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Summary 

Optimising the drug discovery process remains one of the largest challenges in medicine. 

Learning from previous compound-target associations as well as the process of optimising 

compounds will allow for a more targeted and knowledge-based approach. The aim of the first 

research chapter of this thesis is to understand where novel chemistry is first published. It is 

well established that the number of publications of novel small molecule modulators, and their 

associated targets, has increased over the years. This work focuses on publishing trends over 

the years with a focus on the comparison between patents and scientific literature, which is 

accessible via the ChEMBL and GOSTAR databases. More precisely, the patents and 

scientific literature associated with bioactive molecules and their target annotations have been 

compared to identify where novelty (in the meaning of the first modulator of a protein target) 

originated. Comparing the published date of the first small molecule modulator published in 

literature and patents for a target (with the modulators having either identical or different 

structures) shows that modulators are usually published in both scientific literature and in 

patents (45%), or in scientific literature alone (51%), but rarely in patents only. When looking 

at the time when first modulators are published in both sources, 65% of the time they are 

disseminated in literature first. Finally, when analysing just the novel small molecule 

modulators, regardless of the protein targets they have been published with, those structures 

representing novel chemistry tend to be published in patents first (61% of the time). It is 

concluded that novel chemistry, when associated with a target, is primarily published in the 

literature, therefore, when exploring known chemistry for a specific known target, this should 

be identified from the literature.  

Following this, it is important to understand how chemists optimise compounds, and we use 

matched molecular pair analysis (MMPs) to this end, which allows us to compare the 

properties of two compounds that differ by only one chemical transformation and are important 

for the compound to be success as a drug. In this part of the thesis, we statistically analyse 

the most frequently observed MMPs within drug discovery projects by using the compound 

registration dates to determine the order in which compounds were made within projects and 

aggregate the findings over all internal projects in AstraZeneca. For those MMPs that are 

commonly observed in projects, we compare this frequency to the frequency of reverse 

change in structure, to determine if there are preferences in the chemical changes made in 

projects over time. Furthermore, we analyse the neighbouring environments for the position 

where the molecule has changed. 957 unique MMPs were found to occur at least 100 times 

across projects, comprising 81 unique molecular fragments as starting points and 197 unique 

molecular fragments as end points of MMPs. The most frequently occurring MMPs as well as 
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the most frequently occurring atomic environments differ between aliphatic and aromatic 

systems. Overall, this study provides a data-driven method to analyse the order in which 

molecular fragments are incorporated into molecules in drug discovery projects. This 

knowledge can be used to help guide decisions in future compound design. 

Finally, relating these MMP findings to the measured assay results allows an overview to be 

made about the how the compounds themselves evolve throughout the project. MMPs are 

used when designing of new compounds to exploit existing knowledge of the effect of a 

molecular transformation on compound properties (such as binding, solubility, logD etc) and 

apply this to new compounds with the expectation of seeing the same outcome. The effect on 

physicochemical properties as measured in assays, from transformations on specific atomic 

environments since the year 2000, have been analysed via a time course analysis. This allows 

us to observe the effect of the transformations over time. In total 453 unique transformations 

were analysed. It highlights that even when just comparing between aromatic and aliphatic 

systems on a higher level, changes can be observed and shows that when designing a 

compound, consideration of the atomic environment is essential. These results can be used 

to identify the structural change that would improve a compound profile going through the 

design process; saving time, resources and money. Additionally, specific examples have been 

extracted for discussion. Notably, those examples that are considered extreme outliers, which 

generally refer to transformations involving a very large property change of the compound (±4 

standard deviations). These extreme outliers highlight the need to always consider outliers in 

the analysis as they may be of importance but retaining them within a study may obscure 

additional results. Therefore, it is suggested to acknowledge these outliers, but not include 

them in the main study. Furthermore, case studies are given that show unexpected changes 

in property values when the logD increases such as solubility also increasing and is shown to 

be the result of surrounding chemistry of the atomic environment. 
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1 Introduction 

 

1.1 Drug Discovery Process 

Drug discovery is a long, expensive and complex process1, only a small proportion of 

molecules that are identified as a candidate drug are approved as new drugs each year2. It 

was found that of the 98 companies analysed, that had only launched one drug within the 

decade, $350 million was the median cost of approved drugs developed by a company1. 

Whereas, when looking at companies that approve between eight and 13 drugs over 10 years, 

the costs per drug were calculated as much as $5.5billion1.  

A general overview of a typical drug discovery process (Figure 1) is split up into several 

different stages3. 

 

Figure 1: A general overview of a drug discovery process from target identification to the clinical testing 

 

While there is no one definite way to arrive at a novel drug, starting with natural products 

provides one convenient source of novel drug leads4 or via phenotypic screening methods5. 

Today, drug discovery is being led by techniques such as high-throughput screening and 

empirical screening which involves screening libraries containing chemicals against targets in 

a physical way. However virtual screening, which screens libraries computationally for 

compound chemicals that target known structures and having them tested experimentally, has 

become a leading method to predict new structures6. Experimental testing confirms that 

interactions between the known target and the desired compound is therefore optimised in 

order to maintain or improve favourable properties3 including biological activity, whilst reducing 

or eliminating negative properties (such as toxicity). 

 

1.1.1 High-Throughput Screening (HTS) 

A hit compound is a compound that has been shown to have activity against a particular 

target7. A frequently used approach for the identification of a hit is via means of high-

throughput screening (HTS). HTS refers to the process of screening and assaying compounds 
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against targets on a large scale8. Following the development of an assay, high throughput 

screening is one of the most commonly applicable methods that allow for the identification of 

a lead compound. 

HTS utilises robotics and automatized technologies that allow for rapid tests, such as 

pharmacological tests, to be conducted. The fact that large numbers of compounds can be 

screened in small assays against biological targets at the same time has made HTS a powerful 

tool in the combat of discovering new medicines. Before the birth of this technique, the 

approach was done manually and only allowed for between 20-50 compounds to be analysed 

each week9. However, with new and improved techniques for identifying potential targets 

began emerging, it became clear that this methodology could not be sustainable and more 

efficient technologies and methodologies that were cost effective would need to be introduced.   

The future of HTS was discussed recently by Mayr and Fuerst10. This paper notes that over 

time, particularly in the last 20 years, HTS has adapted to the needs and requirements of lead 

discovery such as improved quality whereas, previously the focus had been on quantity by 

implementing miniaturisation techniques. Yet, in recent years there has been some 

disagreement between achieving ‘quantity’ and consideration of the relevance of the data. 

Mayr et al., argues that with the implementation of plates with larger numbers of wells being 

used, such as 384-well plates to conduct the assays, focus will move away from 

miniaturisation and towards increasing the relevance of each hit-finding strategy10. An 

essential ingredient to the successful improvements for this technique will be the curation of 

adequate chemical libraries that contain good diversity and drug-like properties10,11. Therefore, 

knowing where to find relevant compounds and where they are published to incorporate into 

screening libraries is highly important to improve HTS.  

 

1.1.2 Lead Optimisation 

Lead optimisation refers to the process of designing and improving a pre-identified lead 

compound, and involves manipulation of multiple parameters of the compound12, relying on 

chemical modifications to the compound. The purpose is to improve the compound properties 

to the best they can be in terms of the biological activity with respect to on and off target; 

absorption, distribution, metabolism, excretion and toxicity (ADMET) profiles of a compound 

are the focus of the lead optimisation efforts. Using drug metabolism and pharmacokinetics 

(DMPK) parameters in lead optimisation (both in vitro and in vivo) is a focus of research 

organisations to aid in producing compounds that fall with an acceptable range in terms of 

these properties13.  
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Due to the magnitude of different effects a compound can have in the body, there are several 

criteria that are considered when producing new medicines. Several factors are of focus in the 

discovery of new drugs including absorption (ability of the compound to be taken up into the 

blood stream), distribution (how the compound is moved around the body to its desired site), 

metabolism (how well the compounds are broken down once in the body), excretion (how the 

compounds and any metabolites are removed from the body) and toxicity (any negative effect 

the compound will have on the body) (ADMET). However, these properties are not only 

considered during the lead optimisation phase and are monitored throughout earlier drug 

development stages14. These properties are explored in the following sub sections and are 

also summarised in Table 1. 

 

These properties are assessed through various assays discussed below as well as in section 

1.1.4, which allow for changes in the property values to be recorded as the compound is 

modified. 

 

1.1.3 Assessing biological activity and ADMET properties 

Hits that are intended to become leads are assessed for the chemical, synthetic and functional 

behaviours by using structure-activity-relationships (SAR) as well as their physicochemical 

and potential toxicology profiles by analysing the compounds absorption, distribution, 

metabolism, excretion and toxicity (ADMET) properties. The biological activity of the lead 

compound can be considered one of the most important properties and during the lead 

optimisation process is carefully considered15. These profiles should be determined as early 

as possible to prevent failure later on which amounts to increased costs16. Experimentally, 

these properties are tested and measured in various assays a seen below (Table 1).  

 

Table 1: Summary of important assays used to test suitability of compounds 

Test Applications Limitations Advantages 
Caco-217 Assess the 

permeability and 
absorption and 
model the intestinal 
barrier 

Does not tolerate organic 
solvents 
Sensitive to excipients 
Sensitive to different 
environments and cultures 
Takes 21 days for the cells 
to differentiate 

Reduces need for 
animal studies 
Aid in understanding of 
transport mechanism 
and drug pathway 
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LogD18 Measure of 
lipophilicity of the 
compound 
specifically, the 
dissociation of 
weak acids and 
bases 

Mathematical and 
experimental derived values 
cannot be easily compared 

Takes into 
consideration the pH 
dependence of the 
molecule in an aqueous 
solution 

Solubility19 Assess the 
saturation 
concentration of a 
solute in a solvent 

Depends on the presence of 
other species in the solvent 

Can be characterised 
into levels of solubility, 
regardless of solvent 
used.  

Microsomal 
Metabolism20 

Used to investigate 
compound 
metabolism and 
clearance 

Microsomes do not exist in 
healthy, human cells. 
Expression and activity of 
CYP enzymes is variable 
depending on factors such 
as genetics and 
environmental aspects.  

Can observe CYP 
(cytochrome P) 
enzymes. 

Hepatocyte 
Metabolism21 

Used to investigate 
compound 
metabolism in 
hepatocytes 

Limited by donor availability 
Limitations in adult 
differentiated hepatocytes 
proliferate in culture 

The liver is the primary 
place that drug 
metabolism takes place 

hERG IC50
22 Used to assess 

cardiac toxicity by 
inhibition of hERG. 

The binding assay does not 
have agonistic or 
antagonistic effects 
information 
The binding assay cannot 
identify when a compound 
only binds to one state or 
other sites of the channel 
Manual methods, are 
technically difficult 

The binding assay is 
low cost and can be 
used in high-throughput  
Can use automated or 
manual methods 
depending on individual 
requirements/ aims 

1.1.3.1 Biological Activity (On and Off-Target) 

The biological activity of a compound can be described as the ability to cause an effect in the 

biological process23.  

Activity is quantified by a dose-response relationship and often the experiment will be repeated 

at varying doses and then assessed for what the drug actually does against what the drug is 

and how much is present23. The focus of the observation can lead to differences in how the 

activity is measured and therefore, different equations and different definitions exist for 

understanding biological activity. 

𝐴 = 𝑐𝑓 

Equation 1: Definition of a biological activity of an entity proposed by Jackson et al23. 
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Jackson et al.23 proposed a relationship between the thermodynamic activities of a solute with 

its concentration (Equation 1) via an activity coefficient. In this equation, A is the activity, c is 

the concentration of substance and f is the inherent activity, therefore both biological and 

chemical considerations are maintained. 

Activity concentration is measured by several values including, EC50, IC50, Ki and Kd. The Kd 

is the dissociation constant24 that measures how much a large object dissociates reversibly 

into smaller constituents (Equation 2). Where [AxBy] is the complex concentration and [A] and 

[B] represent the subunit concentrations. 

 

𝐾& = 	
[𝐴]*[𝐵],

[𝐴*𝐵,]
 

Equation 2: The dissociation constant 

 

The value of Ki represents the concentration required to produce half the maximum inhibition25 

(Equation 3), where [S] is the substrate concentration and Km is the substrate concentration 

(without an inhibitor) at the half-maximal velocity of the reaction:  

𝐾- = 	
𝐼𝐶01

1 + [𝑆]
𝐾5

 

Equation 3: The inhibition constant 

 

While IC50 is the concentration required to cause an inhibitory effect by 50%, and can also be 

computed using the above equation, once rearranged. Alternatively, it can be calculated via 

linear regression techniques such as via Equation 4. 

𝐼𝐶01 = 	
(0.5 − 𝑏)

𝑎  

Equation 4: The half maximal inhibitory concentration equation 

 

EC50 corresponds to the half maximal effective concentration, and can be described by many 

different equations, such as in Equation 5, where Y is the observed value, Z is the lowest 

observed value, A is the highest observed value as well as the Hill coefficient (largest absolute 

value of the slope of the curve, (as shown as Equation 6)). The Hills equation26–28 describes 
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an important relationship in biochemistry/pharmacology since ligand binding is often enhanced 

in the presence of other ligands that are bound on the same target and so the equation allows 

us to understand the fraction of the target that is saturated by the ligand as a function of the 

ligand concentration. In the Hills equation, θ is the fraction of the target concentration that is 

bound to the ligand. [L] represents the unbound ligand concentration. The Kd and KA values 

refer to the dissociation constant and the ligand concentration that occupies half the binding 

sites, respectively. Finally, n represents the Hills coefficient which describes ligand binding in 

terms of cooperativity where a positive cooperative binding score refers to the affinity of 

ligands increasing given another bound ligand.  

𝑌 = (𝑍) +	
(𝐴) − (𝑍)

1 + ( 𝑥
𝐸𝐶01

)B(C-DD	EFGHH-E-GIJ)
 

Equation 5: Equation to derive EC50 

	𝜃 = 	
[𝐿]I

𝐾& +	[𝐿]I
= 	

[𝐿]I

(𝐾M)I 	+	 [𝐿]I
= 	

1

(𝐾M[𝐿])
I + 1

 

Equation 6: Different ways to describe the Hills equation. 

 

The off-target biological activity of a compound is the activity that occurs that is not related to 

the intended biological target. Any off-target interactions, can be high risk in terms of negative 

side-effects. Alternatively though, off-target interactions can be beneficial, especially, as a 

therapeutic agent for a different condition29. Off-target toxicity is discussed in more detail 

further on. Another key advantage to such polypharmacological methods is that in instances 

such as cancer where drug resistance is frequently observed, drugs targeting multiple-targets 

which are part of a greater biological process are less likely to develop such resistance29–31. 

The ADMET properties are important in the lead optimisation process as they dictate how well 

a compound will succeed within the body. Lead optimisation also addresses changes that will 

positively improve these properties (ADMET), as well as activity. 

 

1.1.3.2 Absorption 

Absorption, in terms of pharmacology, refers to the ability of a compound to move from the 

target site and into the bloodstream32. For a drug to be absorbed it must be in solution, 

meaning that in solid forms, such as tablets (oral drugs), the tablet must be able to dissolve 

under the relevant conditions33. Generally, oral drugs need to be able to cross cell membranes 
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and can do so in a variety of ways, such as passive diffusion, facilitated passive diffusion, 

active transport and pinocytosis33.  

The key physicochemical properties for absorption are both solubility and permeability34. 

These properties are affected by several physical properties, including the molecular size and 

lipophilicity, and therefore can be modelled to estimate oral absorption. Such models have 

been published in attempts to increase the absorption including in 1997 the well-cited 

Lipinski’s Rule of Five35.  

During the lead optimisation process, ‘rules’ provide rough guidelines to ensure that a 

particular compound falls within a range that is likely to have favourable ADME properties. 

These properties are assessed through various assays. Generally, chemists aim to reduce 

clearance by human microsomal metabolism, human hepatocyte metabolism and rat 

hepatocyte metabolism. It is also favoured to reduce hERG inhibition (less risk of 

cardiotoxicity) and human Caco-2 efflux ratio so that the drug stays in the cell long enough to 

have an effect. Whereas, chemists aim to increase the aqueous solubility and Caco-2 intrinsic 

permeability as they aid in the drug’s ability to get to its desired location in the body. LogD 

tends to have a neutral preference of property value change, as it is a physical property that 

correlates with many other endpoints36. 

 

1.1.3.3 Distribution 

Distribution is formally concerned with the movements of a drug between the blood and 

tissue37, although how the drug is distributed within the tissue has also been assessed32. 

In the drug discovery landscape, plasma protein binding is assessed experimentally as it may 

give insight into the drugs behaviour particularly, its distribution38. In addition, to predict how 

much a drug has been distributed throughout the body, the administered dose is divided by 

the concentration of plasma39 (Equation 7) . 

𝑉𝑜𝑙𝑢𝑚𝑒	𝑜𝑓	𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 	
𝐴𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑	𝐷𝑜𝑠𝑒	(𝑚𝑔)

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑃𝑙𝑎𝑠𝑚𝑎	(𝑚𝑔𝐿 )
 

Equation 7: Equation to assess the extent of drug distribution throughout the body 

 

1.1.3.4 Metabolism 

Metabolism refers to the process of the metabolic breakdown of a drug within the body and is 

a two-phase process, with phase zero and phase three, of which are frequently cited in the 
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literature, referring to entry into the cell and export. In the first phase, the drugs may be 

oxidised, reduced, or hydrolysed for the purpose of introducing a reactive group, while in the 

second phase reactions may include sulfation, acetylation or methylation to conjugate with 

polar moieties40 as these are easier to excrete.  

The family of cytochrome P450 enzymes are important in the role of drug metabolism, for 

which the expression of these enzymes is influenced by a variety of factors including genetic, 

polymorphisms, hormones and the general metrics of the individual (such as age, sex etc.)41. 

Differences in drug response amongst patients is also an important consideration40.   

 

1.1.3.5 Excretion 

There can be confusion amongst the terms drug excretion, drug elimination and drug 

clearance, with many individuals citing drug elimination and excretion as the same thing42. 

However, they can refer to separate processes in different publications. Such as drug 

excretion43 is the loss of the drug from the body, drug elimination44, describes the removal of 

the drug from the body or is described as the loss of the drug from the site of measurement 

within the body. Drug clearance44 refers to drug elimination without the identification of the 

mechanism of the process.  

The kidneys, as well as the liver, are the major organs, although not restricted to, in the body 

that deal with drug elimination. When excreted from the kidneys, drugs are excreted by 

glomerular filtration and by active tubular secretion. The more bound the drugs are to plasma 

proteins, the less likely they are to be filtered by glomerular filtration, whereas, this factor is 

independent for tubular secretion45.   

 

1.1.3.6 Toxicity 

The toxicity of around one-third of drug candidates is estimated to be the reason for their 

attrition and contributes heavily to the high costs of drug discovery46. The toxicity of a drug 

can be caused by several reasons including chemical, on and off target toxicity. On target 

toxicity is caused by adverse effects at the desired target, whereas, off target toxicity refers to 

those caused by other targets that are modulated by the drug, often undesired47.  

It is extremely important to ensure that compounds target only the proteins they need to and 

not also other proteins that may cause adverse side effects. For this reason, when searching 

for new drug targets, in diseases caused by a pathogen such as a parasite or a bacterium, 
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targets that are found in the microorganism but not the human host are desirable. This means 

the drug can only interact with the pathogen and not the human host, thereby increasing 

selectivity (and decreasing toxicity) in this way in many cases. 

 

1.1.4 Assay Test Results 

A variety of different assays are performed by chemists to assess how a compound will fair 

within the body, particularly in areas such as permeability and solubility. Generally, in vitro 

assays on their own do not represent a whole human system; therefore, the predictions of 

adverse effects must be carefully considered.  

To assess permeability and absorption, chemists analyse Caco-2 cell monolayer in and out of 

the cell, allowing them to understand and model the intestinal barrier (most notable the human 

small intestinal mucosa). Caco-2 cells originate from human colorectal adenocarcinoma and 

growth in monolayer epithelial cells.  

Chris Lipinski discussed48 screening doses on Caco-2 permeability assays and explained that 

if the dose is too low, then you can overestimate the importance of efflux transporters but if 

the drug concentration is too high, the transporters in which the compound translocate via can 

become saturated. Due to the heterogeneous nature of the cells, a variety of transports 

(absorptive and efflux) may be present and results will vary from laboratory and laboratory. 

Caco-2 cells develop into small intestinal cells, however, cell differentiation takes at least 21 

days49. They are sensitive to excipients, which means that the original potency and 

functionality may not be well represented. Additionally, they do not tolerate organic solvents 

and so when studying in this situation, caco-2 cells are not ideal50.  

LogD (distribution coefficient) is the log of the partition of a compound between the lipid and 

aqueous phases and represents a compound’s lipophilic nature and is used to predict the in-

vivo permeability51 (Equation 8). 

𝑙𝑜𝑔𝐷]EJ
^_J

= log c
[𝑆𝑜𝑙𝑢𝑡𝑒] 	+FEJ_IFD

-FI-dG& 	[𝑆𝑜𝑙𝑢𝑡𝑒]FEJ_IFDeIB-FI-dG&

[𝑆𝑜𝑙𝑢𝑡𝑒] 	+f_JGg
-FI-dG& 	[𝑆𝑜𝑙𝑢𝑡𝑒]f_JGgeIB-FI-dG&h 

Equation 8: Equation to calculate logD 

 

Frequently, logP is used in place of logD; however, logP only considers neutral compounds 

rather than ionizable compounds. LogD accounts for a molecules pH dependence in aqueous 

solution51. This is an important factor as the human body does not maintain a single pH, 
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instead it changes throughout the body as well as whether the individual has fasted or been 

fed52. Comparisons of mathematical and experimental calculations are not easily made as 

logP varies in range between the two methods53.  

Solubility is another important property that is measured. It is the property of a solute to 

dissolve in a solvent. It has been suggested that over 40% of new chemical entities are 

insoluble19. Solubility is measured as the saturation concentration so when adding more 

solute, the concentration in the solution does not increase54. There are several techniques that 

formulation scientists can use to improve the solubility of the compounds. These methods can 

include changing the pH and using buffers or even the use of novel excipients19. Solubility can 

be influenced by the species in the solvent, however, the USP (United States Pharmacopeia)55 

and BP (British Pharmacopoeia)56 have classified solubility, regardless of the solvent used. It 

is based on part of solvent that is required per part of solute. The lower the part of solvent 

required per part solute, the more soluble it is considered.   

Following this, microsomal metabolism is analysed in both human and animals. After death, 

human livers are extracted as soon as possible57, whereas for animals, they are bred for 

preclinical studies. Microsomes are not present in living, healthy cells, but are reformed from 

parts of the endoplasmic reticulum during laboratory procedures to break up cells58. 

Microsomes are used, to assess the metabolism of compounds and they can express key 

enzymes in the drug metabolizing process, most notably cytochrome P enzymes. It is 

estimated that 60% of marketed drugs are substrates for CYP enzymes20. However, it is 

important to note that the expression and activity of these enzymes varies greatly from 

individual to individual as they are affected by a wide range of genetic and environmental 

factors41.  

As well as microsomal metabolism, hepatocyte metabolism is also assessed in vitro. 

Hepatocytes, make up approximately 80% of the livers mass59. However, this analysis is 

limited by hepatocyte donors as well as the ability of adult differentiated hepatocytes to 

proliferate in culture60.  

Finally, functional scientists analyse hERG (human Ether-à-go-go-Related Gene), which 

contributes to the hearts electrical activity and is used in assays to assess cardiac toxicity.  

Due to this contribution, it is a common reason that drugs fail preclinical testing when the 

compounds interact with this target, as interruptions to the hearts electrical activity can be 

fatal. Therefore, the risk is weighed up against the disease the compound is being used to 

treat. For example, a compound, that is being used to treat a non-life-threatening illness, that 

interacts with hERG that could potentially induce torsade de pointes arrhythmia. Cisapride is 
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a drug that was removed from the market for this reason and it was shown that it only induced 

torsade de pointes arrhythmia in approximately 1 out of 120,000 patients61. The hERG binding 

assay, is not a functional test and therefore does not highlight the agonistic or antagonistic 

effects of the compound and it does not identify which state the compound binds to on the 

channel, nor which sites it binds to22. Therefore, it requires compounds to be followed up with 

a functional assay test such as by use of a patch-clamp assay. This measures the interactions 

between a compound and hERG and can be automated or manually performed. Manual 

methods, are low throughput and technically difficult, but good for determining the IC50 of 

compounds. Automated methods, can be performed at high throughput and is cheaper, but 

offers less flexibility22.  

 

1.2 Compound Sources and Comparison 

Generally, there are different types of compound sources available, such as publicly available 

datasets such as, ChEMBL 2162–64, datasets that require paid access to such as GOSTAR of 

which also includes data from patents65,66 and internally available data that is only accessible 

to those within a particular company such as AstraZeneca. 

ChEMBL62–64 a database that is public and contains a wealth of information for, but not limited 

to, bioactive and drug-like compounds. This information includes binding, functional and 

ADMET data and has been manually extracted from literature regularly as well as additional 

sources. As described by the release notes, ChEMBL 21 (ChEMBL version 21) has been used 

in the first chapter of this thesis and was prepared on the 1st of February 2016 containing: 

1,929,473 compound records 

1,592,191 compounds 

13, 968,617 activities 

1,212,831 assays 

11,019 targets 

62,502 documents 

This data is accumulated from 23 different bioassay sources (with much of data coming from 

scientific literature) and 7 compound-only data sources. Gaulton and colleagues note that the 

journals selected have been done so because they aim to capture a large amount of high-
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quality data. However, there are still gaps and incomplete labelling that continues to be 

addressed. Furthermore the dataset covers a diverse set of reporting such as targets and 

bioactivities62. 

GOSTAR (GVK Bio)65,66 has been manually curated from scientific literature and patents, 

chemical data including a compound and its associated target with its reported activity. They 

have extracted data from approximately 2.2 million patents and 336,426 journals. The aim is 

to be able to capture as much of the biological and chemical space as possible whilst providing 

data such as SAR, ADMET, preclinical, clinical and structural65,66. 

AstraZeneca67 is a large pharmaceutical company of which employees over 59,000 

individuals. It was formed in 1999 when Astra AB and the Zeneca Group plc. merged together. 

Since the merger, AstraZeneca has been involved in several acquisitions including Cambridge 

Antibody Technology, MedImmune, Spirogen and Definiens. AstraZeneca, throughout its 

history, has focused on several disease areas including, anaesthetics, cardiovascular, 

diabetes, gastrointestinal, infectious disease, neuroscience, oncology and respiratory and 

inflammatory disease. 

 

1.3 Dissemination of Chemistry 

Industry has pushed to create compound collections through the methods such as purchase 

of combinatorial synthesis68. Publicly, available data can also be incorporated into a screening 

library, to aid in an increase in screening library diversity. This data can be found at both 

scientific literature and patents.  

A patent is something that protects novel inventions meaning to use such an invention requires 

payment to the inventor. Scientific literature is where novel findings are published to aid the 

wider scientific community. Occasionally, findings will be published in patents exclusively 

(from private companies); however, publishing in scientific journals usually increases the 

exposure of the data that might lead to collaboration and further funding opportunities, and it 

represents additional value both for researchers in companies, as well as being crucial in 

academia and research institutes. What is communicated depends on where the information 

is being published; for example, a patent will not necessarily have all the biological activity 

information such as the activity type but a journal publication may not depict the molecular 

structures69. For instance, it has been shown that patents actually contain more chemical 

information than publication, and it has even been suggested that they may contain the 

information up to decades before they appear in literature70. Thus, during a drug discovery 
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program, accessing all the published scientific knowledge around a biological target available 

through both scientific literature and patents seems crucial. 

Time is a tremendously important parameter in pharmaceutical development and numerous 

studies have been made to measure the time needed for drug discovery and development. 

Among those, the difference between the launch of a drug and publication dates (the date the 

drug was published in either a patent or in scientific literature) for oral drugs has been 

investigated.  

The decision via which route to publish a protein modulator is dependent on several factors. 

These can include the need to protect the intellectual property of the compound structure (as 

in the case of patents), or to spread novel findings that can be used by the scientific community 

(as in the case of scientific publications). Moreover, without contradicting the observation 

made in reference70, a protein modulator could be first found in scientific literature rather than 

in patent since the first published bioactive compound to a given target in either a patent or 

scientific literature may differ. However, it is conceivable that a novel structure has been first 

published in literature and then later patented as part of a formulation (a mixture such as an 

active compound and other ingredients found in a tablet) rather than the compound on its own. 

Additionally, it is worth mentioning that due to formulation patents, a compound can appear in 

multiple patents71. Furthermore, a compound can have already been disclosed in a previous 

patent if the use is different and is not mentioned in the old patent. 

The dissemination of chemistry is an important aspect for scientists to aid in finding relevant 

information and chemistry, to support their work in the lead optimisation process. Particularly, 

as the chemistry found in patents is likely to be the type of chemistry identified at the end of 

the lead optimisation process (as worth the investment to protect the intellectual property).  

Improving compounds in the lead optimisation process, is a key focus of this thesis, most 

notable through the means of matched molecular pairs. 

 

1.4 Matched Molecular Pairs 

Matched molecular pairs (MMPs) can be described as two compounds that are identical with 

exception of a molecular fragment that differs in the same position72. An example of a MMP is 

shown in Figure 2, showing two compounds that are identical with exception of a chlorine 

whereas atom (on the left) being replaced with a fluorine (on the right). The term was first used 

in the book Chemoinformatics in Drug Discovery written by Kenny and Sadowski72. Matched 
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molecular pairs are useful for observing step by step how the changes in the compounds 

chemistry affect properties. 

 

Figure 2: Visual example of a matched molecular pair, the molecular fragment transformation is from a chlorine to 
a fluorine 

 

MMP algorithms can be split into two categories, namely supervised and non-supervised 

methods. The difference between the two categories is that in supervised methods the 

transformations are predefined (the transformations that make the MMP) whereas in 

unsupervised methods, an algorithm is used to identify all the potential pairs73.  

Unsupervised methods frequently use maximum common substructure algorithms, whereas, 

supervised methods such as fragment-based methods rely on known transformations. 

Therefore, for all algorithms that are available, the advantages and dis-advantages can be 

described by these two methods. For example, un-supervised methods can identify new 

MMPs whereas, supervised methods have precise control of what the MMP is.  

 

Table 2: Key MMP algorithms available 

Algorithm Based upon Method 
type 

Advantages Disadvantages 

Huassain-
Rea74 

Hussain-Rea 
Fragmentation 

Non-
supervised 

Computationally 
efficient 

Does not allow for 
considerations of 
the environment 

Gleeson et 
al75 

Requires a 
partial definition 
of the 
transformation to 
identify MMPs 
and then 

Supervised Can identify 
MMPs where the 
substructure that 
is specified is a 
core or a terminal 
group 

Computationally 
inefficient  
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performs 
multiple 
substructure 
searches 

Hajduk et 
al76 

Pairwise 
comparison of 
compound using 
findsubs routine 
(Daylight) – uses 
specified 
transformations 

Supervised Uses specified 
substructure for a 
more targeted 
identification 
process 

Limited to 
terminal or side 
group changes 
only 

ThricePairs77 Specified 
transformations 
and SMARTS 

Supervised Yields good 
Tanimoto scores 
of which suggests 
chemical diversity 

Yields a low 
number of 
transformations 

WizePairs78 Maximum 
common 
substructure and 
SMIRKS 

Non-
supervised 

Can capture the 
local single site 
environment 

Can be applied to 
larger datasets 
however, the 
authors example 
is very small  

 

The algorithms involved have all been summarised and discussed73 very recently and shows 

that a range of methods are available, although, some are proprietary. Table 2 highlights the 

key MMP algorithms that have been developed. 

The Hussain-Rea74 methodology takes all molecules that are inputted and enumerates all 

acyclic single cuts and then indexes each fragment into the start and ending fragments. This 

therefore allows identification of the transformation. However, this algorithm also allows for 

double cuts to be made and the methodology follows the same as single cuts. The Hussain-

Rea fragmentation method forms the basis of several applications of MMPs by such as that 

of Matsy79, a knowledge-based methodology to predict R groups that are likely to improve 

biological activity. 

The Gleeson et al75 methodology on the other hand requires the specification of a substructure 

(x) and then the method performs multiple substructure searches. To be more precise, it starts 

with the identification of all compounds that contain substructure x and then to remove x from 

one of the identified compounds (Y). Therefore, Y with x removed is itself used as a 

substructure query to identify new compounds Z. Those compounds (Z) that are identified are 

a MMP with Y. Therefore, the starting molecular fragment is x and the ending molecular 

fragment (y) is the result of Z-(Y-x). 

An example of unsupervised methods include the WizePair algorithm78. This method is based 

on the maximum common substructure approach to identify the potential MMPs of which are 
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then verified to ensure that the MMPs are located at a single site and encoded in SMIRKS 

reaction notation, and is able to capture the local single site environment78. The method can 

be applied to large datasets. The authors use this method on some set 11-histone deacetylase 

inhibitors where the system could be used to apply medicinal chemistry knowledge from one 

project to the next. In addition the method allows for common bioisosteres identification78. An 

example of a supervised algorithm is that of ThricePairs which has defined transformations 

and SMARTS77. The ThricePairs method is an in house proprietary software and due to the 

defined transforms, yields a low number of matched pairs, but those that did had a desirable 

mean Tanimoto score, suggesting chemical diversity. The authors use their method on a large 

dataset to assay in vitro human liver microsomal turnover assay results77. 

MMPA can be further extended to a match molecular series where instead of just comparing 

two compounds you extend this to a series of compounds79. Again, each of these compounds 

in the series is identical with expection of a single molecular fragment in the same location. 

This type of analysis allows for medicinal chemists to analyse trends in activity over a project79. 

The limitations of many methods is their time-consuming nature relating to computational 

efficiency and is often a problem with calculating MMPs74. Whilst MMPs have great use in 

understanding activity cliffs80 and differences between compounds in terms of similarity, the 

methodology is not without its limitations73. Furthermore, it is advised to include contextual 

information when using MMPs as it has been shown that in cases of predicting hERG 

inhibition, solubility and lipophilicity, the prediction ability is enhanced81.The algorithms that 

derive the MMPs can themselves be a source of limitations. Those using a set of predefined 

molecular transformations of which are used as a starting point are limited by the fact that 

transformations that differ from those in the starting source will not be identified81. This 

limitation can be avoided by using Most Common Molecular fragment algorithms however, 

despite being shown they can work well on large datasets82, they can be computationally 

exhaustive81. 

 

1.5 Maximum Common Substructure 

The Maximum Common Substructure (MCS) is used to detect the largest identical 

substructures between two compounds and thanks to its unsupervised approach can lead to 

the identification of novel matched pairs83.  

A 2D structure is represented as atoms (vertices) and bonds (the edges) whereas a 3D 

structure again represents the atoms as vertices, but the edges as represent the geometric 
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distance between the vertices. It can be shown that 2D graphs, due to their sparseness, have 

approximately equal number of edges and vertices whereas for 3D chemical graphs, there is 

an edge between each pair of vertices and so the number of vertices is approximately the 

square of the number of edges (Equation 9 and Equation 10) 84. 

 

|𝐸(𝐺) ≈ 𝑂|𝑉(𝐺)| 

Equation 9: Equation showing the number of edges in proportion to the number of vertices in 2D representations 

 

|𝐸(𝐺) ≈ 𝑂|𝑉(𝐺)|m 

Equation 10: Equation showing the number of edges in proportion to the number of vertices in 3D representations 

 

MCS can donate two types of graph subtypes, the maximum common induced subgraph 

(MCIS) and the maximum common edge subgraph (MCES). These represent a graph with the 

largest number of vertices (with edges in between) and edges, respectively, common to the 

two graphs being compared. The MCS can also be split into whether it is connected (there is 

only one subgraph – each pair of vertices forms the endpoints of a path) or disconnected 

(multiple subgraphs) and therefore, MCSs can lack uniqueness in terms of a number of 

substructures can be determined from two compounds84.  In short connected MCSs are 

composed of only one fragment whereas disconnected MCSs can have many fragments. 

The advantage is that the MCS able to screen all compounds in a collection against each 

other allowing for the potential identification of novel transformations not previously known. 

Furthermore, there is that there is a clear define between the two compounds in that only the 

smallest change will be observed as the difference i.e. as a transformation X to Y. Essentially 

the backbone is left of the compounds that are identical and a single molecular fragment that 

differs between the two compounds at the same position. It is likely that this backbone is 

chemically important, particularly in terms of compound activity. 

Improving how MMPs are computed have been discussed where the study highlights that 

maximum common substructure (compares two molecules and identifies the largest possible 

substructure that is identical between the two) and the fragment and index (cleaves the acyclic 

single bonds and compares all possible fragments between the two molecules) methods are 

the most prevalent methods at finding rules. It is suggested that combining the two methods 

increases the effectiveness of finding rules85. 
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It has been shown that using a MCS based similarity measure is more effective than atom-

pair based methods when it comes to searching chemical databases and compliments the 

atom-pair based methods well. The authors suggest using a hybrid of the two methods for 

prediction models, namely, bioactivity prediction models83. 
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2 Innovation in Small-Molecule-Druggable Chemical Space: Where are the 
Initial Modulators of New Targets Published? 

 

2.1 Introduction 

An increasing number of novel druggable targets have been identified over the years as well 

as a plethora of compounds being identified and published. Analysing this data in a time 

course manner can allow researchers to understand preferred modes of publishing 

modulators of protein targets, as well as to identify trends over time. This study aims to achieve 

this goal by examining compounds and their associated targets over time in the two main 

avenues of dissemination, namely patents and peer-reviewed scientific literature. 

The main objective of this study is to try to understand where pharmaceutical innovations in 

the form of new modulators of protein targets reported as a function of time. For achieving 

this, we investigated whether the first bioactive compound (a compound that has been shown 

to have activity on a target) for a novel target tends to be primarily published, either in patents 

or in scientific literature. In the remaining thesis, we refer to a protein modulator (a compound 

and the target it has been associated with by a measured activity), as a compound that has a 

bioactivity (IC50, EC50, Ki and Kd) (<=1µM) on a particular biological target (ENTREZ_GENE 

IDs) and a bioactive compound (<=1µM) as a compound that has activity on a target (identified 

as ENTREZ_GENE ID). 

In one study, the authors noted that the earliest publication date for oral drugs usually 

corresponds to a patent86,87. Nevertheless, the analysed dataset size was small (592 drugs), 

mainly because it was restricted to launched drugs for which all necessary information could 

be identified. Additionally, a previous study analysed a small number of protein modulators 

and considered the delay of the publication of these annotations in scientific literature, after 

having been published in a patent. In this study the authors  found that on average there is a 

four year delay between publishing a patent to scientific literature for compound-target 

interactions which also highlighted the need for scientists to be able to search patents 

reliably88. 

Thus, not restricted to approved drugs, our work will cover a much larger number of protein 

modulators than previous work, namely all first modulators of protein targets, independently 

of whether this resulted in an approved drug later or not. 

The sources for scientific literature and patents used in this work are on the one hand ChEMBL 

a large open access bioactivity database, in which those the protein modulators that were 
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published in scientific literature where studied63,64and on the other hand GOSTAR which is a 

family of commercial databases manually curated from publicly available scientific literature 

as well as from patents66.  

In the first section of this work a comparison of the analysed scientific literature and patents 

datasets is presented. Following this, we analyse from which publication sources (patent or 

scientific literature) novel protein modulators could have been found over time. In addition, we 

will also investigate whether the result has been affected by the 18-month delay in patent 

between filing and publishing. Going into more detail, we next analysed from which publication 

sources novel protein modulators have been identified, depending on target class and year 

bin. Overall, we were hence aiming to highlight and understand where novel chemistry is first 

published allowing for a knowledge-based approach to identify information as and when 

required. 

 

2.2 Materials and Methods 

 

2.2.1 Extraction and organisation of the GOSTAR dataset 

Data was extracted from GOSTAR (GVK Bio)66 using SQL via SQL Developer (Version 

4.0.1.14)89. The dataset was curated (see below) with the use of KNIME (Version 2.11.2)90. 

The SMILES were standardised using an in-house program91. A year bin was assigned to 

each published year where the data was analysed every year from 1990 to 2014 with all data 

originating from before 1990 being assigned as historic. The target class was added to the 

dataset based on the EGID (target class annotations to EGIDs had been previously assigned 

in house with exception of epigenetic target classes and the full list is published in the 

supplementary of the corresponding manuscript92). One Uniprot ID can have multiple EGIDs 

due to having different family members as an example, however, one EGID was assigned to 

one uniprot in this analysis – duplicate uniprots were randomly removed. The epigenetic target 

class were also added to the dataset, matching the EGIDs for the labelled epigenetic protein 

families93 to the EGIDs in the file after duplicates were removed. The “other” target class 

comprises all targets that did not fall within the other target class labels or the ENTREZ-GENE 

ID had not been assigned to a UNIPROT name. Kinases were separated out from enzymes 

due to their high therapeutic interest for analysing their trends. Therefore, kinases and 

enzymes are treated as two separate target classes. Only human targets were retained, and 

the earliest instance of the compound-target being recorded was retained. 
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Rows where the Micro_Molar_Prefix (of which determines whether the recorded activity value 

was greater than, less than, equal to etc) was set to equals were retained to maximise the 

accuracy of the activity value. Compounds with an activity of <= 1µM were retained (any 

activities <0 were removed) and any data that was from a source of “Other” was removed due 

to low numbers. Furthermore, activity types that were reported as Ki, IC50, EC50 and Kd were 

retained.  

The GOSTAR dataset used in this study has been then split into two parts depending on the 

source of the data, namely GOSTAR Patent and GOSTAR Journal. Finally, our dataset has 

been further subdivided using the protein target classes, eight of which will be distinguished 

and investigated here, namely enzymes, epigenetic targets, G protein-coupled receptors 

(GPCRs), kinases, ion channels, nuclear hormone receptors (NHRs), transporters and “other” 

targets. It is important to note that the sources we used are not exhaustive, and hence the 

analysis presented is meant to show trends and preferences in publishing bioactivity 

information, as opposed to representing in every case numerically comprehensive results. 

The Molecular Weight was calculated using RDKit94. A small number of compounds were 

removed due to failure to calculate their molecular weight. Compounds with a molecular 

weight larger than 900Da were removed. This left the dataset with a total of 221,429 and 

338,093 unique protein modulators for GOSTAR Journal and GOSTAR Patent respectively. 

Duplicate were removed during the pre-processing of the data whilst retaining the first instance 

of a protein modulator only. 

 

2.2.2 Extraction and organisation of the ChEMBL 21 dataset 

The ChEMBL 21 63,64 file was extracted using Toad for MySQL 5.0.034595. A total of 3,504,431 

rows were collected containing the following fields, Accession, ID (compound), Canonical 

SMILES, Activity (standardised values), Activity units, Activity Relations, Year, Activity type as 

well as all reference columns (where it was published, reference, volume number, issue 

number and title). The standard value is not null, and the polymer flag is = 0. Additionally, the 

assay type needed to be ‘B’ or ’F’ and the assay confidence score had to be >= 8. The 

confidence score of >=8 includes homologous single protein target assigned, and this 

matched protein target level that had been extracted from GOSTAR. As only human targets 

were used, this will have had little effect on the results and was selected to capture a complete 

picture of what is being published and where. We also believe we have struck a good balance 

by including bioactivity data, when there was no species information given, since in most cases 

the protein target studied has been the human orthologue. Additionally, we have included data 

were the protein is human, but the organism is non-human. However, we did not want to go 
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below a confidence score of 8 to minimise the chance of inaccuracies. When extracting directly 

from ChEMBL, there is a difference of 326 accessions between extracting a confidence score 

of 8 and 9 or 9 only. These 326 accessions are a confidence score and make up ~12% of the 

total accessions extracted from ChEMBL. A column called REFERENCE was added to the 

dataset showing where the target annotation was published. Any missing values were 

removed. The ChEMBL 21 SMILES were standardised using an in-house method at 

AstraZeneca91 and the two files were joined together, on the compound ID, using the Joiner 

node in KNIME (Version 2.11.2)90. The SMILES standardised using the in-house program 

were used in the study for consistency with the other datasets. Data published after 2014 in 

ChEMBL 21 was removed from the analysis to ensure the year had been adequately captured 

and updated in all data sources. To label the target classes, firstly a file containing the 

accession numbers was uploaded to http://www.UNIPROT.org/uploadlists/. From the drop-

down list Uniprot KB AC/D to EGID was selected and just the EGID was taken after using it to 

select the UniprotKB column, the following information was extracted: Entry, Your List, 

EntryName, Rev/UnRev, Organism ID. Only human data was used. The file was sorted by 

reviewed/ unreviewed. Duplicates were removed from the reviewed based on what was first 

integrated into UniprotKB/ Swiss Prot. Where the date was the same, the one with the highest 

number of publications (including additional computationally mapped reference) was retained. 

Duplicates were also removed from unreviewed EGIDs so each EGID was only represented 

once. The gene annotations were joined together with the EGID to give the target class. Target 

class had been previously annotated to EGIDs and included all of the classes included with 

exception of epigenetic which was compiled separately93 of which was added to the file after 

duplicates had been removed. As with the GOSTAR data, kinases were separated out from 

enzymes. Duplicate protein modulators were removed using a shell script.  Before being 

written out to a csv file the file was split into two GOSTAR Patent and GOSTAR Journal and 

duplicate protein modulators were removed from each dataset and concatenated back 

together before being read back into KNIME90. Duplicate results were removed during the pre-

processing of the data whilst retaining the first instance of a protein modulator. 

Only rows where the units were nM were kept. Additionally, activity values of <=1µM (any row 

with an activity reported as <=0 was removed), instances where the activity relation was “=” 

to the value and only those values that were reported as Ki, Kd, IC50 and EC50 were retained. 

The molecule weight (using parallel chunk nodes to calculate molecular weights in parallel) 

was calculated, calculated very small amount of compounds were removed due to failure to 

calculate the molecular weight, using RDKIT nodes94 and those compounds with a molecular 
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weight of <=900Da were retained. This was read out to a csv file. In total 276,650 rows were 

used for analysis. 

 

2.2.3 Visualisation of data 

The output file was read into TIBCO SPOTFIRE (Version 6.5.2.26)96 where all visualisations 

were produced. 

 

2.2.4 Comparison of patent vs. public datasets and the distribution of the years difference 

and number of targets for each year’s difference 

A comparison of the first compound that is active on a target that was published in a patent 

compared to the first compound that is active on the same target that was published in a patent 

was performed to see where the first compounds for a target are published first. KNIME 

(Version 2.1.1.2)90 was used to manipulate the data as follows. First the data was split into 

GOSTAR Journal, GOSTAR Patent and ChEMBL21. For each dataset, the data was sorted 

by EGID and then the year. This allowed the retrieval of the first compound to be published 

for each target. Duplicate EGIDs were then removed leaving the first instance. GOSTAR 

Journal data was merged with GOSTAR Patent and ChEMBL 21 data was merged with 

GOSTAR Patent to allow for the comparison. The journal published year was taken away from 

the patent year to get the years difference and any duplicate EGIDs were removed. A year 

difference of 0 indicates that the annotations were published in the same year. To show the 

effect of the 18-month difference between filling date and published date of a patent, the year’s 

difference had one and a half years subtracted from it to demonstrate the effect on when and 

where a target annotation was published. This was repeated for four activity bins (<=10µM, 

<=1µM, <=0.1µM and all available activities) and three datasets (enzyme, kinase and GPCR). 

It was also used to test how the filtering had affected the result by using two different filtering 

methods and can be used to understand how errors may affect the results. The first had no 

filtering for either patent data or public data; the second had filtering applied to it only for the 

public data.  The reason for testing this was that a target may have be have been published 

in 2003 but because of the activity filtering it was not recorded as being first published until 

2009 as an example. Therefore, it was important to explore the effect that such filtering has 

on the results observed.  

This testing (to see the effect that the filtering has on the results) was completed as follows: 

was removed (including the prefix of the result having to be equal to the result etc.) from both 

datasets (public (from literature) and patent data). As the standard relations for activities from 

ChEMBL that were extracted were (‘~’, ‘=’, ‘<’, ‘<=’, ‘<<’, ‘<<<’ or ‘<’) this did not include 



 
 
 

33 

standard relations that were ‘>’, ‘>>’ or ‘>>>’ and therefore the ChEMBL file was extracted 

again but this time allowed any type of standard relation to capture more data. Additionally, 

any type of activity type was extracted (Ki, Kd etc.).   

 

2.2.5 Comparison of patent vs. public datasets and the distribution of the years difference 

and number of molecular frameworks, topological frameworks and compounds for 

each year’s difference  

When applied to molecular frameworks, topological frameworks and compounds, the set up 

was performed slightly differently. As with all previous analysis annotations with an activity of 

<=1µM was used. The data was split into GOSTAR and ChEMBL and the SMILES were cast 

as SMILES to be used in the RDKit node Find Murcko94,97. A Murcko Scaffold (molecular 

framework) removes side chain atoms and retaining the central ring structure with some 

exceptions (non-ring systems that are required to connect two ring systems together as well 

as the first atom that has been branched off from the straight chain via a double bond), the 

topological framework is the generic structure of the framework94,97. Molecular or Topological 

Frameworks that do not have a ring structure are written as NA and treated as one. GOSTAR 

data was then split into patent and literature. Duplicate structures were filtered using the Filter 

Duplicates node from MOE98 KNIME nodes, by comparing Standard InChI keys99. The public 

datasets were concatenated together to enable the public data to be read out separately for 

future analysis (as was the patent data). The datasets were joined together on their molecular 

frameworks / compounds / topological frameworks to identifying overlapping molecular 

frameworks and then these were concatenated together. Additional duplicates were filtered 

out the years difference was calculated (patent – public published year), and molecular 

frameworks that could not be calculated (those without a ring structure) were removed. 

 

2.2.6 Comparison of patent vs. public datasets and for each target class and each year bin 

when and where was an annotation published first 

To observe when an annotation had been published regardless of whether it was in a patent 

first or a publication first the data used the output from the previous analysis (determining 

whether their distribution of years difference and number of targets for each year’s difference) 

for <=1µM. This was split into patents first or journals and year bins were used (<1990, 1990-

1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014 and 2015). 2015 was excluded from 

visualisations due to the minimal amount of data captured in this year bin.  
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2.2.7 Comparison of patent vs. public datasets for observing trends in annotations that were 

only published in patents or only published in literature 

To see trends in the publication of annotations in either patents or literature, but not both, first 

the literature data was concatenated together and duplicate EGIDs or structures were 

removed. The first instance of each EGID annotation or structure was retained for each 

dataset (as performed in the previous analysis to get the year’s difference and the number of 

targets for each year’s difference). EGIDs and structures that were unique to each dataset 

were retrieved and retained and everything was concatenated back together and these were 

read out to a csv file which was loaded into Spotfire96. 

 

2.2.8 Statistical Validation 

Prop-tests100 and pairwise-prop-tests101 with p-value adjustment method of Bonferroni were 

performed in RStudio – Version 0.98.1103 to confirm significance of findings. The alternative 

hypothesis used was two sided102. 

 

2.2.9 Compound Novelty 

The molecular fragments from the originally extracted compounds from ChEMBL and 

GOSTAR (prior to any processing) were compared to those that had been published in patents 

first or patents for understanding the novelty of the chemistry by determining whether the 

molecular framework had originally occurred before those observed in the study. The 

structures from the originally extracted compounds were not standardised however the 

standard InChI keys99 were used to make the comparisons calculated in rdkit94. 

 

2.2.10 Compound Similarity 

The similarity of compounds was assessed by measuring the most similar compound, in terms 

of its structure, to each compound in the set analysed. The similarity was represented by a 

Tanimoto score and was compared by Morgan fingerprints in RDKit with a radius of 2 and a 

bit vector of 2048. When analysing the similarity between the first compounds to be published 

in literature first against a target against the first compound to be published associated with 

the same target but in a patent, a distance matrix was calculated first, after which the pairs of 

compounds that had the same target were extracted from the matrix to give the Tanimoto 

distance of each compound (published in either source) that were associated with the same 

target. Finally, in order to get the Tanimoto similarity 1- Tanimoto distance was calculated. 
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2.3 Results and Discussion 

 

2.3.1 Number of Unique Compound-Target annotation analysis 

We first analysed the trends the publications of compound-target annotations over time and 

by data source. The number of unique compound-target annotations, which is defined as the 

number of unique targets having at least one reported bioactive compound, have steadily, 

grown over the years supporting previous work103 for all sources studied here (Figure 3(A)). 

These increases may be the result of a series of factors such as the progress of screening 

automatisation (e.g. HTS) that allowed for a greater number of compound-target annotations 

to be discovered, the increased investments in drug discovery in academia, as well as the 

generally increasing number of scientific publications103 and patents104,105. On the other hand, 

there appears to be a difference between the number of annotations abstracted in GOSTAR 

journals, over the last few years, and the ones reported in ChEMBL by about 10,000 instances. 

The gap between the cumulative sum of unique compound-target annotations in ChEMBL and 

GOSTAR patent widens from 1993, with ChEMBL containing more unique compound-target 

annotations than GOSTAR Patent from that date. However, this difference is significantly 

reduced by 2014 showing that, as time passes, more compound-target annotations are being 

published in patents (as abstracted in the respective databases). 
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Figure 3: Protein modulators from different data sources as a function of time. Unique protein modulators have 
steadily increased over the years for all datasets with the target class preference in each dataset varying. 
Additionally, the strongest increase in unique protein modulators over the years has occurred for enzymes, GPCR 
and kinases. The numbers of unique protein modulators published are presented over the years (A) and for each 
target class (normalised to 100% for each dataset across target class) (B), the points have been jittered for easier 
viewing. (C) Shows for each year the cumulative sum of unique-compound target annotations published for each 
target class.  Protein modulators presented have an activity of <=1µM. 

 

In Figure 3(B), the percentage of bioactive compounds for each target class with respect to 

the dataset is displayed. Although the trends in slopes for ChEMBL and GOSTAR Journal are 

similar, there are several differences which are likely due to how the databases curate their 

A 

C 
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journals and which journals are covered. For example, according to the ChEMBL FAQ the 

literature coverage in ChEMBL focuses on approximately 47 journal papers, however this 

changes as new versions are released106. It can be observed that the GOSTAR Journal 

dataset has a higher percentage of compounds being associated with epigenetic targets (2% 

of the dataset) compared to the other datasets as well as the highest number of compounds 

associated with enzymes (comprising 34% of the dataset) and NHRs (5%). The percentage 

of compounds associated with epigenetic targets is low compared to the other target classes 

in all three datasets, which likely reflects the novelty of the class in terms of therapeutic 

interest. A significant difference between the percentage of bioactive compounds associated 

with enzymes in GOSTAR Journal and GOSTAR Patent (approximately 12%) can be 

observed, while this difference is small between GOSTAR Journal and ChEMBL 

(approximately 5%). Overall, this suggests that compounds associated with an enzyme target 

seem to have preferably been reported in scientific journal rather than in patents. 

ChEMBL and GOSTAR Patent have similar and high percentages of modulators for kinases 

(18-19%). This is probably related to both higher target promiscuity but also the high 

therapeutic relevance of this target class. The reason why there are fewer kinase associations 

in GOSTAR Journal than ChEMBL is likely due to differences in the curation of information 

such as which journals are abstracted. Compounds annotated as being bioactive against ion 

channels are more represented in GOSTAR Patent (6% of the dataset) compared to 3% in 

both literature sources.  

In the next phase of our study we analysed the cumulative sum of unique compound-target 

annotation binned per year for each target class is shown in Figure 3(C). It is observed that 

the increase in unique compound-target annotations for a given target class in patents follow 

the trend observed in scientific journals in preceding years. This supports the understanding 

that academic labs primarily investigate the biology on a target and any disease implications 

(basic research). Once this groundwork has been done, either industry becomes interested 

(which leads to patents) or academia needs to do more groundwork (such as identifying 

modulators of the target) before industry becomes interested, which leads to publications in 

journals first. Despite slight differences, generally the curve trends appear similar. The 

similarity in curves of the number of unique compound-target annotations between patents 

and scientific literature is likely due to an increase in published data and the curves represent 

the cumulative increase. A striking example of such similarity between patent and scientific 

literature cumulative curves can be found in the case of ion channel ligands, where the first 

annotations were captured in ChEMBL in 1990 and in GOSTAR Journal in 1993 while it was 

not until 1997, that an annotation appeared in GOSTAR Patent. The number of epigenetic 

compound-target annotations, increases at a slow rate throughout history. The number of 
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bioactive compounds targeting this protein class is likely to increase further as pharmaceutical 

companies and academia work together to understand underlying biology better, with the aim 

to generate novel therapies107. In 2013, the question whether GPCR targets are still a source 

of new targets has been raised108.It seems from the data analysed here that GPCRs appear 

to still be of significant interest (Figure 3(C)) both in patents and scientific literature. The 

authors from reference108 found that marketed drugs often target bio aminergic receptors 

which accounts for only ~ 10% of targets in the GPCR family. Therefore, the reason for the 

on-going interest in GPCRs may be due to the diverse nature of GPCRs108 and possibly further 

exploration into the five main human GPCR families109. Interestingly, many compounds 

associated with GPCR targets (in general) were published in patents which may reflect that 

the related screening collection were more diverse than estimated in the article. 

 

2.3.2 Time based analysis of the source for new compound-target annotations 

To identify where the first bioactive compounds have been published for a novel target we 

next analysed the difference in the publication years between patents and scientific literature. 

Figure 6 shows the number of targets that have a published bioactive compound associated 

with it in both a patent and scientific literature with respect to the time difference between the 

literature and patents publication dates. Note that this analysis does not pay attention to the 

compound structure, it only considers the fact that a modulator of a protein target has been 

published in a given location at a given time point. It can be noticed that novel compound-

target information is more often published in literature prior to it being published in a patent 

(547 out of 848 cases, 65%). Patents have an 18-month delay in being published, which can 

be considered as a significant difference compared to the scientific literature corresponding 

process of submission-publication. To try to mitigate this in our analysis, Figure 2 also depicts 

an adjusted curve based on an 18-months period. 
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Figure 4: Number of targets (with an associated bioactive ligand) for which the first ligand has been published in a 
journal or a patent, respectively. Note that compound structures of both instances do not need to match in this 
analysis. The figure shows the difference between the raw dates (‘Not Adjusted’), as well as an adjusted value 
(‘Adjusted’), which considers the ca. 18-month time gap between the filling of a patent and its publication. Positive 
numbers indicate publication first in a journal, negative numbers publication first in a patent. Protein modulators 
are more frequently published in journals prior to being published in patents regardless of whether taking into 
account the 18 month gap between the filling of a patent and publishing the patent. 

 

Comparing the distribution to that of the 18-month delay distribution, an increase from 26% of 

target annotations being first published in patents to 45% is observed, hence resulting in a 

nearly equal number of first ligands of targets reported via either dissemination route. This 

result is independent of the activity cut-off, with Figure 5 showing the results for various activity 

cut-offs, hence not supporting the hypothesis that patents more frequently contain more active 

ligands which are more likely to show activity in an in vivo setting. This is confirmed by applying 

the prop test100, which is used to determine that the proportions of protein modulators that are 

published in patents first, for each activity cut off, are significantly different or not. In this case 

there is no statistical significant difference between the proportions as the p-value is > 0.05. 

Therefore, there is a preference to publish in scientific literature prior to publishing in patents. 

In this figure, the earliest year that a compound was published in a patent was 1980, whereas 

it was 1960 for journals, which explains the difference in tail length between what was 

published in a patent first and what was published in literature first.  

The data published in literature, can be used in the design and synthesis cycle. This has been 

shown to be the case in the molecular design cycle where compounds are brought together 
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from various sources, such as high-throughput screening, fragment screening or from those 

published to be synthesised and tested to gain knowledge110.  

 

 
Figure 5: Number of novel targets with an associated ligand for each time difference between publication of a 
bioactive compound in a journal and a patent, respectively. (Positive numbers indicate publication first occurred in 
a journal, negative numbers publication first in a patent.) The first bioactive compound for a novel target is most 
frequently published in journals prior to being published in patents. The plot represents four different activity cut-
offs that were explored. All activity values, <=0.1µM, <=1µM and  <=10µM. 
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We then analysed the effect of removing all filtering (Figure 6). It can be seen that the tail is 

not significantly cut off on the patent side. This suggests that when a compound that is 

published with a particular target in a patent first, the same target (although likely associated 

with a different compound) will be published in scientific literature faster than the reverse 

(compound associated with a particular target is published in literature first will appear in a 

patent later, but not as quickly as it does the other way around).  

 
Figure 6: Reducing the strictness of the filtering (removing activity constraints such as allowing all activity types 
(not just Ki, Kd etc.) and all activity relations (not just values reported equal to an amount)) either on both patent 
and public data or only on patent data does not affect the trends observed:  The number of targets with an 
associated ligand for each years difference for annotations with no filtering and filtering only on the patent dataset. 
The years difference is defined by the patent year – the journal year and therefore a positive years difference 
number denotes that the annotation was published in a journal prior to being published in a patent. 

 

However, not all targets have ligands for them published in both literature and patents, as 

shown in Figure 7. Here, we explore the proportion of ligands for targets that were published 

either in both patents and literature, literature only or in a patent only. Thus targets that have 

been pursued to find patentable bioactive chemical matter are in almost all cases also of 

scientific interest to publish (45% and 51% of compound-target annotations were published in 

either patents and scientific literature or literature only, respectively), but there exists many 

targets where there is scientific interest (as evidenced by scientific publications), but where 
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there hasn’t so far been any interest to identify novel drug candidates(as evidenced by a lack 

of a patent for a ligand for that protein target). On the other hand, cases where there are 

ligands patented, but where no ligands have been reported in literature yet, is rather small 

(only 4%). 

 

 

Figure 7: The number targets with associated bioactive compounds that are published in either literature only, 
patent only or in both patent and literature. Targets are mostly published either in literature only or in both patent 
and literature; targets with patented ligands, but no ligands reported in literature, are on the other hand rather rare. 

 

The impact of the target class on the route of dissemination was investigated, the results of 

which are shown in Figure 8. For compounds that are active on enzymes, kinases or GPCRs, 

the three most frequently published target classes; it can be observed that 25% (49 out of 

198) of GPCR targets and their first associated ligand, were published in patents before journal 

publications. This is approximately 6% more target annotations and 9% less target annotations 

with their first associated ligand, than the result shows for enzymes (19% (52 out of 277)) and 

kinases 34% (60 out of 176), respectively. This suggests that the target class impacts when 

and where the target annotation is published, and is confirmed statistically, where a prop test 

leads to a p-value of 0.001133 is derived. This is likely the result of changing interests in 

different therapeutic trends111.  
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Figure 8: Number of targets (with associated bioactive ligands) for each time difference between publication of an 
active compound in a journal and a patent, respectively, for Enzymes, Kinases and GPCRs. (Positive numbers 
indicate publication first in a journal, negative numbers publication first in a patent). It can be seen that when and 
where a target annotation is published depends to a certain extent on its target class. 

 

Figure 9 captures whether the publication year, in addition to the target class, affects when 

and where a target annotation is published. The result shows that this is indeed the case, with 

39% of kinase target annotations being published in patents first between 2000 and 2004, 

whereas the percentage drops to 14% between 2005 and 2009 (a p-value of 0.0006569 is 

observed).  The therapeutic relevance, interest and focus of a target or target class at that 

point in time hence contributes significantly in terms of where information is disseminated. 
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Figure 9: Number of novel targets (that are associated with a bioactive compound) published in journals (pink) and 
patents (blue) or both at the same time (green), as a function of target class and time. These pie charts show that 
the number of first ligands (at an activity of <=1µM) kinases are increasing over time but decreasing for GPCRs. 
Individual pie charts are sized based on the absolute number of targets they represent. 

 

In both Figure 8 and Figure 9 it is shown that the target class affects when and where the first 

active compounds are published for a novel target, for the more exploited target classes. 

Annotations are usually published in literature prior to patents with exception of those 

compounds associated with the GPCR (and for some years for NHRs) target class. The GPCR 

target class has an increasing percentage of target annotations published in patents prior to 

being published in literature throughout history. No historic compound-target annotations 

(those published before 1990), for GPCRs, were observed as being published in patents 

before being published in scientific literature. The number of compound-target annotations 

that were published in patents prior to being published in scientific literature increased to 14%, 

33%, 54%, 61% and 63% in the years 1990-1994, 1995-1999, 2000-2004, 2005-2009 and 

2010-2014 respectively. A detailed analysis of GPCR drug targets that have been published 

prior in patents versus publications in the timespan 1995-2005 revealed several targets related 

to inflammation like for instance CCR1, CCR2 and CCR3 as well as metabolic diseases like 

for instance NPY2, MCHR1 and FFAR1. While several small molecules for these targets has 

reached the clinic, no drug has so far reached the market. The NHR target class, and the 
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compounds that are associated with them, also shows that in each year bin a large portion of 

annotations are published in patents first with the highest percentage being 100% in 2010-

2014 (where only one novel target was published) and 67% in 1995-1999. However, there are 

fewer novel targets published in each year bin than compared to the GPCR target class 

possibly due to the target class size. It has been shown by examining Google trends, that 

disease trends are observable and can be used to predict potential upcoming disease 

instances111,112. 

It is also possible to see how the number of unique targets (published with an associated 

ligand) has increased for target classes such as kinases (increasing from 7 in 1990-1994 to 

91 in 2005-2009) but decreased for others in the same time span such as GPCRs (36 in 1990-

1994 and 18 in 2005-2009, with an increase to 52 in 1995-1999) (Figure 5). We can also see 

the steady increase and any potential plateaus of novel targets (and the first ligand associated 

with it) for the other target classes. As an example, ion channels saw changes in the year bins, 

1990-1994, 1995-1999, 2000-2004, 2005-2009 and 2010-2014, of the number of novel targets 

and the first ligand associated with it total 1, 14, 15, 15 and 3 respectively. There are years 

where no novel targets (with an associated ligand) were observed, for example, NHR between 

2005 and 2009 and transporters 2010-2014. Finally, trends in target class interest over time. 

Compounds that are associated with enzymes or GPCRs have increased in interest over time 

followed by kinases and then followed by those associated with the epigenetic target classes. 

 

2.3.3 Analysis of the number of target annotations that were only published in either a patent 

or in scientific literature via time course analysis 

We next investigated the number of target annotations that were only published in one of the 

sources (patent or literature) by observing the number of targets with an associated bioactive 

compound over time by target class. The result is shown in Figure 10 where it can be observed 

that a total of 967 target annotations are published in literature only and a total of 77 target 

annotations are published in patents only. 
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Figure 10: Number of novel targets (with an associated bioactive ligand) published in either only literature or 
patents, as a function of target class and time. The number of kinase targets in 2008 for in public data was 
substantially higher than those in patents due to the publishing of the first large scale selectivity panel data. As the 
years proceeds, for all target classes (patent or public) the number of targets increases or remains steady. The 
number of targets in each year bin for each target class that were published only in literature or only in patents.  
The results are for target annotations <=1µM. 

 

The first ligands for enzymes see an increase in targets over the years that were published in 

literature only (although this does fluctuate between the years), with 3 targets that are 

associated with their first ligand in 1990 and 21 in 2012 (Figure 10). Another large increase in 

the number of target annotations can be seen in 2008 for kinases (and their associated 

ligands) from scientific publications This correlates with the publication of the first large scale 

kinase selectivity panel comprising an interaction map for 317 kinases with 38 kinase 

inhibitors113.  In addition, the overall sales of kinase inhibitors in 2008 were nearly at $14 billion 

and increased in subsequent years which emphasises the importance of this target class114. 

2.3.4 Case Studies 

We will now give examples of the first ligands from different target classes forming part of this 

analysis, namely BACE1 (published in literature first), GSK3b (published in literature first) and 

LRRK2 (published in patent first). BACE1 is an enzyme, first reported in 2000 in the Journal 

of the American Chemical Society in a study on the design of inhibitors for this target115. It was 

then later published as part of a patent detailing a method of screening for inhibitors for this 
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gene116. The article that GSK3b was published in was focused on identifying a novel 

compound class that were inhibitors of GSK3b via scaffold hopping117. A year later, the target 

appeared in a patent disclosing pyrrole-2, 5-dione derivatives and their uses as GSK3b 

inhibitors118. Finally, LRRK2, a kinase, was published in literature as part of a kinase inhibitor 

selectivity analysis113. However, this was after it had been published in a patent (of which was 

looking at compositions and methods for treating Parkinson’s disease119). There is a wide 

variety of why compounds are published and patented and often do not result in approved 

drugs. To our knowledge these genes do not have an approved marketed drug. The number 

of targets for approved therapeutic drugs is debated but recently the number 324 is used, 

across target classes120. 

 

2.3.5 Analysis of where the novel bioactive structures (compounds, molecular and 

topological frameworks) were first published 

We next investigated when and where novel bioactive structures were first published, now 

also explicitly taking the structure of the compounds into account.  This was performed on 

three different levels of structural diversity, namely compound structure, molecular framework, 

and topological framework97. The compound structure is the most specific and topological 

framework is the most generic descriptor. An example is shown in Figure 11. 

 

 

 
Figure 11: An example of a compound’s computed molecular and topological framework. The methodology used 
to calculate the frameworks is the Bemis-Murcko Scaffold. 
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In total there are 18,751 compounds published in both patents and in the scientific literature, 

which formed the basis of all subsequent analyses. The distributions seen in Figure 12 are 

reminiscent of the analysis of the first active compound published for a given target (Figure 

4). However, the distribution is shifted to the left, with 61% of compounds having been 

published in patents first (11,464 out of 18,751 compounds). The percentage of molecular 

frameworks published in patents prior to being published in literature is 61% (6,670 out of 

10,982 molecular frameworks) while the percentage of novel topological frameworks 

published in patents first drops to 54% (5,065 out of 9,356 topological frameworks). Novel 

compounds as well as more abstract molecular representations, like molecular and topological 

frameworks, are published first in patents, which is likely related to the large compound 

collection comprising novel chemical matter available to the pharmaceutical industry, which 

frequently result in publication via patents. It also demonstrates that protecting novel 

structures and chemistry is important. The trend is further emphasised when considering the 

18 months publication delay for patents. Taking this into account, even 79% of novel structures 

(14,787 out of 18,751, Figure 12). When considering the adjusted value for molecular 

frameworks, this represents 74% of the data points (8,176 out of 10,982) as well as 65% 

(6,122 out of 9,356). 
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Figure 12: Number of novel bioactive compounds, molecular framework and topological frameworks published in 
both literature and patents with adjusted and not adjusted values. Adjusted values consider the 18-month time gap 
between filling of a patent and its publication (Positive numbers indicate publication first in a journal, negative 
numbers publication first in a patent). The compounds, molecular frameworks and topological frameworks for each 
year difference showing that most of novel bioactive structures are first published in patents (61%). 

 

We performed a pair wise prop test101 and adjusted the p-values using the Bonferroni 

correction method. The three tests (compounds and molecular frameworks, compounds and 

topological frameworks and molecular and topological frameworks) all gave highly significant 

p-values of <2e-16, with exception of compounds against molecular frameworks, which gave 

a p-value of 1. Therefore, one can conclude that even though the percentage of structures 

published in patents first varies only slightly (61%, 61% and 54% for compounds, molecular 

frameworks and topological frameworks respectively), the trend is consistent and significant: 

the novelty of a structural diversity of a structure, in terms of a full compound or its molecular/ 

topological frameworks (as defined by Bemis and Murcko97) influences where they are first 

published (with exception of compounds and molecular frameworks). The more generic the 

structure is, the more likely (in relative terms) it is to be published first in scientific literature 

compared to a patent. 

 

Figure 13: The percentage of compounds, molecular frameworks and topological frameworks that are published 
in either literature only, patent only or in both patent and literature. 

Compounds Molecular Frameworks 

Topological Frameworks 
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The number of structures (compounds, molecular and topological frameworks) that were 

published either both in patents and literature, literature only or a patent only is shown in Figure 

13. It shows that for all structures there are a slightly higher proportion that are published in 

literature alone, however, the percentage difference is very small between patent alone and 

scientific literature alone. Surprisingly the overlap i.e. the number of structures and 

frameworks published in both patents and literature is rather low. This analysis illustrates that 

chemical space published in literature and patents is highly complementary, and hence both 

information sources need to be taken into account when judging the novelty of a given 

structure as has been previously been discussed121. 

 

2.3.6 Analysis of the number of structures that were only published in either a patent or in 

scientific literature as a function of time 

 

We also investigated the number of compounds, molecular frameworks and topological 

frameworks that were only published in literature and those that were only published in patents 

(Figure 14 to Figure 16). In all three-structure types, the general trend observed is that the 

number of compounds published for each target class has been increasing over the years with 

a slight decrease most recently. In total there are 216,493 compounds published only in 

literature and 242,586 that are only published in patents (Figure 14) where as there are 18,751 

compounds published in both patents and scientific literature. There are 77,603 molecular 

frameworks that are only published in literature compared to 83,397 that are only published in 

patents (Figure 15) and 10,982 that were published in both sources. Finally, for topological 

frameworks there were 39,304 published only in literature compared to 39,060 that were 

published only in patents (Figure 16) and 9,356 that were published in both data sources. 

These numbers have been spread across all analysed target classes. Increases in the number 

of structures for each target class over time. This shows that for all structures being published 

in only literature or only in a patent, there are published roughly in equal amounts for either 

source based on the data sources we considered in the analysis performed here. 
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Figure 14: Number of novel compounds published in either only literature or patents, as a function of target class 
and time. The number of compounds increases throughout the years especially for GPCRs both in literature of 
patents, despite the decrease in recent years. The year bins included are <1990, 1990-1994, 1995-1999, 2000-
2004, 2005-2009 and 2010-2014. 

 

 

Figure 15: Number of novel molecular frameworks published in either only literature or patents, as a function of 
target class and time. The number of molecular frameworks increases throughout the years especially for GPCRs 
both in literature of patents. The year bins included are <1990, 1990-1994, 1995-1999, 2000-2004, 2005-2009 and 
2010-2014. 
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Figure 16: Number of Topological Frameworks published in either only literature or patents, as a function of target 
class and time. The number of topological frameworks increases throughout the years especially for GPCRs both 
in literature of patents. Additionally, it can be seen a large increase in recent years for Enzymes in patents. The 
year bins included are <1990, 1990-1994, 1995-1999, 2000-2004, 2005-2009 and 2010-2014. The activity cut-off 
used is <=1µM. 

 

Some increases of structures are noted such as the number of compounds associated with 

NHRs that are only published in patents. In early 2014 a review showed that ROR (Retinoic 

acid receptor-related Orphan Receptors) and REV-ERB (Nuclear Receptor subfamily 1, group 

D, member1) were suitable drug targets122 suggesting that efforts were being made into 

exploring this target class for novel druggable targets. Additionally, a gradual increase in the 

number of unique protein modulators is observed over the years for enzymes, regardless of 

structure type, that were only published in literature where the target is not published in a 

patent. On the other hand, a greater increase is observed for those only published in patents 

in recent years, suggesting that more enzyme targets (with bioactive structures) are published 

more frequently in patents only than literature only (in recent years). A sharp rise in structures 

active on kinases that are only published in patents is also observed for all three types of 

structural descriptions but less so in literature only, suggesting that the target class has 

remained of therapeutic interest and therefore structures associated with kinases, are 

frequently being patented to address this medically relevant area. 

The similarity between compounds published in each source (patent only, literature only and 

both patent and literature was analysed (Figure 17(A)) as well as the similarity between the 

first compound to be published in a journal in association with a particular target and the first 
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compound to be published in a patent in association with the same target ((Figure 17 (B)). The 

aim is to show how similar the compounds are across different sources. It can be observed 

that generally, the compounds in each source have a low similarity to those in another source 

(Figure 8) We have previously shown that the majority of compounds are either published in 

either scientific literature or a patent rather than both sources (Figure 13). The results in 

(Figure 17 (A) are asymmetrical because for each compound in each source, it is compared 

to the all the compounds in another source and for each compound for the maximum similarity 

is reported. For example, in the analysis of Patents Only and Literature Only, each compound 

in the Patents Only source has the maximum similarity reported out of all the compounds in 

Literature Only. This explains the difference in curves where the sources that are compared 

to those compounds that are published in both scientific literature and patents as there are 

fewer compounds in the source. However, there are some compounds that have a very high 

similarity as well as some compounds being identified with a Tanimoto score of 1 of which 

normally suggests that the two compounds are identical, however, they can also differ by their 

stereochemistry as in this case (Figure 8(A)) where the compounds have been observed as 

being published in either literature only, patents only or both sources. When comparing the 

Tanimoto similarity between the first compound to be published in literature for a given target 

against the first compound to be published against the same target Figure 17(B), but in a 

patent, shows that the two compounds often differ significantly in terms of their structure. 

Despite this, there are still 28 targets where their associated compounds (first published in 

literature and first published in patent to that compound) that have a similarity of 1. This 

suggests that for these 28 targets, the first compounds to be published in either source for 

that target were very similar (may differ in their stereochemistry) or the same compound. 

Figure 17 (A) shows differences in the curves depending on the source of the compounds and 

what source the compounds are being compared to. The curves where compounds have been 

compared from patent only or literature only to those compounds published in both sources 

show a peak at a Tanimoto score around 0.80 suggesting that there are compounds published 

in either patents or literature only are like those published in both sources. This may be due 

to the compounds that are published in both sources have been disseminated further and 

therefore their chemical space is more readily available. For example, compounds only 

published in patents may not have their chemical space yet published, therefore you would 

expect to not find many similar compounds associated with them. However, the same is not 

found for compounds that were compared from both sources to only one source. The reason 

for this is likely due to the high proportion of compounds being published in only one source 

compared to both sources. This will also explain why the curve is shifted to the right for 

comparisons between compounds published in only one source. 
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Figure 17: Tanimoto similarity between compounds published in each source (A) and Tanimoto similarity between 
the primary compound published in literature for a given target and the primary compound published in a patent 
for the same given target (B). With regards to part (A), for each compound in each source, the maximum similarity 
was calculated (for example for the label Patent Only and Literature Only, each compound published in the Patents 
Only source reports the maximum Tanimoto score of the most similar compound to it from the Literature Only 
source). Most compounds have a low similarity (less than a Tanimoto score of 0.45) to any other compound in the 
sources. The Tanimoto score has been binned into 60 portions. With regards to (B) The first compound to be 
associated with a target and the first compound to be associated with the same target but published in a patent 
shows that the two compounds tend to differ structurally. 

To further the analysis, this study considered how many of the compounds published in 

patents first or in patents only, regardless of the target, had molecular frameworks that had 

already been previously published. This would suggest that the structure was completely novel 

and had not originated from a previous compound. To this end, the molecular frameworks of 

the 227,957 compounds that were published in patents first or a patent only were extracted, 

which were found to comprise 86,577 unique molecular frameworks (Those without ring 

systems were excluded). These were joined with matching InChI Keys from the first 

occurrence of the molecular fragment from the originally extracted data from GOSTAR and 
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ChEMBL and resulted in 224,931 unique compounds and 85,450 unique molecular 

frameworks to compare. This considered all compounds that were originally extracted from 

ChEMBL and GOSTAR and their first published year. It was found that only 1% (4,233 out of 

the 224,931 unique compounds) published in patents first or patents only had molecular 

frameworks that had been identified previously. However, the remainder were published in the 

same year. This highlights that novel chemistry (the molecular framework) is an important 

factor in patenting compounds. 

 

2.4 Chapter overview 

 

As described in this chapter, the number of published novel protein modulators has grown 

cumulatively over the years. There has been a steeper increase for the number of compounds 

active on kinases over the years showing that kinases have continued to be a prioritised target 

class whereas for patents, the number of compounds active on GPCRs has decreased over 

the years. The number of unique compound-target annotations appears to tail off in recent 

years, but the same trend is not observed for patents. The size of the target class may also 

be an important factor to consider as more targets suggests more opportunity for starting new 

drug discovery projects and therefore more bioactive compounds being produced for these 

target classes. 

We have analysed bioactivity data from patents and scientific literature and found that there 

is a preference of first bioactive compounds for a novel target to get published in scientific 

literature earlier than in patents, but structures tend to get published in patents prior to being 

published in scientific literature. This study takes the first bioactive compound for a novel target 

published in either scientific literature or patents and therefore the two compounds are likely 

to be different. This explains why they can be published in literature prior to being published 

in patents. Target class and publication year have an influence on where target annotations 

are published. Additionally, when analysing different publication sources (patents only, 

literature only or both sources) for compounds (and their associated targets), it has been 

shown that bioactive compounds for a novel target tends to be published in literature only or 

in both patents and literature but not in patent only. Whereas, structures are likely to be 

published in either only a patent or only in literature rather than in both sources. These results 

reflect the fact that patenting is crucial for protecting the intellectual property of the finding, but 

publishing allows for the discovery to be available to other scientists in the field. This might 

reflect that for many targets the first molecules discovered are used to study the biology of a 

target not necessarily for pursuing a drug discovery project. 
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A caveat with the type of analysis presented here is that there is no guarantee that all active 

compounds in the scientific literature and patents are covered in the used databases. The 

addition of other datasets may yield different results. An example of an additional data source 

that could be used is SureChEMBL123 of which is a text-mined patent database. This analysis 

focused on manually curated sources of which is why SureChEMBL was not included, 

however the incorporation of SureChEMBL would be interesting to look at in the future. This 

was observed using GOSTAR and ChEMBL where a large amount of data is captured and 

represented from many patents and scientific literature. The inclusion of more data from these 

sources (as shown when analysing the effects of the filtering applied to the analysis) 

demonstrated the effect on the result was small. 
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3 Analysing the Matched Molecular Pair Transformations in Drug Discovery 
Projects as a Function of Time and Molecular Environment: – Frequency of 
Molecular Transformations 

 

3.1 Introduction 

ADMET (absorption, distribution, metabolism, excretion and toxicity) properties as well as 

binding and potency at the biological target are the key focus during lead optimisation3. In 

general, properties and potency will increase124 from a hit molecule to a candidate molecule. 
The most important property to modulate during optimisation is lipophilicity as this has an 

effect on almost all of the other measured properties. The value of modulating lipophilicity is 

emphasised by the discontinuation of the development of lipophilic compounds125. Generally, 

compounds will need to become more ligand efficient, more permeable, more soluble, less 

cleared and more bioavailable126 and those compounds synthesised nearer the end of drug 

discovery projects are more likely to reaching these criteria. This type of analysis could provide 

useful insight for future decision-making, and in this study, we explore this using Matched 

Molecular Pairs (MMPs) and compound registration date.  

Previous studies have used matched molecular pairs (MMPs) to understand ADMET rules 

and aid in compound optimisation. In a recent article, MMPs were combined with machine 

learning techniques to allow for development of novel compounds127. To identify MMPs 

previous reports have fragmented the compounds based on retrosynthetic rules. The 

fragments were defined as the smallest possible component, which cannot be fragmented any 

further. Overall, it was reported that combining MMP analysis with machine learning 

techniques, in particular deep neural networks, was effective at automating SAR 

decomposition and prediction.127 Therefore, the results indicate that using MMP in 

collaboration with machine learning techniques, can support the compound optimisation 

process. The validation sets considered two concepts, new fragments and new static core 

which implicitly considering binding sites. In another study, the authors found that the most 

frequently used automated matched pair identification methods, were synergistic with each 

other85. These methods were the maximum common substructure and the fragment and index 

methods and when combined, they were the most effective at transformation identification.  

A third study compared the MMPs between different companies to learn ADMET rules has 

been previously performed128. In this study, matched molecular pairs and atomic environments 

were compared from multiple pharmaceutical companies. They show that the three companies 

share a total of 58,000 rules, yet each company has a greater number of rules that are only 
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used by themselves (139k, 84k and 70k rules used only by company A, B and C, respectively). 

The study highlighted that companies sharing of MMP rules leads to a larger rule set to 

implement in compound design. Furthermore, the study compared the properties amongst the 

MMPs128 and showed that by combining rules across companies there is still good correlation 

between properties such as log D, solubility, in-vitro clearance and plasma protein binding. 

Examples identified that the MMP effect on properties were unexpected, such as the case in 

which a tertiary dimethyl alcohol was replaced with a primary alcohol leads to a reduction in 

log D without having a significant effect on solubility.  

Another study129 analysed the relationship between experimental uncertainty and MMPA and 

also showed most common MMP transformations that have been found to have a significant 

effect on hERG activity from within the public dataset ChEMBL21 were in agreement within 

in-house Novartis data when the results are statistically significant129. An additional paper that 

is related to this work130 analyses the types of synthesis used in three different pharmaceutical 

companies. Here they defined the reaction and the involved molecular fragments however 

they do not compare atomic environments that each reaction is performed on. All those 

analyses can be used to determine how to optimize a compound, i.e. to decide which 

transformation to perform on a molecule to achieve the desired effect. 

More recently it has been reported that due to the large amount of data that is available 

machine learning and matrix analysis can be highly important as a tool to aid medicinal 

chemists. As chemical intuition plays such an important part in any development, there is great 

value in ensuring that biases and downfalls of the methods need to be accurately 

communicated131. In addressing the influence of medicinal chemist’s intuition, one report 

discussed how chemists simplify problems, the amount of agreement between chemists on 

the criteria used, and the accuracy of reporting the relevant criteria132. To do this, chemists 

were asked to select chemical fragments from a set of approximately 4,000. The findings 

showed that chemists greatly simplify the problem by using few criteria and generally, although 

there is agreement on what parameters should be used, there was no strong agreement 

between chemists on how the parameter preferences were determined and thus what 

constituted undesirable parameters. Overall, the study highlighted that here is a low 

consensus between chemists132. In another study133, the authors assessed how consistent the 

medicinal chemists’ opinion is and investigated this along with a compound acquisition 

program that was conducted as Pharmacia. This particular report also showed a lack of 

consistency between chemists and highlighted the danger of declaring a compound as 

undesirable as it is then excluded from further assessment (as well as structurally similar 

compounds). What we identify is a conflict between chemists’ designation of the undesirability 

of a compound, which inevitably can influence the related computational models.  
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Following on from these previous studies, in this work also take the time into account, and 

assess the effect of frequently occurred transformations on frequently occurring environments. 

To optimise a compound, structural modifications are made in different positions on the 

molecules to reveal structural-activity relationships (SAR) as well as physicochemical 

properties. Several MMP transformations can be made between two matched pairs and 

therefore they can vary in size depending on where the structural change is considered to be 

occurring134. Previous reviews of MMPA in drug discovery have shown that MMPA is able to 

aid in multiple parameter optimisation by cutting down the number of required design cycles135. 

They highlighted that due to the flexibility of the technique; it can lead to chemists being able 

to make informed decisions about compounds without having to make them.  An automated 

closed-loop optimization platform has been shown to be successful in the identification of 

inhibitors for hepsin. This process combines artificial intelligence and automated synthesis as 

well as biological assays for hepsin136.  

As multiple parameters need to be optimised simultaneously, there is a need to improve 

automated systems. There have generally been a number of improvements in experimental 

procedures, particularly in the automatisation area, such as improved technology and robotics, 

parallelization and miniaturization methodologies, as well as artificial intelligence that are able 

to help improve a design hypothesis110. These improvements, including the potential to reduce 

the risk of false positives as well high speed and reduced costs.  

A general statistical analysis of the matched molecular pairs used in a pharmaceutical 

company including information about registration dates and the atomic environment has not, 

to our knowledge, been published. Our study derived all the matched pairs since 2000 for 453 
internal AstraZeneca projects to analyse the most common MMPs in the forward direction, 

where the second compound was registered after the first, whilst also considering the atomic 

environment (aliphatic or aromatic) attached to the functional group. In our work, we have also 

applied the maximum common substructure algorithm to ensure that the smallest and most 

likely transformation that the chemists intended to perform has been performed and that the 

backbone of the matched molecular pair is the largest possible similar structure between the 

two compounds. 
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3.2 Materials and Methods 

 

3.2.1 Compilation of the dataset 

The data analysed in this study was extracted from internal AstraZeneca sources. For each 

project the starting compound was registered before the ending compound. The project data, 

including the compounds, registration dates and project titles from internal AstraZeneca 

databases were extracted with Perl and the matched molecular pairs were calculated using 

Perl137, and the output files were read into KNIME90,138. Standardised SMILES format was 

used to represent the compounds, and were standardised using an in-house method91. The 

attachment point is represented by a * when representing the transformations and 

environments as smiles/ fingerprints.  

3.2.2 Determination of the atomic environment of the compound 

 
Figure 18: Example of atomic environment levels as defined by signature fingerprints 

 

The atomic environments levels 1-3 are presented as signature fingerprints (Table 3) (note 

that the molecular fragments represent atomic environment level 0 (Figure 18) as this is the 

part that changes). The system type that the MMP transformations are performed on is 

represented as either aliphatic or aromatic. In total 311,782 rows of data were analysed. 

 

 

 

Table 3: Table showing the top 10 atomic environments for aromatic and aliphatic systems. The * represents the 
attachment point. The signature fingerprints are also shown. 

   
Level 1 

Level 2 

Level 0 



 
 

61 

 Aliphatic Systems Aromatic Systems 
Rank Atomic 

Enviroment 
Signature 
Fingerprint 

Atomic 
Enviroment 

Signature 
Fingerprint 

1 

 

[*]([C]([N]([C][C]))) 

 

[*]([c]([c]([c])[c]([c]))) 

2 

 

[*]([N]([C]([C])[C]([

C])))  

[*]([c]([c]([c])[c]([c][C])

)) 

3 

 

[*]([C]([N]([C]))) 

 

[*]([c]([c]([c])[c]([c][N])

)) 

4 

 

[*]([C]([C]([N])))  
 

[*]([c]([c]([c])[n]([c]))) 

5 

 [*]([C]([O]([C]))) 
 

[*]([c]([c]([c])[c]([c][O])

)) 

6 

 

[*]([N]([C]([C]=[O]))

)  
[*]([c]([c]([c])[c]([n]))) 

7 

 

[*]([C]([N]([C])=[O])

) 

 
 

[*]([c]([c]([c])[c]([c][F]))

) 

8 

 

[*]([O]([C]([c][c])))  
[*]([c]([c]([c])[c]([c][Cl])

)) 

9 
 [*]([C]([C]([C]))) 

 

[*]([c]([c]([c][C])[n]([c])

)) 
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10 

 

[*]([C]([C]([C][N]))) 
 

[*]([c]([n]([c])[n]([c]))) 

 

3.2.3 Determining the matched molecular pairs 

The matched molecular pairs were identified using an internal code that determined the 

matched molecular pairs using a maximum common substructure method83. The method 

involved cutting every bond that is not within a ring and recording all pairs of fragments. Implicit 

hydrogens are recorded and therefore considered. For each fragment that has been 

generated, a unique identifier was assigned of which is used as a normalisation step as it is 

possible to write the same fragment in different ways (when written as a structure format such 

as signature fingerprints). Searching for all compounds, which have at least one fragment of 

a size of at least 9 heavy atoms in common, creates the table of matched pairs. The two 

compounds should differ at only one position, and then all possible matched pairs are 

compared for any pair of compounds and only the one corresponding to the biggest fragment 

in common. The attachment point is then detected in both molecules at the point where the 

two compounds are differing. This ensures that the smallest possible MMP transformations 

(and most likely, in terms of what the chemists intended) are analysed, as this is likely to reflect 

the chemists design ideas. One compound example needed manual alteration due to not 

being able to be captured in the program.  

The 20 most frequently occurring MMP transformations that are performed on aliphatic and 

aromatic systems well as the top 10 atomic environments for each system were visualised in 

ChemAxon Marvin View KNIME nodes139. 

 

3.2.4 Parameters used to process the data 

Where information, such as the registration date, on the compound pairs was missing, that 

compound pairs information was removed from further processing. The minimum time from 

the first registered compound and the last compound in a project needed to be at least 90 

days and projects that had fewer than 100 unique compounds were removed. The registration 

date between compound 1 (transformed from) to compound 2 (transformed to) was analysed 

to see the days taken between the two compounds to register them. These dates were binned. 

Only compounds registered from 2000 onwards where retained in the dataset, which 

represents the year of the formation of AstraZeneca. The MMP transformations (X>>Y) as 

well as the opposite MMP transformations (Y>>X) and the starting molecular fragment as well 
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as the end molecular fragment, were ranked in terms of their frequency of occurrence. 

Additionally, the percentage of each MMP transformations for the total MMP transformations 

in total was calculated. The percentage difference and ratio between the MMP transformations 

and its opposite MMP transformations is calculated. All these calculations were done for 

different systems (aliphatic or aromatic systems). Only MMP transformations that occur at 

least 100 times, in total, are included in the analysis.  

 

3.2.5 Calculation of time difference and ratio between MMP transformations and their 

opposite 

The time difference between the start of a project and the starting compound of each 

transformation was calculated and the median time was represented. Furthermore, the time 

difference between compound 1 and compound 2 was calculated by taking the difference of 

registration dates between subsequent compounds registered for a project.   

We next calculated the inverse transformation as the count occurrences of the MMP 

transformations divided by the count occurrences of its opposite MMP transformations 

((Count(X>>Y)/(Count(Y>>X))), and the difference in the percentage differences.  

the resulting figures from this analysis were produced using Spotfire software96. When 

exploring the correlation between MMP transformations and atomic environment was 

produced in Python in Anaconda Navigator140.  

 

3.3 Results and Discussion 

 

3.3.1 Analysis of the most frequently observed molecular fragments found in transformations 

as a function of to time 

We first analysed the frequency of the starting point and end of the MMPs occurring 

chronologically. We separate these findings based on molecular environment (aromatic and 

aliphatic systems). The results of this analysis are displayed in Figure 4. 

There are 957 unique transformations in total analysed in this study. The unique 

transformations are made up of 81 unique start points and 197 unique end points overall. 

Splitting this into the different systems, aromatic and aliphatic systems we find that, for 

aromatic systems, 935 out of the total of 957 unique transformations are performed on 

aromatic systems. These unique transformations are made up of 76 unique start points and 

186 end points. For aliphatic systems, of the total 957 unique transformations, 944 
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transformations are performed on aliphatic systems. 80 of the unique start points are observed 

on aliphatic transformation all 197 unique end points.  

Methyl groups, the second most frequently occurring starting point for both aromatic and 

aliphatic systems, respectively, (and second and first most frequently occurring end point, for 

aromatic and aliphatic systems, respectively), are able to modulate the properties of a 

compound, in both the biological and physical sense73. Despite the large number of MMPs 

that result in a methyl group being replaced by another group (37,765 instances), there are a 

larger number (37,862 instances) of MMPs, which involve changing a functional group to a 

methyl group. A methyl group can be used to introduce a twist in the compound to aid in better 

binding141,142 due  allowing the biological conformation to be adopted in solution143. This effect 

can also influence solubility; moving ring systems out of the plane can interfere with stacking 

interactions (planarity and symmetry) and increase the solubility144.  Another reason for adding 

a methyl group is to remove a donor from a molecule145 in order to reduce permeability. 

Examples, of this occurring are replacing oxygen with a methyl or a nitrogen with a methyl 

group. Therefore, the high frequency of occurrences of the addition of a methyl group 

observed may be an effort to improve the binding of the compound to the target or optimise 

properties such as solubility and permeability. Additionally, a recent study highlighted the 

importance of methyl groups, and summarised 22 beneficial cases that have been observed 

on different important areas of the optimisation process, notable, potency, selectivity, 

solubility, metabolism as well as their PK/PD properties146. The authors also expect an 

increase in the number of methyl containing therapeutics. 

 

Table 4: The occurrences of the top 10 most frequently occurring molecular fragment starting and end points 
performed on aromatic and aliphatic systems. The A marks the attachment point of the molecular fragment.  

Aromatic systems Aliphatic systems 
Change  

From 

Count Change 

To 

Count Change 

From 

Count Change  

To 

Count 

 
39,620 

 
16,292 

 
43,768 

 
22,747 

 
12,312 

 
13,301 

 
21,512 

 
15,179 

 
11,783 

 
10,642 

 

7,290 
 

4,766 

 
10,914 

 
10,642 

 
5,246 

 
4,436 
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7,558 

 
10,227 

 

4,450 

 

4,094 

 
4,063 

 
6,459 

 

4,144 

 

3,948 

 

3,585 

 

4,585 
 

3,968 
 

3,885 

 
1,946 

 
2,447 

 

3,564 

 

3,536 

 

1,423 

 

1,737 
 

2,769 

 

2,934 

 

1,216 
 

1,484 

 

2,337 
 

2,886 

 

3.3.1.1 Aromatic Systems 

Halogen atoms (specifically, fluorine, bromine and chlorine) are prevalent amongst the most 

frequently observed starting and end points in the analysed MMPs (55,435 instances in total), 

when performed on aromatic systems (Table 4). The introduction of halogen atoms within drug 

design is often used to increase potency and or selectivity due to their electronic and steric 

effects by modulating the ligand-protein interactions147. A consequence of this is that the 

DMPK properties can be changed by the halogens, increase in lipophlicity148. Halogenated 

FDA approved drugs from between 1988 and 2006 show that the fluorine is the most 

commonly incorporated atom, followed by chlorine, bromine and then iodine147.  The addition 

of fluorine in drug candidates has been extensively discussed in scientific literature, in 

comparison to the other halogen atoms, due to its atomic properties, such as its high 

electronegativity and its small size149–151. As fluorine is the most electronegative element, its 

introduction into a molecule can alter electron distribution, which can impact on the pKa, dipole 

moment and even the chemical reactivity and stability of neighbouring functional groups152. 

Additionally, fluorine can be used to block sites of oxidative metabolism by cytochrome P450 

monooxygenases, when substituted place of hydrogen on an aromatic ring, whilst leaving 

potency unaltered due to being a comparable size to hydrogen152. This would explain the high 

frequency of a hydrogen atom being transformed to a fluorine on aromatic systems. 

Fluorination also affects the acidity/basicity of neighbouring groups in the molecule, for 

example making carboxylic acids more acidic and lowering the basicity of amines152. The 

many uses of fluorine are highlighted in several review articles151,153,154. As with fluorine, 
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chlorine also is frequently observed in MMP transformations and molecular fragments147. 

Chlorine is larger in size than fluorine and is a moderate hydrogen bond acceptor. This is 

useful because potency increases due to picking up additional interactions with the protein.  

Of the most frequently occurring MMPs found for aromatic systems, both fluorine and chlorine 

were observed as the starting point of the MMPs as well as ending point of the MMPs. There 

are 34 unique end points that halogenated atoms are transformed to (Table 5). This represents 

~17% of the total number of transformed to molecular fragments showing that replacing a 

halogenated atom is a common practise in the design process. Halogenated atoms do not 

enter the 20 most frequently occurring MMP transformations for those performed on aliphatic 

systems, which may be because halogenated atoms (with exception of fluorine) are leaving 

groups and are therefore reactive155.  

 

Table 5: List of the molecular fragments that the halogenated atoms are transformed to. 

Aromatic Aliphatic 

Count Fragment Count Fragment 

5,395  540  

3,216  190  

2,871  175  

2,192  99  

2,179  60 
 

2,115 
 

50 
 

1,729 
 

47 
 

1,199  46  

587 
 

44  

527 
 

36 
 



 
 

67 

473  36  

363 
 

31 
 

357  30  

344  26 
 

336 
 

22  

331 
 

20 
 

329 
 

17  

316  17 
 

285  12 
 

285 
 

11  

282 
 

10 
 

275 
 

9 

 

251  9 
 

236 
 

9 
 

236 
 

8  
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224 
 

7 
 

120 
 

4 
 

110 
 

1 
 

92 

 

1 
 

91 
 

1 
 

77 
 

 

Other groups commonly introduced into aromatic systems include acids and amides, which 

can make specific interactions with amino acids in the protein target as well as modulate the 

pKa of the compound156, as well as trifluoromethyl groups (12,781 instances on aromatic 

systems) which have the advantage of being similar to isopropyl or ethyl groups in terms of 

size. Trifluoromethyl groups do however tend to be smaller than isopropyl groups and are 

considered more similar to ethyl groups150,157,158.   

 

3.3.1.2 Aliphatic Systems 

Cyclopropyl groups appear in the 20 most frequently occurring MMP transformations groups 

for aliphatic systems (16th most frequently observed transformation, with respect to time). 

Cyclopropyl groups are increasingly being incorporated into compounds as a replacement for 

methyl groups because of the reported increase in metabolic stability159. It has been shown 

that the addition of a cyclopropyl ring directly influences physicochemical properties, target 

specificity and potency in a favourable way as well as pharmacokinetics159. It is however 

important to note that how the properties are affected will be dependent on the surrounding 

chemistry of the compound. MMP transformation has been shown to increase several factors 

including potency and stability135. This MMP transformation was the 66th most frequently 

observed MMP transformations on aromatic systems but ranked 16th on aliphatic systems. 

This section shows that the most frequently observed molecular fragments have been 

extensively studied and reviewed in the chemical literature for their impact on drug properties 
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and that chemists use this knowledge in design during compound optimisation. Here to the 

effects of these molecular fragments on compound properties will be dependent on the 

surrounding compound chemistry. While many transformations make sense according to 

literature, it is still overall difficult to make sense of them all, because they depend on context, 

and therefore; it is difficult to fully rationalize transformations. 

 

3.3.2 Analysis of the most frequently observed MMP transformations and their inverse 

transformations 

We next analysed the most frequent MMP transformations on different systems. This 

highlights the most frequently occurring MMP transformations that are performed on the 

different atomic environments.  

Removing molecular fragments to leave a hydrogen atom or replacing a hydrogen atom is the 

most frequent MMP transformations made in the 20 most frequently. The frequency of adding 

or removing a hydrogen atom, likely shows the effects of expanding and growing or conversely 

truncating a molecule in the drug design process to optimise interactions160. Alternatively, to 

develop SAR of which moieties in a molecule are important for potency and properties.  

The 20 most frequently occurring MMP transformations for either system all involve small (few 

number of heavy atoms involved) molecular fragments as both starting and endpoints; for 

example, replacing a hydrogen atom with fluorine. This may suggest that such small changes 

are often made to fine-tune properties by the medicinal chemist in lead optimization. Figure 

19 also shows that the more frequently a MMP transformation occurs, the more projects it is 

involved with, which shows that the MMP transformations have global applicability across 

project contexts, for different target classes. It has been shown that there are overall relatively 

few reactions used in chemistry, which may be the result of commercial availability and 

selectivity161.  

The fact that there are more instances of hydrogens being replaced by heavy atoms rather 

than the other way around (within the 20 most frequently occurring MMP transformations) 

relates to the fact that molecular weight (compound size) tends to increase throughout the 

compound optimisation process125,160.  

There are only four MMP transformations that appear in both 20 most frequently occurring 

MMP transformation lists. These are hydrogen to methyl, methyl to hydrogen, hydrogen to 

ether, and methyl to ether. However, they do vary in terms of their rank in frequency. Hydrogen 

to methyl and methyl to hydrogen are the most and second most frequently occurring MMP 

transformations in the 20 most frequently occurring MMP transformations that are performed 
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on aliphatic systems. They appear as the 2nd and 6th most frequently occurring MMP 

transformations for those performed on aromatic systems, respectively. Hydrogen to ether 

ranks position 4th for those performed on aromatic systems and 7th when performed on 

aliphatic systems. Whereas, methyl to ether occurs at the 17th and 18th positions for MMP 

transformations performed on aromatic and aliphatic systems. What this shows it that these 

transformations are key attempts made regardless of the system, likely as an attempt to grow 

the compound.  

 
Figure 19: For each system (A) aromatic and (B) aliphatic a bar chart showing the portion of unique different 
projects of each MMP transformations is observed in. The higher the rank of the MMP transformations, i.e. the 
more occurrences of MMP transformations, the more projects that MMP transformations appears in. In this 
presentation, the X axis represents the rank of the frequency of the transformations performed on each 
environment. MMP transformations can be very commonly occurring but only appear in a couple of projects. 

MMP transformations performed on Aromatic systems ranked by their 
frequency of occurrence 

MMP transformations performed on Aliphatic systems ranked by their 
frequency of occurrence 
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We next considered the MMP transformations in relation to their reverse MMP transformations 

for both aromatic (Table 6) and aliphatic systems (Table 7). The frequency of the reverse MMP 

transformations are calculated and compared against the forward MMP transformation 

occurrence frequency to suggest why particular MMP transformations may be performed, but 

the opposite might be less frequent. Some of these MMP transformations and reverse MMP 

transformations occur very close in rank in terms of their frequency of occurrence for both 

aromatic and aliphatic systems. For example, chlorine to a methyl group MMP transformations 

and a methyl to a chlorine group MMP transformations are the two transformations that are 

performed in similar proportions to each other. Being around the same size substituents, these 

are commonly switched for SAR reasons162.  

 

3.3.2.1 Aromatic Systems 

50% of the MMP transformations that occur on aromatic systems (listed in Table 6: The top 

20 MMP transformations performed on aromatic systems and their statistics.  There are two 

instances in the top 10 where a MMP transformations reverse MMP transformations do not 

occur in the 20 mos) involve a hydrogen atom of which suggests that the most common 

comparison made is to an un-substituted framework from different substituents. In fact, the 20 

most frequently occurring MMP transformations that occur on aromatic systems, involve only 

7 different unique molecular fragments.  

 

The fourth most frequently occurring transformation, hydrogen to methoxy is an interesting 

one in that when bonded to a benzene ring is considered an electron-donating group. Another 

key example is the introduction of pyridine of which is likely to be a MMP transformations for 

growing the molecule and pyridines are often found in approved drugs164. Pyridines provide 

an increase in lipophilicity, an opportunity for interactions with amino acid residues through π-

stacking interactions165, and have the advantage that they are less lipophilic than benzene 

and display differing electronics and reactivity which makes them amenable to further 

synthetic modification166.  

 

Only 4 of the inverse MMP transformations performed on aromatic systems, do not occur in 

the 20 most frequently occurring MMP transformations along with their forward transformation. 

These are nitrile group to a hydrogen atom (position 41), trifluoromethyl to a hydrogen (position 

46, several FDA approved drugs contain a trifluoromethyl group including Prozac 167, ether to 

a methyl group (position 22), an ether to a chlorine (position 25), and the MMP transformations 
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positions were 9, 14, 17 and 20 respectively. Hydrogen atom as a starting point occurs 6 times 

and as an ending point occurs 4 times. Only two MMP transformations that involve a hydrogen 

atom as a starting point do not have their reverse MMP transformations in the 20 most 

frequently occurring (nitrile group to a hydrogen (position 41) and trifluoromethyl to hydrogen 

(position 46).  



 
 

74 

Table 6: The top 20 MMP transformations performed on aromatic systems and their statistics.  There are two 
instances in the top 10 where a MMP transformations reverse MMP transformations do not occur in the 20 most 
frequently occurring. 
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8,951 5 
 

2,839 4 3 

2 
 

7,400 6 
 

2,620 4 3 

3 
 

5,895 7 
 

2,556 4 2 

4 
 

5,608 11 
 

1,940 7 3 

5 
 

2,839 1 
 

8,951 -4 0 

6 
 

2,620 2 
 

7,400 -4 0 

7 
 

2,556 3 
 

5,895 -4 0 

8 
 

2,192 10 
 

2,179 2 1 

9 
 

2,192 41 

 

549 32 4 

10 
 

2,179 8 
 

2,192 -2 1 

11 
 

1,940 4 

 

5,608 -7 0 

12 
 

1,800 13 
 

1674 1 1 

13 
 

1,674 12 
 

1,800 -1 1 

14 

 

1,599 46 

 

449 32 4 



 
 

75 

15 
 

1,526 19 
 

1,391 4 1 

16 
 

1,467 18 
 

1,416 2 1 

17 
 

1,417 22 
 

1,173 5 1 

18 
 

1,416 16 
 

1,467 -2 1 

19 
 

1,391 15 
 

1,526 -4 1 

20 
 

1,345 25 
 

1,055 5 1 

 

 

3.3.2.2 Aliphatic Systems 

The top 20 transformations that are performed on aliphatic systems are shown in Table 7 

where we find that hydrogen is transformed to an alcohol group very frequently, occurring as 

the fourth most frequently observed transformation. This is because the addition of an alcohol 

functional group onto a molecule introduces the electron rich oxygen (due to its 

electronegativity) and therefore the covalent bonds are polarized leading to improved 

solubility. 

The 14th most frequently occurring transformation is that of a hydrogen being replaced by an 

acetyl group. This group can be added to increase the permeability and cross the blood brain 

barrier, and therefore acetylation would likely be incorporated in situations where the chemists 

are aiming to get the drug past the blood brain barrier. An example of such a drug is 

acetaminophen (paracetamol), or the acetylation of morphine to heroin (diacetylmorphine)168.  

Deacetylation (the removal of an acetyl group) to a hydrogen group occurs considerably less 

frequently than the forward transformation. It is the 43rd most frequently occurring 

transformation creating a rank difference of 29 places. The forward transformation occurs over 

3.5 times more frequently than deacetylation highlight the desire to get drugs past the blood 

brain barrier in many cases.  
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Table 7: The top 20 MMP transformations performed on aliphatic systems and their statistics.  There are more 
inverse transformations that do not occur in the top 20 in comparison to those identified on aromatic systems. 
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16840 -1 
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1418 3 
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1,536 20 
 

853 14 
2 

7 
 

1,532 36 
 

536 29 
3 
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1,418 5 
 

1739 -3 
1 
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1,404 58 
 

431 49 

3 

10 
 

1,395 30 

 

581 20 

2 

11 
 

1,326 66 

 

393 55 

3 

12 
 

1,113 23 
 

810 11 
1 

13 
 

1,011 3 
 

2676 -10 
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1,011 43 
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992 57 
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A large portion of the reverse MMP transformations performed on aliphatic systems do not 

occur in the 20 MMP transformations (60% (12 out of 20 reverse MMP transformations). In 

comparison to the 20 most frequently occurring MMP transformations, 16 of the MMP 

transformations performed on aromatic systems appear in the 20 most frequently occurring 

MMP transformations overall. Only eight MMP transformations that occur on aliphatic systems 

appear in the 20 most frequently occurring MMP transformations overall hydrogen to a methyl, 

methyl to a hydrogen, hydrogen to an ether, hydrogen to an oxygen, hydrogen to an ether, 

methyl to an ether, hydrogen to a carbon-carbon bond and a hydrogen to a phenyl ring.  This 

suggests that aliphatic systems are more sensitive to the types of transformations performed 

on them.  

 

16 
 

968 64 
 

404 48 
2 

17 
 

965 52 
 

458 35 
2 

18 
 

916 44 
 

484 26 
2 

19 
 

853 50 
 

460 31 
2 

20 
 

853 6 
 

1536 -14 1 
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3.3.3 Analysis of the most frequently observed environments and the MMP transformations 

performed on them 

 

In order to understand which environments are most frequently involved with transformations, 

we looked at the top 10 atomic environments in which the MMP transformations are applied 

to both aliphatic and aromatic systems (Table 8). The distribution of proportions, in terms of 

frequency of transformations being performed for each environment, is more evenly 

distributed in aliphatic systems than they are for aromatic systems. The proportion of the most 

frequently identified MMP transformations (X>>Y) that are performed on each of the top 10 

local atomic environments for aromatic systems shows that approximately 55% of the 

transformations are performed on the most frequently occurring aromatic system, whereas, 

for aliphatic systems all of the top 10 most frequently occurring MMP transformations make 

up between 7% and 14%. This again supports the idea of aliphatic systems being more 

sensitive to the types of transformations that are performed on them (specific examples are 

presented in their relevant sections of this thesis). 

 

Table 8:  Table showing the top 10 atomic environments for aromatic and aliphatic systems. The * represents the 
attachment point. The percent occurrence of the top 10 for each system is also shown. 

 Aliphatic Systems Aromatic Systems 
Rank Atomic Enviroment Percent of 

top 10 

Atomic 
Enviroment 

Percent of top 10 

1 

 
13% 

 
55% 

2 

 
13% 

 

16% 

3 
 12% 

 

7% 

4 
 12% 

 
6% 
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5 
 

11% 

 

4% 

6 

 
9% 

 
3% 

7 

 
8% 

 

3% 

8 

 7% 

 

2% 

9 
 

7% 

 

2% 

10 

 
7% 

 
2% 

 

As with the MMP transformations the 20 most frequently occurring atomic environments and 

MMP transformations performed on them vary between aromatic and aliphatic systems as can 

be seen in Figure 20. 
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Figure 20: The percentage of each MMP transformations in the 20 most frequently occurring that are performed 
on (A) aromatic or (B) aliphatic systems that is performed in a given atomic environment (the top 10 most frequently 
occurring atomic environments overall).  The most frequently analysed MMP transformations for aromatic systems 
tend to all are attached to one environment (where [*] represents the attachment point). Whereas, the 20 most 
frequently occurring most frequently observed MMP transformations performed on aliphatic systems vary on the 
atomic environments. The shade of purple reflects the percentage of the top 10 environments a particular 
transformation is performed on. Therefore, each row equals 100% 

 

3.3.3.1 Aromatic Systems 

The most frequently occurring aromatic environments are shown in Table 14. The 4th most 

frequently occurring aromatic atomic environment is one that matches a pyrrole structure. 

Pyrrole is considered reactive (especially towards electrophilic groups), has a lone pair of 

electrons delocalized onto the aromatic ring, and its diverse activity features in a number of 

marketed drugs with a range of therapeutic properties169 such as Lipitor which is used to lower 

LDL levels170. Alternatively, this environment could be a pyridine or a pyridazine, as is also the 

case with the 6th most frequently occurring atomic environment for aromatic systems. The 10th 

most frequently occurring aromatic atomic environment is an imidazole which is electron-rich 

and allows for derivatives to readily bind with a variety of targets such as enzymes171.  

Furthermore, imidazole is amphoteric and highly polar172 and can readily accept or donate 

protons as well as participate in weak interactions. 
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In the next phase of our study we explored the most frequently occurring transformations that 

are performed on the most frequently occurring atomic environments as seen in Figure 20. 

The highest observed instance of the 20 most frequently occurring MMP transformations 

which occurs on an aromatic system, is hydrogen to fluorine (22%), while the most frequently 

observed aromatic environment has the highest proportion of occurrences of transformations, 

which might not be unexpected as the most frequently occurring transformations are 

performed on the most frequently occurring atomic environment most often. 

 

3.3.3.2 Aliphatic Systems 

Following on with observations on aromatic systems, aliphatic systems are more sensitive to 

the transformations that are performed on them in comparison to those performed on aromatic 

systems, which is likely to be attributed to the difference in saturated and unsaturated 

structures. The MMP transformations that are performed on an aliphatic system are likley to 

provide different optimisation methods to those performed on aromatic systems. 

The 9th and 14th most frequently occurring transformation are performed on the 2nd most 

frequently occurring aliphatic environments 100% of the time (out of the 10-top aliphatic atomic 

environments). The 9th most frequently occurring transformation is the removal of a boc-

protecting group, protecting amines, allowing the nitrogen to be revealed. The boc-protecting 

group is often replaced in a molecule (the 9th most frequently occurring transformation involves 

a molecular fragment containing a boc-protecting group and is replaced by a hydrogen atom 

(Figure 20) and this occurs 1,404 times most likely as a result of the synthetic methods used 

to produce amine containing compounds173. The 14th most frequently occurring transformation 

depicts acetylation. Of the 10-top aliphatic atomic environments, acetylation occurs only on 

the 2nd most frequently occurring aliphatic atomic environment. It can potentially occur on other 

environments; however, this is not observed in this instance.  
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3.4 Chapter overview 

In our study we have we have statistically analysed the MMP transformations applied during 

the drug optimisation process of various projects within AstraZeneca’s collection. The decision 

of the design process is highly influenced by the atomic environment that the MMP 

transformations are performed on.  

The most frequently occurring molecular fragments that act as starting and ending points in 

the transformations and the MMPs performed vary between aliphatic and aromatic systems. 

Furthermore, molecular fragments are favoured in the drug discovery process including 

halogenated atoms on aromatic atomic environments and nitrile groups in both aromatic and 

aliphatic environments. This is due to their known advantageous properties such as 

modulating potency and or selectivity for during and molecular recognition.  

When analysing the frequency of the reverse transformation it is observed that aromatic 

reverse MMP transformations are more frequently occurring than those aliphatic systems, 

which is likely due to the frequency of use of aromatic rings in drug discovery and the 

understanding of synthetic chemistry around these scaffolds. Aliphatic systems are more 

sensitive to the types of MMP transformations that can be performed on them, with two MMP 

transformations out of the top 10 aliphatic atomic environments, being performed on a single 

environment, of the 10 most frequently occurring. These two examples are due to specific 

chemical restrains such as removing a boc-protecting group from the amine and the 

acetylation of the amine to an amide.  

This analysis can help with compound optimisation by helping to understand which 

transformations are performed and how the compound transformation affects the assay 

results.  
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4 Analysing the Matched Molecular Pair Transformations in Drug Discovery 
Projects as a Function of Time and Molecular Environment: – Effects on 
Compound Properties 

 

4.1 Introduction 

In the previous chapter a statistical analysis was presented of the most frequently observed 

matched molecular pair transformations within internal AstraZeneca projects and the atomic 

environments they were performed. Extending on from that analysis, this chapter focuses on 

the observed effects of transformations on common properties of compounds identified for in 

lead optimisation and how these properties change over the course of a project; in particular 

hERG, Caco-2, logD, solubility, human hepatocyte metabolism, human and rat microsomal 

metabolism. Furthermore, the influence of the observed transformations on these properties 

need to be analysed in the context of the atomic environment, as the effects of the 

neighbouring atoms is crucial in determining the effect that the change will have on the 

properties due to factors including chemical reactivity, stability, electronics and sterics.  

Previous examples of assessing the effect of the matched molecular pairs on compound 

properties have been discussed in the literature where it has been highlighted that comparing 

the structural changes and their influence on a particular property can lead to an 

understanding of the expected property change when applying these structural features to 

new molecules162. For example, matched molecular pair analysis has been performed on 

glycogen phosphorylase inhibitors to assess the effects on the properties (as well as activity) 

that occurs due to the change of one molecular fragment to another174.  

In a previous study, the authors compared the change in property values for a handful of 

molecular fragments when adding them to aromatic rings and the methylation of heteroatoms. 

Specifically, they looked at methylating an amide, ROH group, ArOH group and an RR’NH 

group.In the case of methylating an amide the authors identified an average increase in the 

solubility, whereas the rest decreased on average. The properties tested were aqueous 

solubility, rat plasma protein binding, and oral exposure in an in vivo rat model. For solubility, 

the authors noted that when adding substituents on aromatic rings, the addition of heavier 

halogens correlates to how large their negative effect would be on the solubility. They also 

found that adding a bromine to an aromatic system decreased the solubility in 98% of the 

cases162. The study also explains that outliers can possibly indicate ways to avoid the general 

trend, which could be highly beneficial. 
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By analysing structural changes and the effect they have upon a property of interest it is 

possible to understand what is likely to happen when the transformation is performed on a 

new compound162. However, as well as considering the chemical change, it has been shown 

that the atomic environment of the chemical change must also be considered in order to 

optimise the predictive ability of MMPA analysis81. The variability of the physical effect as well 

as experimental error and experimental data should also be considered129. 

To aid in finding the ideal medicinal chemistry of a compound, it has been suggested to use a 

‘nature’ and ‘nurture’ process; nature to identify chemical starting points and nurture during 

the lead optimization175. In the ‘nature’ and ‘nurture’ study, they identify the issue of molecular 

obesity (compounds that are too large or too lipophilic (for absorption)) and that even though 

it is a well-known problem, compounds still tend to be lipophilic, the binding thermodynamics 

are related to this molecular obesity as potent compounds are often not aligned with optimal 

ADME profiles175. However, the term molecular obesity126 shows that scientists have a 

tendency to increase the molecular weight, as well as the lipophilicity, as part of the desire to 

find compounds with desirable potency126.  The increase in compound size throughout the 

course of a project is supported in the literature where it has been shown that throughout the 

course of a compound being built, from HTS collections to leads to patents, the median 

molecular weight of compounds increases as does the median cLogP from start to finish of 

optimisation pairs124. Our investigations will confirm the trends in properties that are observed 

across projects and highlight the matched molecular pairs which are commonly used to 

change these properties, as well as the local atomic environments the transformations are 

performed on. 

In contrast to previous analyses, the assays analysed in our study is logD octanol at pH7.4, 

human microsomal metabolism, human hepatocyte metabolism (human hep), rat hepatocyte 

metabolism, solubility at pH7.4, hERG IC50, human Caco-2 efflux ratio, and Caco-2 intrinsic. 

Our work considers matched molecular pairs within a time-course analysis, allowing the 

observation of trends in the changes of properties over time in a project.  

Overall, the matched molecular pairs have been analysed via a time course analysis allowing 

us to observe any trends in the changes of properties over time. The knowledge of functional 

group changes that influence compound properties, when performed on certain atomic 

environments, will allow chemists to make informed decisions when designing new 

compounds. This will benefit the design process by minimising the number of compounds that 

will require synthesis in a project, consequently, speeding up the DMTA cycle and reducing 

costs. 
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4.2 Materials and Methods 

 

4.2.1 Data compilation  

As outlined in the previous chapter, the matched molecular pairs were derived from internal 

AstraZeneca projects where the starting compound was the compound to be designed and 

registered within a project, and the ending compound is that which is potentially inspired by 

the starting compound. The starting and the ending compounds make up the matched 

molecular pair. Furthermore, on the forward transformation we need to have at least 100 

instances of that transformation occurring in the dataset, and each project needed to have 

100 unique compounds that could be included in this analysis. 

The transformations in our study were ranked in terms of the frequency of both aromatic and 

aliphatic functionalities in addition to the atomic environments of the systems. This has allowed 

us to be able to observe the most frequently occurring transformations as a function of the 

most frequency occurring atomic environments. These atomic environments were defined by 

signature fingerprints where level zero is the molecular fragment that is involved in the 

transformation with subsequent levels representing the next set of attached bonds and atoms. 

 

4.2.2 Assay properties analysed 

Experimental assay data was extracted from the internal AstraZeneca data, and represent an 

accumulation of many tests and represent the mean value of repeated experiments. The tests 

analysed is logD in octanol at pH7.4 for human microsomal metabolism, human hepatocyte 

metabolism (human hep), rat hepatocyte metabolism, solubility at pH7.4, hERG Ic50 

combined, human Caco-2 efflux ratio, and Caco-2 intrinsic. The data extracted varied for each 

row as not all data was available for every pair of compounds. Any empty entries for each 

property value were removed and each MMP transformation was analysed to assess whether 

each property value increased, decreased or for which there was no significant change. 

Results that was greater than or less than 4 standard deviations were removed. The resulting 

file which comprises of the project code, compound 1 and compound 2 their respective 

property change results, as well as standard deviation calculations, was merged with the 

previous file which contained the transformation information, ranks and atomic environment 

information as well as containing all the time data that had been constrained on the parameters 

mentioned previously. Not all compounds had assay information available and therefore the 
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total number of MMPs analysed that contained property values was 106,927 MMPs for 

aromatic systems and 133,736 MMPs for aliphatic systems.  

Furthermore, the molecular weight, number of hydrogen bond donors and acceptors, number 

of rotatable bonds and the number of rings was calculated in KNIME using RDKIT94 for both 

class of compounds to allow observations to be made about the size of structural changes 

and when they are performed in a project. 

The figures were generated in Spotfire96 using the Hmisc176 package and corrplot177 package 

in R (version 3.4), and RStudio (Version 1.1)102,178 was used to calculate the correlation 

coefficient and the significance value of trends. The median property analysed for each split 

(bin) of the project (up to a total of 10) was calculated and a spearman rank test applied. 

 

4.2.3 Determining a significant increase, decrease or a minimal change in the log property 

values 

When logD increases, human hepatocyte metabolism, rat hepatocyte metabolism, human 

microsomal metabolism, and Caco-2 efflux ratio are expected to increase, whereas solubility, 

hERG IC50 and Caco-2 intrinsic decrease. 

To determine if there is a significant change in properties for a MMP, the property change 

needed to increase or decrease by 0.3 log units is considered to be significant. Those values 

that do not change by 0.3 log value are considered a minimal change, while values within 

experimental would not be considered actionable within a project. To determine which values 

were significant, the effect noted (significantly increased, significant decreased or minimal 

change) for each transformation performed on an atomic environment needed to occur at least 

5 times and fulfil the following formula (Equation 12) for each atomic environment group.  

 

𝑋o-p_rIE(s) > 	𝑋o-p_uGE(s) + 𝑋v-I-5_D_wx_IpG(s) 

Equation 11: Relationship to assess whether a Property (P) significantly increases more times than when it is 
significant decreased or assessed as a minimum change for an atomic environment. X represents the number of 
occurrences. In addition, these X values would need to be more than 5 instances. 

 

The cut-off is justified by comparison to a previous study81 in which the authors analysed each 

set of property value data (hERG, Solubility and Lipophilicity) and the most frequent 

transformations. Following this, each of the most frequently occurring transformations are split 

into unfavourable, zero and favourable changes, and the authors compare how the 
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transformations performed on specific atomic environments affect the property change. 

However, only a few examples are used rather than all environments in the datasets for 

showing the predictive power of using MMP with contextual information. In our study all 

transformations against all environments are considered as well as quantifying, how much the 

transformations, on a given environment, change the property value. 

 

4.2.4 Outliers 

In our analysis we consider the median difference for each property, for a given transformation, 

as a function of the atomic environment to gain an understanding of the property change 

without the outliers shifting the distribution drastically. As it is standard practise for the tests to 

be averaged for multiple repeats of the same assay, capturing outliers in each result for each 

transformation performed on each environment is important. This in turn allows us to observe 

outliers but prevent misleading effects on general distributions. We also made the decision to 

remove the few extreme outliers where values are ±4 standard deviations for a specific 

transformation performed on a specific environment from the core analysis; however, these 

instances have been examined to understand the chemistry involved in changing a property 

significantly (±4 standard deviations). The reason for this approach is because such extreme 

outliers are likely to be due to known structural modifications, such as change in ion class of 

a compound, which will allow us to identify ‘true’ outliers. 

 

4.3 Results and Discussion 

 

4.3.1 Analysis of the physicochemical properties and assay result change over the course 

of a project 

In the first instance we analysed several physicochemical properties, such as the number of 

hydrogen bond donors and acceptors, number of rotatable bonds and the number of rings as 

a way of identifying how the chemistry of the compounds change over the course of a project 

(Figure 21). The median number of each property for both the starting and ending compound 

at different stages on the project (of which has been split into 10 parts and normalised between 

0 and 1; 10 segments) is observed.  
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Figure 21: At each stage of a project (10 stages) the median molecular weight of the starting (compound 
transformed from) and ending (compound transformed to) compound is shown. Median molecular weight increases 
throughout the course of the project, more so for aromatic systems than aliphatic systems.  

 

Figure 21 shows the median molecular weight throughout the course of a project for both the 

starting compound and the end compound, and the analysis highlights and supports the 

findings of Lipinski et al124 that compounds grow through the course of a project in terms of 

molecular weight. However, at points in the evolution of the project, the median 

physicochemical properties of the starting compound do not differ from those of the ending 

compound (Table 9). It is also observed that the penultimate step before the end of a project 

(9th segment) the properties differ the most compared to the rest of the project, likely as a 

result of compounds becoming too large and the chemists attempt to maintain the favourable 

properties but reduce the size and lipophilicity of the compound at the very end of the project. 

The most notable differences are observed in the 9th segment (the penultimate step before 

the end of the project), for aromatic systems where the compounds show an increase in the 

properties before dropping again. This phenomenon is not observed for aliphatic systems 

where the increase in molecular weight is not as noticeable as that for aromatic systems, and 

is likely due to aliphatic systems being more sensitive to the types of transformations that can 

be performed on them in comparison to aromatic systems. It is noteworthy that the median 

molecular weight for the ending compound is still always larger than the first compound 

indicating that the molecular weight increases during the transformation process. 

Table 9: For each system and for both the starting and ending compounds throughout the course of the project, 
the median number of rotatable bonds, hydrogen bond donors and acceptors as well as the number of rings. The 
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heatmap colour represents the frequency of each property as does the bar chart allowing for direct comparisons 
to be made between starting and ending compound and project.  
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Figure 22: Median log property value of the starting compound (compounds transformed from) and the ending 
(compound transformed to) compound throughout the course of the project for each test. (A) Aromatic Systems, 
(B) Aliphatic systems. 
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Figure 22 shows how the assay property values change throughout the course of the project 

for both aromatic and aliphatic system. Regardless of the system, generally the trends are the 

same, highlighting the fact that irrespective of what system the transformation is being 

performed on, the design goal of the compound (such as increasing solubility or decreasing 

logD) ultimately leads to the same desired property changes, even if the route to these 

changes differs.  

Comparing Table 9, Figure 21 and Figure 22 offers an overview of how the compounds within 

a project generally evolve throughout the course of a project and the effects of changing the 

chemistry of the compound on the identified properties. It is generally observed that the trends 

across the whole project between aromatic and aliphatic systems do not notably differ. A 

notable example is for the median logD and solubility that both have an increased log property 

value at the penultimate stage of the project (segment 9), (log value increasing from the 

previous segment for the ending compound). At the same point in a project the number of 

rotatable bonds also increases.  

One notable difference between systems is that of the median logD, on aliphatic systems, 

differ, between the starting and ending compound at the penultimate stage of the project (9th 

segment). No such difference is identified in aromatic systems.  Despite this, for both systems, 

this 9th segment of the project sees the highest median log solubility result of compounds 

across all stages of the project.  

Comparisons of compounds and their properties have been previously published, and it has 

been shown that 10 or fewer rotatable bonds in a compound are likely to have good oral 

bioavailability in rats, whereas increased number of rotatable bonds is bad for the permeation 

rate179. In Figure 22 and Table 9 it is observed that permeability (Caco-2 intrinsic) decreases 

through the course of the project, and although the number of rotatable bonds does not drastic 

change throughout the course of the project, in both aromatic and aliphatic systems the largest 

median of rotatable bonds are observed towards the end of the project thus supporting the 

authors’ findings179. Furthermore, Caco-2 efflux ratios are observed to increase, regardless of 

the system in the median log property value early in the project (especially in the 2nd segment 

of the project, out of the 10 segments that the project has been split into). The median log 

property value for Caco-2 efflux for compound 1 increases from 0.71 to 1.32 log units, and it 

then proceeds to decrease to 0.54 while never increasing above 0.89 log units. It has been 

previously shown, that the permeability of marketed drugs does not correlate with other 

properties well such as logD. The reason for this observation is that different drugs interact 

with different transporters, but it is not clear which drugs/transporters are responsible or how 

much they influence the permeability of Caco-2180. 
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Analysing the trends of the median log property difference for each assay test for either 

aromatic or aliphatic systems shows that the trends observed do not always correspond with 

the chemists’ expectations. Generally, the log median Caco-2 efflux ratio decreases 

throughout the project for both aromatic and aliphatic systems. The median log value for 

human microsomal metabolism increases first before decreasing, and typically ends up with 

the same median log value as it did at the start of the project for aromatic systems. As 

mentioned previously, a lower human microsomal metabolism is preferred and for aliphatic 

systems the trend does show a decrease in the median log property value, albeit a minor 

change from the start of the project. The median log value of human hepatocyte decreases 

as expected throughout the project, while for rat hepatocyte metabolism the median log 

property values for aliphatic values decrease slightly thorough a project. The median log 

property value for solubility increases throughout the project but decreases towards the end 

for aromatic systems. Despite this, the solubility ends up about the same value as what was 

originally observed at the beginning of the project. To add to this, generally, the ending 

compound solubility for aromatic systems falls just below the value for the starting compound 

(generally the solubility decreases) whereas it increases fractionally on aliphatic systems. For 

Caco-2 intrinsic, the median log value increases for both aromatic and aliphatic systems 

before decreasing in both cases. Finally, for hERG the log property value increases throughout 

the project for aliphatic systems (with an initial decrease at the beginning of the project) while 

for aromatic systems the median log property decreases before increasing and decreasing 

again at the end of the project. 

In a published report the introduction of groups that contained hydrogen bond acceptors or 

donors resulted in a larger decrease in solubility than their effect on lipophilicity would 

suggest162. However, in our analysis the median number of hydrogen bond acceptors or 

donors for starting compound appears to remain neutral throughout the project, as does the 

median log solubility value. To test this, we calculated the correlation coefficient. The results 

are shown in Figure 23 where a spearman rank test was used to calculate the correlation 

coefficient (A) and correlations (B) with a p-value > 0.01 being considered insignificant. The 

figure shows that the values are positively correlated, however, this is not a significant finding 

based on a p-value of > 0.01. Increasing the p-value to > 0.05 would result in two of the values 

being significant. Hydrogen bond donors and solubility would be significantly positively 

correlated if the p-value significance level was raised to >0.05.   
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Figure 23: Correlation coefficient and statistical significance of the median log solubility property value for 
compound 1 against the median number of hydrogen bond donors and hydrogen bond acceptors for compound 1 
over the course of the project. (A) represents the correlation coefficient and (B) the statistical significance. The 
project was split into 20 bins and the median property result and physicochemical properties were calculated for 
each bin. The darker the blue, the more positively correlated the values are.   

 

4.3.2 Analysis of the most frequently observed MMP transformations and their effect on 

compound properties 

The same properties as we analyse in the previous section are now considered on the level 

of individual and groups of MMP transformations. Density plots for each of the top 5 

transformations are shown below, performed on the top 5 atomic environments for aromatic 

(Figure 24) and aliphatic (Figure 25) systems.    

Despite there being many reasons for an MMP to be investigated in a synthetic project, 

including feasibility and building block availability, chance matches to previous compounds, 

library design and potency optimisation will involve many changes to be made in order to 

improve the properties of a compound. The aim of our analysis was to highlight the matched 

pairs where a property varies significantly and therefore may signify influence a chemical 
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change of interest for future implementation. Figures 22 and 23 show the effect of each 

transformation on the molecular environments on the measured assay properties (logD 

solubility, metabolism, permeability and hERG). 

  

4.3.2.1 Aromatic Systems 

An example with a notable change is the increase in logD when replacing a hydrogen atom 

with a chlorine atom on an aromatic system, particularly when on the most frequently observed 

aromatic local atomic environment (the immediate local environment that the transformation 

is performed on) (Figure 24). Chlorine is more lipophilic than hydrogen and therefore it would 

be expected that compounds that involve this transformation will show an overall increase in 

lipophilicity. When logD increases it is expected that solubility decreases, which is 

demonstrated when hydrogen is replaced by chlorine. Replacing a fluorine atom with a 

hydrogen atom will change the properties of a compound in different ways depending on the 

local atomic environment in which the transformation is carried out. For example, human 

hepatocyte metabolism is shown to increase on the third most frequently occurring aromatic 

atomic environment (an aromatic ring with a nitrogen attached off the ring). However, as can 

be seen in Figure 24, the other most frequently occurring aromatic environments do not share 

the same observed human hepatocyte metabolism increase between the starting compound 

and the ending compound; only a minimal change (not significant) is observed. 

Replacing fluorine by a hydrogen shows an increase in solubility on the fourth most frequently 

occurring aromatic atomic environment, a heterocyclic ring containing a nitrogen, of which is 

not observed by the other frequently occurring environments. Whereas, the same 

transformation, on the same environment, decreases the logD more significantly, than the 

other most frequently observed transformations of which is as expected given that we see an 

increase in solubility. 

Hydrogen to chlorine increases hERG activity for environment 4 but decreases hERG for 

environment 3 (Figure 24). Basic compounds are known to induce hERG activity, while π-

stacking interactions are important for the interaction of a compound with the hERG protein. 

For environment 3, with the aniline type nitrogen, hERG activity is decreased which could be 

due to the decrease in the basicity of the amine due to the presence of the electron 

withdrawing chlorine group, as well as decreasing the electron density in the aromatic ring, 

reducing the potential for π-stacking181. An interesting example is when hydrogen is replaced 

by chlorine on a pyridine like environment (4th most frequently occurring atomic environment), 

where we observe an increase in hERG. Generally, when you decrease the basicity of the 

nitrogen, you would expect a decrease in hERG activity.  
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Figure 24: Density plot showing the difference in property values from compound 1 to compound 2 as a function 
of the top 5 transformations and atomic environments where data was available, for aromatic systems. The 
transformation and the atomic environments that the transformation is performed on effects the property change. 
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Values outside ±4SDs were removed from the plots. The difference in property was calculated as the property 
value of compound 2 – the property value of compound 1. 

4.3.2.2 Aliphatic Systems 

We have identified some interesting properties for aliphatic systems (Figure 25). The second 

most frequently occurring aliphatic local atomic environments, in which the transformations 

are identified on,  which are identified as tertiary amine/di-ethyl amine (Figure 25) show the 

effects on the properties of a compound by replacing a hydrogen atom with a methyl and vis 

versa a methyl group with a hydrogen atom. What we find is that the solubility is not 

significantly influences by such transformations.   

The 5th most frequently occurring transformation (hydrogen>>*ethyl) is shown to increase the 

logD regardless of the substitution position (environment) in which they are observed on which 

they are performed. The solubility however decreases when hydrogen is replaced by ethyl on 

the fourth most frequently substituted aliphatic position, which tends to be a secondary amine. 

This same trend is not observed on the other frequently substituted positions.  

When analysing the transformations performed on the 4th most frequently occurring atomic 

environment, a secondary amine, the third most frequently occurring transformation of 

hydrogen to oxygen shows that permeability decreases due to less permeability and therefore 

less likelihood of crossing the lipid membrane. LogD decreases for the 4th most frequently 

occurring transformations (hydrogen to a methoxy group), when the electron-donating group 

is feeding electrons into the aromatic ring.  
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Figure 25: Density plot showing the difference in property values from compound 1 to compound 2 as a function 
of the top 5 transformations and atomic environments where data was available, for aliphatic systems. The 
transformation and the atomic environments that the transformation is performed on affects the property change. 
Values outside ±4SDs were removed from the plots. The difference in property was calculated as the property 
value of compound 2 – the property value of compound 1. 
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4.3.3 Analysis of both the proportion of significant property changes as well as the 

quantitative amount of change, as a function of performing transformations on different 

atomic environments 

The proportion of times that the property increases the measured property value against the 

times that the measured property value decreased was considered. The aim of this analysis 

was to observe the effects on properties of interest across the five most frequently occurring 

environments for each system (aromatic and aliphatic) and we can identify that the type of 

atomic environment that the transformation is performed on, can drastically affect the result of 

the measured assay test. 

The study was then extended to understand by how much the property changes in each 

direction (significant increase, significant decrease or minimal change), and the median log 

value of each measured assay property as a function of the top 5 transformations performed 

on the top 5 atomic environments for aromatic and aliphatic systems was assessed. The aim 

was to understand how much each transformation affects the measured assay property and 

therefore understand which transformation yields a more favourable response on a given 

environment. In addition, it is also possible to see instances where a transformation has a 

larger change in the median property value compared to other transformations performed on 

the same atomic environment. 

In a previous study81 the authors analysed each set of property value data (hERG, solubility 

and lipophilicity) and the most frequent transformations. Following this, each of the most 

frequently occurring transformations were split into unfavourable, zero and favourable 

changes. In the case of hERG results81, unfavourable denotes an increase in the binding 

affinity, and favourable relates to a decrease in binding affinity. The frequently occurring 

transformations that the authors identify correlate well with those identified in our study. The 

authors show that many the transformations (40%) have no effect on the hERG activity and 

this correlates well with our own findings (59% on aliphatic systems and 63% on aromatic 

systems) (Table 10).  
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Table 10: Percentage increase, decrease and minimal change observed for hERG, logD and Solubility 

 

The study analyses the change in the top 30 transformations, regardless of specific atomic 

environment. There is agreement in the most frequently occurring transformations between 

the authors’ study and this work (Table 11), with exception of specific rank positions in terms 

of occurrence of transformation. This is unsurprising given a different dataset. 

The highest proportion of instances that correspond to significantly decreasing the hERG 

shows that for aliphatic systems, there are no transformations in the top 20 most frequently 

occurring transformations that significantly decrease hERG over 50% of the time. For aliphatic 

systems there are five instances where hERG decreases significantly over 50% of the time. 

In the authors study, there is only one instance where the transformation decreases hERG 

over 50% of the time and is the 28th most frequently observed transformation of their study. 

Replacing either a hydrogen atom or a methyl group with a benzene group yields a high 

proportion of occurrences where hERG is reported to decrease significantly. This is surprising 

because of the increase created in lipophilicity.  

 

Table 11: Percentage of occurrences identified in our study of hERG significant increasing, decreasing or having 
minimal effect because of the transformation performed 

Aliphatic Systems Aromatic Systems 
Transformation Min 

Diff 

Sig 

Dec 

Sig Inc Transformation Min 

Diff 

Sig 

Dec 

Sig 

Inc 

 
70% 22% 8% 

 
78% 15% 7% 

 
65% 7% 28% 

 
71% 20% 8% 

Aliphatic Systems Aromatic Systems 
Change hERG LogD Solubility Change hERG LogD Solubility 

Minimal 

Change 
59% 31% 39% 

Minimal 

Change 
63% 38% 38% 

Significant 

Decrease 
21% 34% 30% 

Significant 

Decrease 
19% 29% 33% 

Significant 

Increase 
20% 34% 31% 

Significant 

Increase 
18% 33% 29% 
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40% 4% 56% 

 
48% 45% 7% 

 
53% 1% 46% 

 
72% 13% 15% 

 
50% 50%  

 
70% 8% 23% 

 
35% 59% 6% 

 
66% 15% 20% 

 
66% 9% 25% 

 
52% 4% 44% 

 
31%  69% 

 
61% 5% 34% 

 

13% 25% 63% 
 

60% 31% 9% 

 
54% 44% 3% 

 
60% 36% 4% 

 
63% 21% 16% 

 
69% 23% 9% 

 
33% 67%  

 
58% 2% 41% 

 
30% 63% 7% 

 
61% 30% 9% 

 

67% 17% 17% 

 

62% 31% 7% 

 
30% 65% 4% 

 
67% 10% 22% 

 
45% 51% 4% 

 
73% 12% 15% 

 
64% 9% 27% 

 
76% 8% 15% 

 
59% 26% 15% 

 
73% 9% 18% 

 
55% 40% 5% 

 
76% 20% 3% 

 
58%  42% 

 
54% 9% 37% 
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The first is that of when a methyl group is replaced by a methoxy, which when in our studies 

was identified on aliphatic systems (Table 12) a significant decrease in the logD was reported81 

and n shows agreement with the published study. However, in our study when performed on 

aromatic systems, the transformation does not reach the 50% threshold, but does come very 

close. The replacement of chlorine to methoxy is another transformation that we have 

identified of decreasing logD and is supported by the findings of the previous study81. Next, 

the authors of the report show that a hydrogen being replaced by an oxygen moves the logD 

in a favourable direction in over 83% of the occurrences; Table 12 shows that when the 

transformation is carried out on aliphatic systems there is a strong correlation with the authors’ 

findings. Replacing a hydrogen atom with an alcohol functional group is again consistent with 

the previously reported findings when performed on aliphatic systems (Table 12). The last two 

transformations that the authors report as greater than 50% occurrence of logD moving in a 

favourable direction is that of chlorine replaced by a nitrile group and a nitrogen replaced by 

an oxygen. Neither of these is observed in the top 20 frequently occurring transformations on 

either aromatic or aliphatic systems in our study. However, replacing hydrogen with a nitrile 

group does show that 50% of the occurrences significantly decrease the logD. It has been 

shown182 that replacing a hydrogen with a nitrile group can significantly reduce the logD of a 

compound, however, replacing a halogen or a methyl group by a nitrile will decrease the logD 

even more significantly, presumably due to the steric effects of a nitrile group.  

 

Table 12: Percentage of occurrences in our study of logD significant increasing, decreasing or having minimal 
effects because of the transformation performed 

Aliphatic Systems Aromatic Systems 
Transformation Min 

Diff 

Sig 

Dec 

Sig 

Inc 

Transformation Min 

Diff 

Sig 

Dec 

Sig 

Inc 

 
39% 5% 57% 

 
67% 6% 27% 

 
34% 62% 4% 

 
40% 5% 55% 

 
18% 80% 2% 

 
15% 2% 82% 

 
22% 74% 4% 

 
63% 15% 22% 

 
10% 3% 88% 

 
70% 27% 4% 
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2% 2% 96% 

 
42% 52% 6% 

 
48% 42% 10% 

 
16% 80% 4% 

 
11% 88% 1% 

 
18% 79% 2% 

 

5% 95%  
 

50% 42% 8% 

 
14% 2% 84% 

 
22% 1% 77% 

 
68% 13% 19% 

 
62% 24% 14% 

 
8% 1% 91% 

 
48% 45% 7% 

 
15% 2% 83% 

 
48% 3% 50% 

 

34% 19% 47% 

 

7% 1% 92% 

 
3% 2% 95% 

 
63% 26% 11% 

 
11% 2% 87% 

 
70% 20% 10% 

 
5% 58% 37% 

 
41% 46% 13% 

 
19% 52% 29% 

 
65% 4% 31% 

 
53% 14% 34% 

 
61% 12% 26% 

 
6% 92% 1% 

 
20% 75% 5% 

 

Finally, the authors study81, considers how solubility is affected by the transformation in terms 

of a significant increase, decrease or a minimal change in the solubility. The authors do not 

identify any instances where the solubility is affected favourably in over 50% of the cases, 

however we show, Table 13 it is shown that there are four instances where the solubility 
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increases over 50% of the time, including the removal of a boc-protecting group, replacing a 

chlorine and replacing a benzene. 

 Table 13: Percentage of occurrences identified in our study of solubility significant increasing, decreasing or having 
minimal effects a result of the transformation performed 

Aliphatic Systems Aromatic Systems 

Transformation Min 

Diff 

Sig 

Dec 

Sig 

Inc 

Transformation Min 

Diff 

Sig 

Dec 

Sig 

Inc 

 
48% 30% 22% 

 
49% 37% 15% 

 
43% 24% 33% 

 
43% 40% 18% 

 
37% 15% 48% 

 
38% 53% 8% 

 
38% 14% 48% 

 
39% 38% 23% 

 
38% 44% 18% 

 
50% 18% 32% 

 
24% 69% 7% 

 
39% 23% 38% 

 
36% 17% 47% 

 
40% 6% 55% 

 
45% 16% 39% 

 
45% 10% 45% 

 

11% 4% 85% 
 

36% 46% 18% 

 
37% 49% 14% 

 
48% 43% 9% 

 
42% 23% 35% 

 
41% 25% 34% 

 
22% 73% 5% 

 
44% 10% 46% 



 
 
 

104 

 
49% 39% 13% 

 
38% 51% 11% 

 

28% 52% 20% 

 

29% 64% 7% 

 
20% 66% 14% 

 
47% 25% 28% 

 
41% 47% 12% 

 
42% 34% 23% 

 
27% 42% 32% 

 
51% 25% 23% 

 
41% 24% 36% 

 
46% 27% 27% 

 
44% 39% 17% 

 
50% 26% 23% 

 
20% 8% 72% 

 
39% 10% 52% 

 

Our analysis of the data contributes to the previous reports; this section extends this work by 

explicitly comparing the effects on property values for different frequently observed atomic 

environments in aromatic or aliphatic systems. Notably, we observe instances where our 

findings are in concurrence with the previous study, however, when delving deeper and 

splitting the most frequently occurring transformations by the system they are identified on 

(aromatic or aliphatic), it shows that the concurrence is not always true and the system needs 

to be very carefully considered, playing a major part in the “success” of the transformation to 

move a desired property in a favourable way.   

 

4.3.3.1 Aromatic Systems 

Regardless of the atomic environment, many of the transformations in the top 5 most 

frequently occurring, result in a significant increase in the logD between the starting compound 

and the ending compound suggesting that some changes are not as sensitive to the atomic 

environment.  
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An interesting example is observed when hydrogen is replaced by a chlorine on the third 

(aromatic ring structure with a nitrogen coming off the ring system) and the fourth (heterocyclic 

environment with a nitrogen in the ring (pyridine like)) most frequently occurring aromatic 

atomic environments (where the transformation took place) do not observe any instances of 

hydrogen being replaced by chlorine significantly decreasing the human hepatocyte 

metabolism. The instances on the third aromatic atomic environment (nitrogen coming off the 

aromatic ring) does not have all instances described as significant unlike the case when the 

nitrogen is within the ring (meaning there are instances of minimal change being observed). 

When the nitrogen is in the ring, nucleophilic substitution reactions can occur with the 

chlorine183 which is readily substituted due to its strong leaving group abilities184. In a related 

literature example185 a nucleophilic aromatic substitution reaction was catalysed by rat liver 

microsomes (specifically, Glutathione S-Transferase 1) and the authors report that the 

nucleophilic aromatic substitution of 2-chloropyridine derivatives was affected by the position 

of the substituents as well as the strength of the electron-withdrawing properties of the 

substituents. Replacing hydrogen by chlorine on an aromatic ring bearing a nitrogen 

functionality results in human hepatocyte metabolism significantly increasing at a median 

quantity of just under 0.5 log units (Figure 26). Most of the instances when this transformation 

occurs on this environment (nitrogen coming off the aromatic ring (3rd most frequently 

occurring)), result in a minimal change of the human hepatocyte metabolism, however where 

there is a significant increase would be worth exploring.  

This replacement of hydrogen to chlorine generally shows the large instances of significant 

decreases in hERG, which corresponds to what the chemists might expect to see. However, 

on the second and fourth most commonly occurring atomic environments, on which the 

transformation takes place, a phenyl group with a carbon attached to the ring and the ring 

system with the nitrogen atom inside the do not show a majority proportion of instances where 

the hERG value is decreased. In the instance of hydrogen to chlorine being carried out on the 

second most commonly occurring aromatic atomic environments (phenyl group with a carbon 

attached off the ring) shows a roughly proportionate significant increase or decrease in hERG 

value. Although, in instances where it does significantly decrease, it does so on par with the 

significant increases observed on the other environments (between 0.4 and 0.5 log units, 

Figure 27). However, most instances for this example are minimal changes and are therefore 

not significant. The instances on the fourth most frequently occurring atomic environment (ring 

system with a nitrogen in it) suggest the hERG property increases, therefore, the replacement 

of a hydrogen with a chlorine on a pyridine like system is unlikely to yield favourable hERG 

activity. Having said this, hERG does not decrease significantly for the other frequently 
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occurring transformations. Such cases have been discussed186 including the largest observed 

change involved replacing an imidazole with a methyl tetrazole and also replacing a hydrogen 

to a methoxy in aromatic rings reduces hERG binding. Our study shows significant decreases 

of hERG when this transformation (hydrogen to methoxy) is performed on the observed 

aromatic atomic environments, however, the proportion of these instances in minimal in 

comparison to occurrences of significant increases and changes that were deemed minimal, 

again supporting the need to fully understand the chemistry that the transformation is being 

performed on. 

Another finding in this thesis that supports those found in the previous study162 discussed 

earlier, where the addition of a bromine to an aromatic system, shown that the solubility 

decreased in 98% of occurrences. The 104 instances out of a total of 153 (68% of instances) 

show a solubility decrease, for which 37% of the instances where considered a minimal 

change (failed to reach the 0.3 log property value difference) and only 7% were considered a 

significant increase in the log solubility property value. Therefore, as the previous study noted, 

if solubility is causing a problem in the compound, a bromine should not be added and if 

present in the structure should be removed162.  
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Figure 26: Bar chart showing the percentage of changes of properties for each of the top 5 most frequently 
occurring transformation against the top 5 most frequently occurring atomic environments on aromatic systems. It 
shows that in many cases – a minimal log change is made to the measured properties. It also shows that that the 
same transformation on the same environment can result in different property changes. The same transformation 
is likely to have different effects on the property depending on the atomic environment the transformation is 
performed on. Additionally, some transformations lean more towards an effect on the property regardless of the 
atomic environment. 
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Figure 27: Bar chart showing the median log property change of properties for each of the top 5 most frequently 
occurring transformation against the top 5 most frequently occurring atomic environments on aromatic systems. It 
shows that in many cases – a minimal log change is made to the measured properties. It also shows that that the 
same transformation on the same environment can result in different property changes. The same transformation 
is likely to have different effects on the property depending on the atomic environment the transformation is 
performed on. Additionally, some transformations lean more towards an effect on the property regardless of the 
atomic environment. 
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4.3.3.2 Aliphatic Systems 

Hydrogen replaced by a methyl group or an ethyl group is shown to generally increase the 

logD regardless of the atomic environment (Figure 28). In instances where it does decrease 

the logD, it does so significantly with no minimal changes in the logD observed. The greatest 

median significant decrease observed in these two examples is approximately one log unit 

difference in logD when hydrogen is replaced by a methyl group on a secondary amine and 

nearly 1.7 log units decrease when hydrogen is replaced by an ethyl group on an ether (Figure 

29), whereas methyl replaced by a hydrogen or hydrogen being replaced by an oxygen or 

alcohol, where data is available, is shown to decrease the logD (Figure 28). An exception to 

this is hydrogen being replaced by an oxygen on a primary amine, likely a result of aliphatic 

amines being oxidised by a radical-chain mechanism, specifically when primary aliphatic 

amines undergo oxidation one of the molecules of the organic inhibitor participates in chain 

termination187.  

Another interesting example is that of the effects of a methyl replaced by a hydrogen and 

hydrogen replaced by an oxygen; the second and third most frequently occurring 

transformations on aliphatic systems, respectively, on the human hepatocyte metabolism. 

Notably when these transformations are identified on a tertiary amine/ di-ethyl amine human 

hepatocyte metabolism is shown to decrease in the majority of cases by approximately 0.4 

log units when a methyl is replaced by a hydrogen, whereas for a hydrogen being replaced by 

an oxygen the human hepatocyte metabolism is significantly increased in all observed 

instances (Figure 28) and increases by approximately 0.3 log units.   
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Figure 28: Bar chart showing the percentage of changes of properties for each of the top 5 most frequently 
occurring transformation against the top 5 most frequently occurring atomic environments on aliphatic systems. It 
shows that in many cases – a minimal log change is made to the measured properties. It also shows that that the 
same transformation on the same environment can result in different property changes. The same transformation 
is likely to have different effects on the property depending on the atomic environment the transformation is 
performed on. Additionally, some transformations lean more towards an effect on the property regardless of the 
atomic environment. 
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Figure 29: Bar chart showing the Median log property value of properties for each of the top 5 most frequently 
occurring transformation against the top 5 most frequently occurring atomic environments on aliphatic systems.  It 
shows that in many cases – a minimal log change is made to the measured properties. It also shows that that the 
same transformation on the same environment can result in different property changes. The same transformation 
is likely to have different effects on the property depending on the atomic environment the transformation is 
performed on. Additionally, some transformations lean more towards an effect on the property regardless of the 
atomic environment. 
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4.3.4 Analysis of extreme outliers (±4 Standard Deviations) 

In our study we investigated the chemistry of those transformations performed on atomic 

environments where regardless of what the property was, the properties measured value 

change between the starting compound and the ending compound was considered an 

extreme change (±4 standard deviations). This analysis was performed for both aromatic and 

aliphatic systems and confirms that these extreme outliers are investigated for very specific 

reasons, such as changing the acidity of the compound, which has large effects on the 

property values. Overall, all observed transformations that result in a large change in a 

property value are the result of a change in the ion class, or the addition or removal of a large 

fragment. 

 

4.3.4.1 Aromatic Systems 

On aromatic systems, the most frequently occurring atomic environment (the local 

environment) that the transformation is performed on is the most predominant environment 

that these extreme changes occur on (Figure 30 and Table 14). In total 8 atomic environments 

have transformations performed on them that result in an extreme property change. In most 

instances there is only one occurrence of such an event occurring, however, there are 3 

transformation and-atomic environment combinations that occur more than once. These are 

the 157th, 159th and 295th most frequently occurring transformations when performed on the 

most frequently occurring atomic environment. In all three instances, the transformation 

involves replacing a molecular fragment with a carboxylic acid. The addition of a carboxylic 

acid, will likely be a conscious decision made by the chemists, either to drastically change the 

compounds properties, or even to alter binding and/ or potency of the compound.  

There are 4 instances in which the transformation performed does not replace a molecular 

fragment with a carboxylic acid and only two transformations that do not involve a carboxylic 

acid at all (Table 14). The 226th and 380th most frequently occurring transformation on the 

most frequently occurring atomic environment, the 357th and 368th most frequently occurring 

transformations on the 9th and 26th most frequently occurring atomic environments, 

respectively. 
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Figure 30: A combination plot showing for each aromatic atomic environment and each transformation the median 
property value difference (unspecified) (black bars) and the occurrences of this atomic environment and 
transformation that had extreme outliers. The most frequently occurring atomic environment on aromatic systems 
has the greatest number of transformations performed on it that result in atomic environments. 

 

Table 14: Atomic environments and transformations performed on them for aromatic systems that resulted in a 
property change (unspecified) up ±4 standard deviations. 
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4.3.4.2 Aliphatic Systems 

With regards to those transformations performed on aliphatic systems and the extreme 

outliers, there are more transformation-atomic environment pairs than those on aromatic 

systems (Figure 31 and Table 15). We identified 19 different atomic environments being 

involved; however, a high percentage of transformation-atomic environments pairs occur more 

than once (~53%). Again, the transformations that involve carboxylic acids feature heavily in 

these extreme property changes (±4 standard deviations), however, there is more variety in 

that there are more transformations that do not involve a carboxylic acid in comparison to 

aromatic analogues. These changes can be rationalised on chemical grounds; for example, 

incorporating an ester affects the acidity or the compound. It is therefore important to 
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acknowledge extreme outliers but not allow them to hide other outliers that may be unexpected 

and of great interest. The 15th most frequently occurring aliphatic atomic environment (the 

local environment that the transformation is identified on) has the greatest number of unique 

transformations performed on it with regards to observed extreme value changes. Unlike the 

transformations performed on aromatic systems, only one transformation is performed on the 

most frequently occurring aliphatic atomic environment that results in an extreme property 

change (±4 standard deviations).

 

Figure 31 A combination plot showing for each aliphatic atomic environment and each transformation the median 
property value difference (unspecified) (black bars) and the occurrences of this atomic environment and 
transformation that had an extreme outlier. There are many atomic environments and transformations that have 
resulted in an extreme property change.  

 

 

 

Table 15: Atomic environments and transformations performed on them for aliphatic systems that resulted in a 
property change (unspecified) up ±4 standard deviations. 
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4.4 Case Studies of Transformations Performed on Atomic Environments of Which Affected 

Property Changes Unexpectedly when Increasing the LogD 

We next identified some case studies where the increase in logD results in an unexpected 

effect occurring on one of the other measured assay properties. Generally, it is expected that 

when logD increases, the endpoints of human microsomal metabolism, human hepatocytes, 
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rat hepatocytes, and Caco-2 Efflux ratio are expected (and desired) to increase whereas 

solubility, hERG IC50 and Caco-2 intrinsic permeability are expected to decrease. we identify 

and consider some examples where a transformation that is performed on an atomic 

environment results in a significant logD increase as well as a significant unexpected change 

in other properties. 

An analysis extended beyond the top 5 transformations and atomic environments can reveal 

interesting and unexpected property changes, which are often the result of specific tailoring of 

a compound. We therefore investigated some of these examples, in particular those where 

the transformation performed on an atomic environment either: increases the LogD and the 

solubility in most of the cases; increases the logD but decreases the human microsomal 

metabolism in most of the cases; or increases the logD but decreases the human hepatocytes 

in many of the cases. This is the result of the atomic environment beyond three atoms (as 

analysed here). All transformations performed were attempted in order to alter the measured 

assay results analysed in this study. 

The first case study (Figure 32) was the 235th most frequently occurring transformation on the 

most frequently occurring atomic environment for aliphatic systems. In this case logD 

increases, as does solubility. The equation used to determine the increase in properties shows 

that the number of significant increases (+0.3 log units) needs to exceed the number of 

significant decreases (-0.3) plus the number of minimal changes (a change of between -0.3 

and +0.3 log units). Furthermore, the number of occurrences needs to exceed 5 instances: in 

this example there are 11 instances of the logD increasing significantly with a median 

significant increase of ~0.7 log units. When this transformation was carried out on this 

environment for aliphatic systems, there are 6 examples of a significant increase for solubility 

and a median significant increase of 0.8 log units. There was only one incidence of the 

solubility decreasing significantly at -0.5 log units. In the remaining incidents of solubility 

change for this case study designated as a minimal change (3 instances), the median 

difference shows an increase. When a larger molecular fragment replaces a small molecular 

fragment ([*H]), the lipophilicity achieves the expected to increase. When logD increases, it is 

not expected that solubility will also increase, however, the oxygen atom (which is 

electronegative and capable of hydrogen bonding) in the transformed molecule fragment will 

increase the solubility. 
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Figure 32: Case study where the transformation that is the 235 most frequently occurring transformation when 
performed on the most frequently occurring aliphatic atomic environment showed that when LogD significant 
increases the majority of the time, so does solubility. The occurrence of instances for the minimal change, the 
significant decrease and significant increase for each test (A) shows the significance of the increases for both logD 
and solubility. Additionally, (B) shows the median difference of the measured property. 
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which promotes stability and blocks potential reactivity of the hydrogen atoms. When the logD 

increases, rat hepatocytes decrease. A previous example showed PhOCF3 increases logD by 

~1 log unit and when replacing a PhOCH3 exhibits a lower passive permeability despite having 
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a higher lipophilicity188. When a functional group is in a benzylic position, it is generally 

considered more reactive that when the functional group is on its own189. 

Figure 33: Case study where the transformation that is the 123rd most frequently occurring transformation when 
performed on the most frequently occurring aromatic atomic environment showed that when LogD significant 
increases the majority of the time, so does rat hepatocyte decreases. The occurrence of instances for the minimal 
change, the significant decrease and significant increase for each test (A) shows the significance of the increases 
for both logD and rat hepatocyte. Additionally, (B) shows the median difference of the measured property. 

In the final case (Figure 34), the 2nd most frequently occurring transformation when performed 

on the 15th most frequently occurring atomic environment on aromatic systems was 

considered, and we found that as logD increases, human hepatocytes decrease due to 

electrons being donated into the ring which increases the basicity of the aromatic nitrogen.  
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Figure 34: Case study where the transformation that is the 2nd most frequently occurring transformation when 
performed on the 15th most frequently occurring aromatic atomic environment showed that when LogD significant 
increases the majority of the time, so does human hepatocyte decrease. The occurrence of instances for the 
minimal change, the significant decrease and significant increase for each test (A) shows the significance of the 
increases for both logD and human hepatocyte. Additionally, (B) shows the median difference of the measured 
property. 

4.5 Chapter overview 

Understanding the chemistry of the surrounding atomic environment is crucial when optimising 

compounds due to the chemical interactions that can occur between the transformed 

molecular fragment and the local atomic environment. In this study we have shown that even 

if a particular property change is expected, the atomic environment at which the transformation 

is performed can result in an unexpected change in the property value.  
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We have also shown that the proportion of occurrences of a transformation increasing or 

decreasing a property value on the same atomic environment can still significantly differ. 

Therefore, extending beyond three levels of atomic environment may be important if the 

property value is not as expected. However, it is also observed that some transformations 

prefer a particular property change direction on a given atomic environment.  

Following on from this, we show that the atomic environment and the transformation that is 

performed influence the median log change of the property value. Again, the same 

transformation, performed on the same environment, rarely has a single preference (i.e. 

transformation X>>Y always increases the solubility on environment A) but other factors, 

including chemistry beyond level three atomic environment from the transformation, play an 

important role.  

We also show that transformations performed on specific atomic environments where the log 

property changes by ±4 standard deviations are the result of a conscience decision to alter 

the chemistry of the compound, i.e. by changing the compound to an (carboxylic) acid.  

Finally, we give examples where the direction of the property change is not as expected and 

shows that the surrounding chemistry of the compound is what is driving this unexpected 

change, highlighting the need to understand how the transformation will interact with the 

surrounding chemistry.   
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Conclusion 

The first research chapter investigated when, where and what is published in terms of novel 

chemistry both on its own and in association with a particular target.  There is a need to 

improve the drug discovery process particularly in terms of lead optimisation because it has 

been shown many times that even though technology is increasingly becoming much more 

efficient, we are still not getting an increasing number of FDA approved drugs each year.  To 

aid drug discovery, the use of compounds from several different sources will help during the 

design process. We found that generally compounds that are associated with a target tends 

to be published in scientific literature, whereas, novel chemistry tends to be published in 

patents. However, there are a few reasons why a compound can be published in scientific 

literature before it is patented, such as in the case of a formulation patents where the 

compounds in question are patented as part of a bigger objective with other compounds 

involved in the formulae.  

Once a lead compound has been identified the optimisation process often uses matched 

molecular pairs (MMPs) to improve the compound in various aspects (such as ADMET).  The 

most frequently observed molecular fragments vary drastically between different systems and 

their effects on property values vary between different atomic environments as well.  Chemists 

should therefore be very much aware of the chemistry of the compound they are trying to 

perform the transformation on in order to yield the desired effect that they were looking for. 

Although regulating physical properties and measured assay properties is highly important in 

the drug discovery process, there are also concerns with areas such as potency and binding 

that are not considered in this thesis and are very much target specific. 

Future work would involve extending this to understand a target basis and target class space 

to identify the effect that transformations have on particular atomic environments.  

Although this is more of a statistical analysis and we will never really know what the chemist 

was thinking when they register the compound and the design process that was followed. 

Changes such as replacing fluorine with chlorine and replacing chlorine with fluorine occur 

frequently and occur in a near equal proportion to each other are potentially the result of 

chemists testing what they already know. Whereas, specific transformations and their inverse 

transformation, that occur in a less equal proportion could be a conscious decision by the 

chemist or even determined by ease of synthesis. 

We have also shown that expected trends in property change, for example, increasing the 

logD you would decrease the solubility, are heavily influenced by the surrounding chemistry 

of the compound. Many transformations performed on environments alter the direction of the 
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property change in either direction suggesting that chemistry beyond 3 levels of the atomic 

environment are also important to consider when not registering the expected results.  We 

have therefore shown that it is important to understand the underlying chemistry that the 

transformations are performed on, as there are cases where even though the logD increases 

significantly the solubility also increases significantly, which is not what you would normally 

expect.  

The outcome of this study does not only add valuable information to previously reported 

studies, but also make a meaningful contribution to the process of using new 

analytical/processing tools to optimise compounds. Ultimately, this thesis allows for a greater 

understanding of where novel chemistry is published, and disseminated to the wider 

community, allowing for a clear direction of where to find relevant information as well as 

observing how trends have change over the course of history. Finally, this thesis has allowed 

for a more knowledge-based approach to optimising compounds for lead optimisation 

processes as well as observing how trends change over the course of a project.   
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