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Abstract

Superhydrophobic surfaces are able to entrap gas pockets in-between surface roughness

elements when submerged in water. These entrapped gas pockets give these surfaces

the potential to reduce drag due to the overlying flow being able to locally slip over

the gas pockets, resulting in a mean slip at the surface. This thesis investigates the

different effects that slip and the texturing of the surface have on turbulence over

superhydrophobic surfaces. It is shown that, after filtering out the texture-induced

flow, the background, overlying turbulence experiences the surface as a homogeneous

slip boundary condition. For texture sizes, expressed in wall units, up to L+ . 20

the only effect of the surface texture on the overlying flow is through this surface slip.

The direct effect of slip does not modify the dynamics of the overlying turbulence,

which remains canonical and smooth-wall-like. In these cases the flow is governed by

the difference between two virtual origins, the virtual origin of the mean flow and the

virtual origin experienced by the overlying turbulence. Streamwise slip deepens the

virtual origin of the mean flow, while spanwise slip acts to deepen the virtual origin

perceived by the overlying turbulence. The drag reduction is then proportional to the

difference between the two virtual origins, reminiscent of drag reduction using riblets.

The validity of slip-length models to represent textured superhydrophobic surfaces can

resultantly be extended up to L+ . 20. However, for L+ & 25 a non-linear interaction

with the texture-coherent flow alters the dynamics of the background turbulence, with

a reduction in coherence of large streamwise lengthscales. This non-linear interaction

causes an increase in Reynolds stress up to y+ . 25, and decreases the obtained drag

reduction compared to that predicted from homogeneous slip-length models.





Nomenclature

Greek symbols

Symbol Description

∆ Spatial offset between velocity and shear

∆cf Change in skin-friction coefficient

∆t Timestep

∆p Pressure difference across the liquid-gas interface

∆U Shift of the logarithmic region of the mean velocity profile

∆x Streamwise grid spacing

∆y Wall-normal grid spacing
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α Runge-Kutta coefficient of the implicit viscous term

β Runge-Kutta coefficient of the explicit viscous term

γ Runge-Kutta coefficient of the advective term

δ Channel half-height
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ζ Runge-Kutta coefficient of the advective term

η Liquid-gas interface deformation height

θ Contact angle

κ Von Kármán’s constant

λ Wavelength

λj Wall-normal interpolation coefficient

µ0 Coefficient of proportionality between `+x − `+z and ∆U+ for riblets

ν Kinematic viscosity

ρ Density

σ Surface tension

τw Wall shear stress

τuv Reynolds stress

φ Change in pressure

φg Gas fraction

φs Solid fraction

ϕ Slip length phase
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G Discretised gradient operator
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L Discretised Laplacian operator
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cf Skin-friction coefficient

f An arbitrary function
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√
−1

j Wall-normal grid index

k Wavenumber

k Roughness height

kmod Modified wavenumber
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kx Streamwise wavenumber

kz Spanwise wavenumber

m An arbitrary integer

p Kinematic pressure

r Right-hand side of momentum equation in the fractional step method

r̃ Right-hand side of momentum equation in the modified fractional

step method

t Time

u Velocity vector

u∗ Fractional step intermediate velocity vector

uτ Friction velocity

u Streamwise velocity

v Wall-normal velocity
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y Wall-normal coordinate

yint Wall-normal extent of the refined grid

z Spanwise coordinate

Superscripts

Symbol Description

+ Wall unit

′ Fluctuation

n Timestep index

Subscripts

Symbol Description

0 Quantity of the reference smooth-wall

δ Quantity at channel centreline

bulk Bulk-flow property

k Runge-Kutta substep index

max Maximum value

min Minimum value

T Turbulent component

SHS Quantity from superhydrophobic simulations

SC Quantity from smooth-channel simulations
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Symbol Description

`T Virtual origin of the overlying turbulent flow

`x Streamwise slip length / virtual origin of the mean flow

`z Spanwise slip length

`z,eff Effective spanwise slip lengtĥ̀
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∇ Gradient operator
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O Order of

f̂ Variable in Fourier space
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Chapter 1

Introduction

This chapter introduces the motivation of and wider context around the application of

superhydrophobic surfaces for drag reduction. The mechanisms of how these surfaces

are able to reduce drag in turbulent flows are discussed and previous research in the

area is summarised.



2 Introduction

1.1 Background

Two of the driving motives for improvements in transportation are increasing speed

and reducing greenhouse gas emissions. The transport sector alone accounted for

26% of the total greenhouse gas emissions within EU-28 countries in 2015 (European

Environment Agency, 2017). The drag that a vehicle experiences is a limitation to

both the speed and efficiency of the vehicle, as well as its range. One important

contribution to the total drag is the skin friction, which results from friction between

the fluid and the vehicle surface, and, on an aeroplane, accounts for approximately half

of the total drag (Spalart & McLean, 2011). Numerous different techniques to reduce

skin-friction drag in turbulent flows have been explored for several decades. These

drag reduction techniques can be broadly split into two different categories, active

methods and passive methods. Active methods require an energy input to achieve

drag reduction, with some examples being oscillating walls (Jung et al., 1992), surface

suction/blowing (Choi et al., 1994), or the addition of polymers into the flow (Virk,

1975). Passive forms of drag reduction require no additional energy to work, and

typically take the form of surface modifications, for example, riblets (Walsh, 1983),

which are streamwise aligned surface grooves, permeable media (Hahn et al., 2002),

or, in aquatic flows, superhydrophobic surfaces (Rothstein, 2010). In this thesis the

drag reduction potential of the latter is explored.

1.2 Superhydrophobic surfaces

Research into engineering applications of superhydrophobic surfaces is inspired by

examples found in nature. One of the classic naturally occurring examples of a su-

perhydrophobic surface is the lotus leaf, which sometimes lends its name to the ‘lotus

leaf effect’ to describe superhydrophobicty. This ‘lotus leaf effect’ can be illustrated

by considering isolated droplets of water on a surface. On a conventional smooth

surface, a droplet of water will typically spread out across the surface. The angle that

the droplet makes with the surface, the contact angle, θ, for a conventional smooth

surface is usually small, less than 90◦, as shown in figure 1.1. On a rough surface,

the droplet will typically fill the gaps in-between roughness elements. The surface

roughness is wetted. This is known as the Wenzel state, and is depicted in figure 1.1.

Superhydrophobic surfaces combine surface roughness with chemical hydrophobicity.

This combination can allow droplets of water to sit on top of the roughness crests, with

a cushion of gas in-between the roughness elements. This is known as the Cassie, or

Cassie-Baxter, state and is also shown in figure 1.1. This property of superhydropho-
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Droplet

Superhydrophobic Surface

Wenzel state

Droplet

Superhydrophobic Surface

Cassie state

Droplet

Smooth Surface
ѳ ѳ

Figure 1.1 – Droplets of water on a smooth surface, a superhydrophobic surface in the

Wenzel state and a superhydrophobic surface in the Cassie state.

Superhydrophobic Surface

Gas

Liquid

No-slip Free-slip

L

Slip velocity

Slip length

Figure 1.2 – Schematic of flow over a submerged superhydrophobic surface showing

the regions of no slip and free slip over the roughness elements and entrapped gas

pockets, respectively, and the mean slip length the surface produces.

bic surfaces has many useful applications for droplet flows. For example, droplets on

superhydrophobic surfaces tend to roll off the surface rather than slide, as the centre

of mass of the droplet is higher above the surface (Mahadevan & Pomeau, 1999). As

a result, droplets are more effective at picking up dirt from the surface, which gives

these surfaces good self-cleaning properties.

For superhydrophobic surfaces that are fully submerged in water, gas pockets can

become entrapped in-between the roughness elements (Rothstein, 2010). An overlying

flow is, therefore, free to slip over the entrapped gas pockets, as shown in figure

1.2. This local slip results in a mean slip velocity at the effective surface formed

by the roughness crests and gas pockets. It is through this mean surface slip that

superhydrophobic surfaces have the potential to reduce skin-friction drag.

1.3 Wall-bounded turbulence

Before the mechanisms that allow these surfaces to reduce drag in turbulent flows

can be discussed, the physics of the near-wall region of wall-bounded turbulent flows

need to be understood. Turbulent flows are often labelled as ‘chaotic’ or sometimes
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Figure 1.3 – Schematic of the near-wall cycle depicting the high and low speed streaks

and their accompanying quasi-streamwise vortices.

‘random’. While the former is undeniable, there is structure within the seeming ran-

domness of near-wall turbulent flows. Indeed, the near-wall flow has been shown to

be organised with the existence of coherent turbulent structures. Near-wall streaks

were one of the first forms of organisation identified (Kline et al., 1967). These streaks

consist of spanwise alternating regions of high and low speed flow. The streaks are

flanked by a series of quasi-streamwise vortices (Smith & Metzler, 1983) along their

length. Together, these streaks and vortices form a self-sustaining process (Jiménez,

1994; Hamilton et al., 1995), the ‘near-wall cycle’, depicted schematically in figure

1.3. The vortices generate the streaks by bringing higher momentum fluid towards

the surface to form the high speed streaks and remove momentum from the wall to

form low speed streaks. The vortices themselves are formed by an instability of the

streaks (Jiménez & Pinelli, 1999). The near-wall cycle can exist independently of the

presence of the outer flow (Jiménez & Pinelli, 1999), but is locally modulated by the

outer region (Hutchins & Marusic, 2007).

In the near-wall region, the flow is characterised by its density, viscosity and the

shear at the surface, τw = ρν∂U/∂y|w, where ρ is the fluid density, ν is the fluid

kinematic viscosity, and ∂U/∂y|w is the wall-normal gradient of the mean velocity at

the surface. From this, a characteristic velocity, the friction velocity uτ =
√
τw/ρ can

be defined. Quantities characterised using the density, viscosity and friction velocity

are known as ‘wall units’ or ‘viscous units’. When expressed in these wall units

many aspects of the near-wall dynamics are self-similar. For example, the near-wall

streaks have a spanwise spacing of approximately λ+
z ≈ 100 (Kim et al., 1971) and a

streamwise length of λ+
x ≈ 1000 (Kreplin & Eckelmann, 1979). The quasi-streamwise

vortices are separated in the spanwise direction by λ+
z ≈ 100 and have a typical radius

λ+
r ≈ 15 (Blackwelder & Eckelmann, 1979). In the streamwise direction they remain in

the near-wall region for in for approximately λ+
x ≈ 200 with several vortices associated

to a single streak (Jeong et al., 1997).
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Many of the aforementioned drag reduction techniques for turbulent flows in sec-

tion 1.1 aim to achieve a reduction in drag by disrupting or modifying the near-wall

cycle. This would reduce mixing that brings higher momentum flow towards the sur-

face and, in turn, reduce the skin-friction drag. As discussed in the next section,

superhydrophobic surfaces fall into this category.

1.4 Drag reduction through surface slip

In section 1.2, the concept that superhydrophobic surfaces are able to produce a

surface slip was introduced. This slip velocity can also be characterised through the

concept of a slip length. By considering the mean velocity at the surface, a slip length

is introduced through a Navier slip condition (Navier, 1823), defined by

Us = `x
∂U

∂y

∣∣∣
s
, (1.1)

where the slip velocity, Us, is the mean velocity at the surface, ∂U/∂y|s is the wall-

normal velocity gradient of the mean flow at the surface and `x is the mean slip length.

This slip length defines the virtual origin experienced by the mean flow, i.e., it is the

distance below the surface where the mean flow would experience a non-slipping wall.

The concept of a slip length is equivalent of the protrusion heights introduced by

Bechert & Bartenwerfer (1989) to quantify the drag reduction performance of riblets.

For a given surface, the value of the slip length is dependent on the surface texture

geometry and size. Analytical solutions for the slip lengths of idealised superhydropho-

bic surfaces have been derived for, among others, textures of streamwise and spanwise

aligned ridges in the viscous Stokes regime (Philip, 1972; Lauga & Stone, 2003). Scal-

ing laws have also been obtained for textures consisting of regular arrays of isolated

posts (Ybert et al., 2007) and randomly distributed free-slip patches (Sbragaglia &

Prosperetti, 2007).

Using superhydrophobic surfaces in laminar flows, the obtained drag reduction

depends only on the value of the slip length in the streamwise (x) direction, `x.

Streamwise slip acts to shift the mean velocity profile by the slip velocity, as depicted

in figure 1.4, which is a drag reducing effect. In turbulent flows, additional to the

streamwise effect, the spanwise (z) slip length, `z, also influences the surface drag (Min

& Kim, 2004). This is analogous to the drag reduction mechanism of riblets, where

drag reduction was shown to be proportional to the difference between the streamwise

and spanwise slip lengths (Luchini et al., 1991; Luchini, 1996), or protrusion heights in

riblet terminology. The effect of spanwise slip has been attributed to allowing quasi-
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Figure 1.4 – Schematic showing the effect of streamwise and spanwise slip. Stream-

wise slip shifts the mean velocity profile, while spanwise slip allows quasi-streamwise

vortices to move closer to the surface.

streamwise vortices to move closer to the surface (Min & Kim, 2004; Luchini, 2015),

which is also depicted schematically in figure 1.4, and acts to increase drag.

For small surface manipulations in turbulent flows, the classical theory of wall

turbulence states that the only influence of the surface on the outer flow is the lo-

cation at which the outer flow perceives the wall. With drag reducing surfaces, the

logarithmic region of the mean velocity profile is shifted upwards. Conversely, drag

increasing surfaces cause a downward shift, with a shortening of the buffer layer (Min

& Kim, 2004). The Kármán constant, κ, and wake function, however, remain unmod-

ified (Clauser, 1956). It follows that the free-stream velocity, U+
δ , of a surface with

small-sized manipulations can be given by

U+
δ =

√
2

cf
=

1

κ
log δ+ +B + ∆U+, (1.2)

where cf is the skin friction coefficient, ∆U+ is the velocity difference in the loga-

rithmic region of the mean velocity profile compared to a smooth wall, δ+ is the flow

thickness, and B includes the smooth-wall logarithmic intercept and wake function.

When considering a boundary layer, δ is the boundary layer thickness. For a channel

δ is the channel half-height, with U+
δ the channel centreline velocity. The channel

centreline is chosen rather than the bulk velocity to obtain a friction coefficient that

closer resembles a boundary layer (Garćıa-Mayoral, 2011). From equation (1.2), a

relation between ∆U+ and the drag reduction can be obtained. Relative to a flow

over a smooth wall at the same Reτ , the resulting drag reduction is

DR = −
∆cf
cf0

= 1− 1(
1 + ∆U+/U+

δ0

)2 , (1.3)

where cf0 and U+
δ0

are the skin friction coefficient and free-stream velocity for the



Introduction 7

reference smooth wall, respectively. If Reτ differs between the two surfaces, an addi-

tional logarithmic correction to equation (1.3) is required to account for the different

δ+ = Reτ at which U+
δ is measured (Gatti & Quadrio, 2016), but this is the same

difference that occurs between smooth walls at different Reτ . It should be noted that

while the drag reduction is related to ∆U+, the drag reduction obtained for a given

∆U+ is Reynolds-number dependent (Spalart & McLean, 2011). At higher Reynolds

numbers, the obtained drag reduction is reduced due to the larger U+
δ0

.

For riblets of small size, it was shown that ∆U+ varies linearly with the difference

between the streamwise and spanwise slip lengths (Jiménez, 1994; Luchini, 1996).

That is,

∆U+ = µ0 (`+x − `+z ), (1.4)

where µ0 is a coefficient of order unity (Jiménez, 1994; Luchini, 1996; Bechert et al.,

1997). For superhydrophobic surfaces, this relationship for ∆U+ holds when the

spanwise slip length is small. However, as the spanwise slip length increases, its effect

on ∆U+ saturates (Fukagata et al., 2006). A parametric study was carried out by

Busse & Sandham (2012), which mapped the obtained drag reduction for a range of

streamwise and spanwise slip lengths. It was suggested in Fairhall & Garćıa-Mayoral

(2018) that their results can be interpreted as the spanwise effect being governed by

an ‘effective’ spanwise slip length, `+z,eff , given by their parameter,

`+z,eff =
`+z

1 + `+z /4
. (1.5)

When the spanwise slip length is small, `+z . 1, then `+z,eff ≈ `
+
z , recovering the linear

relationship observed with riblets. For large values of spanwise slip, however, `+z,eff

tends to a value of 4. Due to this saturation of the spanwise effect, the shift of the

logarithmic region is better represented by

∆U+ ≈ `+x − `+z,eff , (1.6)

where the coefficient µ0 is equal to 1 (Luchini, 1996, 2015). As shown in Fairhall &

Garćıa-Mayoral (2018), figure 1.5 confirms this relation by portraying results from

Busse & Sandham (2012) in the form ∆U+ vs. the parameter `+x − `+z,eff , where the

data is rescaled by the friction velocity for each case. The only discrepancy is for large

values of streamwise slip at Reτ0 ≈ 180, where Reτ0 is the friction Reynolds number

of the smooth wall reference case. However, these simulations were conducted with

a constant mass flow rate, and, at this low Reynolds number, relaminarisation was

reported due to the large streamwise slip. Under laminar conditions, `+z no longer plays
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Figure 1.5 – Data taken from Busse & Sandham (2012) showing (left) the variation

of ∆U+ with streamwise and spanwise slip lengths and (right) the linear relationship

between the difference of `+x and `+z,eff with ∆U+. ◦, Reτ0 ≈ 180; M, Reτ0 ≈ 360,

coloured from blue to red for increasing spanwise slip. The data has been rescaled by

the friction velocity of each individual case.

an adverse effect, which would explain the discrepancy in ∆U+. Relaminarisation

would not occur at larger Reτ , and the results for Reτ0 ≈ 360 fall on the line ∆U+ ≈
`+x − `+z,eff .

Preliminary analysis in Gómez-de-Segura et al. (2018) suggests that the cause of

the saturation effect of `+z results from the impermeability imposed at the surface

in these slipping simulations, an effect not present with riblets. The imposed im-

permeability acts to limit the shift of quasi-streamwise vortices towards the surface.

Therefore, to maximise drag reduction for any surface modification, the streamwise

slip length should be maximised, and the spanwise slip length and the wall-normal

permeability minimised. With real superhydrophobic surfaces, the liquid-gas interface

of the gas pockets is able to deform in response to the overlying flow. This has the ef-

fect of relaxing the impermeability condition of the wall-normal velocity fluctuations.

Seo et al. (2018) included coupling of the gas pocket deformation with the overlying

turbulent flow in their numerical simulations. They found that, compared to simula-

tions where the gas pockets were considered rigid, for texture sizes up to L+ . 30, the

mean velocity profile and turbulent fluctuations appear to remain essentially unmod-

ified when the liquid-gas interface is free to deform, with the interface deformation

small. The similarity between the mean velocity profiles and the velocity fluctuations

of deformable and undeformable surfaces reported in their work suggests that the shift

of turbulence closer to the surface, due to spanwise slip, is not further increased by

this relaxation of the impermeability of wall-normal velocity fluctuations, at least for
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texture sizes L+ . 30.

While equation 1.6 allows a prediction of ∆U+ to be obtained, it assumes that

the slip lengths are known a priori. It was previously discussed that scaling laws

for the slip lengths have been obtained in the viscous Stokes-flow limit (Philip, 1972;

Lauga & Stone, 2003; Ybert et al., 2007; Sbragaglia & Prosperetti, 2007). Using the

slip lengths obtained in this limit assumes that in the near-wall region viscous effects

dominate and advection is negligible. If the size of the texture is small, this is a

reasonable assumption. In turbulent flows it has been shown that for small texture

sizes, L+ . 10, these viscous slip lengths are appropriate to model the surface (Seo

& Mani, 2016). However, as the texture size increases, advection begins to become

important. Consequently, the slip lengths deviate from these viscous predictions,

with the measured slip length reduced compared to the viscous prediction. Seo &

Mani (2016) attributed this deviation to the development of boundary layers over the

roughness elements. They proposed a physical model, for sufficiently large texture

sizes, L+ ∼ 100, where the slip length scales with the cube root of the texture size,

that is,

`+x ∼
(L+)1/3

√
φs

, (1.7)

where φs is the solid fraction, which is the ratio of post area to total surface area.

The surface texture arrangement also affects the obtained slip lengths. Seo &

Mani (2018) showed that in DNS simulations of surfaces with randomly distributed

texture elements, the obtained slip length is reduced by approximately 30% compared

to regularised textures. This is in agreement with Stokes-flow predictions in the small

texture size limit (Sbragaglia & Prosperetti, 2007). They attributed this to the block-

age effect of the randomly distributed texture. While regular textures have channels

on the surfaces that allow the flow to pass undisturbed, with a random texture the

flow will at some location be impeded by a texture element.

Modelling the effect of the surface through a slip length also typically assumes that

the value of the slip length is constant. However, measurements of the slip length in

experimental studies have shown that the value of the slip length is shear dependent

(Churaev et al., 1984). Choi et al. (2003) observed in their experiments a slip length

that increases with the shear rate at the surface. The numerical simulations of Jung

et al. (2016), who coupled the slip of the overlying flow with the lubricating fluid,

also observed that the homogeneous slip length model is only valid in the averaged

sense, with instantaneous variations in the local slip length observed. Khosh Aghdam

& Ricco (2016) investigated the application of shear-dependent slip lengths in their
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numerical simulations. They showed that while the near-wall turbulent fluctuations

are modified by the shear-dependency of the slip length, surfaces with the same average

slip length produced the same drag reduction.

The value of the slip length is also dependent on the static curvature of the gas

pockets. A disparity between the pressure in the lubricating fluid and the overlying

flow can cause the gas pockets to protrude into, or out of, the surface. Several studies

investigating the effect of the gas pocket protrusion have shown that the maximum

slip length is achieved for surfaces where the interface is close to being flat, with

the slip length reduced by protrusion into or out of the surface (Steinberger et al.,

2007; Hyväluoma & Harting, 2008; Davis & Lauga, 2009; Teo & Khoo, 2010; Wang

et al., 2014). These studies also show that, for sufficiently large protrusion angles,

the slip length becomes negative, making the surface drag increasing. However, in

the turbulent simulations of Seo et al. (2018) the interface deformation they observed

was small and did not appear to significantly affect the overlying turbulence. The slip

length is also affected by constraints on the lubricating fluid (Busse et al., 2013; Jung

et al., 2016). If the lubricating fluid is modelled as being free to enter and leave the

domain with a non-zero mass flux, as, for example, would occur in a pressure-driven

flow, then the slip length is larger than where the lubricating fluid is entrapped and

forced to recirculate. Schönecker et al. (2014) showed that the value of the slip length

is dependent on the depth of the gas pockets. If the gas pockets are too shallow, the

slip length can be significantly reduced.

The inherent assumption to the discussions in this section has been that textured

superhydrophobic surfaces can be modelled through the concept of slip lengths. The

applicability of this assumption was assessed by Seo & Mani (2016). They compared

the results from simulations where the texture geometry was resolved to ones where

equivalent homogeneous slip lengths were applied, which were obtained a posteriori

from their textured simulations. To assess the validity of the slip length model, they

measured the instantaneous slip lengths over individual texture elements and com-

pared these values to the measured slip length of the mean flow. They found that for

small textures, in their case L+ . 10, the instantaneous slip length experienced by

individual texture elements was close to the measured slip length of the mean flow,

with the mean velocity profiles of both simulations matching. For larger textures,

however, the velocity and shear over individual texture elements appeared to lose cor-

relation, resulting in large variations in the instantaneous value of the slip length. A

large disagreement was also present between the obtained mean velocity profiles, and

therefore ∆U+, from the two surface representations when correlation was lost. They

concluded that the applicability of slip-length models is limited to texture sizes smaller
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than L+ . 10. For larger texture sizes, ∆U+ and the obtained drag reduction cannot

be predicted from these slip-length models. The applicability of the slip length-model

to represent textured surfaces will be further investigated in chapter 4 of this thesis.

1.5 The failure mechanism of superhydrophobic surfaces

Equation (1.6) showed that to maximise drag reduction the streamwise slip length

should be maximised. Increasing the texture size is one way to increase the slip

length (Philip, 1972; Ybert et al., 2007). However, increasing the texture size eventu-

ally leads to the loss of the gas pockets from the surface. The surface then becomes a

rough surface, potentially increasing the drag. One possible cause for the gas pockets

being lost from the surface is due to pressure fluctuations deforming the gas pockets,

which eventually overcome the surface tension keeping them entrapped. In addition

to the pressure fluctuations from the overlying turbulence, Seo et al. (2015) reported

texture-coherent pressure fluctuations caused by stagnation of the slipping flow at the

texture elements. These pressure fluctuations increase with texture size and for suf-

ficient texture size dominate the fluctuations due to the overlying turbulence. It was

later reported in Seo & Mani (2018) that randomly distributed texture elements result

in larger deformation compared to regularised textures. It should be noted, however,

that perfectly aligned streamwise ridges produce no texture-coherent deformation as

there is no stagnation effect, and therefore, no texture-coherent pressure distribution.

Seo et al. (2018) later found that, for L+ & 30, an additional upstream-travelling

capillary wave of the gas-liquid interface can develop for sufficiently large Weber num-

bers, which is a measure of the fluids inertia relative to the surface tension, whose

onset significantly increases the pressure fluctuations. An alternative mechanism that

can result in the loss of the gas pockets from the surface is the shear driven failure

mechanism (Wexler et al., 2015b) in which the lubricating fluid is depleted due to

shear with the overlying flow. This failure mechanism is more prevalent with liquid

infused surfaces, where a liquid is used as the lubricating fluid rather than air (Wong

et al., 2011; Lafuma & Quere, 2011). With these surfaces, there is a smaller disparity

in viscosity between the lubricating fluid and the overlying fluid, and, consequently,

a larger interfacial shear compared to superhydrophobic surfaces. The shear driven

failure mechanism can, however, be countered by the addition of physical or chemical

barriers along the surface to impede the lubricating fluid (Wexler et al., 2015a).
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1.6 Experimental studies of superhydrophobic surfaces

1.6.1 Laminar flows

Many of the early studies investigating superhydrophobic surfaces for drag reduction

applications were experimental. Among the first to demonstrate the ability of super-

hydrophobic surfaces to reduce drag was Watanabe et al. (1999). They conducted

experiments in a hydrophobic pipe with unstructured surface grooves that entrapped

air pockets. They measured a reduction in wall friction in the laminar regime, which

also persisted into the turbulent regime, measuring a shift of the velocity profile due

to surface slip.

In the laminar regime, the focus of many early experimental studies of super-

hydrophobic surfaces was to design surfaces to maximise the surface slip. Several

studies showed that drag reduction increases with increasing spacing between texture

elements (Ou et al., 2004; Ou & Rothstein, 2005; Lee et al., 2008), or with increasing

gas fraction (Lee et al., 2008), which is the ratio of the area of the gas pockets to the

total surface area. Structured surfaces of streamwise-aligned grooves were shown to

be the most effective at reducing drag compared to textures of regular arrays of posts

(Ou et al., 2004), spanwise aligned ridges (Choi et al., 2006) and unstructured sur-

faces (Choi & Kim, 2006; Cottin-Bizonne et al., 2005; Balasubramanian et al., 2004),

in agreement with the predictions in the viscous regime (Philip, 1972; Lauga & Stone,

2003; Ybert et al., 2007; Sbragaglia & Prosperetti, 2007).

Many authors also commented on the suitability of superhydrophobic surfaces for

high fluid pressure applications (Truesdell et al., 2006), with concerns over the stability

of the liquid-gas interface. Choi et al. (2006) commented that smaller-sized textures

were more applicable for higher liquid pressure applications as they can retain the gas

pockets for larger interfacial pressures.

1.6.2 Turbulent flows

While the study of Watanabe et al. (1999) obtained drag reductions in both the

laminar and turbulent regimes, other authors observed a loss of the drag reducing

effect after the flow transitioned to turbulence (Henoch et al., 2006; Zhao et al., 2007),

potentially a consequence of the gas pockets being lost from the surface. With a focus

on drag reduction in the turbulent regime, Daniello et al. (2009) showed that, for

their streamwise-aligned grooves, with L+ . 8, increasing the texture size increased

the drag reduction, as with the laminar regime. Similarly, increasing the gas fraction

was also shown to increase drag reduction (Aljallis et al., 2013; Park et al., 2014).
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Woolford et al. (2009) showed that with L+ . 2.4, streamwise-aligned grooves were

able to reduce drag, while spanwise aligned grooves increased drag.

Unstructured surfaces with a typical roughness height k+ . 5 have also been

shown to be capable of reducing drag in the turbulent regime (Gogte et al., 2005;

Park et al., 2014; Bidkar et al., 2014; Srinivasan et al., 2015; Zhang et al., 2015; Tian

et al., 2015; Ling et al., 2016; Hokmabad & Ghaemi, 2016; Gose et al., 2018). Random

unstructured surfaces, generated, for example, by spray coatings, are perhaps more

desirable for practical applications due to their easier manufacturing process (Bidkar

et al., 2014). However, Ling et al. (2016) showed that unstructured surfaces were less

effective at reducing drag in the turbulent regime than streamwise aligned grooves,

which is in agreement with the viscous slip length theory discussed in section 1.4, and

has also been demonstrated in numerical simulations (Seo & Mani, 2018).

Several authors have commented on the retention of the gas pockets in the tur-

bulent regime. Aljallis et al. (2013) observed that at high enough Reynolds numbers,

the gas pockets were lost from the surface, with the roughness of the surface then in-

creasing the drag. Degradation of the drag reduction performance, but not complete

elimination, during experiments was observed by Balasubramanian et al. (2004). They

reported that after drying the surface, the maximum drag reduction performance was

regained, suggesting a partial loss of the gas pockets from the surface during their tests.

Similarly, Govardhan et al. (2009) reported complete elimination of the drag reducing

behaviour over long enough experimental runs. Rosenberg et al. (2016) investigated

the drag reduction performance of both superhydrophobic surfaces and liquid-infused

surfaces. The smaller viscosity disparity with liquid-infused surfaces, and therefore

the larger interfacial shear, theoretically reduces their effectiveness at reducing drag

compared to superhydrophobic surfaces. However, liquid-infused surfaces are less sus-

ceptible to pressure effects. The results of Rosenberg et al. (2016), who considered

streamwise-aligned grooves with L+ . 8, showed that one liquid-infused surface was

more effective at reducing drag than a superhydrophobic surface. They theorised this

as being due to loss of the gas pockets on the superhydrophobic surface. Some authors

have also proposed that protrusion of roughness elements into the flow introduces ad-

ditional drag and roughness-like effects (Bidkar et al., 2014; Ling et al., 2016; Gose

et al., 2018). Ling et al. (2016) investigated the effect of increasing the roughness

protrusion, for the same texture, by increasing the overlying fluid pressure in their

experiments. Their results showed an increase in drag with increasing fluid pressure.

To counter the loss of the gas pockets, several methods have been proposed aiming to

replenish them in application. Some methods proposed involve using air injection at

a single location (Du et al., 2017) or throughout a porous superhydrophobic surface
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(Ling et al., 2016), or, alternatively, using electrolysis (Lee & Kim, 2011).

1.7 Numerical simulations of superhydrophobic surfaces

Representing the full physics of a superhydrophobic surface is a complex problem in

numerical simulations, requiring simplifications to be made to allow the problem to be

tackled. In many early DNS studies, the surface was modelled using texture-averaged

slip-length boundary conditions to predict the attainable drag reduction (Min & Kim,

2004; Busse & Sandham, 2012) or to investigate the effect of slip on transition (Min &

Kim, 2005). Slip-length models are attractive in computational simulations because

additional spatial resolution is not required to resolve the flow around the texture

elements. Predicting the performance of surfaces using slip lengths assumes that the

size of the surface texture is small compared to the scales in the overlying turbulent

flow (Bechert & Bartenwerfer, 1989). In this theoretical ‘vanishingly-small’ limit, the

overlying turbulent structures only experience the surface through the averaged effect

of the texture, i.e., its slip lengths. They do not perceive individual texture elements.

However, as the texture size becomes of the order of turbulent structures in the overly-

ing flow, the assumption of vanishingly-small texture size becomes inappropriate (Seo

& Mani, 2016). Consequently, the majority of recent simulations of superhydrophobic

surfaces explicitly resolve the surface texture (Martell et al., 2009; Park et al., 2013;

Jelly et al., 2014; Türk et al., 2014; Rastegari & Akhavan, 2015; Seo et al., 2015).

Many of the texture-resolving simulations model the gas pockets as a free-slip

boundary condition. The use of a free-slip boundary condition neglects all dynamics

of the flow within the gas pockets. Davies et al. (2006) and Maynes et al. (2007)

investigated the effect of coupling the lubricating fluid with the overlying flow in lam-

inar simulations. They considered textures of streamwise-aligned grooves and showed

that the obtained slip-length is over-predicted when the gas pockets are modelled as a

free-slip interface, with a larger error for larger texture sizes. Schönecker et al. (2014)

showed that while the free-slip condition over-predicts the slip length, it can give a

reasonable prediction, provided that the gas pockets are sufficiently deep.

Martell et al. (2009) were among the first to represent the surface texture in their

simulations. They modelled surface textures of regular arrays of isolated square posts

and streamwise aligned ridges. The boundary conditions were applied using alternat-

ing regions of no slip and free slip, with the gas pockets considered flat and rigid.

They observed that the turbulence over superhydrophobic surfaces is not fundamen-

tally changed by the presence of the surface. Comparing different surface textures

they showed that increasing the texture size produced a higher drag reduction. They
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also showed that, for the same size, textures of posts were more effective at reduc-

ing drag than streamwise-aligned ridges due to the larger slip velocity they produce.

Martell et al. (2010) later showed that their results were essentially independent of

the friction Reynolds number, when scaled in wall units.

The simulations of Park et al. (2013) considered streamwise aligned grooves but

only applied slip on the streamwise velocity, with no slip on the spanwise velocity.

Their results show an increase in drag reduction with increasing gas fraction and

show a collapse of drag reduction with the streamwise slip length, when scaled in

wall units, across several Reynolds numbers. This supports equation (1.6) in the case

where the spanwise slip length is zero.

Türk et al. (2014), Jelly et al. (2014) and Lee et al. (2015) investigating streamwise-

aligned grooves, showed that secondary flows can develop for sufficiently large texture,

due to the alternating free-slip and no-slip nature of the boundary conditions. These

secondary flows increase the friction over the no-slip regions, which reduces the ob-

tained drag reduction. Protrusion of the roughness elements in the flow has also been

shown to increase the surface drag in numerical simulations, agreeing with experi-

mental observations (Ling et al., 2016). Busse et al. (2013) included this effect in

their numerical simulations and showed that the drag-reducing effect of slip can be

eliminated by additional drag resulting from the exposed roughness elements.

For textured surfaces, Türk et al. (2014), Jelly et al. (2014), Seo et al. (2015) and

Rastegari & Akhavan (2015) observed that for texture sizes with L+ & 25, the ve-

locity fluctuations show distinctly modified profiles compared to smooth wall profiles,

suggesting a change in the turbulent dynamics occurring for sufficient texture size.

1.8 Scaling of turbulent channel flows

As introduced in section 1.3, many aspects of turbulence in the near-wall region are

self-similar when scaled in their wall units, based on the fluid viscosity, density and

friction velocity. However, if care is not taken when defining these variables, or how

the problem is set-up, in particular when considering low Reynolds number flows, then

different conclusions can arise.

For example, several studies in the literature conduct simulations using a constant

mass flow rate, a choice that in principle does not affect the overlying turbulence

compared to other methods (Quadrio et al., 2016). In drag-reducing simulations, if

the mass flow rate is chosen to be the same as a smooth-wall reference case, the

driving pressure gradient is reduced. As a consequence, the wall shear stress, and,

by definition, the friction velocity is also reduced, since, from a simple balance, uτ =
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Figure 1.6 – The influence of normalisation of data on results. (a) mean velocity

profiles; (b) streamwise rms velocity fluctuations; (c) wall-normal rms velocity fluctu-

ations (d) spanwise rms velocity fluctuations. ------, smooth wall at Reτ ≈ 180; -- --,

smooth wall at Reτ ≈ 140; --◦--, slipping channel with constant pressure gradient;

--�-, slipping channel with constant flow rate scaled by uτ0 ; --M--, slipping channel

with constant flow rate scaled by uτ .

√
−dp/dx δ/ρ. However, several works in the literature considering drag-reducing

cases choose to analyse their results by scaling by the friction velocity of the reference

smooth wall, which is larger than the actual friction velocity of the case. This choice

of normalisation can mask the underlying physics.

The importance of characterising the flow in the appropriate manner is highlighted

in figure 1.6. This figure shows results from simulations taken from later in this thesis

where a streamwise slip length of `+x = 6.9 and a spanwise slip length of `+z = 4.3 were

applied. The simulations were run at a friction Reynolds number Reτ0 ≈ 180 where

a 0 subscript denotes scaling by the friction velocity of the smooth-wall reference

case. One simulation was run with a constant pressure gradient, and hence constant

Reτ , and another with a constant mass flow rate, the same as the reference smooth

wall, which results in a smaller Reτ . The simulation run with a constant mass flow

rate is shown normalised by the actual friction velocity, uτ , and with the friction

velocity of the smooth-wall reference case, uτ0 . There are several things of note in

this figure. Firstly, the results for the simulation run with a constant mass flow rate,
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normalised by the smooth-wall friction velocity, uτ0 , show an apparent damping of

turbulence intensity, with a significant reduction in the peak magnitude of the rms

fluctuations. The mean velocity profile also shows an apparent change in the Von

Kármán constant, κ. Both of these effects, however, are solely a consequence of the

normalisation, as the actual friction velocity is smaller than the smooth-wall friction

velocity used. Normalising by the actual friction velocity shows a collapse to the mean

velocity profile and streamwise velocity fluctuations of the constant pressure gradient

simulation. Since the height above the surface, y+, in wall units, depends on the

friction velocity, the observed change in Kármán’s constant, κ, is a direct consequence

of the inappropriate uτ . Due to the logarithmic nature of the axis, this results in an

apparent stretching of the profile. Note that if the wrong origin for the mean velocity

profile is chosen, then this can also appear to modify κ, as a linear shift of an inclined

line on a logarithmic axis changes its gradient (Garćıa-Mayoral et al., 2018), a subtlety

that will be relevant later in this thesis.

While the streamwise fluctuations with a constant mass flow rate, normalised

with the actual friction velocity, match the constant pressure gradient fluctuations,

the wall-normal and spanwise velocity fluctuations are still reduced. This is due to the

low Reynolds number of these simulations. The constant mass flow rate simulations

started with Reτ0 ≈ 180. However, imposing a constant mass flow compared to the

smooth-wall reference case, the slipping simulation has dropped to Reτ ≈ 140. At this

lower Reynolds number, the fluctuations of a smooth wall exhibit lower peaks, and

the fluctuations show a better agreement to the smooth wall profiles at Reτ ≈ 140.

Care must, therefore, be taken when analysing slipping simulations at low Reynolds

numbers when running a constant mass flow rate, as modified turbulent dynamics due

to the reduction in Reynolds number can be introduced.

The results of Min & Kim (2004) and Busse & Sandham (2012), which model

the surface through homogeneous slip lengths, show both a shift of the peaks of the

rms fluctuations and a change in their magnitudes. It is possible, however, that

the latter may be explained by the scaling used. Both these simulations were run

with a constant mass flow rate and present their results normalised by the friction

velocity of the smooth wall reference case, uτ0 . As the simulations produce either

a drag reduction or a drag increase, the friction velocity for each individual case

changes. While the turbulent fluctuations are reduced in intensity in ‘outer’ units,

rescaling by the friction velocity of each individual case may show a closer agreement

with the smooth channel fluctuations at that Reynolds number. Simulations in a

channel with superhydrophobic boundary conditions applied to only one wall have also

displayed a shift and weakening of turbulent fluctuations near the superhydrophobic
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Figure 1.7 – The influence of Reτ on the Reynolds stress, u′v′
+

, profile at low Reynolds

numbers. ------, smooth wall at Reτ ≈ 180; ------, smooth wall at Reτ ≈ 170; ------,

smooth wall at Reτ ≈ 140. The shaded areas show the difference in the Reynolds

stress integral.

surface (Martell et al., 2009). However, in this unsymmetrical set-up, there is no

single clearly defined friction velocity to normalise the results by, being smaller at

the superhydrophobic surface and larger at the smooth wall. This makes it difficult

to assess what effects the superhydrophobic surface has on the overlying turbulence,

particularly to physics further away from the surface. Several numerical studies (Min

& Kim, 2004; Park et al., 2013; Jelly et al., 2014; Lee et al., 2015) also observed that

close to a superhydrophobic surface, near-wall vortices appear damped compared to

those over a smooth wall. However, these studies analyse instantaneous vorticity not

scaled using the actual wall units of the surface. While the vorticity may be reduced

in ‘outer units’, studies where the friction velocity of the case is used for the scaling

show that the vorticity appears similar to that over a smooth wall (Martell et al.,

2010; Türk et al., 2014).

A change of friction Reynolds number, or equivalently the channel half-height δ+,

also affects the Reynolds stress, u′v′
+

, profile, as shown in figure 1.7, affecting the total

Reynolds stress integral and ∆U+ (Gatti & Quadrio, 2016). If the Reynolds stress

integral is used to determine ∆U+, as it will later in this thesis in chapter 6, if δ+

differs between the two surfaces then a correction due to the Reynolds stress profiles

crossing zero at their different respective δ+ is required. If the friction Reynolds

number is reduced too much, the peak Reynolds stress is also reduced, as also shown

in figure 1.7. Chapter 5 of this thesis will show that the effect of slip also modifies

the ‘effective’ channel height, δ′+. To provide the fairest comparison between results

in numerical simulations, simulations should be run at the same δ′+.
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Figure 1.8 – Contours of streamwise velocity and realisations of vortical structures,

represented using the Q-criterion, of turbulent flow over a superhydrophobic surface.

1.9 Thesis objectives and organisation

This thesis expands upon the existing literature investigating how superhydrophobic

surfaces can reduce drag in turbulent flows. Direct numerical simulations (DNS), as

for example shown in figure 1.8, across a range of texture sizes are conducted to anal-

yse the influence the surface has on the overlying turbulence dynamics. The thesis

is split into seven chapters. Chapter 1 summarises previous research into the use of

superhydrophobic surfaces to reduce drag, discusses the drag reduction mechanism for

such surfaces, and its equivalence to the drag reduction mechanism of riblet surfaces.

Chapter 2 then details the numerical method that will be used in this thesis to simulate

turbulent flows over superhydrophobic surfaces. Chapters 3–6 present the results of

the thesis to answer the main objectives, which can be summarised as follows. Chap-

ter 3 investigates how the value of the slip lengths and the susceptibility of the gas

pockets to deformation are affected by the surface texture pattern and arrangement,

and to what extent these can be predicted by viscous and laminar simulations. Next,

the applicability of using slip-length models to represent textured superhydrophobic

surfaces is reassessed in chapter 4. To discriminate between the slip-length experi-

enced by the background turbulent flow and lengthscales of the order of the texture

size a Fourier approach will be used. Chapter 5 will then investigate the effect that

applying homogeneous slip-length boundary conditions has on the overlying turbu-

lence, before the cause for the reduction in the measured value of ∆U+ obtained from
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texture-resolved simulations compared to that predicted from slip-length models is

analysed in chapter 6. Finally, the findings from this thesis are summarised in Chap-

ter 7 and an outlook on future work that would further add to the understanding of

superhydrophobic surfaces in drag reducing applications is given.



Chapter 2

Numerical Method

This chapter outlines the numerical methods used in this thesis. To better understand

the effects that superhydrophobic surfaces have on the overlying turbulent flow, a

Direct Numerical Simulation (DNS) channel flow code is developed from the code

of Garćıa-Mayoral (2011), which was originally designed to simulate turbulent flows

over riblet surfaces. Validation of the numerical method is then presented and the

simulations run in this thesis are outlined.



22 Numerical Method

The flow within the channel is governed by the three-dimensional, incompressible

Navier-Stokes equations,

∇ · u = 0, (2.1)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (2.2)

where u is the velocity vector with components u, v, w in the streamwise, x, wall-

normal, y, and spanwise, z, directions, respectively, p is the kinematic pressure, which

is the pressure divided by the fluid density, and Re is the bulk Reynolds number,

defined as

Re =
ubulkδ

ν
, (2.3)

with ubulk the bulk velocity, δ the channel half-height and ν the fluid kinematic vis-

cosity.

2.1 Time integration

The Navier-Stokes equations are advanced in time using a fractional step method

(Kim & Moin, 1985). Fundamentally, this is a time-splitting method which involves

first solving for an ‘intermediate’ velocity, for which continuity is not enforced, that

is then corrected using the pressure.

Numerically, equations (2.1) and (2.2) can be discretised by way of simple example,

for time-step n, as follows

un+1 − ∆t

2 Re
Lun+1 = un −∆tGpn+1 + ∆t

(
−Nun +

1

2 Re
Lun

)
, (2.4)

Dun+1 = 0, (2.5)

where D, L, G and N represent the discretised divergence, Laplacian, gradient and

non-linear operators, respectively. In this example, the viscous term is solved using

the semi-implicit Crank-Nicholson method, and the advective term is solved using an

explicit Euler method. There are four equations to be solved for the next time-step,

n+ 1, with four unknown variables, the velocity vector, u, and the pressure, p. This

set of discretised equations can be written as a system of equations (Perot, 1993) of

the form

(
A ∆tG

D 0

)(
un+1

pn+1

)
=

(
r

0

)
, (2.6)
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where A =
[
I− ∆t

2ReL
]

forms the left-hand side when solving for the velocities and

r = un + ∆t
(
−Nun + 1

2 ReLun
)

represents the explicit terms, and forms the right-

hand side when solving for the velocities. The fractional step method can be thought of

as taking an LU-decomposition of this system (Perot, 1993), resulting in the following

set of equations

(
A 0

D −∆tDA−1G

)(
u∗

pn+1

)
=

(
r

0

)
, (2.7)

(
I ∆tA−1G

0 I

)(
un+1

pn+1

)
=

(
u∗

pn+1

)
, (2.8)

where u∗ are the intermediate velocities. These equations can be solved but are

computationally expensive due to the requirement of the inverse of the A matrix at

every iteration. To reduce computational cost a first-order approximation of A−1 is

typically taken. As A = I + O(∆t), A−1 = I + O(∆t) is approximated as A−1 = I.

Consequently, the error of the method here is first-order in time.

As discussed by Simens (2008), a modification to the method can, however, be

made to achieve second-order accuracy in time for the velocities. This is achieved by

solving for the change in pressure, φ, rather than directly for the pressure. By using

pn+1 = pn + φn+1 +O((∆t)2), with φn+1 ∼ O(∆t) and pn known explicitly, equation

(2.4) can accordingly be rewritten for φ as

un+1 − ∆t

2 Re
Lun+1 = un −∆tGpn −∆tGφn+1 + ∆t

(
−Nun +

1

2 Re
Lun

)
, (2.9)

with equations (2.7–2.8) becoming

(
A 0

D −∆tDA−1G

)(
u∗

φn+1

)
=

(
r̃

0

)
, (2.10)

(
I ∆tA−1G

0 I

)(
un+1

φn+1

)
=

(
u∗

φn+1

)
, (2.11)

where r̃ = un + ∆t
(
−Nun −Gpn + 1

2 ReLun
)
. Again, A−1 can be approximated as

I for efficiency, but since φ ∼ O(∆t) the overall error is now O((∆t)2) for the three

velocities. The pressure is first-order accurate, but is calculated at each time-step

from the velocities, meaning that this error does not carry forward.

The code used in this thesis follows the above fractional step method combined

with a three-step Runge-Kutta scheme, with the substep denoted by the subscript k.
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Similar to the above example, a semi-implicit scheme is used for the viscous terms,

with a two-step explicit scheme used for the advective terms. This leads to

[
I−∆t

βk
Re

L

]
unk = unk−1 + ∆t

[
αk
Re

L(unk−1)− γkN(unk−1)

−ζkN(unk−2)− (αk + βk)G(pnk)

]
,

(2.12)

DG(φnk) =
1

(αk + βk)∆t
D(unk), (2.13)

unk+1 = unk − (αk + βk)∆tGφ
n
k , (2.14)

pnk+1 = pnk + φnk , (2.15)

for k = 1, 2, 3. The result of the third Runge-Kutta substep denotes the variables for

the next (n + 1) time-step. The Runge-Kutta coefficients used, shown in table 2.1,

are the same as Le & Moin (1991), which gives third-order accuracy for the advective

terms and second-order accuracy for the viscous terms. The timestep is set with the

advective CFL number CFLa 6 0.7 and the viscous CFL number CFLv 6 2.5, so

that for the spatial discretisations outlined in section 2.2,

∆t = min

{
CFLa

[
∆x

π|u|
,
∆y

|v|
,

∆z

π|w|

]
,Re CFLv

[
∆x2

π2
,
∆y2

min

4
,
∆z2

π2

]}
. (2.16)

k = 1 k = 2 k = 3

ζ1 = 0 ζ2 = −17/60 ζ3 = −5/12

γ1 = 8/15 γ2 = 5/12 γ3 = 3/4

α1 = β1 = 4/15 α2 = β2 = 1/15 α3 = β3 = 1/6

Table 2.1 – Runge-Kutta coefficients used in the numerical scheme from Le & Moin

(1991).

2.2 Spatial Discretisation

The channel is periodic in the streamwise and spanwise directions with superhydropho-

bic boundary conditions applied to both channel walls. The streamwise and spanwise

periodicity of the channel allows variables in these directions to be transformed via a
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discrete Fast Fourier Transform (FFT) and solved in Fourier space. This has multiple

benefits which will be detailed throughout this chapter. The wall-normal direction is

discretised using second-order centred finite differences on a staggered grid.

For the DNS of a smooth channel, the constraint on the spatial resolution is that

necessary to adequately capture the turbulent scales in the flow. For a turbulent

channel, with a spectral discretisation, in the wall-parallel directions this corresponds

to ∆x+ . 8 and ∆z+ . 4 (Jiménez & Moin, 1991). When considering small surface

manipulations, such as a superhydrophobic surface, the requirement to satisfactorily

capture the coherent flow around the texture elements creates an additional constraint

on the grid resolution. The required resolution to capture the texture-induced flow

can be several times finer than that required to capture the turbulent scales, but it

is only required close to the surface, as the texture-induced flow decays exponentially

away from the surface. For example, with riblets these finer scales extend between 1 to

2 times the riblet height above the riblets (Garćıa-Mayoral & Jiménez, 2011), whereas

with roughness this can be as far as 5 times the roughness height above the roughness

(Flack et al., 2007). With the superhydrophobic surface considered here, the surface

is flat, and the texture has no defined height. The texture induced flow, therefore,

likely decays as a function of the texture spacing, similar to that observed for deep

spanwise-aligned roughness (MacDonald et al., 2018). Due to the decay of the texture-

induced flow, a refined resolution is only needed close to the channel walls. If this

additional resolution is applied throughout the channel, there is a large additional,

but unnecessary, computational cost of over-resolving the rest of the channel. For

this reason, the code was originally designed as a ‘multiblock’ code which allows a

refined resolution near the surfaces, whilst maintaining typical DNS resolution in the

channel centre (Garćıa-Mayoral & Jiménez, 2011). This multiblock takes the form of

additional Fourier modes near the surfaces, to capture the texture-induced flow. The

additional modes require a boundary condition at the interface between the fine and

coarse regions. The signal in these additional modes decays away from the wall, and

these additional modes are set to zero at the interface with the coarser, central block.

It is verified a posteriori that the position of the interface is sufficiently distanced from

the wall, so that these additional modes are not artificially damped, as discussed in

section 2.5. Further details of the multiblock grid are given in Garćıa-Mayoral (2011).

The spectral discretisation in the wall-parallel directions means that derivatives in

these directions have ‘spectral resolution’. Discretisations using finite differences, by

contrast, result in the introduction of truncation error. These errors can be seen by

calculating the modified wavenumbers the schemes produce (Ferziger & Peric, 2002).

For example, for a second-order central difference discretisation, approximating the
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Figure 2.1 – Schematic showing the modified wavenumbers of several numerical dis-

cretisations. ------, spectral scheme; ------, 2nd order centred differences; ------, 4th order

Pade scheme; ------, 6th order Pade scheme.

first derivative of the function f = eikx gives

df

dx
=
eik(x+∆x) − eik(x−∆x)

2∆x
= i

sin(k∆x)

∆x
eikx = ikmodf, (2.17)

where kmod = sin(k∆x)
∆x is the modified wavenumber of this scheme. A similar analysis

can be carried out for the second derivative, as well as for compact finite differences

(Lele, 1992), to give the modified wavenumbers for a selection of schemes, as shown

in figure 2.1. The difference to the exact wavenumber gives an indication of the er-

ror of the scheme, with higher order schemes matching the exact wavenumbers for

a larger range of wavenumbers. Figure 2.1 shows that second-order finite differences

only give good resolution up to the first ∼ 30% of wavenumbers, damping the higher

wavenumbers, which means a higher resolution is required to achieve adequate accu-

racy compared with higher-order schemes.

Solving the wall-parallel directions in Fourier space not only allows a ‘spectral res-

olution’ to be achieved in these directions, reducing the necessary grid resolution, but

it also reduces the computational cost associated with solving the implicit parts of

the code. This is due to derivatives in Fourier space being mode-independent, i.e., the

derivative of f̂ ′(k) = ikf̂(k) (where f̂ is the Fourier transform of f for wavenumber k)

is only dependent on its value and wavenumber. This means that the derivative ma-

trices in the spectral directions form purely diagonal matrices. It is only solving in the

wall-normal direction that introduces off-diagonal elements from the coefficients of the

numerical differentiation scheme. With a second-order finite difference discretisation,

these are only on the first off-diagonals, which means that the system of equations can

be reduced to a tridiagonal set of equations. These are considerably cheaper to solve

than the very large, but sparse, matrices that are present in purely finite-difference

codes and can be solved using the Thomas algorithm at a numerical cost of order N
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(Thomas, 1949), where N is the number of grid points.

2.2.1 Wall-normal discretisation

To adequately represent the wall-normal gradients close to the wall, which requires a

finer resolution than in the channel centre, a grid stretching is applied in this direction.

The stretching takes the form of a fifth-order polynomial, the same as used in Garćıa-

Mayoral (2011),

y(j) = a(j − Ny

2
) + b(j − Ny

2
)5, (2.18)

with Ny the number of grid points in the wall-normal direction, j the grid index (from

1 to Ny) and a and b coefficients adjusted to give the desired grid resolution near the

walls and in the channel centre. The grid resolution is set so that ∆y+
min ' 0.3 at the

channel walls and ∆y+
max ' 3 in the channel centre.

In a discretised grid, it is usually convenient to store all variables, in this case, the

three velocity components and pressure, at the same grid points. This is a so-called

‘collocated’ grid and is shown in figure 2.2(a). When using second-order centred finite

differences this, however, causes problems when solving the pressure. This is due to

the second derivatives at each point depending solely on the values of neighbouring

points, separated by two grid points. There is, therefore, no direct communication

between neighbouring points, which can lead to two disconnected pressure fields, with

two solutions co-existing across alternating grid points. This is known as the ‘checker-

board’ problem (Ferziger & Peric, 2002). There are several methods for avoiding this

problem. In the original code of Garćıa-Mayoral (2011) this problem was alleviated

by weakly enforcing incompressibility (Nordström et al., 2007). However, this method

can hamper the stability of the code. Therefore, the code was modified so that in-

stead a staggered grid was used in the wall-normal direction, as shown in figure 2.2(b),

which is a common solution to this problem (Ferziger & Peric, 2002). With a stag-

gered grid, the velocity grid points are offset from the pressure grid points by half a

grid spacing. This means that, when calculating gradient and divergence stencils for

the pressure, the values of directly connected neighbouring grid points are used. Only

the wall-normal velocity grid points are staggered with the streamwise and spanwise

directions collocated as these are discretised spectrally.

The staggered grid is defined so that the wall-normal velocities are located on

the surface. This means that the streamwise and spanwise velocities, as well as the

pressure, are not defined at the surface. This choice necessitates the inclusion of

additional ‘ghost’ points (see figure 2.2b) above/below the surface to be able to apply
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Figure 2.2 – Schematic of (a) fully collocated grid and (b) streamwise collocated,

spanwise staggered grid showing the location of the ‘ghost’ points.

the desired surface boundary conditions on the streamwise and spanwise velocities.

No physical boundary conditions need to be set on the pressure, but a numerical

boundary condition is required to fix the pressure value of one point in the channel,

due to only gradients of pressure being solved for in the governing equations, which

leaves the actual value of the pressure free.

2.3 Treatment of non-linear terms

2.3.1 Calculation of the advective terms

A complication arises from solving in Fourier space when calculating the non-linear

advective terms. These terms contain products of velocities which result in a convo-

lution in Fourier space. Solving the convolution directly is numerically expensive to

calculate (of order N2). Instead, the velocities are transformed via an inverse fast

Fourier transform, whose cost is of order N log2N (Cooley & Tukey, 1965), with the

product computed in physical space, before transforming back to Fourier space. Doing

this is computationally cheaper than solving the convolution in Fourier space.

Due to the use of a staggered grid, velocities are offset from each other and require

interpolation between grids to calculate the advective products at the required grid

points. For this, a linear interpolation is used, i.e.,

fj = λjfj− 1
2

+ (1− λj)fj+ 1
2
, (2.19)
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where,

λj =
yj+ 1

2
− yj

yj+ 1
2
− yj− 1

2

. (2.20)

This can be shown to maintain second-order accuracy by taking the Taylor expansion

of fj and fj+ 1
2

about yj− 1
2

and eliminating the first derivatives (Ferziger & Peric,

2002).

2.3.2 Dealising

When calculating the product of two variables, such as the advective term, in discrete

Fourier space, a problem known as aliasing can arise. The convolution of two discrete

functions, f̂ , both of size N modes, as shown in figure 2.3(a), results in a function

of size 2N discrete modes, figure 2.3(b). However, if the size of the function used to

represent the convolution is of size N , then the additional modes cannot be correctly

represented. This additional high frequency information is disguised in, and contam-

inates, the N modes of the function, as shown in figure 2.3(c). This contamination of

the solution is known as aliasing. Aliasing occurs because the values for a mode k at

discrete grid points are the same as the values for the mode k +mN , where N is the

number of grid points and m is an integer. These modes are indistinguishable. This

is depicted in figure 2.4, which shows that on a discretised grid with 4 grid points,

with possible wavenumbers −2 to 1, the values at grid points for modes 1 and the

unrealisable mode −3 are the same.

The convolution when solving the advective term adds additional modes that can-

not be represented by the resolution. These would, therefore, contaminate the lower

wavenumbers present. To avoid aliasing the ‘2/3’ rule is used, where the function f̂

is padded with N/2 additional zero-valued modes (Canuto et al., 2006), figure 2.3(d).

This means that when the convolution, of size 3N , is represented in size 3N/2, inter-

ference only occurs in the additional N to 3N/2 modes, figure 2.3(e). The additional

modes are then subsequently dropped. With a smooth, well-resolved flow field, the

values of modes N to 3N/2 are small and they can be dropped without implications.

However, near the superhydrophobic surface dropping these modes can be problem-

atic if there is large texture-coherent flow. The discontinuous nature of the boundary

conditions for superhydrophobic surfaces (as will be discussed in section 2.5) intro-

duces high wavenumber information. If the texture-coherent flow is small then the

convolution results in little information in these higher wavenumbers. However, if

there is large texture-coherent flow then the modes dropped can have a non-negligible

value. By removing these modes a Gibbs phenomenon can, therefore, be introduced.
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Figure 2.3 – Schematic showing the cause and method of avoiding aliasing. (a) A

Fourier space function f̂ of size N ; (b) The convolution (f̂ ∗ f̂) in size 2N ; (c) The

convolution (f̂ ∗ f̂) in size N , including aliasing; (d) The function f̂ with padding; (e)

The convolution of the padded (f̂ ∗ f̂) in size 3N/2.
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Figure 2.4 – Schematic showing the aliasing phenomenon where higher wavenumbers

are disguised as lower wavenumbers. ------, mode 1; ------, unrealisable mode -3; ◦,

values at discretised grid points.

This Gibbs phenomenon is only present for large texture spacings, which have large

texture-coherent flow. As the aim of this thesis is to focus predominantly on smaller

sized textures, where this effect should be small when a sufficient grid resolution is

used, this should not affect the results presented here.
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Figure 2.5 – Schematic showing the non-uniqueness of the highest wavenumber mode.

2.3.3 The domain in physical and Fourier space

Calculating the advective term in physical space requires the flow fields to be stored

in both physical and Fourier space. A schematic showing how the data is stored, and

how the Fourier transforms are taken, is shown in figure 2.6. In physical space, the

grid consists of three ‘blocks’. There are two refined blocks at the bottom and top

of the channel and a coarser, centre block (figure 2.6a). Transforming from physical

to Fourier space consists of taking Fourier transforms in the streamwise (figure 2.6b)

and spanwise (figure 2.6c) directions. In Fourier space, each mode is described by

two pieces of information, a magnitude and phase. This can be equivalently expressed

using the complex Fourier coefficients of the mode.

Within the code, a Fourier transform is first taken in the streamwise direction of

the purely real physical-space field. With Nx points in physical space, the transform

results in Nx pieces of information (figure 2.6d): the 0th mode (the mean), which,

when expressed using the Fourier coefficients, has no imaginary part and therefore

takes one piece of information. The coefficients of the paired modes 1 to Nx/2−1 and

−1 to −(Nx/2−1) are complex conjugates and so each take two pieces of information

between them, leaving one final piece of information which is the real part of mode

Nx/2. This mode cannot be fully resolved as its wavelength matches the wavelength

of the grid. It is not possible to determine the magnitude and phase of the mode as

there is no unique solution. For example, figure 2.5 shows two different solutions, with

different phases and magnitudes, that give the same values at the discrete grid points

for the last mode.

As there are more points in finer bands than the coarse band, these bands contain

more modes. The Fourier transform, of a now complex field, is then taken in the

spanwise direction. Again, information is conserved so that Nz physical space points

gives Nz modes, from −Nz/2 to Nz/2−1, which are stored as depicted in figure 2.6(e).

As with the streamwise discretisation, the mode Nz/2 is incomplete.
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Figure 2.6 – Schematic showing how the data is stored in physical and Fourier space.

(a) physical space representation, (b) data structure after the streamwise Fourier

transform, (c) Fourier space representation, (d) x - y cut of the Fourier space repre-

sentation, (e) z - y cut of the Fourier space representation. N denotes the number

of grid points for the streamwise (subscript x) and spanwise (subscript z) directions.

The subscript 1 denotes the resolution in the refined regions close to the surfaces and

the subscript 2 the resolution in the central block.

2.4 Simulation setup

For all simulations, the channel is of size 2πδ × πδ × 2δ in the streamwise, spanwise

and wall-normal directions, respectively, where δ is the channel half-height. Most

simulations in this thesis, unless otherwise stated, are carried out at a friction Reynolds

number Reτδ ≈ 180, where
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Reτδ =
uτδ

ν
. (2.21)

This is a moderately low Reτ and, consequently, there are weak low Reynolds number

effects (Spalart, 1988; Moser et al., 1999). It has been shown that for superhydrophobic

surfaces, the underlying physics are, however, still essentially the same as at larger

Reynolds numbers when scaled in wall units (Martell et al., 2009; Busse & Sandham,

2012; Park et al., 2013; Seo et al., 2015). Nevertheless, the effect of increasing Reτ

will be investigated in section 2.7.

The flow is driven by a mean streamwise pressure gradient. Historically, there are

several different methods of applying this pressure gradient. The two most prevalent

options are either to vary the pressure gradient to ensure a constant mass flow rate

through the channel, or to set the pressure gradient to be constant. The former

fixes the bulk Reynolds number while the latter fixes the friction Reynolds number,

leaving the other free. This choice generally does not have a significant effect on the

simulation results (Quadrio et al., 2016). In this thesis, it was chosen to maintain a

constant Reτ and therefore a constant pressure gradient was applied. Note, however,

that a constant Reτ could still have been achieved with a constant mass flow rate by

adjusting the fluid viscosity.

2.5 Texture resolving simulations

The main set of simulations in this thesis resolve the surface texture geometry, which

is modelled using alternating regions of free-slip and no-slip boundary conditions. The

gas pockets are considered rigid, which results in an impermeability condition at the

surface. As discussed in section 1.7, the use of a free-slip boundary condition neglects

all dynamics of the flow within the gas pockets. While the slip length is over-predicted,

Schönecker et al. (2014) showed that it can give a reasonable prediction provided that

the gas pockets are sufficiently deep. Seo et al. (2018) showed that for texture sizes

reported in experimental studies, L+ . O(10) (Daniello et al., 2009; Woolford et al.,

2009; Bidkar et al., 2014; Rosenberg et al., 2016; Ling et al., 2016; Gose et al., 2018),

the interface deformation and the effect of the capillary wave they observed should be

small. Their results also showed that for textures of this size, the turbulent velocity

fluctuations appeared essentially unmodified by the inclusion of interface deformation.

The surface texture considered in the simulations consists of a regular array of

square posts in a collocated arrangement, as shown in figure 2.7, with a solid fraction,

φs, which is the ratio of post area to total surface area, of 1/9. The texture spacings

considered range from L+ ≈ 6 to 47 and are outlined in table 2.2.
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Figure 2.7 – Instantaneous realisation of vortical structures, represented using the

Q-criterion, showing the surface texture for the case with L+ ≈ 47.
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Figure 2.8 – One-dimensional energy spectra for the case with L+ ≈ 12 showing the

decay of the texture-induced flow. ------, y+ = 0; ------, y+ = 4; ------, y+ = 8. The

dotted line denotes the cut-off between the central and refined blocks.



Numerical Method 35

Case L+ Reτδ Nx,w Nz,w Ny NTX,x NTX,z y+
int

̂̀+
x

̂̀+
z ∆U+

6 5.9 180 4608 2304 153 24 24 11.4 2.7 2.4 –

12 11.8 180 2304 1152 153 24 24 14.7 4.4 3.4 –

18 17.8 180 1576 768 153 24 24 22.2 5.8 3.9 3.5

24 23.7 180 1152 576 153 24 24 22.2 6.9 4.4 4.0

35 35.6 180 768 384 153 24 24 30.7 8.6 5.0 4.6

47 47.4 180 576 288 153 24 24 40.0 10.1 6.4 5.4

12c 11.8 180 1152 576 153 12 12 14.7 3.8 2.9 2.1

24c 23.7 180 576 288 153 12 12 22.2 6.0 3.8 3.5

24r 23.7 180 1728 864 153 36 36 22.2 7.2 4.5 4.2

24r2 23.7 180 2304 1152 153 48 48 22.2 7.4 4.6 –

24Re 23.6 405 2592 1296 335 24 24 21.0 6.7 4.3 4.4

35Re 35.4 405 1728 864 335 24 24 28.9 8.4 5.1 5.4

Table 2.2 – Parameters for the textured simulations. L+ is the texture size in wall

units with Reτδ the friction Reynolds number. Nx,w and Nz,w are the number of grid

points in the streamwise and spanwise directions in the refined blocks near the channel

walls, with NTXx and NTXz the number of grid points per texture element, and Ny is

the number of grid points in the wall-normal direction. y+
int is the height of the refined

block above the superhydrophobic surface. ̂̀+x and ̂̀+z are the measured dynamic slip

lengths, and ∆U+ is the measured shift of the logarithmic region of the mean velocity

profile.

The height of the grid-refined multiblock interface is set so as to not artificially

damp the texture-coherent flow. For the smaller textures this is set at a height at

least one texture wavelength above the surface, where the resolution becomes that of

a canonical smooth wall. One dimensional spectra of the streamwise and spanwise

velocities for the case L+ ≈ 12 are shown in figure 2.8, at heights y+ = 0, 4 and

8. They show that by y+ = 4, a third of the texture spacing above the surface, the

energy in the additional modes is negligible, and by a height y+ = 8, the only energy

visible is consistent with lengthscales of the overlying turbulence. This supports that

the height of the multiblock interface is sufficiently distanced from the surface.

2.5.1 Implementation of the boundary conditions

The superhydrophobic boundary conditions are applied when solving the implicit part

of the viscous term, that is
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[
I−∆t

βk
Re

L

]
u = RHS. (2.22)

The left-hand side is tridiagonal so this matrix equation can be solved using a special

form of Gaussian elimination, the Thomas algorithm (Thomas, 1949). The algorithm

involves an LU decomposition followed by forward and backward substitutions. In the

numerical code this is implemented by starting at the bottom wall of the channel and

sweeping up to the top wall, before sweeping back down from the top to the bottom.

In the upward sweep for each point in y, only the local point and the point below are

required in the algorithm, and in the downward sweep the local point and the point

above are required.

For a smooth walled channel, the implicit part of the viscous term can be solved

entirely in Fourier space, with the boundary conditions at the walls of the channel

and multiblock interfaces both applied in Fourier space, where each Fourier mode is

set to zero. However, implementation of the superhydrophobic boundary conditions

requires variables at the surface to be in physical space. While they could, in theory,

be applied in Fourier space, this would require solving a convolution which would be

computationally expensive. While the surface has physical-space boundary conditions,

the boundary conditions at the multiblock interfaces still need to be applied in Fourier

space, as here it is only the additional Fourier modes that have boundary conditions.

The nature of the Thomas algorithm, however, allows solving of the implicit viscous

term in both physical and Fourier space at different heights in the channel, by applying

Fourier transforms during the algorithm. To allow this mixed Fourier/physical space

solving, following Kim & Moin (1985), the streamwise and spanwise directions and

the wall-normal direction of the implicit viscous term are split and solved separately,

[
I−∆t

βk
Re

L

]
u ≈

[
I−∆t

βk
Re

Lxz

] [
I−∆t

βk
Re

Ly

]
u, (2.23)

where Lxz includes the streamwise and spanwise components of the Laplacian, and Ly

the wall-normal component. This maintains the second-order accuracy of the method

(Kim & Moin, 1985). The streamwise and spanwise Laplacian is inverted first in

Fourier space, which is a purely diagonal matrix, and forms part of the right-hand

side when solving in the wall-normal direction. This can be written as,

[
I−∆t

βk
Re

Ly

]
u =

[
I−∆t

βk
Re

Lxz

]−1

RHS, (2.24)

which is the tridiagonal set of equations to be solved. The left-hand side is now

independent of the streamwise and spanwise directions, i.e., each point in x and
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Figure 2.9 – Difference between the diagonal elements of the wall-normal Laplacian

matrix between regions of no-slip and free-slip.

z is independent from other points. To apply the boundary conditions, the wall-

parallel planes near the surface are transformed to physical space. Due to there being

two boundary conditions, no-slip and free-slip, there are two different, but indepen-

dent,
[
I −∆t βkReLy

]
matrices. The difference between boundary conditions occurs only

across the first two rows in the matrix, with the remainder of the matrix unchanged.

However, after taking the LU decomposition, this difference gets smeared into the

matrix. This smearing exponentially decays into the matrix and is dependent only

on the y-grid, specifically the second derivative stencil. The two matrices, therefore,

tend to the same operation sufficiently far from the surface. For the grid used here,

the absolute difference between the diagonal elements of the two matrices is smaller

than machine round-off error (∼ 10−16) by the 6th point from the surface, as shown

in figure 2.9, with a similar result for the off-diagonals. Above this point the operator

is the same in physical or Fourier space. In the numerical code, the Fourier transform

is, therefore, taken just above this point, after solving for it, so that the next point

can be solved in Fourier space. This allows the boundary conditions at the surfaces

to be applied in physical space, while the boundary conditions at the band interfaces

are still applied in Fourier space.

This process is depicted schematically in figure 2.10. First the wall-parallel planes

near the surfaces are transformed to physical space. The upward sweep is then solved

up to the bottom FFT interface plane, number (1) in figure 2.10. This plane is then

transformed to Fourier space so that the upward sweep can be solved up to the bottom

band interface plane, number (2) in figure 2.10, where the Fourier boundary conditions

are applied. The modes in the coarse block are then solved up to the top FFT interface

plane, number (3) in figure 2.10. The boundary conditions at the top band interface

plane are then applied in Fourier space so that the modes in the refined block can be
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solved up to the top FFT interface, number (4) in figure 2.10. The top FFT interface

plane is then transformed to physical space so that the upward sweep can be solved

up to the top wall, number (5) in figure 2.10, with the boundary conditions applied

in physical space. The process is then repeated on the downward sweep.
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(1) (10) (1) (10)
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Figure 2.10 – Schematic showing how the wall-normal part of the implicit viscous term

is solved using the Thomas algorithm. The arrows represent the direction of solving

and the numbers the order of solving.

2.6 Validation

2.6.1 Validation of smooth channel

To verify that modifications made to the code had been implemented correctly, the

code was first validated for a smooth channel. Figure 2.11 shows the mean velocity

profile and turbulent velocity fluctuations for a smooth channel at Reτ ≈ 180 compared

to the results of (Kim et al., 1987). The simulation was run with a constant mass flow

rate to match the original case, with the same domain size and grid resolution. The

results show a very good level of agreement.
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Figure 2.11 – Validation of the numerical method for a smooth channel. (a) mean

velocity profile; (b) rms velocity fluctuations. ------, present numerical method; ◦,
smooth channel results of Kim et al. (1987).

2.6.2 Validation of the textured superhydrophobic boundary

conditions

The implementation of the textured superhydrophobic boundary conditions was vali-

dated against the case with L+ ≈ 39 from Seo et al. (2015), as shown in figure 2.12.

A good agreement can be seen between the turbulent velocity fluctuations. However,

the value of the mean slip length and the downward shift of the mean velocity profile,

shown in figure 2.12(a), show slight disagreement. Further analysis varying the num-

ber of grid points used to represent texture elements showed that the value of the slip

lengths is dependent on the grid resolution. To assess this grid dependency on the

simulations in this thesis, the case with L+ ≈ 24 was run with 12, 24, 36 and 48 points

per texture element. Turbulent statistics for the simulation with 48 grid points per

texture are not shown as, due to the cost of these simulations, they were not run long

enough to achieve statistical convergence for the overlying turbulence. However, the

texture-coherent statistics have a much shorter time-scale, so they could be obtained

at a more moderate cost. The turbulent statistics for the resolutions with 12, 24 and

36 points per texture element are shown in figure 2.13, show a good agreement, sug-

gesting that the overlying turbulence is not affected by this grid resolution. This is

further supported by the respective premultiplied energy spectra, shown in figure 2.14,

which indicate negligible change to the distribution of turbulent energy with varying

grid resolution. Additionally, the rms of the ensemble-averaged texture-coherent flow

with 12 points per texture element is within 4% of the value with 48 points per texture

element, as shown in figure 2.13(c), suggesting only a weak influence of the resolution

on the texture-induced flow.
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Figure 2.12 – Validation of the implementation of the slip/no-slip boundary conditions

vs. the case with L+ ≈ 39 from Seo et al. (2015). (a) mean velocity profiles, with

slip velocity (Us) subtracted; (b) rms velocity fluctuations. -- --, smooth wall; ------,

present results; ◦, results from Seo et al. (2015).

2.6.3 Grid dependency of the slip lengths

To further investigate the grid dependency of the value of the slip lengths, viscous

Stokes-flow simulations for varying grid resolutions were conducted. The Stokes flow

code uses the same fractional step scheme as the DNS code, but with no Runge-Kutta

scheme and the viscous term is solved using a fully implicit method, i.e.,[
I− ∆t

Re
L

]
u∗ = un + ∆tG(pn), (2.25)

DG(φn) =
1

∆t
D(u∗), (2.26)

un+1 = u∗ −∆tGφn, (2.27)

pn+1 = pn + φn. (2.28)

In the simulations, a single texture element is represented with the domain size

L×L×4L in the streamwise, spanwise and wall-normal directions. The flow is driven

by a homogeneous shear at the top of the domain. Simulations are conducted varying

the number of grid points with two different wall-parallel spatial discretisations, a

collocated, spectral discretisation and a staggered, finite difference discretisation. The

percentage differences in measured slip lengths for the two schemes, compared to the

result of the staggered finite difference discretisation with 72 points, is shown in figure

2.15. Both discretisations converge to the same value of the slip length with increasing

grid resolution. The spectral discretisation, however, converges at a slower rate. For
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Figure 2.13 – Difference between (a) mean velocity profiles, with the slip velocity (Us)

subtracted; (b) rms velocity fluctuations; (c) wall-normal decay of streamwise coherent

flow for the DNS grid resolution dependency test with L+ ≈ 24. -- --, Smooth wall;

--�--, 12 points per texture; --◦--, 24 points per texture; --♦--, 36 points per texture;

--M--, 48 points per texture.

Figure 2.14 – Comparison of the spectral energy densities with increasing grid resolu-

tion for the three velocity components and Reynolds stress, u′v′
+

, at a height y+ = 15

with L+ ≈ 24. Filled contour, 12 points per texture; ------, 24 points per texture; -- --,

36 points per texture.

the spectral discretisation using 24 grid points per texture element, the difference of

the obtained slip length is 14%. Using 12 points per texture, the difference is 27%. The

error from DNSs with the same resolutions is portrayed superimposed in the figure,

by assuming that the error for 48 points per texture is the same to set a common

scale. The similar trend between the Stokes flow and DNS convergence implies that

the grid-resolution error of the slip lengths in the DNSs are consistent with those of

the Stokes-flow simulations. This suggests that the slip lengths obtained from DNS

can be corrected by the Stokes-flow error to offset this resolution dependency.

The obtained streamwise slip lengths from the DNSs, together with the Stokes-

flow slip lengths in the viscous limit, L+ . 1, and results from Seo & Mani (2016)

are shown in figure 2.16. By assuming that the discretisation error of the DNSs is
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Figure 2.15 – Percentage difference between the measured slip lengths for viscous

Stokes-flow simulations with varying number of streamwise/spanwise grid points per

texture element (NTX), to the slip length obtained from a finite difference discreti-

sation with 72 grid points per texture element. --◦--, Finite difference discretisation;

--�--, spectral discretisation; --♦--, percentage difference of the slip lengths from the

DNSs assuming that the error with 48 grid points per texture element matches the

Stokes-flow error.

the same as the discretisation error of the viscous Stokes-flow simulations with the

same spectral discretisation, estimates of the grid-converged DNS slip lengths are

obtained. For different grid resolutions, the estimated grid-converged slip lengths for

the same texture size have similar values and are close to the obtained slip lengths

of Seo & Mani (2016). This further indicates that the discretisation error of the

DNSs is consistent with the discretisation error of the Stokes-flow simulations. Due

to this grid-resolution dependency, and to allow a fair comparison of the slip-length

statistics between texture sizes, while turbulent statistics for the case with L+ ≈ 12

are obtained with 12 points per texture element, this simulation was further run with

24 points per texture element to obtain the texture-coherent statistics. All statistics

presented for the slip lengths in the results and subsequent analysis are obtained from

the simulation with 24 points per texture. To obtain the texture-coherent slip lengths

and statistics for L+ ≈ 6, an additional simulation was conducted using the obtained

slip length from laminar simulations as initial conditions.

This grid-resolution dependency of the spectral code means that the slip lengths

in this work are slightly under-predicted compared to previous work in the literature

where finite-difference discretisations were used. However, the actual values of the

slip lengths are not the focus of the present work, and the turbulent statistics, on the

other hand, appear to agree well.

It is possible that this grid-resolution dependency results from the different way

that texture elements are represented between the two discretisations. The spectral
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Figure 2.16 – Variation of the streamwise slip length measured from the DNSs with

the texture size, and the corrected slip lengths taking into account the grid resolution

dependency. �, 12 points per texture; --•--, 24 points per texture; �, 36 points per

texture; H, 48 points per texture. The results at L+ = 0 are obtained from the viscous

Stokes-flow simulations. The solid symbols represent the actual slip lengths obtained

from the simulations. The hollow symbols show the estimated grid-converged slip

lengths obtained by assuming that the discretisation error is the same in the Stokes-

flow simulations and the DNSs. M, results from Seo & Mani (2016).
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Figure 2.17 – Schematic of discretisations that are staggered and collocated in the

streamwise and spanwise directions. (a) staggered grid; (b) collocated grid.
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Figure 2.18 – Percentage difference of the measured slip length to the analytic solution

for streamwise and spanwise aligned ridges with increasing grid resolution and different

discretisations. --♦ --, streamwise ridge (finite difference); --♦ --, streamwise ridge

(Fourier); ···◦···, spanwise ridge (finite difference); ···◦···, spanwise ridge (Fourier);

M, estimated error of streamwise ridge from Türk et al. (2014) (DNS finite difference).

discretisation is collocated in the streamwise and spanwise directions while the finite

difference discretisation is fully staggered. Both are shown schematically in figure

2.17 including the definition of a post. In this illustrative example, the post has a

solid fraction of φs = 1/4, with the texture represented using 8 points. Compared

to a collocated discretisation, the staggered discretisation has one fewer grid point to

define a post for the streamwise velocity in the spanwise direction, and one fewer grid

point to define a post for the spanwise velocity in the streamwise direction.

The discrepancy in the post definition is better illustrated by considering streamwise-

and spanwise-aligned ridges. The difference to the analytical solutions (Philip, 1972;

Lauga & Stone, 2003) for streamwise- and spanwise-aligned ridges is shown in figure

2.18 for both discretisations. With a staggered discretisation, the slip length for the

streamwise-aligned ridge is over-predicted. An over-prediction of the slip length for

streamwise-aligned ridges, dependent on the spanwise resolution, was also observed

in the DNSs of Türk et al. (2014). Their slip-length errors are also included in figure

2.18, and are consistent with the grid dependency observed here.

With a staggered discretisation, while the slip length of the streamwise-aligned

ridge is over-predicted, conversely, the slip length of the spanwise-aligned ridge is

under-predicted. For the collocated discretisation, however, the slip length is under-

predicted in both cases. It should be noted that for these ridge textures, only the

streamwise velocity is non-zero at the surface so the grid-resolution dependency is

only a function of the streamwise velocity discretisation. Comparing the streamwise

velocity discretisations, one fewer grid point defines a streamwise-aligned ridge for a
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Figure 2.19 – Comparison of the velocity fluctuations and Reynolds stress, u′v′
+

, for

the case with L+ ≈ 35 at Reτ ≈ 180 and Reτ ≈ 405. ------, smooth wall at Reτ ≈ 180;

-- --, smooth wall at Reτ ≈ 405; --◦--, case L+ ≈ 35 at Reτ ≈ 180; --�--, case L+ ≈ 35

at Reτ ≈ 405.

staggered grid than a collocated grid, and the error between the two discretisations

is nearly symmetric around 0%, as shown in figure 2.18. For a spanwise-aligned ridge

the streamwise velocity discretisations use the same number of points, and the errors

are consistent. It is possible that with a staggered discretisation of a post, the stream-

wise/spanwise error nearly cancels, while the error with a collocated discretisation

compounds.

2.7 Effect of Reynolds number

To investigate any dependence of the results on the Reynolds number, additional sim-

ulations of the cases with L+ ≈ 24 and L+ ≈ 35 were conducted at Reτ ≈ 405. At

this higher Reynolds number, the rms velocity fluctuations over a smooth wall are

larger in magnitude than at Reτ ≈ 180 (Spalart, 1988; Moser et al., 1999). There-

fore, the relative changes to the fluctuations, caused by the presence of the texture,

are compared to their corresponding smooth wall. The rms velocity fluctuations and

Reynolds stress, u′v′
+

, for the case with L+ ≈ 35, shown in figure 2.19, show modifi-

cations to the flow in the near-wall region compared to the smooth-wall profiles, which

are qualitatively consistent at both Reynolds numbers. Beyond a height y+ ≈ 50–75

the fluctuations then collapse to the respective smooth-wall profiles, consistent with

the results of Seo et al. (2015). These results suggest that the effect of the texture

is restricted to the near-wall region and scales in wall units, as conventionally agreed

(Martell et al., 2010; Park et al., 2013; Seo et al., 2015).

To compare the dynamics in the overlying flow, premultiplied energy spectra of

the three velocities and Reynolds stress, u′v′
+

, for both Reynolds numbers, at a height
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Figure 2.20 – Comparison of the spectral energy densities at Reτ ≈ 180 and Reτ ≈ 405

of the three velocities and Reynolds stress, u′v′
+

, for the cases with L+ ≈ 24 and

L+ ≈ 35 at y+ = 15 . Filled contour, Reτ ≈ 405; ------, Reτ ≈ 180.

y+ = 15 above the surface, are shown in figure 2.20 for the cases with L+ ≈ 24 and

L+ ≈ 35. The spectra are normalised by the respective rms fluctuation at this height

for each Reynolds number. The results suggest that the modifications in turbulent

dynamics in the overlying flow are essentially independent of the Reynolds number, if

the texture is the same in wall units. Therefore, results at the lower Reτ are relevant

to applications at higher Reτ .



Chapter 3

The influence of surface texture pattern

This chapter investigates how changing the surface texture pattern modifies the slip

lengths the surface produces, and the susceptibility of the entrapped gas pockets to

deformation. For reduced computational cost, viscous Stokes-flow and laminar simu-

lations are conducted to measure the slip lengths and the pressure fields, from which

the gas pocket deformation is approximated. The applicability of these reduced-order

models to predict the performance of fully turbulent flows is also investigated.

Parts of this chapter were presented at the 2015 European Drag Reduction and Flow

Control Meeting (Fairhall & Garćıa-Mayoral, 2015).
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3.1 Numerical details

The numerical method for the viscous Stokes flow and laminar simulations follows

the same fundamental numerics as outlined in chapter 2. The case-specific simulation

set-ups and numerical details are outlined in this section.

3.1.1 Stokes-flow simulation details

The viscous Stokes-flow simulations are shear-driven in a half-channel with one texture

element represented. For accuracy and efficiency, most results use a Fourier discreti-

sation with 256 × 256 × 64 grid points in the streamwise, spanwise and wall-normal

directions, respectively, with a grid of size L×L× 2.5L. According to the grid resolu-

tion analysis from figure 2.15, the error in the slip length with a Fourier discretisation

with 256 grid points per texture element compared to a finite difference discretisation

with 48 grid points per texture element is 1.2%. To allow a consistent comparison, re-

sults of the Stokes-flow simulations that are compared to the laminar and DNS results

are obtained from simulations with 24 grid points per texture element.

3.1.2 Laminar flow simulation details

The numerical code for the laminar simulations is the same as that used for the DNSs

in a reduced domain. As with the Stokes-flow simulations, a shear-driven half-channel

is simulated with one texture element represented using 24×24×77 grid points in the

streamwise, spanwise and wall-normal directions, respectively, matching the resolution

of the DNSs. To allow direct comparison with the DNSs these simulations are run

with the same ν, L, and ∂U/∂y as the corresponding DNSs.

3.2 Influence of texture pattern on the slip length

Firstly the influence of the texture pattern on the mean slip length is explored. The

scaling laws for the variation of the slip length with gas fraction are shown in figure

3.1 for textures of streamwise-aligned ridges (Philip, 1972) and isolated posts (Ybert

et al., 2007). Textures of spanwise-aligned ridges are not considered as they produce

slip lengths half the value of streamwise-aligned ridges in the viscous regime (Lauga

& Stone, 2003), making them less attractive for drag reduction applications. For gas

fractions φg = 1 − φs . 0.9, the scaling laws indicate that streamwise-aligned ridges

produce larger slip lengths for the same gas fraction, while for φg & 0.9, textures of

isolated posts produce larger slip lengths.
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Figure 3.1 – Variation of the slip length with texture size and arrangement in the

Stokes-flow limit. �, square posts in a collocated arrangement; �, diamond posts in

a collocated arrangement; •, circular posts in a collocated arrangement; �, square

posts in a staggered arrangement; ♦, diamond posts in a staggered arrangement;

◦, circular posts in a staggered arrangement; ×, streamwise-aligned ridges; ------,

analytical solution for streamwise-aligned ridges (Philip, 1972); -- --, scaling law for

isolated posts (Ybert et al., 2007).

To investigate the effect that the post shape and arrangement has on the value of

the slip length, in this section textures of three different post shapes, square, diamond

and circular, in two different arrangements, collocated and staggered, are compared

with textures of streamwise-aligned ridges. The resulting slip lengths that these sur-

faces produce are also shown in figure 3.1. For all textures of isolated posts, the

obtained slip lengths follow the scaling law of Ybert et al. (2007). In the viscous limit,

for the surface textures considered, the post shape and arrangement has negligible

effect on the slip length, at least for the large gas fractions considered.

As discussed in section 1.4, if the size of the texture is small then the slip lengths

obtained in the viscous limit are appropriate to model the surface by, even in turbulent

flows. However, beyond L+ & 10, the measured slip length has been shown to be

reduced compared to the viscous prediction (Seo & Mani, 2016). While Seo & Mani

(2016) proposed a physical model for sufficiently large texture sizes, L+ ∼ 100, where

`+x ∼ (L+)1/3/
√
φs, a physical model for the variation of the slip length in-between

the Stokes regime and the model proposed by Seo & Mani (2016) is still missing.

To investigate whether this initial deviation from the viscous prediction is a result

of advective effects, the slip lengths from laminar simulations are now considered.

The textures considered are square and diamond posts in collocated and staggered

arrangements with a solid fraction φs = 1/9. The resulting variation of the slip

lengths with texture size are shown in figure 3.2 and are compared to the obtained
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Figure 3.2 – Variation of the slip length with texture size. -- --, square posts in

a collocated arrangement (viscous); --�--, square posts in a collocated arrangement

(DNS); --� --, square posts in a collocated arrangement (laminar); ···�···, square

posts in a staggered arrangement (laminar); --♦ --, diamond posts in a collocated

arrangement (laminar); ···♦···, diamond posts in a staggered arrangement (laminar).

slip lengths from the DNS results, which have a texture of collocated square posts.

The laminar simulations capture the initial deviation of the DNS slip lengths from the

viscous prediction, which suggests that this initial deviation is due to advective effects.

However, these laminar simulations still fail to predict the slip length beyond L+ & 20,

where the slip length tends to the relation proposed by Seo & Mani (2016). These

results also show that collocated arrangements outperform staggered arrangements

when advective effects become important. This could be a result of the blockage effect

of the staggered arrangements, which is more significant for the staggered diamond

shaped posts. This blockage effect is also present in random surface textures, and

has been attributed to their reduced slip lengths compared to regular textures (Seo &

Mani, 2018).

3.3 Influence of texture pattern on gas pocket

deformation

Next, the effect of the surface texture on the susceptibility of the gas pockets to

deformation is investigated. The texturing of the surface causes deceleration and

acceleration of flow around texture elements, which generates a texture-coherent pres-

sure field. This pressure field results in a static deformation of the gas pockets (Seo

et al., 2015) and is strongly influenced by the post shape. Using the pressure fields at

the surface, the texture-coherent deformation in the viscous regime is now estimated
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Figure 3.3 – Normalised maximum gas pocket deformation of the Stokes-flow simu-

lations using the pressure obtained from the flow fields against (a) gas fraction and

(b) the measured slip length. --� --, square posts in a collocated arrangement; --� --,

diamond posts in a collocated arrangement; --• --, circular posts in a collocated ar-

rangement; ···�···, square posts in a staggered arrangement; ···♦···, diamond posts

in a staggered arrangement; ···◦···, circular posts in a staggered arrangement.

using the Young-Laplace equation,

∇2η ≈ ∆p

σ
, (3.1)

where η is the gas pocket deformation measured from the surface plane, ∆p is the

pressure difference across the liquid-gas interface and σ is the surface tension. The

pressure in the gas pockets is assumed to be homogeneous and is adjusted to ensure

conservation of mass within the gas pockets (Seo et al., 2015). It should be noted

that streamwise-aligned ridges generate no pressure variations due to the streamwise

homogeneity of the surface.

The maximum deformation for each surface texture in the viscous limit is shown in

figure 3.3. These results show that square and circular staggered arrangements gener-

ate larger coherent deformation than collocated arrangements. The evidence suggests

that the larger streamwise spacing between adjacent posts provides both a lower resis-

tance to deformation and a larger slip velocity between posts, which generates a larger

stagnation pressure. Diamond-shaped posts result in smaller deformations, perhaps

due to the smaller streamwise separation between adjacent posts and their ability to

direct the flow around the posts, which reduces the stagnation pressure.

Figure 3.4 shows that the trends in the laminar regime are broadly similar to

those in the viscous regime. Diamond-shaped posts have smaller deformations than

square posts, and collocated arrangements outperform staggered arrangements. In

the laminar regime, diamond posts, therefore, not only appear to produce slightly
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Figure 3.4 – Variation of maximum gas pocket deformation using the pressure obtained

from the flow fields with (a) texture size and (b) the measured slip length. --�--,

square posts in a collocated arrangement (DNS); --� --, square posts in a collocated

arrangement (laminar); ···�···, square posts in a staggered arrangement (laminar);

--♦ --, diamond posts in a collocated arrangement (laminar); ···♦···, diamond posts

in a staggered arrangement (laminar).

larger slip lengths than square posts, as shown in figure 3.2, but also smaller static

deformations. The laminar simulations are also able to accurately predict the static

deformations obtained from the DNSs up to L+ . 20. For L+ & 20, the laminar

simulations produce larger slip compared to the DNS results, and therefore a larger

stagnation pressure. This larger stagnation pressure results in a larger deformation of

the gas pockets, explaining the discrepancy for L+ & 20. Nevertheless, the ability of

laminar simulations to predict not only the slip-lengths but also the texture-coherent

deformations of fully turbulent simulations up to L+ . 20 is an improvement on the

viscous predictions limited to L+ . 10.



Chapter 4

The suitability of slip-length models for textured surfaces

This chapter focuses on the applicability of modelling textured surfaces using homoge-

neous slip lengths. A spectral approach is used to analyse the slip length experienced

by different lengthscales in the overlying flow. This chapter will show that the per-

ceived slip length, obtained straight from the velocity fields, is contaminated by the

texture-induced flow resulting from the texture. However, once the texture-induced

flow is filtered from the velocity fields it will be shown that the overlying turbulence

experiences the surface as a homogeneous slip length boundary condition. The discrep-

ancy of ∆U+ between texture-resolved and homogeneous slip simulations, therefore,

cannot be attributed to the overlying flow not perceiving the surface as producing a

homogeneous slip effect, which will be investigated in chapter 6.

Parts of this chapter have been published in Fairhall & Garćıa-Mayoral (2018) and

are submitted for publication in Fairhall et al. (2019). The results were also presented

at the 2017 European Drag Reduction and Flow Control Meeting (Fairhall & Garćıa-

Mayoral, 2017a) and 2017 American Physical Society Division of Fluid Dynamics

Meeting (Fairhall & Garćıa-Mayoral, 2017b).
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4.1 Correlation between surface velocity and shear

As discussed in section 1.7, previous works analysing the drag reduction performance of

superhydrophobic surfaces have modelled the surface using homogeneous slip lengths

(Min & Kim, 2004; Busse & Sandham, 2012). The concept of a homogeneous slip-

length model assumes that the size of the texture is much smaller than the size of the

turbulent eddies in the overlying flow (Bechert & Bartenwerfer, 1989). Seo & Mani

(2016) investigated the applicability of homogeneous slip length models for textured

surfaces and showed that as the surface texture becomes of the order of the near-

wall turbulent scales, that is L+ ∼ O(10), the velocity and shear appear to lose

correlation. This loss of correlation between the velocity and shear invalidates the

concept of a homogeneous slip-length model, as the slip length is the ratio of the

two, i.e. ` = us/∂u/∂y|s. The work of Seo & Mani (2016) considered the slip length

experienced by individual texture elements. They assessed the correlation of the

texture-averaged velocity and texture-averaged shear (∂u/∂y) at the surface. While

this method showed that, at the texture scale, correlation appears to be lost, it does

not show whether lengthscales much larger than the texture size still experience the

averaged effect of the texture, i.e., a slip length.

To allow discrimination between lengthscales, in this thesis, the slip length is

analysed using a spectral approach. In a spectral framework, for each Fourier mode,

the slip length is characterised by both a magnitude and a phase, with the phase having

streamwise and spanwise components. The phase of the slip length, ϕ, represents the

phase lag between the velocity and shear at the surface. For a given wavelength, λ, the

phase is ϕ = 2π∆/λ, where ∆ is the spatial offset between the velocity and shear. For

a homogeneous slip-length model to be valid, the measured slip length should have

a magnitude that is constant in time and across all wavelengths, with the velocity

and shear in phase. In the following discussion, two slip lengths will be referred to,

the mean slip length and the dynamic slip length. The mean slip length, `
+
x , is the

time-average of the slip length experienced by the streamwise zero mode, i.e., it is

the slip length experienced by the mean velocity. The dynamic slip length, ̂̀+, is the

time-averaged slip length experienced by the velocity fluctuations (Seo & Mani, 2016).

The dynamic slip length is obtained from a linear fit of the instantaneous velocity and

shear fluctuations.

The correlation between velocity and shear observed for small texture sizes (Seo &

Mani, 2016) is demonstrated in figure 4.1, which shows both the slip length magnitudes

and phases for the case with L+ ≈ 12. Only a small scatter is present in the observed

slip length magnitude and phases. The wavelengths shown are λ+
x ≈ 113 – 1131 and
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Figure 4.1 – Instantaneous streamwise (top) and spanwise (bottom) slip lengths of

wavelengths λ+
x ≈ 113 − 1131 and λ+

z ≈ 113 − 565 (coloured from red to blue for

increasing streamwise wavelength) for the case with L+ ≈ 12 obtained from the full

velocity fields. (a,e) instantaneous correlation of velocity and shear magnitudes; (b,f)

probability density histogram of the slip length; streamwise (c,g) and spanwise (d,h)

phase difference between velocity and shear. In (a,b,e,f) the dashed line indicates the

fitted dynamic slip length, obtained from a linear regression of the data points, and

the dotted line indicates the mean slip length.

λ+
z ≈ 113 – 565. These are lengthscales relevant to the near-wall turbulent dynamics,

being of the order of the near-wall vortices and streaks, and are lengthscales larger

than the texture wavelength. For this case, the dynamic slip lengths are ̂̀+x = 3.3

and ̂̀+z = 3.0. In comparison, the mean streamwise slip length is `
+
x = 3.8. The

fluctuations of this size, therefore, appear to experience a slightly smaller slip length

than the mean flow. This is consistent with the results of Seo & Mani (2016) for small

textures. However, the lengthscales relevant to the near-wall turbulent dynamics

experience no significant variation in the slip lengths.

As the texture size is increased to L+ ≈ 24, which is of the order of the diameter of

near-wall vortices (Blackwelder & Eckelmann, 1979), there is still a strong correlation

between the spanwise velocity and shear, as shown in figure 4.2. However, the corre-

lation becomes significantly weaker in the streamwise direction, even for lengthscales

an order of magnitude larger than the texture size. These lengthscales, therefore, no

longer appear to experience just the averaged effect of the texture. For this case,
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Figure 4.2 – Instantaneous streamwise (top) and spanwise (bottom) slip lengths of

wavelengths λ+
x ≈ 113 − 1131 and λ+

z ≈ 113 − 565 (coloured from red to blue for

increasing streamwise wavelength) for the case with L+ ≈ 24 obtained from the full

velocity fields. (a,e) instantaneous correlation of velocity and shear magnitudes; (b,f)

probability density histogram of the slip length; streamwise (c,g) and spanwise (d,h)

phase difference between velocity and shear. In (a,b,e,f) the dashed line indicates the

fitted dynamic slip length, obtained from a linear regression of the data points, and

the dotted line indicates the mean slip length.

the time-averaged dynamic slip lengths are ̂̀+x = 5.2 and ̂̀+z = 4.8, with the mean

streamwise slip length `
+
x = 6.9. The fluctuations, therefore, appear to experience

significantly smaller slip lengths than the mean flow. The streamwise dynamic slip

length is, however, beginning to lose physical significance due to the large fluctuations

in its instantaneous value. As the texture size is further increased to L+ ≈ 47, shown

in figure 4.3, the correlation between velocity and shear becomes still weaker. The

fitted dynamic slip lengths for this case are also significantly reduced compared to the

mean slip length, being ̂̀+x = 6.1 and ̂̀+z = 4.1 with `
+
x = 10. While the dynamic

slip lengths have lost physical significance due to their fluctuations, should they ex-

perience only small oscillations around a mean value, at a timescale faster than the

overlying turbulent structures perceive, then it could still be reasonable to model the

surface by the time-averaged value. To assess this, time histories of the instantaneous

slip lengths for different lengthscales are shown in figure 4.4. These show that for the

largest texture, L+ ≈ 47, the fluctuations are large compared to the mean, and their
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Figure 4.3 – Instantaneous streamwise (top) and spanwise (bottom) slip lengths of

wavelengths λ+
x ≈ 113 − 1131 and λ+

z ≈ 113 − 565 (coloured from red to blue for

increasing streamwise wavelength) for the case with L+ ≈ 47 obtained from the full

velocity fields. (a,e) instantaneous correlation of velocity and shear magnitudes; (b,f)

probability density histogram of the slip length; streamwise (c,g) and spanwise (d,h)

phase difference between velocity and shear. In (a,b,e,f) the dashed line indicates the

fitted dynamic slip length, obtained from a linear regression of the data points, and

the dotted line indicates the mean slip length.

timescale is comparable to that of near-wall eddies, typically 0.1 δ/uτ at Reτ ' 180. A

time-averaged dynamic slip-length model, therefore, appears to not be an appropriate

model to represent the surface.

The correlations in figures 4.1 to 4.3 only portray a subset of wavelengths in the

overlying flow. To assess the correlation over the full range, figure 4.5 extends this

analysis to time-averaged spectral maps of the dynamic slip lengths. For reference, the

spectral energy densities for the corresponding velocities at a height y+ = 15 above

the surface are overlayed, to indicate the energetically-relevant lengthscales in the

overlying flow. The spectral maps show that lengthscales of the order of the texture

size appear to experience significantly reduced slip-lengths, while lengthscales much

larger than the texture size appear to experience, on average, a slip length different to

the value of the mean slip length. However, the instantaneous correlations in figure 4.4

showed that the concept of a time-averaged slip length loses validity beyond L+ & 24.
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Figure 4.4 – Time history of instantaneous slip lengths for the cases with (a) L+ ≈
12; (b) L+ ≈ 24; (c) L+ ≈ 47. ------, streamwise slip length of the mean flow; ------,

streamwise slip length for λ+
x ≈ 1131 and λ+

z ≈ 94; ------, spanwise slip length for

λ+
x ≈ 188 and λ+

z ≈ 94.

4.2 Contamination of the perceived slip length by the

texture-induced flow

To investigate the source of this apparent loss of correlation, profiles in y of the

spectral, time-averaged streamwise energy, Ê+
uu, are investigated. Figure 4.6 shows

these profiles for the cases with L+ ≈ 12, 24 and 47, and for a smooth-wall case for

reference. Since the energy magnitude for each wavelength is not relevant for this

investigation, only with the shape of the profiles, the results are normalised with their

value at a reference height of y+ = 15. The lengthscales shown correspond to λ+
x ≈
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Figure 4.5 – Spectral maps of the time-averaged slip lengths obtained from the full

velocity fields (filled contour) for the streamwise (left) and spanwise (right) directions,

for the cases with L+ ≈ 12 to 47 shown from top to bottom. Spectral energy density

of the corresponding velocity at a height of y+ = 15 (lined contour). The red cross

indicates the wavelength of the texture.
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Figure 4.6 – Wavelength-dependent profiles of the streamwise energy spectrum from

the full velocity signal, Ê+
uu, normalised by their value at y+ = 15, for wavelengths

λ+
x ≈ 60 − 377 and λ+

z ≈ 94 coloured from red to blue for increasing streamwise

wavelength. (a) smooth wall; (b) case with L+ ≈ 12; (c) case with L+ ≈ 24; (d) case

with L+ ≈ 47. The dotted lines indicate reference heights of y+ = 2.5 and 7.5.

60 to 377 and λ+
z ≈ 94, coloured from red to blue. As with figures 4.1 to 4.3, these are

lengthscales larger than the texture wavelengths. The extrapolation of these profiles

to their virtual origins gives the apparent slip length experienced by each wavelength.

For the case with L+ ≈ 12, the predominant effect of the surface on these energy

profiles is a shift due to the slip at the surface, with the shape of the profiles essentially

otherwise unmodified compared with the smooth wall profiles. This indicates that the

predominant effect of the surface, for this texture size, is the direct effect of the surface

slip. For the cases with L+ ≈ 24 and 47, however, there is a clear secondary effect

near the surface, an additional energy that decays with height above the surface. This

additional energy is consistent with the energy produced by the coherent flow induced

directly by the texture (Türk et al., 2014; Jelly et al., 2014; Seo et al., 2015). The triple

decomposition (Reynolds & Hussain, 1972), is commonly used to assess the strength

of the texture-coherent fluctuations. This decomposition splits the velocity fields

into a time-averaged component, a texture-coherent component and the turbulent,

background fluctuations,



The suitability of slip-length models for textured surfaces 61

101 102y+
0

10

20

U
+
−

U
+ s

(a)

0 25 50y+
0

3

6

u
′+

(b)

0 25 50y+
0

0.5

1

v
′+

(c)

0 25 50y+
0

0.75

1.5

w
′+

(d)

Figure 4.7 – Turbulent statistics for the case with L+ ≈ 12. (a) Mean velocity profile

with the slip velocity subtracted (b–d) rms velocity fluctuations. ------, smooth wall;

------, full velocity fluctuation; · --, texture-induced coherent fluctuation obtained from

the triple decomposition. The dotted lines indicate reference heights of y+ = 2.5 and

7.5.

u(x, y, z, t) = U(y) + u′(x, y, z, t) = U(y) + ũ(x̃, y, z̃) + uT (x, y, z, t), (4.1)

where U(y) is the mean velocity at a given height and u′(x, y, z, t) is the total fluctua-

tion. By considering the periodicity of the texture, u′ is further decomposed into the

texture-induced coherent fluctuations, ũ(x̃, y, z̃), where x̃ and z̃ refer to the local coor-

dinates within the texture period, and the remaining velocity fluctuation uT (x, y, z, t).

The velocity ũ(x̃, y, z̃) directly results from the presence of the texture, which is pe-

riodic over texture elements. This triple decomposition has previously been used to

assess the strength of the texture-induced flow over superhydrophobic surfaces (Türk

et al., 2014; Jelly et al., 2014; Seo et al., 2015).

The rms profiles of the texture-induced coherent contribution, ũ, for the cases with

L+ ≈ 12, 24 and 47 are shown in figures 4.7 to 4.9, respectively, together with the total

rms fluctuation u′. While the rms of the coherent contribution shows the magnitude

and decay rate of the texture-induced flow, it does not show how the texture-induced

flow is distributed amongst lengthscales. For this, the pre-multiplied energy spectra of
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Figure 4.8 – Turbulent statistics for the case with L+ ≈ 24. (a) Mean velocity profile

with the slip velocity subtracted (b–d) rms velocity fluctuations. ------, smooth wall;

------, full velocity fluctuation; · --, texture-induced coherent fluctuation obtained from

the triple decomposition. The dotted lines indicate reference heights of y+ = 2.5 and

7.5.

the velocities are analysed. The streamwise and spanwise pre-multiplied energy spec-

tra at heights y+ = 0, 2.5 and 7.5 for the cases with L+ ≈ 12, 24 and 47 are shown in

figures 4.10 and 4.11, respectively. The equivalent pre-multiplied energy spectra for a

smooth wall, which has been shifted in the wall-normal direction by the mean stream-

wise slip length, are overlayed for comparison. These energy spectra show energy at

lengthscales consistent with smooth wall-like turbulence, and energy at lengthscales

of the texture size, directly induced by the presence of the texture. In addition the

interaction of the texture-induced flow with the overlying turbulent flow results in

texture-induced energy propagating to the lengthscales of the overlying turbulence.

The texture-coherent flow is modulated in intensity by the background turbulent flow,

a phenomenon that has also be observed in rough surfaces (Abderrahaman-Elena &

Garćıa-Mayoral, 2016). It is worth noting that the triple decomposition cannot filter

this texture-induced flow from uT , as it is only able to filter the wavelength of the

texture size and its sub-harmonics. From this energy spectra, it is clear that the

texture-induced flow propagates across the full range of turbulent lengthscales. The

spectra for texture sizes beyond L+ ≈ 24 show this interaction directly affecting the
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Figure 4.9 – Turbulent statistics for the case with L+ ≈ 47. (a) Mean velocity profile

with the slip velocity subtracted (b–d) rms velocity fluctuations. ------, smooth wall;

------, full velocity fluctuation; · --, texture-induced coherent fluctuation obtained from

the triple decomposition. The dotted lines indicate reference heights of y+ = 2.5 and

7.5.

turbulent lengthscales.

The magnitude of scattered energy that individual lengthscales experience depends

on the texture lengthscale, but more importantly on the magnitude of the texture-

induced energy. For example, for the case with L+ ≈ 24, the spanwise velocity and

shear showed correlation, but the streamwise velocity and shear did not. The rms

fluctuations and energy spectra for this case show a significantly stronger energy of

the texture-induced flow for the streamwise velocity compared to the spanwise velocity.

The energy spectra also show that the texture-induced flow of the spanwise velocity

has essentially decayed by y+ = 2.5. However, there is still texture-induced energy in

the streamwise velocity at this height, which decays by a height y+ = 7.5. The weaker

spanwise texture-induced flow scatters to the turbulent lengthscales to a lesser extent,

explaining why the spanwise slip length was better correlated for this case than the

streamwise slip length.

From a Fourier perspective, the texture-induced flow can scatter to the full wavenum-

ber space through the boundary conditions. The surface texture consists of alternating

regions of no-slip and free-slip, described by the wavelength of the texture size and
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Figure 4.10 – Pre-multiplied energy spectra from the full signal of the streamwise

velocity for the cases with L+ ≈ 12, 24 and 47 at heights y+ = 0, 2.5, 7.5. Textured

case (filled contours), smooth wall case shifted in y+ by the mean slip length (lined

contours).
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Figure 4.11 – Pre-multiplied energy spectra from the full signal of the spanwise velocity

for the cases with L+ ≈ 12, 24 and 47 at heights y+ = 0, 2.5, 7.5. Textured case (filled

contours), smooth wall case shifted in y+ by the mean slip length (lined contours).
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its subharmonics. The boundary condition is, in Fourier space, a convolution between

these texture modes and all the velocity modes. Through this convolution, the texture-

induced flow can scramble to all the background turbulent modes. This scattering of

the texture-induced flow to the full wavenumber space, evidenced in the pre-multiplied

energy spectra in figures 4.10 and 4.11, and in the energy profiles in figure 4.6, results

in the measured slip length being contaminated by the texture-induced flow.

To assess the slip length experienced by the overlying flow, this texture-induced

flow needs to be filtered out from the velocity fields. The next section, therefore,

focuses on how the background turbulent flow can be isolated from the full velocity

fields.

4.3 Modified triple decomposition for textured surfaces

Abderrahaman-Elena & Garćıa-Mayoral (2016) proposed a modification to the triple

decomposition to account for the modulation in intensity of the texture-coherent flow,

u(x, y, z, t) ≈ U(y) + ũu(x̃, y, z̃)

(
U(y) + uT (x, y, z, t)

U(y)

)
+ uT (x, y, z, t). (4.2)

Here, the terms have the same definitions as in equation (4.1), with an additional

multiplier on the texture-coherent flow to account for its modulation. Note that the

subscript of the texture-coherent flow denotes the flow direction for which the texture-

coherent flow is obtained from. Abderrahaman-Elena & Garćıa-Mayoral (2016) showed

that this modulated form of the triple decomposition was more effective at removing

the footprint of the texture from uT for their rough surfaces.

The decomposition in equation (4.2) can be used to filter out the texture-induced

flow for the streamwise velocity fields. The same principle of modulation of the

texture-coherent flow can be applied to the spanwise velocity. In addition to the

texture-induced flow generated by the streamwise velocity, the texture-induced flow

generated by spanwise velocity also needs to be considered. While the mean span-

wise velocity is zero, transverse local flow around texture elements is induced by the

fluctuating, background wT , which generates a texture-coherent flow w̃∗w(x̃, y, z̃∗). To

account for the leftwards and rightwards fluctuations, the ‘∗’ superscript denotes the

directional, conditional average of the spanwise velocity (Garćıa-Mayoral & Jiménez,

2011). This is obtained by calculating the mean spanwise velocity over a period of tex-

ture to determine the local direction of the spanwise flow above the texture element.

If the flow is rightwards, the flow around the texture element is added to the ensemble

average, w̃∗w(x̃, y, z̃∗), and if the flow is leftwards, a specular image of the flow around
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the texture element is added to the ensemble average. The resulting decomposition

of the spanwise velocity is then,

w(x, y, z, t) ≈ w̃u(x̃, y, z̃)

(
U(y) + uT (x, y, z, t)

U(y)

)
+ w̃∗w(x̃, y, z̃∗)

(
wT (x, y, z, t)

w∗(y)

)
+ wT (x, y, z, t),

(4.3)

where w∗(y) is the mean of w̃∗w(x̃, y, z̃∗) at a given height. Further details of this

decomposition, for all three velocities, are given in Abderrahaman-Elena et al. (2019).

The result of the above decomposition minimises the signature of the texture in

uT and wT . These will be referred to as the ‘turbulent’ components in the following

discussions. Instantaneous flow fields for the full streamwise and spanwise velocities

at the surface for the case with L+ ≈ 12 are shown in figure 4.12, together with

the turbulent velocity fields obtained from both the conventional triple decomposi-

tion, equation (4.1), and the modulated triple decompositions of equations (4.2–4.3).

The effectiveness of the decompositions at isolating the turbulent components of the

velocities beyond any given instant can be better elucidated from two-dimensional

premultiplied energy spectra, as shown in figure 4.13 for the streamwise and span-

wise velocities at the surface. The relative magnitudes of the energy distribution are

clearer after collapsing the data into one-dimensional spectra, as shown in figure 4.14.

The turbulent components of the flow fields obtained from the decomposition should

contain no energy at the texture lengthscales or the modulated texture-induced flow

lengthscales. As discussed in section 4.2, the conventional triple decomposition par-

tially filters out the texture-coherent energy at the wavelengths of the texture, but

it has no mechanism to filter out wavelengths larger than the texture size, leaving a

footprint of the texture in the velocity snapshots and significant energy in the energy

spectra. In physical space, this can be interpreted as the triple decomposition yielding

a too intense coherent flow where the overlying, driving flow is weak, and vice versa.

In contrast, the modulated triple decomposition is better able to capture and filter

out the texture-induced flow.

For the spanwise velocity the turbulent component contains only a small amount

of energy of the texture-induced flow around the texture wavelength. The turbulent

component of the streamwise velocity shows energy from modulation of the texture-

induced flow in large streamwise wavelengths. This energy results from the background

spanwise velocity inducing streamwise velocity around texture elements, which is not

accounted for in equations (4.2–4.3). This effect can be modelled in the decomposition,
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Figure 4.12 – Streamwise (top) and spanwise (bottom) instantaneous velocity snap-

shots, in wall units, for the full velocity field (left), the turbulent component obtained

from the conventional triple decomposition (middle) and the turbulent component

obtained from the modulated triple decomposition (right) at the surface for the case

with L+ ≈ 12.
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Figure 4.13 – Premultiplied energy spectra at the surface for the streamwise (top)

and spanwise (bottom) velocities for the case with L+ ≈ 12. (a,d) full velocity fields;

(b,e) turbulent components obtained from the conventional triple decomposition; (c,f)

turbulent components obtained from the modulated triple decomposition.
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Figure 4.14 – One-dimensional premultiplied energy spectra at the surface of the

streamwise (top) and spanwise (bottom) velocities for the case with L+ ≈ 12. ······, full

signal; -- --, turbulent component obtained from triple decomposition; ------, turbulent

component obtained from modulated triple decomposition.
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if the texture size is small, by assuming that the local overlying turbulence acts as

a homogeneous transverse shear over texture elements, generating a corresponding

coherent flow, in a similar manner to the spanwise velocity decomposition in equation

(4.3). Additionally, the large variation in intensity of the overlying flow, demonstrated

in figure 4.12, modifies the texture-coherent flow field. It is assumed in equation

(4.2) that the texture-coherent flow fields are the same for each texture element,

just modulated in intensity. However, the variation in local intensity, for this L+ ≈
12 texture, varies the Reynolds number of a texture element, Retx, by an order of

magnitude from Retx ∼ O(10) to Retx ∼ O(100), which, due to advective effects,

modifies the texture-coherent flow-fields between different texture elements. This

effect can, however, be modelled in the decomposition by varying the texture-coherent

flow field depending on the local intensity.

Including both of these effects, the decomposition for the streamwise and spanwise

velocities become

u(x, y, z, t) ≈ U(y) + ũu(x̃, y, z̃, ũ)

(
U(y) + uT (x, y, z, t)

U(y)

)
+ũ∗w(x̃, y, z̃∗)

(
wT (x, y, z, t)

w∗(y)

)
+ uT (x, y, z, t),

(4.4)

w(x, y, z, t) ≈ w̃u(x̃, y, z̃, ũ)

(
U(y) + uT (x, y, z, t)

U(y)

)
+ w̃∗w(x̃, y, z̃∗)

(
wT (x, y, z, t)

w∗(y)

)
+ wT (x, y, z, t),

(4.5)

where ũ is the local texture-averaged streamwise velocity. For the case with L+ ≈ 12,

this reduces the remaining energy in the background turbulent component, as can be

seen from the velocity fields in figure 4.15 and the energy spectra in figures 4.16 and

4.17. However, for larger texture sizes, L+ & 18, the surface texture becomes larger

than the near-wall vortices (Blackwelder & Eckelmann, 1979). The assumption that

individual texture elements simply perceive an overlying homogeneous spanwise shear

starts to fail. In these cases, inclusion of these terms in the decomposition for the

streamwise velocity results in spurious noise in the obtained background turbulent

fields, uT . While the modified decomposition is generally effective at filtering out

the texture-induced flow from uT for the case shown with L+ ≈ 12, spurious noise is

visible in localised regions in the velocity fields in figure 4.15. For consistency, these

additional terms are neglected for all cases, but this does not affect the results in the

subsequent analysis. The assumption of unidirectional flow over texture elements is
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Figure 4.15 – Streamwise and spanwise instantaneous velocity snapshots, in wall units,

for the full velocity field (left), the turbulent component obtained from equations (4.2–

4.3) (middle) and the turbulent component obtained from equations (4.4–4.5) (right)

at the surface for the case with L+ ≈ 12.
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Figure 4.16 – Premultiplied energy spectra at the surface for the streamwise (top)

and spanwise (bottom) velocities for the case L+ ≈ 12. (a,d) full velocity fields; (b,e)

turbulent component obtained from equations (4.2–4.3); (c,f) turbulent component

obtained from equations (4.4–4.5).
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Figure 4.17 – One-dimensional premultiplied energy spectra at the surface of the

streamwise (top) and spanwise (bottom) velocities for the case with L+ ≈ 12. ······, full

signal; ------, turbulent component obtained from equation (4.2–4.3); ------, turbulent

component obtained from equations (4.4–4.5).
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Figure 4.18 – Instantaneous streamwise (top) and spanwise (bottom) slip lengths of

wavelengths λ+
x ≈ 113 − 1131 and λ+

z ≈ 113 − 565 (coloured from red to blue for

increasing streamwise wavelength) for the case with L+ ≈ 12 obtained from the tur-

bulent components of the velocity fields. (a,e) instantaneous correlation of velocity and

shear magnitudes; (b,f) probability density histogram of the slip length; streamwise

(c,g) and spanwise (d,h) phase difference between velocity and shear. In (a,b,e,f) the

dashed line indicates the fitted dynamic slip length, obtained from a linear regression

of the data points, and the dotted line indicates the mean slip length.

also present in the spanwise velocity decomposition. The results in section 4.4 will

show that as the texture size is increased, this assumption starts to fail, but in these

cases inclusion of this term is still more effective at isolating the background turbulent

flow than neglecting it.

4.4 Reassessment of the homogeneity of the slip length

Now that the background, turbulent flow has been isolated from the velocity fields,

the apparent slip length experienced by the turbulent lengthscales in the overlying

flow can be reassessed.

Figures 4.18 and 4.19 show the slip length correlations using the data obtained

from the background, turbulent components for the cases with L+ ≈ 12 and 47.

These correlations essentially shows a collapse to a line of uniform slip length and zero

phase, recovering the correlation between velocity and shear. This confirms that the
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Figure 4.19 – Instantaneous streamwise (top) and spanwise (bottom) slip lengths of

wavelengths λ+
x ≈ 113 − 1131 and λ+

z ≈ 113 − 565 (coloured from red to blue for

increasing streamwise wavelength) for the case with L+ ≈ 47 obtained from the tur-

bulent components of the velocity fields. (a,e) instantaneous correlation of velocity and

shear magnitudes; (b,f) probability density histogram of the slip length; streamwise

(c,g) and spanwise (d,h) phase difference between velocity and shear. In (a,b,e,f) the

dashed line indicates the fitted dynamic slip length, obtained from a linear regression

of the data points, and the dotted line indicates the mean slip length.

loss of correlation of the slip length previously observed is a result of contamination

by the texture-induced flow. The recovery of correlation of the slip length can be

interpreted as the overlying, background turbulence being subject to a homogeneous

boundary condition. Further to this, the streamwise dynamic slip length, i.e., the

slip length experienced by the velocity fluctuations, recovers the value of the mean

slip length, in contrast to the smaller value obtained from the full velocity fields.

The previously observed reduction in value, therefore, also appears to be a result

of contamination by the texture-induced flow. The spanwise fluctuations, however,

still appear to experience a slip length that is smaller than the mean streamwise slip

length, despite the isotropy of the texture.

Figure 4.20 shows spectral maps of the variation of the dynamic slip length for the

background, turbulent component. These confirm that a homogeneous slip length is

recovered across all energetically relevant lengthscales. The streamwise spectral maps

show slip lengths that are homogeneous across all scales, for all texture sizes, with
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Figure 4.20 – Spectral maps of the variation of the time-averaged slip length,(
`+x/z −

〈
`+x/z

〉)
/
〈
`+x/z

〉
, where

〈
`+x/z

〉
is the mean dynamic slip length over the range

λ+
x ≈ 113 – 1131 and λ+

z ≈ 113 – 565, obtained from the turbulent components of the

velocity fields (filled contours) for the streamwise (left) and spanwise (right) direc-

tions, with cases L+ ≈ 12 to 47 shown from top to bottom. Spectral energy density

of the corresponding velocity at a height y+ = 15 (lined contours). The red cross

indicates the wavelength of the texture.
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values matching the slip length experienced by the mean flow. All lengthscales in the

flow, therefore, experience the same streamwise slip length as the mean flow. For the

spanwise slip length, for all texture sizes, and across all energetically relevant scales,

the slip length is also homogeneous. As the texture size is increased, however, scales

of the order of the texture size and smaller show a deviation from the slip length

experienced by larger wavelengths. This apparent loss of correlation is likely due to

the failure of the decomposition to fully filter the texture-induced flow. As discussed

in section 4.3, the decomposition assumes that the flow remains unidirectional over

individual texture elements. While for small texture sizes, L+ . 18, this assumption

is reasonable, for larger texture sizes, L+ & 18, the surface texture becomes larger

than the near wall vortices (Blackwelder & Eckelmann, 1979), making this assumption

questionable. In any event, all relevant lengthscales in the overlying flow perceive the

surface as a homogeneous slip length. Consequently, the mismatch in the measured

∆U+ between simulations that resolve the surface texture, and simulations where

equivalent slip lengths are applied (Seo & Mani, 2016), cannot be attributed to the

overlying turbulence not perceiving the surface as producing a homogeneous slip effect.

There must be an additional phenomenon present than the sole effect of surface slip.



Chapter 5

The effect of surface slip on overlying turbulence

Chapter 4 showed that with textured surfaces the overlying turbulence experiences the

surface as a homogeneous slip length. To assess the effect of such boundary conditions

on the overlying turbulence, this chapter considers simulations where homogeneous

slip lengths are applied. It will be shown that the effect of slip only acts to change

the perceived origins of the mean flow and the overlying turbulence. The dynamics

in the overlying turbulence are essentially unmodified compared to turbulence over a

smooth wall.

Parts of this chapter have been submitted for publication in Fairhall et al. (2019) and

were presented at the 2017 American Physical Society Division of Fluid Dynamics

Meeting (Fairhall & Garćıa-Mayoral, 2017b).
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To investigate how a homogeneous slip-length boundary condition affects the over-

lying turbulent flow, this chapter considers simulations where the texture-resolved

simulations are replaced by equivalent homogeneous slip length boundary conditions.

The values of the applied slip lengths are the dynamic slip lengths obtained for each

texture size in chapter 4. The slip lengths are applied as Robin boundary conditions

of the form

us = `
∂u

∂y

∣∣∣
s
, (5.1)

where us is the velocity at the surface, ∂u
∂y |s is the wall-normal velocity gradient at

the surface and ` is the slip length. The values of the slip lengths are different for the

streamwise and spanwise velocities and are listed in table 5.1 for each texture size. As

with the texture-resolved simulations an impermeability condition is applied at the

surface for the wall-normal velocity.

In section 1.4, it was shown that the shift of the mean velocity profile, ∆U+, in

simulations where impermeability and homogeneous slip lengths are applied, is given

by,

∆U+ ≈ `+x − `+z,eff , (5.2)

i.e., the difference between the streamwise slip length, `+x , and the effective spanwise

slip length, `+z,eff , which is given in equation (1.5). This equation for ∆U+ can be

interpreted such that the effective spanwise slip length, `+z,eff , is the distance below

the surface where the overlying turbulence perceives a wall. The flow is, therefore,

described by two virtual origins as is the case with riblets (Luchini et al., 1991), the

virtual origin of the mean-flow, `+x , and the virtual origin perceived by the overlying

turbulent flow, which will be referred to as `+T . For the surfaces considered here,

`+T ≈ `+z,eff , the empirical relation in equation (1.5). For the more general case, in

which the impermeability condition is relaxed, the turbulent virtual origin deviates

from the relation for `+z,eff (Gómez-de-Segura et al., 2018).

As the turbulent flow perceives a wall at a distance `+T below the surface, the

scaling for the problem is based from this virtual origin. The effective half-height of

the channel, therefore, becomes the distance from the turbulent virtual origin to the

channel centre δ′ = δ + `T , and the friction velocity, uτ , is defined at the turbulent

virtual origin, y+ = −`+T . With the driving pressure gradient kept the same as the

reference smooth wall, this results in a small change in the friction Reynolds number,

or, equivalently, δ′+.
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Case L+
eqiv Reτδ Nx Nz Ny `+x `+z ∆U+

12sl 11.8 180 128 128 153 3.8 2.8 2.1

18sl 17.8 180 128 128 153 5.9 4.0 3.8

24sl 23.7 180 128 128 153 7.0 4.4 4.8

35sl 35.6 180 128 128 153 8.6 5.1 6.2

47sl 47.4 180 128 128 153 10.1 6.3 7.5

Table 5.1 – Parameters for the homogeneous slip-length simulations. L+
eqiv is the

texture size for which the applied slip lengths are equivalent to, Reτδ is the friction

Reynolds number, Nx and Nz are the number of grid points in the streamwise and

spanwise directions, Ny is the number of grid points in the wall-normal direction, `+x

and `+z are the applied streamwise and spanwise slip lengths, and ∆U+ is the measured

shift of the logarithmic region of the mean velocity profile.

To compare the result of scaling with this uτ and the conventional scaling with

the origin at y+ = 0, the mean velocity profiles with the slip velocity subtracted

and the rms fluctuations of the velocities, the Reynolds stress, u′v′
+

, and the rms of

the streamwise vorticity fluctuations are shown in figure 5.1. The rms of streamwise

vorticity is an indicator of the strength and y-location of quasi-streamwise vortices.

The panels on the left of figure 5.1 normalise these profiles by the friction velocity

obtained at y+ = 0. Compared to the smooth wall profiles, these fluctuations show

an apparent shift of the location of the peaks closer to the surface, as previously

reported (Min & Kim, 2004; Busse & Sandham, 2012), as well as a slight increase in

the magnitudes of the peaks for increasing slip. The panels in the middle show these

fluctuations after rescaling by the friction velocity at the turbulent virtual origin,

y+ = −`+T , and shifting the profiles in y+ by `+T , so that the origin is at y+ = −`+T .

Defined in this way, the profiles show a close collapse to the smooth wall profiles.

This supports the idea that turbulence perceives a virtual origin at y+ = −`+T , and

is otherwise essentially unmodified. There are slight differences to the rms profiles

very close to the surface, most noticeably for the streamwise velocity fluctuations.

While the overlying turbulence perceives an origin at y+ = −`+T , the streamwise and

spanwise velocities would vanish at y+ = −`+x and y+ = −`+z , which are both deeper

into the surface than y+ = −`+T . This modifies the gradient of the rms fluctuations

very close to the surface. The effect is particularly intense for the streamwise velocity,

which has the deepest virtual origin, and even results in a small increase in the value

of the peak rms.
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Figure 5.1 – Turbulent statistics for the homogeneous slip-length simulations scaled

by the friction velocity at the surface (left), rescaled by the friction velocity based at

the turbulent virtual origin and shifted by the turbulent virtual origin, `+T (centre).

Smooth wall (------); increasing equivalent texture size L+ ≈ 12 to 47 (------ from blue

to red). Spectral energy densities at y+ +`+T = 15 (right), smooth wall (filled contour);

increasing equivalent texture size (------ from blue to red).
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Premultiplied energy spectra for the three velocities, Reynolds stress, u′v′
+

, and

streamwise vorticity are also shown in figure 5.1, at a height of 15 wall units above

the turbulent virtual origin `+T . These spectra also show a collapse to the smooth

wall data. The slip boundary conditions do not alter the turbulent dynamics in the

overlying flow, which remain smooth-wall-like except for the shift of the origin.





Chapter 6

The effect of surface texture on overlying turbulence

It was shown in chapter 4 that the overlying turbulence experiences the surface as

a slip-length boundary condition. However, previous research has shown that the

∆U+, and, therefore, the drag reduction, predicted using homogeneous slip-length

models disagrees with that obtained from textured surfaces when the texture size is

sufficiently large. This chapter, therefore, focuses on how textured surfaces modify

the overlying turbulence beyond the effect of slip at the surface. It will be shown

that up to texture sizes L+ . 18, the predominant effect of the surface is the direct

effect of the surface slip. The texturing of the surface has negligible impact on the

overlying turbulence, and the surface can, therefore, be modelled using homogeneous

slip lengths. However, beyond this size the coherent flow generated by the texture

interacts with the overlying turbulence, modifying its dynamics to increase the drag.

Parts of this chapter have been submitted for publication in Fairhall et al. (2019) and

were presented at the 2017 American Physical Society Division of Fluid Dynamics

Meeting (Fairhall & Garćıa-Mayoral, 2017b).
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Figure 6.1 – Ratio of the measured ∆U+ between the texture-resolved simulations

and the homogeneous slip-length simulations.

It has previously been observed that the ∆U+ obtained from texture-resolving sim-

ulations differs from that obtained from homogeneous slip-length simulations when the

texture size becomes sufficiently large (Seo & Mani, 2016). The ratio of ∆U+ between

the texture-resolving simulations and the equivalent homogeneous slip-length simula-

tions for the cases in this thesis shows this in figure 6.1. The results of chapter 4,

however, showed that for texture-resolving simulations, the overlying turbulent flow

still experiences a homogeneous slip-length boundary condition. The effect of texture

does not modify the boundary condition experienced by the overlying turbulence.

This additional downward shift of the mean velocity profile must, therefore, be the

result of a further interaction of the texture with the overlying turbulence. To inves-

tigate the discrepancy in ∆U+ for larger texture sizes, in this section, the results of

the texture-resolving simulations are now compared to the homogeneous slip-length

simulations. It is assumed that the effect of slip in the texture-resolved cases is the

same as in the homogeneous slip cases from chapter 5. Consequently, the virtual origin

of the turbulent flow, `+T , is the same as the virtual origin of the homogeneous slip-

length simulations and any further changes to the flow are, therefore, an additional

consequence of the texture.

First, the cases where ∆U+ from the textured simulations is comparable to the slip

length simulations will be analysed. The mean velocity profile and rms fluctuations of

the velocities and Reynolds stress, u′v′
+

, for the textured case with L+ ≈ 18 are shown

in figure 6.2. Also included are the rms fluctuations from the background turbulence,

and the profiles from the equivalent homogeneous slip-length simulation. For this

texture size, the fluctuations and mean velocity profiles from the textured simulations

agree well with the homogeneous slip-length simulations. There is a texture-coherent

contribution very close to the surface, but this does not significantly contribute to the

drag or modify the background turbulence. The predominant effect of the surface,
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Figure 6.2 – Comparison of mean velocity profiles, velocity fluctuations and Reynolds

stress, u′v′
+

, for the texture-resolved and equivalent homogeneous slip-length simula-

tions with smooth channel data for the case with L+ ≈ 18. (a) mean velocity profile;

(b) rms velocity fluctuations; (c) Reynolds stress, u′v′
+

. ------, smooth channel; --�--,

data obtained from the equivalent homogeneous slip-length simulation; --◦--, data ob-

tained from the full velocity fields of the textured simulation; -- --, data obtained from

the turbulent component of the velocity fields of the textured simulation. Note that

the origin is located at y+ = −`+T with the friction velocity calculated from this origin.

therefore, is the shift due to slip. Premultiplied energy spectra are shown in figure

6.3 at a height 15 wall units above the turbulent virtual origin, where the signature

of the texture is already negligible. They show that for L+ . 20, the spectra of the

textured simulations essentially collapse to the spectra from simulations over smooth

walls. This further supports the idea that, for textures of this size, the presence of the

texture does not modify the dynamics of the overlying flow. The shift ∆U+ for these

texture sizes can, therefore, be predicted using homogeneous slip-length models.

The cause for the discrepancy in ∆U+ between the homogeneous slip-length and

textured simulations for larger texture sizes can be investigated by integrating the

streamwise momentum equation (Garćıa-Mayoral & Jiménez, 2011; Abderrahaman-

Elena et al., 2019). Averaging the streamwise momentum equation in time and in the

streamwise and spanwise directions, and integrating in the wall-normal direction gives

ν
∂U

∂y
+ τuv = u2

τ

δ′ − y
δ′

, (6.1)

where τuv is the Reynolds stress, u′v′
+

, U is the mean velocity and δ′ = δ + `T is

the effective channel half-height. Integrating this equation again in the wall-normal

direction from the surface to an arbitrary height within the logarithmic region, H+,

gives.
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Figure 6.3 – Spectral energy densities of the three velocities and Reynolds stress, u′v′
+

,

for the cases with L+ ≈ 12 to 47 at a height of 15 wall units above the turbulent virtual

origin. Textured simulations (filled contours); smooth wall (solid lines); homogeneous

slip-length simulations (dashed lines).



The effect of surface texture on overlying turbulence 87

0 25 50AL
+

-5

0

5

10

∆U
+

Figure 6.4 – Comparison of the measured ∆U+ of the texture-resolved simulations

with the homogeneous slip-length simulations. --�--, ∆U+ of texture-resolved simula-

tions; --◦ --, ∆U+ of homogeneous slip-length simulations; ···♦···, difference in ∆U+

between texture-resolved and homogeneous slip-length simulations; M, integral of the

change in Reynolds stress between channels, T1, from equation (6.3).

∫ H+

`+T

τ+
uvdy

+ + U+(H+)− U+(`+T ) = H+ − `+T −
1

2

(H+)2 − `+T
2

δ+ + `+T
. (6.2)

Note that for a channel with slip, H+ is the height above the turbulent virtual origin.

This equation is valid for both a superhydrophobic channel and a smooth channel. An

expression for ∆U+ of a superhydrophobic surface can be obtained subtracting the

respective equation (6.1) of the superhydrophobic channel from the smooth channel

equation. Assuming that the channels have the same δ′+ then,

∆U+ = U+
SHS(H+)− U+

SC(H+) = U+
SHS(`+T )− U+

SC(`+T )−
∫ H+

`+T

(τ+
uv,SHS

− τ+
uv,SC

)dy+

︸ ︷︷ ︸
T1

,

(6.3)

where `+T is the turbulent virtual origin of the slipping channel and T1 is the change

in Reynolds stress integral between the two channels. Here, U+
SHS(`+T ) ≈ `+x is the slip

velocity at the surface of the superhydrophobic channel and U+
SC(`+T ) ≈ `+T , assuming

that `+T is within the viscous sublayer, i.e. `+T . 5.

For cases where the superhydrophobic surface is represented using slip lengths

then, as shown in figure 5.1 of chapter 5, the only effect of the slipping surface on the

Reynolds stress is a change of perceived origin. It, therefore, follows the term T1 is

zero. This reduces equation (6.3) to,

∆U+ ≈ `+x − `+T . (6.4)
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Figure 6.5 – Comparison of the mean velocity profile, rms velocity fluctuations and

Reynolds stress, u′v′
+

, for the texture-resolved simulations with L+ ≈ 12 to 47 to

smooth channel data. (a) mean velocity profile; (b) rms velocity fluctuations; (c)

Reynolds stress, u′v′
+

. ------, smooth channel; ------ (from blue to red), increasing

texture size from L+ ≈ 12 to 47. Note that the origin is located at y+ = −`+T with

the friction velocity calculated from this origin.

The same relation as proposed in equation (1.6).

For textured-resolved channels ∆U+ is given by the same expression in equation

(6.3). As `+x and `+T are the same as the equivalent homogeneous slip length simulation

this means that

∆U+ ≈ `+x − `+T −
∫ H+

`+T

(τ+
uv,SHS

− τ+
uv,SC

)dy+. (6.5)

This indicates that it is an increase in Reynolds stress, u′v′
+

, beyond the effect of slip,

that causes the additional downward shift of the mean velocity profile in the textured

simulations. This is supported by figure 6.4, which shows that the measured difference

in ∆U+ between the texture-resolving and slip-length simulations essentially equals

the integral of the change in Reynolds stress between channels. The contribution of

the texture-coherent component to the Reynolds stress, u′v′
+

, is negligible, so the

observed difference must be essentially caused by modifications in the background

turbulence. The Reynolds stress profiles for each textured simulation, shown in figure

6.5(c), support this. With increasing texture size, the Reynolds stress profiles show a

modified shape compared to the profile of smooth-wall turbulence, with an increase

in Reynolds stress for 5 . y+ . 25. It should be noted that due to the imposed

impermeability, the Reynolds stress must be zero at the surface.

Also shown in figure 6.5 are the mean velocity profiles and rms fluctuations of the

velocities. The full rms fluctuations are additionally compared with those from the

background turbulence, and with those for the equivalent homogeneous slip simula-

tions for the cases with L+ ≈ 24 and 47, in figure 6.6. Beyond L+ & 24, the near wall
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Figure 6.6 – Comparison of mean velocity profiles, velocity fluctuations and Reynolds

stress, u′v′
+

, for the texture-resolved and equivalent homogeneous slip-length simula-

tions with smooth channel data for the cases with (a–c) L+ ≈ 24 and (d–f) L+ ≈ 47.

(a,d) mean velocity profile; (b,e) rms velocity fluctuations; (c,f) Reynolds stress, u′v′
+

.

------, smooth channel; --�--, data obtained from the equivalent homogeneous slip-

length simulations; --◦--, data obtained from the full velocity fields of the textured

simulations; -- --, data obtained from the turbulent component of the velocity fields

of the textured simulations. Note that the origin is located at y+ = −`+T with the

friction velocity calculated from this origin.

peak of the streamwise fluctuations is reduced compared to the peak observed over

smooth walls, with the wall-normal and spanwise fluctuations, by contrast, showing

an increase in magnitude. These differences persist up to y+ ∼ 50 and have previ-

ously been reported in flows over superhydrophobic surfaces (Seo et al., 2015), as well

as over rough surfaces (Antonia & Krogstad, 2001; Orlandi & Leonardi, 2006). The

premultiplied energy spectra of figure 6.3 show that beyond L+ & 24, there is an in-

crease of energy in shorter streamwise lengthscales, and a decrease of energy in longer

streamwise lengthscales, compared to smooth-wall turbulence. The wall-normal ve-

locity also shows an increase of energy in larger spanwise wavelengths. This is also

seen over surfaces with roughness (Krogstad & Antonia, 1994; Abderrahaman-Elena

et al., 2019). Instantaneous realisations of the fluctuating velocity components over

a smooth wall and of the background turbulent component of the case with L+ ≈ 47

are shown in figure 6.7 at a height y+ + `+T = 15. The latter show a reduction in

streamwise coherence for scales of order 1000 wall units, as is also indicated by the
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energy spectra. At such a large texture size, the lengthscales and magnitude of the

texture-coherent flow become comparable to those of the background turbulence. The

spectra and instantaneous flow fields suggest a modification of the near-wall dynamics

through the disruption of streaks and quasi-streamwise vortices by the texture-induced

flow.

These results suggest that, while the overlying turbulent flow still experiences the

surface as a homogeneous-slip-length boundary condition, for sufficiently large textures

a non-linear interaction of the texture-induced flow with the overlying turbulence

modifies its dynamics. This interaction has an extended y-support and does not

occur only at y+ = 0. For the surface texture geometry considered in this work,

this non-linear interaction begins to appear for L+ ' 25 and becomes significant for

L+ & 30. This is, therefore, the upper limit where homogeneous slip lengths are

valid, at least for the geometry studied here. Different texture geometries would cause

different texture-induced flows, which could alter the value of L+ for the onset of the

non-linear interaction.
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Figure 6.7 – Streamwise (left), wall-normal (middle) and spanwise (right) instanta-

neous velocity fluctuation flow fields, in wall units, for a smooth wall (top) and the

background turbulent components of the velocities for the case with L+ ≈ 47 (bottom)

at a height y+ + `+T = 15.





Chapter 7

Conclusions and outlook
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7.1 Conclusions

Superhydrophobic surfaces are able to reduce skin friction drag through the slip they

produce at their textured surface. This thesis has analysed the influence that surface

slip and surface texture have on overlying turbulent flows, and their respective effects

on the surface drag.

The effect that the texture pattern of the surface has on the slip length and the

susceptibility of the entrapped gas pockets to deformation was first investigated. It

was shown that in the viscous regime, L+ . 1, surface textures of isolated posts with

square, diamond and circular cross-sections, in collocated and staggered arrangements,

produced essentially the same slip lengths. However, in the laminar regime the surface

texture has a stronger effect on the value of the slip length. Textures of posts in

staggered arrangements produced slip lengths smaller than collocated arrangements.

This is likely due to the blockage effect of the arrangement, as also seen in randomised

surface textures (Seo et al., 2018). The staggered arrangement of posts also resulted

in significantly larger texture-coherent deformation of the gas pockets due to the

larger stagnation pressures they produce. It was also shown that the results from

laminar simulations can predict the slip lengths and the texture-coherent gas pocket

deformations of fully turbulent flows for texture sizes L+ . 20.

In some previous numerical studies, superhydrophobic surfaces have been modelled

through the mean effect of the surface, i.e., the slip lengths they produce (Min &

Kim, 2004; Busse & Sandham, 2012; Seo & Mani, 2016). While this assumption has

been shown to be able to predict the drag in the small-texture limit, L+ . 10, the

results of Seo & Mani (2016) showed that for L+ & 10 the velocity and shear at the

surface appear to lose correlation, the overlying flow appears to no longer perceive

the surface as producing a homogeneous slip effect. In this thesis, however, it was

shown that this observed loss of correlation is a consequence of contamination by

the texture-induced flow, not a direct effect of the texture size becoming too large.

Modulation of the texture-coherent flow with the background turbulence scatters the

signal of the former across the entire wavenumber spectrum. The use of a modified

form of the triple decomposition (Abderrahaman-Elena & Garćıa-Mayoral, 2016) was

adapted for application to superhydrophobic surfaces to filter out the texture-induced

flow from the flow fields. This decomposition takes into account the modulation of

the texture-coherent flow by the background turbulent flow. This allows the texture-

induced flow to be filtered from the velocity fields across the full spectrum. Upon

filtering the flow fields, the slip length experienced by the background turbulence was

shown to be strongly correlated, the overlying flow still experiences the surface as a
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homogeneous slip-length boundary condition, at least up to the largest texture size

considered, L+ ≈ 47. While these results show that the overlying flow perceives the

surface as producing a homogeneous slip effect, Seo & Mani (2016) show that ∆U+

predicted from homogeneous slip models and the measured value from texture-resolved

simulations disagree for L+ & 10. Therefore, there must be an additional phenomenon

present in the texture-resolved simulations.

To discern the separate effects that surface slip and texture have on the overlying

turbulence, next, the direct effect of surface slip was investigated through simulations

applying the homogeneous slip-length boundary conditions obtained from the textured

simulations. It was shown that surfaces modelled by slip-length boundary conditions

do not modify the turbulent dynamics in the overlying flow, they remain smooth-wall

like. In these cases, the flow can be characterised by two virtual origins, the virtual

origin experienced by the mean flow, given by the streamwise slip length, `+x , and

the virtual origin perceived by the overlying turbulence, `+T , with ∆U+ equal to the

difference between these two virtual origins, i.e. ∆U+ ≈ `+x − `+T , an extension of the

theory for riblets (Luchini et al., 1991).

Finally, the discrepancy in ∆U+ between the texture-resolving and slip length

simulations was investigated. For the texture-resolved superhydrophobic surfaces it

was shown that up to L+ . 20 these surfaces can be modelled by the homogeneous

slip lengths they produce. The overlying turbulence is not significantly modified by

the surface texture beyond the effect of surface slip. For larger texture sizes, while

the overlying turbulence still experiences the surface as a homogeneous slip-length

boundary condition, there appears to be a non-linear interaction between the texture-

coherent flow and overlying turbulence, modifying the dynamics of the latter. The

Reynolds stress, u′v′
+

, profiles of the background turbulence show a modified shape

compared to the homogeneous slip-length profiles. It is shown that this increase in

Reynolds stress is the cause for the discrepancy in ∆U+ between textured and slip

length simulations. This increase in Reynolds stress does not occur at the surface but

over a range 5 . y+ . 25, indicating an unfavourable modification to the turbulent

dynamics. The rms fluctuations of the velocities show a decrease in streamwise fluctu-

ations and an increase in spanwise and wall-normal fluctuations close to the surface,

qualitatively consistent with turbulent flows over rough surfaces (Antonia & Krogstad,

2001; Orlandi & Leonardi, 2006). Premultiplied energy spectra also show a modifica-

tion in the lengthscale distribution of the turbulent energy, with a reduction in the

streamwise coherence for scales of order 1000 wall units, suggesting an alteration to

the near-wall turbulent cycle.
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7.2 Outlook

This thesis suggests that it is the interaction of the texture-coherent flow with the

overlying turbulence that causes the reduction in measured ∆U+ compared to that

predicted using homogeneous slip lengths. With a final aim of modelling the effect of

the surface without needing to conduct the full texture-resolved simulations, the next

natural question is then whether this effect can be modelled in simulations without

needing to fully resolve the texture. This would then allow the drag produced by

textured simulations to be estimated beyond the small texture size limit, that is

L+ . 25. This interaction could, perhaps, be thought of as an additional advective-

like term in the governing equations resulting from the cross terms of the texture-

coherent and background-turbulence. If this texture coherent flow can be predicted

a priori, i.e. through laminar simulations (Abderrahaman-Elena et al., 2019), this

effect could be modelled as an additional forcing term. The ability of such a model to

predict the texture-resolved drag would be a natural extension to the present work.

It is hypothesised in this work that it is the intensity, and lengthscales, of the

texture-coherent flow that most strongly influences the modifications to the turbulent

dynamics. However, only one surface texture was considered in the DNSs. Further

analysis is needed to assess how strongly the surface texture affects the overlying flow.

For example, the work of Seo et al. (2018), who investigated randomised textures,

could be expanded upon. The similarities between the turbulent dynamics over su-

perhydrophobic surfaces and roughness is also interesting. While superhydrophobic

surfaces typically allow larger surface slip and also impose impermeability at the sur-

face, the net effect on the overlying turbulent flow has many parallels with rough

surfaces. It would be interesting to further analyse the similarities, and differences,

between turbulent flows over superhydrophobic surfaces and roughness.

Finally, for superhydrophobic surfaces to be used in drag reducing applications, the

gas pockets need to remain entrapped. While the dynamics of the liquid-gas interface

have started to be investigated in more detail (Seo et al., 2018; Garćıa Cartagena et al.,

2018), the finer details of why the gas pockets are lost from the surface still remains one

of the least well understood aspects of flows over superhydrophobic surfaces. Further

work is needed to address the questions of why the gas pockets are lost from the

surface, and to what texture size stable gas pockets can remain entrapped on the

surface.
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