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1 Introduction

The analytic properties of scattering amplitudes provide a rich connection between higher-
dimensional operator coefficients in an effective field theory (EFT) and fundamental prop-
erties of its UV completion, particularly unitarity, causality and locality [1–4]. Rather than
match EFT coefficients to a particular UV model, so-called “positivity bounds” instead
leverage such fundamental UV properties to constrain the EFT coefficient space. In this
work, we derive new and more general positivity bounds on EFTs for massive spinning
particles, adding to the rapidly growing list of available bounds developed recently in [5–16].

It is surely no coincidence that this recent progress comes at a time when the lack
of new physics near the weak scale challenges our understanding of EFT naturalness.
This return to the foundations of QFT is reminiscent of the original analytic S-matrix
programme [17, 18], which also began in an era when the contemporary understanding of
QFT was being challenged. Ironically, back then this was due to an abundance of new
resonances at the GeV scale; today, it is the lack of on-shell resonances at the TeV scale.
Nevertheless, signatures of new physics may still arise from exploring the precision frontier,
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by detecting deviations from SM predictions. If such deviations are due to heavy new
physics, then they are efficiently encoded as higher-dimensional operators in the Standard
Model Effective Field Theory (SMEFT) framework, and positivity bounds provide a direct
connection between these operator coefficients and general properties of the UV. Positivity
bounds are an important theoretical prior restricting the EFT parameter space which could
improve our estimation of these SMEFT parameters and therefore our ability to detect
new physics in precision experiments. Conversely, experimental measurements probing the
parameter space with the “wrong” sign can test whether fundamental principles break down
in the UV.

The tantalising prospect of such a two-way bridge between the IR and the UV has led
to a diverse range of phenomenological applications of positivity bounds. As mentioned
before, LHC measurements are increasingly interpreted in terms of SMEFT coefficients (see
e.g. refs. [19, 20] for the latest global fits) to which positivity bounds have recently been
applied [21–29]. Other particle physics applications include chiral perturbation theory [1–3]
and its gauged siblings [30, 31]. Positivity bounds have also been recently applied to
a variety of EFTs relevant for cosmology, including the study of corrections to general
relativity [32–35]; the effective theories describing massive gravity [36–43] and higher-
spin states [44–46]; various scalar field theories [47–51]; Einstein-Maxwell theory and the
Weak Gravity Conjecture [52–57]; and paired with observational constraints [58, 59]. Any
improvement in the constraining power of positivity bounds can therefore impact a wide
range of areas throughout theoretical physics.

Following the influential study of ref. [4], which developed bounds for the 2 → 2
scattering of scalar particles in the forward limit, positivity bounds have since been extended
beyond the forward limit [6, 47], and to include spinning particles [5, 7]. Steps have also
been taken beyond 2 → 2 processes [50], to allow for spontaneous Lorentz breaking [60–
63], and to include gravitational effects [64–68]. Positivity bounds have recently been
further strengthened by exploiting full crossing symmetry (i.e. equating the s-, t-, and
u-channels) [10–12], moment theorems [9], and an emerging geometrical understanding of
their underlying mathematical structure [15, 16]. While all these bounds begin constraining
operators at mass dimension-8 and higher, ref. [8] recently pursued a complementary
direction, in deriving positivity bounds on the dimension-6 interactions between two
massless spinors by requiring a stronger convergence of the UV amplitude at high energies.

However, despite these recent advances, it seems clear that the existing bounds are
far from the full picture. Indeed, most explicit UV completions that we know of seem
to populate only a small island in the region allowed by current positivity bounds [69].
Improving on the existing positivity machinery, to find the strongest possible bounds on
the space of low-energy EFTs, is an important theoretical tool for a better understanding
of UV-IR connections in QFT and, more practically, an essential in-road when modelling
and searching for signs of new high-energy physics.

In this work we derive new positivity bounds for massive particles with spin, beyond
the forward limit, that are complementary to previous bounds. The main new ingredient
that goes into deriving our bounds is a stronger unitarity condition, or rather a pair of
unitarity conditions that constrain both the s-channel and u-channel branch cuts in terms
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of the exchanged angular momentum, taking careful account of the non-trivial crossing
relations for massive spinning particles. As a first application of our results, we obtain new
constraints on a variety of operators, starting at dimension-6.

The main results of this work are briefly summarised in section 1.1 below, followed
by a list of our notation and conventions in section 1.2. In section 2 we derive a new
unitarity bound on the UV amplitude using the s-channel partial wave expansion, and then
in section 3 we use crossing to derive the analogous bound in the u-channel region. In
section 4, we then invoke causality (analyticity) and locality (boundedness) to construct
a dispersion relation which relates these UV unitarity constraints to positivity bounds
in the IR. Section 5 provides various simple examples of low-energy EFTs with massive
spinning fields that can be constrained with these new positivity bounds, and we conclude
in section 6 by highlighting future applications and the potential to further develop these
positivity bounds.

1.1 Summary of main results

Our main result is the improved positivity bound (1.5), which follows from new, stronger
t-derivative unitarity conditions for spinning particles in the helicity basis. These conditions
exploit angular momentum conservation in the UV, which leads to a series of selection rules
in the partial wave expansion. Furthermore, previous beyond-the-forward-limit positivity
bounds in the literature have specialised to massless spinning particles or have restricted
to transverse spin projections, and here we are able to establish bounds directly in the
helicity basis for the first time by carefully considering the crossing relation for massive
spinning particles.

Specifically, we derive the following unitarity condition for the s-channel,

(s− 4m2)∂tAbssA(s, t)
∣∣
t=0 ≥ |hs| AbssA(s, t)

∣∣
t=0 , (1.1)

where hs = h1 − h2 is the total s-channel helicity and the absorptive part Abss of a
scattering amplitude A is defined in (2.3). Previous unitarity conditions in the literature
are equivalent to just the left-hand side of the inequality (1.1) being positive. Here (1.1)
is more constraining since it is further bounded from below for particles with non-zero
helicity, and reflects the fact that only modes with J ≥ |hs| can contribute to the partial
wave expansion.

Positivity only holds if both the integrals across the s- and u-channel discontinuities
are positive. In the massless case, positivity in the u-channel follows trivially from the
s-channel case, since crossing symmetry is trivial. But in the massive case this is not as
straightforward. Here we show that the following helicity averaged amplitude,

Ahu(s, t) :=
∑
h1, h2

h1+h2=hu

Ah1h2h1h2(s, t) (1.2)

has a positive u-channel discontinuity that is also bounded from below,

(u− 4m2)∂tAbsuAhu(4m2 − u− t, t)|t=0 ≥ |hu|AbsuAhu(4m2 − u− t, t)|t=0 , (1.3)

which follows from the selection rule J ≥ |hu| in the u-channel partial wave expansion.
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These results allow us to derive new positivity bounds. To account for unphysical
kinematic singularities, the bounds are expressed in terms of a regulated amplitude,

Âhu(s, t) :=
(
s(s− 4m2)

)S1+S2

(−su)|hs|min
Ahu(s, t) , (1.4)

where S1,2 are the spins of particles 1, 2. In the low-energy EFT, we may calculate
∂2N
s Âhu(s0, t;µ) at s0 = 4m2, where all poles and branch cuts are subtracted up to a scale
µ > 4m2 within the EFT. This is then related via a dispersion relation to the UV values of
the absorptive Abss and Absu parts appearing in (1.1) and (1.3). To obtain a positivity
bound, the number N should be chosen depending on the assumption on the UV energy
growth, such that the contour integral at infinity vanishes, e.g. locality guarantees this for
N ≥ 1 + S1 + S2 − |hs|min where |hs|min is the minimum value of |h1 − h2| in the sum (1.4).
We obtain the following new positivity bounds,

∂t∂
2N
s Âhu(4m2, t;µ)

∣∣∣
t=0

>

{
−α
µ∂

2N
s Âhu(4m2, 0;µ) , α > 0

0 , α ≤ 0
, (1.5)

where we have defined

α := 2(N − S1 − S2 + |hs|min)− |hu| − |hs|min . (1.6)

When α > 0, (1.5) reproduces the known scalar positivity bounds when h1 = h2 = 0, and is
complementary to existing bounds in the literature for non-zero helicities. The bound when
α ≤ 0 is qualitatively different than existing bounds because it bounds the first t-derivative
independently of the zeroth t-derivative.

As with other positivity bounds in the literature, the bound (1.5) only applies if
the high-energy growth of the amplitude in the UV theory is assumed to be sufficiently
bounded. Typically this is ensured by the Froissart bound, lim|s|→∞ |A(s, t)| < s2, which
follows from unitarity and causality in any local quantum theory with a mass gap. In
this case, the positivity bound (1.5) applies for all 2(N − S1 − S2 + |hs|min) ≥ 2. This
corresponds to constraining interactions of mass dimension-8 and higher. Constraining lower
dimension operators requires stronger assumptions about the UV growth. For instance if
lim|s|→∞ |A(s, t)| < s0 in the UV then the bound with 2(N − S1 − S2 + |hs|min) = 0 applies
and can be used to constrain dimension-6 operators whose amplitudes contain a piece that
grows as s0t1.

One interesting distinction between (1.5) and previous positivity bounds is that when
α ≤ 0 (i.e. for sufficiently large |hu|+ |hs|min) the first t-derivative is constrained indepen-
dently of the forward-limit amplitude without any t-derivatives. As a result, this α ≤ 0
bound applies given weaker assumptions about the UV growth. In particular, dimension-6
operators can now be constrained with the milder assumption that lim|s|→∞ ∂t|A(s, t)| < s0.

Finally, note that since |hu|+ |hs|min ≤ S1 +S2, the positivity bound on mass dimension-
6 interactions (which contribute A ∼ t to the amplitude) will have α ≥ 1−S1−S2, while the
bound on mass dimension-10 interactions (which contribute A ∼ s2t to the amplitude) will
have α ≥ 3−S1−S2. To illustrate these bounds, we have focussed in this work on examples
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in which S1 ≤ 1 and S2 ≤ 1, as would be relevant for e.g. the SMEFT. Consequently, in
these examples the bounds on dimension-10 interactions and higher always have α > 0
in (1.5), while the dimension-6 bounds can have α ≤ 0 providing S1 + S2 ≥ 1. The case
S1 = S2 = 2 (relevant for massive gravity) will be presented elsewhere [70].1

1.2 Notation and conventions

Here we set out the notations and conventions that we use in the rest of the paper. We
work in 3 + 1 spacetime dimensions with metric signature (−+ ++).

Two-particle states. A single-particle state |pQ〉 is described by the particle’s spatial
momentum p and its quantum numbers Q, which include the spin, S, and helicity, h, as well
as other identifiers like species, flavour, charge, etc. The most important of these in this work
will be the particle helicity, and so we adopt the shorthand |ph〉, where only the helicity is
written explicitly.2 A two-particle state is then written as the product |p1 h1〉|p2 h2〉.

We adopt the usual relativistic normalisation of the one-particle state,

〈p′h′|ph〉 = 2ωpδhh′(2π)3δ3(p− p′) (1.7)

where ωp =
√
|p|2 +m2 is the energy. This ensures that the corresponding 2-particle state

|p1h1〉|p2h2〉 has normalisation,∫
d6Πp1p2〈p′2h′2|〈p′1h′1|p1h1〉|p2h2〉 = δh1h′1

δh2h′2
(1.8)

with respect to the Lorentz-invariant two-particle phase space element,

d6Πp1p2 = 1
gs
d3Πp1d

3Πp2 , d3Πp = d4p

(2π)4 2πδ
(
p2 −m2

)
Θ(p0) , (1.9)

which corresponds to integrating over all on-shell, future-pointing momenta for each particle,
and dividing by a degeneracy factor gs to account for whether the two ingoing particles are
distinguishable (gs = 1) or indistinguishable (gs = 2) in the s-channel. This gs factor is
required since when indistinguishable the two-particle phase space is a factor of 2 smaller
(because |p1p2〉 and |p2p1〉 are identified).

2→ 2 amplitudes. Since we assume Lorentz invariance throughout, the 2→ 2 scattering
amplitude can be expressed in terms of the usual Mandelstam variables,3

s = −(p1 + p2)2 , t = −(p1 + p3)2 , u = −(p1 + p4)2 , (1.10)

which are related by s+ t+ u = ∑
am

2
a. We will focus on elastic scattering processes in

which m1 = m3, S1 = S3 and m2 = m4, S2 = S4. In the main text, we make the further
simplifying assumption that m1 = m2, so that all four particles have identical mass, m —

1Note that we do not consider spins > 2, since these even-higher-spin theories often have low cut-
offs [71, 72] or already violate existing forward-limit positivity bounds [46].

2Other quantum numbers are implicit, e.g. the state |p1 h1〉 of particle 1 implicitly has spin S1.
3pa is the usual 4-momentum (±ωpa ,pa), where the sign is + for ingoing and − for outgoing.
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this is largely for cosmetic reasons, and we give in appendix D the analogous derivation for
the m1 6= m2 case.

We will refer to the process 12 → 34 as “the s-channel” and the process 14̄ → 32̄ as
“the u-channel”. The bar denotes the corresponding anti-particle quantum numbers, for
instance h̄ = −h for the helicities. Physical s-channel kinematics (i.e. real ingoing p1, p2
and outgoing p3, p4) corresponds to the region s− 4m2 > −t > 0, and physical u-channel
kinematics (real ingoing p1, p4 and outgoing p3, p2) corresponds to the region s ≤ 0 ≤ −t.
When discussing the elastic helicity configuration h1 = h3 and h2 = h4, we will often refer
to the s- and u-channel total helicities,

hs := h1 − h2 , hu := h1 − h̄4 = h1 + h2 . (1.11)

We useAh1h2→h3h4(p1,p2,p3,p4) to denote the amplitude that |p1 h1〉|p2 h2〉 will transi-
tion to |p3 h3〉|p4 h4〉 (i.e. the physical on-shell S-matrix element), and we use Ah1h2h3h4(s, t)
to denote the analytic continuation of this transition amplitude beyond the physical s-channel
region to complex values of s and t. Similarly, we use Ah1h̄4→h3h̄2

(p1,p4,p3,p3) to denote
the amplitude that |p1 h1〉|p4 h̄4〉 will transition to |p3 h3〉|p2 h̄2〉, and use Ah1h̄4h3h̄2

(u, t)
to denote its analytic continuation beyond the physical u-channel region. The bars on
the helicity indices make it clear whether an amplitude refers to the s- or the u-channel
process, but where it may be ambiguous we include a superscript to denote the channel, e.g.
Aψ1ψ2→ψ3ψ4
h1h2→h3h4

(s, t) for the process in which fields ψ1ψ2 are ingoing and ψ3ψ4 are outgoing.

s-channel kinematics. Each value of s and t corresponds to a family of possible particle
momenta pµa (which differ from one another by an overall Lorentz transformation). In a
Lorentz-invariant theory, each of these possible sets of momenta are physically equivalent,
however it will nonetheless be useful to choose a canonical frame in which to work. In the
s-channel region, s ≥ 4m2 − t ≥ 4m2, we use the centre-of-mass momenta,4

ps1 = 1
2


√
s

0
0
ks

 , ps2 = 1
2


√
s

0
0
−ks

 , ps3 = 1
2


−
√
s

−ks sin θs
0

−ks cos θs

 , ps4 = 1
2


−
√
s

ks sin θs
0

ks cos θs

 (1.12)

where ks =
√
s− 4m2, and the scattering angle θs is given by,

cos θs2 =
√
−u√

s− 4m2
, sin θs2 =

√
−t√

s− 4m2
. (1.13)

This has the advantage that A(ks, θs) describes physical scattering for any real ks ≥ 0 and
any real θs, and in particular allows for a partial wave expansion in which θs is transformed
into an angular momentum, A`(s).

4Note that although we have written the 4-momenta of all particles as incoming, so that
∑

a
pa = 0,

the states are labelled by the physical momenta of the particles, i.e. the outgoing 〈p3 h3| particle has
3-momentum p3 = + 1

2 (ks sin θs, 0, ks cos θs).
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u-channel kinematics. Similarly, in the u-channel region, we use the u-channel centre-
of-mass momenta,

pu1 = 1
2


√
u

0
0
ku

 , pu4 = 1
2


√
u

0
0
−ku

 , pu3 = 1
2


−
√
u

−ku sin θu
0

−ku cos θu

 , pu2 = 1
2


−
√
u

ku sin θu
0

ku cos θu


(1.14)

where ku =
√
u− 4m2 and the scattering angle is,

cos θu2 =
√
−s√

u− 4m2
, sin θu2 =

√
−t√

u− 4m2
, (1.15)

for which there is an analogous partial wave expansion.
Finally, the s- and u-channel partial wave expansions are related to each other by

crossing symmetry, which is most easily described using a further angular variable,

cos χu =
√
−su√

−(s− 4m2)(u− 4m2)
=
√
u(u− 4m2)
s(s− 4m2)

1 + cos θu
2 ,

sinχu = −2m
√
−t√

−(s− 4m2)(u− 4m2)
=
√
u(u− 4m2)
s(s− 4m2)

m√
u

sin θu (1.16)

which corresponds to the angle through which p2 rotates upon boosting from the Lorentz
frame (1.12) (in which pµ1 + pµ2 =

√
s δµ0 ) to (1.14) (in which pµ1 + pµ4 =

√
u δµ0 ).

2 Unitarity bounds with angular momentum

In this section, we derive the s-channel unitarity bound (1.1), which bounds the t derivative
of the scattering amplitude in terms of the forward limit amplitude in the region s− 4m2 ≥
−t ≥ 0.

Unitarity and the optical theorem. Unitarity of the Ŝ-matrix, Ŝ†Ŝ = 1, is required
by the conservation of probability: it ensures that the norm of the wavefunction does not
change with time. This is a cornerstone of quantum field theory. Separating Ŝ into free
and interacting parts, Ŝ = 1 + iT̂ , unitarity requires that,

T̂ − T̂ † = iT̂ †T̂ , (2.1)

which loosely speaking constrains the “imaginary part” of any scattering amplitude in terms
of its absolute value. More explicitly, the 2 → 2 scattering amplitude A is related to an
Ŝ-matrix element via,

〈p4 h4|〈p3 h3|T̂ |p1 h1〉|p2 h2〉 = (2π)4δ4(p1 + p2 − p3 − p4)Ah1h2→h3h4 . (2.2)

Although (2.2) only defines Ah1h2→h3h4 for real values of s and t in the region s− 4m2 ≥
−t ≥ 0 (which corresponds to all four psa being real in (1.12)), we can define the analytic
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continuation Ah1h2h3h4(s, t) to all complex values of s. The left-hand-side of (2.1) then
corresponds to the “absorptive” part of this amplitude,5

Abss Ah1h2h3h4(s, t) := 1
2i lim

ε→0
(Ah1h2h3h4(s+ iε, t)−Ah1h2h3h4(s− iε, t))

:= 1
2i
(
Ah1h2→h3h4 −A∗h3h4→h1h2

)
when s− 4m2 ≥ −t ≥ 0 , (2.3)

which reduces to ImA for processes which are invariant under time-reversal.6 Then if we
insert a complete set of N particles states on the right-hand-side of (2.1), unitarity becomes
the celebrated optical theorem,

2AbssAh1h2h3h4(s, t) =
∑
N

Ah1h2→NA∗h3h4→N when s− 4m2 ≥ −t ≥ 0 . (2.4)

In particular, for elastic processes (h3 = h1 and h4 = h2) in the forward limit (p3 = p1 and
p4 = p2) then the right-hand-side of (2.4) becomes ∑N |Ah1h2→N |2 and is always strictly
positive in an interacting theory. Although not manifest from (2.4), this positivity also
extends beyond the forward limit [47], allowing positivity bounds to be placed on all t
derivatives of the amplitude [6, 7] (see also [3, 31, 73] for earlier applications). This is made
possible using the partial wave expansion, as we will now show (see e.g. [74] for a more
detailed review).

Partial wave expansion. The main idea behind the partial wave expansion is to expand
the incoming/outgoing two-particle states in terms of the states |Pµ J M〉|Q〉, where Pµ
is the eigenvalue of spacetime translations and (J,M) are the total and magnetic angular
momentum eigenvalues, while Q are all of the internal quantum numbers which commute
with spacetime translations and rotations. The virtue of these states is that the conservation
rules associated with the spacetime isometries are made manifest, since the interactions
commute with spacetime translations and Lorentz transformations,7

〈P ′µ J ′ M ′|T̂ |Pµ J M〉 = (2π)4δ4
(
Pµ − P ′µ

)
δJJ ′δMM ′ T̂ (P 2, J,M) (2.5)

Explicitly, the incoming two-particle state |p1 h1〉|p2 h2〉 (where we are only writing
the helicity labels explicitly), can be expanded in the s-channel region as,

|p1 h1〉|p2 h2〉 =
∞∑
Js=0

+Js∑
Ms=−Js

cJsMs |ps Js Ms〉|h1 h2〉 (2.6)

where ps = p1 + p2 is the total incoming 4-momentum in the s-channel, and Js, Ms are
the incoming angular momentum quantum numbers. In particular, Ms is the eigenvalue of

5Note Abss f(s) = 1
2iDisc f(s) is the usual discontinuity of a complex function across a branch cut.

6Note that Ah1h2h3h4 (s− iε, t) = A∗h3h4h1h2 (s+ iε, t) due to Hermitian analyticity of the Ŝ (T̂ ) matrix,
and we define the analytic continuation Ah1h2h3h4 (s, t) in the complex s-plane such that it coincides with
the matrix element Ah1h2→h3h4 on the real s-axis approached from above.

7Note that T̂ (P 2, J,M) retains a hat because (2.5) represents only a partial trace over the external
quantum numbers, leaving an operator which acts on the subspace of internal quantum numbers (e.g. for
the 2-particle case (2.6), T̂ (P 2, J,M) acts on the |h1h2〉 part of the states).
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Ĵz = L̂z + Ŝ
(1)
z + Ŝ

(2)
z , and represents the sum of the orbital angular momentum associated

with the relative motion of particles 1 and 2 and their intrinsic spins. These states are
normalised so that,

〈p′s J ′sM ′s|ps JsMs〉 = Vs(2π)4δ4(ps − p′s)δJsJ ′sδMsM ′s and 〈h′1h′2|h1h2〉 = δh1h′1
δh2h′2

(2.7)

where Vs is the relative phase space volume between |p1 p2〉 and |ps Js Ms〉, given by
Vs = 8πgs(2Js + 1)

√
s/ks for the centre-of-mass kinematics (1.12).8

To find the coefficients cJsMs in (2.6), we first use the fact that L̂z vanishes when p1
and p2 collide along the z-axis, in which case Ms = h1 − h2 is simply equal to the total
ingoing helicity,9 a combination we will define as hin

s := h1 − h2. Then comparing the
normalisation (2.7) with (1.8) fixes each cJshin

s
= 1 up to an unimportant phase. Altogether,

the incoming 2-particle state can be expanded as,

|ps1 h1〉|ps2 h2〉 =
∞∑

Js=|hin
s |
|ps Js hin

s 〉|h1 h2〉 . (2.8)

Note that the sum begins at Js = |hin
s | since Js < Ms is forbidden.

Defining the angular momentum Ĵy as the generator of rotations within the scattering
plane (i.e. recall that with the conventions (1.12) all particle momenta lie within the
xz-plane), then we can similarly write for the outgoing state,

|ps3 h3〉|ps4 h4〉 =
∞∑

Js=|hout
s |

eiĴyθs |ps Js hout
s 〉|h3 h4〉 (2.9)

where hout
s := h3 − h4, which follows from (2.8) since the outgoing momenta (ps3, ps4) are

related to the ingoing (ps1, ps2) by a rotation of the scattering plane by an angle θs.
Finally, in the s-channel region where Ah1h2h3h4(s, t) = Ah1h2→h3h4 (ps1,ps2,ps3,ps4), we

can substitute (2.8) and (2.9) into the matrix element definition of the amplitude (2.2)
to write,

Ah1h2h3h4(s, t) =
∑
Js

〈Jshout
s |e−iĴyθs |Jshin

s 〉 〈h3h4|T̂ (s, Js, hin
s )|h1h2〉 , (2.10)

where the sum over Js starts at max
(
|hin
s |, |hout

s |
)
. (2.10) is the partial wave expansion for

massive spinning particles,10 which we can now use to establish unitarity bounds on AbssA
and its t derivatives.

8In a general Lorentz frame, this relative phase space factor is given explicitly by,

Vs := (2Js + 1) d4ps
d6Πp1p2

d2Ωp1

4π ,

where d2Ωp1 are the two spherical angles of p1 and d6Πp1p2 is given in (1.9).
9Note that h2 contributes negatively to the total helicity since particle 2 is travelling in the opposite

direction to particle 1, i.e. along the negative z-axis.
10Note that 〈Jshout

s |e−iĴyθs |Jshin
s 〉 = dJs

hout
s hin

s
(θs) is Wigner’s d matrix, which reduces to the usual Legendre

polynomials for spin-less particles, dJ00(θ) = PJ(cos θ).
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Forward limit. In the forward limit, t = 0 (which implies θs = 0), the Ĵy matrix element
in (2.10) becomes a simple δ-function imposing conservation of angular momentum about
the z-axis, δhin

s h
out
s

. Then taking the Abss part, and using unitarity (2.1) to replace T̂ with
T̂ †T̂ , we can write,

2AbssAh1h2h1h2(s, 0) =
∞∑

Js=|hs|
|〈Ts|h1h2〉|2 , (2.11)

where we have introduced |Ts〉 as a convenient shorthand for the partial trace,

〈ps Js hs|T̂ †T̂ |ps Js hs〉 = |Ts〉〈Ts| . (2.12)

To compute 〈Ts|h1h2〉 explicitly requires complete knowledge of T̂ in the interacting UV
theory. From an EFT perspective this is often not possible, however crucially this quantity
is always sign definite, and so,

AbssAh1h2h1h2(s, 0) > 0 , (2.13)

for all s− 4m2 ≥ 0 is a robust prediction of unitarity for any possible interactions.

First t derivative. Since (s − 4m2)∂t = 2∂/∂ cos θs (∼ −2∂2
θs

at θs = 0), we find that
for elastic processes in the s-channel region,

(s− 4m2)∂tAbssAh1h2h1h2(s, t)
∣∣
t=0 =

∞∑
Js=|hs|

〈Jshs|Ĵ2
y |Jshs〉 |〈Ts|h1h2〉|2 . (2.14)

Since Ĵy is Hermitian, it is clear that the right-hand-side of (2.14) is positive definite.
Indeed, this is how positivity bounds on t derivatives were established in [6, 7]. The step
forward which we wish to take in this work is the observation that this angular momentum
matrix element is not only positive, but is also bounded from below,

2〈Js hs|Ĵ2
y |Js hs〉 = Js(Js + 1)− h2

s ≥ |hs| . (2.15)

Physically, this is simply a consequence of angular momentum conservation: since the
ingoing angular momentum along the z-axis is |hs|, the total angular momentum Js of any
partial wave contribution must be ≥ |hs|. Comparing (2.14) with (2.11), we find that the
selection rule (2.15) leads to the following bound,

(s− 4m2)∂tAbssAh1h2h1h2(s, t)
∣∣
t=0 ≥ |hs| AbssAh1h2h1h2(s, 0) , (2.16)

in the physical s-channel region, s− 4m2 ≥ 0. In fact, since higher order t-derivatives can
be related to the matrix elements 〈Js hs|Ĵ2n

y |Js hs〉, which obey analogous selection rules
to (2.15), the bound (2.16) is the first in an infinite tower of such inequalities, which we
construct explicitly in appendix A.

The unitarity bound (2.16) is the first ingredient of the positivity bounds that we derive
in this paper: it establishes a bound on the discontinuity of the right-hand (s-channel)
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branch cut of Ah1h2h1h2 which is strictly stronger than the basic positivity condition
∂tAbssAh1h2h1h2 > 0 when |hs| 6= 0. The second ingredient we require is the u-channel
analogue of (2.16), in order to place a bound on the discontinuity of the left-hand branch
cut. This is achieved by applying a crossing transformation to Ah1h2h1h2(s, t) — unlike for
scalar particles, this amplitude carries little group indices and so transforms non-trivially
under crossing, which we will now describe in detail.

3 Crossing relation with spin

In this section, we derive the u-channel unitarity bound (1.3), which bounds the t derivative
of the scattering amplitude in terms of the forward limit amplitude in the region s ≤ 0 ≤ −t
(i.e. in the u-channel region, u− 4m2 ≥ −t ≥ 0).

u-channel unitarity. The scattering amplitude for the u-channel process, Ah1h̄4→h3h̄2
,

is defined by the matrix element,

〈p2 h̄2|〈p3 h3|T̂ |p1 h1〉|p4 h̄4〉 = (2π)4δ4(p1 + p4 − p3 − p2)Ah1h̄4→h3h̄2
, (3.1)

where the overbar denotes that these quantum numbers belong to the corresponding
antiparticle (in particular, the helicity changes sign,11 h̄a = −ha). This represents a
different physical process, in which particle 2 (4) has been exchanged with an outgoing
(incoming) antiparticle. The centre-of-mass energy for this scattering is u, and we define
Ah1h̄4h3h̄2

(u, t) to be the analytic continuation of Ah1h̄4→h3h̄2
to complex values of u, exactly

analogous to how the s-channel amplitude Ah1h2h3h4(s, t) is defined from (2.2). In particular,
we can define the absorptive part with respect to u,

Absu Ah1h̄4h3h̄2
(u, t) := 1

2i lim
ε→0

(
Ah1h̄4h3h̄2

(u+ iε, t)−Ah1h̄4h3h̄2
(u− iε, t)

)
:= 1

2i
(
Ah1h̄4→h3h̄2

−A∗
h3h̄2→h1h̄4

)
when u− 4m2 ≥ −t ≥ 0 , (3.2)

so that the unitarity condition (2.1) implies a u-channel optical theorem, namely
2AbsuAh1h̄4h3h̄2

(u, t) = ∑
N Ah1h̄4→NA

∗
h3h̄2→N

. As with the s-channel optical theorem,
although this immediately implies that AbsuAh1h̄2h1h̄2

(u, 0) > 0 for elastic processes in the
forward limit, to extend this positivity beyond forward kinematics requires a partial wave
expansion. Following the same steps which led to (2.10) in the s-channel, one can show
that in the u-channel region where Ah1h̄4h3h̄2

(u, t) = Ah1h̄4→h3h̄2
(pu1 ,pu4 ,pu3 ,pu2), expanding

the 2-particle states in (3.1) in terms of |pu JuMu〉|h1h̄4〉 leads to,

Ah1h̄4h3h̄2
(u, t) =

∑
Ju

〈Juhout
u |e−iĴyθu |Juhin

u 〉 〈h3h̄2|T̂ (u, Ju, hin
u )|h1h̄4〉 (3.3)

where hin
u = h1 − h̄4, hout

u = h3 − h̄2, and the Ju sum starts at max
(
|hin
u |, |hout

u |
)
. As a

result, AbsuAh1h̄2h1h̄2
(u, t) satisfies unitarity conditions analogous to (2.13) and (2.16).

11Since we only write the helicity quantum number explicitly, we are also using the bars over the helicities
to implicitly denote the scattering process. In particular, Ah1h̄4h3h̄2 (= Aψ1ψ̄4→ψ3ψ̄2

h1h̄4h3h̄2
) is generally not equal

to Ah1h′
2h3h′

4
(= Aψ1ψ2→ψ3ψ4

h1h′
2h3h′

4
) with h′2 = −h4 and h′4 = −h2 since they correspond to different processes

(although they are related to one another, by the crossing relation (B.1)).
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Crossing relation. To make use of these u-channel unitarity bounds, we must relate
the u-channel amplitude Ah1h̄4h3h̄2

(u, t) to our original amplitude Ah1h2h3h4(s, t). We do
this using crossing, which is the property12 that the s-channel matrix element Ah1h2→h3h4

(defined for s − 4m2 ≥ −t ≥ 0) can be analytically continued in the complex s-plane to
a combination of u-channel matrix elements Ah1h̄4→h3h̄2

(defined for s ≤ 0 ≤ −t). This
means that, although in the region s ≤ 0 ≤ −t the amplitude Ah1h2h3h4(s, t) cannot be
written as (2.2) or bounded by (2.13), we can instead use crossing to express it in terms
of (3.3) and appeal to u-channel unitarity.

However, this continuation from the s- to the u-channel effectively contains a Lorentz
boost, and so unlike for scalar particles it is generally not true that Ah1h2h3h4(s, t) and
Ah1h̄4h3h̄2

(u, t) simply coincide, since they carry little group indices which are transformed
by the Lorentz boost. The precise crossing relation between the s- and u-channel helicities
amplitudes was worked out in detail in [79–82]. The final result is given in appendix B,
where we show that for elastic scattering (in which S3 = S1 and S4 = S2) the amplitude
Ah1h2h3h4(s, t) can be expanded in u-channel partial waves,

Ah1h2h3h4(4m2 − u− t, t) =
∑
Ju

∑
h′a

〈Ju hout ′
u |e+iĴyθu |Ju hin ′

u 〉

× Ch3h̄2
h′3h̄
′
2
(χu) 〈h′3h̄′2|T̂ (u, Ju, hin ′

u )|h′1h̄′4〉 C
h′1h̄
′
4

h1h̄4
(χu) , (3.4)

in the region s ≤ 0 ≤ −t, where the sum over h′a implies summing over all possible values of
h′1, . . . , h

′
4, with hin ′

u = h′1 − h̄′4 and hout ′
u = h′3 − h̄′2. Here, the crossing matrices Ch

′
1h̄
′
4

h1h̄4
(χu)

are given by the matrix elements,

C
h′1h̄
′
4

h1h̄4
(χu) = 〈h′1h̄′4|e−iŜyχu |h1h̄4〉 , Ch3h̄2

h′3h̄
′
2
(χu) = 〈h3h̄2|e−iŜyχu |h′3h̄′2〉 , (3.5)

where Ŝy|h1h2〉 =
(
Ŝ

(1)
y + Ŝ

(2)
y

)
|h1h2〉 implements a rest-frame rotation of each particle by

the angle χu given in (1.16), which is a result of the Lorentz boost required to go from
s-channel kinematics (1.12) to u-channel kinematics (1.14).

Forward limit. Now we can take the Absu of (3.4), and use unitarity of the u-channel
process (3.1) to bound Ah1h2h3h4(s, t) for negative values of s. Again adopting |Tu〉 as a
shorthand for the partial trace,

〈pu Ju hu|T̂ †T̂ |pu Ju hu〉 = |Tu〉〈Tu| , (3.6)

we see that taking the Absu of (3.4) in the forward limit gives,

2AbsuAh1h2h1h2(4m2 − u, 0) =
∞∑

Ju=|hu|
|〈Tu|h1h̄2〉|2 (3.7)

for all s ≤ 0, which is the crossing image of (2.11).
12For local quantum theories with a mass gap, crossing has been rigorously proven from unitarity, causality

and locality at the level of off-shell correlation functions [75, 76]—see [77, 78] for recent progress towards an
entirely on-shell demonstration.
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First t derivative. However, when taking a t derivative, this will act on the crossing
matrices (3.5). Explicitly, taking a t-derivative at fixed u of (3.4) gives,13

(u− 4m2)∂tAbsuAh1h2h1h2(4m2 − u− t, t)|t=0

=
∞∑

Ju=|hu|
〈Juhu|Ĵ2

y |Juhu〉 |〈Tu|h1h̄2〉|2 + 2m2

u
〈Ŝ2
y〉 (3.8)

where the 〈Ŝ2
y〉 term comes from the crossing matrices (using that ∂ cosχu/∂ cos θu = m2/u

at t = 0), and is given explicitly by,

〈Ŝ2
y〉 =

∞∑
Ju=|hu|

{∑
h′u

〈Tu|P̂h′uŜy|h1h̄2〉〈h1h̄2|ŜyP̂h′u |Tu〉+ Re
[
〈Tu|h1h̄2〉〈h1h̄2|Ŝ2

y P̂hu |Tu〉
] }

,

(3.9)

where we have defined the projection operator,

P̂hu =
∑
h′1, h̄

′
2

h′1−h̄
′
2=hu

|h′1h̄′2〉〈h′1h̄′2| , (3.10)

which sums over all pairs of helicities with a fixed total hu, and arises as a result of the
δhout ′
u hin ′

u
enforcing Jz-conservation when θu = 0 in the e+iĴyθu matrix element.

While the first term in 〈Ŝ2
y〉 is manifestly positive, the second term is not. This was

pointed out (albeit in a different polarisation basis) in [7]. There are two possible resolutions.
Firstly, one could simply neglect the O(m2) term in (3.8), making the implicit assumption
that the UV completion is such that these terms are small (i.e. that no UV amplitude
grows like 1/m2 at small m). This is the approach adopted in [8] for the particular case of
S1 = S2 = 1/2. However, we will see in explicit examples in section 5 that for spins ≥ 1 this
massless limit must be taken with great care, since scattering of longitudinal modes can
indeed scale like 1/m2 and lead to a violation of the crossing relation if the O(m2) term is
discarded prematurely. The second resolution for the sign-indefinite terms in (3.8), and the
strategy which we shall adopt in this work, is to consider a sum over all ingoing helicities
with fixed total hu = h1 − h̄2,

Ahu(s, t) :=
∑
h1, h2

h1+h2=hu

Ah1h2h1h2(s, t) . (3.11)

Averaging over the relative helicity in this way produces a positive 〈Ŝ2
y〉 in (3.8),

(u− 4m2)∂tAbsuAhu(4m2 − u− t, t)|t=0

=
∞∑

Ju=|hu|

{
〈Juhu|Ĵ2

y |Juhu〉
∣∣∣P̂hu |Tu〉∣∣∣2 + 2m2

u

∑
h′u

∣∣∣P̂huŜyP̂h′u |Tu〉∣∣∣2 +
∣∣∣ŜyP̂hu |Tu〉∣∣∣2

} .
(3.12)

13As with (2.14), (3.8) should be understood as first differentiating and setting t = 0, and then taking the
absorptive part.
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Not only is the right-hand-side of (3.12) now manifestly positive, but in fact comparing
with (3.4) and using the selection rule (2.15), we find that,

(u− 4m2)∂tAbsuAhu(4m2 − u− t, t)|t=0 ≥ |hu|AbsuAhu(4m2 − u, 0) , (3.13)

as a consequence of Ju ≥ |hu|. This is the crossing image of the s-channel bound (2.16).
Armed with the unitarity bounds (2.16) and (3.13), which place lower bounds on the

size of ∂tAbssAh1h2h1h2(s, 0) and its crossing image which are stronger than the basic
∂tAbssAh1h2h1h2(s, 0) > 0 condition, we can now derive new positivity bounds on the
coefficients appearing in any low-energy EFT of massive spinning particles.

4 Analyticity and a new positivity bound

So far we have considered the consequences of the unitarity condition Ŝ†Ŝ = 1 on the
2 → 2 scattering amplitude. However, in practice these amplitudes are computed using
a low-energy effective description — since experimentally what we have access to is the
behaviour of A at small values of s, this allows us to make theoretical predictions when the
full UV theory (namely A at large s) is not explicitly known.

We will now consider the question of whether a given low-energy EFT (i.e. a given
AEFT(s) at small s) could have a UV completion (an analytic continuation to large s) which
is compatible with these unitarity requirements. Demanding that there exists such a UV
completion places constraints on the IR Wilson coefficients, known as positivity bounds.

Causality and analyticity. In order to relate the UV and IR behaviour of the amplitude,
we will assume that the UV completion is causal. Causality can be used to establish the
analytic properties of the amplitude in the complex s-plane [83–88], allowing one to leverage
basic results from complex analysis. In particular, Cauchy’s residue theorem allows us to
evaluate A at a regular point s0 using a contour integral which encircles s0. By deforming
this contour, A can be expressed as an integral over its discontinuities (Abs parts), known
as a dispersion relation. These dispersion relations connect the low-energy EFT amplitude
(evaluated at some s0 in the IR) to the value of AbsA in the UV, and are a standard
ingredient in deriving positivity bounds.

However, for massive spinning particles, Ah1h2h1h2(s, t) contains unphysical “kinematic”
singularities at finite t, arising for instance from the factors of cos θs/2 and sin θs/2 used to
define the polarisation tensors. These can also be seen in the partial wave expansion (2.10),
since the matrix elements 〈Jshout

s |e−iĴyθs |Jshin
s 〉 contain poles and branch cuts when written

in terms of s and t. For example, supposing that hs = 1/2 then the first term in (2.10) is
proportional to 〈12 ,

1
2 |e
−iĴyθs |12 ,

1
2〉 =

√
−su/

√
s− 4m2. This is single-valued in the physical

s-channel region, but introduces a kinematic branch cut in the unphysical region that will
contribute to any dispersion relation (and which is not constrained by unitarity).
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Regulated amplitude. In order to overcome this issue,14 we will consider a suitably
regulated amplitude which is free from such unphysical singularities. These kinematic
singularities were studied in detail in [80], where it was shown that for elastic processes in
which the helicities are preserved, the regulated amplitude

Âh1h2h1h2(s, t) := K(|hs|) Ah1h2h1h2(s, t) with K(|hs|) :=
(
s(s− 4m2)

)S1+S2

(−su)|hs|
(4.1)

is free from any kinematic singularity. The only non-analyticities which appear in
Âh1h2h1h2(s, t) are those required by unitarity (and crossing).

Note that removing the kinematic singularities in this way has introduced an additional
t dependence, and in fact,

(s− 4m2)∂t Âh1h2h1h2(s, t)|t=0 = K(|hs|)
[
(s− 4m2)∂t − |hs|

]
Ah1h2h1h2(s, t)|t=0 (4.2)

and the s-channel unitarity bound (2.16) becomes simply,

∂tAbss Âh1h2h1h2(s, t)|t=0 ≥ 0 , (4.3)

in the region s − 4m2 ≥ 0. Although this superficially resembles the usual positivity
condition ∂tAbssAh1h2h1h2 |t=0 > 0, note that without our stronger condition (2.16) we
would not have been able to remove the factor of (−su)|hs| in (4.1) and retain positivity of
the s-channel branch cut.

For the u-channel unitarity bound (3.13), recall that it was necessary to sum over all
pairs of helicities (h1, h2) with fixed h1 + h2 = hu. This sum will have a minimum value of
|h1−h2|, which we denote |hs|min. The procedure analogous to (4.1) for removing kinematic
singularities is therefore to define the regulated amplitude,

Âhu(s, t) := K(|hs|min) Ahu(s, t) , (4.4)

where the kinematic factor K is defined in (4.1). Unitarity in the u-channel (3.13) therefore
implies,

∂tAbsu Âhu(4m2 − u− t, t)|t=0

≥
( |hu| − |hs|min

u− 4m2 + (S1 + S2)
( 1
u− 4m2 + 1

u

))
Absu Âhu(4m2 − u, 0) , (4.5)

in the region s ≤ 0.

Dispersion relations. We can now use the analyticity of Âhu(s, t) in the complex s-plane
to derive a dispersion relation at fixed t. Following the by now standard procedure [4], we
will consider the contour integrals,15

Â(2N)
hu

(s0, t;µ) :=
∮
Cµ

ds

2πi
Âhu(s, t)

(s− s0)2N+1 , (4.6)

14Another approach, described in [5], is to choose this kinematic branch cut to be along the real axis
interval s ∈ [0, 4m2], which is certainly within the regime of validity of the EFT and can therefore be
explicitly subtracted from any dispersion relation.

15The most general fixed t dispersion relation would integrate Â against a general integration kernel F (s)
which is analytic for all |s| ≥ Λ, the EFT cut-off. In this high-energy regime, F (s) can therefore be expanded
in a Laurent series, and so in general we have a linear combination of the integrals (4.6).
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Figure 1. The circular contour Cµ used to define Â(2N)
hu

in (4.6) (shown in green). Rather
than passing through the branch cuts (shown in red), Cµ can be viewed as a small circle around
s = 2m2 − t/2 plus absorptive contributions up to the scale µ (shown in purple).

where Cµ is a circular contour of radius µ centered at the crossing-symmetric point s =
2m2−t/2 and s0 is a point within this region. By Cauchy’s theorem, Â(2N)

hu
(s0, t;m2−t/2) =

∂2N
s Âhu(s0, t) for any s0 in the region m2 < s0 < 3m2 − t, and can be computed within

the low-energy EFT. When µ is greater than m2 − t/2, the contour integral in (4.6)
is to be understood as a deformation of the Cm2−t/2 contour on the physical sheet, as
shown in figure 1. The observable Â(2N)

hu
(s0, t;µ) therefore corresponds to ∂2N

s of the
amplitude evaluated at s0 with all poles and branch cuts subtracted up to the scale µ.
Changing the radius µ of the contour integral shifts Â(2N)

hu
(s0, t;µ) by the real axis branch

cut discontinuities, and can be interpreted as integrating in/out physics at that scale.16

Explicitly,17

Â(2N)
hu

(s0, t;µIR)− Â(2N)
hu

(s0, t;µUV)

=
∫ µUV

µIR

ds

π

Abss Âhu(s, t)
(s− s0)2N+1 +

∫ µUV

µIR

du

π

Absu Âhu(4m2 − u− t, t)
(u− u0)2N+1 , (4.7)

where u0 = 4m2 − s0 − t. The dispersion relation (4.7) can be used to relate an IR scale
µIR, at which the EFT can be used to compute Â(2N)

hu
, to a UV scale µUV, at which Â(2N)

hu

is sensitive to certain properties of the UV completion.

Forward limit. Since unitarity requires that both of the discontinuities in (4.7) are
positive in the forward limit (see (2.11) and (3.7)), this establishes that Â(2N)

hu
(s0, 0;µ) is a

16These Â(2N)
hu

(s0, t;µ) are in many ways analogous to the arcs defined in [9], but note that since crossing
symmetry is not trivial for massive spinning particles one can no longer use an arc in the upper half-plane
only since the resulting dispersion relation contains Ah1h2h3h4 (s+ iε, t) and Ah1h̄4h3h̄2 (s− iε, t) only (which
cannot be combined into an Abs part and thence constrained by unitarity).

17Note that with our conventions Abss is related to Absu by a minus sign, namely AbssAh1h2h3h4 (4m2 −
u− t, t) = −AbsuAh1h2h3h4 (4m2 − u− t, t).
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monotonic function of the scale µ. In particular,18

Â(2N)
hu

(s0, 0;µIR) > Â(2N)
hu

(s0, 0;∞) , (4.8)

for all 4m2 − µIR < s0 < µIR, where µIR is any low-energy scale which is resolved by the
EFT. This allows us to bound EFT coefficients in terms of the high-energy behaviour
Â(2N)
hu

(s0, 0;∞). Sum rules like (4.8) connect low-energy EFT observable to properties of
the UV physics, and become fully-fledged positivity bounds when Â(2N)

hu
(s0, 0;∞) vanishes.

Taking the t-derivative of (4.7) will similarly produce a bound on ∂tÂ(2N)
hu

(s0, t;µIR)|t=0

in terms of ∂tÂ(2N)
hu

(s0, t;∞)|t=0. Before we describe this t-derivative bound explicitly, let
us briefly describe the conditions under which the quantities Â(2N)

hu
(s0, 0;∞) vanish.

Locality and convergence. The standard assumptions of unitarity, causality and locality
in any gapped quantum field theory lead to the Froissart-Martin bound [90, 91],

lim
|s|→∞

|Ah1h2h1h2(s, t)| < s2 , (4.9)

which requires that Â(2N)
hu

(s0, 0;∞) vanishes for sufficiently large N . Notice that the
normalisation used to regulate the amplitude in (4.4) depends on s like K(|hs|min) ∼
s2(S1+S2−|hs|min), and so it is convenient to define,

N̂ := N − S1 − S2 + |hs|min , (4.10)

since then,

Â(2N)
hu

(s0, 0;∞) ∼
∫
C∞

ds

s

Ahu(s, 0)
s2N̂

= 0 for N̂ ≥ 1 (4.11)

in any local (unitary, causal) UV completion. In other words, the number N̂ can be thought
of as (half) the number of “spin-adjusted” derivatives acting on the amplitude.

From (4.8), we therefore conclude that Â(2N)
hu

(s0, 0;µIR), which equals ∂2N
s Âhu(s0, 0)

minus the EFT branch cut contributions out to the scale µIR, must be positive for all N̂ ≥ 1,
i.e. for all N ≥ 1 + S1 + S2 − |hs|min, if a local, unitary, and causal UV completion is to
exist [7]. This is the analogue of the simple bound ∂2

sA > 0 that is well known for scalar
amplitudes [4]. We emphasize that it is the spin-dependent number N̂ that determines the
operator dimension at which these bounds first become constraining. For instance, this
forward limit bound constrains operators of dimension 4 + 4N̂ .

In addition to Froissart-boundedness (4.9), there are various other asymptotic behaviour
of the amplitude at high s that one could consider (see e.g. [92]). In many classes of UV
completion the convergence at large s is faster than the Froissart bound; in string theory for
instance, the amplitude is often exponentially bounded at large s, and so Â(2N)

hu
(s0, 0;∞) = 0

18In fact, since AbsuAh1h̄2h1h̄2(s, 0) > 0 in the forward limit, there is no need to perform the helicity
sum (3.11) since every elastic A(2N)

h1h2h1h2
(s0, 0;µ) is monotonic [5]. In fact, the elastic scattering of any

superposition of helicity states is also monotonic [33], and more recently bounds have also been placed on
the inelastic configurations [13, 89].
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NUV Â(2N) > 0 bound if ∂tÂ(2N) bound if Example UV
Super-Froissart 1/2 N̂ ≥ 1 N̂ ≥ 0 No t-channel

Froissart 1 N̂ ≥ 1 N̂ ≥ 1 Any local QFT
Sub-Froissart 3/2 N̂ ≥ 2 N̂ ≥ 1 Galileon?

Table 1. Summary of three different high-energy growths (4.12) of the amplitude in the UV and
the corresponding positivity bounds.

for any N̂ ≥ 0. Rather than considering only the set of Froissart-bounded UV theories (4.9),
we can also consider other classes of UV theories whose amplitudes are bounded by a
different asymptotic growth rate, specified by,

lim
s→∞

|Ah1h2h1h2(s, t)| < s2NUV . (4.12)

For these more (or less) restrictive UV completions, Â(2N)
hu

(s0, 0;µIR) > 0 for all integer
N̂ ≥ NUV.

One particular class of UV completion which we consider below are those in which the
amplitude is softer than p2 at large momentum, i.e. (4.12) with growth NUV = 1/2 (where
we are not distinguishing between t and s). This high-energy behaviour has been discussed
also in [5, 8, 93], and includes for instance tree-level UV completions with no t-channel
exchange. Such a “super-Froissart” convergence would imply that,

Super-Froissart: ∂tÂ(2N)
hu

(s0, t;∞)|t=0 = 0 for N̂ ≥ 0 . (4.13)

Let us stress that unlike (4.11), which is a robust requirement of locality, this condition (4.13)
is simply a restriction on the kinds of UV completion for which we are allowing.

Finally, there are also cases in which one may want to allow for a sub-Froissart growth
in the UV — most notably for the Galileon interactions [94], which violate the bound
A(2) > 0 and so may require a UV completion which violates (4.9) (see e.g. [95]). In this
case, by considering (4.12) with NUV = 3/2, we can allow for some mild non-locality (i.e. a
violation of the Froissart bound by just one power of s). This implies,

Sub-Froissart: ∂tÂ(2N)
hu

(s0, t;∞)|t=0 = 0 for N̂ ≥ 1 . (4.14)

These different possible UV behaviours are summarised in table 1.

First t derivative. With all of the ingredients now in place, we will complete the
derivation of positivity bounds for the first t derivative of a general elastic 2→ 2 amplitude
Ah1h2h1h2 for massive particles with arbitrary spins, which follow from unitarity, causality
and locality (or a super/sub Froissart-boundedness) in the UV. Taking the t derivative of
the dispersion relation (4.7), evaluated at s0 = 4m2,

∂tÂ(2N)
hu

(4m2, t;µ)|t=0 = ∂tÂ(2N)
hu

(4m2, t;∞)|t=0 +
∫ ∞
µ

ds

π

Is
(s− 4m2)2N+1 +

∫ ∞
µ

du

π

Iu
u2N+1

(4.15)
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where the s-channel contribution is positive thanks to the unitarity bound (4.3),

Is = ∂tAbss Âhu(s, t) ≥ 0 , (4.16)

and the u-channel contribution is bounded by,

Iu = ∂tAbsu Âhu(4m2 − u− t, t)|t=0 −
2N + 1
u

Absu Âhu(4m2 − u, 0)

>
1
u

(
|hu|+ |hs|min − 2N̂ − 1

)
Absu Âhu(4m2 − u, 0) , (4.17)

thanks to the unitarity bound (4.5) (using that S1 + S2 ≥ |hs|min and 1/(u− 4m2) > 1/u
for all u > µ ≥ 4m2). We introduce a new variable for this particular combination of the
helicities and spins,

α := 2N̂ + 1− |hu| − |hs|min , (4.18)

so that Iu > 0 if α < 0 and Iu < 0 if α > 0. We will now discuss each case in turn.

Small helicities (α > 0). When α is positive, the s- and u-channel branch cuts in (4.15)
have opposite signs. This is the same issue encountered for scalar amplitudes (for which α
is always positive). One resolution, first described in [6], is to add to ∂tÂ(2N)|t=0 enough of
the positive Â(2N)|t=0 to correct for the negative Iu. In our case, this allows us to establish
the analogue of µ monotonicity (4.8) for t derivatives,(

∂t + α

µ

)
Â(2N)
hu

(4m2, t;µ)|t=0 >

(
∂t + α

µ

)
Â(2N)
hu

(4m2, t;∞)|t=0 . (4.19)

We therefore arrive at the following positivity bound, where the range of N is determined
by which UV growth (4.12) is assumed,

(
∂t + α

µ

)
Â(2N)
hu

(4m2, t;µ)|t=0 > 0 for N̂ ≥ max
(
NUV,

|hu|+ |hs|min − 1
2

)
.

(4.20)

When |hu| = |hs|min = 0, this reproduces the scalar positivity bound of [6], and for non-zero
helicities this represents the analogue of the transversity-basis bounds of [7] (though note
that the effective αthere = 2N + 2S1 + 2S2 + 1 is always ≥ αhere).

Large helicities (α ≤ 0). The main breakthrough achieved by our stronger unitarity
condition is that when α ≤ 0 (i.e. for sufficiently large total helicity), Iu > 0 and ∂tÂ(2N)

hu
|t=0

alone is a monotonic function of µ, and consequently we have a powerful new bound,

∂tÂ(2N)
hu

(4m2, t;µ)|t=0 > 0 for |hu|+ |hs|min − 1
2 ≥ N̂ ≥ NUV −

1
2 . (4.21)
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This is qualitatively stronger than (4.20) because with no µ−1Â(2N)
hu

(4m2, t;µ) term, the
bound (4.21):

(i) does not require a large µ to be useful (in contrast, when the EFT resolves
only small values of µ, then (4.20) simply reproduces the forward limit bound
Â(2N)
hu

(4m2, 0;µ) > 0),

(ii) can be used to constrain dimension-6 operators, assuming super-Froissart conver-
gence (4.13) in the UV (in contrast, (4.20) only applies to N̂ = 0 when one assumes
an even stronger convergence of A at large s, namely NUV = 0),

(iii) can be used to constrain dimension-10 operators (Galileon-like interactions) even when
the UV amplitude convergences slower than Froissart (4.14)—of course for scattering
scalar fields α is always positive and (4.20) applies, but in various “IR completions”,
such as Proca or massive gravity, the scattering of spinning particles can be constrained
by (4.21) (see e.g. [36–42] for earlier positivity bounds in these theories).

Finally, note that the sum over relative helicity was only necessary to remove the O(m2)
correction to the crossing relation, and so more generally one may write,

∂tÂ
(2N)
h1h2h1h2

(s, t;µ)|t=0 > O
(
m2

µ
〈Ŝ2
y〉
)

when |hu|+ |hs| − 1
2 ≥ N̂ ≥ NUV −

1
2 , (4.22)

where 〈Ŝ2
y〉 is given in (3.9). Making an additional assumption about the UV to discard

this term when µ � m2 (namely that this matrix element grows slower than ∼ µ/m2 at
small masses), then one can place a positivity bound directly on ∂t∂2N

s Âh1h2h1h2 without
the need for the sum over hs at fixed hu.

Our bounds (4.20) and (4.21) (and (4.22)) are very general results: together they can
be used to constrain the scattering of massive particles with any spin and helicity. Note
that for the special case S1 = S2 = 1/2 and hs = 1, hu = 0 recently considered in [8], we
have that,

Â+−+−(s, t) = s− 4m2

s− 4m2 + t
A+−+−(s, t) , (4.23)

and so the massless limit of the bound (4.21) with N̂ = 0 derivatives (assuming the
super-Froissart growth (4.13)) becomes,

lim
m→0

∂tÂ+−+−(s, t)|s=4m2
t=0

= (∂tA+−+− − ∂sA+−+−) |s=0
t=0

, (4.24)

which coincides precisely with the dimension-6 bound derived in [8].

5 Some applications

In this section, we present some explicit examples of various spins and helicities and show
how our positivity bounds lead to new constraints on the coefficients appearing in the
low-energy EFTs of massive spinning particles.
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5.1 Spinor-scalar scattering

Let us begin by considering the following dimension-7 interaction,

Lint = 1
2λ7(∂φ)2ψ̄ψ , (5.1)

which couples a massive scalar field φ to a massive Dirac spinor ψ. For instance, this is the
leading-order interaction compatible with an approximate shift symmetry for φ (which is
softly broken by its mass). Modulo SU(2)L gauge indices and covariant derivatives, a similar
interaction appears in the SMEFT as a Higgs-lepton coupling (see e.g. O1 in [96]), where
it can lead to charged lepton number violating interactions with W bosons, radiatively
generate Majorana masses for neutrinos, and contribute to neutrinoless double beta decay
(albeit at subleading order [97]).

We have chosen to give (5.1) as our first example because the 2→ 2 scattering amplitude
ψφ→ ψφ is particularly simple,

Aψφ→ψφ±0±0 (s, t) = λ7m(t− 2m2)
√
−su√

s(s− 4m2)
. (5.2)

We see that A indeed has the kinematic singularities described in section 4, which can be
removed by multiplying by the factor in (4.4), giving a regulated amplitude,

Âψφ→ψφ± (s, t) =
√
s(s− 4m2)√
−su

Aψφ→ψφ±0±0 (s, t) = λ7m(t− 2m2) , (5.3)

which is now analytic in s and t (as expected of a tree-level scattering amplitude).
Furthermore, note that since this interaction has mass dimension < 8, the forward-limit

positivity bound A(2) > 0 cannot constrain λ7 (assuming a local, Froissart-bounded, UV
completion). However, following the example of [8, 93] and assuming a super-Froissart
boundedness (4.13), we can apply the positivity bound (4.21) with N = 0 s-derivatives
(since α = 2N because |hu|+ |hs|min = 1 and N̂ = N in this example). This gives the bound,

∂tÂψφ→ψφ± = λ7m > 0 (when NUV = 1/2) . (5.4)

Physically, this means that such an interaction can only have λ7 < 0 if ∂tA 6= 0 at high
energies (for instance because the UV theory contains the t-channel exchange of a new heavy
state). The sign of λ7 is therefore a useful diagnostic of this property of the underlying UV
completion.

5.2 Vector-scalar scattering

Next, we consider some simple interactions between a massive vector field, Aµ, and a massive
scalar field, φ. This will help illustrate how the longitudinal modes of a massive vector field
can lead to a violation of the crossing relation, and strong coupling at a parametrically
lower scale, unless the massless limit is taken carefully.
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Leading order. The leading-order interaction that mediates Aµφ→ Aµφ is,

Lint = 1
4λ6A

µAµφ
2 , (5.5)

and the corresponding amplitude is simply,

Ah10h30(s, t) = λ6εh1(p1) · ε∗h3(p3) (5.6)

where the polarisation tensors εµh1
(p1) for Aµ are given explicitly in appendix C, and are

contracted using ηµν = diag (−1,+1,+1,+1). For the transverse polarisations,

A±0±0(s, t) = λ6
−u

s− 4m2 , A±0∓0(s, t) = λ6
−t

s− 4m2 . (5.7)

Note the presence of the kinematic singularity at s = 4m2 when t 6= 0, and in particular that
(s− 4m2)∂tA+0+0|t=0 = 1 is finite as s→ 4m2 and the unitarity bound (2.16) is satisfied
for any λ6. For the longitudinal polarisation on the other hand,

A0000(s, t) = λ6

(
1 + s

2m2
t

s− 4m2

)
, (5.8)

and (s − 4m2)∂tA0000|t=0 = λ6s/2m2 so unitarity is violated at s = 2m2/λ6, indicating
that λ6 ∼ O(m2/Λ2) is required if the EFT is to remain perturbative up to a cut-off scale
Λ. This can also be seen by introducing Stückelberg fields, Aµ ∼ ∂µπ/m, which makes
manifest that λ6A

µAµφ
2 is a dimension-6 operator which becomes strongly coupled at the

scale m2/λ6.
The kinematic singularities in (5.7) and (5.8) disappear when t = 0, but at finite t they

must be removed by (4.1) in order to apply a dispersion relation,

Â±0±0(s, t) = λ6 , Â0000(s, t) = λ6
s

2m2

(
st+ 2m2s− 8m4

)
. (5.9)

These cannot be constrained by positivity without assuming a rather strong convergence in
the UV, namely NUV = 0. However, they serve to highlight an important point about the
crossing relation. If the massless limit is taken with t 6= 0, then the resulting amplitudes do
not obey a trivial crossing relation,

lim
m→0

A+0+0(u, t) = λ6
s

s+ t
6= lim

m→0
A+0+0(s, t)

lim
m→0

A+0−0(u, t) = λ6
t

s+ t
6= lim

m→0
A+0−0(s, t) . (5.10)

The reason for this is that, while the crossing matrix C
h′1h
′
2

h1h̄4
(χu) = δ

h′1
h1
δ
h′2
h̄4

+ O(m), the
scattering of longitudinal polarisations grows at small m, for instance A0000 ∼ O

(
1/m2),

and so one must consistently keep the subleading terms in the crossing matrix when
expanding in small masses.19

19Alternatively, takingm→ 0 with Λ = m/λ6 held fixed effectively sends λ6 → 0 and removes this operator
entirely in the massless limit, so a sufficiently careful power counting would ensure that all longitudinal
interactions decouple as m→ 0.
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Next-to-leading order. At next-to-leading order, there are various (dimension-8) inter-
actions of the form ∂2φ2A2, but only two,

Lint = λ8m
2

Λ4 (Aµ∂µφ)2 + λ′8m
2

Λ4 (Aµ∂νφ)2 (5.11)

are compatible with an approximate shift symmetry for φ (which is softly broken by its
mass). Here we have explicitly included factors of the Aµ mass so that the interactions do
not violate perturbative unitarity until an energy scale ∼ Λ when λ8, λ

′
8 ∼ O(1) (i.e. the

decoupling limit m→ 0 can be taken with Λ, λ8, λ
′
8 held fixed). The corresponding elastic

amplitudes are,

Λ4A±0±0(s, t) = −um2

s− 4m2

(
λ8t+ 2λ′8(t− 2m2)

)
, (5.12)

Λ4A0000(s, t) = λ8
2

s

s− 4m2

(
u2 + (s− 4m2)2

)
+ λ′8(t− 2m2)

(
2m2 + st

s− 4m2

)
.

Assuming the Froissart bound in the UV, there is one non-trivial positivity bound,

∂4
s

(
s(s− 4m2)A0000(s, t)

)
|s=4m2
t=0

= 4!λ8
Λ4 > 0 (when NUV = 1) . (5.13)

The λ′8 interaction is not bounded because it vanishes in the forward limit. In this
simple example, what our new bound (4.21) shows is that, assuming a super-Froissart
convergence (4.13) of the UV amplitude, then λ′8 must obey,

∂t

(
s− 4m2

−u
A±0±0(s, t)

) ∣∣
s=4m2
t=0

= λ8 + 2λ′8
Λ4 > 0 (when NUV = 1/2) . (5.14)

For the transverse modes, A2(∂φ)2 is effectively a dimension-6 operator, and here we are
seeing that the sign of this operator is directly tied to the degree of convergence in the UV.
We can make this all the more striking by considering the single operator, λ̃8A

µ∂[µφA
ν∂ν]φ

(i.e. tuning λ′8 = −λ8 in (5.11)). Taken together, (5.13) and (5.14) imply that λ̃8 > 0 and
λ̃8 < 0, showing that this interaction can never be generated in isolation by a unitary,
causal, local UV completion unless the corresponding UV amplitude grows at large momenta
with NUV > 1/2 (e.g. contains the tree-level t-channel exchange of a vector field).

Comparison with previous bounds. Finally, let us use a few of the dimension-10
operators in this scalar-vector theory to compare the new helicity bound (4.20) with the
earlier transversity bounds of [7]. The transversity polarisations are defined in (B.10), and
if we denote the corresponding scattering amplitude Aτ1τ2τ3τ4 (where τa is the transverse
spin projection of particle a) then the main result of [7] is that the quantity,

fτ1τ2 = 1
(2 + 2S1 + 2S2)!∂

2+2S1+2S2
s

×
[
(s(s− 4m2))S1+S2 (Aτ1τ2τ1τ2(s, t) +A−τ1,−τ2,−τ1,−τ2(s, t))

]
(5.15)
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obeys positivity bounds analogous to a scalar amplitude,

fτ1τ2 |t=0 > 0 and
(
∂t + 3 + 2S1 + 2S2

2Λ2

)
fτ1τ2 |t=0 > 0 (5.16)

inside the Mandelstam triangle, where we have assumed a weak coupling so that at tree-level
the branch cuts only start at Λ2 in the complex s-plane.

For the scattering process Aφ→ Aφ (i.e. S1 = 1, S2 = 0), if we retain an approximate
shift symmetry for φ and focus on the gauge-invariant sector for Aµ, then at leading order
there is a single dimension-8 interaction, (∂φ)2F 2, and at next-to-leading order a small
number of possible dimension-10 interactions. We can start by considering just one of
these, namely,

Lint = −C8
Λ4 (∂φ)2FαβF

αβ + C10
Λ6 ∂µφ∂

νφ∂αF
µβ∂αFνβ , (5.17)

which contributes to both the elastic helicity amplitude Ah0h0 and the elastic transversity
amplitude Aτ0τ0. In the forward limit, positivity bounds applied in either basis yield C8 > 0.
Beyond the forward limit, the helicity bound derived in this work (4.20) implies,(

∂t + 1
Λ2

)
Â(2)

1 |t=0 = 1
2C10 + C8 > 0 , (5.18)

since in this example α = 1 (from (4.18) with N̂ = 1, |hu| = 1 and |hs|min = 1). On the
other hand, the transversity bound (5.16) implies,(

∂t + 5
2Λ2

)
f0,0|t=0 = 1

2C10 + 5
2C8 > 0 , (5.19)

which is always slightly weaker than (5.18) since C8 > 0. The other transversity amplitude
f1,0 gives the same bound as (5.19), so we find that in this simple example (5.17) the new
helicity bounds on ∂tA that we developed in this paper are numerically stronger than the
transversity bounds of [7].

However, while the particular C10 interaction in (5.17) contributes in the same way to
both helicity and transversity amplitudes, this need not be the case for all interactions. In
fact, generally Aτ1τ2τ1τ2 will be sensitive to different combinations of Wilson coefficients
than Ahu , in which case the transversity bounds of [7] and the helicity bounds developed
here will give complementary information. For example, suppose we include in (5.17) a
further dimension-10 interaction,

C ′10
Λ6 ∂α∂

µφ∂β∂
νφFαβF

µν . (5.20)

This does not contribute to f0,0, and so does not affect the bound (5.19), but it does
contribute to the helicity Âhu=1, shifting the helicity bound (5.18) to,

1
2
(
C10 + C ′10

)
+ C8 > 0 . (5.21)

Whether this is stronger or weaker than (5.19) now depends on the sign of C ′10, and in fact
we see that the helicity bound is providing new information beyond the transversity bounds.
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5.3 Four-fermion interactions

Finally, we consider a single Dirac spinor, ψ, with canonical kinetic and mass terms,

Lfree = −1
2 ψ̄γ

µ∂µψ −
1
2mψ̄ψ . (5.22)

The leading interactions appear at dimension-6, and take the form ψ̄Γ1ψ ψ̄Γ2ψ, where Γ1 and
Γ2 are products of γµ and γ5 matrices — two such interactions are considered in appendix C.
In this subsection, we focus on theories with a fermionic shift symmetry, ψ → ψ + ε, which
is broken softly by the mass in (5.22). This approximate symmetry suppresses all the
interactions at dimension-6, and also those at dimension-8. The first interactions compatible
with the symmetry are dimension-10 operators of the form

(
∂ψ̄∂ψ

)2
. Such shift-symmetric

fermions arise in a variety of settings, including Goldstinos from broken supersymmetry,
and the longitudinal mode of a massive spin-3/2 field in the decoupling limit (to which
positivity bounds were recently applied in [98]).

While there are a handful of different possible contractions, we will focus on a single
interaction to illustrate our key point,

Lint = λ10(∂µψ̄∂µψ)2 . (5.23)

Assuming a local UV completion, the forward-limit positivity bounds are,20

∂2
s Â

ψψ→ψψ
0 = −4m2λ10 > 0 ,

∂4
s Â

ψψ̄→ψψ̄
± = +48m2λ10 > 0 ,

(when NUV = 1) (5.24)

which together require that λ10 = 0. It was already argued in [5] that a fermion with exact
shift-symmetry would inevitably violate the A(2) > 0 positivity bounds (analogous to how
an exact Galileon symmetry violates this bound in scalar scattering). (5.24) shows that,
even allowing for a small mass term to softly break the shift symmetry, this interaction still
violates the positivity bounds required for a local UV completion.

One possible response (which could also be made for the Galileon) is that whatever UV
completes this shift-symmetric fermion must contain some degree of non-locality.21 Then
the Froissart bound need not apply, and no positivity constraint can be placed on λ10. One
virtue of our improved positivity bound (4.21) is that, even allowing for some non-locality,
in particular NUV = 3/2 and the sub-Froissart condition (4.14), there is still a constraint
on this dimension-10 operator,

∂t∂
2
s Â

ψψ→ψψ
0 = −λ10 > 0 (when NUV = 3/2) . (5.25)

This final application of our new positivity bound is complementary to our earlier examples,
in which stronger UV convergence is used to constrain lower dimension operators. By

20The polarisation tensors can be found explicitly in appendix C, as well as a description of how the
overall sign of the fermion amplitude is determined.

21Another possible resolution is that shift-symmetric fermions never exist in isolation, but always come
coupled to other light fields (which contribute to the ψψ → ψψ amplitudes to restore positivity). This
parallels the case of a massless spin-3/2 field, whose amplitudes cannot be consistent unless coupled to a
spin-2 field in a supersymmetric way, i.e. the gravitino must always come with a graviton [99].
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removing the need for the forward-limit A(2N)|t=0 in our positivity bound for ∂tA(2N)|t=0,
it is now possible to constrain a different range of interactions than previously possible (for
a given UV behaviour of the amplitude).

6 Discussion

It is now well-established that by assuming four fundamental properties of short-distance
physics — namely Lorentz invariance (LI), unitarity, causality, and locality — one can place
various bounds on scattering amplitudes at low energies. Roughly, these properties have
the following consequences for a 2→ 2 scattering amplitude A:

• LI =⇒ A is a function of the Mandelstam variables s and t.

• Unitarity =⇒ an optical theorem relating ImA to a (positive) cross-section.

• Causality (+ LI) =⇒ a domain of analyticity for A(s) in the complex s-plane.

• Locality (+ LI + unitarity) =⇒ lim|s|→∞|A(s)| is polynomially bounded.

By recalling these standard ingredients for cooking up positivity bounds, we learn that
the fundamental UV properties are most powerful when used in combination (as is best
exemplified by the boundedness condition lims→∞A(s) < s2 of Froissart-Martin).

In this spirit, we began the present work by deriving stronger unitarity conditions that
‘knead in’ LI more thoroughly than in previous literature, and these stronger unitarity
conditions led us to new positivity bounds. Specifically, for 2→ 2 scattering of particles
with spin, invariance of the theory under the rotation subgroup SO(3) ⊂ SO(3, 1) supplies
us with conserved angular momentum quantum numbers that lead to selection rules in
both the s- and u-channels. Firstly, by performing an s-channel partial wave expansion,
one can factor out the kinematic part of the scattering amplitude for each value of the
total angular momentum J , and write it as a matrix element of a rotation operator Ĵy
(that rotates the axis of the incoming pair onto the axis of the outgoing pair). Moreover,
when scattering incoming particles with helicities h1 and h2, this sum over J begins at a
finite value Jmin = |h1 − h2|. By combining these simple facts with the optical theorem, we
derived an “angular momentum enriched” unitarity condition, which is that, schematically22

(see (2.16)),

∂tImA|t=0 >
|h1 − h2|
s− 4m2 ImA|t=0

in the physical s-channel region, to be contrasted with the more familiar unitarity conditions,
ImA|t=0 > 0 and ∂tImA|t=0 > 0.

To use such an improved unitarity condition to derive an EFT positivity bound, one
also needs to derive a similar condition for the u-channel branch cut of A. To do this one
has to work a little harder, thanks to the complicated nature of the crossing relation when
considering massive spinning particles. The obstacles to overcome here are for the most

22For elastic helicity configurations, Ah1h2h1h2 , the absorptive part defined in (2.3) coincides with the
usual imaginary part in the physical s region.
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part technical, related to sign-indefinite terms that arise from taking a t-derivative of the
matrices that implement crossing; only by averaging over all ingoing helicities (that have
fixed h1 + h2) do we obtain a positive quantity. The u-channel unitarity condition is then,
schematically (see (3.13)),

∂tIm
∑
hels.
A|t=0 >

|h1 + h2|
u− 4m2 Im

∑
hels.
A|t=0

in the physical u-channel region.
Armed with these new unitarity conditions, which are stronger than those used previ-

ously for massive particles with spin, we exploited analyticity of the S-matrix and polynomial
boundedness of the UV amplitude to derive new positivity bounds involving one t-derivative
and 2N s-derivatives of a 2→ 2 elastic amplitude ∑hels.A, summed over helicities as above.
The bounds are most powerful for large helicities, because in that case the s- and u-channel
branch cut contributions have the same sign. It thus helps to divide the analysis into two
cases depending on whether the number

α := 2N + 1− |h1 + h2| − |h1 − h2|min

is positive (small helicities) or negative (large helicities). For α ≤ 0, the new bound is that,
roughly (see (4.21)),

∂t∂
2N
s

∑
hels.
A(s, t)|s=4m2, t=0 > 0,

which holds for UV completions in which the amplitude is bounded by lims→∞A < s2N+1.
We also derive a new bound (4.20) in the small helicity regime α > 0 (which is complementary
to similar bounds previously derived in [7]), that is applicable for UV theories with faster
convergence in the UV, namely lims→∞A < s2N .

These very general new results hold for massive spinning particles with any spins and
helicities. In the special case of (i) scattering spin-1/2 particles with opposite helicities,
(ii) assuming the amplitude has a super-Froissart convergence lims→∞A < s, and (iii) in
the limit that the spinors are massless, this reproduces the bound recently derived in [8].
Indeed for general spins, our bounds simplify in the limit of massless particles; if there are
no matrix elements that diverge as m→ 0, then one obtains positivity of ∂t∂2N

s A without
the need to sum over helicity combinations. We discuss a small selection of applications
of the new bounds in section 5. We save further investigation of the phenomenological
implications of such bounds for future work.

Finally, we do not claim that the new bounds (4.20) and (4.21) are in any way the
strongest positivity bounds that apply for massive spinning particles. While they do leverage
stronger unitarity conditions (the angular momentum enriched unitarity conditions (2.16)
and (3.13)), since they have been derived for definite-helicity eigenstates they are often
sensitive to different Wilson coefficients than the previously derived definite-transversity
bounds. Furthermore, we have focussed on bounds on ∂tA|t=0, and further information about
the Wilson coefficients can often be extracted by considering other t-derivatives. And finally,
in light of the recent progress made for scalar amplitudes, in particular the identification of
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optimal positivity bounds [9, 15, 16] and fully exploiting crossing symmetry [10, 11, 68],
it seems likely that one may derive even stronger bounds on massive spinning amplitudes
by combining these advances with the improved unitarity conditions and crossing relation
given here. We close by briefly outlining how this could be achieved.

6.1 Future directions

Upper unitarity bound. In the small helicity regime, where α > 0, the bound (4.20)
presented here represents a small numerical improvement over the analogous bounds in [6]
and [7], but still involve the forward limit amplitude with zero t-derivatives. However, there
is a way to further exploit unitarity to replace this contribution by a constant. Explicitly,
inserting a complete set of angular momentum states in the unitarity condition (2.1) leads
to the analogue of (2.4) for the partial wave coefficients,

2 Im aJsh1h2
≥ 1
Vs
|aJsh1h2

|2 , (6.1)

where aJsh1h2
(s) := 〈h1h2|T̂ (ps, Js, hs)|h1h2〉 are the elastic coefficients appearing in (2.10),

and the factor of 1/Vs comes from resolving the identity using states normalised as in (2.7).
Unitarity therefore requires not only that each Abss aJsh1h2

is positive, but also bounded
from above,23

2Vs ≥ |aJsh1h2
(s)| ≥ Im aJsh1h2

(s) ≥ 0 , (6.2)

and similarly in the u-channel. It is the upper bound in (6.2) which can be used to place
further positivity bounds on the t-derivative of the EFT amplitude, particularly in the
small helicity regime. For instance, using the partial wave expansion in the dispersion
relation (4.15),

2u Iu ≥
∞∑

Ju=|hu|

[
Ju(Ju + 1)− |hu| (|hu|+ 1)− α

] ∑
h1, h̄2

h1−h̄2=hu

Im aJu
h1h̄2

, (6.3)

we see that even when α > 0 it is only the first few partial waves which spoil positivity
of the u-channel branch cut. Defining J∗ ≥ |hu| as the smallest half-integer for which the
quantity Ju(Ju + 1)− |hu| (|hu|+ 1)− α is positive, we can split the sum into ∑J∗−1

Js=|hu| and∑∞
Js=J∗ , and then use Im aJu

h1h̄4
≥ 0 for the latter and Im aJu

h1h̄4
≤ 2Vu for the former. This

produces a bound of the form,

∂t∂
2N
s

∑
hels.
A(s, t)|s=4m2

t=0
> negative constant , (6.4)

23Note that it is common to rescale the partial wave coefficients (i.e. the state normalisation (2.7)), defining
fJh1h2 :=

[
16π(2J + 1)

√
s/ks

]−1
aJh1h2 so that (6.1) is simply Abss fJh1h2 ≤ gs. We have instead chosen to

keep the partial wave expansion simple (i.e. |cJM | = 1 in (2.10)) which leads to an explicit Vs phase space
factor in the unitarity bound.
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which holds for any value of α. For instance, for scattering two distinguishable scalars,
φϕ→ φϕ, the dispersion relation for the third derivative (1

2∂t∂
2
s − 1

3!∂
3
s )A receives a negative

contribution only from the Js = 0 and Ju = 0 partial waves, and so,(1
2∂t∂

2
s −

1
3!∂

3
s

)
A(s, t)|s=4m2

t=0
> −3

2

∫ ∞
µ

ds

π

16π
√
s

(s− 4m2)9/2 −
3
2

∫ ∞
µ

du

π

16π
u7/2
√
u− 4m2

= −16
µ3 +O

(
4m2

µ

)
. (6.5)

In perturbation theory, thanks to the trivial s↔ u crossing relation, the φϕ→ φϕ scalar
amplitude at tree-level is freely generated by t and s2 + u2,

A(s, t) =
∑
a, b

g2a,b (s2 + u2)atb , (6.6)

and the bound (6.5) requires that the Wilson coefficient g2,1 > −8/µ3. This effectively
places a limit on the cut-off of the EFT. For comparison, the largest partial wave coefficient
from this term is a0

00(s) = −7g2,1s
3/12 in the EFT, and so perturbative unitarity requires

that |g2,1s
3| < 192π/7 ≈ 86. Our bound (6.5), which incorporates unitarity, analyticity and

locality, thus improves numerically on this partial wave constraint by an order of magnitude.
This strategy of removing a finite number of partial waves using the upper bound imposed
by elastic unitarity can clearly be further optimised, and we leave that direction open for
future exploration.

Full crossing symmetry. For the scattering of identical scalars, the t-channel process
13̄ → 2̄4 is also elastic and therefore has partial wave coefficients bounded by unitarity.
Fully exploiting this additional crossing relation leads to so-called “null constraints” (for
instance g4,0 = g2,2 in (6.6)) that can be used to improve the positivity bounds [10, 11, 68].
Such null constraints have not yet been developed for massive spinning particles, where the
crossing relation is more complicated and the null constraints must mix different helicity
configurations. In particular, the t-channel image of Ah1h2h1h2 no longer has an elastic
helicity configuration, even when the particles are massless (unless h1 = h2 = 0). While
preparing this manuscript, a step in this direction was taken by [100] for light-by-light
scattering, and it would be interesting to extend this systematically to other spins and
include the effects of a finite mass.

The moment problem. For the case of scalar amplitudes, there has been much progress
in identifying a set of optimal positivity bounds using probability theory, using the dispersion
relation to relate EFT derivatives to the moment problem [9, 15, 16]. The resulting bounds
become particularly useful for higher-order s and t derivatives, which must obey a tower of
Hankel determinant conditions. In appendix A we describe how the selection rule Js ≥ |hs|
naturally leads to an infinite tower of improved unitarity bounds on every t-derivative of
the s-channel branch cut, and in particular we identify the differential operators which
correspond to the matrix elements 〈Js hs|Ĵ2n

y |Js hs〉. We hope that these selection rules
and improved unitarity conditions at higher orders will facilitate future connections with
the moment problem for massive spinning particles.
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A Higher t derivatives

In the main text, we have considered positivity bounds on the first t-derivative of the 2→ 2
amplitude for massive spinning particles. The key to strengthening these bounds beyond the
forward limit lay in the selection rule (2.15) for the matrix element 〈Ĵ2

y 〉 and the resulting
bound (2.16) on ∂tAbssAh1h2h1h2 . In this appendix, we discuss the generalisation of these
identities to higher t-derivatives.

Let us begin by defining the dimensionless variable,

t̂ := t

s− 4m2 (A.1)

so that ∂t̂ = (s− 4m2)∂t. As shown in section 2, ∂t̂Ah1h2h3h4 is proportional to the matrix
element, 〈Js hs|Ĵ2

y |Js hs〉. The key idea is that, with the partial wave expansion,

Ah1h2h3h4(s, t) =
∑
Js

〈Js hout
s |e−iĴyθs |Js hin

s 〉 a
Js
h1h2h3h4

(s) (A.2)

where aJsh1h2h3h4
(s) := 〈h3h4|T̂ (s, Js, hin

s )|h1h2〉 are the partial wave coefficients, higher θs
derivatives can be used to produce all 〈Ĵ2n

y 〉 matrix elements,

(−1)n∂2n
θs Ah1h2h3h4(s, t)|t=0 =

∑
Js

〈Js hout
s |Ĵ2n

y |Js hin
s 〉 a

Js
h1h2h3h4

(s) , (A.3)

where in terms of t,

∂2n
θs =

(
−
√
tu ∂t

)2n
=

n∑
j=1

cn,j∂
j

t̂
at t = 0 , (A.4)

where cn,j are fixed constants. For instance, for n = 3,
(15

8 ∂
3
t̂

+ 15
4 ∂

2
t̂

+ 1
2∂t̂

)
Ah1h2h3h4(s, t)|t=0 =

∑
Js

〈Jshout
s |Ĵ6

y |Jshin
s 〉 a

Js
h1h2h3h4

(s) . (A.5)

Conceptually, these 〈Ĵ2n
y 〉 matrix elements satisfy inequalities analogous to (2.15) as a result

of the selection rule Js ≥ |hs|, and these inequalities can be used to place bounds between
the different ∂2n

θs
AbssAh1h2h1h2 .
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In particular, the 〈J h|Ĵ2n
y |J h〉 have the property that they grow monotonically with

J , with a minimum value at J = h. For example,

〈J h|Ĵ2
y |J h〉 = 1

2
(
J − h2

)
= 1

2h at J = h ,

〈J h|Ĵ4
y |J h〉 = 1

8
(
3J 2 − 2J (1 + 3h2) + h2(5 + 3h2)

)
= 3

4h
2 − 1

4h at J = h ,

〈J h|Ĵ6
y |J h〉 = 1

16
(
5J 3 − 5J 2(2 + 3h2) + J (8 + 45h2 + 15h4)− h2

(
28 + 35h2 + 5h4

))
= 15

8 h
3 − 15

8 h
2 + 1

2h at J = h , (A.6)

where J = J(J + 1). It is straightforward to construct linear combinations of the Ĵ2n
y such

that these minimum values are simply hn, i.e.,

Ôn :=
∑
j

Cn,j Ĵ
2n
y (A.7)

with coefficients Cn,j chosen so that 〈J h|Ôn|J h〉 = hn at J = h. These combinations also
grow monotonically with J , and appear to satisfy the analogue of (2.15),

〈J h|Ôn|J h〉 ≥ |h| 〈J h|Ôn−1|J h〉 , (A.8)

which we have checked numerically for all 2n up to 10. For instance, the first few are,

Ô0 = 1 , Ô1 = 2Ĵ2
y , Ô2 = 4

3 Ĵ
2
y + 2

3 Ĵ
2
y , Ô3 = 8

15 Ĵ
6
y + 4

3 Ĵ
4
y + 2

15 Ĵ
2
y . (A.9)

In order to translate (A.8) into bounds on AbssAh1h2h1h2 , we define Dn
t as the linear

combination of t̂-derivatives which produces Ôn,

Dn
t Ah1h2h3h4(s, t)|t=0 =

∑
Js

〈Js hout
s |Ôn|Js hin

s 〉 a
Js
h1h2h3h4

(s) , (A.10)

so that,

Dn
t AbssAh1h2h1h2(s, t)|t=0 ≥ |hs| Dn−1

t AbssAh1h2h1h2(s, t)|t=0 , (A.11)

for any physical value of s > 4m2, since AbssaJsh1h2h1h2
(s) > 0. (A.11) is the extension of

the s-channel unitarity bound (2.13) to arbitrary t-derivatives.
The Dn

t derivative operators in (A.10) can be written explicitly,

Dn
t =

n∑
k=0

{
n

k

}
∂k
t̂

(A.12)

where
{
n

k

}
are the Stirling triangle numbers of the second kind, which are the coefficients

in the expansion,

xn =
n∑
k=0

{
n

k

}
(x)k where (x)k = x(x− 1) . . . (x− k + 1) , (A.13)
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and are related to the usual binomial coefficients by,{
n

k

}
= 1
k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n . (A.14)

The first few inequalities beyond (2.13) are therefore,

AbssAh1h2h1h2(s, t)|t=0 ≤ |hs|−1 (∂t̂)AbssAh1h2h1h2(s, t)|t=0

≤ |hs|−2
(
∂2
t̂

+ ∂t̂

)
AbssAh1h2h1h2(s, t)|t=0

≤ |hs|−3
(
∂3
t̂

+ 3∂2
t̂

+ ∂t̂

)
AbssAh1h2h1h2(s, t)|t=0

≤ |hs|−4
(
∂4
t̂

+ 7∂3
t̂

+ 6∂2
t̂

+ ∂t̂

)
AbssAh1h2h1h2(s, t)|t=0 , (A.15)

and so on, to arbitrary orders in t derivatives.
However, crossing the identities (A.11) to the u-channel is quite involved since the higher

order t-derivatives also act on the crossing matrices in (3.4) and produce sign-indefinite
terms analogous to (3.9), which must be carefully combined into something positive. In
this work we have focussed on the first (n = 1) identity and have shown that the helicity
sum (3.11) guarantees the u-channel bound (3.13), leading to stronger unitarity bounds
and a new positivity bound on the EFT dispersion relation. A systematic study of how to
do this for the n > 1 identities is left open for the future.

Connection with the moment problem. In addition to (A.11), there are further
inequalities which must be satisfied by these combinations of t derivatives in order to solve
the corresponding moment problem. A similar observation was made recently in [16] for
scalar amplitudes. In our case, the regulated amplitude for massive spinning particles
defined in (4.1) has t-derivatives given by,

1
k!∂

k
t̂
Âh1h2h1h2(s, t)|t=0 =

∞∑
Js=|hs|

vJs,|hs|,k a
Js
h1h2h1h2

(s) (A.16)

where the coefficients vJ,h,k are,

vJ,h,k :=
∏h+k
a=h+1 (J − a(a− 1))

(k!)2 , (A.17)

and reduce to the well-known expression for the derivatives of the Legendre polynomials
P

(k)
J (1) when h = 0. A linear combination of t̂-derivatives of Âh1h2h3h4 can therefore

be constructed to give a partial wave expansion of simply J ns aJsh1h2h1h2
. Rather than

Js = Js(Js + 1), which begins at |hs|(|hs|+ 1), it is more convenient to consider moments of
Ls = Js(Js+1)−|hs|(|hs|+1), which takes discrete values ≥ 0 that are linear in |hs|, namely
Ls = 0, 2 + 2|hs|, 6 + 4|hs|, 12 + 6|hs|, 20 + 8|hs|, . . .. Denoting by Dn

t̂
the combination of

t̂-derivatives that achieves,

Dn
t̂
Âh1h2h1h2(s, t)|t=0 =

∞∑
Js=|hs|

Lns a
Js
h1h2h1h2

(s) , (A.18)
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the first few can be written explicitly as,24


D1
t̂

D2
t̂

D3
t̂...

 =


1 0 0 · · ·

2 + 2|hs| 4 0 · · ·
4(1 + |hs|)2 32 + 24|hs| 36 · · ·

...
...

... . . .




∂t̂
1
2∂t̂
1
3!∂t̂
...

 (A.19)

and coincide with the GL transformation given in [16] when |hs| = 0.
We believe that identifying these particular combinations of t-derivatives, which isolate

either a particular 〈Ĵ2n
y 〉 or a particular Lns in the partial wave expansion, is the first steps

towards developing an optimal set of positivity bounds for massive spinning particles using
the moment theorems recently introduced in [9] for scalar amplitudes. Further exploration
in this direction is postponed for the future.

B Crossing relation details

The crossing relation for massive spinning particles is given in [79–82] (see also [7]),

Aψ1ψ2→ψ3ψ4
h1h2h3h4

(s, t) =
∑
h′a

Ch′1h
′
2h
′
3h
′
4

h1h2h3h4
(χu) Aψ1ψ̄4→ψ3ψ̄2

h′1h
′
4h
′
3h
′
2

(u, t), (B.1)

where the crossing matrix can be decomposed into rotations of each of the four particles,

Ch′
h (χu) = ηu (−1)2S2 eiπ(h′1−h′3)dS1

h′1h1
(χu)dS2

h′2h2
(−π + χu)dS3

h′3h3
(−χu)dS4

h′4h4
(π − χu) (B.2)

where the crossing angle χu is given in (1.16), and ηu is an overall sign which depends on
the spin-statistics of the four particles.25 For the elastic processes we will consider (i.e.
S1 = S3 and S2 = S4), this factor is ηu = +1. Note that the overall (−1)2S2 sign then
simply encodes the statistics of particles 2 and 4, since this crossing can be thought of as
the three permutations: (a) 2↔ 3, (b) 2↔ 4 and then (c) 4↔ 3. The signs introduced by
(a) and (c) cancel, leaving just (−1)2S2 introduced by (b).

Rather than reproduce the rigorous proofs of this relation (which are somewhat involved),
we simply sketch the three key steps:

(i) Permute fields / CPT relation. The amplitude Ah1h2h3h4(s, t) is related to the (LSZ
reduction of the) time-ordered correlator 〈T ψ̂h1(p1)ψ̂h2(p2)ψ̂h3(p3)ψ̂h4(p4)〉. The
crossing of particle 2 from the in-state and 4 from the out-state first requires permuting
the fields ψ̂h2(p2) and ψ̂h4(p4) and using the CPT relation, which produces the spin-
statistics factor ηu.

24An explicit expression for the Dn
t̂
can be written analogously to (A.12) using suitably generalised

Stirling numbers.
25In [7], it was shown that ηu = (−1)S1+S2−S3+S4η12η14 η32η34 η24 where ηij = −1 if both ψi and ψj are

fermions (so anticommute) and = +1 otherwise. Note that this sign depends on the choice of branch cuts for
the Wigner d-matrices (which are only periodic in 4π for fermions), as pointed out in [81, 82]. We adopt the
same convention as [7], in which the angles were chosen so that 0 ≤ θs < π, 0 ≤ θu < π and −π/2 ≤ χu ≤ 0.
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(ii) Complex Lorentz transformation. While a straightforward exchange of φ̂h2(p2) and
φ̂h4(p4) does formally exchange s = −(p1 + p2)2 with u = −(p1 + p4)2, it produces
unphysical kinematics — in particular when s is analytically continued to negative
values, each psa is in fact complex. To remedy this, we perform a (complex) Lorentz
transformation to the frame (1.14). The explicit form of this transformation is given
in [79–81]. In particular, its action on each particle can be written as the product
of a rest-frame rotation through a real angle and a complex boost, so that in the
u-channel region,

Ah1h2h3h4(s, t) = ηu〈pu3h3|e−iŜ
(3)
y χ3〈pu2 h̄2|e−iŜ

(2)
y χ2 T̂ eiŜ

(1)
y χ1 |pu1h1〉eiŜ

(4)
y χ4 |pu4 h̄4〉

(B.3)

where each Ŝ
(a)
y is a rotation in the plane of the scattering that acts only on each

particle in its rest frame. For identical particle masses, these angles are given by,

χ1 = χ4 = −χ3 = −χ2 = −χu , (B.4)

in terms of the χu defined in (1.16). We cannot directly apply the partial wave
expansion (2.8) since now the 2-particle state eiŜyχ1 |pu1h1〉eiŜyχ4 |pu4 h̄4〉 is no longer
an eigenstate of global Ĵz rotations. However, we can insert a complete set of helicity
states on either side of T̂ like so,

Ah1h2h3h4(s, t) = ηu
∑
h′a

C̄
h′3h̄
′
2

h3h̄2
〈pu3h′3|〈pu2 h̄′2| T̂ |pu1h′1〉|pu4 h̄′4〉C

h′1h̄
′
4

h1h̄4
. (B.5)

(iii) Reverse scattering plane normal. We have almost arrived at the u-channel kinematics,
however now the normal to the scattering plane (defined for instance using nµ =
εµαβγp

α
1 p

β
2p

γ
3) has the opposite direction, i.e. ŷ → −ŷ. This is the reason that the

partial wave expansion (3.4) has the opposite sign of Ĵy to (2.10).

These steps lead to the expression (3.4) for the amplitude in the u-channel region,
which can also be written as,

Aψ1ψ2→ψ3ψ4
h1h2h3h4

(s, t) = ηu
∑
h′a

dS1
h′1h1

(χu)dS2
h̄′4h̄4

(χu)dS1
h3h′3

(χu)dS2
h̄2h̄′2

(χu)

× (−1)h′1−h̄′4−h′3+h̄′2Aψ1ψ̄4→ψ3ψ̄2
h′1h̄
′
4h
′
3h̄
′
2

(u, t) , (B.6)

where we have used the identity,

dJuhout
u hin

u
(−θu) = (−1)hin

u −hout
u dJuhout

u hin
u

(+θu) , (B.7)

in (3.3) to replace the partial wave sum over Ju with Aψ1ψ̄4→ψ3ψ̄2
h′1h̄
′
4h
′
3h̄
′
2

(u, t). This is equivalent
to the expression (B.1) which appears throughout the literature, which can be easily verified
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using properties of the Wigner d matrices,26

dS4
h̄′4h̄4

(χu) = (−1)S4−h′4dS4
h̄′4h4

(π − χu) ,

dS3
h3h′3

(χu) = dS3
h′3h3

(−χu) ,

dS2
h̄2h̄′2

(χu) = (−1)S2+h′2dS2
h̄′2h2

(−π + χu) . (B.8)

Note that in the forward limit t→ 0 (i.e. χu → 0), the crossing relation (B.1) becomes
simply,

Aψ1ψ2→ψ3ψ4
h1h2h3h4

(4m2 − u, 0) = Aψ1ψ̄4→ψ3ψ̄2
h1h̄4h3h̄2

(u, 0) . (B.9)

This facilitates the derivation of positivity bounds on ∂2N
s Ah1h2h1h2 |t=0, since the u-channel

branch cut (AbsuAh1h̄2h1h̄2
(u, t)) is immediately positive by unitarity.

Away from the forward limit, applying the crossing relation (B.1) to the u-channel
branch cut leads to a sum over inelastic amplitudes which is generally not positive. In [7],
the crossing relation was diagonalised by transforming from states of definite helicity |S h〉
(eigenstates of p · Ĵ , rotations about particle momentum) to definite transversity |S τ〉
(eigenstates of Ĵy, rotations about normal of scattering plane),

|S τ〉 :=
∑
h

uSτh |S h〉 , (B.10)

where the unitary matrix uSτh = DS
τh(π2 ,

π
2 ,−

π
2 ) implements the required rotation of spin

quantisation axis. This provides a simple representation of the angular momentum matrix
elements appearing in the partial wave expansion and crossing relation,

〈S2 h2|e−iĴyθ|S1 h1〉 =
∑
τ

uS2
h2τ

e−iτθ uS1 ∗
τh1

, (B.11)

and consequently the crossing of Aτ1τ2τ3τ4 = ∑
ha u

S3 ∗
h3τ3

uS4 ∗
h4τ4
Ah1h2h3h4u

S1
τ1h1

uS2
τ2h2

is particu-
larly simple,

Aψ1ψ2→ψ3ψ4
τ1τ2τ3τ4 (s, θs) = η′u exp

(
−iχu

∑
a

τa

)
Aψ1ψ̄4→ψ3ψ̄2
τ1τ4τ3τ2 (u,−θu) (B.12)

since the rest frame rotation matrices Ch
′
1h̄
′
4

h1h̄4
become simply an overall phase. The statistics

factor η′u can be found explicitly in [7].
Rather than use this transversity basis, in this work we have remained in the helicity

basis throughout. This allows us to leverage the selection rules, Js ≥ |hs| and Ju ≥ |hu|. As
we have shown in section 3, the first t-derivative of the helicity crossing relation is positive
for the particular helicity sum (3.11). In order to leverage the higher t-derivative bounds
from appendix A to produce new positivity bounds on higher-order Wilson coefficients, one
must identify an appropriate combination of helicity amplitudes for which the higher-order
〈Ŝ2n
y 〉 matrix elements (from differentiating the crossing matrices) are positive. Alternatively,

one must restrict attention to the massless limit, in which χu = 0 for any value of t and
crossing becomes trivial.

26See for instance the appendix of [7] for a list of useful Wigner d matrix relations.
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C Polarisation conventions

In this appendix, we collect our conventions for the external states, in particular their
polarisation tensors. Throughout we work in metric signature (−,+,+,+).

Spin-1. The polarisation tensors εµh for the three helicity states of a massive vector field
Aµ are given by,

εµ±(ps3) = 1√
2

(0,∓ cos θs,−i,± sin θs) , εµ0 (ps3) = 1
2m

(
ks,
√
s sin θs, 0,

√
s cos θs

)
(C.1)

Note that εh(p) = eiπhε∗−h(p), as per our CPT convention. These conventions coincide with
those of [40], to allow easy comparison with those amplitudes/positivity bounds.

A vector example. For instance, consider the simple vector-scalar interaction (5.5). The
inelastic amplitude A+0→00 in the s-channel region s− 4m2 ≥ −t ≥ 0 is given by,

A+0→00(s, t) = −
√
s sin θs
2
√

2m
(C.2)

using the momenta (1.12) and polarisations (C.1). Using (1.13) to replace θs with t, this
gives the function,

A+000(s, t) = −λ
√
stu√

2m(s− 4m2)
(C.3)

which can be straightforwardly continued to the whole complex s-plane. Finally, we can
compare this with the value inferred from the crossing relation (B.1), which gives,

A+000(4m2 − u− t, t) =
∑
h′1h
′
3

eiπ(h′1−h′3)d1
h′1h1

(χu)d1
h′3h3

(−χu)Ah′10h′30(u, t)

= −λ
√
stu√

2m(u+ t)
(C.4)

in the u-channel region, u−4m2 ≥ −t ≥ 0, which indeed agrees with the explicit continuation
of (C.3).

Spin-1/2. For spinors, we adopt the conventions of [101] with spacetime signature
(−,+,+,+). In particular, we will explicitly write SU(2)L (SU(2)R) indices α (α̇) on
each Weyl spinor, which are raised and lowered as,

λα = εαβλ
β , λα = εαβλβ , εαβεβγ = δαγ (C.5)

using the antisymmetric symbol εαβ =
(

0 −1
1 0

)
, which coincides numerically with −εαβ

and εα̇β̇ .
The Weyl field is quantized as λα(x) =

∫
p

∑
h

(
xαh(p)âh(p)e−ip·x + yαh (p)â†h(p)e+ip·x

)
,

where â and â† obey a canonical anticommutation relation27 and
∫
p is the usual integral

27Note that it is the operators âh, â†h which anti-commute, and so xαh and yαh are commuting spinors.
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over all on-shell, future-pointing momenta. The polarisations for an incoming spin-1/2
particle with mass m and momentum p = k(sin θ, 0, cos θ) are given by,

xα+ = m+ ωk − k√
2
√
m+ ωk

(
sin(θ/2)
− cos(θ/2)

)
, ȳα̇+ = m+ ωk + k√

2
√
m+ ωk

(
cos(θ/2)
sin(θ/2)

)
,

xα− = m+ ωk + k√
2
√
m+ ωk

(
cos(θ/2)
sin(θ/2)

)
, ȳα̇− = m+ ωk − k√

2
√
m+ ωk

(
− sin(θ/2)
cos(θ/2)

)
, (C.6)

where xh, x̄h and yh, ȳh represent left-handed and right-handed chirality respectively (with
h labelling the helicity), and ωk =

√
k2 +m2 is the usual energy. The analogous outgoing

states are x̄α̇± and yα±, and they are related by the CPT relation, yαh = ie−iπhxα−h, between
an outgoing RH helicity h fermion and an incoming LH helicity −h fermion.

The Dirac field is quantised as ψ(x) =
∫
p

∑
h

(
uh(p)âh(p)e−ip·x + vh(p)b̂†h(p)e+ip·x

)
,

where {âh, â†h} and {b̂h, b̂
†
h} obey separate anticommutation relations. The 4-component

polarisation tensors are related to the 2-component polarisation tensors by,

Incoming particle: uh(p) =
(
xhα
ȳα̇h

)
, Incoming antiparticle: v̄h(p) = (xαh , ȳh α̇) , (C.7)

in the Weyl basis. The analogous outgoing states are ūh(p) = (yαh , x̄h α̇) for a particle and

vh(p) =
(
yhα
x̄α̇h

)
for an antiparticle (we define the Dirac conjugate field Ψ̄ = Ψ†A), and they

are related by the CPT relation, uh(p) = ie−iπhγ5v
−h(p), and also by charge conjugation,

vh(p) = Cūh(p)T , where,

γµ =
(

0 σµ
αβ̇

σ̄µ α̇β 0

)
, γ5 =

(
−δ βα 0

0 δα̇
β̇

)
A =

(
0 δα̇

β̇

δ βα 0

)
, C =

(
εαβ 0
0 εα̇β̇

)
,

(C.8)

in the Weyl basis. σµ
αβ̇

coincides numerically with the usual 2 × 2 Pauli matrices,
(1, σx, σy, σz), while σ̄µ α̇β coincides numerically with (1,−σx,−σy,−σz). These tensors
satisfy a variety of useful identities (see [101]), and in particular we will make use of,

ηµνσ
µ
αα̇σ

ν
ββ̇

= −2εαβεα̇β̇ , ηµν σ̄α̇αµ σ̄β̇βν = −2εαβεα̇β̇ , σµαα̇σ̄
β̇β
µ = −2δβαδ

β̇
α̇ . (C.9)

A spinor example. Consider the simple quartic interaction 1
2

(
ψ̄ψ
)2
. At tree-level, the

on-shell amplitude for the ψψ → ψψ process is,

Aψψ→ψψh1h2→h3h4
= 〈0|âh3(ps3)âh4(ps4)

(
ψ̄ψ
)2
â†h2

(ps2) â†h1
(ps1)|0〉 (C.10)

= + (ūh3(ps3)uh1(ps1)) (ūh4(ps4)uh2 (ps2))− (ūh4(ps4)uh1(ps1)) (ūh3(ps3)uh2 (ps2)) .

For instance, using (1.12) and (C.7) for the momenta and polarisations, this gives Aψψ→ψψ+−→+− =
−4k2 cos2 (θs/2). The analytic continuation Ah1h2h3h4(s, t) to complex values of s is defined
such that it is analytic off the real axis and coincides with (C.10) on the real axis (approached
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from above)—for instance, using (1.13) gives Aψψ→ψψ+−+− (s, t) = u for all real s−4m2 ≥ −t ≥ 0,
which is straightforwardly continued to Aψψ→ψψ+−+− (s, t) = u in the whole complex s-plane.

The corresponding u-channel amplitude for the process ψψ̄ → ψψ̄ is given by,

Aψψ̄→ψψ̄
h1h̄4→h3h̄2

= 〈0|âh3(pu3)b̂h̄2
(pu2)

(
ψ̄ψ
)2
b̂†
h̄4

(pu4) â†h1
(pu1)|0〉 (C.11)

=−(ūh3(pu3)uh1(pu1))
(
v̄h̄4

(pu4)vh̄2
(pu2)

)
+
(
v̄h̄4

(pu4)uh1(pu1)
)(
ūh3(pu3)vh̄2

(pu2)
)
,

which can be analogously continued into the complex plane to define the complex function
Aψψ̄→ψψ̄
h1h̄4h3h̄2

(u, t). Explicitly, the complete list of amplitudes is given by,

Aψψ→ψψ++++ (s, t) = 4m2 , Aψψ̄→ψψ̄+−+− (u, t) = 4m2 − 4m2t

s+ t
,

Aψψ→ψψ++−− (s, t) = s , Aψψ̄→ψψ̄++−− (u, t) = s+ 4m2t

s+ t
,

Aψψ→ψψ+−−+ (s, t) = t , Aψψ̄→ψψ̄+−−+ (u, t) = t− 4m2t

s+ t
, (C.12)

Aψψ→ψψ+−+− (s, t) = u , Aψψ̄→ψψ̄++++ (u, t) = u− 4m2t

s+ t
,

Aψψ→ψψ+++− (s, t) = 0 , Aψψ̄→ψψ̄+++− (u, t) = 2m
√
stu

s+ t
,

together with the relations A−h1,−h2,−h3,−h4 = (−1)hin
s −hout

s Ah1h2h3h4 = Ah3h4h1h2 which
follow from the parity and time reversal invariance of the interaction (see e.g. appendix E
of [7] for a simple derivation), and Ah1h2h3h4 = Ah2h1h4h3 since the particles are identical.

Note that the u-channel function Aψψ̄→ψψ̄
h1h̄4h3h̄2

(u, t) is not independent of the s-channel
Aψψ→ψψh1h2h3h4

(s, t), and indeed the two are related by the crossing equation (B.1), which can
be checked explicitly using (C.12). In the forward or massless limits (i.e. 4m2t → 0),
this crossing relation becomes the trivial (B.9), which in this case corresponds to simply
Aψψ→ψψh1h2h3h4

(s, t) = Aψψ̄→ψψ̄
h1h̄4h3h̄2

(u, t).
The regulated elastic Âhu amplitudes are given by,

Âψψ→ψψ±1 (s, t) = 4m2s(s− 4m2) , Âψψ̄→ψψ̄±1 (s, t) = s3 + 4m2s(t− s) ,

Âψψ→ψψ0 (s, t) = 4m2 − s , Âψψ̄→ψψ̄0 (s, t) = 4m2 . (C.13)

Note that our positivity bounds do not place any constraint on this dimension-6 operator
unless the UV amplitude converges fast enough for the A(s, t) dispersion relation to converge
with zero subtractions (i.e. NUV = 0), which is stronger than both the Froissart and the
super-Froissart conditions considered in the main text.

Another spinor example. Finally, consider the quartic interaction 1
2

(
ψ̄γµψ

)2
. At

tree-level, the on-shell amplitudes for the s- and u-channel processes are,

Aψψ→ψψh1h2→h3h4
= + (ūh3(ps3)γµuh1(ps1)) (ūh4(ps4)γµuh2 (ps2))
− (ūh4(ps4)γµuh1(ps1)) (ūh3(ps3)γµuh2 (ps2)) (C.14)

Aψψ̄→ψψ̄
h1h̄4→h3h̄2

= − (ūh3(pu3)γµuh1(pu1))
(
v̄h̄4

(pu4)γµvh̄2
(pu2)

)
+
(
v̄h̄4

(pu4)γµuh1(pu1)
) (
ūh3(pu3)γµvh̄2

(pu2)
)
,
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Evaluating these for each choice of helicity, and then using (1.13) to write the result in
terms of s and t, gives,

Aψψ→ψψ++++ (s, t) = −4s+ 12m2 , Aψψ̄→ψψ̄+−+− (u, t) = −4s+ 12m2 − 12m2t

s+ t
,

Aψψ→ψψ++−− (s, t) = −4m2 , Aψψ̄→ψψ̄++−− (u, t) = −4m2 + 12m2t

s+ t
,

Aψψ→ψψ+−−+ (s, t) = 2t , Aψψ̄→ψψ̄+−−+ (u, t) = 2t− 12m2t

s+ t
, (C.15)

Aψψ→ψψ+−+− (s, t) = 2u , Aψψ̄→ψψ̄++++ (u, t) = 2u− 12m2t

s+ t
,

Aψψ→ψψ+++− (s, t) = 0 , Aψψ̄→ψψ̄+++− (u, t) = 6m
√
stu

s+ t
,

where again the other amplitudes follow from parity, time reversal and particle exchange.
Each of these functions is straightforwardly continued from the physical s- and u-channel
regions to the entire complex plane, and again we find that Aψψ→ψψh1h2h3h4

(s, t) and Aψψ̄→ψψ̄
h1h̄4h3h̄2

(u, t)
are related by the crossing equation (B.1).

The regulated elastic Âhu amplitudes are given by,

Âψψ→ψψ±1 (s, t) = −4s(s− 4m2)(s− 3m2) , Âψψ̄→ψψ̄±1 (s, t) = 2s3 + 4m2s (3t− s)

Âψψ→ψψ0 (s, t) = −2(s− 4m2) , Âψψ̄→ψψ̄0 (s, t) = 4s− 4m2 (C.16)

Note that our positivity bounds also do not place any constraint on this particular dimension-
6 operator unless the dispersion relation converges with zero subtractions (i.e. NUV = 0),
which is stronger than both the Froissart and the super-Froissart conditions considered in
the main text.

Massless limit. In the massless limit, m → 0 (ωk → k), there are only two non-zero
polarisations, one for each helicity (which now coincides with the chirality). These are often
denoted using the angled- and square-bracket spinor helicity variables,

|n〉α̇ := x̄α̇−(pn) = ȳα̇+(pn) and [n|α := yα+(pn) = xα−(pn) when m = 0 , (C.17)

whose indices are lowered via 〈p|α̇ = εα̇β̇ |p〉β̇ and |p]α = εαβ [p|β , and which obey the familiar
relation |n〉α̇[n|β = −pµnσα̇βµ , where pn is the momentum of particle n. See [102] for a review.

Since crossing is trivial in this limit, it is straightforward to relate the different channels,
and in particular it is conventional to consider the particles as either all incoming or all
outgoing. For instance, another way to compute Aψψ̄→ψψ̄

h1h̄2h3h̄4
in the massless limit is to first

consider the amplitude for all particles incoming,28

Aψψ̄ψ̄ψ→∅
h1h̄2h̄3h4

(p1, p2, p3, p4) = 〈0|
(
ψ̄γµψ

)2
â†4 b̂

†
3 b̂
†
2 â
†
1 |0〉 (C.18)

= (v̄3γµu1) (v̄2γ
µu4)− (v̄2γµu1) (v̄3γ

µu4) , (C.19)
28Note that (C.20) is a purely off-shell expression, since there are no (real) on-shell 4-momenta which can

satisfy momentum conservation (
∑

n
pn = 0) when all incoming.
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or in terms of the spinor helicities (C.17),

Aψψ̄ψ̄ψ→∅
+−−+ (p1, p2, p3, p4) = −4 〈14〉[23] , (C.20)

where we have used the identities (C.9). Then by using crossing,

Aψψ̄ψ̄ψ→∅
h1h̄2h̄3h4

(p1, p2,−p3,−p4) = Aψψ̄→ψψ̄
h1h̄2h3h̄4

(p1, p2, p3, p4) (C.21)

together with the analytic continuation of the spinor helicities, |−p〉 = −|p〉 and |−p] = +|p〉,
the simple expression (C.20) implies that,

Aψψ̄→ψ̄ψ+−+− (p1, p2, p3, p4) = +4〈14〉[23] (C.22)

which for the kinematics (1.14) gives,

Aψψ̄→ψ̄ψ+−+− (s, t) = +4s+ 4t (C.23)

in perfect agreement with the massless limit of (C.15).
However, note that care must be taken when applying the crossing relation from the

all-incoming process to the physical 2→ 2 process — for instance, had we instead crossed
particles 2 and 4, the correct relation is,

Aψψ̄ψ̄ψ→∅
h1h̄2h̄3h4

(p1,−p2, p3,−p4) = −Aψψ̄→ψψ̄
h1h̄3h2h̄4

(p1, p3, p2, p4) , (C.24)

which differs from (C.21) by an overall minus sign.29 As an example, suppose that we take
p2 = −p1 and p4 = −p3 in order to set s = 0,

Aψψ̄ψ̄ψ→∅
+−−+ (p1,−p1, p3,−p3) = +4 〈13〉[13] = −4t , (C.25)

then this corresponds via the crossing relation (C.24) to,

−Aψψ̄→ψψ̄+−+− (s, t)|s=0 = −4t , (C.26)

which indeed reproduces the massless limit30 of (C.15). This overall sign in (C.24) is crucial
for correctly applying the positivity bounds, since without it one might conclude from (C.23)
and (C.26) that ∂tAψψ̄→ψψ̄+−+− (s, t)|s=0 and ∂sAψψ̄→ψψ̄+−+− (s, t)|t=0 have opposite signs, when it is
clear from (C.15) that they in fact have the same sign and so cancel out in (4.24).

D Scattering unequal masses

For algebraic simplicity, we have focussed in the main text on scattering processes in which
the four external particles have the same mass, m. This restriction is by no means necessary,
and in this appendix we derive the analogous positivity bounds for the scattering of unequal
mass particles.

29The relative minus sign is due to the Fermi statistics of the particles, and is most easily seen by
considering the permutation of particles 2 and 3, Aψψ̄ψ̄ψ→∅

h1h̄2h̄3h4
(p1, p2, p3, p4) = −Aψψ̄ψ̄ψ→∅

h1h̄3h̄2h4
(p1, p3, p2, p4).

30Note that the m→ 0 limit is performed first to define the massless amplitude, and then is followed by
the kinematic limit s→ 0.
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Kinematics. Consider the elastic scattering process between two particles with masses
m1,m2 and spins S1, S2. We label the particles so that m1 ≥ m2, and define the positive
difference,

∆ = m2
1 −m2

2 , (D.1)

along with the following convenient pair of analytic functions,

S = (s− (m1 −m2)2)(s− (m1 +m2)2) ,
U = (u− (m1 −m2)2)(u− (m1 +m2)2) . (D.2)

The momenta of the particles in the s-channel centre-of-mass frame remains (1.12), but
now with a scattering angle θs given by,

cos θs2 =
√
−su+ ∆2
√
S

, sin θs2 =
√
−st√
S

. (D.3)

Repeating the steps in section 2 leads to the same partial wave expansion remains (2.10),
but with θs now given by (D.3) in place of (1.13). Consequently, t- and θs-derivatives are
now related by the factor S∂t = 2s∂/∂ cos θs, and so (2.13) becomes,

S
s
∂tAbssAh1h2h1h2(s, t)|t=0 ≥ |hs|AbssAh1h2h1h2(s, 0) . (D.4)

Similarly in the u-channel, the centre-of-mass momenta (1.14) are now given by the
scattering angle,

cos θu2 =
√
−su+ ∆2
√
U

, sin θu2 =
√
−ut√
U

, (D.5)

in place of (1.15), and the partial wave expansion is again (3.3).

Crossing. When the masses are unequal, the rest-frame rotation (B.3) required to go
from s- to u-channel kinematics acts differently on each particle: in particular the angles
χa are no longer given by (1.16), but rather by,

cosχ1 = −(s+ ∆)(u+ ∆) + 4m2
1∆√

SU
, sinχ1 = +2m1

√
−tΨ√

SU
, (D.6)

cosχ2 = −(s−∆)(u−∆)− 4m2
2∆√

SU
, sinχ2 = −2m2

√
−tΨ√

SU
, (D.7)

and χ3 = −χ1, χ4 = −χ2. This clearly reduces to (B.4) when the mass difference ∆→ 0.
The first t-derivative of the crossing matrices in (3.4) is now,

U
u
∂tAbsuAh1h2h1h2(2m2

1 + 2m2
2 − u− t, t)|t=0

=
∞∑

Ju=|hu|
〈Ju hu|Ĵ2

y |Ju hu〉|〈Tu|h1h̄2〉|2 + 2(m1 +m2)2

u
〈ŝ2
y〉 , (D.8)
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where 〈ŝ2
y〉 is given by (3.9) with the operator Ŝy|h1h2〉 =

(
Ŝ

(1)
y + Ŝ

(2)
y

)
|h1h2〉 replaced by,

ŝy|h1h2〉 =
(

m2
1

(m1 +m2)2 Ŝ
(1)
y + m2

2
(m1 +m2)2 Ŝ

(2)
y

)
|h1h2〉 . (D.9)

Since ŝy is Hermitian, the helicity sum defined in (3.11) ensures that,∑
h1h̄2

h1−h̄2=hu

〈ŝy〉 ≥ 0 , (D.10)

and therefore,
U
u
∂tAbsuAhu(2m2

1 + 2m2
2 − u− t, t)|t=0 ≥ |hu|AbsuAhu(2m2

1 + 2m2
2 − u, 0) , (D.11)

which is the crossing image of (D.4). It is perhaps worth commenting here that, without
the succinct operator notation in (3.9), the positivity of (D.10) would not have been at all
obvious, since writing these sums out explicitly in terms of e.g. Wigner d matrices leads to
a lengthy expression with many terms.

Analyticity. The amplitude Ah1h2h3h4(s, t) contains unphysical kinematic singularities
arising from the factors of cos θs/2 and sin θs/2 used to define the polarisation tensors.
These kinematic singularities were studied in detail in [103], where it was shown that for
elastic processes in which the helicities are preserved, the regulated amplitude,

Âh1h2h1h2(s, t) = SS1+S2

(−su+ ∆2)|hs|
Ah1h2h1h2(s, t) , (D.12)

is free from any unphysical kinematic singularity, where hs = h1 − h2 as in the main text.
The only non-analyticities of Âh1h2h1h2(s, t) in the complex s-plane are those required by
unitarity and crossing, namely,

Poles: s = m2
1 , m2

2 , 2m2
1 +m2

2 − t , m2
1 + 2m2

2 − t ,
Branch Cuts: s ≥ (m1 +m2)2 and s ≤ (m1 −m2)2 − t , (D.13)

as well as for the masses and thresholds of any other fields which couple to the external
particles.

As in section 4, the s-channel branch cut of Âh1h2h1h2 has positive t-derivative,
S
s
∂tAbss Âh1h2h1h2(s, t)|t=0 = SS1+S2−|hs|

(S
s
∂t − |hs|

)
AbssAh1h2h1h2(s, t)|t=0

≥ 0 . (D.14)

Similarly, the u-channel branch cut is bounded by,
U
u
∂tAbsu Âhu(2m2

1 + 2m2
2 − u− t, t)|t=0

≥ US1+S2−|hs|min

(
|hu| − |hs|min + (S1 + S2)

(
1 + u− 2m2

1 − 2m2
2

u

))
×AbssAhu(2m2

1 + 2m2
2 − u, 0) . (D.15)
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The dispersion relation is then given by (4.15), and the branch cuts Is and Iu are positive
thanks to (D.14) and (D.15), completing the proof of the positivity bound for generic
particle masses m1 6= m2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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