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Abstract

A fundamental challenge in biology is to understand the complex gene regulatory networks
which control tissue development in the mammalian embryo, and maintain homoeostasis
in the adult. The cell fate decisions underlying these processes are ultimately made at the
level of individual cells. Recent experimental advances in biology allow researchers to ob-
tain gene expression profiles at single-cell resolution over thousands of cells at once. These
single-cell measurements provide snapshots of the states of the cells that make up a tissue,
instead of the population-level averages provided by conventional high-throughput experi-
ments. The aim of this PhD was to investigate the possibility of using this new high resolu-

tion data to reconstruct mechanistic computational models of gene regulatory networks.

In this thesis I introduce the idea of viewing single-cell gene expression profiles as states
of an asynchronous Boolean network, and frame model inference as the problem of recon-
structing a Boolean network from its state space. I then give a scalable algorithm to solve
this synthesis problem. In order to achieve scalability, this algorithm works in a modu-
lar way, treating different aspects of a graph data structure separately before encoding the

search for logical rules as Boolean satisfiability problems to be dispatched to a SAT solver.

Together with experimental collaborators, I applied this method to understanding the pro-
cess of early blood development in the embryo, which is poorly understood due to the small
number of cells present at this stage. The emergence of blood from Flk1+ mesoderm was
studied by single cell expression analysis of 3934 cells at four sequential developmental time
points. A mechanistic model recapitulating blood development was reconstructed from this
data set, which was consistent with known biology and the bifurcation of blood and endothe-
lium. Several model predictions were validated experimentally, demonstrating that HoxB4
and Sox17 directly regulate the haematopoietic factor Erg, and that Sox7 blocks primitive

erythroid development.

A general-purpose graphical tool was then developed based on this algorithm, which can be
used by biological researchers as new single-cell data sets become available. This tool can



iv

deploy computations to the cloud in order to scale up larger high-throughput data sets.

The results in this thesis demonstrate that single-cell analysis of a developing organ cou-
pled with computational approaches can reveal the gene regulatory networks that underpin
organogenesis. Rapid technological advances in our ability to perform single-cell profiling
suggest that my tool will be applicable to other organ systems and may inform the develop-

ment of improved cellular programming strategies.
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Chapter 1
Introduction

Section 1.3 of this introduction was published in Woodhouse et al. (2015).

Uncovering and understanding the gene regulatory networks (GRNs) which underlie devel-
opment and homeostasis is a central issue in molecular cell biology. These GRNs control the
self-renewal and differentiation capabilities of the stem cells that maintain adult tissues, and
become perturbed in diseases such as cancer. They also specify the complex developmental
processes that lead to the initial formation of tissues in the embryo. Understanding how to
effectively control GRNs can lead to important insights for the programmed generation of
clinically-relevant cell types important for regenerative medicine, as well as into the design

of molecular therapies to target cancerous cells.

As biological data becomes more accurate and becomes available in larger volumes, re-
searchers are increasingly adopting concepts from computer science to the modelling and
analysis of living systems. Formal methods have been successfully applied to gain insights
into biological processes and to direct the design of new experiments. New single-cell
resolution gene expression measurement technology provides an exciting opportunity for
modelling biological systems at the cellular level. Single-cell gene expression profiles pro-
vide a snapshot of the true states that cells can reach in the real experimental system, a level
of detail which has not been available before, suggesting it may be possible to reconstruct
mechanistic computational models of gene regulatory network function directly from data.
A major challenge for researchers is to move beyond established methods for the analysis of
population average data, to new techniques that take advantage of this single-cell resolution
data.



2 Introduction

1.1 Haematopoiesis

Haematopoiesis is one of the paradigmatic systems for studying mammalian stem cell bi-
ology, due to the ease of access to the blood and bone marrow, and the development of
sophisticated techniques for the purification and functional characterisation of stem and
progenitor cells (Orkin and Zon (2008)).

In humans, it has been estimated that close to a trillion blood cells are generated every
day from the small pool of haematopoietic stem cells (HSCs) which are responsible for
maintaining the adult blood system (Ogawa (1993)). HSCs have the ability to both self-
renew and to differentiate through a hierarchy of intermediate progenitor cells to the mature
cells of all blood lineages (Bryder et al. (2006); Foster et al. (2009); Heng and Painter
(2008); Schiitte et al. (2012)). Much has been learnt about this process from the study of
model organisms, in particular the mouse (Spangrude et al. (1988); Till and McCulloch
(1961)). In the mouse, HSCs are functionally defined as cells that are capable of long-term
reconstitution of the hematopoietic system of a lethally irradiated recipient animal.

In addition to being a model system for adult stem cell biology, the study of HSCs is also
highly clinically relevant. Many leukaemias and haematological malignancies are caused
by disruptions to normal cellular decision making, leading to an imbalance in the numbers
of different types of blood cell; and bone marrow transplantation represented the first, and

still dominant form of stem cell therapy.

While much has been learned about the lineages of the blood system, and the importance of
specific transcriptional regulators in normal haematopoiesis and in the development of ma-
lignancies, little is known about how these factors are integrated into a wider gene regulatory
network that controls cellular decision making. Our understanding of how the hematopoietic

system first develops during embryogenesis is also far from complete.

1.1.1 Development of the haematopoietic system

The ontogeny of the haematopoietic system has been studied in detail for over 100 years.
Genetic and imaging studies have revealed a complex process that occurs at different de-
velopmental time points and at different locations in the embryo and fetus (reviewed in
Moignard et al. (2013b)).

Development of the haematopoietic system proceeds in a series of distinct waves. In the

mouse, the first, primitive, wave occurs on embryonic day (E)7.5 towards the end of gas-
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Figure 1.1 Schematic of hematopoietic development in-vivo in the developing mouse em-
bryo and in-vitro in embryonic stem cell cultures. Hematopoietic cells derive from the
embryonic mesoderm through a hemangioblast intermediate, with the transcription factor
Etv2 implicated in its emergence and/or commitment. Hemangioblast-like cells can also
be identified when embryonic stem cells are induced to differentiate, either through em-
bryoid bodies in suspension or in adherent culture. The transcription factor Scl then reg-
ulates the transition from the hemangioblast to the hemogenic endothelium, both in-vivo
and in embryonic stem cell cultures. Clusters of hematopoietic cells form adjacent to the
hemogenic endothelium from which hematopoietic precursor cells bud out into the blood
vessels, in a process termed endothelial-to-hematopoietic transition, which is regulated by
Runx1 (Moignard et al. (2013b)).

trulation, and primarily generates primitive erythrocytes to supply oxygen to the rapidly
growing embryo (Baron et al. (2013); Moignard et al. (2013b)). This is followed by a
definitive wave, which can be further divided into the production of multipotent erythro-
myeloid progenitors with limited potential for expansion on E8.25, and the emergence of
the true HSCs that will go on to populate the bone marrow and maintain the blood system
throughout adult life, on E10.5. While embryonic stem cell models are able to recapitulate
key aspects of this process, de-novo generation of HSCs in-vitro from pluripotent stem cells
is still not possible. The study of the gene regulatory networks and signalling pathways
involved in the developmental of the blood system is therefore an active topic of study in
molecular haematopoiesis.
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1.1.1.1 Primitive haematopoiesis

In the mouse, gastrulation begins after the implantation of the embryo at E6.5, with the
formation of the three germ layers (mesoderm, ectoderm and endoderm) that will go on to
give rise to the different tissues and organs of the embryo. The blood is one of the first
tissues to develop, with primitive erythroid progenitors developing at E7.0-7.5 outside of
the embryo-proper from mesodermal progenitors in the yolk sac which express the VEGF
receptor, Flk1 (Lux et al. (2008); Moignard et al. (2015); Shalaby et al. (1997)).

Differentiated primitive erythrocytes can be detected by E8.0, which differ from adult-type
definitive erythrocytes in the existence of a nucleus, their larger size, and the expression
of foetal/embyronic instead of adult globins (Baron et al. (2013)). Megakaryocytes and
macrophages can also be detected developing in the yolk sac by this stage (Frame et al.
(2013)). Primitive erythrocytes continue to mature after entering circulation at around E8.5,
and will eventually enucleate (Baron et al. (2013); Frame et al. (2013); Moignard et al.
(2013b)). Development of primitive erythrocytes is dependent on the transcription factors
Scl (also known as Tall), Gatal, Gata2, Lmo2 and EKLF, but, unlike definitive erythrocytes,
not on Runx1, c-Myb or Zbp89 (Baron et al. (2013)).

1.1.1.2 Definitive haematopoiesis and the emergence of HSCs

Following primitive haematopoiesis in the yolk sac, there is a second, “transient” wave of
haematopoiesis, which also occurs independently of HSCs. This wave begins at around
E8.25, primarily in the yolk sac but also in the para-aortic splanchnopleura, the aorta-
gonad-mesonephros (AGM) region, the vitelline and umbilical arteries, the placenta and
the heart (Frame et al. (2013)). These hematopoietic progenitor cells have definitive ery-
throid and myeloid potential, but do not have long-term reconstitution capability. After
emergence, the transient progenitors localise to the fetal liver at E10, where they differenti-
ate. This second wave of haematopoiesis provides the mid- to late-stage embryo with blood
cells and is required for survival until birth, by which time the adult haematopoietic system
is established. HSC-independent progenitors with lymphoid potential can also be detected
in the yolk sac at around E9.5 (Boiers et al. (2013); Yoshimoto et al. (2011, 2012)). These

cells are believed to be distinct from the transient erythro-myeloid progenitors.

Finally, hematopoietic stem cells emerge on E10.5 in very small numbers, migrating to the
foetal liver by E12.5 and finally to the bone marrow shortly before birth to establish the
adult haematopoietic system (Swiers et al. (2013a,b)). HSCs first emerge from the wall of
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the dorsal aorta in the AGM region, and then later at multiple sites in the embryo (Medvinsky
and Dzierzak (1996)).

Transient progenitors and HSCs emerge from an endothelial source, through a process
known as the endothelial-to-hematopoietic transition (Garcia-Porrero et al. (1995); Jaf-
fredo et al. (1998)) which has recently been visualised in real-time using time-lapse imag-
ing (Eilken et al. (2009)). This hemogenic endothelium itself develops from a precursor
known as the hemangioblast, a multipotent progenitor which also has the potential to give
rise to vascular smooth muscle (Lancrin et al. (2009)). The hemangioblast develops from
mesodermal cells which express the VEGF receptor, Flkl. Knockouts studies have re-
vealed some of the transcriptional regulators involved in this linear process (Moignard et al.
(2013b), Figure 1.1). The development of the hemangioblast from Flk1 mesoderm is de-
pendent on the transcription factor Etv2 (Kataoka et al. (2013); Moignard et al. (2013b);
Wareing et al. (2012)), while Scl is required for the transition from the hemangioblast to the
hemogenic endothelium (D’Souza et al. (2005)). The endothelial-to-hematopoietic transi-
tion is regulated by Runx1 (Chen et al. (2009); Swiers et al. (2013a,b)).

1.1.2 Maintenance of the adult haematopoietic system

The adult haematopoietic system is maintained by a small pool of haematopoietic stem
cells which reside primarily in the bone marrow but can also be found circulating in the
blood stream (Figure 1.2). HSCs can make the decision to quiesce, to self-renew or to
differentiate through a hierarchy of progressively more lineage-restricted progenitor cells
to produce all of the mature adult blood cell types, from oxygen-carrying erythrocytes and
platelet-producing megakaryocytes to the cells of the innate and adaptive immune systems.
In order to maintain homoeostasis, these cell fate decisions must be carefully regulated in
order to produce the correct ratio of each of the mature cell types while maintaining the
stem cell pool.

Stem cell decision making is regulated by both internal gene regulatory networks and ex-
ternal cytokines which feed information into the internal regulatory program via signalling
pathways. Years of molecular haematology research has identified many of the transcription
factors involved in the internal HSC gene regulatory network, the importance of which is
highlighted by the fact that their forced expression can commit a stem cell to a specific lin-
eage choice, while their absence can result in the depletion of specific lineages, and by the
fact that they are often mutated or dysregulated in leukaemia. For example, forced expres-
sion of the transcription factor Gatal is sufficient to drive haematopoietic progenitors toward
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Figure 1.2 Schematic of the haematopoietic hierarchy. Multipotent stem and progenitor
cells in purple, megakaryocyte—erythroid lineage in red, other myeloid lineages in orange,
and lymphoid cells in blue. (Moignard et al. (2013a)).

an erythroid/megakaryocytic fate (Heyworth et al. (2002); Kulessa et al. (1995)), while PU.1
promotes alternative myeloid fates (Galloway et al. (2005); Rhodes et al. (2005)). Loss
of Gfil results in the absence of neutrophil progenitors (Hock et al. (2003)). Scl is often
translocated in T-cell acute lymphoblastic leukaemia (Robb et al. (1995)), while Pax5 is
often deleted in B-cell leukaemia (Medvedovic et al. (2011)) and the Runx1(AML1)-ETO

fusion protein is associated with acute myeloid leukaemia (Mulloy et al. (2002)).

The most dramatic demonstration of the power of transcription factors to control cellular
state is the conversion of mature cell types back to a pluripotent state reminiscent of the
embryonic stem cell (known as an induced pluripotent stem cell, or iPSC) by introduction
of the transcription factors Oct3/4, Sox2, c-Myc and Klf4, for which Yamanaka received the
2012 Nobel Prize in Physiology or Medicine (Takahashi and Yamanaka (2006)). Similar re-
programming is possible within the haematopoietic system. For example, B and T cells can
be reprogrammed to macrophages by expression of the transcription factor C/EBPo (Laiosa
et al. (2006); Xie et al. (2004)). Recent work has shown that introduction of Gata2, cFos,
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Gfilb and Etv6 into mouse fibroblasts; Hoxa9, Erg, Rora, Sox4 and Myb into human
myeloid-restricted precursors; or Runltl, HIf, Lmo2, PrdmS5, Pbx1, and Zfp37 into com-
mitted mouse lymphoid and myeloid progenitors can give rise to HSC-like cells (Doulatov
et al. (2013); Pereira et al. (2013); Riddell et al. (2014)).

Another active topic of study is the stem cell microenvironment, or niche, of haematopoietic
stem cells. Research suggests that the interaction of HSCs with osteoblasts and vascular
cells in the bone marrow modulates self-renewal and quiescence (Kiel and Morrison (2006);
Kiel et al. (2007); Sipkins et al. (2005); Yoshihara et al. (2007); Zhang et al. (2003)), and
that abnormal niches can be involved in the development of leukaemias (Azizidoost et al.
(2015); Evans and Calvi (2015); Perry and Li (2007); Schepers et al. (2013)).

1.2 Gene Regulatory Networks

As mentioned above, much has been learnt from studying leukemic patients and from loss-
of-function and over-expression experiments about the transcriptional regulators which are
important to the development and maintenance of the haematopoietic system, but relatively
little is known about how these regulators are integrated into a wider gene regulatory net-

work and how this network executes the complex program of cell fate decision making.

1.2.1 Regulation of gene expression

Gene regulatory networks are built from non-protein-coding regulatory DNA elements —
promoters and enhancers — and the transcription factors and epigenetic regulators which
interact with these elements and with each other in order to control gene expression and
therefore the identity and function of the cell. In mammals, the DNA which encodes each of
the genes of the organism along with these regulatory elements is billions of base pairs long
(~2.8 billion bp in mouse) and separated into multiple chromosomes. The human genome,
if it was laid out, would be nearly two metres in length (Ball (2003)). In order to compact
such a huge amount of genetic material into the cell nucleus, which has a diameter of only a
few micrometres, the DNA is supercoiled around proteins called histones to form structures
called nucleosomes (Felsenfeld and Groudiner (2003)). Each nucleosome consists of two
copies each of four core histone proteins — H2A, H2B, H3, and H4 — wrapped by around
146 base pairs of DNA (Ball (2003); Khorasanizadeh (2004); Kornberg and Lorch (1999);
Luger et al. (1997)).
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Figure 1.3 Scl, Lyll, Lmo2, Gata2, Runx1, Erg, Flil form a heptad of transcription factors
which bind together in a complex in a haematopoietic progenitor cell line (Wilson et al.
(2010)).

These histones have N-terminal tails which are subject to epigenetic modifications, such as
acetylation and methylation, which regulate the accessibility of the wound DNA to tran-
scriptional regulators and RNA polymerase (Bannister and Kouzarides (2011); Calo and
Wysocka (2013); Dawson et al. (2012)). For example, acetylation of histone 3 lysine 27
(H3K27Ac) is enriched at regulatory elements of genes which can be actively transcribed,
while trimethylation of histone 3 lysine 27 (H3K27me3) is associated with epigenetically
silenced genes (Alberts et al. (2002); Bernstein et al. (2005); Creyghton et al. (2010);
Kouzarides (2007); Rada-Iglesias et al. (2011); Schiibeler et al. (2004)). The DNA itself
is also subject to epigenetic modifications. Methylation of a promoter region is associated
with silenced gene expression (Suzuki and Bird (2008)). Both of these forms of epigenetic
regulation can be inherited through cell divisions and can persist in daughter cells (Cedar
and Bergman (2011); Klose and Bird (2006)).

Transcription factors are modular proteins which bind to regulatory elements in order to
activate or repress gene expression. Transcription factors account for a large proportion of
the protein-coding genes in the mammalian genome, with 1700-1900 of the 20000-25000
genes in the human genome predicted to be transcription factors (Messina et al. (2004)). It
has been estimated from an integrative study of population microarray data that around 150
to 300 transcription factors are expressed in a given human tissue, accounting for around
6% of the transcriptome (Ravasi et al. (2010); Vaquerizas et al. (2009)).

Transcription factors can be characterised by their DNA binding domains, which recognise
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and bind to short (4-10 base pairs) DNA sequences, known as motifs. The haematopoietic
factors Erg, Flil and PU.1 are Ets-factors, one of the largest families of transcription factors
in mouse and human (Sharrocks (2001)). These factors have an 85-amino acids DNA bind-
ing domain with a winged helix-turn-helix structure (Donaldson et al. (1996); Liang et al.
(1994)) which binds to the Ets motif, the GGAW DNA sequence (Sharrocks (2001)). Scl
and Lyl1 are basic helix-loop-helix factors (Begley and Green (1999)) which bind the Ebox
motif (CANNTG). The Gata family features two zinc finger domains which bind to the
WGATAR consensus motif (Ko and Engel (1993)). Runx1 is a core-binding factor which
recognises and binds to the Runt binding motif (TGYGGT) (Ito et al. (2015)).

Transcription factors regulate gene expression through their transactivation domains, which
bind to accessory proteins that can initiate, prevent, or modulate transcription (Spitz and
Furlong (2012); Vaquerizas et al. (2009)). Other factors are believed to act as “pioneer
factors”, recruiting chromatin remodelling enzymes which deplete nucleosomes, open up
chromatin and make DNA accessible to other transcription factors which can subsequently
bind to regulatory elements and mediate transcription (Chen et al. (2014b); Iwafuchi-Doi
and Zaret (2014); Zaret and Carroll (2011)). Transcription factors may also be involved in

recruiting histone and DNA modifying enzymes to lay down or erase epigenetic marks.

1.2.1.1 Combinatorial transcription factor activity

Transcription factors rarely work alone, and instead form multi-factor complexes which
function together to regulate gene expression. These complexes can be formed via direct
protein-protein interactions between factors which are bound to nearby motifs (Figure 1.3).
Some transcription factors, such as Lmo2, are unable to bind DNA directly, and so rely com-
pletely on partner factors to recruit them to regulatory regions. Binding of a transcription

factor can therefore occur even if the motif it recognises is not present.

Examination of transcription factor binding patterns through ChIP-sequencing experiments
followed by co-immunoprecipitation assays to establish protein-protein interactions iden-
tified a heptad of factors (Scl, Lyll, Lmo2, Gata2, Runx1, Erg, Flil) which bind together
in a complex in a haematopoietic progenitor cell line (Wilson et al. (2010), Figure 1.3).
A well characterised transcription factor complex is the AFF-2, c-Jun, IRF-3/IRF-7, NFxB
complex which regulates expression of interferon-f3 upon viral infection. Binding of all fac-
tors together is required before transcription is activated (Carey (1998); Merika and Thanos
(2001); Panne et al. (2007)). Another example of combinatorial transcription factor regu-

lation from haematopoiesis is found at the Scl+19 regulatory element, where the presence
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and precise spacing of one Gata and two Ets motifs is required for Scl expression (Ng et al.
(2014); Pimanda et al. (2007)).

The combined activity of multiple transcription factors at regulatory elements allows the
cell to execute more complex cell fate decisions, where multiple spatial and temporal inputs
are fed into a regulatory element and combinatorial logic determines whether the exact
conditions are met for the target gene to be expressed, or not (Istrail and Davidson (2005)).
The target gene may in turn code for a transcription factor, which then feeds back into
regulatory elements, forming a complex gene regulatory network with non-linear logic and
feedback loops (Bonzanni et al. (2013); Krumsiek et al. (2011)). This paradigm governs the
expression of the stripe patterns during the segmentation of the Drosophila melanogaster

embryo, for example (Wilczynski and Furlong (2010)).

Regulatory elements may execute “AND”, “OR”, or dominant repressing “NOT” logic, and
more complex combinations of these (Istrail and Davidson (2005); Peter et al. (2012)). To
experimentally determine the logic which controls the expression of a gene requires the
identification of its regulatory elements the factors which bind to these elements, and the
mutation of each binding motif to prevent binding, both individually and in all possible
combinations. Additional perturbations may be required to prevent formation of complexes
and to distinguish between factors when multiple factors are able to bind to the same site.
This is extremely time-consuming, and a computational method which could predict gene
regulatory logic from gene expression data alone would have the potential to massively

speed up this process.

1.2.1.2 Transcriptional machinery

In eukaryotes, RNA is transcribed by RNA polymerase I, II or III depending on the type of
the RNA; with RNA polymerase II (Pol II) responsible for transcribing protein-coding genes
to mRNA (Butler and Kadonaga (2002); Goodrich and Tjian (2010); Juven-Gershon and
Kadonaga (2010); Kadonaga (2012); Sandelin et al. (2007)). Transcription factors recruit
Pol II to core promoters, regions of DNA that are found at -30, -75 and -90 base pairs
upstream from the transcription start site. There Poll II assembles together with six general
transcription factors that recognise core promoter motifs and perform essential functions
such as the unwinding of DNA — TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH — to

form the pre-initiation complex.

Other proteins are involved in this process — coactivators and corepressors such as p300
which modulate the rate of transcription (Teufel et al. (2007); Vo and Goodman (2001)), and
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positive and negative elongation factors which regulate the release of the polymerase from
the transcriptional start site to allow it to move along the DNA and begin copying DNA to
RNA (Adelman and Lis (2012)).

After transcription, further layers of control add to the complexity of gene regulation: post-
transcriptional modification of RNA including splicing, whereby introns are removed and
exons are joined (Barash et al. (2010)); RNA editing (Pachter (2012)); down-regulation by
non-coding RNAs such as miRNA (Chen et al. (2004); Rodriguez et al. (2007); Shivdasani
(2006); Stadler et al. (2010); Thai et al. (2010); Xiao et al. (2007)); translation of mRNA to
an amino acid chain to form protein; and post-translational modification of the synthesised

protein.

1.2.1.3 Enhancers

Complicating the study of mammalian gene expression is the fact that the trans-regulatory
elements which control the activity of a gene can be located kilobases up- or down-steam
of the transcriptional start site, with recent research suggesting they could even lie on dif-
ferent chromosomes. These elements, called enhancers, loop to physically interact with the
promoter and to bring their bound transcription factors into contact with the pre-initiation
complex (Hughes et al. (2014); Shlyueva et al. (2014); Spitz and Furlong (2012)). Several
proteins and protein complexes have been found to be involved in this process, including
the mediator complex (Kagey et al. (2010)); cohesin, which forms rings to stabilise en-
hancer/promoter interaction (Peric-Hupkes and van Steensel (2008); Seitan and Merken-
schlager (2012)); and the transcription factor CTCF (Herold et al. (2012); Phillips and
Corces (2009)). Genes can be regulated by multiple enhancers, enhancers can regulate

multiple genes, and enhancers generally show tissue or cell-type specific activity.

Despite these factors making the identification of regulatory elements difficult, many en-
hancers important to the regulation of haematopoiesis are now known, and their activity
has begun to be characterised. Potential enhancers can be identified by comparative ge-
nomics, identifying regions of DNA which are conserved throughout evolution (Donaldson
et al. (2005); Gottgens et al. (2000)); by DNasel hypersensitivity assays, which reveals
DNA accessible to transcription factor binding (Meissner et al. (2008); Song and Crawford
(2010)); and by the identification of combinatorial binding of multiple transcription factors
and of activating histone modifications, through ChIP-seq (Wilson et al. (2010))). Chro-
matin conformation capture and related technologies can reveal chromatin looping (Hughes
et al. (2014); Lieberman-Aiden et al. (2009); Patwardhan et al. (2009)). Once a putative
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enhancer has been identified, it can be tested for activity by cloning the DNA sequence next
to a minimal promoter and a reporter gene (Bonzanni et al. (2013)). Tissue-specificity can
then be assessed in transgenic embryos (Schiitte et al. (2012)). Characterisation of the reg-
ulatory module can be carried out by the effect of individual and combined transcription
factor binding site mutagenesis in cell lines (Lelieveld et al. (2015); Moignard et al. (2015);
Ng et al. (2014); Wilkinson et al. (2014)).

Scl expression in haematopoiesis is regulated by at least two distal enhancers, located at
+19 and -4 (Gottgens et al. (2004)) kilobases. The Lmo2 promoter and Lmo2-75, Lmo2-
70 and Lmo2-25 enhancers all show activity individually in haematopoietic tissues (Landry
et al. (2009)). The Runx1 promoter alone is not active in haematopoietic tissues, but shows
activity when combined with the Runx1+23 enhancer (Bee et al. (2009)). Enhancers for
other key haematopoietic factors, including Erg, Flil, Gata2, Gfilb, and PU.1 (Okuno et al.
(2005)) have also been identified and partially characterised.

1.2.2 Modelling gene regulatory networks

Gene regulatory networks control the dynamic expression pattern of genes, ensuring that the
correct genes are expressed at the correct times and places at each stage of development, and
determining the final, mature cell types that eventually develop. The complex non-linear in-
teractions and feedback loops in these networks mean that mathematical and computational

models are required in order to understand the dynamics of differentiation.

In 1957 Waddington proposed the epigenetic landscape, a metaphor for how multipotent
cells differentiate by becoming progressively more lineage restricted (Goldberg et al. (2007);
Waddington (1957)). In this metaphor, cells are thought of as marbles placed at the top of a
valley. As the cells differentiate, they roll down the slopes of the valley and finally come to
rest at the lowest points. These points represent the final mature differentiated cell types.

This picture has become the basis for understanding the uni-directional process of devel-
opment. In the modern formulation, cellular states are defined by the level of expression
of each gene, and the dynamics of the system are given by the activation and repression
relations between genes (Huang et al. (2005); Kauffman (1969)). If the system is allowed to
evolve for long enough, it will eventually end up in one of possibly several attractors, where
it will remain. These attractors are thought of as stable cell types. An attractor can be a
single stable state, or it can be cyclic, consisting of a series of states which are continually

transitioned though.
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Figure 1.4 Gata2, Gfil and Gfilb form a regulatory triad (Moignard et al. (2013a)).

1.2.2.1 Network motifs

Early work on modelling haematopoiesis focused on identifying small “network motifs”
consisting of a few regulatory factors and investigating their effect on cellular decision mak-
ing, both experimentally and through mathematical modelling. The theory of network mo-
tifs has been studied in detail by Alon, who has identified and experimentally characterised
several classes of network building blocks that recur throughout biological networks and

across organisms, more often than would be expected at random (Alon (2007)).

Motifs that have been identified to be active in haematopoiesis include a double-negative
loop between Gatal and Pu.1 in adult haematopoiesis, in which Gatal and Pu.1 repress each
other and activate their own expression (Arinobu et al. (2007); Chickarmane et al. (2009);
Duff et al. (2012); Huang et al. (2007); Monteiro et al. (2011); Roeder and Glauche (2006);
Wontakal et al. (2012)). Once activated, this motif locks the cell into one of two classes
of states: Gatal on, Pu.l off; and Gatal off, Pu.1 on. This bifurcation dynamic potentially
explains why Pu.1 expression in the erythroid—myeloid lineage triggers monocytic differen-
tiation, while Gatal expression triggers erythroid and megakaryocytic differentiation (dis-
cussed above). Pu.l expression would activate the expression of downstream monocytic
genes, and, by repressing Gatal, prevent Gatal activation of erythroid and megakaryocytic

genes (and vice-versa).

Another example is the fully connected Scl-Gata2-Flil triad, activated in the specification
of HSCs in the embryo, and thought to be a central player in the haematopoietic stem cell
network (Pimanda et al. (2007)). In this motif, the three transcription factors cooperate to
positively regulate each other and maintain mutual expression, by binding to the Gata2-3,
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Flil+12, and and Scl+19 distal enhancers. This motif is thought to be rare in prokaryoctes,
but exists in other stem cell systems, for example the Nanog-Oct4-Sox2 triad in embryonic
stem cells (Boyer et al. (2005); Chickarmane et al. (2006)). It has therefore been suggested
that this motif is involved in maintaining the stem cell state, and that down-regulation of any
member of the triad by an external factor, for example Gata2 repression by Gatal, results in

exit of the stem cell state and promotes differentiation.

A mathematical model of the Scl-Gata2-Flil triad was built, using ordinary differential
equations (ODESs) to model continuous change of protein levels over time, and a thermody-
namic analysis of enhancer activity levels to estimate kinetic parameters for TF-DNA and
TF-TF binding affinities (Narula et al. (2010)). Mathematical analysis of this model reveals
that it exhibits bistability, where initial activation locks the triad into a self-sustaining “ON”
state, and a repressor protein must persist for a significant period of time in order to switch
the system back into an “OFF” state.

A third example is the Gata2-Gfil-Gfilb triad active in HSCs (identified via gene expres-
sion profiling of single-cell cells and examining gene expression correlation, Moignard et al.
(2013a)). In this motif, which resembles a “type 2 coherent feedforward loop”, Gata2 mod-
ulates the mutual inhibition of Gfil and Gfilb (Figure 1.4). It has been suggested that this
motif may be involved in differentiation and exit of the stem cell state. Ultimately, how-
ever, decision making cannot be understood by studying network motifs in isolation, and
instead it must be understood how they fit into larger gene regulatory networks. Pu.1-Gatal
antagonism, for example, has been shown to be context-dependent (Monteiro et al. (2011);
Sugiyama et al. (2008)).

1.2.2.2 Developmental gene regulatory networks

Wider gene regulatory networks in development are better understood in invertebrate model
organisms, such as Drosophila and the sea urchin. Perhaps the best understood gene regu-
latory network is the network governing endomesodermal specification from early cleavage
up to gastrulation in the purple sea urchin embryo (Strongylocentrotus purpuratus). This
network has been studied for over thirty years by the Davidson lab (Damle and Davidson
(2012); Davidson (2006, 2010); Peter and Davidson (2011)). The result of these studies is a
Boolean computational model which consists of a Boolean variable (a value of 1 represents
“expressed”, and 0 “unexpressed”) for each of the 45 regulatory genes expressed during this
process, together with a logical equation which specifies how the gene is regulated by the

other genes (Peter et al. (2012)). Each gene is only expressed when the correct combina-
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tion of regulatory inputs is expressed. The model also incorporates spatial and signalling

information.

The model can be executed, starting from an experimentally-determined initial state where
genes expressed in the earliest developmental stage are turned on. The dynamics of the
model proceeds in a series of synchronous time steps where the value of each gene is updated
based upon the value of its inputs from the previous state. At several places in the regulatory
logic time delays are incorporated to allow states to depend on the value of older states
than the previous state. This is to account for differences in the time it takes factors to be
transcribed, translated and find their binding sites. Remarkably, the predicted temporal and
spatial gene expression patterns which result from execution of the model were found to be
in near complete agreement with observed experimental data. Only 2 out of 33 measured
genes were found to be expressed in incorrect spatial domains, and only 39 elements in a
45 x 106 temporal expression matrix were in disagreement with experimental data. This
demonstrates that a systems-level mechanistic understanding of development can emerge

from a Boolean model based purely on regulatory logic.

A second class of predictions comes from in-silico perturbations, in which a gene’s regu-
latory logic is changed so that it is always expressed (over-expression) or never expressed
(knock out). The results can then be compared to experimental perturbations. Here again
the model was found to be in agreement with experimental data. The model is therefore able
to explain nearly all existing experimental data and is a powerful tool to generate predictions

which can be used to design new experiments.

1.2.2.3 Stem cell gene regulatory networks

Gene regulatory networks active in stem cells can be expected to have qualitatively different
topology and dynamics to those active during development. Developmental gene regulatory
networks can follow a principle of “forward-momentum”, where the cell is driven from a
multipotent state to a final differentiated stable state by transiting through a series of progres-
sively more restricted states. Once initiated, this process can happen fairly autonomously,
although external stimuli may be integrated via signalling at each stage. Stem cells, on the
other hand, have two seemingly conflicting properties: stability of the multipotent state to

support self-renewal, and plasticity for differentiation.

In an elegant theoretical work, Suzuki, Furusawa and Kaneko investigated all possible 5-
gene networks in a class of ODE models with cell division and where a single regulatory

factor quickly diffuses completely freely between all cells, introduced to model cell-to-
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cell communication (Suzuki et al. (2011)). Of the 145,269,760 gene regulatory networks
considered, 15,145 had differentiation dynamics, and just 231 showed both unidirectional
differentiation and indefinite self-renewal. In these 231 models, the cell begins in a stem
cell state where gene expression levels oscillate. The cell then divides to produce more
stem cells which continue to exhibit oscillatory gene expression, but where the phases of
oscillations are not synchronised between cells. Cell-to-cell communication then is the
trigger which forces cells to differentiate, by driving cells out of the oscillating stem cell
attractor. Crucially, only cells at a certain phase of oscillation are sensitive enough to this
perturbation to differentiate, and so a pool of self-renewing stem cells is always maintained

while differentiated cells are also produced.

This theory suggests that oscillatory dynamics is key to stem cell gene regulatory networks,
and that stem cell GRNs can be expected to feature oscillation-generating motifs such as
negative feedback loops. This is in line with evidence from single-cell studies that demon-
strate stem cells show significant heterogeneity in gene expression (Canham et al. (2010);
Chambers et al. (2007); Chang et al. (2008); Hayashi et al. (2008); Huang (2009); Macarthur
and Lemischka (2013); Moignard et al. (2013a); Toyooka et al. (2008); Warren et al. (2006)),
and that haematopoietic cytokines directly induce differentiation and lineage choice rather
than only promoting survival of cells that have already committed to a particular lineage as a
result of internal decision making (Mossadegh-Keller et al. (2013); Rieger et al. (2009); Sar-
razin et al. (2009); Thalheimer et al. (2014)). Several transcription factors have also been
found to show oscillatory expression dynamics in imaging studies - for example, Hesl,
Nanog, Rex1, Stella and Hex in embryonic stem cells (Chambers et al. (2007); Hayashi
et al. (2008); Hirata et al. (2002); Kageyama et al. (2007); Kalmar et al. (2009); Kobayashi
and Kageyama (2010, 2011); Kobayashi et al. (2009); MacArthur et al. (2012); Miyanari
and Torres-Padilla (2012)).

1.2.2.4 Haematopoietic gene regulatory network models

Recently, two asynchronous Boolean network models of haematopoietic gene regulatory
networks have been built, one modelling the common myeloid progenitor and one the
haematopoietic stem cell. In an asynchronous Boolean network, each transcription fac-
tor is represented by a Boolean variable together with a Boolean update rule that specifies
its regulatory logic. Unlike the synchronous Boolean model described above for sea urchin
development, the dynamics of these models proceed by a series of single-gene changes. At
each update, a gene is chosen uniformly random and its value is updated based upon the

value of all genes. This allows stochastic decision making to be incorporated, and means
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Figure 1.5 A Boolean model of the core transcription factor network active in common
myeloid progenitors. (a) Visual representation of the common myeloid progenitor reg-
ulatory network model as encoded by the Boolean update rules from Krumsiek et al.
(2011). Blue edges represent activation and red edges repression. Square boxes connect-
ing edges represent AND operations. (b) Schematic of the adult hematopoietic hierarchy
in bone marrow. The CMP is regulated by the network in (a) to produce multiple outputs:
the granulocyte—monocyte progenitor which gives rise to granulocytes, monocytes and
other myeloid cells, and the megakaryocyte—erythroid progenitor, which produces erythro-
cytes and megakaryocytes. HSC, hematopoietic stem cell; MPP, multipotent progenitor;
CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MEP, megakary-
ocyte—erythroid progenitor; GMP, granulocyte—monocyte progenitor.

that different executions of the same model can result in different outcomes.

Krumsiek and Marr et al. constructed an asynchronous Boolean network model of the core
transcription factor network active in common myeloid progenitors, following a compre-
hensive literature survey (Krumsiek et al. (2011)). This model contains 11 haematopoietic
transcription factors (Figure 1.5). The complex combinatorial logic governing the inter-
actions between transcription factors is encoded as Boolean update rules using the logical
functions And, Or and Not. For example, Gata2 positively regulates its own expression, and
is inhibited by Gatal and Fogl. As both Gatal and Fogl are required to repress Gata2 ex-
pression, they are combined using And in the Boolean update rule for Gata2. Computational
analysis of this model, beginning from an initial transcription factor expression state repre-
senting the common myeloid progenitor, revealed an acyclic, 232-element hierarchical state
space which recapitulated the steps of myeloid differentiation. This state space contained
four terminal stable states, which were found to be in good agreement with microarray ex-
pression profiles of megakaryocytes, erythrocytes, granulocytes and monocytes. Once it
had been established that this model recapitulated myeloid differentiation, further analyses

based upon perturbations to the network were conducted. This analysis demonstrated that
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Figure 1.6 A Boolean model of the core transcription factor network active in haematopoi-
etic stem cells, from Bonzanni et al. (2013). Blue edges represent activation and red edges
repression. Square boxes connecting edges represent AND operations.

in-silico knockouts were able to reproduce known experimental lineage depletion results

and that in-silico overexpression reproduced known experimental reprogramming results.

Bonzanni, Garg and Feenstra et al. built a similar model consisting of another set of 11
haematopoietic transcription factors together with experimentally-determined regulatory
logic that governs their expression in HSCs (Bonzanni et al. (2013), 1.6). Interestingly,
this model exhibited an oscillating ‘““stem-cell” attractor consisting of 32 connected states,
which cannot be exited without external intervention. This is in line with the theory of
oscillating stem cell gene regulatory networks discussed above. Forced expression of tran-
scription factors is able to commit the model to exit from this attractor and to reach one of
11 stable states, which again were found to be in good experimental agreement with ex-
pression profiles of mature blood cell types. Analysis of this model led to the prediction
of a new repressive regulatory link between Gatal and Flil, which was then subsequently
validated. Without this link, expression of Gatal alone is not sufficient to drive the model
out of the stem cell attractor and to differentiate to the erythroid stable state, although it
is known that Gatal overexpression leads to erythro-myeloid commitment experimentally.
After introducing this new link, the model behaves as expected. These results on modelling
adult haematopoiesis using asynchronous Boolean networks are highly encouraging, and
should form the basis of future work. Currently, no similar model exists for developmental
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haematopoiesis.

Predictions about the modes of interaction between genes resulting from computational
analysis can be tested experimentally through a range of assays. For example, if analysis of a
model predicts that gene X is activated by gene A, a ChIP (Chromatin ImmunoPrecipitation)
assay can be used to assess whether the protein coded for by A binds to a regulatory region
of X. Then, perturbations which prevent the binding of A to this region can be introduced,

and the effect that this has on the expression of X can be examined.

1.2.2.5 Abstraction

An important issue that must be considered when attempting to model a system is the level
of detail which the system will be represented at. Biological systems have been modelled
at different levels of abstraction. At the lowest level are stochastic process models which
attempt to capture the precise biochemical events inside a cell, given by chemical master
equations (Paulsson (2004); Pedraza and Paulsson (2008); Sjoberg et al. (2009); Van Kam-
pen (2007); Wilkinson (2012)). These chemical events are fundamentally stochastic, driven
by random fluctuations of molecules present at very low concentrations (and therefore mod-
elled by discrete rather than continuous variables) and by Brownian motion. Stochastic
process models can be simulated using the Gillespie algorithm and analysed using mathe-
matical tools such as the fluctuation—dissipation theorem (Becskei et al. (2005); Chandler
and Percus (1988); Gillespie (1977); Paulsson (2004); Sjoberg et al. (2009); Van Kampen
(2007)). This class of models has been used to construct small “toy” systems in order to con-
duct fundamental studies of stochasticity in gene expression (Amir et al. (2007); Elf et al.
(2003); Hilfinger and Paulsson (2011); Hilfinger et al. (2012); Huh and Paulsson (2011a,b);
Ozbudak et al. (2005); Paulsson (2004, 2005a,b); Pedraza and Paulsson (2008); Zhou et al.
(2005)), such as obtaining limits on the suppression of fluctuations by negative feedback
loops (Gronlund et al. (2011, 2013); Lestas et al. (2010)).

At a higher level are ordinary differential equation models, which abstract away the discrete
copy number of molecules and model molecular concentrations as continuous variables, and
reactions as continuous changes in concentrations over time (Elowitz and Leibler (2000);
Krumsiek et al. (2010); Mischnik et al. (2014); Narula et al. (2010); Wilhelm (2009)). Anal-
ysis of these models is more tractable than analysis of stochastic processes, allowing them
to scale to model larger systems, but their dynamics are deterministic and continuous and

so fail to capture the stochastic nature of gene expression.

Importantly, the fundamental studies of stochastic models have highlighted how many dif-
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ferent parameter values and completely different models can equally fit the same data.
For example, fluctuations in protein abundances, which are usually assumed to be due to
stochasticity in transcription and translation, can be equally well explained by a model
where noise is due to unequal partitioning of molecules between daughter cells at cell di-
vision (Huh and Paulsson (2011a,b); Landgraf et al. (2012)). These results can be taken as
an argument against trying to build exact quantitative physical models of gene regulatory
networks. Given that the processes we are interested in are under-determined, with many
unknown reactions, and that kinetic parameters for binding, transcription, translation and
degradation rates are unavailable and currently difficult to measure, we should instead try
to build more abstract models that capture the essential qualitative properties of the system,

and operate at a level for which experimental data is available.

The remarkable success of Boolean models, both in modelling the development of the sea
urchin embryo and in predicting haematopoietic cell states from regulatory logic, motivates
their use in modelling gene regulatory networks. Asynchronous Boolean networks abstract
away details of transcription, translation and molecular binding reactions and represent the
status of each modelled substance as either active (on) or inactive (off), while retaining the
stochastic nature of events, and capturing the regulatory logic determining whether a gene
is activated or not by Boolean update functions. The simplicity of these models means that
they can scale to much larger systems, and that powerful computational techniques can be
applied to analyse them. It also means that it may be possible to automatically reconstruct
them directly from single-cell gene expression data.

1.3 Computational analysis of high—-dimensional single—cell

gene expression data

Recent advances in protocols, microfluidics technology, and a reduction in costs have opened
up a new field of single-cell genomics. This new field promises to provide insights into
cellular identity and decision making over more conventional bulk population data, which
averages over the properties thousands of cells and therefore obscures the state of individual
cells (Moignard and Gottgens (2014)). Single-cell gPCR can simultaneously measure the
level of expression of tens to hundreds of genes, while the newer technique of single-cell
RNA-sequencing can sample the whole transcriptome.

After experimental measurement, data must firstly be processed and normalised to ensure

correct interpretation. Once these steps have been carried out subsequent analysis can be
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Figure 1.7 Overview of different single-cell analyses.

applied to answer specific biological questions.

Typically one of the first questions a researcher will want to ask about their single-cell ex-
pression data set is whether interesting sub-populations with characteristic gene expression
profiles can be identified (Amir et al. (2013); Buganim et al. (2012); Dalerba et al. (2011);
Jaitin et al. (2014); Moignard et al. (2013a); Wilson et al. (2015)). These sub-populations
might represent previously unidentified cell types or cells with an abnormal phenotype. For
example, in a study of the immune system, two separate populations might correspond to
activated and naive cells, or in a patient sample, to cancerous and healthy cells (Mahata et al.
(2014); Patel et al. (2014); Shalek et al. (2014); Spitzer et al. (2015)). Once identified, the
sub-populations can be isolated and investigated further. Population-level gene expression
data, on the other hand, would average out the differences between these groups, giving a

representative view of neither.

Once structure has been identified, the researcher can investigate potential biological pro-
cesses that have been captured in the data. Often, the data are representative of a develop-
mental or differentiation time-course, with early cells such as stem cells or early progenitors
progressing to more mature cells (Bendall et al. (2014); Moignard et al. (2015); Trapnell
et al. (2014)). In this case, the single cell profiling data set can be used for gene regulatory
network reconstruction. I will describe several techniques for reconstructing regulatory net-
works (Figure 1.7). Some of these methods have been adapted from analyses of population
data, and some have been specifically developed to take advantage of single-cell resolution
data.
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1.3.1 qPCR on the Fluidigm BioMark

The Fluidigm BioMark platform uses microfluidics devices to scale back reagent and sam-
ple requirements, thereby facilitating thousands of parallel qPCR reactions and allowing up
to 96 genes to be assayed in a single cell. Initial data processing takes place using the Flu-
idigm Real-Time PCR Analysis Software. Like conventional qPCR, the BioMark outputs
Ct values, and the software allows sample and assay names to be assigned along with the
quality thresholds, baseline correction methods and Ct thresholds used to calculate the final

Ct values.

Next, expression values that fall outside of the linear range of the BioMark HD or the assays
are excluded from further analysis. To do this, a limit of detection (LOD) is calculated
from standard curves for each primer set as the last Ct value at which amplification can
be reliably and repeatedly detected (Livak et al. (2013); Trapnell et al. (2014)). Ct values
higher than the LOD, as well as samples where the amplification has failed entirely or where
the amplification curves have failed quality control are usually given the same value as the

limit of detection and treated as not detected.

Additional filtering can be used to exclude whole genes or samples. For example, genes
may be excluded where there is amplification in typically >10% of no template controls,
and where the amplification level in no template controls is too similar to that of single
cells to be sure that the expression in the cells is real. In published studies, cells have been
excluded from the analysis based on a number of criteria, including lack of expression of key
or housekeeping genes, expression of no or low numbers of cells, or where the expression of
particular genes differs significantly from the population (Buganim et al. (2012); MacArthur
et al. (2012); Moignard et al. (2013a); Pina et al. (2012)), although these can also occur
due to the choice of genes and transcriptional bursting rather than due to a poor quality or

missing cell.

Single cell expression data are typically log-normally distributed so it is useful to view
data on a Log2 scale. The final step of processing therefore converts the data either to
ACt values normalized against one or more housekeeping genes which exhibit stable ex-
pression across the populations (Buganim et al. (2012); Guo et al. (2010); MacArthur et al.
(2012); Moignard et al. (2013a, 2015); Pina et al. (2012); Swiers et al. (2013a)), or as the
Log?2 expression above the LOD (PCR cycles above background; Log2Ex Guo et al. (2013);
Stahlberg et al. (2011)). Log2Ex values can be further normalized to remove variability due
to factors such as cell size (Livak et al. (2013)).
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1.3.2 Single cell RNAseq

Single cell RNAseq (scRNAseq) has recently come to the fore for transcriptomics due to
increases in multiplexing and concurrent decreases in price. Compared with qPCR, it offers
the potential to study the entire transcriptome rather than a specific set of pre-selected genes,
so has a much wider potential for discovery. However, there are many current challenges
both for processing samples and analyzing data (Macaulay and Voet (2014); Stegle et al.
(2015)).

There are many different sScCRNAseq protocols which can capture different aspects of the
transcriptome depending on the priming and reverse transcription (RT) methods used. Typ-
ically, either the 5° or 3’ end of the transcript is captured (Hashimshony et al. (2012); Islam
et al. (2011)), although some methods can capture entire transcripts (Picelli et al. (2013);
Tang et al. (2009)). Samples are multiplexed using indexed primers during library prepa-
ration, with 96 to 384 individual cells sequenced per lane of a flow cell. After sequencing,
samples are deconvoluted based on index sequences, and normalised read counts are gener-
ated for further analysis. Alternatively, short and unique DNA sequences (unique molecular
identifiers, UMI) can be incorporated into every transcript during the RT step to act as bar-
codes to enable molecule counting. Regardless of how many times a transcript-UMI pair
is sequenced, it can only have come from a single mRNA within the cell and so is only
counted once, with the total number of UMIs per transcript summed to give an absolute
expression count for each gene (Kivioja et al. (2011)). However, this currently only allows
for the sequencing of the 3’ end of the transcript, providing information about expression
levels but not splicing.

Quality check of samples is an important step before downstream analysis. An important
quality control method for scRNAseq is the inclusion of extrinsic standards to facilitate
normalization and comparison between single cells. Typically, RNA standards of known
concentration and sequence, such as the External RNA Control Consortium (ERCC) set of
92 artificial RNA molecules (Jiang et al. (2011), are spiked into the reverse transcription
step. These molecules should be amplified uniformly across samples, so can be used to es-
timate RT efficiency, technical variation in library preparation and to indicate which genes
show real biological variation as well as technical noise. Spikes can additionally be used
to identify cells with degraded RNA, for example where the percentage of mapped reads is
particularly low compared with reads mapped to spike molecules. Other important metrics
which are used for quality control and to discard poor-quality cells include the fraction of
reads mapped to mitochondrial genes (a large fraction is believed to be indicative of the cell
undergoing apoptosis — Islam et al. (2014); Stegle et al. (2015)). Principal component anal-
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ysis (discussed later), can also be used to identify outlier cells, based upon the assumption
that good-quality cells will cluster together while poor-quality cells will be isolated (Stegle
et al. (2015).

Samples undergo initial quality control prior to alignment, with tools originally developed
for bulk RNA-seq such as fastqc which monitor sequencing quality, GC nucleotide content,
sequence length and so on. Reads are assigned to individual cells based on their indexes,
the sequencing adapters are trimmed off and the resultant sequences are mapped to a refer-
ence transcriptome using existing alignment tools such as TopHat (Trapnell et al. (2009)),
Star (Dobin et al. (2013)) or GSNAP (Wu and Nacu (2010)). Tools such as HTseq (Anders
et al. (2014)) are then used to generate read counts per gene. Further quality control, as dis-
cussed above, can then be carried out. Normalisation is required to account for differences
in sequencing depth between samples, which is calculated from the total mappable reads
and the ratio of mapped reads to those coming from spike molecules. However, adequate
normalization of scRNAseq data is an ongoing challenge (Stegle et al. (2015)) as much is
still unknown about technical variation in library preparation and sequencing bias towards
particular transcripts.

1.3.3 Visualisation

High-dimensional data sets can be hard to visualise. A two or three dimensional data set can
be directly plotted to try to reveal structure in the data (Figure 1.8). This is not possible with
high dimensional data such as a single-cell gene expression data set, which has a dimension
corresponding to each measured gene. In the field of machine learning, a number of cluster-
ing and dimensionality reduction techniques have been developed to help aid visualisation
of high-dimensional data (Bishop (2006); Hastie et al. (2009)). Clustering algorithms at-
tempt to group data points into subsets called clusters, where data points within a cluster are
more similar to each other than to points from different clusters. Dimensionality reduction
algorithms attempt to transform the high-dimensional data set into a lower-dimensional (2

or 3) representation that can then be directly plotted and visualised.

1.3.3.1 Hierarchical clustering

Agglomerative hierarchical clustering has been used to identify sub-populations in single-
cell data (Guo et al. (2013); Moignard et al. (2013a)). Rather than seeking to identify a

predetermined number of clusters, the algorithm recursively builds a hierarchical represen-
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Figure 1.8 High-dimensional data can be hard to visualise. (a) Plotting the expression of
three genes against each other to try to uncover their relationship. (b) Hierarchical cluster-
ing of a high-dimensional single-cell qPCR data set with 40 genes and 3934 cells. Rows
represent genes and columns represent cells. Left-hand side colour bar shows measured
ACt level of expression of genes. Top colour bar shows cell types—blood cell progenitors
(red) fall into one large cluster while other cell types separate into two more large clusters
and do not separate by cell type.
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tation of the data where each level organises the data into a different number of clusters.

This makes the algorithm useful for exploratory analysis.

At the beginning of the algorithm each data point is placed into its own cluster. Then, at
each subsequent step the two most similar clusters from the previous iteration are merged
into one. The algorithm terminates when all of the data lies in a single cluster (Hastie et al.
(2009)). The results of hierarchical clustering can be plotted as a heat map (a coloured
representation of the data matrix, reorganised according to the clustering) with a dendro-
gram, which is a binary tree showing the hierarchical neighbour relationships between
clusters. As we go to higher levels in the dendrogram, the dissimilarity between merged
clusters increases. By examining the reorganised expression matrix, and the cell types and
gene expression patterns of closely placed points, natural clusters can often be discerned by
eyea (Figure 1.8)

Before hierarchical clustering can be performed, two measures of similarity need to be
specified: a notion of distance between pairs of data points, and a notion of distance between
clusters (the linkage criterion), defined in terms of the distance between data points. For the
distance between data points, the Euclidean, Manhattan or Spearman correlation distance
can be used. For the linkage criterion between clusters A and B, one distance is the nearest
neighbour distance (known as single linkage), which is the distance between the point in
A and the point in B which are most similar. A second distance is the farthest neighbour
(known as complete linkage), which is the distance between the point in A and the point in
B which are least similar.

Care must be taken when interpreting the results of hierarchical clustering, keeping in mind
that different choices of dissimilarity measure and linkage criterion will result in different
hierarchies, and that the algorithm will always impose a hierarchy on the data whether or

not one truly exists.

Many other clusterings algorithms exist, but hierarchical clustering and related methods
stand out in their utility for exploratory visualisation. Spectral clustering is closely related
to diffusion maps (Nadler and Galun (2007)) (discussed later). DBSCAN is a very com-
monly used algorithm which groups together points with many nearby neighbours (Ester
et al. (1996)). K-means clustering clustering places each point into the cluster with the clos-
est mean, but requires the desired number of clusters to be specified a-priori (and is therefore
best used for classification after using another method for exploratory visualisation) (Mac-
Queen (1967)).

The SPADE algorithm was introduced specifically for the analysis of single-cell data, and is
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based upon firstly applying hierarchical clustering, and then linking clusters together using
a minimum spanning tree to infer developmental progression, while taking into account the
existence of rare cell populations via density-dependent downsampling (Qiu et al. (2011)).
The BackSPIN algorithm is conceptually similar to hierarchical clustering, but seeks to
avoid noise from cell dissimilarity caused by uninformative genes. It works by sorting
the gene expression matrix through cell-cell and gene-gene similarity (Zeisel et al. (2015)).
Griin et al. recently introduced an algorithm, RacelD, designed specifically for identification
of rare cell types in single cell data (Griin et al. (2015)).

1.3.3.2 Principal component analysis

The most ubiquitous tool used for dimensionality reduction is principal component analysis
(PCA). PCA is used to find a projection of the data onto a smaller linear subspace, such that
the variance of the projected data is maximised (the data points are spread out as much as
possible) (Bishop (2006); Hastie et al. (2009)).

PCA finds a sequence of uncorrelated best linear approximations of the data, which are
ordered in decreasing order of variance and are known as principal components. The first
two or three of these components can be retained and plotted as a scatter plot to perform
dimensionality reduction (Guo et al. (2013); Kumar et al. (2014); Moignard et al. (2013a)).
Equivalently, PCA can viewed as an instance of the Multidimensional Scaling (MDS) algo-
rithm with Euclidean distances. MDS attempts to preserve all pairwise distances between
data points in the high-dimensional space, as best as possible (Borg and Groenen (2005)).
In general, the method will fail to preserve all pairwise distances perfectly. For example, in
a ten dimensional data set, up to 11 data points may be mutually equidistant, while there is

no way to accurately represent this in a three dimensional plot.

The advantages of principal component analysis are its simplicity, its computational effi-
ciency and its direct interpretation in terms of linear combinations of genes. A disadvantage
is that it fails to capture non-linear structure in the data. Single-cell gene expression data
in particular can be expected to be highly non-linear (Figure 3d). Manifold learning and
graph-based visualisations, discussed next, attempt to address this weakness. Non-linear
generalisations of PCA also exist, most notably kernel PCA, which also falls into the class

of manifold learning algorithms (Scholkopf et al. (1998)).
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Figure 1.9 Manifold learning. (a) A two-dimensional curving manifold embedded in three
dimensions. (b) Diffusion map applied to ‘unfold’ the manifold to a rectangle, giving one
possible way of representing the three-dimensional data in two dimensions. (c) t-SNE sep-
arates bone marrow cells measured by cytometry into different immune cell types. Points
are coloured by CD20 expression, a B-cell cell-surface lineage marker. (d) PCA, a linear
projection method, fails to separate between the different immune subtypes on the first two
principal components.
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1.3.3.3 Non-linear manifold learning

In general, there is no way to represent a high-dimensional data set in a lower dimensional
space without discarding information. Different dimensionality reduction tools therefore
aim to embed the data in a way that preserves some particular property of interest. I will
focus the remainder of this section on two non-linear dimensionality reduction methods
that have recently been used to visualise single cell gene expression data: t-Distributed
Stochastic Neighbor Embedding (t-SNE) and diffusion maps.

t-SNE aims to preserve the pairwise distance between points, but (unlike MDS/PCA) only
between those points which are very close neighbours in the high dimensional space, focus-
ing only on preserving local structure rather than attempting to preserve pairwise distances
between all points (Maaten and Hinton (2008)). This allows the global structure of the
embedding to become non-linear, as distances at different regions of the embedding are al-
lowed to correspond differently to distances in the high dimensional space. Diffusion maps
attempt to reconstruct the global non-linear connectivity of the data from a local random
walk on the data, and place points close together in the low-dimensional map if they are

connected by many short paths in the high-dimensional space.

Diffusion maps and t-SNE belong to a class of techniques known as manifold learning al-
gorithms. Manifold learning is based on the hypothesis that the dimensionality of the data
under consideration is only artificially high, and that rather than being uniformly distributed
throughout the high dimensional space it actually lies on a lower dimensional non-linear
manifold that curves through the high dimensional space (Figure 1.9). This manifold hy-
pothesis seems particularly appropriate for single-cell gene expression data as the expression
states that a cell can take are highly constrained by an underlying gene regulatory network.
A cellular state therefore has relatively few degrees of freedom in terms of the states it
can immediately progress to, an idea that was formalised in Waddington’s epigenetic land-
scape (Goldberg et al. (2007)). This landscape can also be expected to be non-linear because
of complex gene interactions, waves of gene expression and positive and negative feedback
loops in the gene regulatory network. PCA can be considered as a linear manifold learning

algorithm, that assumes data lies on a linear hyperplane.

The aim of a non-linear manifold learning algorithm is to reconstruct the geometry of the
low-dimensional manifold the data lies on from the only information we have: the simi-
larities between data points. Key to these algorithms is the idea that it is local distances,

similarities between nearby points that are important for reconstructing this geometry.
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1.3.3.4 t-SNE

t-SNE defines a Gaussian probability distribution over pairs of data points in the high-
dimensional space, that captures the pairwise similarity of points. The probability of a
pair being chosen is high if the points are very similar in terms of their high-dimensional
gene expression profiles, and very close to zero if they are dissimilar. A second distribu-
tion over pairs of points in the low dimensional embedding is then defined, this time as a
Student’s t-distribution. Points are placed on the two- or three- dimensional plot, and the
discrepancy between these two probability distributions (the Kullback-Leibler divergence)
is iteratively minimised via a gradient descent optimisation method, shifting points around

until this discrepancy reaches a minimum (Maaten and Hinton (2008)).

A disadvantage of t-SNE is that it can be slow to compute. For this reason, a Barnes—Hut ap-
proximation algorithm has been developed which can scale better to larger data sets (van der
Maaten (2014)). t-SNE has been used very successfully to dissect heterogeneity in leukemia
samples using single-cell mass cytometry data (Amir et al. (2013)), and to identify an
improved cell-sorting strategy for hematopoietic stem cells by separating true stem cells
from non-stem cells in combined single-cell qPCR and single-cell indexed flow cytometry
data (Wilson et al. (2015)).

1.3.3.5 Diffusion maps

Unlike t-SNE, which tends to pull data apart into separate clusters, diffusion maps tend to
organise the data into a single continuous manifold and are therefore particularly appropri-
ate when the data is sampled from a developmental or differentiation process that we wish
to reconstruct (Figure 3). The algorithm was first introduced in the context of biology by
Haghverdi, Buettner, and Theis, adapting it to deal with uncertainties or missing measure-
ment values in qPCR data, and adding density normalisation to cope with heterogeneities in
data sampling (Haghverdi et al. (2015); Moignard et al. (2015)).

Diffusion maps are based upon the idea of reconstructing the global geometry of the data
set by constructing and iterating a random walk on the data points, and attempt to accu-
rately approximate the so-called “diffusion distance” between data points when mapping to
a lower-dimensional space (Coifman et al. (2005); Nadler et al. (2007)). This diffusion dis-
tance is small if there are many high-probability short paths connecting the two points, and
large if the points are connected only by long paths or low-probability transitions. When
reducing to a lower-dimensional space, the diffusion algorithm attempts to place points with
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a low diffusion distance nearby in the map.

The diffusion map algorithm works by constructing a transition matrix on the data, where
the probability of jumping from one data point to another in one step is high if the two data
points are similar in the high-dimensional space. If the points are dissimilar, this probability
is very close to zero. It then approximates the diffusion distance in lower dimensional space
without explicitly iterating the random walk, which would be computationally expensive.
The diffusion map algorithm is computationally efficient, and, because it integrates over
all paths, robust to noise, unlike some manifold learning algorithms. For a review of other

manifold learning approaches, see Lin et al. (2015).

1.3.4 Network reconstruction

Visualisation of gene expression data is an important first step towards understanding a de-
velopmental or homeostatic process. However, to gain a full understanding of the underlying

biology we need to establish mechanistic models of gene regulatory networks.

1.3.4.1 Statistical relationships between genes

When trying to infer regulatory interactions between genes one of the most obvious things
to look for is correlation in gene expression levels. If there is a strong correlation between
two genes, this may indicate that one directly regulates the other. Performing this analysis
on all possible pairs and selecting strong and statistically significant relationships results
in a relevance network, which is an undirected graph where edges between genes indicate
a potential interaction (Figure 1.10). There are two types of edge: positive edges where
strong positive correlation indicates a potential activation and negative edges where strong
negative correlation indicates a potential repression (Butte and Kohane (2003)).

The standard Pearson correlation coefficient is a measure of the linear dependence between
two variables. As genes may not exhibit a linear relationship the Spearman rank correlation
is generally preferred. Spearman correlation measures how well the relationship between
the two variables can be fit by a monotonic function. A measure from information theory

called mutual information is more general still and can capture more complex relationships.

These statistical relationships can scale to huge data sets, and have been successfully applied
to find previously unknown regulatory links in single cell data (Moignard et al. (2013a)).
However, relevance networks are undirected and can be very dense, with almost all gene
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Figure 1.10 Relevance network obtained from partial correlation analysis. Green: activa-

tion; red: repression.

pairs showing significant correlation. Partial correlation attempts to address this second

issue, by calculating correlation after first controlling for the effect of all other genes, and

therefore retaining the links that are most likely to be direct interactions (Figure 1.10).

To understand another problem, consider two subpopulations, one of which expresses gene

A but not gene B, the other expresses gene B but not A. Correlation would suggest a very

strong negative link between the two genes, although there is no strong reason to believe

they directly regulate each other. One way to address this is to compute the correlation only

on cells which coexpress the genes of interest (Pina et al. (2015)).
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Figure 1.11 Bayesian network for T-cell signalling.

Other methods for detecting statistical signals in gene expression data exist. One notable
method is GENIE3, which constructs random forests of decision trees (Huynh-Thu et al.
(2010)). GENIE3 was best performer in the DREAMS Network Inference challenge for
population data (Marbach et al. (2012)), and has been applied to single-cell data (Ocone
et al. (2015a)). A reweighted mutual information measure known as DREMI, specifically

designed for single-cell data has recently been introduced (Krishnaswamy et al. (2014)).

1.3.4.2 Learning Bayesian networks

A Bayesian network over a set of variables X (which is our case represent genes) is defined
by a directed acyclic graph G that represents conditional independence relations between
variables, coupled with a set P of local probability distributions associated with each vari-
able. Together, the graph and local probability distributions define the global joint proba-
bility distribution for X (Heckerman (1996)). Any two variables in a Bayesian network are

conditionally independent, given the value of their parents.

Although Bayesian networks are often used to represent causal relationships, care must be
taken when interpreting them this way. A directed edge from x to y does not necessarily im-
ply that x is causally dependent on y, only that they are not conditionally independent. Often
an equivalent graph structure is equally compatible with the data: a - b —canda <+ b <+
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represent the same conditional independence relationships (but a — b < ¢ does not). To
establish causal relationships, Bayesian networks often must be coupled with interventional
data.

Given a Bayesian network, inference can be performed in the model to predict the effect of
perturbations on the probability distributions of downstream genes. It is the directed acyclic
graph and conditional independence structure of Bayesian networks which allows efficient

inference to be performed, and permits efficient learning of models from data.

When we learn the structure and parameters of a Bayesian network, we attempt to find
a model that induces a probability distribution that fits the data as closely as possible.
There are two general approaches to learning the structure of a Bayesian network. The
first, constraint-based learning, is based upon using statistical tests to directly recover con-
ditional independence relationships in the data. A graph which satisfies these relationships
is then constructed.

In the second approach, score-based learning, each candidate network is assigned a score
which measures how well it fits the data (Teyssier and Koller (2012)). We then try to max-
imise this score. There are a super exponential number of such candidate networks, and
no clear way to efficiently find an optimal structure. Instead, most algorithms apply a local
search. We start from a random network or a network which encodes our prior knowledge,
and use a local search algorithm such as greedy Hill climbing, tabu search or simulated an-
nealing, stopping when we are unable to find a better candidate network. At each step in the
search we add, delete, or reverse the direction of an edge, being careful not to introduce any
directed cycles, and assess whether the change improves the score of the candidate network.
Another approach is to use Markov Chain Monte Carlo methods to sample a large number
of high-scoring networks, and then take a network structure which is an average of these
models. The scoring function is usually chosen to penalise complicated network structures
and favour simple ones, balancing the conflicting goals of a close match to the data and a

simple model, and helping to avoid over-fitting.

Bayesian networks were first applied in the context of genomics by Friedman et al. (2000)
to infer networks from population microarray data. They have since been applied by Sachs
et al. (2005) to reconstruct signalling networks from single cell flow cytometry data taken
from primary human T cells. Sachs et al. measured 11 phosphorylated proteins and phos-
pholipids in 5400 individual cells spanning nine different conditions. Seven of these condi-
tions directly perturbed variables of the network by activating or inhibiting phosphorylation.
The differences between these perturbed populations were then used to infer causality. Data

were first discretised to 3 levels (low, medium and high expression), and then learning algo-
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rithms were applied to construct a Bayesian network which was subsequently successfully

validated against existing literature.

One of the key insights of this paper is the need for perturbation data to reconstruct an
accurate Bayesian network from single cell data. If we have two correlated variables, X and
Y, and we find that direct inhibition of X affects the value of Y and that direct inhibition
of Y does not affect X, we can conclude that Y is downstream of X. A learning algorithm
can then often determine the direction of additional edges downstream of the perturbed
variables, even when these edges were not directly perturbed.

Bayesian networks have been successfully applied to dissect connections between compo-
nents of signalling pathways. However, they do suffer from two drawbacks that limit their
application to reconstruction of wider gene regulatory networks. Firstly, as concluded by
the Sachs study, to infer accurate networks the single cell data needs to be coupled with
intervention data. Generating such intervention data is very time consuming and often im-
practical, and cannot be done without disturbing the wild-type system that we are supposed
to be studying. Secondly, Bayesian networks are acyclic, and have no feedback. Feedback
is a crucial component of gene regulatory networks.

1.4 Solving combinatorial problems

Some computational problems, such as the ones dealt with in this thesis, are combinatorial in
nature, in that they involve objects with a large number of possible configurations that grows
exponentially as the problem size is increased. There is often no obvious way to proceed
directly to a solution without exploring a large space of candidate configurations (Knuth
(2016)).

Sometimes an algorithm for these problems can be found, with a worst-case running time
that scales polynomially with the size of the problem (Agrawal et al. (2004); Edmonds
(1965); Karmarkar (1984); Kasteleyn (1963); Valiant (2006, 2008)). In other cases, we can
prove a problem is NP-complete, implying that such an algorithm is unlikely to exist since
it would imply a polynomial time algorithm for all of the thousands of other known NP-
complete problems (Arora and Barak (2009)). This would resolve the famous P vs. NP
problem and earn the discoverer of the algorithm a million dollars from the Clay Mathemat-
ics Institute. Detection of a stable state attractor of a Boolean network, one of the problems
discussed below, is NP-complete (Akutsu et al. (1999); Tamura and Akutsu (2008)).
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Figure 1.12 A BDD for the majority function (x; Axp) V (x2 A x3) V (x3 Axp) (Knuth
(2016)).

Computer scientists have developed techniques for the efficent exploration and symbolic
manipulation of combinatorial spaces. The synthesis algorithm introduced in chapter 2 of
this thesis uses a Boolean Satisfiability solver as a sub procedure. Algorithms for finding
attractors of Boolean networks employ Binary Decision Diagrams or Boolean Satisfiability

solvers.

1.4.1 Binary Decision Diagrams

A Reduced Ordered Binary Decision Diagram (ROBDD, or simply BDD) is a rooted, di-
rected acyclic graph with one or two terminal nodes of out-degree zero labelled O or 1, and
with all other nodes having out-degree two and labelled with a variable u (Bryant (1986);
Knuth (2016)). A BDD is ordered — variables always occur in the same order along any
path from root to terminal, and reduced — the left and right branches of a node cannot lead

to the same node, and there are no two distinct nodes n and n’ with isomorphic subgraphs.

A BDD is essentially a compressed representation of the truth table of a Boolean function,
with each path to a root node representing an evaluation of the function. A left branch at
a variable represents an assignment of O to that variable, and a right branch represents an
assignment of 1. The value of the function is given by the terminal node that the path ends at.
Given a fixed ordering for the variables of a function, there is a unique BDD representation
for that function. An example BDD for the majority function (x; Axz) V (x2 Ax3) V (x3 Axp)

is shown in Figure 1.12.

BDDs allow for the efficient representation and manipulation of sets of objects and relations
on objects. Although in the worst case a BDD requires exponential space to represent all
the solutions to a function, in many practical cases they allow the symbolic exploration of

state spaces that would be impossible to represent explicitly.
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1.4.2 Boolean Satisfiability

Often, the most efficent method for solving a combinatorial problem is to translate it to a
symbolic representation in Boolean propositional logic, and then treat it as an instance of
the Boolean Satisfiability problem (SAT), exploiting highly optimised SAT solvers (Barrett
et al. (2009); Knuth (2016); Konev and Lisitsa (2014)). SAT is the canonical NP-complete
problem (Cook (1971)), and solvers run in exponential time in the number of variables
in the worst case. However, modern SAT solvers run surprisingly quickly on many real-
world instances, and are now routinely used in industrial applications such as verification of
hardware and software (Biere et al. (1999); Kaivola et al. (2009)).

SAT

Input: A Boolean formula in conjunctive normal form C; A Cy - -+ A Gy,
where each clause C; is a disjunction of literals (a literal is a variable, x;,

or its negation, —x;), [1 V-V l,.

Question: Is there an assignment of the n variables that satisfies all clauses

(causes each to evaluate to true)?

A straightforward way to solve this problem is using a classical backtracking algorithm. At
each step in the algorithm we select a previously unchosen variable x; and set its value to 0
or 1. We stop when we have successfully assigned a value to each variable without caus-
ing a conflict that leads to a clause becoming unsatisfiable. If we introduce a conflict, we
backtrack to a previous stage and reverse a variable assignment. If all variable assignment
choices lead to conflicts, the formula is unsatisfiable. This simple backtracking algorithm
fails to take advantage of unit clauses, which consist of only one literal which therefore is
forced to be 1 in order to make the clause satisfiable. Branching on unit clauses is unneces-

sary.

The DPLL (Davis—Putnam—Logemann—Loveland, Davis et al. (1962)) algorithm extends
this backtracking procedure with unit propogation, which detects when assignments lead to
a clause becoming a unit clause — only one literal remains unassigned, and for the clause
to be satisfied this literal must be assigned to 1. This literal can therefore be assigned to
the value 1, which in turn may cause other clauses to become unit clauses. Iterating this
procedure can dramatically increase the speed of SAT solving on real-world instances. Unit
propogation can both satisfy clauses and lead to conflicts.

Modern SAT solvers used for industrial applications are based upon the CDCL (Conflict-

Driven Clause Learning) algorithm, which adds clause learning and non-chronological back-
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function CDCL(F)
assignment <— UNITPROPOGATION(F, &)
if assignment = CONFLICT then
return UNSAT
end if
while NOT(ALLVARIABLESASSIGNED(F, assignment)) do
assignment <— PICKBRANCHING VARIABLE(F, assignment)
assignment <— UNITPROPOGATION(F, assignment)
if assignment = CONFLICT then
(learntClause, assignment) <— CONFLICTANALYSIS(F, assignment)
F < F U{learntClause }
if assignment = CONFLICT then
return UNSAT
end if
end if
end while
return (SAT, assignment)
end function

Figure 1.13 Conflict-Driven Clause Learning algorithm for SAT.

tracking (Eén and Sorensson (2004); Marques-Silva et al. (2009); Marques Silva et al.
(1996); Moskewicz et al. (2001); Zhang (1997)). This algorithm is shown in Figure 1.13.
For each conflict that is generated during the search, CDCL constructs a new clause which
identifies the root cause of the conflict. This new clause, which is implied by the existing
clauses, is added to the formula and guides the search away from encountering the same
conflict again. Conflict clauses are also analysed and used to backtrack multiple levels,
to the earliest assignment choice that led to the conflict. Together, these two features can
prune a large portion of the search space, allowing the algorithm to find a solution or prove

unsatisfiability faster.

Further increasing the efficiency of CDCL-based SAT solvers is an active area of research.
The SAT competition is held annually, evaluating solvers on a range of benchmarks. Topics
of research include the development of heuristics for when learnt clauses should be dis-
carded in order to save memory and to speed up propagation (Audemard and Simon (2009,
2012); Biere (2014)), and the design of data structures to efficiently implement the unit
propogation and backtracking procedures (Eén and Sorensson (2004)).

There are many important restrictions and generalisations of Boolean satisfiability. Proposi-

tional Horn clauses are Boolean formulas of the restricted form —x; V —x; V... V —x; V xjy 1.
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The problem of deciding whether a set of propositional Horn clauses is satisfiable, known
as HORNSAT, is P-complete, meaning that it is solvable in polynomial time and that every
other problem with a polynomial time algorithm can be efficiently reduced to it. HORNSAT
can be solved in linear time in the total number of occurrences of literals by unit propoga-
tion (Allender et al. (2005); Dowling and Gallier (1984); Scutella (1990)). Satisfiability
modulo theories (SMT) solvers extend Boolean propositional logic with additional theories,
such as integers, linear arithmetic over real numbers, or arrays (Moura et al. (2007); Sebas-
tiani (2007)). These solvers usually work by integrating a SAT solver with theory-specific
solvers. Satisfiability in more expressive logics has found application in the verification of
software. Separation logic is used for expressing and verifying safety properties of programs
which can directly manipulate memory (Antonopoulos et al. (2014); Berdine et al. (2004);
Brotherston and Kanovich (2014); Brotherston et al. (2014); Reynolds (2002)). First-order
Horn clauses with linear integer arithmetic and uninterpreted functions have been used in
the verification of procedural and multi-threaded programs (Beyene et al. (2013); Bjg rner
et al. (2013); Riimmer et al. (2014)).

1.4.3 Formal verification and synthesis of computer programs

In computer science, synthesis is a general term for the counterpart of verification. In ver-
ification, a hand-built model or computer program is given, along with a specification of
how it ought to behave. Then the model is checked to ensure it satisfies the specification.
This can often be done automatically through model checking algorithms which make use
of BDDs or SAT solvers that check all possible executions of the program satisfy the spec-
ification. In synthesis, a specification is given and a model is automatically generated that
satisfies this specification (Pnueli and Rosner (1989); Vardi (2008)).

In recent years much progress has been made on the usage of SAT and SMT solvers for
synthesis. Essentially, the existence of a program that solves a certain problem is posed as
a satisfiability query. Then, a solver tries to search for a solution to the query, which cor-
responds to a program. For example, Srivastava et. al. show that the capabilities of SMT
solvers to solve quantified queries enable the search for conditions and code fragments that
match a given specification (Srivastava et al. (2010, 2013)). Similarly, Solar-Lezama et.
al. build a framework for writing programs with “holes” and letting a search algorithm
find proper implementations for them (Solar-Lezama et al. (2005)). Beyene et. al. have
shown how constraint solving can also be used in the context of infinite-state reactive pro-
grams (Beyene and Rybalchenko (2014)).
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1.5 Aims of this PhD

New single-cell resolution gene expression measurement technology provides snapshots of
the gene expression states of that cells that make up a biological tissue, a level of detail
which has not been available before. The aim of this PhD was to investigate the possibility
of using this new high resolution data to reconstruct mechanistic computational models of
gene regulatory networks, which could then be tested experimentally, and used to make

useful predictions. This aim led to several objectives:

1. To develop and implement an algorithm for the reconstruction of executable models
of gene regulatory networks from single-cell gene expression data.

2. To apply this algorithm to a new data set covering 3934 single cells measured during
early embryonic blood development, in order to reconstruct a predictive model of

primitive haematopoiesis and generate new biological insights.

3. To develop a user-friendly and efficient graphical tool which can be used by biologists
to reconstruct gene regulatory network models from new single-cell gene expression

data sets as they become available.



Chapter 2

Boolean Networks

2.1 Definition

An asynchronous Boolean network (ABN) is B(V,U ), where V = {v,vs,...,v,} is a set of
variables, and U = {uy,uz,...,u,} is a set of Boolean update functions. For every u; € U
we have u; : {0,1}" — {0, 1} associated with variable v;. A state of the system is a map
s:V — {0,1}. We say that an update function u; is enabled at state s if u;(s) # s(v;), i.e.

applying the update function u; to state s changes the value of variable v;.

State s’ = (d},d),....d)) is a successor of state s = (d,da,...,d,...,dy,) if for some i we
have that u; is enabled, d; = u;(s), and for all j # i we have d}; = d;. That is, we get to the
next state s, by non-deterministically selecting an enabled update function u; and updating
the value of the associated variable: s’ = (dy,ds, ...,u;(d;),...,d,). If no update function is

enabled, s’ = s.

An ABN induces a labelled transition system 7' = (N, R), where N is the set of 2" states of
the ABN, and R C N x V x N is the successor relation. Each transition (sy,v;,s2) is labelled
with the variable v; such that s1(v;) # s2(v;).

The undirected state space of an ABN is an undirected graph S = (N, E), where each vertex
n € N is uniquely labelled with a state s of the Boolean network, and there is an edge
{s1,s2} € E iff 51 and s, differ in the value of exactly one variable, v. The edge {s1,s2} is
labelled with v. In general, an undirected state space does not have to include all 2" states

induced by a Boolean network.

An ABN B(V,U) induces a directed state space on an undirected state space S = (N,E).
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Figure 2.1 Attractors in an asynchronous Boolean network: a stable state, and two differ-
ent types of loop.

Consider the transition system 7 = (2¥,R) of B(U,V). Then, the induced directed state
space is 8’ = (N,A), where (s1,s7) € A implies that there is a variable v; such that (s1,v;,s2) €
R. We say that (s1,s2) is compatible with u;, if s5(v;) = us(s1), and for every j # i we have

52(vj) = s1(v;).

2.2 Attractors

Since a Boolean network has a finite number of states, any execution eventually converges
to either a single stable state or a cycle of states, called an attractor (Figure 2.1). Formally,
an attractor is a set of states S such that for all s € S, we have that F(s,T) = S, where F(s,T)
is the set of states reachable from s in the transition system of the ABN, 7.

BDD and SAT-based algorithms have been introduced for identifying the attractors of Boolean
networks. Finding a stable state s of a Boolean network is easily encoded as a SAT problem:
(u1(s) <> s(v1)) A+ A(un(s) <> s(vy)). To find more complex attractors we need to identify
cycles in the transition relation of the Boolean network.

For identifying attractors in asynchronous Boolean networks, Garg et al. introduced a BDD-
based algorithm, shown in Figure 2.2 (Garg et al. (2008)). This algorithm works by manip-
ulating a BDD representing the transition relation of the ABN and BDDs representing sets
of states. Starting from an arbitrary initial state, the algorithm explores all states which are
reachable from this state, and all states which can reach this state, by iteratively applying
the transition relation forwards and backwards. An attractor has been found if the forward
reachable states are contained in the backward reachable states. The explored states are re-
moved from the state space and the process is repeated from another arbitrary state, until the
entire state space has been explored. This algorithm was subsequently improved by Zheng
et al. (Zheng et al. (2013)).
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function ALLATTRACTORS(transitionBDD)
terminalStates <— &
while transitionBDD # false do
S < RANDOMINITIALSTATE(transitionBDD)
fr < FORWARDREACHABLESTATES(transitionBDD, s)
br <~ BACKWARDREACHABLESTATES(transitionBDD, s)
if fr A— br = false then
terminalStates <— {fr}U terminalStates
end if
transitionBDD < transitionBDD A= (s V br)
end while
return terminalStates
end function

Figure 2.2 Attractor finding algorithm from Garg et al. (2008).




Chapter 3

Proposed algorithm

3.1 Introduction

Part of this chapter was published as Fisher et al. (2015).

Here I address the problem of automatically constructing such Boolean network models
directly from data. If we think of single-cell gene expression profiles as the state space of an
asynchronous Boolean network, can we identify the underlying gene regulatory logic that

could have generated this data?

I encode the matching of an asynchronous Boolean network to a state space as a synthesis
problem and use constraint (satisfiability) solving techniques for answering the synthesis
problem. The synthesised network has to match the data in two aspects. First, the resulting
network should try to minimise transitions to expression points that are not part of the sam-
pled data. Second, the resulting network should allow for a progression through the state
space in a way that matches the flow of time through the different experiments that produced
the data. A direct encoding of this problem into a satisfiability problem does not scale well.
I suggest a modular search that handles parts of the state space and the network and does

not need to reason about the entire network at once.

In this thesis I consider two test cases. First, I try to reconstruct an existing asynchronous
Boolean network from its state space. I am able to reconstruct Boolean rules from the
original network. Second, in chapter 4 I apply this technique to experimental data derived
from a single-cell resolution study of embryonic blood cell development. The network
that is produced by my technique matches known dependencies and suggests interesting

novel predictions. Some of these predictions were validated experimentally by collabora-
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Figure 3.1 Single-cell gene expression measurements for two genes, in 3934 cells. Points
at zero indicate expression of the gene was below detection level in that cell. Points above
zero indicate the level of expression that was detected.

tors. Chapter 4 will discuss how the method was used to analyse this biological data set.
In this chapter, I will focus on the algorithmic aspects of the method. However, in the next
section I will briefly introduce the experimental data set which motivated the development
of this algorithm.

3.2 Viewing single-cell gene expression data as the state

space of a Boolean network

Single-cell gene expression experiments produce gene expression profiles for individually
measured cells. Each of these gene expression profiles is a vector where each element gives
the level of expression of one gene in that cell. Figure 3.1 plots the level of the genes Etv2
and Runxl over 3934 cells.

Experimental collaborators performed such gene expression profiling on five batches of
cells taken from four sequential developmental time points of a mouse embryo. For each
time point, the experiment aimed to capture every cell with the potential to develop into a
blood cell, providing a comprehensive single—cell resolution picture of the developmental
timecourse of blood development. This resulted in a data set of 3934 cell measurements.
Full details of this experiment and our analysis can be found in chapter 4. This data set is
the first of its kind, attempting to capture an entire tissue’s worth of progenitor cells across a
developmental time course. This level of coverage of the potential cell state space is required
for our approach to accurately recover gene regulatory networks, and typically requires the

measurement of thousands of cell profiles. Later I will introduce a synthetic data set of a



46 Proposed algorithm

Figure 3.2 State graph. Node colours correspond to the time point at which a state was
measured. States from the earliest of the time points are coloured blue, and blood progeni-
tor states from the last time point are coloured red.

few hundred cell states in order to illustrate how our approach works, but I would like to
stress that to be usable on real experimental data our algorithm needs to be able to scale
thousands of cell states.

For each of 3934 cells, the level of expression of 33 transcription factor genes was measured.
Expression levels are non-negative real numbers, where the value 0 indicates that the given

gene is unexpressed in the cell (see Figure 3.1).

The key idea introduced in this thesis is to view this gene-expression data as a sample from
the state-space of an asynchronous Boolean network. In the past, manually curated Boolean
networks have been successfully used to recapitulate experimental results (Bonzanni et al.
(2013); Kazemzadeh et al. (2012); Krumsiek et al. (2011)). Such Boolean networks were
hand—constructed from biological knowledge that has accumulated in the literature over
many years. Here, I aim to produce such Boolean networks automatically, directly from
gene expression data, by employing synthesis techniques. I aim to produce a Boolean net-
work that can explain the data and can be used to inform biological experiments for uncov-

ering the nature of gene regulatory networks in real biological systems.
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In order to convert the data into a format that can be viewed as a Boolean network state
space, I first discretise expression values to binary, assigning the value 1 to all non-zero
gene expression measurements. A value of zero corresponds to the discovery threshold of
the equipment used to produce the data. Discretising the 3934 expression profiles in this
way yields 3070 unique binary states, where every state is a vector of 33 Boolean values
corresponding to the activation/inactivation level of each of 33 genes in a given cell. In an
asynchronous Boolean network, transitions correspond to the change of value of a single
variable. Hence, I next look for pairs of states that differ by only one gene (that is, the
Hamming distance between the two vectors is 1). An analysis of the connected components
of this graph shows that one connected component contains 44% of the states. Note that
in a random sample of 3934 elements from a space of 233, the chance of seeing repeats or

neighbours with Hamming—distance 1 is negligible.

To efficiently construct this state transition graph G = (N, E) on variables V = {v,va,...,v, }
with n < 64 and states S where each state s € Sisamap s: V — {0,1} and each node n € N
is uniquely labelled with a state s € S, we can represent each state s € S in bitvector form as
a 64 bit integer, and then flip each bit in turn to generate each of the possible n neighbours
{s1,52,...,8,}. If 5; € S then we create an edge {s,s;}.

A plot of the graph of the largest connected component is given in Figure 3.2. We add an
edge for every Hamming—distance 1 pair and cluster together highly connected nodes. The
colours of nodes correspond to the developmental time the measurements was taken. Note
that there is a clear separation between the earliest developmental time point and the latest
one. This representation already suggests a clear change of states over the development of

the embryo, with separate clusters identifiable and obvious fate transitions between clusters.

We wish to find an asynchronous Boolean network that matches this graph. For that we
impose several restrictions on the Boolean network. Connections between states correspond
to a change in the value of one gene, however, we do not know the direction of the change.
Thus, we search simultaneously for directions and update functions of the different genes
that satisfy the following two conditions: states from the earliest developmental time point
should be able to evolve, through a series of single—gene transitions, to the states from
the latest developmental time point. Secondly, the update functions must minimise the
number of transitions that lead to additional, unobserved states, that were not measured in

the experiment.
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Gene Update function

Gata2 Gata2 A—(Pu.1V (Gatal N Fogl))
Gatal (Gatal vV Gata2 N Flil ) AN—Pu.1
Fogl Gatal

EKLF Gatal N—Flil

Flil Gatal N—~EKLF

Scl Gatal N—Pu.1

Cebpa Cebpa N—(SclV (Fogl A Gatal))
Pu.1 (CebpaV Pu.1) N—(Gatal V Gata2)
cJun Pu.l1 \N—Gfil

EgrNab | (Pu.l AcJun) A —Gfil

Gfil Cebpa N\ —EgrNab

Figure 3.3 Boolean update functions for a manually curated network.
3.3 Example: reconstructing an ABN from its state space

I first illustrate my synthesis method using an example. I take an existing Boolean network,
construct its associated state space, and then use this state space as input to my synthesis

method in order to try to reconstruct the Boolean network that we started with.

Krumsiek et. al. introduce a Boolean network model of the core regulatory network active
in common myeloid progenitor cells (Krumsiek et al. (2011)). Their network is based upon
a comprehensive literature survey. It includes a set of 11 Boolean variables (corresponding
to genes) and a Boolean update function for each variable (Figure 3.3).! The model is
given a well-defined initial starting state, representing the expression profile of the common
myeloid progenitor, and computational analysis reveals an acyclic, hierarchical state space
of 214 states with four stable state attractors (Figure 3.4).

These stable attractors are in agreement with experimental expression profiles of megakary-
ocytes, erythrocytes, granulocytes and monocytes; four of the mature myeloid cell types that

develop from common myeloid progenitors.

We treat the state space of this Boolean network as we would treat experimental data, forget-
ting all directionality information, and connecting all states which differ in the expression
of only one gene by an undirected edge (Figures 3.4 and 3.5, where each edge is labelled
with the single gene that changes in value between the states it connects). We would now
like to reconstruct the Boolean network given in Figure 3.3 from this undirected state space.

For each gene, we would like to assign a direction to each of its labelled edges (or decide
that it does not exist), in a way that is compatible with a Boolean update function. For
example, in Figure 3.5, we may orient the Pu./-labelled edge between states 97 and 95 in
the direction s97 — s9s, in the direction s95 — 597, or decide that this is not a possible update.

IThe function of Cebpa is modified from that in Krumsiek et al. (2011) to match the format I assume.
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Figure 3.4 Boolean network state space. Ini- Figure 3.5 Close-up of Boolean network
tial state is coloured green, stable states red. state space.

We also allow the edge to be directed in both directions. If s97 — s95, we want a Boolean
update function up, ; that takes state sg7 to state sgs. Since there is no Pu./-labelled edge
leaving state 5150, we can also add the constraint that up,, ; takes s159 to s150.

We also add reachability constraints that restrict which edges are included and their ori-
entation. Since the state space was constructed starting from a well-defined initial state,
we would like to enforce the constraint that each non-initial state ought to be reachable by
some directed path from the initial state. Since cell development proceeds hierarchically and
unidirectionally, I favour short paths over long paths. This eliminates routes that seem bio-
logically implausible, for example routes that cross a fate transition and then return to where
they began. It also reduces the space of paths we have to search through. By increasing the
lengths of allowed paths, we can increase the number of considered solutions.

The results of applying my technique are shown in Figure 3.6. The method reconstructs the
Boolean update functions for all but one gene (EgrNab), in some cases uniquely identifying
the original function. I note that when multiple solutions are found for an update function,
these solutions, while not exact, all provide useful regulatory information that could be veri-
fied experimentally. For example, both solutions for Scl successfully predict Scl’s activation

by Gatal, although one of the two solutions omits its repression by Pu. 1.
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Synthesised update functions
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Figure 3.6 Synthesised update functions.

3.4 Formal definition of the problem

Our synthesis problem can be stated as follows: we are given an undirected state space S

over a given set of variables V. We would like to extract a set of Boolean update functions

that induce a directed state space from S such that each of the states in S are reachable from

a given set of initial states. We also want to ensure that no additional, undesired states not

in § are reachable, by ruling out transitions which ‘exit’ the state space.

More formally, we are given a set of variables V = {v|,v,,...,v,}, an undirected state space
S = (N,E) over V,and a set I C N of initial vertices.

We would like to find an update function u; : {0, 1} — {0, 1} for each variable v; € V, such
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that the following conditions hold. Let U = {u; | v; € V } be the set of update functions.

1. Every non-initial vertex s € N — I is reachable from some initial vertex s; € I by a
directed path in the directed state space induced by B(V,U) on S.
2. For every variable v; € V, let N; be the set of states without an outgoing v;-labelled

arc. For every i we require that for each s € N;, u;(s) = s(v;).

3.4.1 Generalising the definition to partial data

Since I intend to apply this method in an experimental setting, where we only have an
incomplete sample from the possible states of the system, I relax this definition to extend
it to partial data. Instead of requiring that every state is reachable from those initial states
that we have measured, we only require that a set of final states are reachable. Instead of
requiring that every undesired transition is ruled out, we seek to maximise the number of

such transitions which are eliminated. This is formally stated next.

As before, we are given a set of variables V = {vy,vy,...,v,}, an undirected state space
S = (N,E) over V, and a designated set I C N of initial vertices. In addition, we are given
a designated set F' C N of final vertices, along with a threshold t; for each variable v; € V.
The threshold #; specifies how many undesired transitions must be ruled out.

We would like to find an update function u; : {0, 1} — {0, 1} for each variable v; € V, such
that the following conditions hold. Let U = {u; | v; € V} be the set of update functions.

1. Every final vertex sy € F' is reachable from some initial vertex s; € I by a directed
path in the directed state space induced by B(V,U) on S.

2. For every variable v; € V, let N; be the set of states without an outgoing v;-labelled
arc. For every i the number of states s € N; such that u;(s) = s(v;) is greater or equal
to t;.

In the remainder of the text, I refer to condition 1 as the reachability condition and condition
2 as the threshold condition.

I restrict the search to update functions of the form f; A —f,, where f; is a monotone Boolean
formula (contains A and V gates, but no negation). The variables of f are activators of f and
the variables of f, are repressors. This restriction was chosen so that repression dominates
activation, and was made after discussion with biologist colleagues and consultation of the
literature (e.g., Bonzanni et al. (2013); Krumsiek et al. (2011)).
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3.5 A direct encoding

We start with a direct encoding of the search for a matching Boolean network. The search
is parameterised by the shape of update functions (how many activators and how many
repressors each function has), the length of paths from initial states to final states, and the
thresholds for each variable. By increasing the first two parameters and decreasing the last

we can explore all possible Boolean networks.

3.5.1 Possible update functions

VANV AN
VANVAWANYAN

ag

Figure 3.7 Boolean formulae f = f; A —f; are represented as a pair of binary trees in the
SAT encoding. Each bitvector a; represents a variable or gate in f] and each bitvector r;
represents a variable or gate in f5.

In order to represent the Boolean update function for gene v;, u; = f1 A —f2, we use a bitvec-
tor encoding. We represent a monotone Boolean formula f; of up to 4 inputs as a depth 2
binary tree encoded by a set of bitvectors, {aj,as,...,a7} (see Figure 3.7). Each bitvec-
tor a; € {ay,az,as} represents a Boolean operator: AND, OR, or LEFT, and each bitvector
a; € {ay,...,a7} represents a variable v; € V. The LEFT operator returns its left argument.

For example, the formula v; A (v2 V v3) is represented by the solution a; = AND,a; =
OR,a3 = vi,a4 = vy,a5 = v3. The formula v V v, is represented by the solution a; =
LEFT,a; = OR,a3 = vy,a4 = v5.

We search for functions up to a maximum number of activators, A;, and a maximum number
of repressors, R;. For example, to search for functions with only one activator, we add con-
straints to fix a; = ap; = a3 = LEFT. In order to allow the function to have zero repressors,
we allow rq to also take the value NOTHING.
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To encode the application of function u; to a state s, u;(s), we add implications which unwrap
the bitvector encoding of u; to the constituent variables and logical operators; substituting
values, s(v;), for variables, v;, and directly mapping operators to logical constraints in the
Boolean satisfiability formula:

A

/\( :AND—>laJ<—>zal /\za
j=1

A

)
)

3
/\ (a]: EFT—>za <—>la, >/\

J=1

/\ (a] = OR—Ha] > la, \/la
j=1

7
/\ (aj =V — iaj <—>S(Vk)>

j=4

where each iy; is an intermediate variable that stores the result of intermediary computations,
and /(i) =i x2and r(i) =1(i) + 1.

The value of the application u;(s) is given by

(n =NOTHING — ia1> A
(n #NOTHING — i, /\ﬁim)

For example, the application of the function (v; V v2) A —ws to the state s; is mapped to
(s1(v1) Vs1(v2)) A=sp(v3).
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3.5.2 Ensuring reachability

To enforce the global reachability condition we consider all of the underlying directed edges

in the undirected state space S = (N, E), and their associated single—gene transitions.

Recall that we require every final vertex to be reachable from some initial vertex by a di-
rected path in the directed state space induced on S by the Boolean network. That is, we
require that every final vertex is reachable by a directed path, and that every v ;-labelled edge

along this path is compatible with its associated update function, u;.

To enforce this we add constraints that track the compatibility of edges with update functions
and define reachability recursively. We consider reachability by paths up to a maximum
length: recall that we consider shorter paths to be more biologically likely. By iteratively

increasing the length of the paths considered, we can obtain all satisfying models.

We introduce a pair of Boolean variables e; ;, e j; for each v;-labelled undirected edge {s;,s;} €
E, which track the value of the application of ; to s; and to s; (and the compatibility of the

underlying directed edges (s;,s;) and (s;,s;) with u;). ¢;; is true iff u;(s;) = s;(v).

We introduce an integer given by a bitvector encoding, r,,, for each node n € N. Bitvector
r, encodes the fact that node n is reachable from an initial node in r, steps, up to some
maximum encodable value 2!l — 1. Bitvector r, is given a value of -1 to indicate that n is

not reachable in this maximum number of steps.
Reachability is then defined inductively:

1. Initial nodes are reachable in zero steps: for every i € I, r; = 0.

2. A non-initial node s; is reachable in M steps if there is a compatible incoming edge
(sj,s;) from another node s;, and s; is itself reachable in fewer than M steps. That is,
forevery n=s; € N—1Iand m =s; € N such that {s;,s;} € E we have ¢;; = 1, < 1.
We also have that non—initial nodes cannot be reached in zero steps: For every n €
N—-Lr,=—1Vr,>0.

Finally, we add a constraint that every final node n € F is reachable from some initial node:

rn# —1.

3.5.3 Enforcing the threshold condition

We enforce the threshold condition for each update function as follows.
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Consider an update function u; : V — {0, 1}. We say that a node s € N; is negatively matched
by u; if u;(s) = s(v;). That is, by using u; as the update function of variable v;, u; does not
change the value of v; from node s. We are searching for an update function such that a

maximum number of nodes from N; are negatively matched.

We add a variable, m;; for each node s € N; to record whether u; negatively matches s. We
then add a constraint demanding that the number of negatively matched nodes is greater

than or equal to the threshold: } ¢y, mis > f;.

We search for satisfying assignments to the constraint variables encoding the representation
of the Boolean update functions u; for all v; in V. The resulting synthesised Boolean network

is the combination of these update functions.

Unfortunately, in practice the direct encoding of the search does not scale to handle our
experimental data (see Figure 3.8). In the next section I suggest a compositional way to

solve the problem.

3.6 A compositional algorithm

I now introduce my compositional algorithm, which scales better than the direct encoding
given above. The problem of synthesising a Boolean network from the data is partitioned
to three stages. Crucially, we avoid searching for a complete Boolean network and consider
parts of the network that can be constructed independently.

3.6.1 Pruning the set of possible edges and possible update functions

We start by building a directed graph from the given undirected state space S = (N,E), by
considering which of the underlying directed edges in E are compatible with some Boolean
update function, and pruning those that are not. We consider each underlying directed edge
(s1,52) and (s2,s1) of each of the v;-labelled undirected edges {s1,s2} in E independently.
At the same time, we prune any Boolean update function which is not compatible with the
threshold condition (condition 2, 3.4.1).

To do this, we maintain a set of candidate functions, C, and a set of unprocessed edges,
U. Initially C is empty and U contains every underlying directed edge (s1,s2) and (s7,s1)
of each of the v;-labelled undirected edges {s;,s>} in E. We lazily construct an explicit

representation of each possible Boolean update function u; and evaluate it at each state
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without an outgoing v;-labelled arc to check whether it passes the threshold condition. If
u; passes, we add it to C and then we evaluate it at each directed edge (s1,s2) € U. If

u;i(s1) = s2(v;) we remove (s1,s2) from U.

When this phase terminates, we are left with a directed graph, where there is an edge (s1,52)
if there exists a compatible update function for that edge. We have eliminated edges which
have no compatible update function, and cannot participate in the reachability condition. We
are also left with a set of candidate update functions for each variable. On the experimental
data set from Chapter 4, this phase prunes up to 50% of the possible edges for a gene, and

can prune over 99% of the possible update functions.

3.6.2 Ensuring reachability

We now come to the only part of the algorithm that considers the edges of all variables
together, in order to enforce the global reachability condition (condition 1, 3.4.1).

We construct, for each pair of initial nodes i € I and final nodes f € F, the shortest path p;r
from i to f in the directed graph that was built in the previous phase of the algorithm. These
paths can be computed via a breadth—first search. The longest such path on the example
data set from Section 3.3 has length 10. The longest such path on the experimental data set
from Chapter 4 has length 32.

Due to the edge pruning of the previous phase of the algorithm, if there is no path to a final
node f, this implies that there are no satisfying models (at the given threshold and function
size parameters). Otherwise, our reachability condition will be enforced by fixing a set of
directed edges P; for each variable v; € V corresponding to these shortest paths. We will
then require that the update function we search for, u;, is compatible with each of the edges

in P.

We choose, for each final node f, one path ps = p;r from one of the initial nodes i. By
fixing this path, we ensure that f is reachable from an initial node. We define p|; as the set
of v;-labelled edges in the path py. We define F;, the v;-labelled edges which must be fixed
to ensure reachability via the chosen paths, as the the set of v;-labelled edges in p s for each
final node f:

Pi={J{(s1,52) | (s1,52) € psli}

JeF
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By considering only the edges in P;, we can search for an update function for v; indepen-

dently of all other variables, while ensuring the global reachability condition holds.

3.6.3 Final update functions

We can now search for the update function of variable v;, u;, independently of all other
variables. We fix the v;-labelled edges computed in the previous phase and encode the

search for u; as a Boolean satisfiability problem.

As before we add constraints to encode the representation of u;. We fix each of the v;-
labelled edges (s1,52) € P; to establish reachability, by adding a conjunction requiring that
u; is compatible with each of them: u;(s1) = s2(v;). We also add constraints that fix u; as one
of the candidate functions left over after the pruning phase of Section 3.6.1. Importantly,

this means that we no longer have to enforce the threshold condition.

We search for satisfying assignments of the constraint variables encoding u;, using an ALL-
SAT procedure to extract all possible update functions for variable v;. This gives rise to a set
of update functions per variable and a set of Boolean networks from the product of the set

of update functions per variable.

We note that this final phase of the algorithm can fail to find update functions for a variable
v;, because there are no possible update functions compatible with all of the path edges P;
that were computed in the previous phase. That is, while each edge in P, is individually
compatible with some update function, there may be no update function that is compatible
with every edge in P;. In order to cope with this limitation, we can extract the minimal
unsatisifiable core of the Boolean formula, and search for replacement paths that exclude
incompatible combinations of edges. This step can be iterated until satisfying solutions
are found for all variables, or until no path can be found, implying that there are no valid
models.

By extending our search from the shortest paths between initial and final node pairs in the
directed graph to the k-shortest paths between pairs and incremementally increasing k (Yen
(1971)), we can increase the number of possible update functions that we consider. In the
limit, we will obtain all satisfying models.

An implementation of my algorithm, which is written in F# and uses Z3 as the satisfia-
bility solver, is available at https://github.com/swoodhouse/SCNS-Toolkit. In Figure 3.8 I
present experimental results from running my implementation of the direct encoding from

Section 3.5 and compositional algorithm on four data sets: the small synthetic data set from


https://github.com/swoodhouse/SCNS-Toolkit
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Data set Genes | States | Direct (seconds) | Compositional (seconds)
CMP (synthetic) 11 214 25 10
Blood stem cells 22 613 | OUT OF MEMORY 191
Embryonic (66%) 33 956 | OUT OF MEMORY 136
Embryonic (full) 33 1448 | OUT OF MEMORY 244

Figure 3.8 Performance of direct encoding and compositional algorithm on example data
sets.

Section 3.3, the large embryonic experimental data set from Section 3.2, and a second ex-
perimental data set covering blood stem cells. I also show results from rerunning on the
embryonic data set with a third of states removed. All experiments were performed on an
Intel Core i5 @ 1.70GHz with 8GB of RAM.

While the direct encoding synthesised a matching Boolean network on the small synthetic
data set, it cannot scale to the real experimental data sets, quickly running out of memory.
The compositional algorithm, on the other hand, can scale to handle real data sets of the sort
produced by my experimental collaborators.



Chapter 4
Application to haematopoetic data

This chapter was published as Moignard et al. (2015), and was joint work resulting from
a close collaboration with Victoria Moignard, who performed single-cell gene expression
experiments. The diffusion map implementation introduced for this study was developed by
Laleh Haghverdi and Florian Buettner, and is described in further detail in Haghverdi et al.
(2015).

4.1 Introduction

Blood has long served as a model to study organ development owing to the accessibility
of blood cells and the availability of markers for specific cell populations. Blood develop-
ment initiates at gastrulation from multipotent Flk1+ (encoded by Flkl, also known as Kdr)
mesodermal cells, which initially have the potential to form blood, endothelium and smooth
muscle cells (Shalaby et al. (1995, 1997)). Blood development represents one of the earliest
stages of organogenesis, as the production of primitive erythrocytes is required to support
the growing embryo. Single-cell gene expression analysis has already been successfully
applied to study the earliest stages of preimplantation mouse and human development (Guo
etal. (2010); Xue et al. (2013); Yan et al. (2013)), to identify lineage commitment (Pina et al.
(2012)) and transcriptional regulatory (Moignard et al. (2013a)) events in blood, and, more
recently, to probe the emergence of hematopoietic stem cells (HSCs) from the hemogenic
endothelium of the dorsal aorta (Swiers et al. (2013a)).

Here we report in-vivo gene expression analysis of early blood development at the single-

cell level, focusing on transcription factors as regulators of cell fate. Using qRT-PCR, we
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analyzed >40 genes in 3934 cells with blood and endothelial potential from five populations
at four sequential stages of post-implantation mouse development between embryonic day
(E)7.0 and ES8.25. We adapted the diffusion plot methodology previously reported in non-
biological contexts (Coifman et al. (2005)) for dimensional reduction of single-cell data,
where pseudotemporal ordering of individual cells revealed a putative developmental hier-
archy branching toward both blood and endothelial-like fates. To discover the underlying
regulatory network, we developed a single-cell network synthesis algorithm for synthesis-
ing executable Boolean network models from binary single-cell expression states, which
correspond to the on and off patterns of transcription factor expression. Using this method
we identified a core network of 20 highly connected transcription factors, which could reach
eight stable states representing blood and endothelium. We validated model predictions to
demonstrate that Sox7 blocks primitive erythroid development, and Sox and Hox factors
directly regulate expression of the HSC regulator, Erg. Our algorithm therefore opens up
network reconstruction for other systems without the requirement for prior knowledge of

regulatory interactions.

4.2 Capturing cells with blood potential during gastrula-

tion

The first wave of primitive hematopoiesis originates from Flkl1+ mesoderm (Guo et al.
(2010); Lux et al. (2008); Yan et al. (2013))), with all hematopoietic potential in the mouse
contained within the Flk1+4 population from E7.0 onwards. Although some blood progenitor
cells lose Flk1 expression just before the onset of circulation (Ding et al. (2013)), previous
work using a LacZ reporter knocked into the Runx/ locus showed that hematopoietic poten-
tial remains confined to the Runx1 + fraction (Tanaka et al. (2012)), which was confirmed
with a GFP reporter driven by the Runx1 +23 enhancer, which reproduces Runx1 expres-
sion (Swiers et al. (2013a)). Using Flk1 expression in combination with a Runx1-ires-GFP
reporter mouse (Lorsbach et al. (2004)) therefore allowed us to capture cells with blood
potential at distinct anatomical stages across a time course of mouse development (Figure
4.1a,b). Single Flk1+ cells were flow sorted at E7.0 (primitive streak, PS), E7.5 (neural
plate, NP) and E7.75 (head fold, HF) stages. We subdivided E8.25 cells into putative blood
and endothelial populations by isolating GFP+ cells (four somite, 4SG) and Flk1+ GFP cells
(4SFQG), respectively (Figure 4.1b). Cells were sorted from multiple embryos at each time
point, with 3934 cells going on to subsequent analysis (Figure 4.1c). Total cell numbers

and numbers of cells of appropriate phenotypes (Figure 4.1d) present in each embryo were
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Figure 4.1 Single-cell gene expression analysis of early blood development. (a) Flk1 and
Runx1 staining in E7.5 mesoderm and blood band, respectively. (b) Single cells sorted
from five populations at four anatomically distinct stages from E7.0-E8.25. (c) Quantifi-
cation of cells sorted and retained for analysis after quality control. (d) Quantification of
Flk1+, GFP+ or Flk1+ GFP cells in embryos at each time point from FACS data. Line in-
dicates median. (e) Unsupervised hierarchical clustering was performed using the Spear-
man correlation and complete linkage for the normalized gene expression of the 33 tran-
scription factors and 7 marker genes in all cells. Shown is the level of expression for each
gene in every cell (see key).
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estimated from fluorescence-activated cell sorting (FACS) data, indicating that for the first

three stages, more than one embryo equivalent of Flk1+ cells was collected.

We next quantified the expression of 33 transcription factors involved in endothelial and
hematopoietic development (Moignard et al. (2013b)), nine marker genes, including the em-
bryonic globin Hbb-bH1 and cell surface markers such as Cdh5 (VE-Cadherin) and ltga2b
(CDA41), as well as four reference housekeeping genes in all 3934 cells using microfluidic
qRT-PCR technology (Moignard et al. (2013a)), which resulted in >150,000 quantitative

expression SCores.

4.3 Development of blood progenitor cells is not synchro-

nized

Unsupervised hierarchical clustering of the 33 transcription factor and 9 marker genes across
all 3934 cells revealed three major clusters (Figure 4.1e). Cluster I was small and comprised
mostly PS and NP cells. It did not express blood-associated genes, but showed low expres-
sion of some endothelial genes and high expression of Cdhl (E-cadherin), likely represent-
ing mesodermal cells at the primitive streak (Thiery et al. (2009)). Cluster II contained the
greatest number of cells and included most of the PS, NP, HF and 4SFG cells, was character-
ized by endothelial gene expression, and contained subclusters with elevated expression of
hemogenic endothelial genes, such as Cdh5, or hematopoietic genes such as Gfil, indicating
that this cluster contains a continuum of cells maturing from mesodermal to hematopoietic
and endothelial fates. Cluster III was formed by most of the E8.25 Runx1 GFP+ 4SG cells,
and had robust expression of hematopoietic genes (including Hbb-bH1, Gatal, Nfe2, Gfilb,
Ikzf1 (Ikaros) and Myb), and low expression of endothelial genes (Erg, Sox7, Sox17, Hoxb4,
Cdh5). The mixing of cells from different anatomical stages by hierarchical clustering anal-
ysis therefore suggested that developmental maturation of single cells in early mesodermal
cell populations is asynchronous, with cells at multiple stages expressing similar combina-
tions of developmental regulators. This is consistent with the gradual ingression of cells

through the primitive streak and lineage commitment during gastrulation.

Principal component analysis (PCA) of the expression values of all 3934 cells confirmed the
large-scale mixing of cells from different anatomical stages, with only 4SG cells forming
a stage-specific group (Figure 4.2a)). The PCA was retrospectively colored to show which
embryo each cell belongs to (Figure 4.2b)), to determine whether this mixing is the result of

developmental asynchrony within embryos or differences in maturation between different
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Figure 4.2 Development is asynchronous. (a) PCA of the 3934 cells, coloured retrospec-
tively according to the stage from which they were sorted. Blue, PS; green, NP; orange,
HF; red, 4SG; purple, 4SFG-. (b) For each stage, the cells from different embryos are
shown on the PCA as different colours (cells from other stages shown in grey). (c) PCA
coloured according to the clusters cells belong to. Green, I; Blue, II; Pink, III. (d) For each
embryo, the percentage of cells in clusters I, I and III was calculated. The mean and stan-
dard deviation was then calculated for each cluster in each stage.
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embryos classified as being of the same anatomical stage. We quantified the percentage of
cells from each embryo belonging to clusters I, II and III, as identified by hierarchical clus-
tering (Figure 4.1e and 4.2c,d). This showed that cells collected from each embryo at the
PS, NP and HF stages were distributed across clusters I and II, with the earlier stages show-
ing a greater bias toward cluster I than later stages. These results are therefore consistent
with a model whereby cells representing both early and later stages along the differentiation
trajectory toward blood are present throughout the PS, NP and HF time points, captured as
snapshot measurements in our high-throughput, single-cell expression profiling.

A proportion of Flk1+ cells will give rise to mesodermal lineages other than blood and en-
dothelium, and the extent to which they emerge over time and contribute to the variability
would need to be analyzed using different gene sets. Notably, however, >50% of PS, NP and
HF cells expressed both Flk1 and Runx1 at the mRNA level, highlighting the presence of
Flk1+ cells with hemogenic potential (Swiers et al. (2013a); Tanaka et al. (2012)) from the
earliest time points. Analysis of 50-cell pools from the PS, NP and HF stages by RNA-seq
showed graded expression increases of hematopoietic and endothelial genes from the E7.0
to the E7.5 and E7.75 samples. This is entirely consistent with the continuous emergence of
blood-specified cells deduced from our single-cell data, as an increase in the proportion of
cells expressing a given gene between stages will increase population-averaged expression
measurements. Key mesodermal and cardiac genes, by contrast, showed graded downregu-
lation in the pooled-cell RNA-seq. These graded expression changes over time are not con-
sistent with a discrete on or off switch at a specific developmental time point, but could again
be due to gradual changes in the proportion of cells expressing the marker genes, similar
to our observations from single-cell analysis of blood and endothelial genes. Alternatively,
quantitative changes in expression levels within a constant proportion of cardiac-specified
cells would similarly result in a change in the overall expression level of a population and
cannot be excluded from the pooled-cell RNA-seq. Therefore, our results indicate, at least
for cells destined to become blood and endothelium, that these cells arise at all stages of
the analyzed time course rather than in a synchronized fashion at one precise time point,
consistent with the gradual nature of gastrulation. Notably, only single-cell analysis over a
developmental time-course has the power to reveal the contribution to cellular heterogeneity

made by unsynchronized maturation of individual cells.
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Figure 4.3 Diffusion plots identify developmental trajectories. Diffusion plot of all 3934
cells calculated from the expression of 33 transcription factors and seven marker genes
(top left). The expression levels of individual genes were then overlaid onto the diffusion
plot to highlight patterns of expression.
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4.4 Diffusion maps identify developmental trajectories

To identify and visualize putative developmental trajectories from the PS to 4S stages in
the single-cell gene expression data, we developed a computational approach for dimension
reduction. Our method is based on the concept of diffusion distances, which can be inter-
preted as a metric for objects (here, cells) that are related to each other through a gradual
but stochastic, diffusion-like process, such as cellular differentiation. In brief, similarities
between all 3934 cells are calculated based on their gene expression patterns, and then vi-
sualized globally in a three-dimensional map (Figure 4.3). The resulting components span
a low-dimensional diffusion-space, in which distance reflects how similar cells are in terms

of their diffusion distance, and can be inferred to represent developmental time.

Although there is extensive mixing between PS, NP, HF and 4SFG populations in the diffu-
sion plot, there is a general progression in the cell stages present in different regions of the
plot from largely early E7.0 PS and E7.5 NP cells through the later HF cells to the E8.25
4SG cells that form a homogeneous cluster, in line with the expected developmental pro-
gression of the blood system or 4SFG cells. Furthermore, we observed that whereas the
E8.25 Flk1+ Runx1-GFP (4SFG) cells mostly mix with earlier Flk1+ cells, a subset that
was not identified by clustering or PCA branches off. This branch expresses endothelial and
hemogenic endothelial genes (Cdh5, Erg, Itga2b, Pecaml (CD31), Sox7, Flil) with lower to
absent expression of Etv2 and Runx/. This observation is consistent with the known bifur-
cation of blood and endothelium (reviewed in Costa et al. (2012)) and the downregulation
of Runxl in more mature endothelial cells (Samokhvalov et al. (2007)). Genes that mark
early, intermediate and late stages of blood development showed dynamic expression across
the diffusion map (Figure 4.3), with Cdhl expressed first, followed by Cdh5 and then the
embryonic globin Hbb-bH1. The transcription factors Etv2, Tall (Scl), RunxI and Gatal
were expressed in a pattern consistent with their known sequential roles during the devel-
opment of hemangioblasts through to erythroid cells (Chen et al. (2009); Fujiwara et al.
(1996); North et al. (1999); Robb et al. (1995); Schlaeger et al. (2005); Shivdasani et al.
(1995); Sumanas et al. (2008); Wareing et al. (2012)). Dynamic expression patterns were
also observed for other transcription factors not previously recognized as major regulators
of primitive hematopoiesis, including Erg, Sox7 and Hoxb4. The diffusion map method
therefore represents an attractive approach for ordering cells in developmental time, identi-
fying patterns of expression for key regulators and bifurcation events not readily found with

standard algorithms.
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Figure 4.4 Regulatory network synthesis from single-cell expression profiles. (a) Dis-
cretization of 3934 expression profiles for 33 transcription factors yields 3070 unique bi-
nary states, 1448 of which can be connected by single-gene changes to yield a state graph.
(b) Representation of resulting state graph, colored by first embryonic stage appearing in
each state. Blue, PS; green, NP; orange, HF; red, 4SG; purple, 4SFG. Magnification of
fate transition toward 4SG states, with, for example, Sox7 expression switching off along
all routes. (c) Representation of synthesized asynchronous Boolean network models for
core network of 20 transcription factors. Red edges indicate activation; blue edges indicate
repression. Square boxes represent AND operations. Circles connecting edges indicate
multiple update rules.
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4.5 Synthesis of a network model for early blood develop-

ment

The correspondence between the diffusion map and known developmental timelines sug-
gested that the measured expression changes reflect developmental trajectories and might be
exploited to define the regulatory networks that drive mesodermal cells toward a hematopoi-
etic fate. Cell fate decisions have been modeled successfully using state space analysis of
asynchronous Boolean regulatory network models (Bonzanni et al. (2013); Krumsiek et al.
(2011)). In this approach, each gene is associated with a Boolean variable (1 or 0), which
represents whether the gene is expressed or not expressed, respectively, in the cell. Each
gene is also given a Boolean update rule that specifies how its expression value changes
over time owing to regulation by other genes. Boolean network dynamics are then modeled
by a series of asynchronous single-gene changes, and state space analysis reveals the final
stable states of the model. We were interested in the inverse problem: if we think of the
single-cell expression profiles as the state space of a Boolean network, can we identify the
underlying gene regulatory logic? Although single-cell data have been used to refine static
networks curated from the literature (Xu et al. (2014)), to our knowledge Boolean rules
have not been derived directly from single-cell expression data without a priori knowledge
of the structure of the network. To tackle this complex question of revealing the molec-
ular changes underpinning cell state transitions, we developed an algorithmto synthesise

Boolean networks based on single-gene transitions in our data.

We first discretized all 3934 single-cell expression profiles to binary states and connected
those states that differ in the expression of only one gene. The threshold for binary dis-
cretization was determined as described in the Materials and Methods. This yielded a con-
nected state transition graph of 1448 expression states, connected by single- gene transi-
tions (Figure 4.4a,b). The number of times each state occurs is indicated in Figure 4.5.
The probability of seeing even one repeated state or neighbor in the potential space of 233
spaces is negligible, illustrating the nonrandom nature of the data. Most states that corre-
sponded to the Runx1-GFP+ 4SG cells clustered together at one end of the state transition
graph, whereas states corresponding to cells from other time points were dispersed between
two additional clusters. Likely developmental transitions were revealed, with specific genes
consistently switching on or off along all routes linking the major clusters. We therefore
considered this state transition graph as a possible representation of developmental expres-
sion state changes based on single-gene switches, and next asked whether this could be
used for regulatory network reconstruction. Notably, analysis of real and simulated popu-
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Figure 4.5 Some states occur in multiple cells. State transition graph coloured by the num-
ber of times each binary state occurs in the 3934 expression profiles. Grey, occurs once;
blue, occurs twice; red, occurs more than twice.

lations of 20 cells showed that pools for the same stage clustered closely together, which
masked variation and therefore would not have provided the number of transcriptional states

required for network synthesis.

The direction of movement between two states in the state transition graph is initially not de-
fined. Our method assigns a direction to each connection based on overall movement from
the early PS to the later 4SG states, and then finds Boolean update functions for each gene
that are consistent with its expression changes across the entire transition graph. Unlike
previous analyses of single-cell gene expression data, which have largely relied on statis-
tical properties of the data viewed as a whole, our method can recover mechanistic logic
and determine the direction of interactions. When the method was applied to our data set,
we obtained a core network of 20 transcription factors with endothelial and blood-associated
gene modules centered on Sox7, endothelial and blood-associated gene modules centered on
Sox7, Hoxb4 and Erg, and on Gatal and PU.I (also known as Spil), respectively. For some
genes, there were multiple possible consistent update functions. For example, there are
two solutions for Erg, both of which include activation by Hoxb4 and Sox17. In total there
were 39 possible functions, an average of two per gene. This led to 46,656 possible mod-
els from the different combinations of the 39 update rules (Figure 4.4c and Appendix A).

Repeating the network synthesis with bootstrapping and a different discretization threshold
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demonstrated the robustness of our protocol (Appendices B and C).

4.6 Network synthesis predicts direct regulation of Erg

We next asked whether links in our single-cell expression-derived network models can re-
veal direct regulatory interactions. To provide support for our model, we identified high-
confidence gene regulatory regions in the gene loci of the 20 transcription factors in our net-
work by interrogating a compendium of transcription factor ChIP-seq data from hematopoi-
etic cell types (Sdnchez-Castillo et al. (2015)), followed by identification of binding sites for
the 20 transcription factors within these regions. 27 of the 39 Boolean rules (70%) are sup-
ported by the presence of evolutionarily highly conserved motifs for the upstream regulators
in the target gene locus (Appendix A), with support for at least one Boolean rule for 16/20
transcription factors. This finding suggested that many of the regulatory interactions pro-
posed in our model may be direct upstream regulator/downstream target gene relationships.
To provide further validation, we focused on Erg, which our models predicted is activated
by Sox17, or by Hoxb4 in combination with Ly// or Scl (Tall). By analyzing a Hoxb4 ChIP-
seq data set (Fan et al. (2012)), we showed that Hoxb4 can bind to the Erg+85kb enhancer,
which was previously showed to be active in blood stem and progenitor cells (Thoms et al.
(2011); Wilson et al. (2009)). Moreover, comparative sequence analysis revealed that the

Erg+85kb contains highly conserved Hox and Sox binding sites (Figure 4.6a).

To investigate regulation of Erg by Hox and Sox factors, we took advantage of a recently
described embryonic stem cell-based reporter system in which single-copy enhancer trans-
genes linked to the Hsp68/Venus reporter are targeted to the Hprt locus (Wilkinson et al.
(2013)), allowing robust comparisons of wild-type and mutant enhancer activity during in-
vitro differentiation. We tracked enhancer activity during embryoid body differentiation,
where cells transit from a Flkl+ CD41 mesoderm/hemangioblast state, through a Flk1+
CD41+ intermediate, to a Flkl CD41+ hematopoietic state (Kabrun et al. (1997); Mikkola
et al. (2003); Mitjavila-Garcia et al. (2002); Wilkinson et al. (2013)). Flow cytometric anal-
ysis revealed a dynamic pattern of YFP expression for the wild-type enhancer, peaking at
days 4-5 and highest in the Flk1+ CD41+ population (Figure 4.6b). Similar expression was
seen in the Sox mutant, whereas mutation of the Hox motifs caused a reduction of YFP+
cells, and the combined Hox and Sox mutant reduced the proportion of YFP+ cells further
still. We also saw similar patterns of expression in the other populations, which consti-
tute a larger proportion of the embryoid body cells but have a lower percentage of YFP+

cells (Figure 4.6b). This suggests that Hox and Sox factors activate and maintain Erg ex-
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Figure 4.6 Network analysis predicts transcriptional interactions. (a) Alignment of mam-
malian Erg+85kb enhancer. Hox sites, red. Sox sites, light blue. (b) Percentage of Flk1+
CD41, Flk1+ CD41+ and Flk1 CD41+ cells on days 3—7 of differentiation expressing YFP.
Data are mean and s.e.m. of triplicate differentiations of two to three clones per construct.
(c) Network stable states for wild-type and Sox7 overexpression. Red indicates expressed;

blue indicates not expressed. (d) Colony assays with or without doxycycline from geno-
typed E8.25 embryos from iSox7+ rtTA+ mice crossed with wild types. (e) Quantification
of primitive erythroid colonies after 4 days (mean and s.e.m. for the number of embryos
indicated). P-value was determined using the student’s t-test for the number of embryos

indicated.
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pression largely independently and additively. When abstracted to the Boolean level, this
result is therefore more consistent with the OR logic in our network than with the alterna-
tive AND logic, where single mutations would result in an effect as strong as the combined
mutant.

4.7 Model execution reveals key switches during develop-

ment

Next, we assessed whether our network models faithfully recapitulate blood and cardiovas-
cular development, in which endothelial and primitive blood cells emerge from a common
mesodermal progenitor. To do this, we determined the stable states of the network model
that correspond to those expression patterns for the 20 transcription factors that satisfy all
the Boolean network rules, and therefore can remain stable. We found that only eight stable
states are reachable in total across all possible models, including “endothelial-like” (W'T-
S7) and “blood-like” expression states (WT-S2 to S6) (Figure 4.6c). Of note, 432 models
had both the endothelial-like state and at least one of the blood-like states (W'T-6) as stable

states, thus capturing the functionality of bipotential Flk1+ precursors.

Finally, we explored the consequences of in-silico perturbation. Overexpression and knock-
out experiments were simulated for each transcription factor and the ability of the network
to reach wild-type or new stable states was assessed. For a number of factors, stable states
6 or 7 were no longer reachable. Among these, enforced expression of Sox7, a factor
normally downregulated when cells transit toward the 4SG state (Figure 4.4b), resulted
in the stabilization of the endothelial module and an inability to reach any of the blood-
like states (Figure 4.6¢). Only two stable states were possible, among the lowest for all
factors, and furthermore, Sox7 is predicted to regulate more targets than any other tran-
scription factor, suggesting that perturbing its expression could have important downstream
consequences. To validate this prediction, we crossed the previously reported iSox7+ rtTA+
male mice 37 with wild-type females, collected embryos at E8.25 and performed colony-
forming assays s (Figure 4.6d). Embryos carrying both transgenes showed a 50% reduction
of primitive erythroid colony formation and simultaneous appearance of undifferentiated
hemangioblast-like colonies following doxycycline-induced Sox7 expression compared to
controls (Figure 4.6¢e)). This suggests, in agreement with modeling data and gene expres-
sion patterns, that downregulation of Sox7 is important for the specification of primitive
erythroid cells.
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Figure 4.7 Partial correlation analysis. (a) Hierarchical clustering of partial correlation co-
efficients between pairs of transcription factors for all 3934 expression profiles. Pairwise
coefficients were calculated while controlling for the effect of all other transcription fac-
tors. Erg does not correlate with Sox or Hox factors. (b) Network diagram showing puta-
tive undirected activating (red) and inhibiting (blue) relationships suggested by significant
correlations (p-value < 1le-10).

4.8 Conclusions

Determining the structure and function of transcriptional regulatory networks is crucial to
advancing our understanding of developmental and disease processes and is therefore a
key aim of stem and developmental biology. However, studies to date have mainly used
population-based data for network construction or have focused on statistical properties of

populations of single cells for network inference.

Bayesian network methods provide a very computationally efficient approach to inferring
causal relationships among a set of variables and have previously been applied to infer
cellular signaling networks from single-cell data (Sachs et al. (2005)). However, these ap-
proaches infer a directed acyclic graph where there is no feedback between nodes, a limi-
tation not shared by our approach. In addition, the inference of edges is reliant on network
interventions in which many different cell populations are generated by experimentally per-
turbing genes, and the differences between these populations are used to infer causality.
Generating such intervention data is very time consuming and cannot be done when studying

wild-type in-vivo development. Instead, researchers typically look at the pairwise correla-
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tion of genes across single-cell measurements (Guo et al. (2013); Moignard et al. (2013a)).
For example, partial correlation analysis measures the degree of association between two
genes while controlling for potential effects of all other genes (S. J. Welham, S. A. Gezan,
S. J. Clark (1995)). We performed this analysis (Figure 4.7), and found agreement with
many of the edges in our synthesized network; however, this analysis failed to predict the
Sox/Hox regulation of Erg, which we validated experimentally. Moreover, connections do
not specify which gene is the upstream regulator and which is the downstream target, and
therefore do not reveal mechanistic logic.

To our knowledge no previous study has analyzed the development of an entire mammalian
organ at single-cell resolution. Here we have studied the earliest stages of blood develop-
ment from mesoderm through to the emergence of primitive erythroid cells, and demonstrate
that single-cell expression profiling, coupled with computational approaches for network
synthesis, can reveal molecular control mechanisms of mammalian organogenesis. Analy-
sis of 46 genes in blood precursors across 1.25 days of post-implantation mouse embryonic
development showed that cellular maturation may be asynchronous, with individual cells
maturing at different speeds and a large proportion expressing both Flkl and Runxl, indi-
cating that they are committing to hemogenic endothelial development. The graded changes
in expression for key regulators of other mesodermal fates seen in the cell pools analyzed by
RNA-seq are also consistent with cells expressing the gene emerging over the time-course
analysed, although alternative explanations such as changes in the level of expression can-
not be excluded. Furthermore, the diffusion map methodology highlighted the hierarchical
nature of organ development, with waves of transcription factor and marker expression and
a bifurcation at the four-somite stage. The presence of embryonic globin and erythroid tran-
scription factor Gatal in one branch and endothelial markers such as Pecaml and Cdh5 in
the other suggests that this bifurcation represents the separation of blood and endothelial
fates (Costa et al. (2012); Moignard et al. (2013b)). Trapnell et al. (Trapnell et al. (2014))
recently reported an exciting method related to our diffusion map approach for the analysis
of single-cell, RNA-seq, time-course data, where construction of a minimum spanning tree
ordered differentiating cells in developmental pseudotime. Although the authors suggested
that this methodology could be used to map regulatory networks, such results were not in-
cluded in their paper. Moreover, cells were sampled from cells differentiating in-vitro rather

than directly from embryos.

Here we achieved reconstruction of regulatory network models by deriving expression-
state graphs from high-throughput, single-cell, gene expression profiling data and using the

expression-state graphs to determine gene regulatory rules. First, gene expression profiles



4.8 Conclusions 75

are discretized to binary expression states, where 1 represents a gene that is expressed and 0
represents no measurable expression. Then, pairs of states are connected if they differ in the
expression state of exactly one gene, resulting in a state graph. Finally, Boolean rules are
found for each gene, which allow a walk from early states to late states by means of a series
of single-gene transitions. The result is a set of Boolean rules matching the experimental
data that can be combined into a network model. This method requires no prior knowledge

of regulatory interactions but instead derives its logic directly from the gene expression data.

We followed this method of network synthesis with steady state and in-silico perturbation
analyses that identified blood and endothelial-like expression patterns and implicated Sox7
in the regulation of erythroid fate, which we subsequently validated using transgenic mouse
assays. Network synthesis also identified several previously known transcription factor in-
teractions, including close linkage of Etv2, Flil and Tall, where the latter two are known
to function downstream of Efv2 in the hemangioblast (Kataoka et al. (2011); Pimanda et al.
(2007)). To test whether our network model reveals additional direct interactions, we fo-
cused on Erg, an essential transcription factor for definitive hematopoiesis and adult HSC
function (Loughran et al. (2008); Taoudi et al. (2011)). Our network predicted that Erg
expression can be activated either by Sox17 or Hoxb4. The Erg+85kb enhancer was previ-
ously shown to be controlled by Ets and Gata factors and to be active during hematopoietic
development (Wilson et al. (2009)) and in HSCs (Thoms et al. (2011)) However, neither
Hox or Sox transcription factors had been implicated in Erg+85kb activity.

Sox7 and Sox17 belong to the SoxF family of transcription factors, which have recently
been shown to confer arterial identity in combination with RBPJ/Notch (Sacilotto et al.
(2013)). Arterial identity is linked with the blood-forming potential of hemogenic endothe-
lial cells in the embryo. Moreover, Hoxb4 expression is also known to enhance blood po-
tential (Kyba et al. (2002)), yet there is very little knowledge about how SoxF factors or
Hoxb4 integrates into the wider network regulating blood development. Our integrated ap-
proach of single-cell expression profiling coupled with network synthesis and subsequent
experimental validation identifies Erg as a downstream target of Sox and Hox factors dur-
ing early blood specification. Coupled with our observations here that downregulation of
Sox7 is a key event in the development of primitive erythroid cells, our study demonstrates
how network modeling from single cells can help to reveal the transcriptional hierarchies
that control mammalian development. Rapid technological advances in our ability to per-
form single-cell profiling (Tang et al. (2011); Tischler and Surani (2013)) suggest that this
approach will be widely applicable to other organ systems and may also inform the devel-

opment of improved cellular programming strategies.
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4.9 Materials and Methods

4.9.1 Single-cell qRT-PCR

Single-cell qRT-PCR was carried out using the Single-cell gRT-PCR. Single-cell qRT-PCR
was carried out using the Fluidigm BioMark platform as described in Moignard et al.
(2013a), with a limit of detection (LOD) of Ct 25. The LOD was determined according
to Stahlberg et al. (2011) and manufacturer’s instructions. Briefly, standard curves were run
on the BioMark with six repeats of each dilution. For each gene, the LOD was the aver-
age Ct value for the last dilution at which all six replicates had positive amplification. The
overall LOD for the gene set was the median Ct value across all genes. Gene expression
was subtracted from the limit of detection and normalised on a cell-wise basis to the mean
expression of the four house-keeping genes (Eif2b1, Mrpll9, Polr2a and Ubc) in each cell.
Cells that did not express all four housekeeping genes were excluded from subsequent anal-
ysis, as were cells for which the mean of the four housekeepers was + 3 s.d. from the mean
of all cells. A dCt value of -14 was then assigned where a gene was not detected. 85-90% of
sorted cells were retained for further analysis. Gata2 did not amplify correctly and HoxB3
was not expressed in any cells, so these factors have been excluded from the analysis. Fur-
ther analyses were done on the dCt values for all transcription factors and marker genes, but
not housekeeping genes.

4.9.2 Synthesis bootstrapping

To assess the robustness of the predictions of network synthesis, we performed bootstrap-
ping. A random sample of 75% of the 3934 gene expression profiles was retained, and a
new state transition graph was built from this reduced data set. This state transition graph
was then used as the basis to synthesize new Boolean rules, using the same parameters as
the original analysis. The results of repeating this process five times are shown in Appendix
A. Bold entries indicate a rule is identical to a rule synthesized from the original data set.
Underlined entries indicate that a rule is contained within a larger rule from the original
synthesis. We see that in most cases the original rule or a closely related, underlined rule
is synthesized. In general, the number of possible solutions for a gene’s update function
grows as the amount of data used is decreased, and including the full data set narrows these
possibilities.
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4.9.3 Assessing sensitivity of synthesised rules to binary discretisation
threshold

In order to construct a state transition graph and apply our synthesis method, experimental
data must first be discretised to binary values that indicate whether a gene is expressed or
not expressed. The details of how we determine this threshold are covered in the section
entitled “Single-cell q-RT-PCR”, above.

To assess sensitivity of results to the choice of threshold, we repeated our analysis with
a more stringent cut off, increasing it by two cycles. This resulted in a state transition
graph of 1249 nodes (199 fewer nodes than the original state transition graph), which was
then used as the basis to synthesize new Boolean rules, using the same parameters as the
original analysis. The results are shown in Appendix B. Bold entries indicate a rule is
identical to a rule synthesized from the original data set. Underlined entries indicate that
a rule is contained within a larger rule from the original synthesis. We see that in most
cases the original rule or a closely related, underlined rule is synthesised. In general, the
number of possible solutions for a gene’s update function grows as the amount of data used
is decreased, and including the full data set narrows these possibilities.



Chapter 5

Graphical User Interface

5.1 Introduction

In chapter 3 we introduced an algorithm for synthesising asynchronous Boolean networks
from single-cell gene expression data sets. Then, in chapter 4, we applied this method to
understand the earliest stage of blood development in the mouse embryo. In this chapter we
introduce the Single Cell Network Synthesis (SCNS) toolkit, a general-purpose graphical
tool for the synthesis and analysis of models from single-cell data, which can be applied to

new data sets as they become available (Figure 5.1).

In systems biology there is a need for general-purpose, user-friendly and efficient tools that
can be readily used by biologists who do not have specialist computer science knowledge.
SCNS allows biologists to reconstruct asynchronous Boolean network models from single-
cell gene expression data sets covering developmental or differentiation time courses. The
SCNS toolkit works on both qPCR and RNA-seq data, and can integrate data from both
sources. It supports easy deployment to the cloud using the Microsoft Azure platform to
increase performance, and control through a web-based graphical interface. Once models
have been synthesised, SCNS can compute stable states and perform perturbation analysis,
all within a single tool.
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smglé-cell data regulatory network
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Figure 5.1 The Single Cell Network Synthesis Toolkit.
5.2 SCNSis controlled via a web-based graphical interface

When SCNS is first started, the user is presented with the ‘Load Data’ page, asking them
to upload a .CSV file containing their single-cell gene expression data (Figure 5.2). This
file should have rows corresponding to cells and columns corresponding to genes. Each
entry should be a 1 or a 0, indicating whether the cell expresses the given gene or not. In
addition, the first column should give the class of the cell. This indicates the cell type or
day of measurement, and is used to indicate which cells states should be considered initial

states and which target states during synthesis.

The browser then automatically switches to the ‘STG’ page, where a state transition graph
automatically constructed from the uploaded data is displayed (Figure 5.3). On this page
the user can use two text controls to select initial and target cell classes. For example, for
the embryo data set from chapter 4, we would select ‘PS’ cells as initial states and ‘4SG’
cells as target states (Figure 5.4).
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SCNS Toolkit Load Data STG Results Analysis Configuration

Upload your data.

Upload a CSV file containing your binary gene expression data.

Upload CSV

Figure 5.2 The upload data page, which the user is first presented with.

Below these text boxes are controls allowing the configuration of update function parameters
(maximum size and threshold, see Chapter 3). The ‘Synthesise’ button can then be pressed
to begin synthesising Boolean network rules. The browser switches to the ‘Results’ page
and Boolean update functions are displayed in a table as they become available (Figure 5.5).

5.3 SCNS finds stable states and performs model pertur-

bations

Once a model, or set of models, has been found, the user can navigate to the ‘Analysis’
tab to view the computed stable states (Figure 5.6). They can then use two text box con-
trols to select any single or combined overexpression or knockout perturbation. The stable
states will be dynamically recomputed with the chosen perturbation and re-displayed on the

page (Figure 5.7).
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SCNS Toolkit Load Data STG Results Analysis Configuration

Save JSON

Initial cells

Target cells

Figure 5.3 The state transition graph page, which allows visualisation of the data, selec-
tion of parameters, and running of synthesis.

5.4 SCNS can dispatch computations to the cloud

SCNS can perform all computations on the user’s local workstation, or can deploy compu-
tations to the cloud and parallelise synthesis across nodes in order to speed up the search
through the large number of possible model solutions. The compositional algorithm intro-
duced in Chapter 3 factorises the search for a Boolean network in a way that treats each gene
independently of others. SCNS takes advantage of this in order to parallelise computation.
On a data set containing 100 genes, computation can in principle be parallelised over 100

compute nodes.

5.5 Tool architecture

SCNS is organised into two components. The frontend is a web-based graphical interface
that the user interacts with in order to control the tool. The frontend is written using the

Angular]S Javascript web application framework (http://angularjs.org). The backend, writ-


http://angularjs.org
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SCNS Toolkit Load Data STG Results Analysis Configuration

Target cells

Figure 5.4 Selecting initial and target cell classes.

ten in F#, carries out all state transition graph, synthesis and stable state computations. The
backend exposes a lightweight webserver using the Suave library (http://suave.io/, which
runs locally and through which the frontend and backend communicate.

The mbrace (Dzik et al. (2013), http://mbrace.io/) cloud programming library is used to dis-
tribute computation to the cloud. Currently, this library supports the Microsoft Azure plat-
form (http://azure.microsoft.com/). Amazon Web Services (http://aws.amazon.com/) sup-
port is currently under development. Once this is implemented, SCNS can be updated to
support both systems.


http://suave.io/
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http://azure.microsoft.com/
http://aws.amazon.com/
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Figure 5.5 Results page. Matching Boolean functions are displayed as they become avail-
able. Spinning icons indicate that synthesis has not yet finished.
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SCNS Toolkit Load Data STG Results Analysis Configuration
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Figure 5.6 Analysis page. Computed stable states are shown.

SCNS Toolkit Load Data STG Results Analysis Configuration
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Gene perturbations

Figure 5.7 Recomputed stable states under a selected combined overexpression/knockout
perturbation.



Chapter 6

Discussion

6.1 Gene regulatory network reconstruction from single-
cell data

Uncovering and understanding the gene regulatory networks (GRNs) which underlie de-
velopment and homeostasis is a central issue in molecular cell biology. New single-cell
resolution gene expression measurement technology provides snapshots of the gene expres-
sion states of the cells that make up a biological tissue, a level of detail which has not been
available before. The aim of this PhD was to investigate the possibility of using this new
high resolution data to reconstruct mechanistic computational models of gene regulatory
networks, which could then be tested experimentally, and used to make useful predictions.
This aim led to several objectives:

1. To develop and implement an algorithm for the reconstruction of executable models

of gene regulatory networks from single-cell gene expression data.

2. To apply this algorithm to a new data set covering 3934 single cells measured during
early embryonic blood development, in order to reconstruct a predictive model of

primitive haematopoiesis and generate new biological insights.

3. To develop a user-friendly and efficient graphical tool which can be used by biologists
to reconstruct gene regulatory network models from new single-cell gene expression
data sets as they become available.

In chapter 3, a synthesis algorithm was introduced for the reconstruction of asynchronous

Boolean networks. Taking advantage of the single-cell resolution of the data, I treated ex-
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pression profiles as states of an asynchronous Boolean network and framed model inference
as the problem of reconstructing a Boolean network from its state space. I then introduced
a scalable algorithm to solve this synthesis problem. In order to achieve scalability, this
algorithm works in a modular way, treating different aspects of a graph data structure sep-
arately before encoding the search for logical rules as Boolean satisfiability problems to be
dispatched to a SAT solver.

In chapter 4, this synthesis algorithm was applied to the experimental data set. This resulted
in a 20-node asynchronous Boolean network for early blood development, which was con-
sistent with known biology. By applying standard techniques for the analysis of Boolean
networks, I found the stable state attractors and performed computational perturbations. The
synthesised network, along with the subsequent computational analysis led to a set of novel
predictions which were then tested experimentally. I found that these results were robust
when performing bootstrapping, removing a third of the data at random and rerunning the

synthesis algorithm.

Experimental collaborators were able to validate key predictions made by the analysis. The
update function for one of the genes at the core of this network, Erg, which directly acti-
vates many other genes, was tested experimentally in an embryonic stem cell model of early
blood development. Evidence was found that the activators specified in the gene’s synthe-
sised update function (HoxB4 and Sox17) do indeed activate expression of the gene, and
furthermore in a fashion consistent with the Boolean “OR” logic of the synthesised update
function. This could be regarded as a “local” validation of our model, testing two of the

directed edges in the network.

Computational perturbations to another gene at the core of the network, Sox7, indicated
that when Sox7 was overexpressed, stable states corresponding to primitive erythroid pro-
genitors no longer exist. Cell-forming assays from an embryos of a mouse with an inducible
Sox7 transgene confirmed this prediction experimentally, finding that Sox7 induction results
in a significant decrease in erythroid colony formation. This can be thought of as a “global”
validation of our model, as it is a prediction about the behaviour of the whole network under

a certain perturbation.

Finally, in chapter 5, a general purpose tool was developed to be used by biologists to
construct models from new data sets. This tool has a web-based graphical user interface and

a backend which can dispatch computations to the cloud in order to scale to larger data.

Previous analyses of single-cell gene expression data had mostly been based on statistical

properties of the data viewed as a whole, such as the correlation in the level of expression of
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pairs of genes. Such analysis cannot recover mechanistic Boolean logic, does not infer the
direction of interactions and cannot easily distinguish direct from indirect influence. During
the course of this PhD, two methods for reconstructing mechanistic gene regulatory net-
work models from single-cell gene expression data have appeared. Chen et al. introduced
an approach for inferring asynchronous Boolean networks from a directed cell-lineage tree
that describes relationships between cell types, together with single-cell measurements from
each of these cell types (Chen et al. (2014a)). The method uses a genetic algorithm, a local
search method, to optimise network structures. Networks which permit n-step transitions
from early cell types to late cell types and minimise transitions from late cell types to early
cell types are given high scores. The method was applied to a data set of approximately
500 cells taken during preimplantation mouse development from 16- to 64-cell stage em-
bryos (Guo et al. (2010)). The reconstructed model was found to be in good agreement with
a benchmark GRN constructed manually from experiments (Oron and Ivanova (2012)).

This method is conceptually similar to my approach. The first key difference is that the
very large number of cells measured in our experimental case study allowed me to construct
a much more fine-grained and detailed lineage tree where each node corresponds to an
individual cell and each edge to a change in a single gene. The second key difference is
that I obtained exact/optimal solutions to my reconstruction problem by using synthesis

techniques, rather than employing local search methods.

Ocone et al. introduced a method for deriving ordinary differential equation (ODE) mod-
els from single-cell gene expression data (Ocone et al. (2015b)). In this approach, a static
relevance network is obtained using GENIE3 (another approach, such as partial correlation
or mutual information could also be used) and cells are ordered in “pseudotime” using a
diffusion map and the Wanderlust algorithm (Bendall et al. (2014)). This reconstructed time
course is then used to optimise the parameters of different candidate ordinary differential
equation (ODE) models that fit the static topology of the relevance network. These ODEs
can incorporate mechanistic logic such as AND and OR gates. An advantage of this ap-
proach is that continuous gene expression levels are taken into account, while SCNS only
deals with binary expression. However, the structure of the network is derived using corre-
lation based approaches rather than directly from the time course, and so is subject to the
limitations of correlation. A weakness is that only one route through the data is considered,
while the SCNS toolkit integrates information from many paths and multiple starting and
ending points in the state transition graph. Scalability may also be an issue. Since there a
super exponential number of potential ODE models to train and compare, it seems unlikely

this approach can scale to very large data sets.
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A similar approach should work for the learning of Dynamic Bayesian Networks (DBNSs).
A DBN is a Bayesian network which incorporates a notion of time, updating the value of
variables based upon values at the previous time step. DBNs avoid the two serious limi-
tations of Bayesian networks that were discussed in the introduction: the restriction to an
acyclic graph and the need for perturbation data. The training on sequential time course
data often allows the direction of edges to be determined without recourse to experimental
perturbations, and while the structure of the DBN remains an acyclic graph and there is no
feedback within a single time step, the value of downstream nodes from the current time
step are allowed to influence upstream nodes at the next time step. It would be interesting
to see how such an approach would compare to both the SCNS toolkit and the method of

Ocone.

6.2 Synthesis in biology

Synthesis has recently been applied in the context of biology, during the course of this PhD.
Koksal et. al. show how to synthesise state-machine-like models from gene mutation experi-
ments using a novel counterexample-guided inductive synthesis (CEGIS) algorithm (Koksal
et al. (2013)). Previous work introduced a state-machine based model that describes how
signalling between a set of cells leads to a specific, invariant, cell fate pattern in the develop-
ment of the C. elegans vulva. Koksal et. al. show how this model can be reconstructed from
a network of known gene interactions and a specification of the effect of genetic perturba-
tions on cell fates, given in a genotype-phenotype table. The approach introduces “holes”
in the update functions for specific genes, which are then automatically filled in by the syn-
thesiser. Both the data and the type of model considered in this work were different from
those dealt with in the current thesis, which called for a different approach.

Recently, there have been several applications of synthesis to Boolean networks. Sharan and
Karp (Sharan and Karp (2013)) synthesise Boolean networks given an existing, static topo-
logical network and a set of perturbation experiments, by reduction to the NP-hard integer
linear programming (ILP) problem (Jiinger et al. (2010)). The topological network given as
input must be a directed acyclic graph, and it may be signed to indicate whether a relation
is activating or repressing. The perturbation experiments fix the value of a subset of genes
and report the observed value of another subset of genes. From these two sets of inputs, a
network is learnt that optimally fits the observed data. This problem was previously shown
to be NP-complete (Karlebach and Shamir (2012)). The ILP encoding of this problem in-

troduces 2" binary variables to represent the truth table of a Boolean function and integer



6.2 Synthesis in biology 89

linear constraints to minimise the number of disagreements with experimental data. The

CPLEX solver is then used to obtain an exact solution.

Sharan and Karp apply their method to the well-studied EGFR and IL-1 signalling networks.
Large Boolean models for these two systems already exist, and their agreement with exper-
imental perturbation data has been assessed (Ryll et al. (2011); Samaga et al. (2009)). The
ILP encoding was used to pinpoint modifications to these models which improve their fit
to the experimental data. The hand-curated EGFR network has 112 nodes, and 34 exper-
imental perturbation measurements were made. The network has a 76% agreement with
these experimental observations. The ILP solution was used to suggest 4 minimal modifica-
tions to the model which increase the agreement to an optimal value of 90%. However, this
model is not unique, and searching for other optimal models revealed alternate networks
which were markedly different, suggesting that even with an existing topological network
much more experimental perturbations are needed to narrow the search space of matching
Boolean networks. Together the requirement for comprehensive perturbation data and an
existing topological network represent rather extensive prior knowledge of the gene regula-
tory network, and limit the application of this approach. The limitation to a directed acyclic
graph is subject to the same criticisms as for the Bayesian network methods discussed in the
introduction of this thesis. The use of ILP solving rather than SAT/SMT solving, however,
is a potentially very interesting aspect of this approach. A similar method has been intro-
duced by Guziolowski and Videla et al., which uses an Answer Set Programming (ASP)
formulation instead of ILP (Guziolowski et al. (2013)). ASP is a search method based on
logic programming (Gebser et al. (2007a, 2012)). It would be very interesting to assess the
relative advantages of ILP, ASP and SAT/SMT approaches.

Dunn et. al. and Xu et. al. show how to fit an existing static network for embryonic stem
cells to gene expression data in order to obtain an executable Boolean network, under the
assumption that experimentally measured data represent stable states of the system (Dunn
etal. (2014); Xu et al. (2014)). Dunn et. al. firstly obtain a relevance network by correlating
the level of expression of 17 transcription factors, measured in population gPCR data in a
range of culture conditions and in time-course experiments. They then define a set of 23
desired stable states which must be reachable from defined initial states. They searched,
using an SMT solver, for Boolean networks that have a topology which is a subset of the
input relevance network and which have the desired stable states. The resulting models were
then used to make 28 new predictions about the effect of genetic perturbations on the stable
states of the system, 17 of which were experimentally validated. The use of correlation to

obtain the initial topology of the network is subject to the criticisms of correlation-based
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approaches to infer networks.

Xu et al. obtained a 30-node signed and directed topological network from previously pub-
lished ChIP-seq and knockdown studies. The expression of these 30 genes was then profiled
by single-cell PCR in 96 cells across two different culture conditions. These single-cell
measurements were then treated as stable states, and used to find a Boolean network. The
update function for each gene was searched for separately, by exhaustively enumerating all
functions that match the given topology and selecting the function that minimises transi-
tions out of the experimentally measured states. The resulting networks were used to make
individual, single, and triple in-silico knockdowns and found to be in good agreement with
experimental data. The assumption that experimentally measured cell states represent state
states of the model may be appropriate for cell lines maintained in culture, but it does not
transfer to developmental processes such as ours, where cells are transiting through inter-

mediate states in order to develop into a particular lineage.

Paoletti et al. synthesise a related class of models which extend Boolean networks with tim-
ing and spatial information (Paoletti et al. (2014)). These are the same class of synchronous
Boolean models used by Eric Davidson’s lab to model the development of the sea urchin.
Their SMT-based approach uses the theory of uninterpreted functions to synthesise model
logic from specifications of the synchronous time course of the system in wild type and per-
turbed conditions. This is therefore the most similar method to ours, different in that it uses
the linear path of a synchronous time course rather than a branching asynchronous states-
pace as a specification. Paoletti et al. apply their method to reconstruct the first model of

sea urchin development that can explain all (rather than most) previous experimental data.

These recent results demonstrate the promise of synthesis in biology. New methods are
able to automatically reconstruct mechanistic models that satisfy all existing experimental
specifications, and which can subsequently be used to make new predictions to be validated
in the lab. These models would previously have to be built by hand from experimentally

determined regulatory logic, and tested to ensure they behave as expected.

Synthesis approaches generally lead to combinatorial rather than statistical problems, which
are then exactly solved using algorithms that leverage highly optimised specialist solvers.
Synthesis yields a globally optimal model that satisfies the specification given by the data
completely, or otherwise informs the user that no such model exists. Unlike local learning
approaches, there is no issue of getting stuck in locally optimal solutions. Synthesis can
also be used to find multiple, or all, models that satisfy a given set of model specifications,

and design experiments to distinguish between the different possibilities.
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The different synthesis approaches discussed here reconstruct models from a range of dif-
ferent experimental data. The approach introduced in this thesis is the first to synthesise
gene regulatory network models directly from raw gene expression data, without the need
of either genetic perturbation data or a-priori information about the topology of the network.
The major disadvantage of my approach is the need for a very large number of measured sin-
gle cells (thousands rather than hundreds) in order to construct a connected state-transition
graph. Development of methods which can incorporate data from multiple experimental
sources will improve the quality of reconstructed models.

6.3 Applicability of SCNS to new data

While I have successfully the SCNS toolkit to reconstruct a mechanistic model of early
blood development which is consistent with known biology, and with which we were able
to validate new predictions, this is ultimately only one test case. To fully evaluate the method
it needs to be applied to more data sets.

The field of single-cell genomics is still relatively young, and there is a sparsity of high-
quality data sets with a large number of cells. This is set to change as adoption of these
protocols becomes more widespread. New single-cell studies will give us insights into or-
gan development and human disease. A larger number of data sets will allow comprehensive
evaluation of techniques introduced to reconstruct gene regulatory networks, and allow as-
sessment of the advantages and disadvantages of different approaches and improvement of
the methods.

The move towards whole-transcriptome RNA-sequencing data removes the selection bias of
gPCR data and allows analysis of the full genetic programme of the cell but presents its own
challenges (Macaulay and Voet (2014); Tang et al. (2009)). In chapter 5, I found that I could
combine data obtained by single-cell RNAseq with data from qPCR, after removing genes
not in the qPCR data set. Cells measured by RNAseq clustered together with cells of the
same type measured by qPCR. There does not seem to be a problem in principle, therefore,
to applying SCNS to RNAseq data. However, methods for identifying the most important

genes and automatically reducing the gene set to a manageable size will be required.

Another interesting project would be to investigate the application of my synthesis tool to
single-cell proteomics data sets, such as those measured by single-cell mass cytometry (Zun-
der et al. (2015)). Protein information is potentially more interesting than mRNA data, as it

is the protein that is functional. Ideally, it would be possible to use both sources of informa-
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tion. The analysis of proteomics data will present challenges. Single-cell mass cytometry
data sets have different characteristics to single-cell gPCR data sets, and often consist of
many more cells. A new pipeline for the processing of this new data type would need to
be introduced, and then an assessment of whether my tool can successfully reconstruct exe-

cutable models from it.

6.4 Improvements to the algorithm

There are several modifications which could be made to the synthesis algorithm in an at-
tempt to improve efficiency or to extend it to different classes of model. Firstly, different
SAT encodings could be used for the search for Boolean functions. Two different, equally
natural SAT encodings for the same problem can lead to very different performance be-
haviours (Hertel et al. (2007)). For this reason, different encodings should be experimented
with and their effect on performance examined. The best encoding for a particular prob-
lem for a CDCL solver is not necessarily the one with the smallest number of variables and
clauses. One important consideration is the ammendability of the encoding to unit propoga-
tion: if a fact or conflict can be derived by unit propagation then backtracking search does
not need to be invoked. Brain et al. have recently introduced an approach for automati-
cally deriving “optimally propagating” SAT encodings (Brain et al. (2016)). Propagation-
friendly SAT encodings of cardinally constraints x; + - - - +x, < k have been known for some
time (Abio et al. (2013); Ansé6tegui and Manya (2005); Bailleux and Boufkhad (2003); Ben-
Haim et al. (2012); Biere et al. (2014); Chen (2010); Eén and Sorensson (2006); Klieber and
Kwon (2007); Prestwich (2007); Sinz (2005)).

It is possible that encoding the search for Boolean update functions in a more expressive
logic using Satisfiability Modulo Theories solvers could give a more concise representation
and lead to a more efficient solution (Abio et al. (2013); Bayless et al. (2015); Sebastiani
(2007)). Since my synthesis problem is essentially a discrete optimisation problem, it is
also possible that the application of integer linear programming solvers (such as CPLEX or
Gurobi) as in the work of Sharan and Karp discussed above (Sharan and Karp (2013)) rather
than satisfiability solvers would result in a faster implementation (Li et al. (2004)). The work
on satisfiability of linear integer constraints and optimisation in the context of SMT solvers
should also be investigated (Bjg rner et al. (2015); Bobot et al. (2012); Bromberger et al.
(2015); Dillig et al. (2009); Hendrix and Jones; Jovanovi¢ and De Moura (2011); Li et al.
(2014); Sebastiani and Tomassi (2012)), as well as answer set programming (Baral (2003);
Gebser et al. (2007a,b, 2014)).
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It would be interesting to adapt the algorithm to the synthesis of qualitative, rather than
Boolean, networks. Qualitative networks extend variables to take values from a speci-
fied finite range, say {0,1,2,3} to represent zero, low, medium and high levels of expres-
sion (Schaub et al. (2007)). There are no obvious barriers to doing this in principle. A
method would need to be chosen to discretise single-cell gene expression measurements to
the discrete values, and then a state transition graph could be constructed where edges repre-
sent the increase or decrease in the level of expression of a single gene. The SAT encoding
could be adapted so that update functions increase and decrease expression levels. One
problem that this modification would introduce is that the number of possible discrete cell
states would increase, along with the number of cell measurements required to successfully

construct a connected state transition graph.

6.5 Concluding comments

There are two questions at the heart of modern cell biology research. The first is how
to destroy diseased and cancerous cells in the body without harming healthy tissue, and
the second is how to produce clinically-relevant cell types in the lab for the purposes of
regenerative medicine. There have been breakthroughs in both of these areas in recent years,
most strikingly in the immunotherapies and stem cell treatments that are currently going
through clinical trials. However, most cancers remain incurable and there is still much more
to be done in regenerative medicine research. For example, despite decades of research on
the development of blood in the embryo it is still not known how to produce blood stem
cells by directed differentiation of embryonic stem cells in the lab, a breakthrough that

would have huge clinical applications as a replacement for bone marrow transplantation.

Reconstructing mechanistic models of the gene regulatory networks underlying develop-
mental and disease processes represents an important step towards tackling these problems.
The combination of new single-cell data with new computational techniques that take full
advantage of this data promises to massively advance the nascent field of systems biology.
The development of general-purpose tools that can be used by biologists as new data be-
comes available, like the SCNS toolkit developed as part of this PhD, is crucial to ensure

the widespread adoption and application of these new techniques.
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Supporting information for chapter 4 —
Synthesised Boolean update rules
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Gene Synthesised update functions | % Non-observed Motifs present
transitions disallowed (N;)
Scl Flil 98 Yes
Etv2 Notchl 96 Yes
Flil En2 96 Yes
Sox7 97 Yes
Lyll Sox7 92 Yes
Sox7 Sox17V HoxB4 82 No (Sox missing)
Erg (HoxB4 N\ Lyll)V Sox17 84 Yes
(HoxB4 NTall) V Sox17 83 Yes
Notchl | Sox7 94 Yes
Gatal | Gfilb A Lmo?2 86 Yes
Gfilb N\ Hhex 84 No (Hhex missing)
Gfilb NEtsl 84 Yes
HoxB4 | (Lyll NEtsl) N —Gatal 65 Yes
(Lyl1 v Nfe2) N —Gatal 65 Yes
(Lyl1V Ikaros) A —Gatal 65 No (Ikaros missing)
Sox17 | Lyll AN—Gfilb 77 No (Gfi missing)
(Eto2 N\ Sox7) N —Gfilb 76 No (Gfi missing)
(Eto2 A Tall) N —Gfilb 75 No (Gfi missing)
Etsl Notchl 96 Yes
Gfil Gatal \—Sox17 88 Yes
Nfe2 N —=Sox17 88 Yes
Gfilb | Nfe2 AMyb 87 Yes
Pu.l A Tkaros 86 No (Ikaros missing)
Pu.1 N\ Nfe2 86 Yes
Pu.1 AMyb 86 Yes
Eto2 Sox7 93 No (Sox missing)
Hhex 92 No (Hhex missing)
EtsI NFlil 94 No (Ets missing)
Hhex Sox7 97 No (Sox missing)
Notchl 93 No (Rbpj missing)
Ikaros | Nfe2V Gfilb 84 Yes
Nfe2 V Gatal 83 Yes
Nfe2 v Gfil 82 Yes
Lmo2 | Sox7V Gfil 79 Yes
Sox7V Erg 79 Yes
Sox7V HoxB4 77 Yes
Nfe2 lkaros 78 Yes
Pu.1 Gfil V Erg 67 Yes
Myb HoxB4 64 Yes




Appendix B

Supporting information for chapter 4 —

Results of repeating synthesis with a

more stringent discretisation threshold

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Scl Scl 100
Fli1 99

Sox7 99

Etv2 Sox7 98
Notchl 94

Flil Scl 99
Etsl] 99

Sox7 98

Etv2 98

Hhex 97

Lyll Flil 93
Eto2 93

Scl 93

Etsl 93

Sox7 91

Hhex 91

En2 91

Continued on next page




135

continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Sox7 Notchl 95
Sox17\ HoxB4 96

Erg Sox7 87
Notchl 84

HoxB4 N Sox17 85

Notchl | Sox7 96
Scl 96

Etsl 96

Flil 96

Ew2 96

Gatal | Gfilb 86
Gfil 87

HoxB4 | Lyll 74
Erg 74

Sox17 | Lyll N—Gfilb 75
Etsl Sox7 99
Notchl 94

Gfil Gatal 87
Gatal \ —~Sox17 87

Nfe2 N —-Sox17 87

HoxB4 N\ —Notchl 87

Gfilb N —Sox17 86

Gfilb | Gatal 86
Nfe2 82

Gfil 81

Eto2 Flil 97
Tall 96

Etsl 96

Sox7 94

Hhex 94

En2 94

Hhex Scl 99
Flil 99

Continued on next page




Supporting information for chapter 4 — Results of repeating synthesis with a more

136 stringent discretisation threshold
continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)

Etsl 99

Sox7 98

En?2 97

Ikaros | Nfe2V Gfilb 83

Gatal v Gfilb 80

MybV Gfilb 80

Gfil v Gfilb 80

Myb N\ Eto2 80

Myb\ Lyll 81

Lmo2 | Sox7 72

Nfe2 Gatal 84

Gfilb 84

Gfil 80

Ikaros 73

Pu.1 lkaros 75

Gfilb 74

Myb lkaros 79

Gfilb 75




Appendix C

Supporting information for chapter 4 —

Results of repeating synthesis with

multiple rounds of bootstrapping (A-E)

A

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Scl Hhex 96
Sox7 98
En?2 98
Fli1 99
Etsl 100
Scl 100

Etv2 No solution
Flil Etv2 98
Sox7 98
Notchl 98
Lyll En2 90
Notchl 91
Sox7 92
Sox7 Sox17\ HoxB4 85
Erg Sox7\ HoxB4 90

Continued on next page
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138 rounds of bootstrapping (A-E)
continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Sox7V Notchl 89
Sox7 89
Notchl 89
Sox7 N\ Notchl 88
Sox17\ HoxB4 84

Notchl | No solution
Gatal | Gfil 89
HoxB4 | Lyll 76
Sox17 | Lyll N—Gfilb 78
Etsl Sox7 98
Notchl 99
Gfil Gfilb N —Sox17 88
Nfe2 N —Sox17 90
Gatal 90
Gatal \ —Sox17 91
Gfilb | Gatal 87
Nfe2 \ Myb 87
Nfe2 A Ikaros 86
Pu.1 N\ Nfe2 86
Sox7 A Gatal 86
Pu.l \Myb 85
Eto2 Etsl 95
Sox7 94
Hhex 93
Notchl 93
En?2 93
Hhex Sox7 98
Notchl 98
Ikaros | Nfe2\ Gfilb 81
Lmo2 | Notchl 79
Sox7 79
Nfe2 Ikaros 75
Gfil 81

Continued on next page
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continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Gfilb 83
Gatal 84
Pu.1 Erg 71
Sox7 N\ Eto2 71
Lyll NErg 71
Notchl A\ Eto2 71
Gfil VErg 72
HoxB4\ Erg 72
Erg NEto2 73
lkaros N\ Erg 73
Notchl N Ikaros 75
Sox7 A Ikaros 75
Myb HoxB4 60
Gfil 67
B

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Scl Hhex 96
Notchl 96
En?2 96
Etsl 97
Sox7 98
Fli1 98

Etv2 No solution
Flil Notchl 96
Ew2 96
Sox7 98
Lyll Erg 84
Notchl 87
En?2 87
Sox7 91

Continued on next page




Supporting information for chapter 4 — Results of repeating synthesis with multiple

140 rounds of bootstrapping (A-E)
continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Sox7 Sox17\ Erg 90
HoxB4\ Erg 88
Gfil vV Erg 85
Sox17\ HoxB4 84
SclNErg 82
Flil NErg 82
Erg 82
Erg Notchl N Etv2 81
Sox17\ HoxB4 83
Sox7 N\ Notchl 85

Notchl | No solution
Gatal | Gfil 84
Gfilb NEtsl 85
Lmo2 N\Gfilb 87
HoxB4 | Lyll 75
Sox17 | Lyll N—Gfilb 78
Etsl Sox7 95
Notchl 97
Gfil Gatal 86
Nfe2 N —-Sox17 88
Gfilb AN—Sox17 88
Gatal \ —Sox17 88
Gfilb \—Erg 87
Gatal \—Erg 86
Nfe2 N\ —Hhex 86
Gatal \ —~Hhex 86
lkaros N\ —Hhex 86
Nfe2 N —Erg 86
Gfilb | Gfil 81
Pu.1 N\ Nfe2 88
Nfe2 N Myb 89
Eto2 Sox7 94
Hhex 93

Continued on next page
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continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Etsl 92

Et2 91

Notchl 91

Hhex Notchl 94
Sox7 97

Ikaros | Myb A Eto2 80
Nfe2 V Gatal 81

Nfe2 v Gfil 82

Nfe2 \ Gfilb 83

Lmo2 | Sox7 78
Nfe2 Ikaros 77
Gfil 80

Gatal 83

Gfilb 86

Pu.1 Nfe2 NErg 67
HoxB4 N Gfilb 67

Myb N\ Erg 67

Sox7 AN Myb 67

Erg NEto2 68

Gfil VErg 68

Lyll NErg 68

Notchl N\ Nfe2 68

Tbx20 N\ Gfilb 68

Sox7 N\ Nfe2 69

Gfilb \NErg 72

lkaros \ Erg 73

Notchl N\ Gfilb 74

Sox7 N\ Gfilb 75

Notchl N Ikaros 75

Sox7 A Ikaros 75

Myb HoxB4 65
Gfil 66




Supporting information for chapter 4 — Results of repeating synthesis with multiple

142 rounds of bootstrapping (A-E)
C

Gene | Synthesised update functions | % Non-observed transitions disallowed (;)
Scl Hhex 97
Notchl 97
Sox7 98
En2 98
Fli1 99
Etsl 100
Scl 100

Etv2 No solution
Flil Notchl 97
Etv2 97
Sox7 98
Lyl1l Notchl 90
Sox7 92
Sox7 Sox17\ HoxB4 85
Erg Sox7 88
Notchl 89
Sox17\ HoxB4 85

Notchl | No solution
HoxB4 | Lyll 76
Sox17 | Lyll N\ —Gfilb 75
Erg N—Gfilb 74
Flil N—Gfilb 74
Eto2 N—Gfilb 74
Sox7 N\ —Gfilb 74
Lyll N—Gatal 73
Etsl Notchl 98
Sox7 98
Gfil Gfilb AN—Sox17 86
Gatal 87
Nfe2 N —Sox17 87
Gatal \ —Sox17 89
Gfilb | Gfil NEto2 80

Continued on next page
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continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
lkaros \ Gfil 80

Nfe2 NEtsl 82

Notchl N\ Gatal 82

Myb N Ikaros 83

Gatal NEtv2 83

Pu.1 N\ Nfe2 83

Sox7 N\ Gatal 83

Pu.l N\ Gatal 84

Pu.1 N Ikaros 84

Pu.1 \ Myb 84

Gatal N Etsl 85

Myb N\ Gatal 85

Nfe2 N Myb 85

Eto2 Etsl 96
Sox7 95

Hhex 94

Ew2 94

Notchl 93

Hhex Notchl 96
Sox7 97

Ikaros | Myb 80
Myb N Etsl 80

Myb N\ Flil 80

Scl N\ Myb 80

Myb N\ Lyll 80

MybV Gfil 80

MybV Gatal 81

MybV Gfilb 81

Nfe2 N Myb 81

Myb N\ Eto2 82

Nfe2 V Gatal 82

Nfe2 Vv Gfil 82

Nfe2 \ Gfilb 83

Continued on next page




Supporting information for chapter 4 — Results of repeating synthesis with multiple

144 rounds of bootstrapping (A-E)
continued from previous page
Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Lmo2 | Sox7 79
Notchl 78
Nfe2 Ikaros 77
Gfil 79
Gfilb 83
Gatal 84
Pu.1 Erg 67
SclNErg 67
EtsI NErg 67
Flil NErg 67
Notchl N\ Eto2 68
HoxB4\ Erg 68
Sox7 N Eto2 68
Erg \NEto2 69
Gfilb N\ Erg 69
Notchl N\ Lyll 69
Gfil vV Erg 70
lkaros \ Erg 70
Lyll NErg 70
Notchl A\ Gfilb 70
Sox7 N\ Lyll 70
Sox7 AN Gfilb 71
Notchl A lkaros 72
Sox7 N Ikaros 73
Myb Gfil 64
HoxB4 62
Erg 62
D
Gene | Synthesised update functions | % Non-observed transitions disallowed (;)
Scl En?2 96

Continued on next page
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continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Notchl 96
Etsl 96
Hhex 96
Fli1 97
Sox7 97
Etv2 No solution
Flil Notchl 96
Etv2 96
Sox7 98
Lyll Notchl 86
Erg 88
Sox7 91
Sox7 Lmo2V HoxB4 89
Sox17\ Erg 89
HoxB4\ Erg 87
Gfil V Erg 85
Sox17V Lmo?2 85
Scl\NErg 83
Flil NErg 84
Erg 83
Sox17\ HoxB4 83
Erg Sox7 86
Notchl 82
Sox7V Gfil 86
Sox17\ HoxB4 87
Sox7 NFlil 87
Notchl N\ Eto2 88
Sox7 N\ Eto2 89
Notchl N\ Lyll 90
Sox7 N\ Lyll 90
Notchl | No solution
Gatal | Gfilb 85
Gfil 88

Continued on next page
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146 rounds of bootstrapping (A-E)
continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)

HoxB4 | Lyll N —~Gfil 64

Sox17 | Lyll AN—Gfilb 78

Erg N—Gfilb 76

Lyll N—Gatal 75

Erg AN —Gatal 74

Eto2 N—Gfilb 73

Lyll AN—~Myb 72

Hhex N\ —=Gfilb 72

Sox7 N\ ~Gfilb 72

Erg N—Gfil 71

Lyll N —Gfil 71

Etsl Sox7 94

Notchl 97

Gfil Gatal 88

Gatal \ —~Sox17 89

Gfilb Gatal 85

Nfe2 84

Nfe2 V Gfil 85

Nfe2 \ Gatal 86

Pu.1 N\ Nfe2 86

Myb N\ Gatal 86

Pu.1 N Ikaros 86

Nfe2 N Ikaros 87

Pu.1 A Myb 87

Nfe2 N Myb 88

Gfil vV Gatal 88

Eto2 Flil 93

Sox7 92

Scl 92

Hhex 92

Lyll 92

Etsl 90

Hhex | Notchl 94

Continued on next page
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continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Sox7 97

Ikaros | MybV Gfilb 80
Myb N Lyll 81

Nfe2 v Gatal 81

Myb N\ Eto2 82

Nfe2 \ Gfilb 83

Lmo2 | Sox7 76
Erg 72

Nfe2 Myb 70
Ikaros 76

Gfil 81

Gatal 85

Gfilb 86

Pu.1 Erg 69
Gfilb \NErg 74

Notchl N\ Gfilb 75

Sox7 N\ Gfilb 75

Myb Erg 62
Gfil 64

HoxB4 66

E

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Scl Lyll 96
Hhex 97

Eto2 97

Notchl 97

En2 98

Sox7 98

Etsl 100

Flil 100

Continued on next page
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148 rounds of bootstrapping (A-E)
continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Scl 100
Etv2 Notchl 96
Sox7 98
Flil Meisl 90
Notchl 97
Ew2 98
Sox7 98
Lyll Hhex 95
Notchl 95
Sox7 97
Sox7 Sox17 HoxB4 88
Erg Notchl 91
Sox7 90

Notchl | No solution
Gatal | Gfil 85
HoxB4 | Sox17V Lmo2 67
Eto2 A —Gfil 59
Lyll N —Gfil 59
Flil N—Gfil 59
Scl N\ —Gfil 59
Lmo?2 57
Sox17 | Flil N—Gfilb 79
Sox7 N —Gfilb 79
SclN\—Gfilb 79
Ets1 N—Gfilb 79
Env2 N—Gfilb 79
Notchl A\ —Gfilb 79
Hhex N ~Gfilb 78
Eto2 N\ —Gfilb 77
Lyll N\ —Gfilb 75
Etsl Notchl 97
Sox7 98
Gfil Gatal 87

Continued on next page
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continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)
Nfe2 N —-Sox17 87

Gatal \ —~Sox17 88

Gfilb | Notchl N\ Gatal 81
Nfe2 NEtv2 81

Sox7 N\ Nfe2 81

Gatal NEtv2 82

Sox7 N\ Gatal 82

Pu.1 N\ Gatal 82

Nfe2 N Etsl 83

Gatal N Etsl 84

Myb A Tkaros 84

Myb N\ Gatal 84

Pu.1 N Ikaros 84

Pu.1 \ Myb 85

Pu.1 A\ Nfe2 85

Nfe2 \ Myb 86

Eto2 Etsl 99
Sox7 97

Ew2 97

Notchl 96

Hhex 96

Hhex Notchl 96
Sox7 98

Ikaros | Myb A Lyll 80
Myb\ Gatal 80

Myb\ Gfil 80

Myb \ Mitf 80

MybV Gfilb 81

Nfe2 N Myb 81

Nfe2 \ Gfilb 82

Lmo2 | Sox7 78
Notchl 78

Notchl \ Erg 79

Continued on next page
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150 rounds of bootstrapping (A-E)
continued from previous page

Gene | Synthesised update functions | % Non-observed transitions disallowed (V;)

Sox7V Gfil 79

Sox7V HoxB4 79

Sox7\ Erg 79

Sox7\ Notchl 79

Nfe2 Myb 71

Ikaros 74

Gfil 80

Gatal 82

Gfilb 84

Pu.1 Erg 68

Sox7 67

Myb Erg 62

Gfil 63

HoxB4 65
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