer channels
(512, 256, 128)

(512, 128)

MatchMaker
Drug encoder channels
Hidden layer channels

(32, 32)
(64, 32)

5.6 Results and discussion

Looking at the results Table 5.3 we can make 3 main observations. First looking at the original

methods we can see that methods using precomputed drug features and contextual features

instead of graph neural networks such as DeepSynergy and Matchmaker perform better across

drug pair scoring tasks. Combined with the fact that they train and evaluate much faster than

methods using graph neural networks, it is generally advisable to use these models in the first

instance, validating the results in [219]. DeepDDS is the best performing model utilising a graph

neural network. It is worth noting that it utilises contextual features like DeepSynergy and

MatchMaker and unlike EPGCN-DS and DeepDrug. Secondly, looking at the DROnly model

that serves as the sanity check for our embeddings, we can see that it is significantly better

than a random model. This indicates the usefulness of the structural affinities and distributive

inductive biases within the drug representations for the drug pair scoring tasks. Thirdly, we can

see that the incorporation of the distributed representation into the models generally increases

the performance of models. Particularly, we observe that the best performances for 3 out of 4

tasks are achieved by models incorporating our embeddings with the final one being a tie (within

rounding error of 3 decimal points) between DeepDDS and its DR incorporating equivalent

DeepDDS-DR (WL k=3) on TwoSides.

The comparative analysis of the drug pair scoring models highlights that the significantly

more expensive graph neural network based models generally perform worse than simpler models

which employ precomputed drug and context features on MLPs. This is in spite of the graph

neural network modules also having access to additional atom features on the molecular graphs

as computed in TorchDrug. These include features such as the one-hot embedding of the atomic

chiral tag, whether it participates in a ring, and whether it is aromatic, and the number of

radical electrons on the atom. Hence, despite the wealth of additional information inside the

provided molecular graph, we surmise the primary bottleneck for the drug level representations

arises from the comparatively simple permutation invariant operators used to pool the node

95

Table 5.3: Table of results with information about the original drug pair scoring models such as year
of publication and their original application domains. We report the average AUROC on the hold out
test set with standard deviations from 5 seeded random splits. Bolded numbers indicate best performing
model for each dataset.

Model Year Orig. application DrugCombDB DrugComb DrugbankDDI TwoSides

DeepSynergy [212] 2018 Synergy 0.796 ± 0.010 0.739 ± 0.005 0.987 ± 0.001 0.933 ± 0.001
EPGCN-DS [209] 2020 Interaction 0.703 ± 0.006 0.623 ± 0.002 0.724 ± 0.002 0.809 ± 0.006
DeepDrug [211] 2020 Interaction 0.743 ± 0.001 0.648 ± 0.001 0.862 ± 0.002 0.926 ± 0.001
DeepDDS [210] 2021 Synergy 0.791 ± 0.005 0.697 ± 0.002 0.988 ± 0.001 0.944 ± 0.001
MatchMaker [213] 2021 Synergy 0.788 ± 0.002 0.720 ± 0.003 0.991 ± 0.001 0.928 ± 0.001
DROnly (WL k=3) Proposed Not applicable 0.763 ± 0.002 0.651 ± 0.002 0.809 ± 0.005 0.917 ± 0.002
DROnly (SP) Proposed Not applicable 0.711 ± 0.004 0.621 ± 0.002 0.710 ± 0.005 0.823 ± 0.005
DeepSynergy-DR (WL k=3) Proposed Not applicable 0.814 ± 0.004 0.738 ± 0.001 0.988 ± 0.000 0.934 ± 0.002
DeepSynergy-DR (SP) Proposed Not applicable 0.813 ± 0.003 0.740 ± 0.004 0.988 ± 0.001 0.935 ± 0.000
EPGCN-DS-DR (WL k=3) Proposed Not applicable 0.711 ± 0.002 0.627 ± 0.001 0.741 ± 0.004 0.822 ± 0.006
EPGCN-DS-DR (SP) Proposed Not applicable 0.704 ± 0.001 0.622 ± 0.001 0.730 ± 0.003 0.808 ± 0.002
DeepDrug-DR (WL k=3) Proposed Not applicable 0.743 ± 0.001 0.648 ± 0.001 0.863 ± 0.000 0.926 ± 0.001
DeepDrug-DR (SP) Proposed Not applicable 0.743 ± 0.000 0.648 ± 0.001 0.863 ± 0.001 0.926 ± 0.000
DeepDDS-DR (WL k=3) Proposed Not applicable 0.799 ± 0.004 0.700 ± 0.002 0.989 ± 0.000 0.944 ± 0.001
DeepDDS-DR (SP) Proposed Not applicable 0.790 ± 0.003 0.696 ± 0.001 0.988 ± 0.001 0.943 ± 0.001
MatchMaker-DR (WL k=3) Proposed Not applicable 0.783 ± 0.004 0.714 ± 0.003 0.992 ± 0.000 0.930 ± 0.001
MatchMaker-DR (SP) Proposed Not applicable 0.784 ± 0.002 0.714 ± 0.004 0.991 ± 0.001 0.928 ± 0.002

representations such as the global mean operator used in EPGCN-DS. There is an inevitable

and large amount of information loss in the attempt to summarise variable amounts of higher

level smooth node representations coming out of GNNs into a single vector of the same size,

without any trainable parameters. We may partially attribute the additional performance boosts

brought in by the distributed representations to the more refined algorithm to constructing the

graph level representations, despite the input molecular graph only detailing the atom types and

no additional node features. We can also attribute the performance boosts to the usefulness of

substructure affinities to the drug pair scoring tasks as indicated in the DROnly performances

across the tasks.

5.6.1 Additional experiments

Two additional experiments were performed to study the effectiveness of distributed represen-

tations in more challenging drug pair scoring scenarios. The first involves constructing a more

challenging train-test split of the drugs and ensuring that a test set of triple observations contains

drugs that the model has never seen in training. The second experiment involves studying

the effect of distributional shifts in the substructure patterns caused by learning distributed

representations over a different superset of drugs to the set found in the dataset and the effect

of this on downstream performance. In the latter experiment, we utilised the distributed repre-

sentations of all unique drugs across the four datasets. In both of these experiments we make

the same observations as above and further find positive outcomes of incorporating distributed

representations of graphs in drug pair scoring models.

5.6.1.1 Additional experiments: prediction on unseen drugs

To construct a train-test split which ensures that a test set of drug-pair context triple observations

contains drugs that the model has never seen in training, we performed the following steps:

96

1. We precomputed a pairwise distance matrix for all of the drugs d1, d2, ..., dn ∈ D using the

Tanimoto similarity T (di, dj). We used 1−T (di, dj) to get the equivalent distance measure.

2. Split the drugs into two sets A and B using agglomerative clustering with a complete

linkage criterion on our Tanimoto based distance matrix to split the drugs D. This ensures

that drugs belonging to A are more similar to each other and dissimilar to those in B (and

vice versa).

3. Subsequently, for every pair of drugs (di, dj) that make up our observations in the triples

we do the following.

• If di and dj are in A, this is a training observation.

• If di and dj are from different sets, this is a test observation.

• If di and dj are in B, this is a test observation.

4. This ensures that a drug pair scoring model never sees an instance of a drug from set B,

which is also distinctly different from the training drugs in A by way of Tanimoto similarity.

5. As an arbitrary choice we have chosen set A to be the larger set of drugs after the clustering.

The effects of the above operations and the sizes of the different drug sets and the resulting

train-test sets of triples is reported in Table 5.4. We trained and evaluate each of the models

using the same experimental setup as in Section 5.5 and report the results in Table 5.5. Firstly,

we see that the task is indeed more challenging as the train-test splits ensures a given drug-pair

scoring model never sees drugs from set B. This lowers the performance across methods as

compared to random train-test splits in the first set of results. The results also show that the

distributed representations can help each of the methods perform better across the different drug

pair scoring tasks in this more challenging setting. For both MatchMaker and DeepDDS the

distributed representations improve performance or at least do not decrease the performance.

Increases in performance are particularly strong for DeepDDS in DrugCombDB and TwoSides.

One observation to be made is that the DROnly performance may be a good indicator of potential

gains to be made when the drug embeddings are incorporated into other models. The best

performing method in general is MatchMaker-DR (WL or SP) which is a fortunate observation

as it is considerably cheaper to train than DeepDDS. These results further suggest the positive

impact the incorporation of distributed representations of graphs has on drug pair scoring models.

5.6.1.2 Additional experiments: transfer learning and distributional shift in sub-

structure patterns

As distributed representations are necessarily learned in a transductive manner we believe that

the most realistic approach of using the distributed representations in transfer settings would

be to learn the embeddings of all the drugs in the DrugComb, DrugCombDB, DrugbankDDI

and TwoSides datasets. We then performed the same evaluation with the same experimental

setup as with the random train-test splits using these new embeddings and report the results

in Table 5.6. The results indicate more variable positive results as compared to distributed

97

Table 5.4: Table of dataset details containing information summary statistics on the number of drugs
and drug pair context triples based on the train-test splitting procedure detailed in Section 5.6.1.1. |D|
represents the number of unique drugs. |Y| represents the number of labeled drug-drug context triples.
|A| represents the number of unique drugs present across the training set of drug-drug context triples. |B|
represents the number of unique drugs present across the test set of drug-drug context triples and are
not seen at all during the training process. |Ytrain| and |Ytest| represent the number of train and test
drug-drug context triples created out of the protocol respectively.

Dataset |D| |A| |B| |Y| |Ytrain| |Ytest|

DrugCombDB 2956 2586 370 191,391 113,308 78,083
DrugComb 4146 3959 187 659,333 579,891 79,442
DrugbankDDI 1706 1298 408 383,496 237,515 146,101
TwoSides 644 604 40 499,582 440,718 58,864

Table 5.5: Table of results reporting the average AUROC on the hold out test set that includes drugs
that are never seen across any training pair of drugs. We report the average AUROC on the hold out test
set with standard deviations from 5 repeated runs. Bolded numbers indicate best performing model for
each dataset.

Model Year DrugCombDB DrugComb DrugbankDDI TwoSides

DeepDDS 2021 0.617 ± 0.010 0.573 ± 0.008 0.919 ± 0.003 0.698 ± 0.035
MatchMaker 2021 0.666 ± 0.015 0.580 ± 0.003 0.938 ± 0.004 0.729 ± 0.018
DROnly (WL k=3) Proposed 0.534 ± 0.011 0.517 ± 0.005 0.636 ± 0.011 0.626 ± 0.020
DROnly (SP) Proposed 0.542 ± 0.018 0.515 ± 0.010 0.612 ± 0.005 0.572 ± 0.007
DeepDDS-DR (WL k=3) Proposed 0.643 ± 0.008 0.563 ± 0.006 0.919 ± 0.006 0.705 ± 0.015
DeepDDS-DR (SP) Proposed 0.634 ± 0.015 0.569 ± 0.007 0.917 ± 0.004 0.708 ± 0.025
MatchMaker-DR (WL k=3) Proposed 0.666 ± 0.008 0.577 ± 0.005 0.941 ± 0.005 0.693 ± 0.014
MatchMaker-DR (SP) Proposed 0.668 ± 0.014 0.581 ± 0.004 0.938 ± 0.004 0.730 ± 0.024

Table 5.6: Table of results with DR models utilising embeddings learned over the union of all drugs
across the 4 datasets. We report the average AUROC on the hold out test set with standard deviations
from 5 seeded random splits. Bolded numbers indicate best performing model for each dataset.

Model Year DrugCombDB DrugComb DrugbankDDI TwoSides

DeepDDS 2021 0.791 ± 0.005 0.697 ± 0.002 0.988 ± 0.001 0.944 ± 0.001
MatchMaker 2021 0.788 ± 0.002 0.720 ± 0.003 0.991 ± 0.001 0.928 ± 0.001
DROnly (WL k=3) Proposed 0.762 ± 0.002 0.652 ± 0.001 0.793 ± 0.002 0.909 ± 0.003
DROnly (SP) Proposed 0.712 ± 0.002 0.615 ± 0.004 0.708 ± 0.004 0.796 ± 0.008
DeepDDS-DR (WL k=3) Proposed 0.802 ± 0.002 0.700 ± 0.001 0.988 ± 0.001 0.944 ± 0.001
DeepDDS-DR (SP) Proposed 0.785 ± 0.002 0.693 ± 0.002 0.983 ± 0.006 0.944 ± 0.001
MatchMaker-DR (WL k=3) Proposed 0.783 ± 0.005 0.713 ± 0.004 0.991 ± 0.001 0.929 ± 0.001
MatchMaker-DR (SP) Proposed 0.784 ± 0.005 0.714 ± 0.004 0.991 ± 0.001 0.929 ± 0.002

98

representations learned on each subset of drugs separately. Specifically, we can see a stronger

increase in performance for DeepDDS when using distributed representations in DrugCombDB

than in Table 5.3, and generally performance increases for DeepDDS across datasets. Decreases

in performance as seen on MatchMaker in DrugCombDB and DrugComb are the same as in 5.3.

The distributed representations do not hurt MatchMaker on DrugbankDDI and TwoSides. These

results indicate that the neural drug pair scoring models in general are able to extract useful

features for their end-to-end task from the incorporation of distributed representations.

5.6.1.3 Ablation study on hyperparameters of learning distributed representations

The learning of the distributed representations comes with two hyperparameters which may

affect downstream performance when incorporated into the drug pair scoring models. These

hyperparameters are: (i) the dimensionality of the drug embeddings and (ii) the number of

epochs for which the skipgram model is trained. Full details on the ablation study on how

varying these hyperparameters affects downstream performance with the experimental setup

can be found in Appendix D. To summarise the main points: the downstream performance

caused by varying the desired dimensionality initially rises and then falls as expected due to the

information bottleneck in very small dimensions and curse of dimensionality in higher dimensions.

For varying the training epochs, we find a slight but statistically significant positive correlation

with performance as the number of epochs increases in two out of four datasets. However, in

both cases there is little variation (±0.02 ROCAUC in both ablation studies over the ranges

studied) in the final performance of the downstream models given the hyperparameter choices

except on the extreme ends of the studied ranges. This indicates the stable nature of the output

embeddings and their usefulness in downstream tasks. As such we can generally recommend low

dimensional embeddings, on par with any other drug features being utilised, and a high number

of training epochs to obtain good performance.

5.7 Summary

We presented a methodology for learning and incorporating distributed representations of graphs

into machine learning pipelines for drug pair scoring, answering the first question on how we may

integrate distributed representations. We assessed the usefulness of the distributed representations

of drugs with two parts. In the first part, we show that a model only using the learned drug

embeddings shows significantly better performance than random, suggesting the usefulness of

the substructure pattern affinities between drugs in drug pair scoring. Subsequently for the

second question, we augmented recent and state-of-the-art models from synergy, polypharmacy,

and drug interaction type prediction to utilise our distibuted representations. Comparative

evaluation of these models shows that the incorporation of the distributed representations

improves performance across different tasks and datasets. Thereby we have answered Research

Question 3.

To summarise our contributions are as follows:

• We show that learning distributed representations of graphs as a source of additional

99

features within drug pair scoring pipelines subverts the limitations of embedding methods

and allows models to exploit its representational strengths.

• We present a generic methodology for learning various distributed representations of the

molecular graphs of the drugs and incorporating these into machine learning pipelines for

drug pair scoring.

• We augment state-of-the-art models for drug synergy, polypharmacy, and drug interaction

prediction and improve their performance through the use of distributed drug representations

across tasks; even tasks they were not originally designed for.

• We publicly release all of the drug embeddings for DrugCombDB [5], DrugComb [6,

214], DrugbankDDI [7], and TwoSides [215] datasets as utilised in this study with the

accompanying code for generating more.

100

CHAPTER 6

Structural inductive biases for gene

expression profiles using external

interaction networks

6.1 Overview and contributions

In this chapter we will present a novel inductive bias to utilise the relationships between features

within feature vectors of observations to create performant representations. Our case study looks

at gene expression profiles commonly used in elucidating the subtypes of cancers [220]. Gene

expression data is commonly used at the intersection of cancer research and machine learning as

it is seen as a crucial component towards understanding the molecular status of tumour tissue.

In its most common form, an observation of gene expression data is presented as a k-dimensional

feature vector of continuous values after normalisation of the raw count data, where each element

of the vector corresponds to the expression level of a particular gene in the sample. Classically,

this representation is directly used to learn a prediction model for tasks such as cancer disease

subtype classification, or as part of a larger system integrating data from multiple modalities

[28, 221, 222].

The high dimensionality and noisiness of the gene expression data poses significant problems

to learning algorithms. Coupled with the comparatively low number of observations, this high

dimensionality causes models to overfit, learn noise, and struggle to capture any biologically

relevant information [221, 222]. As a result, practitioners commonly aim to constrain model

complexity by incorporating various approaches for regularisation including dimensionality

reduction and use of prior biological knowledge to inductively bias models towards learning

representations with favourable characteristics [28, 223–225]. Our proposed methodology uses

prior knowledge based on the incorporation of gene interaction networks1 as external priors

1Gene interaction networks are networks which describe the putative functional interactions between genes and
gene products (e.g. proteins). As such, this term encompasses gene regulatory networks, metabolic networks and
pathways, and protein-protein interaction networks (PPI). Networks such as PPIs may be created in a variety of
ways encompassing extremes such as networks manually curated by experts and automated constructions using
numerous sources. The STRING database as used in our case study uses several sources including experimental
data, computational prediction methods and public text collections to automatically construct networks of known

101

over the expression features in order to guide the learning process of the predictive model. The

overall goal of applying network-based analysis to personal genomic and transcriptomic profiles

is to identify network modules that are both informative of cancer mechanisms and predictive of

cancer phenotypes. A survey which describes some of these approaches can be found in Zhang et

al. [226]. However, many of these methods are handcrafted to address very specific case studies,

and typically they are not end-to-end differentiable which is the focus of this study.

In this chapter, we introduce a method for automated construction of predictive neural network

models, that build upon structures discovered within gene interaction networks. More specifically,

we utilise topological clustering algorithms, chiefly used for the discovery of protein complexes

and functional modules within PPI networks, to define the structure of factor graphs in an

unsupervised manner. This deterministic procedure produces sparse computational graph models

which relates genes to named protein complexes. This structurally parameterises individual

functions for the “activity” of each complex based on an input gene expression profile. Given such

computation graphs, further connecting the complex activities to cancer phenotypes defines a

supervised predictive model akin to a sparsely connected neural network. This model would map

the activity patterns of higher level functional modules (protein complexes) to cancer phenotypes

via the original gene expression data.

Our approach effectively constrains the hypothesis space via explicit structural biases obtained

through unsupervised analyses of network biology entities. As a result, this provides a biologically

relevant mechanism for model regularisation, resulting in structurally constrained models that

yield competitive predictive performance with significantly lower number of model parameters

and offer insights into the expression patterns of phenotype relevant complexes. Figure 6.1

features a simplified diagram of this process over an input gene expression profile dataset and a

toy interaction network used to construct the topology of the computational graph.

The work of this chapter is associated with our journal paper “Unsupervised construction

of computational graphs for gene expression data with explicit structural inductive biases”

published in Oxford University Press Bioinformatics. The research article is bundled with an

associated software package ProtClus2 containing efficient Python implementations of protein

cluster identification algorithms. It is also related to its earlier iteration “Incorporating network

based protein complex discovery into automated model construction” presented at MLCB 2020.

We also make reference to “Variational autoencoders for cancer data integration: design principles

and computational practice” that we published in Frontiers in Genetics and “Using ontology

embeddings for structural inductive bias in gene expression data analysis” presented at MLCB

2020.

6.2 Methods

The proposed method, which we will refer to as GINCCo (Gene Interaction Network Constrained

Construction), incorporates prior biological knowledge embedded within the structure of external

PPI networks and protein complexes discovered in these via topological clustering algorithms to

and predicted protein–protein interactions in different species.
2https://github.com/paulmorio/protclus

102

Induced	Subnetwork	over	Common	
Genes/Proteins	of	External	PPI	Network	

and	Gene	Expression	Data

Set	of	protein	complexes	and	functional
modules	found	by	algorithm	 	on	

, ,

STAGE	1

STAGE	2

	o
bs
er
va
tio
ns

genes

Input	Gene	
Expression	Data

Each	 	
can	be	learned	or	set	individually

G
en
e	
E
xp
re
ss
io
ns

STAGE	3

Construction	of	Computational	Graph	for	Gene	Expression	Data
Based	on	Functional	Modules	discovered	by	 	over	PPI	Network

External	PPI	Network

Figure 6.1: An overview of our procedure for incorporating PPI network based protein complex discovery
and constructing computational graphs for gene expression analysis. GINCCo’s procedure for model
construction is best described in three stages: (1) induction of the case study specific subgraph GS common
to the input gene expression dataset (for set of k genes K) and the external PPI network which will
be used for the (2) unsupervised discovery of the protein complexes that act as biologically relevant
higher level modules of the inputs, and (3) the use of the clusterings C(GS) to construct a bipartite factor
graph between the gene expressions and the protein complexes and extending the use of the graph in
the predictive model that transitively maps the gene expressions to phenotypes via the protein complex
activities. In the final computational graph model we can see blue genes which are excluded as a result of
extracting the case specific study graph, and red genes which are excluded as a result of clustering process
on GS .

103

construct a bipartite graph between gene expressions and functional modules. This bipartite

factor graph serves as the structural foundation for computational graph models that will be

further augmented into predictive models for cancer phenotypes. Crucially, this means that the

structure of the computational graphs created by GINCCo are defined in a purely unsupervised

and deterministic manner over external structured knowledge.

GINCCo’s procedure for constructing the computational graphs is best described in three

stages which also correspond to those shown in Figure 6.1:

1. Inducing a case study specific subgraph of an external PPI network with the input gene

expression data.

2. Discovering protein complexes that serve as higher level functional modules within the

study specific subgraph from step 1.

3. Constructing the factor and computational graphs for downstream modelling.

6.2.1 Processing and generating case study PPI networks

Let us assume an input gene expression dataset X ∈ Rm×k describing m patient observations

with k-dimensional vectors of gene expression values, and K represents the set of genes in this

expression dataset. Furthermore let us assume an external PPI network GPPI = (VPPI, EPPI),

such as one from the STRING-DB 9606 Homo Sapiens PPI network [8]. For our purpose, this

PPI network is an unweighted graph with nodes VPPI labeled by the names of proteins, and no

additional node or edge features. We induce a subgraph of the input network GS ⊆ GPPI. The

nodes of GS are the intersection of the common genes in the input gene expression dataset K

and their products in the PPI network; in other words VS = K ∩ VPPI. The induced subgraph

GS = (VS, ES) is the graph whose vertex set is VS and whose edge set consists of all of the edges

in EPPI that have both endpoints in VS. This action is illustrated in the top row of actions in

Figure 6.1. We denote GS our study PPI network since it is the “cut out” of the external PPI

network relevant to our case study.

6.2.2 Protein complex discovery

Given the induced study network, we use a topological clustering algorithm C (such as DPCLUS

[227]) to discover protein complexes within the study PPI network GS. The aim of the clustering

algorithms is to discover protein complexes represented as a set of induced subgraphs C(GS) =

{c1, c2, . . . , cl}, where l is the number of complexes discovered by C. The number of protein

complexes found, l, is not dependent on the user, but rather on the application of the clustering

algorithm C upon the input study network. Any appropriate clustering algorithm can be used.

It is worth noting that we specifically chose clustering algorithms that do not partition the

graph. In other words, a single protein may be part of multiple complexes. This is to reflect the

fact that proteins may be involved in several biological processes and complexes. Moreover, not

all proteins in GS will necessarily be assigned to clusters by C. We are not arbitrarily forcing all

genes to be part of our constructed models, and this acts as a form of feature selection upon the

104

GINCCo Factor Graph

Fully Connected Factor Graph

Figure 6.2: A visual comparison between the factor graphs produced using a fully connected computational
graph as in a standard neural network and that produced by GINCCo using the toy example introduced
in Figure 6.1.

input X by C(GS). This stands in stark contrast to most pooling operations used in GNN based

methods as they explicitly partition nodes and do not allow for multiple memberships.

6.2.3 Computational graph construction and predictive models

The output of the clustering algorithm C(GS) = {c1, c2, . . . , cl} enables the construction of a

bipartite factor graph. Herein, each of the protein complexes is assigned a uniquely labelled node

ci and each protein within the set of proteins involved in one or more complexes is also given a

labeled node by their name. Directed edges link proteins to complexes ci they are a member of.

This construction gives the factorisation of a parametric function fci : ci 7→ R computed from

the proteins involved in ci. The function fci(·) can be set by the practitioner or learned as in a

neural network.

The parameterisations fci : ci 7→ R in our proposal is a stark contrast to arbitrarily chosen

hidden-state activations hi : Rk 7→ R found in conventional application of fully-connected

multi-layer perceptrons (MLPs). Firstly, each of the ci denotes a “protein complex activity”, a

biologically relevant structure modelled through incorporation of external PPI and topological

clustering algorithm, instead of an arbitrarily chosen hidden state node. The proteins that are

members of ci, and only those proteins, affect its activity level fci : ci 7→ R, instead of all input

features. This is a strong and explicit inductive bias if fci is learned through a neural network.

A visual comparison between the factor graphs of a fully connected model and that of GINCCo

can be seen in Figure 6.2.

We construct computational graph models for cancer phenotype prediction by further aug-

menting the current gene/protein to protein complex factor graph to include complete connections

between the protein complexes ci to target nodes gained when encoding the target observations Y.

As such, each function fci : ci 7→ R computing the individual protein complex “activity” is learned

over minimising the global cross-entropy loss between predicted and the target phenotypes.

105

6.2.4 Experimental setup

We hypothesised that the knowledge driven construction of the computational graphs through

incorporation of gene interaction networks as prior biological knowledge will yield sparser models

and better predictive performance than fully connected baselines. We tested this hypothesis in

parts: comparing model sparsity in terms of the number of parameters, comparing predictive

performance across datasets, and subsequently checking whether GINCCo captures useful signals

that cannot be found through random computational graph construction.

In order to evaluate the proposed method for model construction, we used publicly available

gene expression data from the METABRIC Breast Cancer Consortium (METABRIC) [228] to

predict cancer phenotypes (breast cancer subtypes). The dataset consists of the mRNA expression

data and clinical data of breast cancer patient samples in the METABRIC cohort [228]. Herein

we tackle several classification tasks over the 1980 breast cancer patients, representing what is

considered a particularly large dataset for cancer data research. Each observation is represented

by a 24368 dimensional vector corresponding to the continuous expression values of measured

genes. The microarray data was normalised as described in [228]. We evaluate the predictive

performance over the proposed method’s ability to predict:

• Distance relapse (DR): a binary classification task.

• IntegrativeCluster subtypes (IC10): a 11 class prediction task where observations belong

to integrative clusters typified by copy number aberrations [228].

• PAM50 breast tumour cancer subtype [229] (PAM50): a 5 class prediction task (Basal,

Her2, Luminal A, Luminal B, and Normal).

To show that GINCCo can operate across datasets we also evaluate it on The Cancer Genome

Atlas Head-Neck Squamous Cell Carcinoma dataset (TCGA-HNSC) [230, 231]. The HT-Seq

count expression data was normalised using the Fragments Per Kilobase of transcript per Million

mapped reads (FPKM) method as made available through the National Cancer Institute Genomic

Data Commons Data Portal, https://portal.gdc.cancer.gov/ as in [230]. The dataset contains

528 TCGA-HNSC cases wherein we focus on the 20501 mRNA expression features. The clinical

targets include:

• Tumour grade, wherein observations are classified into grades I, II, III or IV based on

standards set by the World Health Organization.

• 2 Year Relapse Free Survival (2 Year RFS), a binary prediction task.

For all prediction tasks tables of the exact class label distributions are presented in Appendix

E.1.

Amongst the considered methods are: majority class classifier (MajorityClass), a support

vector machine with RBF kernel (SVM), a Fully-Connected (FC) two layer neural network

with 1600 hidden layer nodes3, a network regularised FC network [232] (GraphReg), and our

3This number of hidden nodes was chosen to closely match the number of protein complexes used in GINCCo +
DPCLUS, the best performing of the proposed methods.

106

proposed model constructor coupled with a variety of topological clustering algorithms. Each of

our models is referred to as GINCCo + C, where C refers to one of: MCODE [9], COACH [233],

IPCA [234], or DPCLUS [227] clustering algorithms. These clustering algorithms were chosen

on the basis that they are well established, allow overlapping clusters, and have deterministic

implementations for reproducibility. Implementations of all these clustering algorithms is available

in the accompanying software package ProtClus as mentioned previously.

MCODE (Molecular Complex Detection) is an agglomerative clustering algorithm for identifi-

cation of protein complexes given PPI graphs. COACH (COre-AttaCHment based method) is an

algorithm for identification of protein complexes based on core-attachment structure. DPCLUS

is an iterative algorithm for protein-complex identification from interaction graphs. Similarly to

MCODE, given a PPI graph, DPCLUS initializes the clusters with the node with the highest

weight, identified by analysing node neighbourhoods. Once a cluster is initialized, the algorithm

extends it by adding neighbouring nodes that meet predefined criteria of density and cluster-

connectivity property. IPCA is a modification of DPCLUS. Similar to DPCLUS, IPCA grows

the clusters based on the topological structure of the underlying interaction graph by searching

for small-diameter subgraphs that meet certain cluster connectivity-density property. In contrast

to DPClus that re-computes the node weights each time a subgraph is removed, IPCA computes

these weights once at the beginning and uses them for the whole process. The hyperparameters

of the clustering algorithms were set to the values recommended in their respective papers.

For methods incorporating external PPI data, we used the V.11 of STRING’s full human

(9606 homo sapiens) protein interaction network4. The association and interaction between

proteins in the STRING PPI network is dictated by a combined score. This combined score is

obtained from the aggregation of many information sources on the PPIs including experimental

data, curated databases, text mining, and so on which is detailed extensively in von Mering et al.

[235]. Our approach does not utilise this score and treats edges as undirected binary associations.

The choice to use the STRING PPI network lies mainly in its wide coverage of the human

protein-protein interaction network and its availability as a public resource. No preprocessing

was done on the interaction data aside from combining the interaction information with the

accompanying metadata on the proteins5 in order to match the gene/gene product names in our

methodology.

For each task, we compare the methods over the average performance of five repeated class

stratified train and hold-out test splits resulting in 80-20 train-test set ratios. We use a quarter

of each training-set split to produce a validation set for early stopping and hyperparameter

selection. For the SVM C values were optimised over the set C = (0.001, 0.01, 0.1, 1, 100) and a

scaled γ = 1
d·Var(X) value for the RBF kernel, where X is the input RNA expression data, d is

the input dimensionality, and Var(·) computes the variance of the dataset. The C parameter

was further balanced to be inversely proportional to class frequencies in the training split. The

best performing hyper-parameters on the validation set were used then to train the model on

the training-split and evaluate on the held-out test split. The Fully-Connected MLP and the

computational graphs of GINCCo were trained through optimisation of the cross entropy loss.

4https://stringdb-static.org/download/protein.links.v11.0/9606.protein.links.v11.0.txt.gz
5https://stringdb-static.org/download/protein.info.v11.0/9606.protein.info.v11.0.txt.gz

107

Table 6.1: Number of parameters used in equally dimensioned fully connected multi-layer perceptron
network and the proposed method using different clustering methods to automatically discover protein
complexes and their members on the STRING 9606 PPI Network and the 24368 genes measured in
METABRIC.

MCODE
(40 Clusters)

COACH
(4108 Clusters)

IPCA
(5744 Clusters)

DPCLUS
(1562 Clusters)

FC MLP 974720 100103744 139969792 38062816
GINCCo 14537 1431338 2800267 19545

Table 6.2: Descriptive statistics of the protein complexes discovered via the topological clustering of the
study PPI network GS induced from the STRING PPI network and METABRIC.

MCODE COACH IPCA DPCLUS

Num Protein Complex 40 4108 5744 1562
Max Cluster Size 1555 2684 639 359
Min Cluster Size 3 4 5 2
Avg. Cluster Size 363.43 348.43 487.51 12.51

The loss was optimised using Adam [194] with a mini batch size of 32 and 500 epochs and

a learning rate of 0.0001. The weight parameters were initialised using the Xavier uniform

initialisation [236].

The performance of each model was compared with respect to average balanced classification

accuracy (B-ACC) and weighted area under receiver operator characteristic (W-AUC) over each

of the five splits in the tasks to account for any class imbalances. To compute the W-AUC,

we averaged the one-versus-rest scores for each label weighted by the class label distribution.

For completeness we have included tables for the comparative analysis of unbalanced accuracy,

weighted precision, weighted recall, and weighted f-scores which can be found in Appendix E.2.

6.3 Results

6.3.1 Factor graphs produced by GINCCo are considerably sparser than fully

connected network models

The computational graph models produced by GINCCo innately incorporate biological knowledge

of the protein-protein interaction network and the multi-protein modules discovered through

C(GS) over the study network. The resulting bipartite factor graphs between the gene expressions

and protein complex activities fci : ci 7→ R are considerably sparser than their fully connected

counterparts as ∀ci ∈ C(GS), |ci| ≤ k by design and often |ci| << k as seen in Table 6.1. The

table describes the number of edges (parameters) in the bipartite graph produced by GINCCo

and a given clustering algorithm C(·) on the study network created with STRING and the 24368

genes in the METABRIC dataset. This is compared against the number of edges formed in the

fully connected counterpart with the equal number of hidden activities hi; a visual comparison

can be found in Figure 6.2. Table 6.1 shows how GINCCo models have orders of magnitude less

parameters than their fully connected counterparts. We will show that despite this, the proposed

108

Table 6.3: Average percentage balanced accuracy (B-ACC) and weighted AUC (W-AUC) with standard
deviations over 5 repeated train and holdout test evaluations using all of the gene expression features of
METABRIC and TCGA-HNCS.

METABRIC TCGA-HNCS
DR PAM50 IC10 Tumour Grade 2 Year RFS

B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC

MajorityClass 50.00 ± 0.00 0.50 ± 0.00 20.00 ± 0.00 0.50 ± 0.00 9.09 ± 0.00 0.50 ± 0.00 25.00 ± 0.00 0.50 ± 0.00 50.00 ± 0.00 0.50 ± 0.00
SVM 54.43 ± 1.85 0.54 ± 0.02 72.21 ± 3.07 0.94 ± 0.01 55.72 ± 3.79 0.95 ± 0.01 39.35 ± 4.28 0.67 ± 0.04 56.59 ± 4.83 0.57 ± 0.05
FC MLP 56.92 ± 2.65 0.57 ± 0.03 74.65 ± 3.60 0.94 ± 0.01 66.32 ± 1.99 0.95 ± 0.01 34.29 ± 3.53 0.66 ± 0.04 58.14 ± 4.23 0.58 ± 0.05
GraphReg 49.86 ± 1.05 0.50 ± 0.01 22.57 ± 2.71 0.82 ± 0.01 9.09 ± 0.00 0.83 ± 0.01 27.63 ± 3.25 0.64 ± 0.02 55.42 ± 2.35 0.55 ± 0.02
GINCCo + MCODE 56.65 ± 1.86 0.57 ± 0.02 73.52 ± 2.71 0.93 ± 0.01 57.77 ± 1.73 0.93 ± 0.01 36.93 ± 10.14 0.64 ± 0.03 55.43 ± 2.87 0.55 ± 0.03
GINCCo + COACH 56.73 ± 0.98 0.57 ± 0.01 74.97 ± 3.27 0.95 ± 0.01 63.04 ± 2.98 0.95 ± 0.01 39.38 ± 11.48 0.65 ± 0.03 56.79 ± 3.49 0.57 ± 0.03
GINCCo + IPCA 57.13 ± 1.47 0.57 ± 0.01 74.62 ± 4.55 0.94 ± 0.01 62.26 ± 4.51 0.94 ± 0.01 37.36 ± 9.54 0.63 ± 0.03 55.56 ± 3.39 0.55 ± 0.03
GINCCo + DPCLUS 57.27 ± 1.80 0.57 ± 0.02 75.97 ± 4.59 0.97 ± 0.01 70.43 ± 3.68 0.97 ± 0.00 39.09 ± 9.96 0.67 ± 0.03 57.17 ± 4.42 0.57 ± 0.04

models still perform competitively in predictive tasks and bring additional benefits.

6.3.2 Empirical results show integration of prior biological knowledge yields

strong predictive performance

The main comparative results are summarised in Table 6.3 for the METABRIC and TCGA-HNCS

datasets. The results show that all variations of the computational graph models produced by

GINCCo perform strongly against both the SVM and Fully-Connected MLP baselines.

More specifically, GINCCo + DPCLUS performs competitively overall, making an especially

substantial gain in IC10 subtype prediction. Performing a pairwise frequentist correlated T-test

[237] shows that GINCCo+DPCLUS has statistically significant performance gains across all

tasks compared to MajorityClass and GraphReg methods but is not significant against the other

methods except on IC10 subtype prediction (see Appendix E.3). However, this result is still good

as it comes in spite of the fact that the GINCCo + DPCLUS model contains less than 0.05% (or
1

2000) of the number of parameters used in the fully connected MLP (see Table 6.1). Furthermore,

GINCCo models provide additional features pertaining biologically relevant insights that are not

possible with the other methods as we show in Section 6.3.3.

We attribute the strong performance of GINCCo to two related advantages over fully connected

networks. Firstly, GINCCo’s sparser model complexity allows more “weight” to be assigned to

each of the input signals used. Similarly, the sparse connectivity also helps generalisability in

a similar way to the dropout regularisation method. However, in contrast, the connectivity of

GINCCo graph is set, explicit, and realised through incorporation of prior knowledge rather

than being random and ephemeral. This brings us to the second advantage of GINCCo —

the structure of the computational graphs, and thus the representations, explicitly incorporate

biological knowledge of protein complex membership as intermediate states. In other words,

they are not “hidden” nodes with arbitrary meaning. The learned activities of the protein

complexes are explicitly factorised to the gene expression measurements of the genes/proteins

that have a membership in the complex. To show that GINCCo benefits from both of the

previously mentioned advantages, and not only from the first advantage of regularisation via

sparse connections, we demonstrate that the performance of GINCCo + DPCLUS outperform

computational graphs constructed through random processes (RC MLP-R and RC MLP-M).

The differing performances on the choice of clustering algorithm C(·) reflects the different

assumptions made by researchers on what topological structures within GS contain protein

109

Table 6.4: Average percentage balanced accuracy (B-ACC) and weighted AUC (W-AUC) with standard
deviations over 5 repeated train/test evaluations using all of the gene expression features of METABRIC
and TCGA-HNCS.

METABRIC TCGA-HNCS
DR PAM50 IC10 Tumour Grade 2 Year RFS

B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC B-ACC W-AUC

FC MLP 56.92 ± 2.65 0.57 ± 0.03 74.65 ± 3.60 0.94 ± 0.01 66.32 ± 1.99 0.95 ± 0.01 34.29 ± 3.53 0.66 ± 0.04 58.14 ± 4.23 0.58 ± 0.05
RC MLP - R 56.91 ± 0.78 0.57 ± 0.01 72.06 ± 6.55 0.93 ± 0.04 57.25 ± 10.03 0.92 ± 0.06 38.02 ± 3.26 0.64 ± 0.05 54.86 ± 1.58 0.54 ± 0.02
RC MLP-M 55.25 ± 1.56 0.55 ± 0.02 64.87 ± 8.79 0.92 ± 0.05 54.10 ± 6.68 0.91 ± 0.04 35.45 ± 2.45 0.66 ± 0.01 54.15 ± 1.87 0.54 ± 0.02
GINCCo + DPCLUS 57.27 ± 1.80 0.57 ± 0.02 75.97 ± 4.59 0.97 ± 0.01 70.43 ± 3.68 0.97 ± 0.00 39.09 ± 9.96 0.67 ± 0.03 57.17 ± 4.42 0.57 ± 0.04

complexes. MCODE and DPCLUS exhibit stricter rules on complex candidates with fewer,

smaller and more tightly knit clusters than either COACH or IPCA as in Table 6.2. This may

be interpreted as these two methods constraining the hypothesis space more and incorporating

“more” expert knowledge which is helpful to the classification tasks. Naturally, GINCCo is

agnostic to the choice of C(·), therefore various combinations or set complexes may be explored

in further work.

6.3.3 Experiments against randomly structured computational graphs show

GINCCo models capture useful parameterisations

As the structure of the computational graphs is driven largely by the structure of the external PPI

network and the number/members of the protein complexes discovered, we check that GINCCo

graphs actually capture biologically relevant information. Naturally, the structure of the PPI

network itself is explained and justified by the maintainers/proposers/curators of the databases.

Similarly, the biological relevance of the clustering algorithms used on the PPI networks is also

reasoned and justified within each of the original papers. Hence, our task here is to find whether

the computational graphs constructed through GINCCo obtain better scores than the SVMs

and FC-MLP because the structure and learned activity functions capture meaningful biological

relationships.

We test this with two approaches to generate randomly connected computational graph

models, referred to as RC MLP-R and RC MLP-M. For RC MLP-R we construct computational

graphs with a random number of “discovered protein complexes” and a random number of

connections attributing protein memberships to clusters. The random numbers are drawn from a

uniform distribution between l ∈ [30, 6000] for the number of protein complexes6 and u ∈ [1, l ∗ k]

random protein to complex connections. For RC MLP-M models we preserve the number of

complexes and connections used in GINCCo+DPCLUS but perturb the connections. Hence

lRCMLPM = lDPCLUS and uRCMLPM = uDPCLUS, translating to l = 1562 and u = 19545 for

METABRIC tasks. For an empirical evaluation, 100 instances of such random computational

graphs were constructed to obtain a Monte Carlo aggregate mean score across the same repeated

train-test evaluation described in Section 6.2.4. Results are shown in Table 6.4.

From RC MLP-R results we can see how on average a sparse randomly structured instan-

tiation of a computational graph model does not outperform the fully connected model or

GINCCo+DPCLUS, often performing significantly worse on multi-label tasks and with highly

6This range was chosen to roughly reflect the number of protein complexes found in the chosen clustering
algorithms on the STRING-DB PPI network. See Table 6.2.

110

variable outputs. This suggests that the unguided random sparsification does not lead to better

results. This is further compounded by the results from RC MLP-M which show that despite

the preservation of the number of “complexes” and connections of GINCCO+DPCLUS, the

randomisations of the connections hurts the performance. Moreover, this suggests that the

inductive biases offered by explicit factorisations of genes and protein complexes via validated

biologically inspired clustering algorithms drastically reduce the number of model parameters,

perform competitively, and also enable guided post-hoc enrichment studies of target relevant

functional modules, as we show next.

Another benefit of the deterministic and explicit factorisation of the parametric activity

functions is that it presents interesting opportunities for introspective analyses of the models. Each

of the candidate protein complexes may be functionally analysed through gene set enrichment

analyses that can provide insights into the patterns of “active” functional modules with respect

to the input gene expressions and the disease phenotypes.

As a showcase, we show an example procedure of using GINCCo to identify functionally

relevant complex candidates in the prediction of PAM50 cancer subtypes. Leveraging Integrated

Gradients [238], a gradient-based attribution method, we estimated the importance of inter-

mediate protein complex nodes in the computation of the target values. We then ranked the

protein complexes according to their importance to the prediction task and performed functional

enrichment analysis using Enrichr (DisGeNET) to identify enriched pathways. For classification

of PAM50 on the METABRIC dataset with GINCCo + DPCLUS, we found that the top enriched

pathways for the most important complex candidates are 1) malignant neoplasm of the breast

(q-value: 2.4e-21) and 2) breast carcinoma (q-value: 8.35e-21) as shown in Figure 6.3. These

results suggest that the protein complexes identified by DPCLUS are biologically meaningful and

further support our choice for incorporating them as structural inductive biases in our model.

A python notebook for this example is made available in our supplementary code available at

https://github.com/paulmorio/gincco. More generally, this result shows the potential of

GINCCo to help identify functionally relevant gene-sets given specific phenotype targets and to

enable their study through functional enrichment analyses and experimental validation.

6.4 Related work and discussion

In this Chapter we focused on the utilisation of prior biological knowledge embedded within the

topologies of interaction networks to guide the construction of predictive models. Therefore it

is related to several other approaches that incorporate inductive biases from the topologies of

external molecular networks into neural networks (and other modeling approaches) as well as

end-to-end differentiable models. More closely, GINCCo relates to Knowledge-Primed Neural

Networks (KPNN) [239], that explicitly incorporate biological networks in the design of the

neural network architecture. Similarly to GINCCo, the input nodes correspond to genes (or

proteins), but the hidden units of the neural network correspond to various signaling proteins

and transcription factors. This, in turn, leads to an accurate and interpretable predictive model

for single-cell analysis. However, in order to produce such models, KPNNs require topological

data in the form of directed acyclic graphs with explicitly defined regulatory mechanisms. In

111

https://github.com/paulmorio/gincco

Epithelial ovarian cancer

Squamous cell carcinoma

Lung Neoplasms

Malignant lymphoma, lymphocytic, interme...

Neoplasm Metastasis

Mammary Neoplasms

Stomach Carcinoma

Ovarian Carcinoma

Colorectal Cancer

Colorectal Carcinoma

Malignant neoplasm of ovary

Non−Small Cell Lung Carcinoma

Carcinoma of lung

Primary malignant neoplasm of lung

Retinoblastoma

Carcinogenesis

Malignant neoplasm of lung

Liver carcinoma

Breast Carcinoma

Malignant neoplasm of breast

0 25 50 75 100
Gene count

E
nr

ic
he

d
te

rm
s

3.970537e−16

2.977902e−16

1.985268e−16

9.926342e−17

1.115330e−24
P value

Enrichment analysis by Enrichr

Figure 6.3: Output results from Enrichr. The ranked list shows how the most influential protein complex
in deciding PAM50 classification coming from the GINCCo+DPCLUS model is also highly enriched in
carcinoma of the breast, our target disease of interest as well as other carcinomas.

112

contrast, GINCCo is more general in this respect, since it is not constrained by the type nor

completeness of the structural prior. This allows for incorporating (and combining) different

topological data for various applications including, but not limited to single-cell analysis, such as

cancer sub-type identification/classification.

Other similar approaches have recently been proposed which exploit knowledge of biological

pathways to create sparse neural network models. PASNet [240] and P-NET [241] incorporate

pathway information for survival prediction in Glioblastoma multiforme (GBM) and for stratifica-

tion of prostate cancer patients, respectively. These approaches are all closely related to GINCCo.

However, P-NET requires careful handcrafted construction of the architecture as well as manual

curation of certain layers. In contrast, GINCCo is more general, fully automated and leads to

substantially smaller models. Moreover, the clustering step in GINCCo is independent, therefore

it can handle various types of domain-knowledge (including pathways). Similarly, PASNet, refers

to a sparse neural network that also relies on knowledge-based structural biases, by incorporating

pathway information. In that, it is similar to GINCCo, however instead of “learning” the second

hidden layer from the constructed clusters (as in GINCCo), PASNet explicitly maps the pathways.

Therefore, in that respect GINCCo is more general, since it does not explicitly rely on known

pathway sets.

In broader terms, GINCCo follows a long tradition of methods that incorporate biological

knowledge through feature selection and extraction. In particular, it relates to embedded

techniques [242] that simultaneously select subsets of the original gene features and build a

predictive model such as SVM-RFE [243] and LASSO [244]. GINCCo distinguishes itself here in

that it performs the selection and model construction in a completely automated, deterministic,

and unsupervised manner. This can be seen as a preprocessing step allowing GINCCo to

scale immensely, and also allow us to study factor graphs without the influence of task specific

optimization dictating the shape of the models.

Incorporating topological inductive biases can also be performed with network regularisation

methods as seen in [224, 232] and [245]. Herein, methods such as graph Laplacian regularisation

work on regularising the coefficients of linear models such that they are similar for terms that

are connected within the incorporated network. We have included the method proposed by [232]

within our comparative analysis in the previous section. A benefit of graph regularisation as a

method for incorporating prior knowledge is that it does not require a seperate clustering stage

as in GINCCo. However, this comes at the cost of not being able to study the potential gene

sets (in our case protein complexes) for functional relevance, such as post-training analysis using

functional enrichment analysis in Section 6.3.3. Furthermore, there is a subtle, but important,

difference in the aims of our method and graph regularisation methods in terms of the inductive

bias produced. The graph Laplacian regularisation is a summation of the smoothness terms

on the variables to encourage similar coefficients on the genes that are connected. In contrast,

GINNCo models are inductively biased (quite explicitly) to produce representations based on the

subnetworks extracted by the clustering algorithms. Naturally, as graph regularisation methods

are typically implemented as a regularisation term they can be trivially incorporated into the

objective function of GINCCo models as well.

Variations operating on the general network propagation and message passing model have

113

found increasing use within research involving network biology [246]. The clear biological

motivations behind the network propagation model and its parallels to GNN operators quickly

inspired a succession of works aimed at using GNNs architectures on gene expression data. Rhee

et al. [247] use a ChebNet [149] variant with a relation network [248] to impose a protein-

protein interaction network (PPI) upon each of the gene expression profiles. Here each of the

gene expression values is mapped onto a copy of the PPI structure. This was used to classify

gene expression profiles from the TCGA into PAM50 classifications for breast cancer subtype

classifications. Chereda et al. [249] provided a simpler architecture, solely using a ChebNet

on the gene expression values mapped on a PPI network to predict metastasis. The published

results on metastasis show that their proposed method is marginally better (1% ∼ 2%) which are

not statistically better than their random forest and fully connected neural network baselines.

This naturally raises the question of whether the positive performance published in Rhee et al.’s

[247] hybrid model comes primarily from their GNN or relational network component or the

combination of both.

A series of closely related research [223, 250, 251], has studied integrating various gene

interaction networks such as PPI, gene regulatory, transcription regulation, and so on as masking

measures over the features to impose an inductive bias. Experiments were carried out on single

gene inference tasks [223] and a cancer phenotype prediction task [251]. The usage of the network

information was deemed useful for the single gene inference task, but the authors also reported

important negative results in some experiments where the prior knowledge of a curated graph

was about as useful as a randomly connected graph — highlighting the importance of choosing

the “right” graph as prior knowledge. On the phenotype prediction task, using graphs as a mask

over the gene expressions as prior knowledge was unable to beat a baseline multilayer perceptron

on the same task [251].

The work on applying GNNs to incorporate prior network information to genomic and

transcriptomic data tasks is a nascent and valid general approach to the problem. However,

the graph convolution and pooling operations as used in previous work, are not best suited to

learn biologically useful subnetworks for the predictive model within the small datasets that are

available now. The classic graph convolutional operations used in [247] and [249] consider higher

level node aggregations of all its neighbours with equal weight. When the nodes of the GNNs are

genes superimposed onto a gene interaction graph (let us say a PPI network) the resulting node

feature only consists of the gene expression scalar. The feature propagation mechanism between

neighbours creates a bottleneck when every node aggregates messages from its neighbours in a

phenomenon known as oversquashing [252]. Each of the scalars is simply mixed into another

scalar value through the aggregation. Experiments using attention mechanisms to attenuate the

information flow did not improve the situation. Differentiably learned pooling methods require

an increasing number of samples to learn “useful” higher level representations, which are not

explicitly related to a biologically relevant entities. Furthermore, pooling methods have recently

been shown to have inherent limitations in actually capturing local receptive fields better than

random cluster assignments [95].

In contrast, the models created through our proposed framework forego learning “hidden”

higher level representations by explicitly factorising the transitive relationship between gene

114

expressions, protein complex activity, and phenotypes using PPI networks and deterministic

protein complex discovery algorithms. This is done specifically to constrain the hypothesis space

of potential models and impose structure, using domain knowledge on the scarce data, in the gene

expression datasets. It relates each gene expression to a named higher level entity, the protein

complex, and has a function specific weighting that is learned (or set based on the practitioner)

through the global optimisation scheme over this computational graph. As a result, the signal

from each gene expression is not equally weighted, but specific to each complex activity function

— signals are even dropped explicitly through the C(GS) function if they are not within the scope

of study for the computational graph. This is unlike the GNN or a network regularised method,

which would include all of the input and try to learn something from it even if it were noise.

Thus, our method is substantially different and additive on both existing approaches.

6.5 Summary

In this Chapter we presented GINCCo, a scalable unsupervised approach to incorporating

biological knowledge embedded in the structure of gene interaction networks for automated

construction of computational graphs for gene expression analysis. GINCCo provides one strong

solution to Research Question 4, incorporating relational information from interactomics

data to enact biologically relevant inductive biases on the gene expression data. GINCCo has

several distinguishing properties. First, it provides a biologically relevant mechanism for model

regularisation, resulting in structurally constrained models that often yield better predictive

performance whilst drastically reducing model parameters and enabling post-hoc enrichment

analyses. Second, GINCCo is scalable and applicable to other tasks beyond the case study

presented: where explicitly modelling the activities of subnetworks within networks describing

prior knowledge can be beneficial to a data analysis task. For example, the computational

graphs can be seamlessly incorporated into larger integrative frameworks handling multiple

modalities such as the integrative variational auto-encoders in [28] to reduce the complexity of

its hypothesis space. Finally, there is no arbitrary decision making on the number of hidden

nodes or their biological relevance as in standard MLPs. Each node within our computational

graphs is either a gene, a phenotype, or a candidate protein complex. The structure describes a

knowledge-directed factorisation of the parametric function for the activity of a protein complex

based on the expression levels of its constituent gene/proteins. This makes introspective study

into the individual contributions and functional roles of entities in the model and patterns as a

whole more amenable.

115

116

CHAPTER 7

Relational inductive biases for spatial

cell type deconvolution

7.1 Overview and contributions

In this chapter we present methods which utilise known relationships between observations

in a dataset. Our case study explores the application of these inductive biases in (spatial)

cellular deconvolution, also known as cell type composition and cell proportion estimation.

Cellular deconvolution refers to the inference of the different cell type abundances in samples of

transcriptomics data. In the previous chapter, we looked at gene expression profiles which are

bulk RNA samples obtained from the tissue biopsies of breast cancer patients. This means that

the feature vectors that we worked with are aggregated from many cells in the tissue sample

consisting of a variety of different cell types with different expression patterns that may be

indicative of molecular status and disease. Cellular deconvolution methods, created with the

integration of additional streams of data such as single-cell transcriptomics (scRNA-seq), can

help elucidate the different proportions of cell types in samples leading to better understanding

of biological processes and how we may interact with them.

Spatial transcriptomics technologies and protocols such as Visium, Tomo-seq, Slide-seq, HDST

have recently enabled the 2-dimensional (and 3-dimensional) characterisation of gene expression

on tissue samples. An output of these technologies is typically represented as a set of “spots”

which let us see the spatial organisation of gene expression patterns as in the Visium output of

a human lymph node in Figure 7.1. The spatial organisation of RNAs within cells and spatial

patterning of cells within tissues play crucial roles in many biological processes such as cell-cell

communication and signalling which underpin many diseases such cancers, autoimmunity, and

diabetes [253–255]. However, the transcripts of the spots are captured at multi-cellular resolution

composed of a mixture of heterogeneous cells [256, 257]. Spatial deconvolution would allow us to

characterise the proportions and dominant cell types and their spatial organisation in situ.

This chapter presents a model framework for spatial cellular deconvolution which utilises

the positional information of the spots to construct proximity relationships and uses relational

inductive biases to enact assumptions about the spatial organisation of cell types. We wish to

117

Figure 7.1: Visium slide of a human lymph node tissue publicly available at the 10x Genomics dataset
portal, accessed through scanpy [258]. In these images the circular spots are overlaid over the Hematoxylin
and eosin stain (H&E) image of the tissue sample. Note the non-uniform dispersion of the spots. The
left figure highlights the total number of counts read for every gene, and the right figure summarises the
number of genes with at least 1 count in a cell, highlighting the diversity of gene expression patterns
spatially across the tissue.

utilise previous observations that cell types tend to cluster spatially in groups of similar cell

types and also co-occur with other specific cell type clusters [259]. To do so, we incorporate

MPNN operators (see Chapter 2) into cell deconvolution models to learn functions for spot cell

type distributions with awareness of the distributions in spots related to it. More specifically,

we build upon the state-of-the-art Cell2Location model, incorporating parameterised relational

inductive biases with different properties into the hierachical model. Our proposed models

quantitatively show improved cell deconvolution ability within a synthetic dataset constructed

on mouse scRNA-seq data, and good characterisation of known cell types within microstructures

of a real human lymph node sample.

The contents of this chapter are currently being prepared for submission in several venues.

This project has been conducted in collaboration with Ramon Viñas Torné where we equally

share contributions on the theory and implementations of the project. Nikola Simidjievski,

Mateja Jamnik, and Pietro Liò have helped supervise our work. This write up is of my own

hand.

7.2 Background

Elucidating and delineating the spatial organisation of transcriptionally distinct cell types within

tissues is critical for understanding the basis of cell-cell communication, tissue function, and

potential for therapeutic intervention. For example, active research on the role of infiltrating

lymphocytes and other immune cells in the tumour microenvironment is currently ongoing

[260, 261] (in the context of immunotherapy) and it has already shown that accounting for the

tumour heterogeneity resulted in more sensitive survival analyses and more accurate tumour

118

subtype predictions [262]. Spatial transcriptomics (ST)1 enables transcriptomic profiling within

tissues in situ at multi-cellular resolutions. This means that ST readouts contain cell mixtures

at each measured “spot” which may comprise of multiple cell types. This lack of single-cell

resolution is an obstacle in the characterisation of cell type specific spatial organisation and gene

expression variation.

Strategies that generate coupled single-cell and spatially resolved trancriptomics offer a

scalable approach to address the challenges of mapping the cell types in tissues. The principle

behind these strategies is to first identify resident cell types in the tissue based on single-cell

RNA sequencing (scRNA-seq) from disassociated tissues and then map the identified cell types

to their tissue positions in situ based on spatial transcriptomic profiles. SPOTlight [263] uses cell

type marker genes derived from scRNA-seq reference to seed a non-negative matrix factorisation.

RCTD [264] uses the cell-type-specific mean expression of marker genes derived from a scRNA-seq

reference to build a probabilistic model of the contribution of each cell type to the observed gene

counts in each spot. SpatialDWLS [265] uses cell type signature genes derived from a scRNA-

seq reference to first enrich for cell types likely to be in each spot, then applies a dampened

weighted least squares approach to infer the cell type composition. Each of these methods

provides compelling solutions to the problem of cellular deconvolution with different strengths

and limitations. For example, there is an unknown accountability for different confounding

sources of variation such as integration of data consisting of multiple experiments or technologies

used in SPOTlight, or RCTD [22, 263, 264].

Cell2Location [22] is a recent state-of-the-art method, described in the following Section

7.3 that utilises a hierarchical model to model the latent cell types in ST data. It overcomes

several shortcomings of previous methods such as: robustness to the use of several measurement

technologies as well as experimental and batch effects through explicit modelling of effects.

We believe Cell2Location can further benefit from consideration of the neighbouring transcript

observations and latent cell type compositions in the modelling. Our proposal (after the next

section on describing the Cell2Location model) is to introduce augmentations to the model

to incorporate learnable feature propagations between latent variables based on positional

relationships.

7.3 Cell2Location

Cell2Location [22] is a Bayesian inference model built in a hierarchical manner to account for

different sources of confounding experimental information. In this section we describe this model;

a directed graphical model of Cell2Location can be found in Appendix Figure F.1.

Let D ∈ RS×G denote a mRNA count matrix with its entries corresponding to mRNA count

at spot s ∈ {1, ..., S} from one or multiple batches (i.e. 10x Visium slides or SlideSeq pucks) for

genes g ∈ {1, ..., G}. Let C ∈ RF×G denote a matrix of reference cell type signatures obtained

from learning on the scRNA data (see Section 7.3.1.1). Note that D and C need to be aligned

1ST has been crowned Nature method of the year 2020 [135]. Several spatial RNA-seq technologies exist such
as Visium, HDST, and Slide-seq, where mRNA are positionally captured from thin tissue sections using microarray
or bead array grids, providing transcriptome wide data at high throughput.

119

such that they cover the same set of genes G. Cell2Location models the elements of D as Negative

Binomial distributed (NB), given an unobserved expression level (rate) µs,g and a gene- and

experiment- specific over-dispersion parameter αe,g:

ds,g ∼ NB(µs,g, αe,g) (7.1)

This can be equivalently expressed as a Gamma-Poison mixture with a Poisson likelihood

(count measurement model) and a Gamma-distributed mean (expression dispersion model):

ds,g ∼ Poisson(Gamma(αe,g,
αe,g

µs,g
)) (7.2)

The expression level of genes µs,g in the mRNA count space is modelled as a linear function

of the reference cell type expression signatures:

µs,g =
(
mg ·

∑
f

ws,fgf,g + se,g

)
· ys (7.3)

• Here ws,f denotes regression weight of each reference signature f at location s, which can

be regarded as the abundance or proportion of cells expressing reference cell type signature

f at s. This is the latent variable that we care about and intend to infer.

• mg denotes a gene-specific scaling parameter, which adjusts for global differences in

expression estimates between technologies.

• se,g captures gene specific additive shift (due to free-floating RNA).

• ys denotes a location-specific scaling parameter, which models variation in RNA detection

sensitivity across locations and experiments. This parameter scales the contributions of

the cell types and the gene specific additive shift se,g.

We dive into the derivation of the prior distributions for each of the latent variables.

Cell abundance across locations ws,f This is Gamma distributed according to

ws,f ∼ Gamma(µws,fv
w, vw), (7.4)

where vw is a fixed hyperparameter denoting prior strength, the prior mean parameter is modelled

in a hierarchical fashion, decomposing the regression weights into R latent groups of cell types

r = {1, ..., R} (by default Cell2Location uses R = 50) accounting for linear dependencies in

spatial abundance of cell types:

µws,f =
∑
r

zs,rxr,f (7.5)

Intuitively, R can be considered as the number of cellular compartments or zones in the tissue

that are characterised by shared cell type composition. The authors observed that the sensitivity

of mapping cell types with small transcriptional difference increases when accounting for these

120

dependencies. For our purposes we are not interested in this parameter and utilise the default

for all experiments.

zs,r and xr,f are prior distributions defined to control absolute scale of the cell type abundance

estimates, guiding ws,f to the scale of the number of the abundance of cells expressing reference

cell type signature f at location s. These priors are important because there is a non-identifiability

between mg, ys, ws,f unless informative priors are constructed for each of them. Moreover, the

prior distributions help control the sparsity of how many cell types f are expected at each spot s,

facilitating application of Cell2Location to tissues and technologies with varying numbers of cells

and cell types per location. The hyperparameters controlling the ws,f prior can be estimated

from a paired histology image or a literature based estimate. The hyperparameters controlling ys

can be estimated based on total RNA counts in the input data and the quality of the experiment.

The prior distribution zs,r is defined as follows:

zs,r ∼ Gamma(
Bs

R
,

1
Ns
Bs

) (7.6)

Ns ∼ Gamma(N̂ · vn, vn) (7.7)

Bs ∼ Gamma(B̂, 1) (7.8)

where Ns is associated to the latent average number of cells in each location, and Bs is the

latent number of groups r expected in each spot s. N̂ is a user-defined estimate of the expected

number of cells per location (see end of this section). B̂ is the expected average number of

cellular components or zones per location; by default it is initialised to 7. vn denotes a prior

strength. The construction is done such that
∑

r zs,r ≥ Ns. In other words, the expectation of

the sum over zs,r equals the expected number of cells per location Ns and that on average each

location has a high value of zs,r for Bs expected cell type groups.

xr,f represents the contribution of each latent cell type group r to the abundance of each cell

type f and is Gamma distributed in the following manner:

xr,f ∼ Gamma(
Kr

R
,Kr) (7.9)

Kr ∼ Gamma(
Â

B̂
, 1) (7.10)

Kr represents the unobserved number of cell types for each group r. This prior controls the

absolute values of xr,f such that on average
∑

r xr,f = 1. Â and B̂ intuitively represent the

expected number of cell types per spot, and the expected number of cellular components per

spot respectively. By default both Â and B̂ are initialised at 7, indicating the prior belief that

the spatial abundance of each cell type f is independent from other cell types. Conversely, each

group r has have a large value of xr,f for many cell types f when Â > B̂.

121

Gene specific multiplicative scaling factor mg This is modelled as Gamma distributed

with hierarchical prior µm and αm which provide regularisation:

mg ∼ Gamma(αm,
αm

µm
) (7.11)

αm =
1

(om)2
(7.12)

om ∼ Exponential(3) (7.13)

µm ∼ Gamma(1, 1) (7.14)

The prior on detection efficiency ys per location This prior is selected to discourage over

normalisation, such that unless data has evidence of strong within-experiment variability in RNA

detection sensitivity across locations, it is assumed to be small and close to the mean sensitivity

for each experiment or batch ye:

ys ∼ Gamma(αy,
αy

ye
) (7.15)

ye ∼ Gamma(10,
10

µy
) (7.16)

where αy is a user defined hyperparameter that regularises within experiment variation; and ye

is a latent detection efficiency for each batch or experiment e. muy is estimated using observed

variables (ds,g and gf,g) and the hyperparameter N̂ in the following manner:

µy =

∑
s

∑
g

ds,g
S

N̂∑
f

∑
g
gf,g
F

(7.17)

where we remind ourselves that S is the total number of spots, and F is the total number of cell

types.

Overdispersion containment prior αe,g A containment prior [266] is used to model the

latent variance of the negative binomial distribution modelling ds,g. This prior is intended to

encourage simplicity of the NB model making it closer to the Poisson distribution (via larger

αe,g values producing bigger probability masses). Thus, the prior expresses a belief that most

genes have low overdispersion:

αe,g =
1

o2e,g
(7.18)

oe,g ∼ Exponential(βo) (7.19)

122

βo ∼ Gamma(9, 3) (7.20)

where the constants 9 and 3 correspond to values of αe,g observed in previous modelling studies

[22, 267].

Additive shift bias se,g This latent variable accounts for confounding effects on RNA counts

for every gene g for every experiment e caused by phenomena such as free-floating RNA in the

tissue sample. This additive shift is modelled using a Gamma distribution again with hierarchical

experiment specific priors αs
e and βse which provide regularisation:

se,g ∼ Gamma(αs
e,
αs
e

µse
) (7.21)

µse ∼ Gamma(1, 100) (7.22)

αs
e =

1

(oe)2
(7.23)

oe ∼ Exponential(βs) (7.24)

βs ∼ Gamma(9, 3) (7.25)

The hierarchical priors αs
e and βse model the variation across experiments e. βs serves as a

hyperparameter that allows the model to learn αs
e rather than requiring a user to define it.

This leaves Cell2Location with two hyperparameters whose values have to be considered

based on the dataset and how the spatial transcriptomics experiment was performed:

1. N̂ : the expected number of cells per spot. This is a tissue-level global estimate, which can

be derived from paired histology images (see the H&E stained image in Figure 7.1). An

estimate may be obtained by manually counting nuclei in a set of random spots using the

appropriate software from the measurement device (e.g. 10x Loupe Browser for the Visium

slides outputs). When this is not available one can also use the size of the captured regions

relative to an expected cell size.

2. αy: the regularising hyperparameter for within-experiment variation of RNA detection

sensitivity. In the default setting, it is assumed that there is little variability in the RNA

detection sensitivity so αy is set to αy = 200 which results in values of ys close to the mean

sensitivity for each experiment ye. A lower value would enforce a stronger normalisation to

the sensitivity, and a correspondingly lower regularisation toward the mean sensitivity.

7.3.1 Description of Cell2Location deconvolution pipeline

The desired cell type compositions of the spots in Cell2Location are obtained using two main

steps:

123

1. Computing cell type specific gene expression signatures using reference single-cell RNA-seq

data.

2. Using variational inference to sample latent posterior distributions for the cell type propor-

tions.

7.3.1.1 Computing reference cell type signatures

Cell type signatures are obtained by performing regularised Negative Binomial regression. The

motivation behind using this model is that it would robustly derive the reference expression values

of cell types gf,g using input data composed of different batches e = {1, ..., E} and technologies

t = {1, ..., T} that may affect the results (though for our case studies this is actually not utilised)

[22]. Here the expression count matrix J = {jc,g}, c ∈ C, g ∈ G follows a Negative Binomial

distribution with unobserved expression levels (rates) µc,g and a gene-specific over-dispersion αg:

Jc,g ∼ NB(µc,g,
1

α2
g

) (7.26)

µc,g is modelled as a linear function of the reference cell type signatures and the batch/technical

effects:

µc,g = (gf,g + be,g)hept,g (7.27)

where he is a global scaling parameter between experiments e (for example difference in sequencing

depth, or the number of times a given nucleotide has been read in an experiment [267]). pt,g

accounts for multiplicative gene-specific difference in sensitivity between technologies, be,g accounts

for additive background shift of each gene in each experiment e caused by free-floating RNA.

The priors of these variables are specified in hierarchical manner using similar constructions

as we have seen previously with Cell2Location:

gf,g ∼ Gamma(1, 1) (7.28)

he ∼ Gamma(1, 1) (7.29)

pt,g ∼ Gamma(200, 200) (7.30)

The prior on the additive shift variable be,g is specified in the same manner as se,g (Equations

7.21-7.25). The prior on αg is specified similarly to αe,g (Equations 7.18-7.20):

αg =
1

o2g
(7.31)

og ∼ Exponential(βo) (7.32)

124

βo ∼ Gamma(9, 3) (7.33)

All model parameters are constrained to be positive. A weak L2 regularisation of gf,g, be,g,

and αg is set alonside a strong penalty for deviations of he and pt,g from 1. The average for each

cell type f is used to initialise gf,g. be,g is initialised at the average expression of each gene g in

each experiment e divided by 10 [22, 267].

7.3.1.2 Inference

Stochastic variational Bayesian inference is used to approximate the posterior distributions,

enacted through Pyro [268] and its autodiff variational inference framework (ADVI). Briefly, the

latent posterior distributions of the model are approximated using univariate normal distributions

which are softplus transformed to ensure positive scaling. The parameters of the variational

distributions are chosen through minimisation of the KL divergence between the variational

approximation and the true posterior distribution. This is equivalently achieved by maximising

the evidence lower bound (ELBO objective).

After this optimisation, the posterior mean, standard deviation, 5% and 95% quantiles for

each parameter are computed using 1000 samples from the variational posterior distribution.

The mean was used for all of the results we show in the results section.

7.4 MPNN-C2L: spatially aware spatial cell deconvolution

Our methods build upon the Cell2Location pipelines, introducing relational inductive biases

enacted by different instances of the message passing neural network framework. This primarily

consists of two major additions. The first is the construction of the underlying graph that

establishes proximal relationships between each of the observations we are interested in: the spots.

The second is the augmentation of the Cell2Location generative model and the introduction of

graph neural networks into them.

7.4.1 Constructing a spatial proximity graph on the spatial RNA-seq output

As with many GRL methods, the underlying graph is an important factor behind actualising the

assumption we intend to incorporate with relational inductive biases and obtaining performance

gains [50]. However, first and foremost we explore the utilisation of proximity and the assumption

that proximal spots exhibit similar cell type compositions or specific cell type relationships

between spots. To utilise this we want a graph neural network to operate on the proximity

graph of spots after they have been selected by standard preprocessing pipelines [22, 267, 269].

Depending on the positional arrangement of spots dictated by the spatial transcriptomics

technology used — for example, hexagonal arrangement in 10x Visium slides as seen in Figure

7.2, or the grid arrangement found in our pseudo-synthetic dataset — a different number of

neighbours is specified alongside the size of the local perceptive field we want a single layer of a

GNN to operate over.

125

Figure 7.2: An example of the proximity graph computed using 6 neighbours for each spot in the
hexagonal arrangement utilised in the 10X Visium protocol for the human lymph node sample we showed
earlier. On the left is the output of the spatial transcriptomics sequencing with colouring of the spots
based on the transcript counts for the gene PTPRC. The right shows the underlying proximity graph
between each of the spots with its 6 closest neighbours.

7.4.2 MPNN-C2L

Our model is a hierarchical model which builds on Cell2Location by incorporating the proximal

relations between spots in the modelling of the cell type proportions. This is primarily enacted

through the introduction a new latent variable γs,f which represents the cell abundance for cell

type f constructed in consideration of the spots related to s. This results in a new formulation

of the expression level of genes µs,g in mRNA count space as:

µs,g =
(
mg ·

∑
f

γs,fgf,g + se,g
)
· ys (7.34)

where γs,f is Gamma distributed and dependent on ws,f :

γs,f ∼ Gamma(ψθ(ws,f), 1) (7.35)

γs,f is dependent on ws,f through a transformation ψ(·) with parameters θ. γs,f is also the

posterior variable we intend to infer. The dependence on ws,f allows our model to take advantage

of the informative priors validated in Cell2Location. A directed graphical model of the model is

provided in Figure 7.3.

Our research question asks whether the utilisation of the spatial relationships between spots

helps improve our ability to perform spatial cell type deconvolution. We answer this question

using several graph neural network models as ψ, starting with a simple graph convolutional

network [68] to validate whether homophily (enacted by feature propagation) is a useful inductive

126

Gene g

Location s

Cell type f

Co-located cell type
group r

Figure 7.3: Directed graphical model representation of our MPNN-C2L model. Following standard
directed graphical model conventions, observed variables are shaded circles whilst latent variables are
unshaded. Plates denote conditionally independent variables. Small squares denote hyperparameters with
purple squares denoting important dataset specific hyperparameters as described in Section 7.3. θ denotes
the learnable parameters of ψ.

127

bias for performance, and introducing other GNN operators to allow for more expressive use

of the available spatio-relational data with the intent to further increase the performance. A

standard fully connected multi-layer perceptron is also used as a sanity check that any change

in performance is not solely from a similarly parametrised transformation that does not utilise

related spots. In the following, we go over each rendition of ψ and motivate their use.

MLP-C2L Here ψ is modelled using a MLP model. This model does not utilise any spatial

relationships between the spots in the modelling of γs,f . Alongside Cell2Location this model

serves as controls to our hypothesis. Briefly, given input xs,f ∈ RG = ws,f ,

x′
s,f = σ

(
xs,fM + b

)
(7.36)

where M ∈ RG×G and b ∈ RG correspond to the layer’s weights and bias parameters as before,

as well as the non-linear activation function σ. We set σ to the SoftPlus function to ensure

positivity in the output.

SGC-C2L Our first novel model with relational information uses Simple Graph Convolutional

(SGC) layers [68, 69]. A simple extension of the MLP, SGC layers propagate the input node

features amongst related nodes by a multiplication of the node features with the renormalised

adjacency matrix of the proximity graph before passing the result to an MLP. More formally,

given input matrix XS,f ∈ RS×G representing latent variables ws,f , s ∈ S, the adjacency matrix

of the spot graph A, and cell type f the output X′
S,f ∈ RS×G is:

X′
S,f = σ

((
(D̃− 1

2 ÃD̃− 1
2)kX′

S,f

)
M + b

)
(7.37)

Here Ã = A + I is the adjacency matrix with self loops added in, and D̃ is the corresponding

degree matrix to Ã. Again, M ∈ RG×G and b ∈ RG correspond to the layers weights and bias

parameters as before, as well as the non-linear activation function σ. k is a layer hyperparameter

that specifies the number of times the features of X should be propagated along its neighbours

before input into the MLP. For our purposes k = 1, with multiple layers being used to enlargen

the receptive field for a nodes features. As mentioned in Chapter 2, the feature propagation

biases the representations to become more similar to each other. Thus, this simple modification

to the MLP should also encourage more homophilous latent cell type distributions amongst

related spots, and is a good initial candidate to test our hypothesis.

GATv2-C2L We increase the expressivity of ψ by utilising graph attention networks (GAT)

[71], specifically GATv2 [72] which fixes a static attention issue in the original GAT wherein the

attention coefficients were unconditioned on the query node. Intuitively, the graph attention

model computes attention coefficients that allow for a weighted aggregation of the contributions

for each neighbouring spots in the feature propagation. Unlike a constant contribution specified

by the structure of the graph as in the SGC-C2L model above, this would allow a learnable

attention mechanism to control the strength of contributions between different latent cell type

proportions. This gives us the flexibility to model our original assumption that cell types tend to

128

cluster in homophilous manners but also in conjunction with specific inter-cell type relationships

in a spot-relational manner. Briefly, given input xs = ws,f for spot s ∈ S:

x′
s,f = αs,sϕ(xs,f) +

∑
j∈N (s)

αs,jϕ(xj) (7.38)

where ϕ is a MLP with SoftPlus activation function, and the attention coefficient αs,j is defined:

αs,j =
exp

(
aTLeakyReLU([xs,f ||xj,f])

)∑
k∈{N (s)∪{s}} exp

(
aTLeakyReLU([xs,f ||xk,f]

) (7.39)

Shared parameters over the cell types f ∈ F allow the neural network to mix signals over the

different cell types. This is the case for all of the presented methods here.

Training and inference Training and inference is done through variational Bayes. Each

of the latent posterior distributions are variationally approximated using univariate normal

distributions which are softplus transformed to ensure a positive scaling. The minimisation of

the ELBO jointly trains the parameters of the model (and the parameters of ψ(·)) as well as

the variational distribution. After this optimisation, the posterior mean, standard deviation, 5%

and 95% quantiles for each parameter are computed using 1000 samples from the variational

posterior distribution. The mean was used for all of the results we show in the results section.

7.5 Experimental setup

Our primary aim is to assess whether the incorporation of spatial relationships via graph neural

networks leads to better deconvolution performance. This involves a comparative analysis of how

well each model infers the cell type composition of each spot in the tissue(s). In order to assess

these quantitatively, we utilise a synthetic dataset introduced in Cell2Location [22] — for which

we know a ’true’ cell type abundance for each spot. The construction of this dataset is detailed

extensively in the supplementary methods Section 5 of Cell2Location [22].

Briefly, this simulated ST dataset consists of 2,500 spots by sampling cells from 49 reference

cell types, using a combination of ubiquitous abundance patterns and cell types distributed

according to regional tissue zones as observed in real data [22]. Reference cell type signatures

were adapted from a mouse brain scRNA-seq dataset sequenced by Kleshchevnikov et al. [22].

The dataset reflects diverse cell abundance patterns across ubiquitous and spatially restricted

cell types, which allow us to evaluate our methods within different cell abundance scenarios, in

addition to just overall accuracy. The paired reference scRNA-seq dataset consists of 8,111 cells

exhibiting 12,080 genes whose expression is measured (recall this number is an intersection of

the set of transcripts measured in the scRNA-seq and ST experiments).

Given the raw untransformed and unnormalised count matrix J ∈ R|C|×|G| of the reference

scRNA-seq data, several preprocessing steps were taken before it is input to the NB regression

to find cell type signatures. The data is filtered at 2 cut-offs: i) selecting genes detected that

have more than 0 mRNA counts for at least 5% of the cells, and ii) selecting genes with a mean

expression greater than 1.1 and a greater than 0 mRNA count in at least 0.05% of the cells.

129

Subsequently it is given to the NB regression algorithm to infer the cell type signatures.

To infer the cell type signatures, the variational parameters of the Negative Binomial regression

model were trained with stochastic gradient descent on the ELBO objective using a batch size

of 1024 cells, and an Adam optimiser with a learning rate set at 0.001 for 500 epochs. The

posterior cell signature values were sampled 1000 times and the mean values were used. To

control and simplify comparison between the deconvolution models, the cell type signatures are

shared between each of the methods.

We now describe the specification of each of the neural network architectures in the models

described in Section 7.4.2. To simplify comparison, the hidden dimensionalities of each layer

was set to 64, and only 1 layer was used to only consider a 1-hop perceptive field for each GNN

to the hidden layer with a MLP layer to the output dimension corresponding to the number

of cell types. The number of layers (and corresponding size of perceptive field for the GNN) is

also studied separately for each model in Section 7.6. A corresponding number of MLP layers

is used in MLP-C2L in the experiments. Parameter tuning of each of the neural networks is

performed in the gradient descent minimisation of the ELBO with an Adam optimiser [194] set

at a learning rate of 0.001 for 25,000 epochs.

7.6 Results

7.6.1 Comparative analysis on synthetic data

We assess our models on the Pearson R correlation, Jensen-Shannon Divergence (JSD) and

the area under precision-recall curve (AUPRC) (macro-averaged over cell types) between the

simulated and inferred cell type proportions across all spots and cell types. We also compute

these metrics within 4 subsets of the cell types which have been designed to exhibit distinct cell

abundance patterns across the spots. In summary, we evaluate deconvolution performance for

each model over:

• ALL: All cell types

• Ubiquitious high cell abundance (UHCA): 3 cell types which have been distributed in

uniform manner across the tissue and in high abundances.

• Ubiquitious low cell abundance (ULCA): 5 cell types which have been distributed in uniform

manner across the tissue but in low abundances.

• Regional high cell abundance (RHCA): 9 cell types which have regional distribution patterns,

that is, they are clustered in specific locations and exhibit 0 abundance elsewhere. This

category exhibits those cell types with high abundance in those spots where they are

present.

• Regional low cell abundance (RLCA): 32 cell types which have regional distribution patterns

and exhibit low cell abundances.

130

Table 7.1: Average Pearson R correlation and standard deviation of 5 seeded runs of each model over all
spots. Correlation values for subcategories of cell types exhibiting distinct cell abundance patterns are also
provided. Bold numbers indicate best performing method for each category of cell types being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

C2L 0.683 ± 0.002 0.882 ± 0.001 0.519 ± 0.007 0.836 ± 0.004 0.422 ± 0.003
MLP-C2L 0.672 ± 0.024 0.866 ± 0.008 0.661 ± 0.021 0.865 ± 0.007 0.404 ± 0.04
SGC-C2L 0.699 ± 0.023 0.876 ± 0.008 0.708 ± 0.020 0.883 ± 0.006 0.439 ± 0.041
GATv2-C2L 0.737 ± 0.013 0.885 ± 0.018 0.695 ± 0.032 0.888 ± 0.004 0.492 ± 0.032

Table 7.2: Average of average Jensen-Shannon divergence (JSD) across spots along with standard
deviation of 5 seeded runs of each model. JSD values for subcategories of cell types exhibiting distinct cell
abundance patterns are also provided. Bold numbers indicate best performing method for each category
of cell types being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

C2L 0.468 ± 0.001 0.202 ± 0.002 0.496 ± 0.001 0.421 ± 0.002 0.509 ± 0.001
MLP-C2L 0.457 ± 0.006 0.230 ± 0.012 0.473 ± 0.007 0.387 ± 0.006 0.503 ± 0.009
SGC-C2L 0.446 ± 0.006 0.224 ± 0.011 0.460 ± 0.007 0.368 ± 0.005 0.493 ± 0.009
GATv2-C2L 0.435 ± 0.003 0.209 ± 0.021 0.458 ± 0.014 0.369 ± 0.001 0.482 ± 0.006

The average metric over 5 seeded runs is recorded for each model and presented with the

mean and standard deviation for each model in Tables 7.1, 7.2 and 7.3. The Pearson R correlation

is computed across every spot and cell type between the simulated and inferred cell proportions.

The average Jensen-Shannon Divergence was computed across spots, and then averaged over

the seeded runs. The true cell abundance matrix was binarised to show which cell types are

present in which locations, and then used with the inferred cell type proportions to compute the

AUPRC.

From the empirical results we can see a marked increase in performance through the utilisation

of the proximal relations across the different metrics and in different subtasks — especially for

more difficult cell type abundance patterns with low cell counts exhibited by ULCA and RLCA.

This is made most prominent through the difference in scores of the SGC-C2L to MLP-C2L which

contains the same amount of learnable parameters with the only difference being the feature

propagation between latent cell abundance variables. It is also worth noting that the inclusion of

additional parameters can also hurt performance (at least within this training regime) as shown

in the reduced Pearson R correlation of MLP-C2L and the increased variance we see in Pearson

R and average JSD for all MPNN-C2L based models.

Table 7.3: Average AUPRC scores and standard deviation of 5 seeded runs of each model over all spots.
Scores for subcategories of cell types exhibiting distinct cell abundance patterns are also provided. Bold
numbers indicate best performing method for each category of cell types being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

C2L 0.591 ± 0.003 0.932 ± 0.006 0.477 ± 0.005 0.783 ± 0.003 0.591 ± 0.003
MLP-C2L 0.675 ± 0.002 0.963 ± 0.006 0.590 ± 0.004 0.804 ± 0.004 0.675 ± 0.002
SGC-C2L 0.719 ± 0.002 0.977 ± 0.004 0.646 ± 0.006 0.861 ± 0.001 0.719 ± 0.002
GATv2-C2L 0.722 ± 0.002 0.978 ± 0.004 0.664 ± 0.004 0.858 ± 0.003 0.722 ± 0.002

131

The usefulness of the proximal relationships between cell abundance variables is further

supported by the increased performance of placing learnable attention coefficients to scale the

contributions between spots in GATv2-C2L. Overall, in 13 out of 15 metrics and subcategories

in which assessments were performed, the proposed utilisation of spatial relationships yielded

significant increases in deconvolution performance. In the two cases where C2L performed highest,

both were in UHCA, where all models typically performed very well. The effect of neighbourhood

size on performance is further studied in Appendix F.2.

7.6.2 Analysis of human lymph node sample

To explore the application of our model on “real” data as well as different tissue architectures we

applied GATv2-C2L on a human lymph node sample. The 10X Visium protocol was used to

sequence this sample and is publicly available on their data portal.2 The protocol3 on the lymph

node sample gives a histopathology image alongside the spatial transcriptomics output of 4035

spots at a resolution of about 55 microns, pictured in overlay over the H&E histopathology image

in Figure 7.1. Based on the paired histology image and information on the tissue an estimated

30 cells is measured each spot, which is used as the hyperparameter setting N̂ in the model.

As a paired scRNA-seq reference is not available, an integrated collection of scRNA-seq

datasets of lymphoid organs was used, comprising of 73,260 cells [270–272] as in Kleshchevnikov

et al. [22]. The intersection of the scRNA-seq data and ST data results in 10,217 genes, whose

expression is under consideration by the model for each spot. A reference atlas of 34 cell types

was automatically constructed using the scRNA-seq data using Seurat [273] (an automated cell

annotation algorithm for scRNA-seq data).

Histological examination (see Figure 7.4 left) shows multiple germinal centres, which are

specialised microstructures that form in secondary lymphoid tissues. These germinal centres

produce long-lived antibody secreting plasma cells and memory B cells [274]. They can be

partially characterised by the presence of follicular dendritic cells (FDC) surrounded by naive B

cells and also T cells with whom they interact. After sampling the posterior cell type abundances

in the trained GATv2-C2L model, we can map the abundances of subtypes onto the image using

the spot locations (see Figure 7.4 right). We can clearly identify clusters and expected patterning

of naive B, and T, and FDC cell types at areas containing germinal centres. The advantage of

the model compared to the histopathology images is being able to quantify the abundances of

these cell types as well in addition to their positions in a simpler approach. This can be used in

studying developmental processes such as the rapid proliferation of centroblast B cells (when

Naive B cells interact with FDC cells). Temporal modelling of these in conjunction with dynamic

graphs (Chapter 4) when the data becomes available will be a incredibly interesting insight into

modelling developmental programmes and immune processes.

Another application that can be used with the outputs of GATv2-C2L is exploring cell-cell

communication patterns. The model allows us to sample and compute the expected cell type

specific expression of every gene at every spot. In Figure 7.5, we highlight the cell type specific

expression patterns of genes CD3D and CR2. CD3D is a (pan) T-cell marker expressed 2 subtypes

2https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
3https://www.10xgenomics.com/resources/datasets/human-lymph-node-1-standard-1-1-0

132

https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Human_Lymph_Node
https://www.10xgenomics.com/resources/datasets/human-lymph-node-1-standard-1-1-0

Figure 7.4: Left picture shows the H&E stained histology image of the lymph node sample with a
zoomed in portion highlighting germinal centres. The right picture is the same histology image with
the ST spots overlayed on top. The colouring denotes spots for which GATv2-C2L predicts at least 5%
proportion of the cell abundances belonging to one of the helper T-cell, naive B, and FDC cell types, and
their intensity. We can clearly see the areas of the dark zone germinal centres exhibiting concentrations of
FDC cells, colocated with naive B cells.

Figure 7.5: Showcase of the expression rate for two genes CB3D (top row) and CR2 (bottom row) across
all spots and types (first column), and then specifc cell types as inferred by GATv2-C2L. CB3D is a pan
T-cell marker gene and hence can be seen expressed in the helper T-cell (T CD4+) populations, whilst it
is not expressed in the B cells of the germinal centre. Conversely, we can see expression of CR2 within
the B cells but not in the co-located T-cells. These expression patterns amongst colocated cells underpin
cell-cell communication events.

133

of T-cells in various distinct locations, but not expressed in co-located B cells of the germinal

centres; which can be seen in the first row. Similarly, looking at CR2 that is typically expressed

in B-cells within germinal centres, but not in surrounding T-cells is clearly modelled in the second

row of the figure. The ability to perform this inference is a crucial step to learning to predict

cell-cell communication events such as NCEM [275].

7.7 Discussion

Broadly, our proposed model framework is related to several recent methods for (spatial) cell type

deconvolution. As alluded to in the background section, this includes SPOTlight [263], RCTD

[264], stereoscope [276], SpatialDWLS [265], and of course Cell2Location [22]. In principle, each

of these methods work in the same way: through the use of reference scRNA-seq data resident

cell types can be identified and then their proportion or abundance mapped onto the observations

(spots) of the spatial transcriptomics data.

SPOTlight [263] uses cell type marker genes derived from scRNA-seq reference to seed a non-

negative matrix factorisation. RCTD [264] uses the cell-type-specific mean expression of marker

genes derived from a scRNA-seq reference to build a probabilistic model of the contribution of each

cell type to the observed gene counts in each spot. Stereoscope [276] utilises a Negative Binomial

model for estimating cell type signatures and cell type abundances similar to Cell2Location, but

with a custom parameterisation of observations based on a gene- and cell- type specific log-odds

parameter and gene-specifc total counts parameter. SpatialDWLS [265] uses cell type signature

genes derived from a scRNA-seq reference to first enrich for cell types likely to be in each spot,

then applies a dampened weighted least squares approach to infer the cell type composition.

As our hierarchical model builds upon Cell2Location, it inherits the strengths that made

Cell2Location the current state-of-the-art method for spatial cell type deconvolution, namely:

1. Accounting for difference in sensitivity between single-cell and spatial transcriptomics

technologies mg, which is not modelled in methods such as SPOTlight.

2. Accounting and modelling the similarity of locations between cell types through hierarchical

modelling of ws,f . This is unique amongst the models, and the authors of Cell2Location

attribute much of the contribution to model performance on this additional level of hierarchy

[22].

3. Cell2Location allows for the joint modelling of multiple batches and experiments. Thus

it can share the statistical strength of estimating variables such as the cell abundance

ws,f and the gene-specific sensitivity between technologies mg. The joint modelling of the

experiments also enables the direct comparison of cell abundances across experiments with

varying RNA detection sensitivity through ys

Our model differentiates itself from the existing methods by explicit modelling of related spots

γs,f . This allows us to share the observed transcriptional profiles of related spots to influence

cell type abundance estimation through a learnable function. To answer our research question

we set these relationships to be proximity based, so that we can actualise the assumption that

134

we may find clusters of similar cell types in distinct areas of the tissue and also co-locate with

particular cell types to realise micro-structures in tissues. Whilst SGC-C2L constructs a regular

structurally normalised message between each of the spots, GATv2-C2L allows for a learnable

attention mechanism to scale the influence of different spots. Thereby, it can scale the influence

of cell type abundance estimates to the construction of a neighbourhood aware cell abundance

estimate for each cell type. Strong results in synthetic dataset suggest that these inductive biases

are useful for spatial cell type deconvolution, and answer our Research Question 5 positively.

Our qualitative analyses with the human lymphnode dataset showcase the utility of our model

in different downstream applications.

7.8 Summary

We presented MPNN-C2L, a model framework for utilising relational information between spots

via message passing based neural networks. By constructing a proximity graph between spots

in the ST dataset and utilising these relations with a GNN we are able incorporate latent

cell abundance estimates in the construction of another abundance estimate that is aware of

distributions around it. This lets us utilise existing biological assumptions that cell types cluster

in groups and co-locate with other specific cell types, to realise tissue microstructures with specific

functions — such as the germinal centres within lymph nodes we looked at in this chapter. Our

comparative evaluation over a synthetic dataset suggest that utilisation of spatially related spots

does indeed improve deconvolution performance. This is made most apparent in the performance

gains seen with SGC-C2L, which uses a simple constant message passing scheme and still realises

state of the art results — thereby positively answering Research Question 5. Naturally, the

proposed frameworks allows for more complex GNNs to be utilised, and we see GATv2-C2L

further increase performance by allowing learnable attention coefficients to scale the contributions

of different prior cell abundance distributions. Qualitative analysis on a human lymph node

sample shows the model is able to identify expected populations of cell types in micro-structures

and we also showcased potential applications of our model in other downstream applications

such as cell-cell communication modelling.

135

136

CHAPTER 8

Conclusion

This thesis explored how we may use inductive biases within graph representation learning

methods to leverage the relational structures in biomedical knowledge and data to improve model

performance. We approached this research objective with contributions that can be split in two

parts.

For the first part (Chapters 2-4), we focused on studying recent graph representation learning

methods from the perspective of the underlying inductive biases incorporated within them.

This was done so that we could align the assumptions we believe to be useful for the learning

process with the mechanisms that would enact the eventual inductive bias. Special focus

was put on presenting practical frameworks which let us intuitively communicate about and

precisely define existing GRL methods such as the MPNN and SRC frameworks to describe GNN

methods (see Chapter 2), and our Geo2DR framework for methods employing distributional

inductive biases (Chapter 3). We also presented software libraries to enact these frameworks,

providing research tools to rapidly translate theory into efficient software operating on real-world

hardware. In Chapter 3, we presented Geo2DR’s associated software library which enables rapid

implementation of existing and entirely novel methods utilising distributional inductive biases to

learn graph level representations. In Chapter 4, we presented PyG-T which takes the first steps

in broadening the scope of research software for MPNN-based neural networks from static to

dynamic graph-structured data.

Building off these contributions, the second part (Chapters 5-7) of this thesis presented

novel methods employing biologically relevant relational inductive biases in different case studies.

Each of the chapters explored a different utilisation of relational structures present within

observations (Chapter 5), between features (Chapter 6), or between observations (Chapter 7).

Our motivating assumption, that biologically relevant relational priors can help neural learning

methods perform better and unlock new insights, was validated throughout with the development

and evaluation of these methods in demanding biomedical contexts. Moreover, the application of

these methods across topics such as drug pair scoring, gene expression based cancer subtyping,

and cell deconvolution for spatial transcriptomics give a glimpse into the wide applicability and

opportunities that can be further explored with the contributions of this thesis. To conclude, we

summarise our key contributions and present some avenues for future research.

137

8.1 Summaries of contribution chapters

In Chapter 3, we presented a practical framework for the construction of methods capable of

learning representations of graphs based on distributional inductive biases. The generalised

formulation under the R-convolutional framework [11] allows for the definition of existing methods

exploiting atomic substructure patterns and the distributive hypothesis [19, 20, 126] and many

more novel ones. The framework lets us identify the distributional inductive biases in these

methods and how the comparability of representations is driven by the frequencies of substructure

patterns within the graphs. An associated software package, Geo2DR was developed to enact

this framework, enabling the rapid re-implementation of existing methods for reproduction and

fairer validation of these methods across data scenarios. This successfully fills a gap in software

packages for implementing methods belonging to this family of GRL methods. Furthermore, the

generalisation through the framework allows for the trivial construction of novel methods for

learning distributed representations, as well as their integration in larger pipelines as we did in

Chapter 5.

In Chapter 4, we expanded the scope of research software for GRL from static graphs to

the class of spatio-temporal graph data with PyTorch Geometric Temporal (PyG-T). Through

characterisation of different ways in which substructures and features can change in graphs over

time, we proposed different memory efficient data structures that enable GNN based dynamic

graph representation learning at scale. We characterised several approaches to combining sequence

models and message passing inductive biases to capture salient temporal and spatial signals

within end-to-end representation learning frameworks. Accordingly, our library offers a plethora

of current and state-of-the-art models for learning on dynamic graphs. Importantly, PyG-T

also introduced a number of new datasets across application domains to improve comparative

evaluation of proposed methods as well as drive and inspire new applications. As we discuss in

our outlook (Section 8.2), this work lays a foundation upon which researchers may build methods

applicable to longitudinal healthcare data [4]. Perhaps more excitingly, our contributions also

provide a platform for building integrative methods for temporal omics when the sequencing

technologies become available [136].

In Chapter 5, we looked at representation learning methods for observations which are, or

associated with, full graphs. Using the distibutional inductive biases over discrete substructure

patterns found in the 2D molecular graphs of drugs, we constructed task-agnostic representations

of drugs and applied them in the context of drug pair scoring which has not been done before.

This choice was made under knowledge of the slow rate of change in the set of approved drugs

which makes our approach viable in practice. Our approach was also motivated by the known

limitations of existing methods for capturing distributions of higher level substructures in graphs

which are biologically and chemically relevant to the function of drugs. Improved performance

achieved through incorporation of the distributed representations into existing state-of-the-art

pipelines for drug-drug interaction, synergy, and polypharmacy prediction highlight the usefulness

of these representations. Our results prompt a reconsideration of distributional inductive biases

for graph-level representations and a need to further study pooling strategies for GNN methods.

Various instantiations of the drug representations from different drug pairing sets as well as their

138

combinations have been made publicly available to foster further study in different applications.

In Chapter 6, we looked at representation learning to utilise known relational information over

the features of observations. We presented a novel method to incorporate external structured

knowledge on the putative functional relationships of gene/gene products to construct end-to-

end differentiable predictive models over gene expression profiles. This unsupervised approach

utilises topological clustering algorithms designed to find putative protein complexes from the

topology of PPI networks to construct sparse computational graphs. This approach can be

seen as a biologically relevant form of feature selection and regularisation when compared to

fully connected MLP architectures. Importantly, we are able to successfully incorporate large

interactomics databases in the construction of predictive models. The resulting models perform

competitively, outperforming equivalently sized fully connected networks whilst maintaining

less than 0.5% of the parameters. Furthermore, the models are fully interpretable without any

hidden nodes as each node of the computational graph is associated with a biomolecular entity

or functional module (protein complex) identified by the specified clustering algorithm. Post-hoc

gene enrichment analyses show that highly influential functional modules identified in the model

are functionally related to the task, suggesting our constructions can also be used in discovery

pipelines of functional modules in target diseases.

In Chapter 7, we looked at the utilisation of relationships between observations in the

dataset during the learning process. Studying spatial transcriptomics data, we explored whether

modelling latent cell abundances, such that they are aware of positionally close cell abundance

distributions, would improve cellular deconvolution performance, which has not been explored in

this context previously. To explore this, we built on top of an existing state-of-the-art inference

model for spatial cellular deconvolution by incorporating the MPNN framework, and leveraging

a proximity based graph over the spots from the spatial transcriptomics data. Employing the

MPNN framework, we show several instantiations of the proposed model framework which

leverage underlying relationships between spots in different ways. Comparatively evaluating the

proposed methods shows that notable gains can be obtained by using simple structure based

signal propagations between related spots, and significant gains when we incorporate learnable

messages between related latent cell abundance priors. Subsequent analyses with a human

lymph node sample also show our model is able to identify expected populations of cell types in

micro-structures and we also showcase potential downstream applications.

8.2 Outlook

In this final section of the thesis we look at some future directions our contributions can take,

and a broader outlook on the role of distributional and relational inductive biases in machine

learning and biomedical informatics.

Active learning. Throughout the thesis we looked at inductive biases in neural networks

which within the context of biomedical applications generally serve to encourage certain solutions

in the hypothesis space of possible parameterisations for a model. This is largely motivated by

the desire to utilise prior knowledge in the face of problems which exhibit high dimensional input

139

representations and few samples as we saw in Chapter 6.

Another way of addressing this issue is to directly augment the dataset with informative data

points in an economic manner. Active learning (AL), or query learning [277], is a machine learning

paradigm where the aim is to develop methods, or strategies, to improve model performance in a

data-efficient manner. Intuitively, an AL strategy seeks to sample data points economically such

that the resulting model performs as well as possible under budget constraints. This is typically

achieved via an interactive process whereby the model can sequentially query samples based on

current knowledge and expected information gain. Many notions in AL can be related to research

in Bayesian optimisation [278] and reinforcement learning [279], as all aim to strategically explore

some space while optimising a given criterion. Recently, there has been renewed interest in AL

to address various real-world applications [280, 281]. Notably, applications to medicine and drug

research have been growing in number, in both academic and industrial settings [216, 282–285].

A crucial quantity for active learning strategies is the quantification of informativeness for

an observation, a value which indicates the estimated utility of adding this observation to the

dataset. Model uncertainty is commonly used as an informativeness measure for unlabelled

observations. Recently, methods have been proposed to utilise relations for the computation of

the informativeness score and aid the AL process especially in conjunction with GNNs [286–288].

Our proposed frameworks through Chapters 3 and 4 make it easier to explore these applications

in the contexts of distributed representations and spatio-temporal graphs. It is a promising

avenue of research with large potential impact, particularly in the field of drug discovery where

we often find “Lab-in-the-loop” systems aiming to efficiently improve their datasets and models.

To help with this front we have also developed PyRelationAL [32], as a flexible platform for

constructing bespoke active learning strategies and pipelines, which is readily compatible with

models constructed using the libraries in Chapters 3 and 4. Exploring how we may utilise

relational structures in different aspects of the data as presented in Chapters 5-7 is relatively

unexplored and offers many opportunities for new research and results.

Integrative biomedical machine learning. In the introduction of this thesis we have

described how advancements in our understanding of biology alongside informatics and engineering

have led to an explosion of data streams in recent years. The growing ability to measure and

analyse different streams of biomolecular data motivates a refocus on integration and trying

to see life processes as unified systems and their environments. The refocus on integration has

been particularly strong in biomedical research and precision medicine under the principle that

no single data source can capture the complexity of all the factors relevant to understanding

phenomena such as disease [221, 222, 289]. This directly motivates research and development

of machine learning methods capable of incorporating data streams of different modalities and

structures.

The contributions of this thesis are relevant in multiple respects to this regard. The frame-

works for graph-level representation learning presented in Chapters 2 and 3 (and applied in

Chapter 5) present approaches for constructing vector representations of phenomena whose raw

representations are graphs. As the differentiable paradigm of neural networks makes it trivial

to construct larger neural networks composed of other neural networks, having frameworks for

140

neural graph representation learning make it trivial to incorporate graph observations alongside

existing neural methods for popular medical modalities such as text (e.g. sequence models) and

images (e.g. CNNs) alongside standard feature vectors [26, 28, 221].

A side effect of constructing large integrative models is the increased number of parameters

and model complexity which imposes a growing hypothesis space for solutions. This leads to

a propensity for overfitting, particularly in data sparse applications such as biomedicine. This

undesirable effect grows larger the more inputs are used, hence motivating the re-introduction of

manual and automated feature selection methods, regularisation methods, and other inductive

biases. Whilst pruning methods such as the Lottery Ticket Hypothesis [290] allow for the

discovery of equally-performant subnetworks within fully connected networks, methods such as

GINCCo presented in Chapter 6, allow us to incorporate relational information between features

to enact biologically relevant priors over the features. Extending this methodology to other data

contexts and modalities offers promising avenues for increased performance and explainability.

Finally, it is often the case that observations can be related to each other. Whether it is

spatially as in the spots we saw in Chapter 7, or in other contexts such as familial relationships

between patients, these relations allow graph neural networks to construct context specific

messages and improved representations between related entities. Chapter 2 distilled methods that

can be utilised to do this for static graphs and Chapter 4 extended this ability to dynamic graphs.

Neural representation learning methods for dynamic graphs have already shown significant

promise where we may model data with dynamic graphs, such as patient outcome prediction in

the ICU with patient graphs [4]. We believe continued development in dynamic graph modelling

will become increasingly important as we improve the technologies to observe biomolecular

entities over time [136], and eventually realise the modelling of physiological phenomena both

spatially and temporally.

141

142

References

[1] Arthur Lesk. Introduction to Bioinformatics. Oxford University Press, Oxford, New York,

fifth edition edition, July 2019.

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[3] Thijs Kooi, Geert Litjens, Bram van Ginneken, Albert Gubern-Mérida, Clara I. Sánchez,

Ritse Mann, Ard den Heeten, and Nico Karssemeijer. Large scale deep learning for computer

aided detection of mammographic lesions. Medical Image Analysis, 35:303–312, January

2017.

[4] Catherine Tong, Emma Rocheteau, Petar Veličković, Nicholas Lane, and Pietro Liò.

Predicting Patient Outcomes with Graph Representation Learning. In Arash Shaban-

Nejad, Martin Michalowski, and Simone Bianco, editors, AI for Disease Surveillance and

Pandemic Intelligence: Intelligent Disease Detection in Action, Studies in Computational

Intelligence, pages 281–293. Springer International Publishing, Cham, 2022.

[5] Hui Liu, Wenhao Zhang, Bo Zou, Jinxian Wang, Yuanyuan Deng, and Lei Deng. Drug-

CombDB: a comprehensive database of drug combinations toward the discovery of combi-

natorial therapy. Nucleic Acids Research, 48(D1):D871–D881, January 2020.

[6] Bulat Zagidullin, Jehad Aldahdooh, Shuyu Zheng, Wenyu Wang, Yinyin Wang, Joseph

Saad, Alina Malyutina, Mohieddin Jafari, Ziaurrehman Tanoli, Alberto Pessia, and Jing

Tang. DrugComb: an integrative cancer drug combination data portal. Nucleic Acids

Research, 47(W1):W43–W51, 05 2019.

[7] Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Deep learning improves prediction of

drug-drug and drug-food interactions. Proceedings of the National Academy of Sciences,

115(18):E4304–E4311, 2018.

[8] Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime

Huerta-Cepas, Milan Simonovic, Nadezhda T. Doncheva, John H. Morris, Peer Bork, Lars J.

Jensen, and Christian von Mering. String v11: protein-protein association networks with

increased coverage, supporting functional discovery in genome-wide experimental datasets.

Nucleic acids research, 47(D1):D607–D613, Jan 2019.

[9] Gary D. Bader and Christopher WV Hogue. An automated method for finding molecular

143

complexes in large protein interaction networks. BMC Bioinformatics, 4(1):2–3, January

2003.

[10] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,

J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig,

Midori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis,

John C. Matese, Joel E. Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin

Sherlock. Gene ontology: tool for the unification of biology. Nature Genetics, 25(1):25–29,

May 2000.

[11] David Haussler. Convolution kernels on discrete structures. Technical report, University of

California at Santa Cruz, Santa Cruz, CA, USA, 1999.

[12] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.

Neural message passing for quantum chemistry. In Proceedings of the 34th International

Conference on Machine Learning - Volume 70, ICML’17, page 1263–1272. JMLR.org, 2017.

[13] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan

Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl,

Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,

Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan

Pascanu. Relational inductive biases, deep learning, and graph networks, October 2018.

arXiv:1806.01261 [cs, stat].

[14] Matthias Fey. On the power of message passing for learning on graph-structured data. PhD

thesis, Technical University of Dortmund, Germany, 2022.

[15] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch

Geometric. In ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds,

2019.

[16] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,

Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao,

Jinyang Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient

and scalable deep learning on graphs. ICLR Workshop on Representation Learning on

Graphs and Manifolds, 2019.

[17] Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia Li,

Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. Jraph: A library for

graph neural networks in jax. Software available on: https://github.com/deepmind/jraph,

2020.

[18] Daniele Grattarola and Cesare Alippi. Graph Neural Networks in TensorFlow and Keras

with Spektral, June 2020. arXiv:2006.12138 [cs, stat].

144

[19] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen,

Yang Liu, and Shantanu Jaiswal. graph2vec: Learning Distributed Representations of

Graphs, July 2017. arXiv:1707.05005 [cs].

[20] Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In Jennifer Dy and

Andreas Krause, editors, Proceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning Research, pages 2191–2200,

Stockholmsmässan, Stockholm Sweden, 2018. PMLR.

[21] Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD’15, pages 1365–1374, New York, NY, USA, 2015. ACM.

[22] Vitalii Kleshchevnikov, Artem Shmatko, Emma Dann, Alexander Aivazidis, Hamish W.

King, Tong Li, Rasa Elmentaite, Artem Lomakin, Veronika Kedlian, Adam Gayoso,

Mika Sarkin Jain, Jun Sung Park, Lauma Ramona, Elizabeth Tuck, Anna Arutyunyan,

Roser Vento-Tormo, Moritz Gerstung, Louisa James, Oliver Stegle, and Omer Ali Bayraktar.

Cell2location maps fine-grained cell types in spatial transcriptomics. Nature Biotechnology,

40(5):661–671, May 2022. Number: 5 Publisher: Nature Publishing Group.

[23] Paul Scherer and Pietro Liò. Learning Distributed Representations of Graphs with Geo2DR.

In ICML Graph Representation Learning and Beyond Workshop (ICML’20), 2020.

[24] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,

Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzmán López, Nicolas Collignon, and Rik

Sarkar. PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural

Machine Learning Models. In Proceedings of the 30th ACM International Conference on

Information & Knowledge Management, CIKM ’21, pages 4564–4573, New York, NY, USA,

October 2021. Association for Computing Machinery.

[25] Paul Scherer, Pietro Liò, and Mateja Jamnik. Distributed Representations of Graphs for

Drug Pair Scoring. In Proceedings of the First Learning on Graphs Conference, pages

22:1–22:17. PMLR, December 2022. ISSN: 2640-3498.

[26] Paul Scherer, Maja Trȩbacz, Nikola Simidjievski, Ramon Viñas, Zohreh Shams, Helena An-

dres Terre, Mateja Jamnik, and Pietro Liò. Unsupervised construction of computational

graphs for gene expression data with explicit structural inductive biases. Bioinformatics,

38(5):1320–1327, March 2022.

[27] Ramon Viñas, Paul Scherer, Nikola Simidjievski, Mateja Jamnik, and Pietro Liò.

Spatio-relational inductive biases in spatial cell-type deconvolution, May 2023. Pages:

2023.05.19.541474 Section: New Results.

[28] Nikola Simidjievski, Cristian Bodnar, Ifrah Tariq, Paul Scherer, Helena Andres Terre,

Zohreh Shams, Mateja Jamnik, and Pietro Liò. Variational Autoencoders for Cancer Data

Integration: Design Principles and Computational Practice. Frontiers in Genetics, 10,

2019.

145

[29] Benedek Rozemberczki, Paul Scherer, Oliver Kiss, Rik Sarkar, and Tamas Ferenci. Chick-

enpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal Signal Processing with

Graph Neural Networks. In WWW’21 Graph Learning Benchmarks Workshop, 2021.

[30] Maja Trȩbacz, Zohreh Shams, Mateja Jamnik, Paul Scherer, Nikola Simidjievski, He-

lena Andres Terre, and Pietro Liò. Using ontology embeddings for structural inductive bias

in gene expression data analysis. In Machine Learning in Computational Biology (MLCB)

meeting, 2020.

[31] Zohreh Shams, Botty Dimanov, Sumaiyah Kola, Nikola Simidjievski, Helena Andres Terre,

Paul Scherer, Urška Matjašec, Jean Abraham, Pietro Liò, and Mateja Jamnik. REM: An

Integrative Rule Extraction Methodology for Explainable Data Analysis in Healthcare.

bioRxiv, 2021. preprint.

[32] Paul Scherer, Thomas Gaudelet, Alison Pouplin, Alice Del Vecchio, Suraj M. S,

Oliver Bolton, Jyothish Soman, Jake P. Taylor-King, and Lindsay Edwards. PyRela-

tionAL: a python library for active learning research and development, February 2023.

arXiv:2205.11117 [cs].

[33] Yana Lishkova, Paul Scherer, Steffen Ridderbusch, Mateja Jamnik, Pietro Liò, Sina Ober-

Blöbaum, and Christian Offen. Discrete Lagrangian Neural Networks with Automatic

Symmetry Discovery. IFAC-PapersOnLine, 56(2):3203–3210, January 2023.

[34] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[35] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[36] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review

and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence,

35(8):1798–1828, August 2013.

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations

by back-propagating errors. Nature, 323:533, Oct 1986.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural

Information Processing Systems, pages 8024–8035, 2019.

[39] James Bradbury and Roy Frostig and Peter Hawkins and Matthew James Johnson and Chris

Leary and Dougal Maclaurin and George Necula and Adam Paszke and Jake VanderPlas

and Skye Wanderman-Milne and Qiao Zhang. JAX: Composable Transformations of

Python+NumPy Programs. Software available on: https://github.com/google/jax, 2018.

146

[40] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya

Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. Software available from tensorflow.org.

[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. Conference

Name: Proceedings of the IEEE.

[42] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[43] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex.

The Journal of Physiology, 148(3):574–591, 1959.

[44] Tom M. Mitchell. The need for biases in learning generalizations. Technical report, Rutgers

University, 1980.

[45] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition. Neural

Computation, 1(4):541–551, December 1989. Conference Name: Neural Computation.

[46] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Visualization. Distill,

2(11):e7, November 2017.

[47] R.H. Petrucci, F.G. Herring, J.D. Madura, and C. Bissonnette. General Chemistry:

Principles and Modern Applications. Pearson Education, 2017.

[48] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan,

Alex J. Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels.

Bioinformatics, 21(1):47–56, 2005.

[49] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection of

android malware using embedded call graphs. In Proceedings of the 2013 ACM Workshop

on Artificial Intelligence and Security, AISec’13, pages 45–54, New York, NY, USA, 2013.

ACM.

[50] William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 14(3):1–159, 2020.

[51] Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps and Spectral Techniques for

Embedding and Clustering. In T. Dietterich, S. Becker, and Z. Ghahramani, editors,

Advances in Neural Information Processing Systems, volume 14, pages 585–591. MIT Press,

2001.

147

[52] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexan-

der J. Smola. Distributed large-scale natural graph factorization. In Proceedings of the

22nd International Conference on World Wide Web, WWW ’13, page 37–48, New York,

NY, USA, 2013. Association for Computing Machinery.

[53] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with

global structural information. In Proceedings of the 24th ACM International on Conference

on Information and Knowledge Management, CIKM ’15, page 891–900, New York, NY,

USA, 2015. Association for Computing Machinery.

[54] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity

preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’16, page 1105–1114, New

York, NY, USA, 2016. Association for Computing Machinery.

[55] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD’14, pages 701–710, New York, NY, USA,

2014. ACM.

[56] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD’16, pages 855–864, New York, NY, USA, 2016. ACM.

[57] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954.

[58] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word rep-

resentations in vector space. In 1st International Conference on Learning Representations,

ICLR 2013, Workshop Track Proceedings, 2013.

[59] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents.

In Proceedings of the 31st International Conference on Machine Learning, pages 1188–1196.

PMLR, June 2014. ISSN: 1938-7228.

[60] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. Metapath2vec: Scalable repre-

sentation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’17, page

135–144, New York, NY, USA, 2017. Association for Computing Machinery.

[61] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee Koh, and

Sungchul Kim. Continuous-time dynamic network embeddings. In Companion Proceedings

of the The Web Conference 2018, WWW ’18, page 969–976, Republic and Canton of

Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee.

[62] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and

Karsten M. Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12:2539–

2561, 2011.

148

[63] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph

neural networks? In International Conference on Learning Representations, ICLR’19, 2019.

[64] Xiaojin Zhu. Semi-supervised Learning with Graphs. PhD thesis, Carnegie Mellon University,

Pittsburgh, PA, USA, 2005. AAI3179046.

[65] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with

label propagation. Technical report, Cambridge University, 2002.

[66] Jan Motl and Oliver Schulte. The CTU Prague Relational Learning Repository, November

2015. arXiv:1511.03086 [cs].

[67] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In Proceedings of the 5th International Conference on Learning Representations,

ICLR’17, 2017.

[68] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.

Simplifying Graph Convolutional Networks. In Proceedings of the 36th International

Conference on Machine Learning, pages 6861–6871. PMLR, May 2019. ISSN: 2640-3498.

[69] Paul Scherer, Helena Andres-Terre, Pietro Lio, and Mateja Jamnik. Decoupling feature

propagation from the design of graph auto-encoders, October 2019. arXiv:1910.08589 [cs,

stat].

[70] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on

large graphs. In Proceedings of the 31st International Conference on Neural Information

Processing Systems, NeurIPS’17, pages 1025–1035, USA, 2017. Curran Associates Inc.

[71] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,

and Yoshua Bengio. Graph Attention Networks. International Conference on Learning

Representations, 2018.

[72] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?

In International Conference on Learning Representations, 2022.

[73] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[74] H. Bunke and G. Allermann. Inexact graph matching for structural pattern recognition.

Pattern Recognition Letters, 1(4):245 – 253, 1983.

[75] M. Neuhaus and H. Bunke. Self-organizing maps for learning the edit costs in graph

matching. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

35(3):503–514, June 2005.

[76] Risi Kondor and Karsten M. Borgwardt. The skew spectrum of graphs. In Proceedings of

the 25th International Conference on Machine Learning, ICML’08, pages 496–503, New

York, NY, USA, 2008. ACM.

149

[77] Risi Kondor, Nino Shervashidze, and Karsten M. Borgwardt. The graphlet spectrum. In

ACM International Conference Proceeding Series, volume 382, page 67, 01 2009.

[78] Tamás Horváth, Thomas Gärtner, and Stefan Wrobel. Cyclic pattern kernels for predictive

graph mining. In Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD’04, pages 158–167, New York, NY, USA,

2004. ACM.

[79] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borg-

wardt. Efficient graphlet kernels for large graph comparison. In David van Dyk and

Max Welling, editors, Proceedings of the Twelth International Conference on Artificial

Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages

488–495, Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 2009. PMLR.

[80] Nino Shervashidze and Karsten M. Borgwardt. Fast subtree kernels on graphs. In

Proceedings of the 22Nd International Conference on Neural Information Processing Systems,

NeurIPS’09, pages 1660–1668, USA, 2009. Curran Associates Inc.

[81] Jan Ramon and Thomas Gärtner. Expressivity versus efficiency of graph kernels. In

Proceedings of the First International Workshop on Mining Graphs, Trees and Sequences,

pages 65–74, 2003.

[82] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In

Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM’05, pages

74–81, Washington, DC, USA, 2005. IEEE Computer Society.

[83] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between la-

beled graphs. In Proceedings of the Twentieth International Conference on International

Conference on Machine Learning, ICML’03, pages 321–328. AAAI Press, 2003.

[84] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt.

Graph kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

[85] Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Under-

standing pooling in graph neural networks. IEEE Transactions on Neural Networks and

Learning Systems, pages 1–11, 2022.

[86] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and

Jure Leskovec. Hierarchical graph representation learning with differentiable pooling.

In Proceedings of the 32nd International Conference on Neural Information Processing

Systems, NeurIPS’18, pages 4805–4815, USA, 2018. Curran Associates Inc.

[87] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral Clustering with

Graph Neural Networks for Graph Pooling, December 2020. arXiv:1907.00481 [cs, stat].

[88] Davide Bacciu and Luigi Di Sotto. A Non-negative Factorization Approach to Node

Pooling in Graph Convolutional Neural Networks. In Mario Alviano, Gianluigi Greco,

150

and Francesco Scarcello, editors, AI*IA 2019 – Advances in Artificial Intelligence, Lecture

Notes in Computer Science, pages 294–306, Cham, 2019. Springer International Publishing.

[89] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted Graph Cuts without

Eigenvectors A Multilevel Approach. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(11):1944–1957, November 2007. Conference Name: IEEE Transactions on

Pattern Analysis and Machine Intelligence.

[90] G. Karypis. METIS : Unstructured graph partitioning and sparse matrix ordering system.

Technical Report, 1997.

[91] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards

Sparse Hierarchical Graph Classifiers, November 2018.

[92] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-Attention Graph Pooling, June 2019.

arXiv:1904.08082 [cs, stat].

[93] David Buterez, Jon Paul Janet, Steven J. Kiddle, Dino Oglic, and Pietro Liò. Graph

Neural Networks with Adaptive Readouts. In Advances in Neural Information Processing

Systems, volume 35, pages 19746–19758. Curran Associates, Inc., December 2022.

[94] Enxhell Luzhnica, Ben Day, and Pietro Liò. On Graph Classification Networks, Datasets

and Baselines, May 2019. arXiv:1905.04682 [cs, stat].

[95] Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph neural

networks. In Advances in Neural Information Processing Systems, volume 33, pages

2220–2231. Curran Associates, Inc., 2020.

[96] Shyam Tailor. Practical processing and acceleration of graph neural networks. PhD thesis,

University of Cambridge, 2022.

[97] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[98] N. Eghbal. Working in Public: The Making and Maintenance of Open Source Software.

Stripe Matter Incorporated, 2020.

[99] Benedek Rózemberczki. Graph mining on static, multiplex and attributed networks. PhD

thesis, The University of Edinburgh, 2021.

[100] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,

dynamics, and function using NetworkX. In Gaël Varoquaux, Travis Vaught, and Jarrod

Millman, editors, Proceedings of the 7th Python in Science Conference, pages 11–15, 2008.

[101] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network

research. InterJournal, Complex Systems:1695, 2006.

151

[102] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An Open Source

Software for Exploring and Manipulating Networks. Proceedings of the International AAAI

Conference on Web and Social Media, 3(1):361–362, March 2009. Section: Demonstration

Papers.

[103] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented

Open-source Python Framework for Unsupervised Learning on Graphs. In Proceedings of

the 29th ACM International Conference on Information & Knowledge Management, pages

3125–3132, 2020.

[104] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large

Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, pages 45–50, Valletta, Malta, 2010. ELRA.

[105] Jure Leskovec and Rok Sosič. SNAP: A General-Purpose Network Analysis and Graph-

Mining Library. ACM Transactions on Intelligent Systems and Technology, 8(1):1:1–1:20,

July 2016.

[106] Tiago de Paula Peixoto. graph-tool: An efficient python module for manipulation and

statistical analysis of graphs. Software package available on http://graph-tool.skewed.de,

2014.

[107] Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit: A tool suite

for large-scale complex network analysis. Network Science, 4(4):508–530, 2016.

[108] Giulio Rossetti, Ewout ter Hoeven, Utku Norman, Diego Jorquera, Hanga

Dormán, and Michael Dorner. Dynetx: v0.3.2. Software package available on:

https://github.com/GiulioRossetti/dynetx, June 2023.

[109] Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph

classification, May 2022. arXiv:1811.03508 [cs, stat].

[110] Rossetti G., Milli L., Rinzivillo S., Sirbu A., Giannotti F., and Pedreschi D. Ndlib: a python

library to model and analyze diffusion processes over complex networks. International

Journal of Data Science and Analytics (Online), 5:61–79, 2018.

[111] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Little Ball of Fur: A Python Library for

Graph Sampling. In Proceedings of the 29th ACM International Conference on Information

and Knowledge Management (CIKM ’20), page 3133–3140. ACM, 2020.

[112] Mahito Sugiyama, M. Elisabetta Ghisu, Felipe Llinares-López, and Karsten Borgwardt.

graphkernels: R and python packages for graph comparison. Bioinformatics, 34(3):530–532,

2017.

[113] Cunchao Tu, Yuan Yao, Zhengyan Zhang, Ganqu Cui, Hao Wang, Changxin Tian, Jie Zhou,

and Cheng Yang. OpenNE: An Open Source Toolkit for Network Embedding. Software

available on https://github.com/thunlp/OpenNE, 2018.

152

https://github.com/thunlp/OpenNE

[114] Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li.

OpenKE: An open toolkit for knowledge embedding. In Eduardo Blanco and Wei Lu,

editors, Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations, pages 139–144, Brussels, Belgium, November 2018.

Association for Computational Linguistics.

[115] Alibaba. Euler: A distributed graph deep learning framework. Software package available

on: https://github.com/alibaba/euler, December 2023.

[116] Mara, Alexandru-Cristian. EvalNE : a framework for evaluating network embeddings on

link prediction. In Dekemele, Kevin, editor, Proceedings of 19th FEA Research Symposium,

page 1. Ghent University, 2019.

[117] Giulio Rossetti, Letizia Milli, and Rémy Cazabet. Cdlib: a python library to extract,

compare and evaluate communities from complex networks. Applied Network Science,

4(1):52, Jul 2019.

[118] Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Rè, and Kevin Murphy.

Machine learning on graphs: A model and comprehensive taxonomy. Journal of Machine

Learning Research, 23(89):1–64, 2022.

[119] Linlin Jia, Benoit Gaüzère, and Paul Honeine. Graph kernels based on linear patterns:

Theoretical and experimental comparisons. Expert Systems with Applications, 189:116095,

March 2022.

[120] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos

Skianis, and Michalis Vazirgiannis. GraKeL: A Graph Kernel Library in Python. Journal

of Machine Learning Research, 21(54):1–5, 2020.

[121] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and perfor-

mance: A survey. Knowledge-Based Systems, 151:78 – 94, 2018.

[122] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345,

June 1962.

[123] Stephen Warshall. A Theorem on Boolean Matrices. Journal of the ACM, 9(1):11–12,

January 1962.

[124] P. Z. Ingerman. Algorithm 141: Path matrix. Communications of the ACM, 5(11):556–564,

November 1962.

[125] B. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an algebra

arising during this reduction. Nauchno-Technicheskaya Informatsia, 9(9):12–16, 1968.

[126] Pinar Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD’15, pages 1365–1374, New York, NY, USA, 2015. ACM.

153

[127] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors

for word representation. In Empirical Methods in Natural Language Processing (EMNLP),

pages 1532–1543, 2014.

[128] Yoav Goldberg and Omer Levy. word2vec Explained: deriving Mikolov et al.’s negative-

sampling word-embedding method, February 2014. arXiv:1402.3722 [cs, stat].

[129] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann.

Benchmark data sets for graph kernels, 2016. Datasets available at http://graphkernels.

cs.tu-dortmund.de.

[130] Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman,

and Corwin Hansch. Structure-activity relationship of mutagenic aromatic and heteroaro-

matic nitro compounds. correlation with molecular orbital energies and hydrophobicity.

Journal of Medicinal Chemistry, 34(2):786–797, Feb 1991.

[131] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[132] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter

Forsyth, and Pascal Poupart. Representation learning for dynamic graphs: A survey.

Journal of Machine Learning Research, 21(70):1–73, 2020.

[133] Teresa M Przytycka, Mona Singh, and Donna K Slonim. Toward the dynamic interactome:

it’s about time. Briefings in Bioinformatics., 11(1):15–29, January 2010.

[134] Ratana Thanasomboon, Saowalak Kalapanulak, Supatcharee Netrphan, and Treenut

Saithong. Exploring dynamic protein-protein interactions in cassava through the integrative

interactome network. Scientific Reports, 10(1):6510–6525, Apr 2020.

[135] Vivien Marx. Method of the year: spatially resolved transcriptomics. Nature Methods,

18(1):9–14, Jan 2021.

[136] Wanze Chen, Orane Guillaume-Gentil, Pernille Yde Rainer, Christoph G. Gäbelein, Wouter

Saelens, Vincent Gardeux, Amanda Klaeger, Riccardo Dainese, Magda Zachara, Tomaso

Zambelli, Julia A. Vorholt, and Bart Deplancke. Live-seq enables temporal transcriptomic

recording of single cells. Nature, 608(7924):733–740, Aug 2022.

[137] Alessio Micheli and Domenico Tortorella. Discrete-time dynamic graph echo state networks.

Neurocomputing, 496:85–95, 2022.

[138] Yin Yu, Xinyuan Jiang, Daning Huang, and Yan Li. PIDGeuN: Graph Neural Network-

Enabled Transient Dynamics Prediction of Networked Microgrids Through Full-Field

Measurement, April 2022. arXiv:2204.08557 [cs, eess].

154

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

[139] Harshith Mohan Kumar, Vishruth Veerendranath, Vibha Masti, Divya Shekar, and Bhaskar-

jyoti Das. Graphcoreg: Co-training for regression on temporal graphs. In 18th International

Workshop on Mining and Learning with Graphs, 2022.

[140] Haitao Lin, Zhangyang Gao, Yongjie Xu, Lirong Wu, Ling Li, and Stan Z. Li. Conditional

local convolution for spatio-temporal meteorological forecasting. Proceedings of the AAAI

Conference on Artificial Intelligence, 36(7):7470–7478, Jun. 2022.

[141] Dogan Altan, Mohammad Etemad, Dusica Marijan, and Tetyana Kholodna. Discovering

Gateway Ports in Maritime Using Temporal Graph Neural Network Port Classification,

April 2022. arXiv:2204.11855 [cs].

[142] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jig-

nesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical

challenges. Communications of the ACM, 57(7):86–94, July 2014.

[143] Hirotugu Akaike. Fitting autoregressive models for prediction. Annals of the Institute of

Statistical Mathematics, 21(1):243–247, Dec 1969.

[144] L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE ASSP Magazine,

3(1):4–16, 1986.

[145] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural computation,

9(8):1735–1780, 1997.

[146] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–

1734, Doha, Qatar, Oct 2014. Association for Computational Linguistics.

[147] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 30, pages 6000–6010. Curran

Associates, Inc., 2017.

[148] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured

Sequence Modeling with Graph Convolutional Recurrent Networks. In Long Cheng, Andrew

Chi Sing Leung, and Seiichi Ozawa, editors, Neural Information Processing, Lecture Notes

in Computer Science, pages 362–373, Cham, 2018. Springer International Publishing.

[149] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural

networks on graphs with fast localized spectral filtering. In Proceedings of the 30th

International Conference on Neural Information Processing Systems, NIPS’16, pages 3844–

3852, Red Hook, NY, USA, December 2016. Curran Associates Inc.

155

[150] Apurva Narayan and Peter H. Roe. Learning graph dynamics using deep neural networks.

IFAC-PapersOnLine, 51:433–438, 2018.

[151] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Convolutional

Neural Networks for Graphs. In Proceedings of The 33rd International Conference on

Machine Learning, Proceedings of Machine Learning Research, pages 2014–2023. PMLR,

2016.

[152] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional

networks. Pattern Recognition, 97:107000, January 2020.

[153] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural

representation learning on dynamic graphs via self-attention networks. In Proceedings of

the 13th International Conference on Web Search and Data Mining, WSDM ’20, pages

519—-527, New York, NY, USA, 2020. Association for Computing Machinery.

[154] Jinyin Chen, Xueke Wang, and Xuanheng Xu. GC-LSTM: graph convolution embedded

LSTM for dynamic network link prediction. Applied Intelligence, 52(7):7513–7528, May

2022.

[155] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. Advances in Neural

Information Processing Systems, 32:8026–8037, 2019.

[156] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing

Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning

Library for Heterogeneous Distributed Systems, December 2015. arXiv:1512.01274 [cs].

[157] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu, Hengrui

Zhang, Xingcheng Yao, Aohan Zeng, Shiguang Guo, Yuxiao Dong, Yang Yang, Peng

Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, and Jie Tang. CogDL: A

Comprehensive Library for Graph Deep Learning, April 2023. arXiv:2103.00959 [cs, stat].

[158] Jun Hu, Shengsheng Qian, Quan Fang, Youze Wang, Quan Zhao, Huaiwen Zhang, and

Changsheng Xu. Efficient Graph Deep Learning in TensorFlow with tf geometric. In

Proceedings of the 29th ACM International Conference on Multimedia, MM ’21, pages

3775–3778, New York, NY, USA, October 2021. Association for Computing Machinery.

[159] CSIRO’s Data61. StellarGraph Machine Learning Library. Software available on: https:

//github.com/stellargraph/stellargraph, 2018.

[160] Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George Karypis. Learning Graph

Neural Networks with Deep Graph Library. In Companion Proceedings of the Web Confer-

ence 2020, WWW ’20, page 305–306, 2020.

156

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

[161] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu,

Zhao Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora Oztekin, Xuan

Zhang, and Shuiwang Ji. DIG: A Turnkey Library for Diving into Graph Deep Learning

Research, October 2021. arXiv:2103.12608 [cs].

[162] Hongxia Yang. AliGraph: A Comprehensive Graph Neural Network Platform. In Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 3165–3166, 2019.

[163] Palash Goyal, Sujit Rokka Chhetri, Ninareh Mehrabi, Emilio Ferrara, and Arquimedes

Canedo. DynamicGEM: A Library for Dynamic Graph Embedding Methods, November

2018. arXiv:1811.10734 [cs, stat].

[164] Palash Goyal and Emilio Ferrara. Gem: A python package for graph embedding methods.

Journal of Open Source Software, 3(29):876, 2018.

[165] Michael A Whitby, Rich Fecher, and Chris Bennight. GeoWave: Utilizing Distributed

Key-Value Stores for Multidimensional Data. In International Symposium on Spatial and

Temporal Databases, pages 105–122. Springer, 2017.

[166] M. Hanson. The Open-source software ecosystem for leveraging public datasets in Spatio-

Temporal Asset Catalogs (STAC). In AGU Fall Meeting Abstracts, volume 2019, pages

IN23B–07, December 2019.

[167] Esteban Zimányi, Mahmoud Sakr, and Arthur Lesuisse. MobilityDB: A Mobility Database

Based on PostgreSQL and PostGIS. ACM Transactions on Database Systems (TODS),

45(4):1–42, 2020.

[168] Emanuele Rob. PySTAC: Python library for working with any SpatioTemporal Asset

Catalog (STAC). Software available on: https://github.com/stac-utils/pystac, 2020.

[169] Edzer Pebesma. staRs: Spatiotemporal Arrays: Raster and Vector Datacubes. Software

available on: https://github.com/r-spatial/stars, 2017.

[170] Paul Taylor, Christopher Harris, Thompson Comer, and Mark Harris. CUDA-Accelerated

GIS and Spatiotemporal Algorithms. Software available on: https://github.com/

rapidsai/cuspatial, 2019.

[171] Sergio J Rey and Luc Anselin. PySAL: A Python Library of Spatial Analytical Methods.

In Handbook of Applied Spatial Analysis, pages 175–193. Springer, 2010.

[172] Sean Anderson, Eric Ward, Lewis Barnett, and Philippina English. sdmTMB: Spatial

and spatiotemporal GLMMs with TMB. Software available on: https://github.com/

pbs-assess/sdmTMB, 2018.

[173] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural

network: Data-driven traffic forecasting. In 6th International Conference on Learning

157

https://github.com/stac-utils/pystac
https://github.com/r-spatial/stars
https://github.com/rapidsai/cuspatial
https://github.com/rapidsai/cuspatial
https://github.com/pbs-assess/sdmTMB
https://github.com/pbs-assess/sdmTMB

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference

Track Proceedings. OpenReview.net, 2018.

[174] Aynaz Taheri and Tanya Berger-Wolf. Predictive Temporal Embedding of Dynamic Graphs.

In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social

Networks Analysis and Mining, pages 57–64, 2019.

[175] Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. Learning to represent the evolution

of dynamic graphs with recurrent models. In Companion Proceedings of The 2019 World

Wide Web Conference, WWW ’19, page 301–307, 2019.

[176] Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia Pan.

Predicting Path Failure in Time-Evolving Graphs. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1279–1289, 2019.

[177] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki

Kanezashi, Tim Kaler, Tao B Schardl, and Charles E Leiserson. EvolveGCN: Evolving

Graph Convolutional Networks for Dynamic Graphs. In AAAI, pages 5363–5370, 2020.

[178] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng

Li. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE

Transactions on Intelligent Transportation Systems, 21(9):3848–3858, 2019.

[179] Jiandong Bai, Jiawei Zhu, Yujiao Song, Ling Zhao, Zhixiang Hou, Ronghua Du, and

Haifeng Li. A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic

Forecasting. ISPRS International Journal of Geo-Information, 10(7):485, July 2021.

Number: 7 Publisher: Multidisciplinary Digital Publishing Institute.

[180] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional

recurrent network for traffic forecasting. In Proceedings of the 34th International Conference

on Neural Information Processing Systems, NIPS’20, pages 17804–17815, Red Hook, NY,

USA, December 2020. Curran Associates Inc.

[181] George Panagopoulos, Giannis Nikolentzos, and Michalis Vazirgiannis. Transfer Graph

Neural Networks for Pandemic Forecasting. Proceedings of the AAAI Conference on

Artificial Intelligence, 35(6):4838–4845, May 2021.

[182] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-Temporal Graph Convolutional Networks:

a Deep Learning Framework for Traffic Forecasting. In Proceedings of the 27th International

Joint Conference on Artificial Intelligence, pages 3634–3640, 2018.

[183] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention Based

Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 922–929,

2019.

158

[184] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. GMAN: A Graph

Multi-Attention Network for Traffic Prediction. Proceedings of the AAAI Conference on

Artificial Intelligence, 34(01):1234–1241, April 2020. Number: 01.

[185] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang.

Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pages 753–763, 2020.

[186] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Two-Stream Adaptive Graph Convo-

lutional Networks for Skeleton-Based Action Recognition. In 2019 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 12018–12027, June 2019.

ISSN: 2575-7075.

[187] Le Yu, Leilei Sun, Bowen Du, Chuanren Liu, Hui Xiong, and Weifeng Lv. Predicting

Temporal Sets with Deep Neural Networks. In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1083–1091, 2020.

[188] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A. Benczúr. Temporal Walk Based

Centrality Metric for Graph Streams. Applied Network Science, 3(32):26, 2018.

[189] Ferenc Béres, Domokos M. Kelen, Róbert Pálovics, and András A. Benczúr. Node

Embeddings in Dynamic Graphs. Applied Network Science, 4(64):25, 2019.

[190] H.B. Maynard, G.J. Stegemerten, and J.L. Schwab. Methods Time Measurement. Literary

Licensing, LLC, 2012.

[191] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung, Chuo-

Ling Chang, and Matthias Grundmann. MediaPipe Hands: On-device Real-time Hand

Tracking, June 2020. arXiv:2006.10214 [cs].

[192] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on International Conference

on Machine Learning, ICML’10, page 807–814, Madison, WI, USA, 2010. Omnipress.

[193] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal

of Machine Learning Research, 15(1):1929–1958, 2014.

[194] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January

2017. arXiv:1412.6980 [cs].

[195] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-

Purpose GPU Programming. Addison-Wesley Professional, 2010.

[196] Benedek Rozemberczki, Stephen Bonner, Andriy Nikolov, Michaël Ughetto, Sebastian

Nilsson, and Eliseo Papa. A unified view of relational deep learning for drug pair scoring.

In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,

159

IJCAI-22, pages 5564–5571. International Joint Conferences on Artificial Intelligence

Organization, 2022.

[197] Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G. Nourse. Reop-

timization of mdl keys for use in drug discovery. Journal of Chemical Information and

Computer Sciences, 42(6):1273–1280, November 2002.

[198] Alice Capecchi, Daniel Probst, and Jean-Louis Reymond. One molecular fingerprint to rule

them all: drugs, biomolecules, and the metabolome. Journal of Cheminformatics, 12(1):43,

June 2020.

[199] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep

Learning: Grids, Groups, Graphs, Geodesics, and Gauges, May 2021. arXiv:2104.13478 [cs,

stat].

[200] Olivier J. Wouters, Martin McKee, and Jeroen Luyten. Estimated Research and De-

velopment Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA,

323(9):844–853, 03 2020.

[201] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude

Liu, Jeremy B R Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin,

Tom L Blundell, Michael M Bronstein, and Jake P Taylor-King. Utilizing graph machine

learning within drug discovery and development. Briefings in Bioinformatics, 22(6):bbab159,

November 2021.

[202] David Weininger. SMILES, a chemical language and information system. 1. Introduction to

methodology and encoding rules. Journal of Chemical Information and Computer Sciences,

28(1):31–36, February 1988. Publisher: American Chemical Society.

[203] Stephen R. Heller, Alan McNaught, Igor Pletnev, Stephen Stein, and Dmitrii Tchekhovskoi.

InChI, the IUPAC International Chemical Identifier. Journal of Cheminformatics, 7(1):23,

May 2015.

[204] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-

Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timo-

thy D. Hirzel, Ryan P. Adams, and Alán Aspuru-Guzik. Automatic Chemical Design Using

a Data-Driven Continuous Representation of Molecules. ACS Central Science, 4(2):268–276,

February 2018. Publisher: American Chemical Society.

[205] Noel O’Boyle and Andrew Dalke. DeepSMILES: An Adaptation of SMILES for Use in

Machine-Learning of Chemical Structures, September 2018.

[206] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-

Guzik. Self-referencing embedded strings (SELFIES): A 100% robust molecular string

representation. Machine Learning: Science and Technology, 1(4):045024, October 2020.

Publisher: IOP Publishing.

160

[207] H. L. Morgan. The generation of a unique machine description for chemical structures-a

technique developed at chemical abstracts service. Journal of Chemical Documentation,

5(2):107–113, May 1965.

[208] Roćıo Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist,

Hongming Chen, and Esben Jannik Bjerrum. Graph networks for molecular design.

Machine Learning: Science and Technology, 2(2):025023, March 2021. Publisher: IOP

Publishing.

[209] Mengying Sun, Fei Wang, Olivier Elemento, and Jiayu Zhou. Structure-based drug-drug

interaction detection via expressive graph convolutional networks and deep sets (student

abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34(10):13927–

13928, April 2020.

[210] Jinxian Wang, Xuejun Liu, Siyuan Shen, Lei Deng, and Hui Liu. DeepDDS: deep graph

neural network with attention mechanism to predict synergistic drug combinations. Briefings

in Bioinformatics, 23(1):bbab390, January 2022.

[211] Qijin Yin, Xusheng Cao, Rui Fan, Qiao Liu, Rui Jiang, and Wanwen Zeng. DeepDrug: A

general graph-based deep learning framework for drug-drug interactions and drug-target

interactions prediction. bioRxiv, 2022. Publisher: Cold Spring Harbor Laboratory eprint:

https://www.biorxiv.org/content/early/2022/04/12/2020.11.09.375626.full.pdf.

[212] Kristina Preuer, Richard P I Lewis, Sepp Hochreiter, Andreas Bender, Krishna C Bulusu,

and Günter Klambauer. DeepSynergy: predicting anti-cancer drug synergy with Deep

Learning. Bioinformatics, 34(9):1538–1546, 12 2017.

[213] Halil Ibrahim Kuru, Oznur Tastan, and A. Ercument Cicek. Matchmaker: A deep learning

framework for drug synergy prediction. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 19(4):2334–2344, 2022.

[214] Shuyu Zheng, Jehad Aldahdooh, Tolou Shadbahr, Yinyin Wang, Dalal Aldahdooh, Jie Bao,

Wenyu Wang, and Jing Tang. DrugComb update: a more comprehensive drug sensitivity

data repository and analysis portal. Nucleic Acids Research, 49(W1):W174–W184, 06 2021.

[215] Nicholas P. Tatonetti, Patrick P. Ye, Roxana Daneshjou, and Russ B. Altman. Data-Driven

Prediction of Drug Effects and Interactions. Science Translational Medicine, 4(125):125ra31–

125ra31, March 2012. Publisher: American Association for the Advancement of Science.

[216] Paul Bertin, Jarrid Rector-Brooks, Deepak Sharma, Thomas Gaudelet, Andrew Anighoro,

Torsten Gross, Francisco Mart́ınez-Peña, Eileen L. Tang, M. S. Suraj, Cristian Regep,

Jeremy B. R. Hayter, Maksym Korablyov, Nicholas Valiante, Almer van der Sloot, Mike

Tyers, Charles E. S. Roberts, Michael M. Bronstein, Luke L. Lairson, Jake P. Taylor-King,

and Yoshua Bengio. RECOVER identifies synergistic drug combinations in vitro through

sequential model optimization. Cell Reports Methods, 3(10):1–41, October 2023.

161

[217] Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan,

Yangtian Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-

Pascal Xhonneux, Meng Qu, and Jian Tang. TorchDrug: A Powerful and Flexible Machine

Learning Platform for Drug Discovery, February 2022. arXiv:2202.08320 [cs].

[218] Greg Landrum. RDKit. Software available on: https://github.com/rdkit/rdkit, December

2023.

[219] Benedek Rozemberczki, Charles Tapley Hoyt, Anna Gogleva, Piotr Grabowski, Klas Karis,

Andrej Lamov, Andriy Nikolov, Sebastian Nilsson, Michael Ughetto, Yu Wang, Tyler Derr,

and Benjamin M. Gyori. Chemicalx: A deep learning library for drug pair scoring. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, KDD ’22, page 3819–3828, New York, NY, USA, 2022. Association for Computing

Machinery.

[220] Jorge S Reis-Filho and Lajos Pusztai. Gene expression profiling in breast cancer: classifica-

tion, prognostication, and prediction. The Lancet, 378(9805):1812–1823, 2011.

[221] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark

DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. A

guide to deep learning in healthcare. Nature Medicine, 25(1):24–29, 2019.

[222] Marinka Zitnik, Francis Nguyen, Bo Wang, Jure Leskovec, Anna Goldenberg, and Michael M

Hoffman. Machine learning for integrating data in biology and medicine: principles, practice,

and opportunities. Information Fusion, 50:71–91, 2019.

[223] Francis Dutil, Joseph Paul Cohen, Martin Weiss, Georgy Derevyanko, and Yoshua Bengio.

Towards gene expression convolutions using gene interaction graphs. In International

Conference on Machine Learning (ICML) Workshop on Computational Biology (WCB),

2018.

[224] Mika Gustafsson, Michael Hornquist, and Anna Lombardi. Constructing and analyzing a

large-scale gene-to-gene regulatory network lasso-constrained inference and biological valida-

tion. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2(3):254–261,

2005.

[225] Gavin C. Cawley and Nicola L. C. Talbot. Gene selection in cancer classification using

sparse logistic regression with Bayesian regularization. Bioinformatics, 22(19):2348–2355,

July 2006.

[226] Wei Zhang, Jeremy Chien, Jeongsik Yong, and Rui Kuang. Network-based machine learning

and graph theory algorithms for precision oncology. npj Precision Oncology, 1(1):1–15,

August 2017. Number: 1 Publisher: Nature Publishing Group.

[227] Md Altaf-Ul-Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa, and Shigehiko Kanaya.

Development and implementation of an algorithm for detection of protein complexes in

large interaction networks. BMC Bioinformatics, 7(1):207, April 2006.

162

[228] Christina Curtis, Sohrab P Shah, Suet-Feung Chin, Gulisa Turashvili, Oscar M Rueda,

Mark J Dunning, Doug Speed, Andy G Lynch, Shamith Samarajiwa, and Yinyin et al.

Yuan. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel

subgroups. Nature, 486(7403):346–352, 2012.

[229] Aleix Prat, Joel S. Parker, Olga Karginova, Cheng Fan, Chad Livasy, Jason I. Herschkowitz,

Xiaping He, and Charles M. Perou. Phenotypic and molecular characterization of the

claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5):R68–R82,

September 2010.

[230] Michael C. Rendleman, John M. Buatti, Terry A. Braun, Brian J. Smith, Chibuzo Nwakama,

Reinhard R. Beichel, Bart Brown, and Thomas L. Casavant. Machine learning with the

tcga-hnsc dataset: improving usability by addressing inconsistency, sparsity, and high-

dimensionality. BMC Bioinformatics, 20(1):339, June 2019.

[231] Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck

squamous cell carcinomas. Nature, 517(7536):576–582, January 2015.

[232] Caiyan Li and Hongzhe Li. Network-constrained regularization and variable selection for

analysis of genomic data. Bioinformatics, 24(9):1175–1182, March 2008.

[233] Min Wu, Xiaoli Li, Chee-Keong Kwoh, and See-Kiong Ng. A core-attachment based method

to detect protein complexes in PPI networks. BMC Bioinformatics, 10(1):169–185, June

2009.

[234] Min Li, Jian-er Chen, Jian-xin Wang, Bin Hu, and Gang Chen. Modifying the DPClus

algorithm for identifying protein complexes based on new topological structures. BMC

Bioinformatics, 9(1):398, September 2008.

[235] Christian von Mering, Lars J. Jensen, Berend Snel, Sean D. Hooper, Markus Krupp,

Mathilde Foglierini, Nelly Jouffre, Martijn A. Huynen, and Peer Bork. STRING: known

and predicted protein–protein associations, integrated and transferred across organisms.

Nucleic Acids Research, 33(1):D433–D437, January 2005.

[236] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics, pages 249–256. JMLR Workshop and Conference Proceedings,

March 2010. ISSN: 1938-7228.

[237] Alessio Benavoli, Giorgio Corani, Janez Demšar, and Marco Zaffalon. Time for a change:

A tutorial for comparing multiple classifiers through bayesian analysis. Journal of Machine

Learning Research, 18(1):2653—-2688, January 2017.

[238] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep

Networks. In Proceedings of the 34th International Conference on Machine Learning, pages

3319–3328. PMLR, July 2017. ISSN: 2640-3498.

163

[239] Nikolaus Fortelny and Christoph Bock. Knowledge-primed neural networks enable bi-

ologically interpretable deep learning on single-cell sequencing data. Genome Biology,

21(1):190–226, August 2020.

[240] Jie Hao, Youngsoon Kim, Tae-Kyung Kim, and Mingon Kang. PASNet: pathway-associated

sparse deep neural network for prognosis prediction from high-throughput data. BMC

Bioinformatics, 19(1):510–523, December 2018.

[241] Haitham A. Elmarakeby, Justin Hwang, Rand Arafeh, Jett Crowdis, Sydney Gang, David

Liu, Saud H. AlDubayan, Keyan Salari, Steven Kregel, Camden Richter, Taylor E. Arnoff,

Jihye Park, William C. Hahn, and Eliezer M. Van Allen. Biologically informed deep neural

network for prostate cancer discovery. Nature, 598(7880):348–352, October 2021. Number:

7880 Publisher: Nature Publishing Group.

[242] Zena M. Hira and Duncan F. Gillies. A Review of Feature Selection and Feature Extraction

Methods Applied on Microarray Data. Advances in Bioinformatics, 2015:e198363–e198376,

June 2015. Publisher: Hindawi.

[243] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene Selection for

Cancer Classification using Support Vector Machines. Machine Learning, 46(1):389–422,

January 2002.

[244] Shuangge Ma, Xiao Song, and Jian Huang. Supervised group Lasso with applications to

microarray data analysis. BMC Bioinformatics, 8(1):60, February 2007.

[245] Wenwen Min, Juan Liu, and Shihua Zhang. Network-regularized sparse logistic regression

models for clinical risk prediction and biomarker discovery. IEEE/ACM Transactions in

Computational Biology and Bioinformatics, 15(3):944—-953, May 2018.

[246] Lenore Cowen, Trey Ideker, Benjamin J. Raphael, and Roded Sharan. Network propagation:

a universal amplifier of genetic associations. Nature Reviews Genetics, 18(9):551–562,

September 2017.

[247] Sungmin Rhee, Seokjun Seo, and Sun Kim. Hybrid approach of relation network and

localized graph convolutional filtering for breast cancer subtype classification. In Proceed-

ings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, page

3527–3534. AAAI Press, 2018.

[248] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu,

Peter Battaglia, and Timothy Lillicrap. A simple neural network module for relational

reasoning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages

4967–4976. Curran Associates, Inc., 2017.

[249] Hryhorii Chereda, Annalen Bleckmann, Frank Kramer, Andreas Leha, and Tim Beissbarth.

Utilizing Molecular Network Information via Graph Convolutional Neural Networks to

164

Predict Metastatic Event in Breast Cancer. In German Medical Data Sciences: Shaping

Change – Creative Solutions for Innovative Medicine, pages 181–186. IOS Press, 2019.

[250] Mohammad Hashir, Paul Bertin, Martin Weiss, Vincent Frappier, Theodore J. Perkins,

Geneviève Boucher, and Joseph Paul Cohen. Is graph-based feature selection of genes

better than random?, December 2019. arXiv:1910.09600 [cs, q-bio].

[251] Paul Bertin, Mohammad Hashir, Martin Weiss, Vincent Frappier, Theodore J. Perkins,

Geneviève Boucher, and Joseph Paul Cohen. Analysis of Gene Interaction Graphs as Prior

Knowledge for Machine Learning Models, January 2020. arXiv:1905.02295 [cs, q-bio].

[252] Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical

Implications, March 2021. arXiv:2006.05205 [cs, stat].

[253] Giovanni Solinas, Cristian Vilcu, Jaap G. Neels, Gautam K. Bandyopadhyay, Jun-Li Luo,

Willscott Naugler, Sergei Grivennikov, Anthony Wynshaw-Boris, Miriam Scadeng, Jer-

rold M. Olefsky, and Michael Karin. JNK1 in Hematopoietically Derived Cells Contributes

to Diet-Induced Inflammation and Insulin Resistance without Affecting Obesity. Cell

Metabolism, 6(5):386–397, November 2007. Publisher: Elsevier.

[254] Kepeng Wang, Sergei I. Grivennikov, and Michael Karin. Implications of anti-cytokine

therapy in colorectal cancer and autoimmune diseases. Annals of the Rheumatic Dis-

eases, December 2012. Publisher: BMJ Publishing Group Ltd Section: Clinical and

epidemiological research.

[255] Spiros A Vlahopoulos, Osman Cen, Nina Hengen, James Agan, Maria Moschovi, Elena

Critselis, Maria Adamaki, Flora Bacopoulou, John A Copland, Istvan Boldogh, Michael

Karin, and George P Chrousos. Dynamic aberrant NF-κB spurs tumorigenesis: a new

model encompassing the microenvironment. Cytokine Growth Factor Rev., 26(4):389–403,

August 2015.

[256] Patrik L. St̊ahl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro,

Jens Magnusson, Stefania Giacomello, Michaela Asp, Jakub O. Westholm, Mikael Huss,

Annelie Mollbrink, Sten Linnarsson, Simone Codeluppi, Åke Borg, Fredrik Pontén, Paul Igor

Costea, Pelin Sahlén, Jan Mulder, Olaf Bergmann, Joakim Lundeberg, and Jonas Frisén.

Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.

Science, 353(6294):78–82, 2016.

[257] Samuel G. Rodriques, Robert R. Stickels, Aleksandrina Goeva, Carly A. Martin, Evan

Murray, Charles R. Vanderburg, Joshua Welch, Linlin M. Chen, Fei Chen, and Evan Z.

Macosko. Slide-seq: A scalable technology for measuring genome-wide expression at high

spatial resolution. Science, 363(6434):1463–1467, 2019.

[258] F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. SCANPY: large-scale single-cell

gene expression data analysis. Genome Biology, 19(1):15, February 2018.

165

[259] Eva Gracia Villacampa, Ludvig Larsson, Reza Mirzazadeh, Linda Kvastad, Alma Anders-

son, Annelie Mollbrink, Georgia Kokaraki, Vanessa Monteil, Niklas Schultz, Karin Sofia

Appelberg, Nuria Montserrat, Haibo Zhang, Josef M. Penninger, Wolfgang Miesbach,

Ali Mirazimi, Joseph Carlson, and Joakim Lundeberg. Genome-wide spatial expression

profiling in formalin-fixed tissues. Cell Genomics, 1(3):100065–100089, December 2021.

[260] Anchal Sharma, Elise Merritt, Xiaoju Hu, Angelique Cruz, Chuan Jiang, Halle Sarkodie,

Zhan Zhou, Jyoti Malhotra, Gregory M Riedlinger, and Subhajyoti De. Non-genetic

intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing

evolutionary dynamics in lung tumors. Cell reports, 29(8):2164–2174, November 2019.

[261] Shona Hendry, Roberto Salgado, Thomas Gevaert, Prudence A Russell, Tom John, Bibhusal

Thapa, Michael Christie, Koen Van De Vijver, M Valeria Estrada, Paula I Gonzalez-Ericsson,

et al. Assessing tumor infiltrating lymphocytes in solid tumors: A practical review for

pathologists and proposal for a standardized method from the international immuno-

oncology biomarkers working group: Part 1: Assessing the host immune response, tils in

invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and

areas for further research. Advances in anatomic pathology, 24(5):235, 2017.

[262] Fathi Elloumi, Zhiyuan Hu, Yan Li, Joel S Parker, Margaret L Gulley, Keith D Amos,

and Melissa A Troester. Systematic bias in genomic classification due to contaminating

non-neoplastic tissue in breast tumor samples. BMC medical genomics, 4(1):1–12, 2011.

[263] Marc Elosua-Bayes, Paula Nieto, Elisabetta Mereu, Ivo Gut, and Holger Heyn. SPOT-

light: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell

transcriptomes. Nucleic Acids Research, 49(9):e50–e50, February 2021.

[264] Dylan M. Cable, Evan Murray, Luli S. Zou, Aleksandrina Goeva, Evan Z. Macosko, Fei

Chen, and Rafael A. Irizarry. Robust decomposition of cell type mixtures in spatial

transcriptomics. Nature Biotechnology, 40(4):517–526, April 2022.

[265] Rui Dong and Guo-Cheng Yuan. SpatialDWLS: accurate deconvolution of spatial tran-

scriptomic data. Genome Biology, 22(1):145–155, May 2021.

[266] Daniel Simpson, H̊avard Rue, Andrea Riebler, Thiago G. Martins, and Sigrunn H. Sørbye.

Penalising Model Component Complexity: A Principled, Practical Approach to Construct-

ing Priors. Statistical Science, 32(1):1 – 28, 2017.

[267] Romain Lopez, Jeffrey Regier, Michael B. Cole, Michael I. Jordan, and Nir Yosef. Deep

generative modeling for single-cell transcriptomics. Nature Methods, 15(12):1053–1058,

December 2018.

[268] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,

Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.

Pyro: deep universal probabilistic programming. The Journal of Machine Learning Research,

20(1):973–978, January 2019.

166

[269] Lukas Heumos, Anna C. Schaar, Christopher Lance, Anastasia Litinetskaya, Felix Drost,

Luke Zappia, Malte D. Lücken, Daniel C. Strobl, Juan Henao, Fabiola Curion, Herbert B.

Schiller, and Fabian J. Theis. Best practices for single-cell analysis across modalities.

Nature Reviews Genetics, 24(8):550–572, August 2023. Number: 8 Publisher: Nature

Publishing Group.

[270] Kylie R. James, Tomas Gomes, Rasa Elmentaite, Nitin Kumar, Emily L. Gulliver,

Hamish W. King, Mark D. Stares, Bethany R. Bareham, John R. Ferdinand, Velislava N.

Petrova, Krzysztof Polański, Samuel C. Forster, Lorna B. Jarvis, Ondrej Suchanek, Sarah

Howlett, Louisa K. James, Joanne L. Jones, Kerstin B. Meyer, Menna R. Clatworthy,

Kourosh Saeb-Parsy, Trevor D. Lawley, and Sarah A. Teichmann. Distinct microbial and

immune niches of the human colon. Nature Immunology, 21(3):343–353, March 2020.

[271] Jong-Eun Park, Rachel A. Botting, Cecilia Domı́nguez Conde, Dorin-Mirel Popescu, Marieke

Lavaert, Daniel J. Kunz, Issac Goh, Emily Stephenson, Roberta Ragazzini, Elizabeth Tuck,

Anna Wilbrey-Clark, Kenny Roberts, Veronika R. Kedlian, John R. Ferdinand, Xiaoling

He, Simone Webb, Daniel Maunder, Niels Vandamme, Krishnaa T. Mahbubani, Krzysztof

Polanski, Lira Mamanova, Liam Bolt, David Crossland, Fabrizio de Rita, Andrew Fuller,

Andrew Filby, Gary Reynolds, David Dixon, Kourosh Saeb-Parsy, Steven Lisgo, Deborah

Henderson, Roser Vento-Tormo, Omer A. Bayraktar, Roger A. Barker, Kerstin B. Meyer,

Yvan Saeys, Paola Bonfanti, Sam Behjati, Menna R. Clatworthy, Tom Taghon, Muzlifah

Haniffa, and Sarah A. Teichmann. A cell atlas of human thymic development defines T cell

repertoire formation. Science, 367(6480):eaay3224, February 2020. Publisher: American

Association for the Advancement of Science.

[272] Hamish W. King, Nara Orban, John C. Riches, Andrew J. Clear, Gary Warnes, Sarah A. Te-

ichmann, and Louisa K. James. Single-cell analysis of human b cell maturation predicts how

antibody class switching shapes selection dynamics. Science Immunology, 6(56):eabe6291,

2021.

[273] Rahul Satija, Jeffrey A. Farrell, David Gennert, Alexander F. Schier, and Aviv Regev.

Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 33(5):495–

502, May 2015.

[274] Gabriel D. Victora and Michel C. Nussenzweig. Germinal centers. Annual Review of

Immunology, 40(1):413–442, 2022.

[275] David S. Fischer, Anna C. Schaar, and Fabian J. Theis. Modeling intercellular communica-

tion in tissues using spatial graphs of cells. Nature Biotechnology, 41(3):332–336, March

2023.

[276] Alma Andersson, Joseph Bergenstr̊ahle, Michaela Asp, Ludvig Bergenstr̊ahle, Aleksandra

Jurek, José Fernández Navarro, and Joakim Lundeberg. Single-cell and spatial transcrip-

tomics enables probabilistic inference of cell type topography. Communications Biology,

3(1):565, October 2020.

167

[277] Burr Settles. Uncertainty sampling. In Active Learning, Synthesis Lectures on Artificial

Intelligence and Machine Learning, pages 11–21. Morgan & Claypool Publishers, 2012.

[278] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Optimization

of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical

Reinforcement Learning, December 2010. arXiv:1012.2599 [cs].

[279] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[280] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta,

Xiaojiang Chen, and Xin Wang. A survey of deep active learning. ACM Computing Surveys

(CSUR), 54(9):1–40, 2021.

[281] Xueying Zhan, Huan Liu, Qing Li, and Antoni B. Chan. A comparative survey: Bench-

marking for pool-based active learning. In Zhi-Hua Zhou, editor, Proceedings of the

Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 4679–

4686. International Joint Conferences on Artificial Intelligence Organization, 8 2021. Survey

Track.

[282] Justin S Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and Adrian E Roitberg.

Less is more: Sampling chemical space with active learning. The Journal of Chemical

Physics, 148(24):241733, 2018.

[283] Mohammed Abdelwahab and Carlos Busso. Active learning for speech emotion recognition

using deep neural network. In 2019 8th International Conference on Affective Computing

and Intelligent Interaction (ACII), pages 1–7. IEEE, 2019.

[284] Brian Hie, Bryan D Bryson, and Bonnie Berger. Leveraging uncertainty in machine learning

accelerates biological discovery and design. Cell Systems, 11(5):461–477, 2020.

[285] Arash Mehrjou, Ashkan Soleymani, Andrew Jesson, Pascal Notin, Yarin Gal, Stefan Bauer,

and Patrick Schwab. GeneDisco: A Benchmark for Experimental Design in Drug Discovery,

October 2021. arXiv:2110.11875 [cs, stat].

[286] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan, Zhi

Yang, and Bin Cui. Information Gain Propagation: a new way to Graph Active Learning

with Soft Labels, March 2022. arXiv:2203.01093 [cs].

[287] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan,

Zhi Yang, and Bin CUI. RIM: Reliable Influence-based Active Learning on Graphs. In

Advances in Neural Information Processing Systems, volume 34, pages 27978–27990. Curran

Associates, Inc., 2021.

[288] Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, and Bin Cui.

GRAIN: improving data efficiency of graph neural networks via diversified influence

maximization. Proceedings of the VLDB Endowment, 14(11):2473–2482, July 2021.

168

[289] David Gomez-Cabrero, Imad Abugessaisa, Dieter Maier, Andrew Teschendorff, Matthias

Merkenschlager, Andreas Gisel, Esteban Ballestar, Erik Bongcam-Rudloff, Ana Conesa,

and Jesper Tegnér. Data integration in the era of omics: current and future challenges.

BMC Systems Biology, 8(2):I1, March 2014.

[290] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks, March 2019. arXiv:1803.03635 [cs].

[291] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation

ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November

1999.

[292] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets.

Cambridge University Press, 2 edition, 2014.

[293] Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for

chemical compound retrieval and classification. Knowledge and Information Systems,

14(3):347–375, March 2008.

[294] Remco R. Bouckaert and Eibe Frank. Evaluating the replicability of significance tests

for comparing learning algorithms. In Honghua Dai, Ramakrishnan Srikant, and Chengqi

Zhang, editors, Advances in Knowledge Discovery and Data Mining, pages 3–12, Berlin,

Heidelberg, 2004. Springer Berlin Heidelberg.

[295] Claude Nadeau and Yoshua Bengio. Inference for the Generalization Error. In Advances in

Neural Information Processing Systems, volume 12, pages 307–3013. MIT Press, 1999.

169

170

APPENDIX A

Graph statistics and deterministic

quantification of node similarities

As stated in Chapter 2, crucial to machine learning on graphs, especially for substructure level

learning, is the quantification of node similarities. We will start by considering some statistical

measures of neighbourhood overlap to quantify the degree to which two nodes are related. Perhaps

the simplest measure of this is to simply count the number of shared neighbours:

S(u, v) = |N (u)
⋂
N (v)| (A.1)

where we use S(u, v) to denote the value quantifying the relationship between nodes u and v. For

a graph with n nodes, let S ∈ Rn×n denote the similarity matrix summarising all the pairwise

node similarities such that Su,v = S(u, v). Given a neighbourhood overlap statistic Su,v we

can perform a task such as link prediction by assuming that the likelihood of an edge (u, v) is

proportional to Su,v:

P (Au,v = 1) ∝ Su,v (A.2)

This principle can be extended a little further into useful local overlap measures, which

are simply functions of the number of common neighbours two nodes share. For example, the

Sorensen index defines a matrix SSorensen ∈ Rn×n of node-node neighbourhood overlaps

SSorensen(u, v) =
2|N (u)

⋂
N (v)|

du + dv
(A.3)

where du and dv denote the degrees of nodes u and v respectively. This measure normalises

the count of common neighbours we saw in Equation A.1 by the sum of the node degrees.

This normalisation helps reduce bias towards predicting edges on nodes of high degrees in link

prediction tasks. Of course, various variations of this notion are possible such as the Salton index

SSalton(u, v) =
2|N (u)

⋂
N (v)|√

dudv
(A.4)

and the Jaccard overlap

171

SJaccard(u, v) =
|N (u)

⋂
N (v)|

|N (u)
⋃
N (v)|

(A.5)

We may extend this again by considering the relative importance of common neighbours in

some manner. For example, the Resource Allocation (RA) index counts the inverse degrees of

the common neighbours:

SRA(u, v) =
∑

j∈{N (u)
⋂

N (v)}

1

dj
(A.6)

and the popular Adamic-Adar (AA) index computes a similar metric using the inverse logarithm

of the degrees

SAA(u, v) =
∑

j∈{N (u)
⋂

N (v)}

1

log(dj)
(A.7)

Both these measures give more weight to common neighbours that have low degrees, with the

intuition that a shared low-degree neighbour is more informative than a shared high degree node.

I hope the reader notices the role of the assumption and the mechanising inductive bias here.

Despite their seemingly simple implementations such local overlap measures are effective, yielding

competitive performance even against modern deep learning approaches for substructure-level

prediction tasks [55].

However, these measures have limitations in that they only consider their immediate local

node neighbourhoods. For instance, we may want to relate two nodes that do not have a local

overlap but are still part of the same community in the graph. Global overlap statistics, such as

the Katz index and random walk methods, can allevitate this issue. The Katz index is computed

by counting the number of paths of all lengths between a pair of nodes:

SKatz(u, v) =
∞∑
i=1

βiAi
u,v (A.8)

where β ∈ R+ is a user-defined hyperparameter controlling how much weight is given to short

and long paths. Smaller values, β ≤ 1 would down-weigh long paths. The geometric series of

matrices in the Katz index can be solved to have the following equation.

SKatz = (I− βA)−1 − I (A.9)

where SKatz ∈ Rn×n is a full matrix of node-node similarity values.

Rather than requiring the exact paths over a graph, we can create global similarity measures

using random paths. For example, we can utilise a variant of the PageRank algorithm [291],

known as personalized PageRank [292] which defines a stochastic matrix P = AD−1 and compute:

qu(v) = cPqu + (1− c)eu (A.10)

where eu is a one hot indicator vector for node u and qu(v) gives the stationary probability

that a random walk starting at node u visits node v. The c term determines the probability

172

that the random walk restarts at node u at each timestep. Without this restart probability,

the random walk probabilities will simply converge to a normalised variant of the eigenvector

centrality. However, with the restart probability we instead obtain a measure of importance

specific to the node u, since the random walks are continually being restarted to the node. The

solution to this recurrence is given by

qu = (1− c)(I− cP)−1eu (A.11)

and we can define the node-node random walk similarity as

SRW(u, v) = qu(v) = qv(u) (A.12)

The local- and global- overlap statistics we have covered thus far are useful for a variety of

tasks. However, they are limited due to the fact that they cannot adapt through a learning process.

Furthermore, we still have not obtained a feature vector representation for the substructures.

Both these limitations have led to the development of methods using distributional inductive

biases and the graph neural networks we utilise throughout the thesis.

173

174

APPENDIX B

R-Convolutional graph kernels

B.1 Subgraph based graph kernels

A graphletG is an induced1 and non-isomorphic subgraph of size k [77]. Let Vk = {G1, G2, ..., Gnk
}

be the set of size k graphlets where nk is the number of unique graphlets of size k. Given two

unlabelled graphs G and G′, the graphlet kernel is defined as follows:

Kgraphlet(G,G′) =
〈
fG , fG

′〉
(B.1)

where fG and fG
′

are vectors of normalised counts of the graphlet frequencies occurring as

subgraphs of G and G′. More specifically, the ith element of fG is the frequency of graphlet Gi

occuring as a subgraph, and ⟨·, ·⟩ is the Euclidean inner product.

B.2 Subtree pattern based graph kernels

This family of graph kernels decomposes a graph into subtree patterns. The Weisfeiler-Lehman

(WL) kernel [62] belongs to this family. The core idea is to iterate over each node in the labelled

graph, and its neighbours, to create a multiset label which is then compressed. It is typically

implemented as an iterative algorithm as in Shervashidze et al. [62], but can be implemented

recursively as done by Naranayan et al. [19]. At each iteration, the multiset label of a node

consists of the label of the node and the sorted labels of its neighbours. The resulting multiset

is mapped to a compressed label using an injective function f and used in the next iteration.

The similarity of the graphs is calculated like the graphlet-based kernels where we count the

co-occurrences of labels, i.e. shared subtree patterns in graphs.

Formally, given G and G′, the WL subtree kernel is defined as:

KWL(G,G′) =
〈
lG , lG

′〉
(B.2)

Notable is the structure of pattern frequency vector IG . If we performed k iterations of the WL

algorithm for relabelling, then IG consists of k blocks. The ith element in the jth block contains

1An induced subgraph of a graph is another graph, formed from a subset of the vertices and all of the edges
from the original graph connecting pairs of vertices in that subset.

175

the frequency of the subtree pattern denoted by the ith multi-set label that was assigned across

the nodes in G in the jth iteration of the algorithm.

B.3 Walk and path based graph kernels

Walk- and path-based kernels (Borgwardt et al. [82] and Kashima et al. [83]) decompose a

graph into random walks and paths respectively and once again count the co-occurrences of these

substructures between graphs to define a kernel.

Let PG represent the set of all shortest paths in graph G, and let pi ∈ PG . Denote a triplet

(lis, l
i
e, nk) where nk is the length of the path, lis is the starting node, and lie the ending node. The

shortest path kernel between labelled graphs G and G′ is [82]

Kpath(G,G′) =
〈
PG ,PG′〉

(B.3)

where PG is the frequency vector of triplets (lis, l
i
e, nk) as the ith element.

176

APPENDIX C

Supplementary materials to Chapter 3

C.1 Dataset details

Table C.1 contains descriptive information about each of the datasets as they were used within the

empirical evaluation described in Section 3.7. All of the datasets are commonly used benchmark

datasets downloaded from Kersting et al.’s [129] repository.1 After downloading the datasets they

were processed into the format used by Geo2DR with our data formatting pipeline. In each of the

datasets, the discrete node labels are exposed, but not the edge labels. For unlabelled datasets

such as REDDIT-B and IMDB-M, the nodes are labelled by their degree as in Shervashidze et al.

[62] to enable methods such as the WL rooted subgraph decomposition to induce patterns in

the graphs. This was also applied to methods which can directly handle unlabelled graphs for

conformity.

The graphs come from a variety of contexts and domains. MUTAG, ENZYMES and

PROTEINS are datasets which have their roots in bioinformatics research. The graphs within

them represent molecules with nodes representing atoms and edges denoting chemical bonds

or spatial proximity between different atoms. Graph labels describe different properties of the

1ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Table C.1: Descriptive information about datasets used in the experimental evaluation. N refers to the
number of graphs in the datasets. C is the number of graph classification labels. Avg. Nodes and Avg.
Edges denote the average number of nodes and edges found in the graphs of the dataset respectively. Finally
Node Labels indicates whether the nodes are discretely labelled. The * refers to datasets which originally
do not have node labels, but are subsequently labelled by their degree as described in Shervashidze et al.
[62]

Dataset N C Avg. Nodes Avg. Edges Node Labels

MUTAG [130] 188 2 17.93 19.79 Yes
ENZYMES [48] 600 6 32.63 62.14 Yes
PROTEINS [48] 1113 2 39.06 72.82 Yes
NCI1 [293] 4110 2 29.87 32.3 Yes
REDDIT-B [21] 2000 2 429.63 497.75 No*
IMDB-M [21] 1500 3 13 65.94 No*

177

molecules such as mutagenicity or whether a protein is an enzyme. NCI1 is a chemoinformatics

dataset describing compounds screened for their ability to surpress or inhibit the growth of a

panel of human tumor cell lines. REDDIT-B and IMDB-M are social network based datasets. In

REDDIT-B, each graph corresponds to an online discussion thread where nodes correspond to

users, and there is an undirected edge between the nodes if at least one responded to another’s

comment. IMDB-M is a movie collaboration dataset where each graph corresponds to an

ego-network of an actor or actress.

C.2 Hyperparameter selections of re-implemented methods

For each of the methods described in Section 3.7 we conducted a grid search over the following

hyperparameter settings inspired by the settings of the original papers:

C.2.1 Graph kernels

• WL Rooted Subgraphs: Rooted subgraphs up to depth 2 induced.

• Shortest Paths: Shortest paths of all pairs of nodes induced.

• Graphlets: Graphlets of size 7 induced, sampling 100 graphlets per graph.

• Anonymous Walks: Anonymous walks of length 10 induced exhaustively from each node

in the graph.

C.2.2 Deep graph kernels and graph embeddings

• DGK-WL: Rooted subgraphs of up to depth 2 induced. Trained Skipgram model with

negative sampling using 10 negative samples with an Adam optimiser for 5 and 100 epochs

using batch sizes of 10000 and 1000 with an initial learning rate of 0.1 and 0.01 adjusted by

a cosine annealing scheme. Substructure embedding sizes of 2, 5, 10, 25, 50 dimensions were

generated. Graph kernels were constructed using the formulation described in Yanardag

and Vishwanathan [21].

• DGK-SP: Shortest paths of all pairs of nodes induced. Trained Skipgram model with

negative sampling using 10 negative samples with an Adam optimiser for 5 and 100 epochs

using batch sizes of 10000 and 1000 with an initial learning rate of 0.1 and 0.01 adjusted by

a cosine annealing scheme. Substructure embedding sizes of 2, 5, 10, 25, 50 dimensions were

generated. Graph kernels were constructed using the formulation described in Yanardag

and Vishwanathan [21].

• DGK-GK: Graphlets of size 7 induced, sampling 2, 5, 10, 25, and 50 graphlets for each

graph. Trained Skipgram model with negative sampling using 10 negative samples with

an Adam optimiser for 5 and 100 epochs using batch sizes of 10000 and 1000 with an

initial learning rate of 0.1 and 0.01 adjusted by a cosine annealing scheme. Substructure

embeddings of 2, 5, 10, 25, 50 dimensions were generated. Graph kernels were constructed

using the formulation described in Yanardag and Vishwanathan [21].

178

• Graph2Vec: Rooted subgraphs of up to depth 2 induced. Trained over PV-DBOW

(Skipgram) model with negative sampling using 10 negative samples with an Adam optimiser

for 25, 50, 100 epochs and batch sizes of 512, 1024, 2048, 10000 with an initial learning

rate of 0.1 adjusted by a cosine annealing scheme. Graph embeddings of 128 and 1024

dimensions were learned.

• AWE-DD: Anonymous walks of length 10 induced exhaustively. Trained over PV-DM

architecture with negative sampling using 10 negative samples with an Adagrad optimiser

(as in the reference implementation) for 100 epochs with batch sizes 100, 500, 1000, 5000,

10000 with an initial learning rate of 0.1. Window-sizes of 4, 8, 16 were used to extract

context anonymous walks around the target anonymous walk in the PV-DM architecture.

179

180

APPENDIX D

Supplementary materials to Chapter 5

D.1 Ablation study over the two hyperparameters in learning

distributed representations

The introduction of the distributed representations comes with two hyperparameters which

may affect their downstream performance when incorporated into the drug pair scoring models.

These user specified hyperparameters are: (i) the dimensionality of drug embeddings and (ii) the

number of epochs for which the skipgram model is trained. We study the effect of the embedding

dimensionality on downstream performance by setting the number of training epochs to 1000

and varying the dimensionality from 8 to 1024 following powers of 2. For our downstream drug

pair scoring model we use DeepSynergyDR, whilst keeping the same hyperparameter settings

as in our comparative analysis described in Section 5.5. Similarly, for studying the effect of

training epochs we set the dimensionality of the embeddings at 64 and observe the downstream

performance of the drug pair scoring model (with its own training epochs set at 250 as before)

across a range of values (from 200 to 2000, in steps of 200). In both cases, we perform 5 repeated

runs to obtain empirical confidence intervals in the plots shown in Figures D.1 and D.2.

D.1.1 Dimensionality of distributed representations

The plots in Figure D.1 summarise the effects of changing the dimensionality of the drug

embeddings on downstream drug pair scoring performance with the DeepSynergyDR model.

Figure D.1: Figure of the test ROCAUC performance of DeepSynergyDR (SP and WL3) across the
drug pair scoring datasets. Performance is recorded with respect to the embedding dimension chosen in
the learning of the distributed representations of graphs.

181

Figure D.2: Figure of the test ROCAUC performance of DeepSynergyDR (SP and WL3) across the
drug pair scoring datasets. Performance is recorded with respect to the number of training epochs chosen
in the learning of the distributed representations of graphs.

Across the datasets, as well as the substructure patterns, we observe there is little change in

the downstream performance as the dimensionality increases from 8 to 1024. Furthermore, the

resulting downstream performance seems robust against these changes with small confidence

regions as shown in the plots. Both observations suggest that the skipgram model is effective in

producing consistent drug gram matrices and capturing salient distributive context information

within the embeddings. A Pearson correlation coefficient of 0.331 (p-value: 0.0097) and 0.584

(p-value: 9.873× 10−7) across substructure patterns on DrugCombDB and TwoSides respectively

indicates a statistically significant upward correlation in performance for increased dimensionality.

Conversely, we find a downwards Pearson correlation coefficient of -0.573 (p-value: 1.692× 10−6)

in DrugComb. There is no statistically significant trend (p-value ≤ 0.05) in DrugbankDDI.

Despite the observed upwards trends in performance DrugCombDB and TwoSides, we do not

recommend having a high embedding dimensionality, as we expect an inevitable decrease in

performance due to the curse of dimensionality. Hence, we suggest a more moderate choice on

par with the dimensionality of other features in the drug feature set, as the performance generally

is stable across the range of dimensionalities. The next ablation study studies how this varies

under the number of training epochs.

D.1.2 Number of training epochs for distributed representations

The plots in Figure D.2 summarise the effects of changing the number of epochs used in training

the skipgram model, for a set embedding dimensionality of 64. The plots report the downstream

test ROCAUC performance achieved on the DeepSynergy model. Like before, we see that

across datasets and induced substructure pattern the downstream performance is not affected

strongly, except when the number of training epochs is exceptionally low for obvious optimisation

reasons. The small confidence bands indicate small variability between different runs. A Pearson

correlation coefficient of 0.197 (p-value: 0.049) for DrugbankDDI and 0.473 (p-value: 6.597×10−7)

for TwoSides across substructure patterns indicates a light but statistically significant upwards

trend in performance as the number of training epochs increases. DrugcombDB and DrugComb

do not show any statistically significant correlations with regard to training epochs, but are

generally stable irregardless. Hence we may suggest generally that more rigorous training regimes

for learning the distributed representations are favourable in drug pair scoring tasks.

182

APPENDIX E

Supplementary materials to Chapter 6

E.1 Sample-label distributions

Table E.1: Distribution of class labels for METABRIC DR Task.

Class Label 0 1

Train + Validation 1102 482
Test 276 120

Table E.2: Distribution of class labels for METABRIC PAM50.

Class Label 0 1 2 3 4

Train + Validation 160 574 390 263 192
Test 39 144 98 66 48

Table E.3: Distribution of class labels for METABRIC IC10.

Class Label 0 1 2 3 4 5 6 7 8 9 10

Train + Validation 208 111 58 232 67 152 68 152 239 116 181
Test 52 28 14 58 16 38 17 38 60 30 45

Table E.4: Distribution of class labels for TCGA-HNCS tumour grade.

Class Label 0 1 2 3

Train + Validation 49 243 100 6
Test 13 61 25 1

The following tables E.1 - E.5 contain the distributions of the classification labels with respect

to each prediction task considered in the manuscript. Each table describes the class distributions

within the class stratified train and hold out test splits used for the evaluation of the methods in

183

Table E.5: Class label distributions for TCGA-HNCS 2 Year RFS.

Class Label 0 1

Train + Validation 163 253
Test 40 64

Table E.6: Average hold out unbalanced percentage accuracies for each method over the five class
stratified folds of the datasets and tasks along with standard deviation.

METABRIC TCGA-HNCS
Method DR PAM50 IC10 Tumour Grade 2 Year RFS

MajorityClass 69.616 ± 0.124 36.372 ± 0.106 15.101 ± 0.101 611.044 ± 0.398 60.961 ± 0.471
SVM 68.030 ± 3.075 75.379 ± 1.750 64.899 ± 4.130 55.008 ± 3.104 58.462 ± 4.098
FC MLP 66.262 ± 3.727 77.760 ± 0.897 71.868 ± 1.223 56.830 ± 4.098 60.769 ± 5.245
GraphReg 68.484 ± 0.865 37.530 ± 2.029 13.585 ± 1.817 58.009 ± 4.941 58.077 ± 2.954
GINCCo + MCODE 65.253 ± 1.972 76.138 ± 1.808 63.788 ± 2.637 54.618 ± 2.647 58.076 ± 3.016
GINCCo + COACH 65.606 ± 3.107 77.861 ± 1.506 70.152 ± 1.816 58.234 ± 1.455 59.231 ± 4.411
GINCCo + IPCA 65.455 ± 3.196 77.607 ± 2.775 69.697 ± 3.005 55.220 ± 1.629 58.077 ± 4.326
GINCCo + DPCLUS 67.222 ± 2.986 79.735 ± 2.209 76.212 ± 2.344 59.834 ± 2.539 60.576 ± 4.300
RC MLP - R 66.337 ± 2.921 74.198 ± 9.178 63.158 ± 11.168 54.769 ± 6.270 58.461 ± 3.065
RC MLP - M 66.925 ± 2.603 68.341 ± 10.365 59.778 ± 7.610 60.544 ± 1.843 56.607 ± 4.533

the manuscript. With the exception of class label 3 in tumour grade for TCGA-HNCS, we are

fortunate that the tasks do not show any extreme class imbalances.

E.2 Additional metrics

This appendix section contains additional tables of recorded unbalanced accuracy, weighted recall,

weighted precision, and weighted F-scores for prediction tasks in the main manuscript.

Table E.7: Average hold out weighted precision scores for each method over the five class stratified folds
of the datasets and tasks along with standard deviation.

METABRIC TCGA-HNCS
Method DR PAM50 IC10 Tumour Grade 2 Year RFS

MajorityClass 0.484 ± 0.002 0.132 ± 0.008 0.023 ± 0.000 0.373 ± 0.006 0.372 ± 0.006
SVM 0.679 ± 0.027 0.764 ± 0.014 0.676 ± 0.032 0.573 ± 0.035 0.568 ± 0.047
FC MLP 0.651 ± 0.030 0.786 ± 0.012 0.721 ± 0.009 0.563 ± 0.041 0.606 ± 0.043
GraphReg 0.548 ± 0.045 0.245 ± 0.100 0.019 ± 0.004 0.432 ± 0.058 0.577 ± 0.025
GINCCo + MCODE 0.639 ± 0.010 0.769 ± 0.018 0.619 ± 0.057 0.538 ± 0.028 0.577 ± 0.029
GINCCo + COACH 0.643 ± 0.012 0.782 ± 0.012 0.681 ± 0.028 0.561 ± 0.057 0.591 ± 0.036
GINCCo + IPCA 0.645 ± 0.015 0.779 ± 0.025 0.669 ± 0.052 0.537 ± 0.016 0.579 ± 0.034
GINCCo + DPCLUS 0.655 ± 0.018 0.803 ± 0.023 0.765 ± 0.026 0.563 ± 0.032 0.597 ± 0.043
RC MLP - R 0.652 ± 0.007 0.733 ± 0.135 0.616 ± 0.142 0.559 ± 0.031 0.569 ± 0.067
RC MLP - M 0.628 ± 0.039 0.627 ± 0.156 0.496 ± 0.114 0.552 ± 0.030 0.551 ± 0.095

184

Table E.8: Average hold out weighted recall scores for each method over the five class stratified folds of
the datasets and tasks along with standard deviation.

METABRIC TCGA-HNCS
Method DR PAM50 IC10 Tumour Grade 2 Year RFS

MajorityClass 0.696 ± 0.001 0.364 ± 0.001 0.151 ± 0.001 0.610 ± 0.003 0.610 ± 0.005
SVM 0.649 ± 0.034 0.738 ± 0.023 0.589 ± 0.047 0.535 ± 0.032 0.582 ± 0.040
FC MLP 0.634 ± 0.028 0.764 ± 0.015 0.704 ± 0.013 0.563 ± 0.039 0.602 ± 0.051
GraphReg 0.617 ± 0.046 0.269 ± 0.052 0.136 ± 0.018 0.523 ± 0.047 0.576 ± 0.029
GINCCo + MCODE 0.639 ± 0.010 0.752 ± 0.018 0.629 ± 0.028 0.538 ± 0.020 0.579 ± 0.029
GINCCo + COACH 0.639 ± 0.023 0.772 ± 0.019 0.692 ± 0.021 0.572 ± 0.011 0.589 ± 0.044
GINCCo + IPCA 0.640 ± 0.026 0.769 ± 0.033 0.686 ± 0.035 0.546 ± 0.017 0.576 ± 0.044
GINCCo + DPCLUS 0.646 ± 0.026 0.786 ± 0.028 0.748 ± 0.024 0.585 ± 0.016 0.599 ± 0.041
RC MLP - R 0.635 ± 0.035 0.728 ± 0.098 0.614 ± 0.114 0.532 ± 0.079 0.571 ± 0.033
RC MLP - M 0.633 ± 0.051 0.656 ± 0.113 0.575 ± 0.079 0.586 ± 0.019 0.558 ± 0.060

185

Table E.9: Average hold out weighted f-scores scores for each method over the five class stratified folds
of the datasets and tasks along with standard deviation.

METABRIC TCGA-HNCS
Method DR PAM50 IC10 Tumour Grade 2 Year RFS

MajorityClass 0.571 ± 0.001 0.194 ± 0.001 0.039 ± 0.000 0.463 ± 0.004 0.462 ± 0.006
SVM 0.663 ± 0.012 0.751 ± 0.018 0.629 ± 0.039 0.553 ± 0.031 0.584 ± 0.043
FC MLP 0.642 ± 0.021 0.775 ± 0.012 0.712 ± 0.010 0.563 ± 0.039 0.604 ± 0.047
GraphReg 0.577 ± 0.010 0.239 ± 0.045 0.033 ± 0.008 0.468 ± 0.023 0.577 ± 0.027
GINCCo + MCODE 0.639 ±0.005 0.760 ± 0.018 0.623 ± 0.042 0.538 ± 0.023 0.578 ± 0.028
GINCCo + COACH 0.641 ± 0.013 0.777 ± 0.016 0.686 ± 0.022 0.567 ± 0.017 0.589 ± 0.036
GINCCo + IPCA 0.642 ± 0.017 0.774 ± 0.029 0.677 ± 0.043 0.542 ± 0.016 0.577 ± 0.039
GINCCo + DPCLUS 0.650 ± 0.018 0.795 ± 0.025 0.765 ± 0.024 0.579 ± 0.024 0.598 ± 0.042
RC MLP - R 0.643 ± 0.021 0.729 ± 0.120 0.614 ± 0.131 0.541 ± 0.064 0.569 ± 0.054
RC MLP - M 0.628 ± 0.039 0.639 ± 0.135 0.531 ± 0.099 0.568 ± 0.022 0.552 ± 0.080

Table E.10: 2-sided p-values obtained from Student’s t-test for each target variable, comparing
GINCCO+DPCLUS to the other benchmark methods.

METABRIC TCGA-HNCS
GINCCO+DPCLUS vs. DR PAM50 IC10 Tumour Grade 2 Year RFS

MajorityClass 0.001553 6.50E-05 1.69E-05 0.140736751 0.221236
GraphReg 0.00553 3.99E-05 1.69E-05 0.274251977 0.891921
FCMLP 0.922046 0.646701 0.265797 0.473822691 0.124872
RandomMLP Matched 0.233221 0.002969 0.000418 0.611882916 0.853904
RandomMLP 0.741983 0.096235 0.000491 0.813377857 0.663998

GINCCO+mcode 0.48463 0.377899 0.003893 0.482437784 0.368415
GINCCO+ipca 0.750309 0.629871 0.035312 0.430973937 0.927807
GINCCO+coach 0.583788 0.885773 0.027755 0.828306483 0.345282

E.3 Statistical significance tests

We performed (corrected) Student’s t-test, using the performance obtained from each train/hold-

out split, adjusting the variance as documented in [237, 294, 295]. The 2-sided p-values for each

target are reported in Table E.10. The results show that GINCCo+DPLUCS, while having

better a performance in general, the difference is only statistically significant when compared

against the MajorityClassifier and GraphReg on the METABRIC tasks.

In contrast, there is not a statistically significant difference between the GINCCo variants,

the RCMLP and FCMLP, except in the case of predicting IC10. It is really important to note

that we have 0.05% of the parameters compared to the FCMLP, and still get comparable (and

mostly better) performance. Furthermore, our model enables the post-hoc gene set enrichment

analysis as in Section 6.3.3, which is not possible with the other methods we compare against.

186

APPENDIX F

Supplementary materials to Chapter 7

F.1 Directed graphical model

F.2 Effect of increasing neighbourhood size

The increased performance through the utilisation of the 1-hop proximal neighbourhoods begs

the question of how the size of the receptive field can influence performance. Recall from Section

2.4.2 that this is as simple as adding more layers to the graph neural network layers. We present

the table of results examining increase of receptive field with SGC-C2L and GAT-C2L in Tables

F.1, F.2 and F.3. Whilst all of the models still consistently outperform the original Cell2Location

and MLP-C2L, we can see certain performance patterns that are in line with GNN theory.

Specifically, in all but the average JSD metric for ULCA we see that the best performing models

exist in the first models exhibiting up to 3 layers, exhibiting a drop in performance after the

best performance. This pattern is common GNN based methods due to the oversmoothing and

oversquashing phenomenon [252]. This phenomenon prevents GNNs from effectively incorporating

information from distant neighbours as the aggregation of messages into fixed size vectors creates

an information bottleneck. In addition to the mechanical limitation of the GNNs, we also have to

consider the relationship between the growing receptive field and its absolute distance away from

the target spot we want to influence in terms of the sizes of cell colocation patterns. Depending

on the cell-types, tissue architecture, and fidelity of the ST technology, differing receptive field

sizes over spots will be biologically relevant to capturing cell colocation patterns.

187

Gene g

Location s

Cell type f
Co-located cell type

group r

Figure F.1: Directed graphical model representation of the Cell2Location model. Following standard
directed graphical model conventions, observed variables are shaded circles whilst latent variables are
unshaded. Plates denote conditionally independent variables. Small squares denote hyperparameters with
purple squares denoting important dataset specific hyperparameters as described in Section 7.3.

Table F.1: Average Pearson R correlation and standard deviation of 5 seeded runs of each model over
all spots. Correlation values for subcategories of cell types exhibiting distinct cell abundance patterns
are also provided. Bold numbers indicate best performing method for each category of cell types being
evaluated.

Methods ALL UHCA ULCA RHCA RLCA

SGC-C2L1 0.699 ± 0.023 0.876 ± 0.008 0.708 ± 0.020 0.883 ± 0.006 0.439 ± 0.041
SGC-C2L2 0.711 ± 0.036 0.890 ± 0.015 0.682 ± 0.027 0.878 ± 0.01 0.458 ± 0.050
SGC-C2L3 0.684 ± 0.063 0.897 ± 0.019 0.689 ± 0.030 0.883 ± 0.006 0.421 ± 0.086
SGC-C2L4 0.704 ± 0.025 0.883 ± 0.022 0.673 ± 0.043 0.881 ± 0.009 0.445 ± 0.043
SGC-C2L5 0.701 ± 0.016 0.884 ± 0.015 0.665 ± 0.032 0.882 ± 0.007 0.443 ± 0.034
SGC-C2L6 0.701 ± 0.016 0.884 ± 0.015 0.665 ± 0.032 0.882 ± 0.007 0.443 ± 0.034

GAT-C2L1 0.737 ± 0.013 0.885 ± 0.018 0.695 ± 0.032 0.888 ± 0.004 0.492 ± 0.032
GAT-C2L2 0.722 ± 0.022 0.879 ± 0.020 0.710 ± 0.042 0.889 ± 0.004 0.473 ± 0.029
GAT-C2L3 0.679 ± 0.039 0.872 ± 0.021 0.723 ± 0.016 0.887 ± 0.007 0.425 ± 0.052
GAT-C2L4 0.709 ± 0.047 0.878 ± 0.016 0.695 ± 0.024 0.883 ± 0.004 0.474 ± 0.070
GAT-C2L5 0.713 ± 0.050 0.857 ± 0.015 0.698 ± 0.027 0.878 ± 0.009 0.478 ± 0.082
GAT-C2L6 0.715 ± 0.050 0.858 ± 0.016 0.699 ± 0.025 0.878 ± 0.009 0.480 ± 0.082

188

Table F.2: Average of average Jensen-Shannon divergence (JSD) along with standard deviation of 5
seeded runs of each model. JSD values for subcategories of cell types exhibiting distinct cell abundance
patterns are also provided. Bold numbers indicate best performing method for each category of cell types
being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

SGC-C2L1 0.446 ± 0.006 0.224 ± 0.011 0.460 ± 0.007 0.368 ± 0.005 0.493 ± 0.009
SGC-C2L2 0.443 ± 0.007 0.208 ± 0.021 0.467 ± 0.010 0.371 ± 0.009 0.489 ± 0.007
SGC-C2L3 0.447 ± 0.011 0.199 ± 0.017 0.463 ± 0.006 0.369 ± 0.007 0.499 ± 0.015
SGC-C2L4 0.448 ± 0.006 0.216 ± 0.019 0.472 ± 0.014 0.375 ± 0.008 0.494 ± 0.009
SGC-C2L5 0.448 ± 0.005 0.207 ± 0.022 0.473 ± 0.010 0.375 ± 0.007 0.493 ± 0.008
SGC-C2L6 0.448 ± 0.005 0.207 ± 0.022 0.473 ± 0.010 0.375 ± 0.007 0.493 ± 0.008

GAT-C2L1 0.435 ± 0.003 0.209 ± 0.021 0.458 ± 0.014 0.369 ± 0.001 0.482 ± 0.006
GAT-C2L2 0.438 ± 0.006 0.223 ± 0.017 0.458 ± 0.014 0.363 ± 0.002 0.486 ± 0.005
GAT-C2L3 0.447 ± 0.008 0.222 ± 0.025 0.450 ± 0.009 0.356 ± 0.004 0.496 ± 0.011
GAT-C2L4 0.441 ± 0.010 0.215 ± 0.018 0.452 ± 0.010 0.358 ± 0.004 0.487 ± 0.013
GAT-C2L5 0.445 ± 0.015 0.243 ± 0.017 0.448 ± 0.009 0.362 ± 0.007 0.492 ± 0.020
GAT-C2L6 0.444 ± 0.015 0.242 ± 0.017 0.448 ± 0.009 0.362 ± 0.007 0.491 ± 0.020

Table F.3: Average AUPRC scores and standard deviation of 5 seeded runs of each model over all spots.
Scores for subcategories of cell types exhibiting distinct cell abundance patterns are also provided. Bold
numbers indicate best performing method for each category of cell types being evaluated.

Methods ALL UHCA ULCA RHCA RLCA

SGC-C2L1 0.719 ± 0.002 0.977 ± 0.004 0.646 ± 0.006 0.861 ± 0.001 0.719 ± 0.002
SGC-C2L2 0.716 ± 0.003 0.978 ± 0.001 0.644 ± 0.006 0.860 ± 0.001 0.716 ± 0.003
SGC-C2L3 0.710 ± 0.002 0.979 ± 0.002 0.649 ± 0.005 0.852 ± 0.001 0.710 ± 0.002
SGC-C2L4 0.701 ± 0.004 0.972 ± 0.003 0.639 ± 0.007 0.845 ± 0.005 0.701 ± 0.004
SGC-C2L5 0.701 ± 0.007 0.975 ± 0.003 0.633 ± 0.009 0.848 ± 0.005 0.701 ± 0.007
SGC-C2L6 0.701 ± 0.007 0.975 ± 0.003 0.633 ± 0.009 0.848 ± 0.005 0.701 ± 0.007

GAT-C2L1 0.722 ± 0.002 0.978 ± 0.004 0.664 ± 0.004 0.858 ± 0.003 0.722 ± 0.002
GAT-C2L2 0.726 ± 0.001 0.977 ± 0.003 0.665 ± 0.007 0.865 ± 0.001 0.726 ± 0.001
GAT-C2L3 0.721 ± 0.003 0.970 ± 0.003 0.679 ± 0.006 0.870 ± 0.002 0.721 ± 0.003
GAT-C2L4 0.710 ± 0.003 0.968 ± 0.002 0.670 ± 0.006 0.867 ± 0.001 0.710 ± 0.003
GAT-C2L5 0.700 ± 0.002 0.959 ± 0.001 0.652 ± 0.010 0.865 ± 0.001 0.700 ± 0.002
GAT-C2L6 0.702 ± 0.003 0.961 ± 0.003 0.652 ± 0.009 0.865 ± 0.001 0.702 ± 0.003

189

190

	Introduction
	Motivation and overview
	Research questions
	Contributions and thesis outline
	List of publications

	Background
	Machine learning essentials
	Data representations
	Neural networks
	Inductive biases

	Graphs
	Machine learning on graph-structured data
	Substructure-level learning
	Neighbourhood reconstruction methods
	Factorisation based methods
	Random walk distributed embeddings
	Strengths and limitations of factorisation and random walk based embeddings

	Graph neural networks
	MPNN framework

	Graph-level learning
	Kernel based methods
	GNNs for graph-level learning

	Research software
	Software libraries for graph machine learning research

	Learning distributed representations of graphs
	Overview and contributions
	Introduction
	Background
	A conceptual framework for learning distributed representations of graphs
	Overview of Geo2DR
	Annotated coding example
	Empirical evaluation
	Related work
	Maintaining Geo2DR
	Summary

	Towards representation learning on dynamic graphs
	Overview and contributions
	Dynamic graphs and spatio-temporal graphs
	GNN based methods for spatio-temporal graphs
	Sequence models
	GNNs in sequence models

	Existing software for learning on dynamic graphs
	PyTorch Geometric Temporal
	Neural network layer design
	Data structures for spatio-temporal graphs
	Datasets

	Annotated coding example
	Coding example: cumulative model training on CPU
	Coding example: incremental model training with GPU

	Empirical evaluation
	Experiment setup
	Validation and comparative analysis of methods
	Runtime performance
	Experimental findings

	Maintaining PyTorch Geometric Temporal
	Summary

	Distributed representations of graphs for drug pair scoring
	Overview and contributions
	Introduction
	Background and related work
	Unified framework for drug pair scoring
	Representations for drugs
	Neural models for drug pair scoring

	Study and methods
	Distributed representations of graphs
	Arguing for the use of distributed representations of drugs in drug pair scoring pipelines
	Incorporating distributed representations of graphs into existing drug pair scoring pipelines

	Experimental setup
	Results and discussion
	Additional experiments
	Additional experiments: prediction on unseen drugs
	Additional experiments: transfer learning and distributional shift in substructure patterns
	Ablation study on hyperparameters of learning distributed representations

	Summary

	Structural inductive biases for gene expression profiles using external interaction networks
	Overview and contributions
	Methods
	Processing and generating case study PPI networks
	Protein complex discovery
	Computational graph construction and predictive models
	Experimental setup

	Results
	Factor graphs produced by GINCCo are considerably sparser than fully connected network models
	Empirical results show integration of prior biological knowledge yields strong predictive performance
	Experiments against randomly structured computational graphs show GINCCo models capture useful parameterisations

	Related work and discussion
	Summary

	Relational inductive biases for spatial cell type deconvolution
	Overview and contributions
	Background
	Cell2Location
	Description of Cell2Location deconvolution pipeline
	Computing reference cell type signatures
	Inference

	MPNN-C2L: spatially aware spatial cell deconvolution
	Constructing a spatial proximity graph on the spatial RNA-seq output
	MPNN-C2L

	Experimental setup
	Results
	Comparative analysis on synthetic data
	Analysis of human lymph node sample

	Discussion
	Summary

	Conclusion
	Summaries of contribution chapters
	Outlook

	References
	Graph statistics and deterministic quantification of node similarities
	R-Convolutional graph kernels
	Subgraph based graph kernels
	Subtree pattern based graph kernels
	Walk and path based graph kernels

	Supplementary materials to Chapter 3
	Dataset details
	Hyperparameter selections of re-implemented methods
	Graph kernels
	Deep graph kernels and graph embeddings

	Supplementary materials to Chapter 5
	Ablation study over the two hyperparameters in learning distributed representations
	Dimensionality of distributed representations
	Number of training epochs for distributed representations

	Supplementary materials to Chapter 6
	Sample-label distributions
	Additional metrics
	Statistical significance tests

	Supplementary materials to Chapter 7
	Directed graphical model
	Effect of increasing neighbourhood size

