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Abstract—Network coding is mostly used to achieve the ca-
pacity of communication networks. In this study, motivated by
the nanoscale communications where the energy cost for the
channel symbols are asymmetric due to the widely employed
OOK modulation, we design energy minimizing network codes.
We develop the best mapping between the input and the output
symbols at the network coding node that minimizes the average
codeword energy using Latin squares, which we call the minimum
energy network code (MENC). We define the class of networks
composed of coding nodes with N incoming and 1 outgoing
symbols as In-N networks. First, we derive the condition on the
network code to minimize the average energy in In-Two networks
and propose two linear MENCs. Later, we investigate the min-
imum energy network codes for In-N networks using the Latin
hypercubes and propose a low energy network code (LENC) to
reduce the average energy with network coding. We compare
MENC with the classical XOR and random network codes for
In-Two networks. The performance comparison between LENC
and random network codes for In-N networks shows that the
proposed network codes provide significant energy gains.

Index Terms—energy efficient network codes, green communi-
cations, minimum energy coding, network coding, latin squares.

I. INTRODUCTION

Network coding is the method of combining the information
flows at the relay node, which is essential to achieve the
network capacity in certain networks, as routing only is not
sufficient in general [1]. From the day it was first proposed,
network coding has drawn great interest from the commu-
nity. In addition to purely information theoretic analyses,
researchers have incorporated network coding into various
subjects, from cognitive radio to ad-hoc networks [4], [9] to
vehicular networks [2], [3]. Even though the main research on
network coding focuses on achieving the network capacity,
or its gains in terms of the achievable rate [1]-[8], there
are several papers discussing the energy efficiency aspects of
network coding [9]-[14]. However, in most of these studies,
network coding is not used directly as a tool to minimize the
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average energy per channel symbol, but energy efficiency is
rather analyzed using the known network codes. If we can
find network codes that minimize the average energy among
all the input-output mappings in the network coding node,
we can achieve capacity, i.e., maximize rate, with minimum
energy dissipation in the network. Hence, using network
coding to minimize energy dissipation is an important step in
the characterization of networks, as it could lead to optimum
networks operating at the best energy-rate pair.

In this paper, we propose such a network coding tech-
nique that minimizes the energy required at the transmitter.
We show that network codes can be designed to minimize
average energy, in addition to achieving the capacity in certain
scenarios. We consider the scenario where the underlying
channel symbols are asymmetric in the following way: One
of the channel symbols consumes less energy than the others.
Average energy per channel symbol can then be reduced by
increasing the frequency of the modulation state with lower
energy. The proposed technique exploits this idea to select the
most energy-efficient mapping as the network code. Notice that
the term “channel symbol” can refer to the modulated symbols
or the codewords depending on the network assumptions.

Consider a relay node R with two incoming edges. We
want to process the incoming channel symbols u1 and u2
such that the average energy per channel symbol is minimized
at node R. Note that the output alphabet of the network
code is assumed to be the same as the input alphabet, i.e.,
the same channel symbols are used throughout the network.
We must give priority to the main goal of network coding
during this task, i.e., achieving capacity. Notice that the
notion of capacity that we are interested in is not on the
physical channel level: We assume each symbol can be reliably
transmitted over the physical channel. The capacity refers
to the fact that the network code does not result in loss of
information at the decoding node. Without knowing the rest
of the network, we cannot determine the network code which
guarantees achieving the network capacity. However, if we
can preserve information with the network coding operation
at R, sink nodes can decode the information that they desire
using side information from other nodes. Such a mapping can
then be used in general network topologies, since it preserves
information independent from the network topology. We call
such mappings, i.e., mappings which preserve information as
reversible network codes. See Sec. III for a formal definition.

In this work, we propose a network code that exploits the
asymmetry in the energy costs of channel symbols. We first
develop the energy minimizing network code in Section IV,
which we call the minimum energy network code (MENC), that
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ensures the minimum energy dissipation in In-Two networks,
i.e., networks composed of network coding nodes with two
input and one output symbols, assuming asymmetrical energy
cost of the channel symbol. This network code maps the
incoming channel symbols to the outgoing symbols such
that the average energy per output symbol is minimized. We
then show the existence of linear minimum energy network
codes. In Section V, we investigate the average energy at
the transmitter, assuming minimum energy coding as the
underlying channel code, which we have proposed in [16], [17]
and used for nanoscale ad-hoc networks in [18]. In Section VI,
we investigate the generalized In-N networks, i.e., networks
composed of coding nodes with N incoming and one outgoing
edges, and propose a novel network code to reduce energy, if
not minimize, which we call the low energy network code
(LENC). Compared to the random network codes. LENC can
be used to achieve network capacity, while guaranteeing low
energy dissipation. Performances of MENC and LENC are
compared with XOR and random codes in Section VII.

II. RELATED WORK

Network coding is developed in [1], where authors show that
routing only is not sufficient to achieve the network capacity
and processing of the data flows at the intermediate nodes is
required. Network coding idea has been employed in various
settings since. Physical layer network coding is proposed
in [19], where the authors exploit the broadcast nature of
wireless nodes in ad-hoc networks to improve the throughput.
The main research effort on network coding focuses on the
capacity of networks. In this regard, authors in [5] show that
linear coding is sufficient to achieve the network capacity in
multicast networks. An algebraic framework for linear network
codes is developed in [6]. In [7], the authors show that linear
network coding is insufficient in general, even for large finite
fields and with vector extensions, using a counter example.

There are several studies investigating the energy efficiency
of network coding. In [9], a linear program that determines
the path yielding the minimum energy per bit is developed
in multicast networks with network coding. Each link is
assumed to have an associated cost. It is shown that with
network coding, energy per bit is reduced, and also the
minimum energy solution can be found in polynomial time.
However, authors do not design network codes to achieve
energy efficiency, but rather exploit the idea of reducing the
number of transmission with network coding. Authors in [10]
optimize the network resources in coded wired and wireless
networks to minimize a given cost criterion. In [11], energy
efficient communication is achieved in wireless networks, by
decomposing the network coding sessions into multicast and
unicast. Moreover, optimization algorithms for solving the link
scheduling problem are investigated. In [12], authors minimize
the total energy consumed in the network with lifetime con-
straints, by determining the traffic on each edge, assuming
XOR coding. In [13], an optimization problem with rate
constraint is developed to minimize energy in wireless multi-
hop networks. However, authors incorporate the routing and
scheduling into the optimization, using the fixed XOR coding.

Therefore, energy minimization is not obtained with network
coding. In [14], codes are designed in a P2P communication
setup to reduce energy dissipation at the decoder. We, instead,
design the network codes to minimize the energy dissipation
at the transmitter node. This is especially important in the
nanoscale communication scenarios [16] where the decoder
can be a micronode with little to no energy concern, whereas
the nanoscale transmitter has a very limited energy budget.

In this work, we design network codes with the objective of
energy minimization when one of the channel symbols has a
smaller energy cost. The network code minimizes the average
energy per codeword at the outgoing edges of the relay node.

III. NETWORK MODEL

We mainly employ the notations adopted from [8]. A
network is represented with a directed graph with edge set
ε and node set ν. The finite set µ with cardinality M , i.e.,
|µ| = M , is called the message set.

A set A with minimum of two elements is called an
alphabet. The alphabet contains the channel symbols used
at the edges of the network. The map V : µ → A is the
assignment of messages to the channel symbols. For unique
decodability of source messages, V is a bijection, which is
determined by the underlying channel code. Therefore, the
size of the alphabet A is equal to the source set cardinality,
i.e., |A| = |µ| = M . Without loss of generality, we take
A = {0, 1, ...,M − 1} for simplicity.

Input and output edge sets of node u are shown by Γuin
and Γuout, respectively. A node u is called a source node if
Γuin is empty, and a destination node if Γuout is empty. The
source and destination nodes are called the end nodes and the
remaining nodes in the network are called the relay nodes.
The set of channel symbols delivered to node u on its input
edges is In(u), and set of symbols generated by u is Out(u).
Let τ be the number of incoming edges of the relay node u,
i.e., |In(u)| = τ . Then, for each edge e ∈ Γuout, the mapping

feu(In(u)) : Aτ → A, (1)

is the network code at node u. We call the network code
reversible if, given any τ−1 input messages and the message at
any outgoing edge e of node u, i.e., feu, the unknown message
at the input can be uniquely determined. This condition
imposes the conservation of information at u. We assume,

• for any relay node u, |Out(u)| = 1. Therefore, only a
single channel symbol is transmitted from each node. The
most common example of this scenario is in wireless
networks, where a single channel symbol is broadcast
due to the nature of the wireless channel. Hence, we say
feu = fu,∀e ∈ Γuout, ∀u ∈ ν.

• all the network coding nodes in the network employ
reversible network coding.

It is important to note that there may be scenarios in which
loss of information due to irreversible network codes can be
compensated from other edges. However, in this work, in an
attempt to develop codes where network coding is required to
achieve the capacity, we assume reversible network codes.



3

IV. MENC FOR IN-TWO NETWORKS

In-Two networks are composed of coding nodes with two
incoming and one outgoing symbols, i.e., for coding node u,
|In(u)| = 2 and |Out(u)| = 1. Network may also consist of
forwarding nodes, with |In(u)| = |Out(u)| = 1. In order to
minimize average transmission energy at the network coding
node, we need to consider the channel symbol probabilities.
The probability distribution of the outgoing symbols at the net-
work coding node depends on the probabilities of the incoming
channel symbols. For a relay node u, In(u) = {u1, u2} and
Γuin = {e1, e2}, where ei contains the channel symbol ui. We
familiarize the reader with the latin squares next, which are
useful to work on the reversible In-Two network codes.

A. Latin Squares as Network Codes

Latin squares are two dimensional mathematical objects
useful to define reversible network codes.

Definition: A latin square of order M is an M ×M square
matrix containing each symbol from a set of cardinality M
exactly once in each row and each column.

Due to their nature, latin squares can be used to represent
reversible network codes for In-Two networks. Notice that
latin squares are different from circulant matrices, since the
former does not have restricted shift properties. In this work,
the origin of a latin square is assumed to be its top-left corner.
Assume that the i+ 1th row (column) shows that the symbol
i is received on the first (second) incoming edge of an In-Two
node u, i.e., u1 = i (u2 = i). For example, if we know that
the first edge contains channel symbol 3, and the outgoing
edge contains channel symbol 1, we can infer that the other
incoming message should be 2, since each symbol appears
exactly once in each row and each column. Similarly, the well-
known XOR network code can be represented by a 2×2 latin
square with zeros in the diagonal. It can be written as

fu(u1, u2) = u1 + u2 (mod 2), (2)

where channel symbols are selected from the binary field.
Therefore when fu and either of ui’s are known, the unknown
input can be uniquely determined by u1 = fu+u2, (mod 2).

B. Minimum Energy Network Coding - MENC

In this section we develop the energy minimizing network
codes. As previously described, network codes map the in-
coming channel symbols to the outgoing channel symbols.
We assume that the energy dissipation associated with each
channel symbol is the same for all but smaller for only one
of the symbols. Without loss of generality, we assume that
channel symbol 0 is associated with energy dissipation of ψ0,
and all other symbols are associated with ψ1, where ψ0 < ψ1.

We first present three lemmas which are useful for the proof
of our main theorem. The following lemma gives the condition
on the completability of partially filled latin squares.

Lemma 1. [20] An M ×M partially filled latin square with
M − 1 entries can always be completed to a latin square.

Lemma 1 states that if a square matrix filled with M −
1 entries satisfies the latin condition, then it can always be

completed to a latin square. Using this, we immediately assert
the following Lemma:

Lemma 2. An M ×M partially filled latin square with M
symbols of the same type can always be completed to a latin
square.

Proof. Since latin square with M − 1 symbols of the same
type can always be completed from Lemma 1, latin square
with M symbols of the same type can also be completed, as
in that case, the location for the M th symbol is fixed due to
the latin square condition.

The average energy is determined by the positions of the
0 symbols in the latin square, since all the other symbols
are associated with the same amount of energy dissipation.
Therefore, we can work with latin squares filled with 0 symbol
to find energy minimizing network codes. These partially filled
latin squares always correspond to valid network codes, since
they can always be completed by Lemma 2. To minimize
average energy, we maximize the probability of the channel
symbol associated with smaller energy dissipation.

Assume that the symbols are ordered in terms of their
probabilities in the rows and columns of the latin square, i.e.,
ith symbol on the first (second) incoming edge of node u
is more probable than the jth symbol on the first (second)
incoming edge, if i < j, i.e., pi ≥ pj and qi ≥ qj for i < j,
where pi and qi stand for the corresponding probabilities.

Let us represent x+ 1 by x̃ for x ∈ {i, j,m, n}. Hence, ĩth

row corresponds to the incoming symbol with probability pi.
Without loss of generality, assume that i < j. We introduce
the interchange operation as the switching of ĩth and j̃th rows
of a latin square, where 0 symbol of the ĩth row is on the m̃th

column and 0 symbol of the j̃th row is on the ñth column.
Then we have the following lemma.

Lemma 3. The interchange operation decreases the average
energy on the outgoing edge of network coding node, if m > n.

Proof. We know that ψ0 < ψi ,∀i ∈ A and ψi = ψj =
ψ1 ,∀i, j such that i 6= 0, j 6= 0. Let the average energy before
the interchange operation be Wb and after the operation be Wa.
Then we have,

Wb −Wa = ψ0(piqm + pjqn) + ψ1(piqn + pjqm)

− ψ0(pjqm + piqn)− ψ1(piqm + pjqn)

= (ψ1 − ψ0)(pi − pj)(qn − qm) (3)

In (3), the right hand side is always positive. Hence, the
interchange operation decreases the average energy.

Theorem 1. A minimum energy network code for a node with
two incoming links is given by a latin square with 0s on the
main diagonal.

Proof. As stated previously, the average energy per channel
symbol depends on the positions of the 0 symbols on the
latin square representing the network code, since all the other
channel symbols has the same energy cost.

Due to the 2-dimensional nature of latin squares, starting
from any partially filled latin square of order M filled with M



4

number of 0s, we can obtain all such latin squares by applying
sufficient number of row or column switching operations.

From Lemma 3 we know that, to minimize the average
energy, we should apply row switching operations until the
index of the column containing the 0 symbol for ĩth row is less
than that of j̃th row for all i, j satisfying i < j. Sufficiently
applying this operation leads to the latin square with diagonal
entries filled with 0s. From Lemma 2, we know that a partially
filled latin square containing all the 0 symbols is completable.
Hence, we can always complete this partial latin square to
obtain a valid network code.

Therefore the minimum energy network code for the node
with two incoming edges is represented by latin squares with
their main diagonal filled with 0 symbols.

Next, we show that there exists linear (at the channel symbol
level) minimum energy network codes.

Theorem 2. The linear network code

fu = au1 + (M − a)u2, (mod M) (4)

is a minimum energy network code iff a is coprime with M .

Proof. It is shown in [21] that the mapping au1 + bu2
corresponds to a Latin square if and only if a and b are
relatively prime with M . Consider the mappings of the form
au1+(M−a)u2. Then if a is relatively prime with M , M−a
is also relatively prime with M , since otherwise,

∃k ∈ [M ] s.t. M − a = kM

a = (1− k)M (contradiction). (5)

Additionally, whenever u1 = u2, au1+(M−a)u2 = 0, filling
the diagonal of the corresponding Latin square with 0 symbols,
hence satisfying the minimum energy condition.

Corollary 1. There exists ϕ(M) # of linear minimum energy
network codes, where ϕ(.) is the Euler’s totient function.

Proof. Euler’s totient function gives the maximum number of
integers relatively prime with M that are less than or equal to
M . If a is relatively prime, then M−a is also relatively prime.
Then ϕ(M)/2 of the relatively prime integers are smaller
than M/2. Since we can obtain a different network code by
switching a and M−a (this is true since M/2 is not relatively
prime with M ), we have ϕ(M) number of linear MENCs.

V. NETWORK ENERGY MINIMIZATION WITH MINIMUM
ENERGY CHANNEL AND NETWORK CODES

In general, channel coding techniques are used to provide
reliability for point-to-point communications. Channel codes
use n-bit codewords as channel symbols, which are mapped to
the source messages. This mapping is one-to-one for unique
decodability. Hamming distance between two codewords is the
number of bits that they differ in. The minimum Hamming
distance among all the codewords of a code is called the
code distance. Code distance is the main metric that is used
to adjust the reliability of a channel code. With minimum
distance decoding, the received n-tuple is mapped to the
closest codeword in terms of Hamming distance. A code

corrects t errors, if it has code distance of 2t + 1. Codes
with larger distance are more reliable, as they can correct
more errors. The set containing all the codewords is called the
codebook and represented by C. Hamming weight or simply
the weight of a codeword is the number of non-zero symbols
in the codeword. Weight enumerator of a codebook is the
polynomial WC(z) =

∑
i liz

i, where li is the number of
codewords with weight i.

In [16], we developed a novel energy minimizing channel
code with controllable reliability, which is called minimum
energy coding (MEC), and showed its suitability for nanoscale
communications due to significant energy efficiency it pro-
vides compared to the classical block codes. Even though
we have assumed OOK in our previous work due to limited
complexity of nanoscale communications, MEC can also be
used with PSK-like constellations. We choose the codeword
set and sourceword-codeword mapping such that the average
energy is minimized. In Sec. V-B, we combine minimum
energy channel and network coding to minimize the total
energy dissipated in the overall network. The details of MEC
and its use in this work is given in Sec. V-A.

First, we review the minimum energy channel code, as pro-
posed in [16]. Later, we obtain the analytical results regarding
average energy per channel symbol for a relay node employing
MEC and MENC.

A. Minimum Energy Channel Coding

Minimum energy coding (MEC) maps the messages to
codewords such that the average codeword energy is mini-
mized under asymmetric modulation assumption. Even though
we assumed OOK in our previous work due to the complexity
requirements of nanoscale communications, the same idea
applies to M-ary modulations where a single symbol requires
less energy than the others. However, since our aim is not to
develop minimum energy codes for such modulations, we use
MEC as it is proposed in [16]. With such modulation, where
channel symbol with smaller energy cost is mapped to the 0
symbol, minimizing the average code weight is equivalent to
minimizing the average energy dissipated for communications.
Hence, in this section, we investigate the minimum average
weight by noting that a constant, i.e., energy per high symbol,
multiple of the minimum average weight yields the minimum
average energy per codeword. Let the message set µ be given
by µ = {x0, x1, ..., xM−1} with cardinality M , X be the
source random variable and X = xi be mapped to the
codeword ci. The following theorem is the main result of [16]:

Theorem 3. Let xi has probability pi ∈ {p0, p1, ..., pM−1}
and pmax be max(pi). For a desired code distance d, the
minimum expected codeword weight, E[w] is

min(E[w]) =


(1− pmax)d, pmax ≥ 0.5,
d
2 , pmax < 0.5, if d even⌈
d
2

⌉
− pmax, pmax < 0.5, if d odd

, (6)

where corresponding codebook has weight enumerator

WC(z) =

{
z0 + (M − 1)zd, pmax ≥ 0.5

zb
d
2 c + (M − 1)zd

d
2 e, pmax < 0.5.
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Therefore, depending on the probability of the most prob-
able source outcome, we either use the codeword set with
all-zero codeword, i.e., C0, with weight enumerator WC0 =
z0 + (M − 1)zd or the set with codewords of equal weight
of d/2 (for even d), i.e., C1, with weight enumerator WC1 =

zb
d
2 c+ (M − 1)zd

d
2 e. For both cases, the codeword with less

weight is mapped to the source with probability pmax.
When we employ MEC in networks, the probability cal-

culations are more tedious. It is important to discuss if we
can choose different sets of codewords at each node u in
the network. The best codebook selection for node u, i.e.,
the codebook minimizing the average transmission energy of
u, depends on the probability of the most probable event as
given in (6), for each edge e ∈ Γuout. This cannot always be
supported in networks, since any node u′, where e ∈ Γu

′

in needs
to distinguish between the selected codebooks, which requires
extra bandwidth. Since our aim is to minimize energy, we
assume that each source selects the codeword set minimizing
its average codeword energy, and codebook selection can
be inferred by the destination. In practice, the choice of
codeword set can be indicated with a single bit, since only
two codeword sets, i.e., C0 and C1 are sufficient for all the
source distributions, as the choice only depends on whether
pmax is greater or less than 0.5. Therefore, we assume that the
selected codeword set is perfectly announced to the receivers
without significant change in the performance.

B. Codebook Selection at the Relay

Each channel symbol i ∈ A represents a length-n codeword
ci composed of binary digits at the relay. Hence, there is a
one-to-one and onto mapping between the channel symbols
and codewords, i.e., ξ : {c0, c1, ..., cM−1} → A, where
ξ(ci) = i. From Section V-A, we know that the selection
between the codebooks C0 and C1 depends on the probability
of the most probable source event. Let source events be
sorted in decreasing probability order such that pi ≥ pi+1.
If probability of the most probable event, i.e., p0, is greater
than 0.5, codebook C0 is chosen, which assigns the all-zero
codeword for c0, and weight-d codewords for all the others,
where d is the desired Hamming distance of the code. If
p0 < 0.5, either all codewords are weight-d/2 if d is even,
or c0 has weight w0 = bd/2c and all other codewords
have weight wi = dd/2e if d is odd, with the selection
of codebook C1. In addition to source nodes, this coding
technique is also employed at the network coding node to
minimize energy associated with the outgoing edges. Since
either C0 or C1 is selected, without loss of generality, we can
say that weight(c0) ≤ weight(ci),∀i ∈ A.

Similar to MEC, for minimum energy network coding,
we determine the codebook at the relay by checking the
probability of the 0 symbol. We should consider the joint
probability distribution of the incoming symbols at the relay to
determine the outgoing symbol probabilities. Assume that the
symbols at the relay inputs are independent. Let pi and qi be
the probability that the symbol i is transmitted at the incoming
edges e1 and e2, respectively. Since MENC is represented by
an all-zero diagonal latin square, the probability of 0 symbol

at the relay, i.e., pR0 , is given by pR0 =
∑M−1
i=0 piqi. Then

we have the following theorem yielding the minimum average
codeword weight obtained with network coding at the relay:

Theorem 4. Let pi and qi be the probability that the symbol
i is received at the incoming edges e1 and e2 of the relay,
respectively. Then the minimum average codeword weight at
the outgoing edge of network coding relay is given by

min(ER[w])=


(1−

∑
i piqi) d,

∑
i piqi ≥ 0.5

d/2,
∑
i piqi < 0.5, if d even

dd/2e −
∑
i piqi,

∑
i piqi < 0.5, if d odd,

(7)
where the corresponding codebook has the weight enumerator

WC(z) =

{
z0 + (M − 1)zd,

∑
i piqi ≥ 0.5

zb
d
2 c + (M − 1)zd

d
2 e,

∑
i piqi < 0.5.

Proof. Let p̃0 =
∑
i piqi. Following the proof of Theorem 3

in [17] by replacing p̃0 with p0, (7) follows immediately.

Therefore, relay node should know
∑
i piqi in order to

select the codebook yielding the minimum average energy.
In dynamical environments where source probabilities change
in time, obtaining this term might not always be possible. In
order to relieve the relay, we show that it does not need the
probabilities of the incoming symbols, if p0, q0 < 0.5.

Lemma 4. Let pi, i ∈ {0, 1, ...,M−1} be a probability
distribution such that 0.5≥p0≥p1≥ ...≥pM−1≥0. Then,

arg max
(p0,p1,...,pM−1)

(∑
i

p2i

)
= (0.5, 0.5, 0, ..., 0). (8)

Proof. Proof follows easily from the fact that the optimum of
a convex maximization problem is at the boundary.

Lemma 5. Let u be the coding node in In-Two network, and
pi and qi be the probability that symbol i is received at the
incoming edges e1 and e2 respectively, where pi ≥ pi+1 and
qi ≥ qi+1, ∀i ∈ {0, 1, ...,M − 2}. Then we have,

If (p0 ≤ 0.5) ∧ (q0 ≤ 0.5)⇒
M−1∑
i=0

piqi ≤ 0.5. (9)

Proof. From Cauchy-Schwarz inequality, we have,∑
i

piqi ≤
√∑

i

p2i

√∑
i

q2i . (10)

From Lemma 4, we know that
∑
i p

2
i ≤ 0.5 if pi ≤ 0.5.

Therefore,
∑
i piqi ≤ 0.5 if pi, qi < 0.5

Hence, we conclude that if the most probable message of
the source node is less that 0.5, none of the coding nodes
in the network needs to know the probability distributions of
incoming symbols to select the energy minimizing codebook,
since then the probability of 0 symbol is always less than 0.5.

From a similar argument, we see that for the other cases,
such a conclusion is not possible. For example, if p1 < 0.5 and
q1 > 0.5, from Cauchy-Schwarz inequality,

∑
i(piqi) <

√
0.5.
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Fig. 1. LENC for In-Three network with M=3.

VI. LOW ENERGY NETWORK CODING FOR IN-N
NETWORKS

In-N networks are defined as the networks composed of
network coding nodes with N incoming edges. As we investi-
gate in Section IV-A, network codes for In-Two networks are
equivalent to latin squares. Similarly, when there are more than
two incoming edges, the object corresponding to the network
code is an N -dimensional latin square, i.e., a latin hypercube.
Next, we introduce the latin hypercube concept.

A. Latin Hypercubes as Network Codes

Consider an In-N network coding node. Reversibility con-
dition on the network code implies that, knowing any N − 1
number of inputs and the output, we should be able to deduce
the remaining unknown channel symbol at the input. In other
words, given any set of incoming symbols UR ⊂ In(R)
satisfying |UR| = N − 2, the network code mapping the
unknown two incoming edge symbols to the outgoing edge
symbol should be representable by a latin square. The object
satisfying this condition is called a latin hypercube.

Definition: An N dimensional latin hypercube of order M
is an MN cube such that each symbol i ∈ {0, 1, ...,M − 1}
appears only once through each line, where a line is the set
of values of the latin hypercube when all but one dimensions
are fixed.

Consider the case with N = 3. The structure corresponding
to a reversible network code becomes a latin cube with three
dimensions. Apart from rows and columns, the dimension
providing depth to the cube is called the file. Redefining the
latin structure for cube, we say a latin cube is a 3-dimensional
M × M × M matrix containing all the elements of the
set {0, 1, ...M − 1} exactly once in each row, each column
and each file. It is easier to visualize the structure for three
dimensions, however, difficulties arise in comprehending the
view of hypercubes with higher dimensions.

Due to the high dimensional nature of latin hypercubes,
the elegant and simple findings of minimum energy network
coding for In-Two networks cannot be obtained. As we see in
the following sections, even in the three dimensional case,
the minimum energy network code depends on the input
probabilities. Therefore, we present a network code which
provides low energy dissipation, if not minimum, for the
general In-N networks. We develop low energy network code
(LENC) by investigating the three dimensional case in detail.

B. Low Energy Network Coding - LENC

Assume that the source set cardinality M = 3 and the
network coding node has three incoming edges, i.e., N = 3.
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Fig. 2. LENC for In-Four network with M=3.

The reversible network code should be represented by a
three dimensional latin cube of order 3. Let the probability
mass function of the incoming flows be pi, qi and ri, i ∈
{0, 1, ...,M −1}, where the incoming symbols are x, y and z,
respectively. An example latin cube representing the network
code is given in Fig. 1. Each latin square gives the mapping of
the network code for a given x value, e.g. , considering node
u, the first latin square maps y and z to fu, when x = 0.

Assume p0 > q0, r0. From Section IV-B, we know that the
latin square with the main diagonal filled with 0 symbol pro-
vides the minimum energy. Hence, we should reserve this latin
square for the most probable event, i.e., for the largest pi. Since
pi’s are ordered such that pi ≥ pi+1, the minimum energy latin
square is reserved for p0 as shown in Fig. 1. Moreover, since
p0 > q0, r0, this selection provides the largest reduction in
average energy. However, it is not straightforward to select the
other latin square assignments, since the values of pi, qi and
ri for i 6= 0 determine this weight-minimizing mapping. For
example, the network code obtained by swapping the second
and third latin squares provides lower average energy than the
given one, if (q1 − q2)(r0 − r1) < (q0 − q1)(r1 − r2).

The above network code is obtained with cyclic shifts of
the rows. Note that the code value increases by 1 along z, and
by 2 along x and y dimensions. This selection of increments
is intentional to assure the reversibility of the network code.
Moreover, the provided network code is linear. We define the
generalization to more inputs and arbitrary source cardinality:

Definition: For a coding node u with N incoming edges
with symbols {u1, u2, ...uN}, and symbol set cardinality of
M , if p(uτ = 0) ≤ p(ui = 0),∀i 6= τ , the low energy network
code is,

fu = uτ +
∑
i 6=τ

(M − 1)ui (mod M). (11)

Lemma 6. The low energy network code is reversible.

Proof. A reversible network code should be representable by
a latin hypercube. Therefore, given any N − 2 inputs, the
mapping should be a latin square. Let the unknown inputs
be (ui, uj). If i, j 6= τ , the mapping is given by fu = c +
(M − 1)ui + (M − 1)uj , where c is a known constant. This
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(a) M = 8

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 E
ne

rg
y

Standard Deviation

 

 

MENC
RAND, Worst
RAND, Average
RAND, Best

(b) M = 64
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(c) M = 256

Fig. 3. Average energy to transmit 1.6 MB at the relay with MENC for varying standard deviation for different M values.

corresponds to a valid latin square, since (M − 1) is coprime
with M (see proof of Theorem 2). If either i or j is τ , the
mapping is the minimum energy latin square.

Lemma 6 assures that the LENC is representable by a
valid latin hypercube. We aim to map minimum energy latin
square, i.e., the latin square with all-zero diagonal, to the more
probable incoming combinations by choosing the coefficient
of (M−1) for all but the least probable events. For example, if
p0 > q0, r0, the minimum energy latin square is assigned to the
mapping of (u2, u3), when u1 = 0, which is highly probable,
leading to significant decrease in the average energy. The code
provided in Fig. 1 is actually a LENC, for r0 < q0, p0.

Another example LENC is shown in Fig. 2. Let u1, u2, u3
and u4 be the incoming edge symbols with pmf’s of pi, qi, ri
and si respectively. Assume that s0 < p0, q0, r0. Then LENC
is given by the mapping fu = u4 + (M − 1)(u1 + u2 +
u3) (mod M). To visualize the 4 dimensional latin hypercube
corresponding to the LENC, latin squares corresponding to
each (u1, u2) pair is demonstrated with varying u3 and u4.

VII. PERFORMANCE EVALUATION

In this section, we conduct numerical evaluations to illus-
trate the performance of MENC and LENC in In-Two and
In-N networks for different source probability distributions.

A. Minimum Energy Network Coding

1) MENC vs. RAND for Asymmetric Energy Cost: Assume
that the cost of transmitting a channel codeword ci, i.e., ψi,
is constant for all i’s but i = 0, and ψ0 = 0. We take an
exponential probability distribution (pdf) with parameter σ
in MATLAB, sample it M times and normalize to obtain a
probability mass function (pmf). We investigate the average
energy required at the relay node to transmit a 1.6 megabyte
(MB) message. Assume that the energy per codeword depends
logarithmically on M and is 1 microjoules (µJ) for M = 256.

Fig. 3 shows the variation of average energy required to
transmit the message with respect to the standard deviation of
source distribution for M = 8, M = 64, and M = 256. 1000
randomly filled latin squares representing random network
codes are used. As observed in the figure, MENC reduces
the average energy significantly compared to the average
performance of random network codes, especially for small

σ, i.e., if the distribution is far from being uniform. MENC
also achieves better performance than the best random network
code out of 1000 trials. The fact that such performance is
achieved with linear network codes is also important. Every
network code perform the same for large standard deviation
as expected, since the distribution becomes almost uniform.

2) MENC vs. XOR with MEC as the Channel Code:
Second, we compare the proposed minimum energy network
code for In-Two networks with the classical XOR network
coding. It is important to note that, XOR network coding
satisfies the minimum energy conditions for the binary field.
However, with the employment of channel code to provide
reliability, XOR, even though significantly reduces, does not
minimize the average energy. We consider the scenario where
the input probability distributions pi, qi satisfy the condition
p0, q0 > 0.5, since for p0, q0 < 0.5, as shown in Section V-B,
minimum average weight does not vary with the source pmf
and can be achieved with MEC only.

Fig. 4 shows the minimum average weight comparison for
XOR network code, random network code and MENC. The
scenario with Hamming channel code instead of MEC is also
provided for comparison. For fairness, MEC with M = 16 and
d = 3 is compared to (7,4) Hamming, which also has code
distance of 3. As expected, employing MEC at the source
nodes greatly reduces the energy per codeword at the relay,
since codewords are selected to minimize the average energy.

Note that different from Sec. VII-A1 MENC performs better
for large σ, i.e., for more uniform distributions. This is due to
that energy per channel symbol decreases with decreasing σ
for both XOR and MENC, since each satisfies the minimum
energy condition. However, XOR minimizes energy in the
binary field, and further energy reduction is obtained with
MENC when codeword length is greater than 2. Using MENC,
network capacity can be achieved with almost half the energy
required with XOR for uniform distributions.

It is important to underline that the reduction in energy
obtained via minimum energy network coding is multiplied by
the number of nodes in the network to obtain the overall energy
reduction. Hence considering a large network and the fact that
many codewords are required for a packet to be transmitted,
this reduction in average codeword weight translates into
drastic energy savings. For example, consider 1.6 MB of data.
If we take M = 8, 3 bits are transmitted per codeword. Hence
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Hamming, XOR with MEC, random network coding with MEC and MENC
with MEC for In-Two networks.

Algorithm 1 Latin Hypercube Generation
X0 ← N − dimensional M th order empty matrix
X ← X0

i← 0
j ← 0
while i < MN do
M← {0, 1, ...,M − 1}
flag ← 1
while flag do

for j = 1 to M do
r ← rand (M)
X(i)← r
if isLatin(X, i,M,N ) then

flag ← 0
i← i+ 1

else
M←M− {r}

end if
end for
if j = M & flag then

i← 1
flag ← 0
X ← X0

end if
end while

end while
return X

8.312 number of codeword transmissions are required.

B. Low Energy Network Coding

Network codes for In-N networks are represented by latin
hypercubes. To compare the performance of our low energy
network code with random network codes, we should generate
latin hypercubes in MATLAB. We first present our algorithms
for latin hypercube generation. Later, we provide the perfor-
mance comparison results for In-N networks.

1) Latin Hypercube Generation Algorithm: We use Algo-
rithm 1 as a heuristic for latin hypercube generation. In the
actual code, an additional control variable is employed, which
stops the search if no progress is shown after a number of
trials, which is omitted here for simplicity. isLatin is a simple
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Fig. 8. Average energy per codeword for, random network coding, MENC
and LENC for In-Three networks. p0, q0, r0 > 0.5

algorithm (not shown) used to check if X , i.e., the high dimen-
sional matrix representing the latin hypercube, still possesses
the latin property after each step. Although not explicitly
provided, the index M is used to obtain Sj . The proposed
algorithm successfully generates randomly filled latin hyper-
cubes with low dimension and small order. However, since the
number of entries to fill increases drastically with increased
dimension and order values, there is no guarantee that this
algorithm will successfully generate large latin hypercubes.
For example, despite significant wait time measured in days,
we could not obtain any 3 dimensional latin hypercube of
order 6 with this algorithm. Checking every hypercube is also
not feasible since there are 66

3

possibilities. The lack of any
relevant results in the literature prevents us to provide perfor-
mance results for large latin hypercubes. However, the essence
of low energy network coding is successfully illustrated with
the following results.

2) LENC vs. RAND for Asymmetric Energy Cost: Assum-
ing normalized energy of 1 unit per codeword for all but one
of the codewords, we compare the performance of LENC
and random network code in terms of average energy per
codeword. Fig. 5 illustrates the results for In-Three, In-Four
and In-Five networks. For each dimension, we generate 100
random latin hypercubes of order 3 and obtain the minimum,
average and maximum energy values corresponding to these
random network codes. As observed in the figure, developed
low-energy network code performs almost as good as the best
random network code. Deterministically achieving such low
energy values with LENC is of great importance. Moreover,
this energy dissipation is achieved with linear network coding
due to the linear nature of LENCs.

When the distribution has small standard deviation, most
of the probability mass is accumulated towards the origin,
i.e., the upper left symbols, of the latin hypercube. Therefore,
the difference between the maximum and minimum energy
values of random network codes increases. If the channel
symbol with low energy dissipation overlaps with the high
probability region of the latin hypercube, energy is greatly
reduced, whereas in the opposite case, energy reduction due
to asymmetric energy cost of the codewords is insignificant,
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(a) In-Three
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(b) In-Four
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(c) In-Five

Fig. 5. Normalized average energy per codeword at the relay with LENC and random network code vs. standard deviation for different # of input edges.
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Fig. 6. Normalized # of random network codes (probability) and corresponding normalized average energy per codeword at the relay of In-Three network
with random network code for M = 4 for standard deviation of σ = 0.5, 0.3 and 0.1. Red line shows the normalized average energy per codeword of LENC.
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Fig. 7. Normalized # of random network codes (probability) and corresponding normalized average energy per codeword at the relay of In-Four network
with random network code for M = 4 for standard deviation of σ = 0.5, 0.3 and 0.1. Red line shows the normalized average energy per codeword of LENC.

which causes the polarization of energy with random network
coding, as observed in the figure. The dimension does not
vary this behavior, but increased dimension requires smaller
deviation to achieve significant energy efficiency.

3) RAND Histogram vs. LENC: To better illustrate the fact
that LENC provides low average energy values compared
to random network codes, and in an attempt to reveal the
probability that energy associated with LENC is less than that
of random network codes, we use average energy histograms
of latin hypercubes in Fig. 6 and 7. The vertical red lines show
where the corresponding LENCs stand in terms of energy.

Fig. 6 shows the number (normalized to probabilities over

the uniform measure on the observed latin cubes) of random
network codes with corresponding average energy values
out of 10000 random network codes for different standard
deviation values for In-Three networks with M = 4. Smaller
deviation polarizes the average energy between 0 and 1, as
explained in Sec. VII-B2. As shown in the figure, probability
that random network code provides smaller average energy
than LENC is 0.121, 0.0688, and 0.0368 for σ = 0.5, σ = 0.3
and σ = 0.1, respectively, when network code is uniformly
randomly chosen.

Similar results are obtained in Fig. 7, with 100 trials for 5th
order In-Three and 4th order In-Four networks, respectively. It
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is observed that, with increased dimension, smaller standard
deviation values are needed to increase the probability that
LENC performs better than the random network code, which
is consistent with the findings in Sec. VII-B2.

4) LENC vs. RAND with MEC as the Channel Code: Since
the probability calculations and determining MENC for In-
N networks is tedious, we only consider In-Three networks
with M = 3 to compare MENC with LENC. Fig. 8 shows
the variation of the energy in 3th order In-Three networks.
The underlying network code is LENC represented by the
latin cube in Fig. 1. Performance of LENC is compared
with MENC and random network coding. The random code
is run 1000 times and the resulting minimum, average and
maximum expected weights are given. As shown, LENC
clearly outperforms the random network coding. Note that
LENC corresponds to MENC in this case.

VIII. CONCLUSION

We developed network codes minimizing the average code-
word energy for In-Two networks. The linear codes fu =
au1 + (M − a)u2 ∀a ∈ [M ] s.t. a is relatively prime with M
satisfy the minimum energy conditions. Furthermore, we pro-
posed a linear low energy network code for the general In-N
networks and showed that it performs nearly as good as the
best random network code in a deterministic manner. Simula-
tions show that LENC provides much better performance in
terms of average energy compared to random network codes.
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