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Automatic Speech Recognition (ASR) is an example of a sequence to sequence level
classification task where, given an acoustic waveform, the goal is to produce the correct
word level hypotheses. In machine learning, a classification problem such as ASR is
solved in two stages: an inference stage that models the uncertainty associated with the
choice of hypothesis given the acoustic waveform using a mathematical model, and a
decision stage which employs the inference model in conjunction with decision theory to
make optimal class assignments. With the advent of careful network initialisation and
GPU computing, hybrid Hidden Markov Models (HMMs) augmented with Deep Neural
Networks (DNNs) have shown to outperform traditional HMMs using Gaussian Mixture
Models (GMMs) in solving the inference problem for ASR. In comparison to GMMs,
DNNs possess a better capability to model the underlying non-linear data manifold due
to their deep and complex structure. While the structure of such models gives rich
modelling capability, it also creates complex dependencies between the parameters which
can make learning di�cult via first order stochastic gradient descent (SGD). The task of
finding the best procedure to train DNNs continues to be an active area of research and
has been made even more challenging by the availability of ever more training data.

This thesis focuses on designing better optimisation approaches to train hybrid
HMM-DNN models using sequence level discriminative criterion which is a natural loss
function that preserves the sequential ordering of frames within a spoken utterance. The
thesis presents an implementation of the second order Hessian Free (HF) optimisation
method, and shows how the method can made e�cient through appropriate modifications
to the Conjugate Gradient algorithm. To achieve better convergence than SGD, this
work explores the Natural Gradient method to train DNNs with discriminative sequence
training. In the DNN literature, the method has been applied to train models for the
Maximum Likelihood objective criterion. A novel contribution of this thesis is to extend
this approach to the domain of Minimum Bayes Risk objective functions for discriminative
sequence training. With sigmoid models trained on a 50hr and 200hr training set from
the Multi-Genre Broadcast 1 (MGB1) transcription task, the NG method applied in a
HF styled optimisation framework is shown to achieve better Word Error Rate (WER)
reductions on the MGB1 development set than SGD from sequence training.



This thesis also addresses the particular issue of overfitting between the training
criterion and WER, that primarily arises during sequence training of DNN models that
use Rectified Linear Units (ReLUs) as activation functions. It is shown how by scaling
with the Gauss Newton matrix, the HF method unlike other approaches can overcome
this issue. Seeing that di�erent optimisers work best with di�erent models, it is attractive
to have a consistent optimisation framework that is agnostic to the choice of activation
function. To address the issue, this thesis develops the geometry of the underlying
function space captured by di�erent realisations of DNN model parameters, and presents
the design considerations for an optimisation algorithm to be well defined on this space.
Building on this analysis, a novel optimisation technique called NGHF is presented
that uses both the direction of steepest descent on a probabilistic manifold and local
curvature information to e�ectively probe the error surface. The basis of the method
relies on an alternative derivation of Taylor’s theorem using the concepts of manifolds,
tangent vectors and directional derivatives from the perspective of Information Geometry.
Apart from being well defined on the function space, when framed within a HF style
optimisation framework, the method of NGHF is shown to achieve the greatest WER
reductions from sequence training on the MGB1 development set with both sigmoid
and ReLU based models trained on the 200hr MGB1 training set. The evaluation of
the above optimisation methods in training di�erent DNN model architectures is also
presented.
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Chapter 1

Introduction

Human speech is perhaps the most natural mode of communication, and can potentially
provide an intuitive user interface to machines. The task of mapping a segment of spoken
audio signal to a transcription of words has been a subject of continued interest for
researchers for over fifty years, and has matured remarkably during this time [3, 4]. This
is due in part to the increase in available computational resources, and in part to the
rise of more sophisticated modelling techniques. Automatic Speech Recognition (ASR)
formally can be described as a sequence to sequence level classification task where given
an acoustic waveform O, the goal is to produce the correct hypotheses sequence H. In
machine learning, such a problem is solved by partitioning the classification problem into
two separate stages: an inference stage that models P (H|O) using training data and
a subsequent decision stage where decision theory is employed to make optimal class
assignments using the posterior probabilities. Assuming that the chosen inference model
is correct, the task of ASR can formally described as employing a decision rule that
yields the minimum hypothesis/sentence error rate:

Ĥ = argmax
H

P (H|O) (1.1)

For state of the art ASR systems, the inference model generally comprises of two
components: an acoustic model, which represents the relationship between an audio
signal and the phonemes or other linguistic units that make up speech, and a language
model which presents a probability distribution over sequences of words. Until recently,
the acoustic model in modern systems comprised of Hidden Markov models (HMMs),
which dealt with the temporal variability of speech, and Gaussian Mixture Models (GMMs)
which model how well each state of an HMM represents the spectral properties of the
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acoustic input. With the advent of GPU computing and careful network initialisation,
HMMs embedded with Deep Neural Networks (DNNs) have shown to outperform the
traditional hybrid HMM-GMMs models on a wide range of small and large vocabulary
tasks [5]. DNNs, by comparison with GMMs, possess a better capability to model the
underlying non-linear data manifold due to their deep and complex structure. However,
the complexity of their structures creates complex dependencies between their model
parameters that can make learning di�cult with standard gradient descent optimisation
procedures [6, 7].

1.1 Problem Setting
To train parametric models such as DNNs, the default choice for an optimisation method
is gradient descent. The method is a derivative based approach that iteratively improves
upon the training objective by locally following the direction of steepest descent. However,
when applied to DNNs, the method has been observed to be quite unstable with topologies
where the gradient has to propagate through many layers [8, 9]. Layers close to the
output layer will have gradients with higher magnitudes than layers close to the input.
As a consequence, training may either fail because of exploding gradients or become
increasingly slow due to gradients vanishing as we propagate down through the network.
To stabilise training, the optimisation approach is often accompanied by some form of
update clipping that ensures individual parameter updates are in feasible range. However,
this comes at the cost of an increase in the number of hyper-parameters that need to be
carefully tuned to make learning with gradient descent work [10].

In practice, designing a good optimisation algorithm to e�ectively probe the parameter
surface is a complex task. To improve the training of deep models, the general strategy
has not always been to improve the optimisation algorithm. Instead, many improvements
in the optimisation of deep models have come from re-designing the models [11–13] such
that a good set of parameters can be found by standard gradient descent. However, such
an approach is sub-optimal as the choice of model architecture is restricted by its ability
to be trained with SGD. The di�culty of training DNNs can be significantly reduced
by second order optimisation methods [14]. By scaling the gradient direction by the
inverse of the local curvature matrix, these methods can adjust the gradient direction
when there is high non-linearity and ill conditioning of the objective function. For convex
optimisation problems, it has been shown in [15] that such a modification allows the
optimisation process to achieve both faster and better convergence. Even though second
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order methods seem ideal, a major drawback of these methods is their inability to scale
with the model size: if D is the number of parameters then constructing the Hessian of
the second order derivative explicitly requires O(D2) storage, and inverting it incurs a
cost of O(D3). Thus, the task of finding the best procedure to train DNNs continues
to be an active area of research. This task has become even more complex with the
availability of more training data.

From the perspective of data utilisation, all iterative optimisation schemes primarily
fall into two categories: batch and stochastic. These frameworks di�er in the amount
of training data they employ to generate update statistics at each iteration. Batch
methods employ the entire training or large subsets of the training set whereas stochastic
approaches sample only a small subset of samples at each iteration to generate equivalent
update statistics. Bottou [16] showed that by accumulating information from large batches,
derivative based batch style frameworks do better than their stochastic counterpart in
converging to a good solution. However, the ability of such methods to converge to a good
local minima depends highly on the capacity to perform a large number of updates. When
constrained to a single machine, batch approaches become impractical in the scenario
where either the training dataset is too large or when the computational budget is fixed.
In contrast, the per iteration cost of a stochastic approach is not tied to the training
set size. The ability to perform more updates within an epoch allows such methods to
achieve greater reductions in the training error. ASR is a sequence to sequence modelling
task for which discriminative sequence training is an appropriate training loss criterion
as it preserves the sequential ordering of frames within utterances. To minimise such an
objective function, stochastic optimisation frameworks are restricted to operate within a
utterance randomisation scheme rather than the standard frame randomisation approach.
Under such context, when faced with thousands of hours of training data, methods like
utterance level Stochastic Gradient Descent (SGD) at times may not be able to make a
complete pass of the training set.

One might argue that such issues can be alleviated by having a parallel optimisation
framework. With stochastic methods like standard SGD, parallelisation can be achieved
either in a synchronous or asynchronous way. In synchronous SGD (SSGD) [17], local
workers compute the gradients over their own mini-batches1 and then propagate the
gradients to the global model. In the context where the optimisation approach requires a
lot of updates to converge, using SSGD can lead to significant computational overhead
as the global model always has to wait for the slowest worker to reply before applying an

1
for sequence training, this corresponds to a subset of utterances.
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update. To improve training e�ciency, asynchronous SGD (ASGD) was proposed in [18]
where each local worker continues its training process right after its gradient is added to
the global model. Although ASGD can achieve faster speed due to no waiting overhead,
it su�ers from a problem called delayed gradient [19] where the global model receives
‘stale’ gradients (i.e gradients computed with respect to previous parameter settings)
from worker nodes. This makes the approach apart from being not mathematically sound
also not repeatable.

1.2 Thesis Outline
In [20], it has been shown that solving the optimisation problem for sequence training
within a second order Hessian Free (HF) optimisation framework achieves a good balance
between parallelisation and faster convergence. This thesis builds upon that work and
focuses on designing e�cient synchronous optimisation frameworks, that have the same
advantages as the large batch HF method but leads to larger Word Error Rate (WER)
reductions than SGD from sequence training of DNN acoustic models. The prime focus of
this work will be to improve the training of HMM-DNN models using the Minimum Phone
Error (MPE) criterion. The e�cacy of various optimisation approaches are evaluated
using a 50hr or 200hr training set taken from the the 2015 Multi-Genre Broadcast ASRU
challenge task (MGB1) task [21]. A brief description of the data preparation is presented
in Appendix C.2 but further details can be found in [22]. To investigate the e�ectiveness
of various setups, comparisons based on the amount of compute time, the number of
epochs, the expected phone accuracy, and the number of updates will be presented.

This thesis is organised as follows:

• Chapter 2 provides an review of the fundamental components of an ASR system
that are relevant to the research in this PhD. A distinction between generative and
discriminative learning frameworks is given along with a review of the di�erent
forms of Minimum Bayes Risk (MBR) training.

• Chapter 3 presents a literature review of Deep Neural Networks within the context
of acoustic modelling in ASR. The chapters reviews the concept of an Artificial
Neural Network and discusses how the choice of DNN architecture controls the
representational capability of a chosen model. A review of the back-propagation
algorithm is given along with the form of the gradients of the various sequence
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level losses discussed in Chapter 2. The chapter concludes with a discussion of the
instabilities associated with SGD training.

• Since the focus of this thesis is optimisation, a separate chapter has been included
to review derivative based optimisation approaches. A review of the first and
second order optimisation method is presented along with a discussion on how such
methods are applied within batch and stochastic frameworks. The chapter presents
a careful analysis to understand the behaviour of stochastic approaches and reviews
the standard regularisation methods currently used to improve the generalisation
performance of derivative based learning.

• Chapter 5 presents the implementation details of the Hessian Free (HF) optimisation
method investigated in this thesis. The chapter begins with an analysis of batch
and stochastic methods and discusses the advantages and disadvantages of existing
distributed optimisation frameworks. A review of the Conjugate Gradient (CG)
algorithm(the core component of the HF approach) is presented followed by a
detailed description on how curvature vector products using the Gauss Newton
(GN) matrix can be computed in a DNN. The chapter presents novel procedures
to stabilise CG training and adapt it to e�ectively handle tied architectures. The
chapter concludes with preliminary experiments on the 50hr MGB1 training set.

• Chapter 6 extends the method of Natural Gradient (NG) to the domain of MBR
objective functions for discriminative sequence training. The method is presented
within an HF style optimisation framework where instead of using the GN matrix,
the CG algorithm is equipped with the empirical Fisher Information matrix. The
e�cacy of the method is shown using experiments with sigmoid DNNs on the 50hr
and 200hr MGB1 training set. In practice, the empirical Fisher Information is
only guaranteed to be positive semi definite. To address this issues, this chapter
provides the derivation of a damped FI matrix which when used with CG has the
property that directions considered important by the empirical Fisher are traversed
first during the initial stages of a CG run.

The chapter also raises the particular issue of over-fitting due to mismatch of
training criterion and WER that often companies training DNN models using the
ReLU activation function, and shows how this problem can be partially alleviated
by scaling the update directions with the GN matrix.
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• Chapter 7 develops the topological structure of the DNN function space M and
presents the property needed for optimisation algorithms to be well defined on
the space. The chapter introduces a novel optimisation approach that e�ectively
combines the method Natural Gradient with second order approaches. The method
termed as NGHF is derived from an alternative re-derivation of Taylor’s theorem
using concepts from Information Geometry [23, 24]. The chapter details the various
steps of this derivation and shows how the method can be applied within an HF
styled optimisation framework. Experiments on the 50hr and 200hr MGB1 training
set show that the method is agnostic with respect to both the choice of feed forward
architecture and choice of DNN activation functions. This chapter also investigates
the e�cacy of the various optimisation approaches for training standard RNNs
with di�erent activation functions. On the 200hr MGB1 training set, the method
of NGHF will be shown to be the most e�ective in achieving consistent reductions
in WER from sequence training.

• Chapter 8 presents conclusions and suggestions for future work.

1.3 Key Contributions
The key contributions of this thesis are as follows:

1. A procedure to stabilise CG training that allows e�ective updates to be found in
only a few iterations is devised. Equipping CG with this proposed modification
significantly reduces the contribution of the algorithm to the overall computational
cost. It is also shown how the CG algorithm can be adjusted to better handle DNN
architectures with tied parameters.

2. Extended the method of Natural Gradient to the domain of Minimum Bayes Risk
discriminative sequence training for hyrbid HMM-DNN models. The NG method
was first proposed by Amari [25] as an e�ective optimisation method for training
parametric density models w.r.t the Maximum Likelihood (ML) objective criterion.
Section 6.1.1 attributes these observed gains to the fact that for ML methods, the
method of NG becomes increasingly similar to a second order approach in the
context of a large amount of data. A novel contribution of this work is to extend the
approach to training models with loss functions that do not correspond to the ML
objective. When framed within a Hessian Free style optimisation framework, the
method is shown to yield better WER convergence than SGD on sigmoid models.
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3. Instead of making a strict assumption on the structure of the matrix, this thesis
derives an alternative dampened positive definite Fisher matrix which when used
with CG has the property that directions considered important by the empirical
Fisher are first traversed during the initial stages of a CG run.

4. Addressed the issue of over-fitting due to mismatch between training criterion
and Word Error Rate (WER) that primarily arises during sequence training of
ReLU-DNN models. It is shown how this particular form of over-fitting can be
alleviated by scaling the update directions with the Gauss Newton matrix.

5. Developed the geometric structure of the function space captured by di�erent
parameter realisations of a DNN model, and present the property needed for
optimisation methods to be well defined on this space.

6. Introduced NGHF, a novel optimisation approach that combines the method of
Natural Gradient with second order approaches. The method is derived from an
alternative reformulation of Taylor’s theorem using principles from Information
Geometry and manifold theory. By utilising both the direction of steepest descent
on a probabilistic manifold and local curvature information, the e�cacy of the
method is shown to be agnostic with respect to both the choice of DNN architecture
and activation functions.

7. Evaluated all of the above methods for discriminative sequence training on large
vocabulary speech transcription task.





Chapter 2

Fundamentals of Automatic Speech
Recognition

The dynamic nature of human speech makes the automatic process of translating a
speech waveform into its corresponding transcription quite challenging. Utterances can
di�er in their duration even when they represent the same content and are spoken by
the same speaker. To add further complexity, the number of potential hypotheses that
the system must search through increases exponentially as we increase the size of the
vocabulary. These properties make the task of ASR quite di�cult for Large Vocabulary
Continuous Speech Recognition (LVCSR).

This chapter presents a background review of the main modules of an ASR system
that are relevant to this thesis. From a high level perspective, a standard ASR system
has three distinct modules:

1. Front end processing: this involves mapping the input signal to a series of obser-
vation feature vectors O = {o1, o2 · · · oT }. Here ot is the feature vector at time
t derived from the corresponding speech frame (an audio segment), and T is the
total number of frames in the utterance.

2. Inference stage: this models the uncertainties associated with various hypotheses
using information from the extracted features. A hypothesis corresponds to a
variable word sequence w1:L with L denoting the number of words.

3. Decision stage: this refers to the decoding phase where decision theory in used in
conjunction with the inference model to find the ‘best’ word sequence (hypothesis)
for a given observation sequence.
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In the rest of this chapter, each of the above modules will be reviewed. As this thesis
focusses in improving hybrid HMM-DNN models, particular emphasis will be made on
the various learning strategies used to train these hybrid models.

2.1 Feature Extraction
The first step in any ASR system is to identify the components of an audio signal that are
good in discriminating the linguistic content and discard details that carry information
of background noise, emotion etc. This stage is known as front end preprocessing
and is achieved by mapping the input waveform into a series of feature vectors, O =
{o1, o2 · · · oT }, through some feature extraction process. In speech technology, there
are currently 3 standard approaches to perform this initial front end preprocessing:
Mel-Frequency Ceptral Coe�cient (MFCC)s [26, 27], filter-banks [27] and Perceptual
Linear Prediction (PLP) [28]. It should be mentioned that there is also ongoing work
that aims to use the acoustic waveform directly for training the acoustic models [29, 30].

Human speech is a non stationary signal where the acoustic realisations of individual
linguistic units are distinguished by the envelope of the time dependent power spectrum.
To address this dependency, all three approaches proceed by first segmenting the input
waveform into frames of size 25 ms in length spaced 10 ms apart. On these short time
scales, it is assumed that the audio doesn’t change much and is statistically stationary.
Among the mentioned approaches, the procedures used to compute filter banks and
MFCCs from individual frames substantially overlap. In both cases, filter bank features
are computed first, using the procedure below:

1. Apply the Discrete Fourier Transform (DFT) to obtain a frequency domain repre-
sentation of the original input signal. This is motivated by the fact that the human
cochlea (an organ in the ear) vibrates at di�erent spots depending on the frequency
of the incoming sounds.

2. Compute the mel-frequency spectrum by first filtering the frequency spectrum with
N di�erent band-pass filters and then computing the power associated with each
frequency band. This filtering mimics the human ear since the cochlea can not
discern the di�erence between two closely spaced frequencies.

3. Take the logarithm of all filter bank energies to mimic the human perception of
loudness.
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Once the filter bank features are computed, the computation of MFCC features is
achieved by performing the following two additional steps:

1. Apply the Discrete Cosine Transform (DCT) to the log filter bank energies to
de-correlate the overlapping filter bank features.

2. Take the first k DCT coe�cients and discard the rest. The higher DCT coe�cients
represent fast changes in the filter bank energies and has been found to degrade
ASR performance with traditional HMM-GMM systems [31].

Front end preprocessing using PLP features are often used as an alternative to
MFCCs. These features mainly approximate three core perceptual aspects: the non-
linear frequency resolution curves, the equal- loudness curve, and the intensity-loudness
power-law relation [28]. The standard scheme to compute such features is given below:

1. Bark-frequency warping: the frequency is warped using the Bark-frequency scale
[32]. As the power spectrum value, the square of the magnitude spectrum is used
to extract PLP features. This process results in a scaled power spectrum.

2. Down-sampling and post-processing: the power spectrum is convolved with a
number of critical band filters to get downsampled values. These values are then
scaled by using the curve of equal-loudness and intensity-loudness power law.

3. Linear Prediction (LP) Analysis: the resulting spectrum is then mapped to an
auto-correlation sequence in the time domain to yield LP coe�cients.

4. Cepstral coe�cients calculation: the inverse DFT transform is applied on the
log magnitude of the spectrum of the LP coe�cients to yield the required PLP
coe�cients.

Alternatively, PLP features can be also extracted based on the mel-frequency filter
bank, referred to as MF-PLP [33]. In the ML-PLP approach, the mel filter bank
coe�cients are first computed and then re-weighted by the equal-loudness curve, and
then compressed by taking the cubic root. The resultant spectrum is then fed as input
to step 3 of the PLP extraction pipeline.
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2.2 Inference Model
The goal of the inference stage is to learn the relationship between the input space X
and the output space Y through the use of a statistical model P◊(Y|X ). Determining
P◊(Y|X ) is complex and at present is solved by either employing a generative modelling
approach or a discriminative modelling approach.

Generative models aim to model P (Y|X ) by modelling the joint distribution P (Y , X )
instead, which with respect to our problem corresponds to p(O, H). To clarify for
the reader, O = {o1, o2 · · · oT } and H = w1:L. Using Bayes theorem, the posterior
probabilities can be computed as:

P (H|O) = p(O, H)
p(O) (2.1)

Note that any of the other quantities appearing in (2.1) can be obtained from the
joint distribution p(O, H) by either marginalising or conditioning with respect to the
appropriate variables. In ASR, state of the art generative approaches assume the following
factorisation of the joint distribution:

p(O, H) = p(O|H)P (H)

The class conditional likelihood p◊(O|H) is modelled by an Acoustic Model (AM)
and probability of the word sequences is modelled separately by a Language Model (LM).
The AM attempts to model the relationship between an audio signal and the phonemes
or other linguistic units that make up speech. The acoustic scores produced by the AM
are combined with the LM to provide an estimate of the joint distribution. The LM is
often trained on a separate text corpus belonging to a di�erent knowledge source and
contains a great deal of prior information. Combining the LM with the AM have always
been observed to result in significant improvement of recognition performance [31, 34].

In contrast to generative models, discriminative models directly model the posterior
distribution P (H|O) using some form of a statistical model P◊(H|O). Under such a
modelling scheme, more emphasis is put on the accurate estimation of class decision
boundaries instead of the accurate estimation of p(O, H).
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2.2.1 Hidden Markov Model based Generative Models

For sequence to sequence modelling tasks such as ASR, hybrid forms of Hidden Markov
Models (HMMs) are the most preferred choice among generative models to model p◊(O|H).
HMMs [35] belong to the class of generative discrete latent variable graphical models
that assume a particular factorisation of the distribution p(O|H):

p(O|H) = p(o1:T |w1:L)

=
ÿ

„1:T œ�w1:L

p(o1:T |„1:T )P („1:T |w1:L) (2.2)

In HMM terminology, the latent variables {„t}t are commonly referred as states. This
should not be confused with the notion of hidden states associated with Recurrent Neural
Networks (RNNs).
The above factorisation yields two distinct models:

• p(o1:T |„1:T ) which corresponds to conditional acoustic model and defines the
probability of the observation sequence given the latent variable sequence.

• P („1:T |w1:L) models the temporal variability in speech by mapping the ‘relationship’
between latent variable sequences with a given word sequence.

Here �w1:L represents the set of all possible latent variable sequences associated with the
particular hypothesis w1:L.

HMMs in particular make strict conditional independence assumptions when modelling
the above distributions:

P („1:T |w1:L) =
Ÿ

t

P („t|„1:t≠1, w1:L) ¥
Ÿ

t

P („t|„t≠1) (2.3)

p(o1:T |„1:T ) =
Ÿ

t

p(ot|o1:t≠1, „1:T ) ¥
Ÿ

t

p(ot|Ō, „t) (2.4)

Here Ō can correspond to either o[t≠k,t+k], o1:t≠1 or o1:T . Thus, under the HMM
framework, the likelihood then corresponds to:

p(O|H) =
ÿ

„1:T œ�w1:L

C
TŸ

t

p(ot|Ō, „t)P („t|„t≠1)
D

(2.5)
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For notational simplicity, we denote

bj(ot) = p◊(ot|Ō, „t(j) = 1)

aij = P◊(„t(i) = 1|„t≠1(j) = 1)

By multiplying (2.5) with the output of an LM i.e P (w1:L), HMMs combined with
LMs have the ability to model the joint distribution p(O, H). In ASR, the HMM topology
used to model the most basic unit of the AM corresponds to a left to right HMM with
an entry and exit state and equipped with 3 or 1 emitting states (Figure 2.1).

Fig. 2.1 Structure of a left to right HMM

This basic topology serves as the underlying model for individual phones, the basic
unit of sound in a spoken utterance. Under such a framework, the latent variables {„t}t

introduced in (2.2) correspond to sub-phone states. An important advantage of using
this particular form of HMM topology is that larger HMMs can be constructed by the
composition of these basic models. This allows word models to be constructed from sub-
word units and consequently sentence models from word models. When building sentence
level models, having such a topology also provides the flexibility to easily integrate LM
scores as transition probabilities between states matching the end of one word and the
start of another. Such a modified HMM can then be used to model p◊(O, H) for any
given utterance H.

2.2.1.1 Co-articulation and parameter tying

When processing continuous speech, an important factor to take into account is the
co-articulation e�ect. Co-articulation refers to the phenomenon when an isolated speech
sound is influenced by its neighbouring speech sounds due to the continuous movement
of articulating speech organs [36]. This phonetic variation is typically modelled by
introducing context-dependent HMMs. Context-dependent models [37] use the HMM
topology described above to model phonemes along with the left and right context.
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Examples include triphone and pentaphone HMMs which model the centre phoneme of
sequences of three and five phonemes respectively. However, having a distinct model for
every possible phonetic context significantly increases the model complexity and poses
a threat of over-fitting when we integrate them with DNNs. To address this issue, the
current approach is to tie the sub phone states of modular HMMs that represent ’similar’
acoustic context. This is presently achieved by applying either bottom up or top down
clustering. The bottom approach employs a data driven approach to cluster individual
states under the influence of a metric [38, 39] while the top-down approach employs a
decision tree to cluster states [40]. In practice, decision trees are widely used as they are
more adept to handling unseen triphone/pentaphone states and better utilise linguistic
knowledge.

2.2.1.2 Conditional Acoustic Model

Before it became feasible to train very deep networks, the traditional approach to
modelling the distribution p(ot|Ō, „t) was to employ Gaussian Mixture Models (GMMs):

p◊(ot|Ō, „t(j) = 1) =
Mÿ

m=1
cjmN (ot, µjm, �jm) (2.6)

where the mixture components cjm satisfy q
m cjm = 1 and N (.) is a Gaussian probability

distribution with µ and � representing its mean and covariance matrix.

N (o; µ, �) = 1
Ò

(2fi)D|�|
exp(≠1

2(o ≠ µ)T �≠1(o ≠ µ)) (2.7)

The normalisation term is independent of o and can be precomputed and cached for
e�ciency. Given enough components, GMMs can model probability distributions to any
required level of accuracy, and they are fairly easy to fit to data using the Expected
Maximisation (EM) algorithm [41]. For HMMs, it is not necessary for all clustered states
to have the same form of output distribution or even for each state to have the same
number of Gaussian components. However for d-dimensional feature vectors, assigning
each gaussian with its own covariance matrix is very expensive. In practice, only block
or diagonal covariance matrices are used but this in turn reduces the complexity of the
models. To address this issue, one e�ective approach is to use semi-tied covariances
(STC) [42] that reduces the number of parameters by sharing full covariance or precision
matrices over a number of components.
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With the advent of GPU computing and careful network initialisation (discussed
in Sec. 3.3), as it become feasible to train very deep neural networks (DNNs), HMMs
using DNNs to model p◊(ot|Ō, „t) have shown to outperform the tradition HMM-GMM
models on a wide range of small and large vocabulary tasks [5]. However, DNNs
when applied to acoustic modelling represent discriminative models where their softmax
outputs z

r

t
correspond to P◊(„t|or

t
, Ō); for networks with feedforward architectures [43],

Ō corresponds to a splice o[t≠k,t+k] whereas for DNNs possessing recurrent connections,
Ō corresponds to either o1:t≠1 or o1:T (bi-directional). Using Bayes rule, the DNN frame
posteriors can be mapped to HMM state probability density functions as follows:

p(ot, Ō|„t) = P◊(„t|ot, Ō)p(ot, Ō)
P („) (2.8)

p(ot|Ō, „t) = P◊(„t|ot, Ō)p(ot, Ō)
p(Ō|„t)P („)

(2.9)

Taking logs

log p(ot|Ō, „t) = log P◊(„t|ot, Ō) ≠
5

log p(Ō|„t) + log P („) ≠ log p(ot, Ō)
6

(2.10)

In practice, for computational simplicity, the standard approach [44–47] uses the following
approximation to map DNN frame posteriors to HMM scaled state likelihoods.

log p(ot|Ō, „t) ƒ log P◊(„t|ot, Ō) ≠
5

log P („)
6

(2.11)

2.2.2 Sequence to Sequence Discriminative Models

An alternative approach to modelling the joint distribution P (H, O) is to model P (H|O)
directly. Recently, there has been considerable interest in training end-to-end discrimina-
tive models [48–51] that employ only neural networks to directly recognise utterances
without requiring separately-trained acoustic, pronunciation and language model compo-
nents. Such models conform to a particular form of discrete latent variable graphical
model that assumes the following factorisation of the posterior distribution P (H|O):

P (H|O) =
ÿ

„1:T œ�w1:L

P (w1:L|„1:T )P („1:T |o1:T ) (2.12)

where
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• P (w1:L|„1:T ) is the word alignment model and represents the ‘relationship’ of
output word sequences with given latent variable sequences. In current literature,
the latent variables {„t}t for NN based end-to-end models correspond to graphemes
or sub-words (word pieces) [52]. Such an interpretation establishes a one to one
correspondence between a word sequence with a given latent variable sequence as a
consequence of which

P (w1:L|„1:T ) = 1 (2.13)

• P („1:T |o1:T ) is the discriminative acoustic model which models the uncertainty
associated with di�erent latent variable sequences for a given observation sequence.

The most common form of end-to-end DNN models use a Connectionist Temporal Clas-
sification (CTC) [53] approach that makes the following strict conditional independence
assumption of the discriminative acoustic model:

P („1:T |o1:T ) =
Ÿ

t

P („t|„1:t≠1, Ō) ¥
Ÿ

t

P („t|Ō) (2.14)

where Ō can correspond to either o[t≠k,t+k], o1:t≠1 or o1:T . Thus, under CTC, the posterior
distribution corresponds to:

P (H|O) =
ÿ

„1:T œ�w1:L

C
Ÿ

t

P („t|Ō)
D

(2.15)

From (2.15), it can be seen that such models are essentially alignment-free as to get
the probability of an output sequence given an input sequence, the probability of all
possible alignments between the two sequences are taken into account. However, a major
limitation of the CTC approach is that unlike hybrid generative HMMs, the discriminative
model is not capable of using information from text only data. This deficiency has been
shown to make such models underperform against standard hybrid HMMs equipped with
DNNs [54].

2.3 Forward-Backward algorithm
From (2.5) and (2.15), it can be seen that if „t takes N values, the computation of
the required probabilities will amount to summing over all possible NT possible latent
variable sequences. This makes the computation very expensive especially when utterances
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having long temporal duration are considered. To make such computations tractable,
the standard approach is to employ a dynamic programming framework known as the
forward-backward algorithm [55] to compute the necessary probabilities. As this thesis
focuses solely on hybrid HMM-DNN models, the workings of the algorithm will be
explained within the context of HMM based acoustic models.

2.3.0.1 Algorithm sketch

The forward-backward algorithm consists of two separate recursive algorithms: a forward
algorithm and a backward algorithm. When applied to HMMs, the forward algorithm
provides an e�cient way to compute p◊(O|H) by using a table to store intermediate values
as it builds up the probability of the observation sequence. The algorithm computes the
observation probability by summing over the probabilities of all possible latent variable
sequences that could generate the observation sequence, but it does so e�ciently by
implicitly folding each of these paths into a single forward trellis. A forward trellis can be
thought of as a two dimensional grid where the ‘y-axis’ represents the values the latent
variable „t can take, and the ‘x-axis’ represents time. Each cell in the trellis corresponds
to –t(j) = p◊(o1, o2 · · · ot, „t(j) = 1), the probability of being at state j at time t after
seeing all observations up to time t. This term can be written recursively as:

–t(j) =
ÿ

iœMH

–t≠1(i)aijbj(ot) (2.16)

where MH represents the set of all states in the HMM. Alternatively, the backward
algorithm too provides an e�cient way to compute p◊(O|H) by a similar use of a trellis.
In this case, each cell in the trellis corresponds to —t(j) = p◊(ot+1 · · · oT |„t(j) = 1), the
probability of seeing observations from time t + 1 to the end of the utterance given that
the the hidden state at time t is j. This term too can be recursively computed as:

—t(j) =
ÿ

kœMH

ajkbk(ot+1)—t+1(k) (2.17)

The forward and backward probabilities –t(j) and —t(j) also makes it possible to e�ciently
compute the posterior probability P◊(„t|O), which is conventionally expressed as “t in
ASR research:

“t(j) = –t(j)—t(j)
p◊(O|H) (2.18)
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As will be shown in Sec.3.6, “t is an important statistic needed to train model parameters
using derivative based approaches.

2.4 Learning
Having selected an appropriate model, the task of inference is still incomplete as di�erent
settings of model parameters will yield di�erent probability models. Let X denote the
parameter manifold. As di�erent realisations of model parameters lead to di�erent proba-
bilistic models P◊(H|O), the manifold represents the space of all probability distributions
M that can be generated by a particular model. The goal of learning is to identify
a viable candidate f(O, ◊) œ M that, when used in conjunction with decision theory
allows optimal classifications to be made with respect to a given risk criterion. This
section provides an overview of the two fundamental learning frameworks used in machine
learning to identify optimal parameter settings for a chosen model.

2.4.1 Generative learning framework

Let D denote the set of training examples where each member (x, y) œ D is a sample
from (X , Y). The generative learning task is specific to generative models where the
inference problem P (Y|X ) is solved by modelling the joint probability density function
p(Y , X ) instead using observed training examples D. In eqn (2.1), it was observed how
the joint probability density can be marginalised and conditioned to yield the necessary
posterior probabilities required by decision theory frameworks to make optimum decisions.
When used in conjunction with Bayesian decision theory, p(x̂, ŷ|D, M) contains all the
information necessary to classify an unlabelled test example (x̂, ŷ):

p(x̂, ŷ|D, M) =
⁄

p◊(x̂, ŷ|M) p(◊|D, M)d◊ (2.19)

The posterior probability p(◊|D, M) encodes the uncertainty associated with the param-
eters of the model given the training data. Ideally, Bayesian inference should be used to
infer the distribution p(x̂, ŷ|D, M). However, the computation of the integral is often
intractable due to either the high dimensionality of the parameter space or the complex
analytical form of the posterior distribution p(◊|D, M).
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2.4.1.1 Maximum a Posteriori

Maximum a posteriori (MAP) model estimation can be thought of as an approximation
to Bayesian inference, where the posterior distribution p(◊|D, M) is assumed to be
sharply peaked at its mode. In the context where there are large volumes of data, such
an approximation is not limiting since by Von Mises’s theorem [56]:

p(◊|D, M) ¥ N (◊̂, I
◊̂

≠1) (2.20)

where ◊̂ corresponds to the true parameter that describes the underlying data generation
process and I

◊̂
is the associated Fisher information matrix (see Sec.6.1.1). Hence,

p(x̂, ŷ|D, M) ƒ p◊MAP(x̂, ŷ|M) (2.21)

where

◊MAP = arg max
◊

p(◊|D, M) (2.22)

= arg max
◊

p◊(D|M)p(◊|M)s
p◊(D|M)p(◊|M)d◊

Since the denominator term is independent of the parameters, it can be shown that

◊MAP = arg max
◊

p◊(D|M)p(◊|M) (2.23)

= arg max
◊

Data likelihood˙ ˝¸ ˚C
Ÿ

r

p◊(xr, y
r|M)

D Prior distribution˙ ˝¸ ˚
p(◊|M)

2.4.1.2 Maximum Likelihood

Maximum likelihood (ML) model estimation can be seen as a simplification of the MAP
method by using an uninformative (or uniform) prior over the model parameters. The
ML parameter estimate corresponds to:

◊ML = arg max
◊

p◊(D|M) (2.24)

= arg max
◊

C
Ÿ

r

p◊(xr, y
r|M)

D
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In the context of ASR, where the samples {(xr, y
r)}r represent {(Or, Hr)}r, such a

framework corresponds to ML acoustic model estimation of HMMs. HMMs assume
a particular factorisation of the joint distribution p(y, x|M) = p(x|y, M) p(y) where
p(y) is modelled separately by an LM and is independent of the HMM parameters. In
such a setting, acoustic model estimation corresponds to finding parameter settings that
maximise the likelihood of an observation sequence given its sentence level HMM.

However, for such latent variable models, maximising the likelihood of the observation
sequence is not straight forward. It involves adapting the model parameters such that
for each observation the sum over the joint probability of all possible sequence of states
in the associated composite sentence HMM and the observation sequence is maximised.
For HMMs, this is e�ciently achieved by the Baum-Welch algorithm [55]. The algorithm
employs the Expectation Maximisation (EM) algorithm [41] to find parameters that
locally maximises an auxiliary function. The auxiliary function in question corresponds
to a lower bound of the ML objective and maximising it guarantees increment in the
data likelihood.

2.4.2 Discriminative Learning

Estimation of the joint density p(X , Y) is appealing because it leads to informative
model estimation. However, it is not clear that this is an e�cient use of the training
data. Indeed if the goal of the learning process is to solve the inference problem P (Y|X ),
it will be more appropriate to directly estimate this probability instead of indirectly
learning this function via the intermediate estimation of the joint probability distribution.
Moreover, if the underlying generative models used are incorrect, i.e. if the family of
joint probability distributions described by the models fail to capture the true data
distribution, then the techniques derived from Bayesian inference such as MAP and
ML cannot estimate the correct generative distribution, even with unlimited training
data [57]. Consequently the performance of the resulting classifier is compromised. In
contrast to generative learning, discriminative learning capitalises upon knowledge of the
classification task and emphasises on the accurate estimation of class decision boundaries.
This is achieved by solving the inference problem P◊(Y|X , M) directly using observed
examples D:

p(y|x, D, M) =
⁄

p◊(y|x, M) p(◊|D, M)d◊ (2.25)
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with the posterior distribution p(◊|D, M) now corresponding to:

p(◊|D, M) = p◊(D|M) p(◊|M)
p(D|M)

= p(◊|M) r
r p◊(yr|xr, M)

p(D|M) (2.26)

In the context of ASR, where the samples {(xr, y
r)}r represent {(Or, Hr)}r, this frame-

work is referred to as discriminative sequence training or sequence training. If M
corresponds to a family of generative models then using the discriminative learning
framework, the parameters of the model will now characterise the conditional distribution
p◊(y|x) rather than the joint distribution p◊(y, x). In practice, computing the integral
of eqn (2.25) is often intractable and is approximated through variational approaches.

2.4.2.1 Conditional MAP

Conditional Maximum Posteriori (CMAP) [57] is analogous to MAP learning in the
generative learning framework where the posterior distribution of model parameters is
assumed to be sharply peaked at its mode:

p(y|x, D, M) ƒ p◊CMAP(y|x, M) (2.27)

with

◊CMAP = arg max
◊

p(◊|M)
RŸ

r

p◊(yr|xr, M) (2.28)

2.4.2.2 Conditional Maximum Likelihood

Like CMAP, Conditional Maximum Likelihood (CML) is analogoues to ML learning in
the generative learning framework, where the prior distribution p(◊|M) is assumed to
be uniform and uninformative. In the context of ASR this is equivalent to Maximum
Mutual Information (MMI) [58, 59] discriminative training:

◊CML = arg max
◊

Ÿ

r

p◊(Hr|Or, M) (2.29)

with the CMAP equivalent representing smoothed versions of MMI training [60]. In
practice, to prevent numerical underflow, the function that is optimised in MMI training
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is:

FMMI(◊) = 1
R

Rÿ

r

log p◊(Hr|Or, M) (2.30)

Since log is a monotonic function, maximising this function automatically maximises the
probability in eqn (2.29). For sequence to sequence discriminative models using the CTC
approach, negating the log CML corresponds to the default CTC objective function:

FCTC(◊) = ≠ 1
R

Rÿ

r

log p◊(Hr|Or, M)

= ≠ 1
R

Rÿ

r

log
S

U
ÿ

„1:Tœ�w1:L

P(w1:L|„1:T)P(„1:T|O1:T)
T

V

= ≠ 1
R

Rÿ

r

log
S

U
ÿ

„1:Tœ�w1:L

Ÿ

t
P◊(„t|O, M)

T

V (2.31)

Instead of summing over all possible alignments, if the posterior distribution is assumed
to be concentrated solely around its mode then minimising w.r.t. the CTC criterion
becomes equivalent to the standard Cross Entropy (CE) training used to train DNNs in
Hybrid HMM systems:

FCE(◊) = ≠ 1
R

Rÿ

r

log
Ÿ

t
P◊(„t|O, M)

= ≠ 1
R

Rÿ

r

ÿ

t

log P◊(„t|O, M) (2.32)

In practice, the alignments needed for CE training are often provided by an independent
system (Eg. HMM-GMM) trained on the same dataset.

2.4.2.3 Minimum Bayes Risk

Under the CML training framework, the goal is to maximise the probability of the correct
transcription for each utterance. This is ideal if the goal is to employ the inference model
to make as few mis-classifications as possible during classification. However, in ASR, the
performance of an classifier is often measured in terms of its ability to achieve low WERs.
The WER is the minimum edit distance between the reference transcription and a given
word sequence and such a metric weighs some mis-classifications more than others. This
forms the basis behind the class of Minimum Bayes Risk (MBR) objective functions [61]
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where a loss function L(yk, y) is introduced to formalise the notion of distinguishing
between di�erent mis-classifications for each input xk.

The motivation behind MBR learning stems from the application of decision theory
to make optimal classifications with respect to a given risk criterion. Equipped with
P (Y|X ), the decision stage of classification assigns each x œ X to one of k classes in Y .
This partitions the feature space X into disjoint classification regions {R}K

i=1 where all
points belonging the same region are classified as the same class. Given a set of examples
{(xr, y

r)}r where we already know the true region Rj for each input x
r, the goal of MBR

training is to find appropriate model parameters ◊ such that for each x
r, the weighted

loss q
k P◊(yk|x)L(yk, yj) is minimised. With respect to a finite training set, the MBR

loss objective corresponds to the following empirical loss:

F (◊) = 1
R

Rÿ

r

C
ÿ

k

P◊(yk|xr, M)L(yk, y
r)

D

(2.33)

where y
r corresponds to the true class and M corresponds to our choice of model. In

the context of ASR, this corresponds to:

FMBR(◊) = 1
R

Rÿ

r

C
ÿ

H
P◊(H|Or, M)L(H, Hr)

D

(2.34)

Broadly speaking MBR training can be seen to concentrate probability mass: a su�ciently
flexible model trained to convergence with MBR will assign a high probability to those
hypothesis that have the smallest loss.

2.4.2.4 Lattices

From (2.30) and (2.34), it can be seen that at each iteration of discriminative sequence
training, the posterior distribution P◊(H|O) must be computed explicitly. For hybrid
HMM based generative models, the required distribution is computed using Bayes rule:

P◊(H|O) = p◊(O, H)
q

H p◊(O, H) (2.35)

The computation of the denominator term involves taking into account composite sentence
models of all possible transcriptions. For LVCSR, such a computation is very expensive.
The standard approach is to approximate this probability by doing a recognition pass
on each training utterance and considering only a subset of hypotheses that are most
likely. An e�cient way to represent these competing hypotheses is to encode them in
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a lattice. A lattice is a compact representation of multiple overlapping hypotheses. It
takes the form of an acyclic graph structure where nodes represent the ends of words at
particular points in time, while the arcs that connect the nodes represent particular word
pronunciations. Compared to 1-best or n-best hypotheses, the use of such a structure has
been shown to improve robustness and task performance since it preserves ambiguity and
avoids making hard decisions too early [62, 63]. The lattice arcs are normally annotated
with the associated acoustic and language model scores. The use of lattices also extend
to the numerator term to accumulate the necessary numerator statistics needed for
discriminative sequence training. In cases where the recogniser-generated denominator
lattice does not contain the correct sequence, a consolidated lattice is often formed by
merging the recogniser lattice with the numerator lattice [64].

When constructing a consolidated lattice, the set of chosen hypotheses depends on
how the AM interacts with the LM when traversing though the recognition trellis. For
generative models such as (2.5), the language model probabilities are only considered for
trellis nodes that match the final states of words. To increase the contribution of the
LM, the LM probabilities are often scaled by a positive integer (commonly termed the
grammar scale factor) [65] which is greater than one. Subsequently, the acoustic model
log likelihood values are often scaled with the inverse of the LM scale factor. This has
the e�ect of increasing the number of confusable paths in the lattice and has been found
to improve the overall generalisation performance from discriminative sequence training
[66].

The necessary training statistics needed to train the acoustic model parameters can
be computed e�ciently by an application of the Baum Welch algorithm. For GMM
models, an extended form of the algorithm called the Extended Baum-Welch algorithm
[58] is used to accumulate the necessary training statistics. Ideally, after each iteration
of discriminative training, it is desirable to perform a recognition pass on all the training
data and regenerate the lattice. While this is viable for small vocabulary tasks, it is
too computationally expensive for large vocabulary tasks. The standard approach is to
generate the lattices once using a CE trained HMM-DNN model and then proceed to
use this lattice repeatedly at every iteration of discriminative sequence training.
Recently in [67], it has been shown that the necessary statistics required from the
denominator term in (2.35) can be computed e�ciently without the need of the lattice
structure by loading the denominator graph directly on the GPU at each iteration of
discriminative sequence training. The proposed approach relies on a combination of
factors ranging from making the denominator graph small through simplifying the HMM
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topology, reducing the frame rate, using a phone LM to using a modified objective
function that integrates CE cost criterion.

2.4.2.5 Choices of Loss Functions for MBR Methods

There are di�erent approaches for computing the loss L(H, Hr) associated with a proposed
hypothesis H for a given utterance r. These approaches di�er at the level of granularity
used to compute an appropriate mismatch between the proposed hypothesis and the
correct hypothesis. Based on the level of granularity traversed, the loss functions currently
used can be grouped into the following classes:

1. Sentence-level loss: this corresponds to 0 or 1 loss :

L(H, Hr) =

Y
_]

_[

0 H = Hr

1 otherwise

With respect to such a loss, an utterance is either correct or incorrect. In practice,
this is not ideal as some mis-classifications can be more important than others.

2. Word level loss: in ASR, the performance of a classifier is often measured in
terms of its ability to achieve low WERs. When the MBR criterion is equipped
with the WER loss, then the method is referred to as the Minimum Word Error
Rate (MWE) criterion [68]. The WER is the Levenshtein distance between H
and Hr and corresponds to the minimum number of edits needed to convert the
transcribed utterance into the reference transcription. The algorithm works within
a dynamic programming framework, where it computes this distance by building a
trellis to hold intermediate values. The trellis in this scenario can be viewed as a
two-dimensional grid where the y-axis denotes the word sequence associated with
the proposed hypothesis and the x-axis denotes the word sequence corresponding
to the correct hypothesis, with each cell (wH

k
, wHr

j
) holding the distance between

the first k words of H and the first j words of Hr. The cost of employing such a
metric linearly scales with the length of the sequences. Thus making the use of
such a metric quite computationally intensive. To reduce the computational cost,
in recent work [69], it has been shown that by restricting training to only sampled
paths in a lattice, the model can still be trained e�ectively using the Levenshtein
distance as the loss metric.
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3. Phone/State level loss: under the lattice based framework, not all word sequences
will be observed. To assist generalisation, the loss function is often computed at a
finer level of granularity such at phones or sub-phones rather than at word level.
Applying the Levenshtein distance between every path in the phone/sub-phone
marked lattice and the reference label sequence involves an impracticably large
amount of computation. To reduce this computational overhead, the standard
approach is to use an alignment-based error metric that approximates the accuracy
A(H, Hr) [66].

The accuracy A(H, Hr) is defined as the number of correct labels in H minus the
number of inserted labels in the sequence and is related to the Levenshtein distance
between the reference sequence Hr and hypothesis sequence H by:

Lev(H, Hr) = M ≠ A(H, Hr) (2.36)

where M is the number of labels in the reference sequence. In standard MBR
training, the accuracy A(H, Hr) is approximated as the sum of local arc accuracies
computed i.e A(H, Hr) ¥ q

qœHlattice arcAcc(q).

There are two main approaches in computing the accuracy arcAcc(q):

(a) In the first approach, given hypothesis arc q, arcs associated with the reference
hypothesis are found that overlaps in time with q. For each such arc z, the
quantity e(q, z) that denotes the proportion of the length of z that is overlapped
with q is computed. Using this quantity, arcAcc(q) is then computed as follows:

arcAcc(q) = arg max
z

Y
_]

_[

≠1 + 2e(q, z) if z = q

≠1 + e(q, z) otherwise

This particular form of MBR training when applied at the level of phone
sequences is known as Minimum Phone Error(MPE) [70] training. In [57, 66]
it is shown that such a loss divergence acts as an upper bound to Lev(H, Hr)
where it penalises insertions more than deletions.

(b) An alternative approach to computing arcAcc(q) is to compute the accuracy
on a frame by frame basis. For each hypothesis arc q,

arcAcc(q) =
endqÿ

t=startq

Y
_]

_[

1 if q © z for any arc z overlapping t

0 otherwise
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where startq and endq correspond to the start and end frames of arc q, and
z corresponds to any arc in the reference lattice. Under this construction,
for each arc q in the recognition lattice, the raw accuracy is computed by
counting the number of frames between startq and endq where q agrees with
an arc in reference lattice that shares the same phonetic identity as q. When
the individual arcs correspond to phone arcs, this variant of MBR training
is called Minimum Phone Frame Error(MPFE) [71] whereas when the arcs
correspond to tied sub-phone states, this form of MBR training objective is
popularly known as State Minimum Bayes Risk (s-MBR) [64].

2.5 Decoding
Equipped with the inference model P◊(H|O), the decision stage of an ASR system employs
decision theory to find the ‘best’ word sequence (hypothesis) for a given observation
sequence. In speech recognition, this process is commonly known as decoding. The
decoding process relies on creating a finite state graph structure that integrates the
acoustic model, dictionary and language model. This graph can be constructed statically
[72, 73], dynamically [74], or in a hybrid manner that dynamically adds language model
information to a static graph [75, 76]. Using an appropriate graph structure, decoding
in ASR is performed by using one of following the two approaches: Viterbi decoding or
Minimum Based Risk (MBR) decoding [77]. This section provides a brief review of the
two methods with particular emphasis on how Viterbi decoding is performed with HTK
[47].

2.5.1 Viterbi decoding

Viterbi decoding belongs to the class of classification approaches whose goal is to employ
the inference model to make as few mis-classifications as possible:

Ĥ = arg max
H

P◊(H|O) (2.37)

For generative based inference models, this is equivalent to selecting:

Ĥ = arg max
H

P◊(H, O) (2.38)
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This particular approach to decoding assumes that the underlying inference model used
takes the form of discrete latent variable graphical model discussed in Sec. 2.2.1 and
Sec. 2.2.2 and solves the classification problem by finding the most likely latent variable
sequence �̂1:T . With respect to hybrid HMMs combined with LMs, this corresponds to
finding:

�̂1:T = arg max
�1:T

P◊(O, H, �1:T ) (2.39)

As it is impractical to perform an exhaustive search over all possible latent variable
sequences, in practice, such a task is e�ciently performed by employing the Viterbi
algorithm [78]. The Viterbi algorithm is variant of the forward-backward algorithm that
uses a trellis to store intermediate values as it processes a given observation sequence. In
its case, each cell in the trellis corresponds to

vt(i) = arg max
�1:t≠1

p◊(o1, o2 · · · ot, „1:t≠1, „t = i)

the probability of being state j at time t after seeing all observations up to time t and
passing through the most probable sequence �1:t≠1. This term can be recursively written
as:

vt(j) = max
iœMH

vt≠1(i)aijbj(ot) (2.40)

where bj(ot) = p◊(ot|Ō, „t = j) and aij = P◊(„t|„t≠1) for hybrid HMMs. To prevent
numerical underflow, in practice vt(j) is computed as:

vt(j) = arg max
iœMH

{vt≠1(i) + log aij} + log bj(ot) (2.41)

In practice, a direct implementation of the Viterbi algorithm results in a large search
space for continuous speech. This is because to handle continuous speech, the context-
dependent phone acoustic models need to integrated with a bigger language model and a
pronunciation dictionary1 to cover di�erent pronunciations and larger vocabulary. This
however results in the set MH being very large. In HTK, a practical implementation of
the Viterbi algorithm employs a token passing model [79]. At each time t, each HMM
state j holds a moveable token that contains vt(j) and the history to achieve it. At each
subsequent time step, the token’s value is increased by log ajk + log bj(ot) before being
passed to all states succeeding the current state. After receiving incoming tokens from
all preceding states, a successor state keeps only the token with the highest value and

1
maps sequences of phonemes to words
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discards the rest. When multiple HMMs are considered using composite HMMs (2.2.1),
tokens can be easily passed from an exit state of one HMM to the start state of another.

If two HMMs belong to di�erent words, say wl and wl+1, the passing of the token
corresponds to a word transition and log ajk corresponds to the LM score. This enables
the token passing algorithm to search for the maximum posterior probability rather than
the maximum likelihood path. The LM log-probability is usually linearly scaled by the
grammar scaling factor [65] when combined with the acoustic log-likelihood. This is
necessary since HMM acoustic models often produce a wider dynamic range of likelihood
values due to the underestimation of likelihood arising from invalid assumptions [60]. At
the end of the search, every utterance is assumed to end with silence and the best path
with the highest probability is acquired only from the tokens staying in the exit states
of the silence HMM at time T . In addition, the token passing model is also useful for
finding N-best paths by allowing each model state to hold multiple tokens to increase the
number of di�erent token histories that can be maintained. Here tokens from di�erent
preceding words are considered as distinct.

2.5.2 Minimum Bayes Risk decoding

Viterbi decoding doesn’t distinguish between di�erent degrees of utterance level mis-
classification and hence weights all utterance level mis-classifications to be equal. In
ASR, the performance of an classifier is often measured in terms of its ability to achieve
low WERs. The WER is the edit distance between the true word sequence and the
most probable word sequence emitted by the transcriber and under such a metric some
mis-classifications are given more weight than others. To address this mismatch between
the training and evaluation objective, we formalise the notion of distinguishing between
di�erent mis-classifications through the introduction of a loss function L(yk, yj). This
forms the basis behind the Minimum Bayes Risk (MBR) decoding [77].

MBR decoding mirrors Minimum Bayes Risk training discussed in Sec. 2.4.2.3.
However, in MBR decoding, the knowledge of the true class is not available. Equipped
with P (Y|X ), the decision stage of classification assigns each x œ X to one of k classes in
Y . Essentially, this corresponds to partitioning the feature space of X into classification
regions {R}K

i=1 where all points belonging the same region are classified as the same
class. For any x, a mis-classification occurs when x is assigned to a region Rj that
doesn’t correspond to its real class with L(yk, yj) depicting how significant such a mis-
classification is. At prediction, the goal is therefore to make decisions such that we
minimise the total loss. However, the loss function depends on the knowledge of the
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true class, which is unknown. For a given input vector x, the uncertainty in the true
class is expressed through the joint probability distribution p(x, y) which in fact can
be seen to depend on P (y|x) as the factor p(x) is common to all classes. This leads to
minimisation of the expected loss:

E[L] =
ÿ

j

⁄

Rj

ÿ

k

P (yk|x)L(yk, yj)p(x)dx (2.42)

where yk denotes the true class. The goal of classification is then to choose for each x a
region Rj such that q

k P (yk|x)L(yk, yj) is at minimum. In ASR, where (x, y) © (O, H),
such a approach is equivalent to choosing Ĥ such that q

H P◊(H|O)L(H, Ĥ) is smallest.
As written above, the MBR criterion is too computationally expensive to implement

directly as it involves a search over all possible word sequences to find the true minimum.
Thus, the search is normally restricted to a subset of hypotheses by using recognition
lattice. However, even when the hypotheses spaces are represented by recognition lattices,
there may still be too many hypotheses to perform a full search. In practice, it is
usually the case that the lattice is compressed in some way to reduce the search space.
For example, pinched lattices [80], N-best lists [81] and confusion networks [82] have a
considerably smaller search space than recognition lattices. It should be also mentioned
that in [83], decoding is performing e�ciently through using a recursive edit distance.

2.6 Summary
This chapter presented a review of the main components of an ASR system that are rele-
vant to this thesis. The chapter began with a brief discussion of the front end processing
stage of an ASR system, mainly focusing on MFCCs, filter banks and PLPs. This was
followed by a review of the di�erent types of models used to solve the ASR inference
problem, with particular emphasis on the hybrid HMM-DNN model. A distinction
between generative and discriminative learning frameworks was presented followed by
a more detailed discussion of the di�erent forms of discriminative MBR training. The
chapter concluded with a discussion of the existing decoding frameworks used to extract
the most likely hypothesis for a given acoustic waveform.





Chapter 3

Deep Neural Networks: an overview

This chapter presents a literature review of Deep Neural Networks within the context
of acoustic modelling in ASR. The chapter begins with the definition of an Artificial
Neural Network followed by a review of the Multi Layer Perceptron (MLP) model. The
importance of starting DNN training from good initialisation is highlighted in Sec. 3.3.
A review of the standard DNN architectures currently used for acoustic modelling is
presented in Sec. 3.4. The section also discusses how the particular choice of DNN
architecture controls the representational capability of a chosen model. The problem of
model selection is presented in Sec. 3.5 while the back-propagation algorithm along with
the gradient of various sequence level losses in presented in Sec. 3.6. The chapter ends
with a discussion of the vanishing and exploding gradients problem that plagues gradient
based training of deep models, and reviews the various approaches used to alleviate these
issues.

3.1 ANN Definition
An Artificial Neural Network (ANN) is a form of connectionist1 computational model
loosely inspired from the compositional structure of biological neural networks. From a
neuroscience point of view, Haykin [84] provides the following definition of an ANN:

‘An Artificial Neural Network is a massively parallel distributed processor that has
a natural propensity for storing experiential knowledge and making it available for use.
Such a model resembles the brain in two respects:

1
Connectionism corresponds to a set of approaches in the fields of artificial intelligence, cognitive

science and philosophy of mind, that attempts to represent mental or behavioural phenomena as emergent

processes of interconnected networks of simple units.
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1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the
knowledge.’

Under this interpretation, an ANN model can be viewed as a particular form of an
input/output system with many simple processors, each having a small amount of local
memory. These units are connected by communication channels which are pre-specified
by the network topology.

However, as modern DNN research is guided by mathematical and engineering
disciplines, this work will adopt Bishop’s [85] mathematical view of an ANN model: ‘An
Artificial Neural Network is a powerful framework for representing non-linear mappings
from several input variables to several output variables, where the form of the mapping
is governed by a number of adjustable parameters.’

Adopting Bishop’s viewpoint, a mathematical formulation of an ANN model is as
follows. Given x = (x1 · · · ..., xn) œ X and some process that results in a corresponding
set of outputs y = (yi, ...ym) œ Y, the goal is to model the underlying relationship
between X and Y using some form of mathematical function „ i.e

y = „(x)

The function „ may be very complicated and more importantly it is not expected
that it can be computed exactly. In machine learning, the general practice is to use
some form of mathematical model to capture the underlying relationship between X
and Y. ANNs belong to particular classes of parametric functions f(x, ◊) that aim to
capture the relationship between X and Y by imposing various rules and regulations to
optimise the choice of parameters. The distinctive aspect of these models is that they are
constructed from the addition, multiplication and composition of parameterised adaptive
basis functions [85, 86] of the following form:

f(x, ◊) = ‡
1
◊

T (x) + ◊
2

(3.1)

where ‡ corresponds to a map from R æ R and in neural network literature is common
referred to as the activation function. Restricting the choice of basis functions to have
the above form has special significance. In [87], it is shown that as long as the choice of
‡ corresponds to any Riemann Integral function that is not a polynomial, then the space



3.2 Multilayer Perceptron 35

of functions given by:

M(‡) = span{‡
1
◊

T(x) + ◊
2

: ◊ œ Rk, ◊ œ R}

is topologically dense in the space of space of continuous functions defined on any
compact subspace in the underlying domain. In simpler terms, this means that as long ‡

is continuous and not a polynomial, the behaviour of any continuous function on a closed
disk in the Euclidean space can be closely modelled to a high accuracy by a member from
M(‡). This property allows ANNs to be Universal Function Approximators [87, 88].

3.2 Multilayer Perceptron
The quintessential example of an ANN model is the multilayer perceptron (MLP) [89].
The most basic form of the model consists of the serial composition of the basis functions
described in (3.1) in vector valued form:

F (x, ◊) = z ¶ fL≠1 · · · ¶ f 1

where each f l represents a bivariate map

f l(x, ◊
l) : Rdl≠1 ◊ Rdl◊(dl≠1+1) æ Rdl

defined by:

f l(x, ◊
l) = ‡ §

1
W

l

◊
x + b

l

◊

2
(3.2)

Here

• dl≠1 represents the dimensionality (number of nodes) of the layer at depth l ≠ 1

• dl is the dimensionality (number of nodes) of the layer.

• § denotes the point wise application of the function with the vector obtained from
the a�ne transformation of x.

In ANN terminology, these individual compositional maps f l are popularly termed
as layers. Each layer essentially represents a function that maps the previous layer’s
representation x to a new space Rdl. In the above formulation, the map z represents
output of the MLP. For regression tasks, this corresponds to linear map of the penultimate
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layer’s representation. Whereas for classification tasks such as in ASR, by applying
the softmax function on the linear map, the output models P◊(„t|or

t
, Ō), the posterior

distribution of clustered states given the temporal context Ō of the current frame t:

P◊(„t = i|or

t
, Ō) =

exp
1
◊i

T (x) + ◊)
2

q
j exp

1
◊j

T (x) + ◊)
2 (3.3)

Here j denotes the dimension of the output layer and x represents the penultimate layer’s
representation. The dependency on t here has been dropped at the same function is
applied to yield posteriors for every frame. Figure 3.1 shows an example of a standard
feedforward network. In this work when presenting experimental results, the MLP model
will be referred to as a DNN.

Fig. 3.1 Architecture of Multi Layer Perceptron (MLP).

3.3 Importance of Initialisation
Through compositionality, MLPs with more hidden layers possess the ability to learn
much richer representations of the input. This makes such models quite attractive in
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solving complex tasks. However until a decade ago it wasn’t clear how to harness this
rich representation capability of deep models: adding layers beyond 4 or 5 was found to
both impede and de-stabilise SGD learning [90, 91]2.

The current resurgence of deep learning came from introducing strategies that focus
on finding parameter initialisations that begin training in a region connected to the
solution such that the path can be uncovered by local steepest descent. In neural network
literature, this is termed as pre-training [93] . The motivation behind pre-training comes
from the following observation: sometimes directly training a model to solve a specific
task can be challenging if the model is complex and di�cult to optimise. It can be more
e�ective to either train a simpler model first and then gradually make it more complex or
use the model to solve a simpler task before moving to the final task. Depending on the
model type and task in question, the first or the latter approach to pre-training is used.

For training discriminative models to solve non-sequence classification tasks, initialis-
ing model parameters by either using layer by layer discriminative pre-training or stacking
restricted Boltzmann machines (RBMs) [94, 95] have been observed to greatly improve
the classification performance3. This strategy is equivalent to training a simple model
first and then gradually make the model more complex. For training hybrid HMM-DNN
models to solve the ASR task, initialising the DNN model parameters with CE or CTC
training have been shown to lead to better overall WER convergence [69, 96]. This
strategy can be thought of as using the model to solve a simpler task first before moving
to a complex task. Following this approach, prior to sequence training in this work all
DNN models will be initialised with CE training using standard SGD.

3.4 DNN Architectures used in ASR
When applied to acoustic modelling, DNNs represent discriminative models whose output
z

r

t
represents P◊(„t|or

t
, Ō) with Ō presenting the choice of temporal context. The degree

to which a DNN model can incorporate temporal contextual information is determined
by its architecture. For Networks with feedforward architectures, Ō corresponds to a
splice o[t≠k,t+k] whereas for DNNs possessing recurrent connections, Ō corresponds to
either o1:t≠1 or o1:T (bi-directional). This section presents a review of the two standard
architectures currently used in ASR.

2
Notable exceptions include work on convolutional networks [92]

3
It should be mentioned that for models using the ReLU activation function, good convergence with

CE training can be achieved without any form of pre-training
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3.4.1 Sub-sampled Time Delay Neural Networks

A Time Delay Neural Network (TDNN) [97, 98] corresponds to a MLP model that has
been adapted to

• classify patterns with time shift-invariance.

• model context at each layer of the network.

Figure 3.2 shows an example of a TDNN network.

Fig. 3.2 Example of a sub-sampled TDNN network.

In this model, the initial transforms are learned on narrow contexts while the deeper
layers process hidden activations from a wider temporal context. Table 3.1 compares
how a DNN layer fares against a TDNN layer (given by Table 3.2). When operating on
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the same temporal context, a TDNN layer in contrast to a standard DNN layer applies
the initial a�ne transform on a narrower context. The activations associated with these
transforms are cached and are utilised by the deeper layers in the network. This allows
the space of functions that can be modelled by a TDNN to be much richer than an
equivalent DNN having the depth.
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Table 3.1 Example of standard DNN layer: K denotes the dimension of Layer 1 and D
denotes the dimension of the individual vectors ot.
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Table 3.2 Example of a TDNN layer operating on the same spliced input vectors, with
P denoting the dimension of Layer 2. By having the initial transforms act on narrower
contexts, the next layer can combine information from frames in a much richer way.

As the transforms in the TDNN architecture are tied across time steps, such a model
is often seen as a precursor to the Convolutional Neural Networks (CNNs) [99]. During
back-propagation (Sec. 3.6.1), as a consequence of parameter tying, the lower layers of
the network are updated by a gradient accumulated over all the time steps of the input
temporal context. This forces these layers to learn time invariant feature transforms.

The original TDNN formulation [97, 98] uses shifts of one frame in time for the
individual hidden layers. This is very expensive both in terms of computation and the
numbers of parameters when operating on large temporal contexts. In [100], it is shown
that improved performance over standard DNNs can still be achieved by introducing
gaps between the frames instead of splicing together contiguous temporal windows of
frames at each layer. Such a modification results in a sub-sampled TDNN. The network
shown in Figure 3.2 is an example of such a network. In recent work [101], it has been
shown that by employing factorised semi-orthogonal weight matrices, such networks can
achieve similar gains in WER as models that employ recurrent networks (discussed in
next section) . Building upon the work in [100], this work uses the following context
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specification for the various TDNN layers: [-2, +2]4 for layer 1, {≠1, 2}5 for layer 2,
{≠3, 3} for layer 3, {≠7, 2} for layer 4 and {0} for the remaining deeper layers.

3.4.2 Recurrent Neural Networks

Human speech is inherently a complex time-varying signal which contains intricate
correlations at a range of di�erent time scales. The sequential nature of speech makes it
inadequate for feedforward architectures to model the underlying system as such models
by design treat each input in a sequence independently. Recurrent neural networks
(RNNs) [102–105] represent a family of neural networks that has been originally designed
to process sequential data. Like TDNNs, these models take the advantage of one of
the early ideas found in machine learning: sharing parameters across di�erent parts
of a model. However, contrast to TDNN’s feed forward architecture, the particular
architecture of a RNN allows greater parameter sharing across di�erent parts of the
model. This allows the model to share statistical strength [106] across both di�erent
sequence lengths and di�erent positions in time [107].

This work will view RNNs as functional approximators of the underlying state
transition function associated with a deterministic dynamical system. A dynamical
system can be viewed as a tuple (S, f) where S corresponds to appropriate state space
modelled by a geometric manifold and the function f defines the underlying the state
transition. At any given time, the dynamical system has a state ht, a tuple of real
numbers (a vector) that corresponds to a point in S. The state transition function f

describes the evolutionary rule the governs the future state that can follow from the
current state ht:

ht = f(ht≠1; ◊) (3.4)

4
consider all contiguous frames with in this interval

5
consider only activations associated with the time steps given in this set.
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Fig. 3.3 Transition in a dynamical system

RNNs in particular describe a particular form of deterministic dynamical system
where the evolutionary rule f utilises both the previous state ht≠1 and an external
stimulas ot to decide on the next state ht:

ht = f(ht≠1, ot; ◊) (3.5)

Equation (3.5) is recurrent because the definition of ht refers backs to the same
definition at time t ≠ 1. For a finite number of time steps t, by recursively applying the
definition of the hidden state t ≠ 1 times, the transition function can be unrolled as:

ht = f(ht≠1, ot; ◊)

= f(f(f(· · · , xt≠2; ◊), ot≠1; ◊), ot; ◊) (3.6)

= g(o1, o2 · · · ot; ◊) (3.7)

Equation (3.6) shows how the computation of the current state ht can represented as a
form of a unrolled computational graph (shown in figure 3.4) by repeated application of
the function f . Furthermore from eqn (3.7), it can be seen that RNNs model a specific
form of state transition function that can take the whole past sequence as input to decide
on the current state ht .
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Fig. 3.4 Example of standard RNN network

To draw comparisons with feedforward networks, in this work a RNN layer will viewed
as feedforward Network constructed for the repeated composition of single modular
function f .

3.4.2.1 Form of RNN state transition function

For generic RNNs, the convention form of the state transition function is:

ht = ‡ §
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= ‡ §
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W◊,x W◊,h
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T
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T

V

= ‡ §
5
W◊,xot + W◊,hht≠1 + b

6
(3.8)

The form of (3.8) has special importance as it allows a finite RNN to be universal i.e
the RNN can model any function that can be computed by a universal Turing machine
[108–110].

From (3.8), it can be seen that the at each time step, the next state ht is computed
by applying a point wise application of a non linear function on a vector that linearly
combines the information associated with the previous hidden state ht≠1 and the current
stimulus ot. Gated RNNs [12, 111, 112] extend generic RNNs to provide a more flexible
framework where the next state is computed as a weighted combination of the previous
state and a non linear function of ot and ht≠1 with the weights also being adaptive
functions of ot and ht≠1:

ht = gh ¢ ht≠1 + go ¢ ‡ §
5
Woot + Whht≠1 + b

6
(3.9)
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Here ¢ denotes point wise multiplication between two vectors. In RNN terminology,
the adaptive weights gh and go are referred to as gating transfer functions are of the
form (3.8). By independently reading, writing and erasing content from the stored
hidden state, the gates allow RNNs to better process data with complex and separated
interdependencies. More discussion on gated RNNs will follow when LSTMs will be
introduced later in this chapter.

By employing either transition function it can be seen that RNNs can potentially
utilise information from frames at individual time steps in a much richer way than
models having feed-forward architectures. When fully unrolled across time, under the
above transition rules, the model will yield posteriors P◊(„t|or

t
, Ō) where Ō presents o1:t.

For applications such as ASR, it is often beneficial to incorporate the entire o1:T when
generating frame posteriors. To address this issue, bi-directional RNNs were invented in
[113]. These networks along maintaining the hidden state ht employ a separate transition
function that operates by reading inputs backwards in time.

3.5 Problem of Model Selection
Let X denote the parameter space ◊. Since di�erent realisations of model parameters
lead to di�erent f(x, ◊), the manifold X essentially captures the set of all P◊(H|O)
distributions M that can be generated by a particular model. In the context of ASR,
where the samples (x, y) represent (O, H), an ideal candidate f(O, ◊) œ M is one that
avoids rote memorisation and instead generalises on the concepts necessary to perform
optimum inference. To aid good selection, a candidate f is picked from M that minimises
the expected loss Q using some form of risk measure over the adequately selected family
of predictive models:

f̂(O, ◊) = arg min
◊

Q
3

f(O, ◊)
4

(3.10)

= arg min
◊

E
5
L

3
f(O, ◊)
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= arg min
◊

⁄ ÿ

H
P (O, H)L

1
H, Hf(O,◊)

2
dO (3.11)
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where

Hf(◊O) = argmax
H

P◊(H|O) (3.12)

Although it is desirable to minimise the expected loss, in reality complete informa-
tion of the true joint distribution p(O, H) is unavailable. Hence, the expected loss is
approximated by the empirical risk function Q̂:

◊̂ = arg min
◊

Q̂
3

f(O, ◊)
4

(3.13)

= arg min
◊

1
R

Rÿ

r

L
1
Hr, Hf(Or,◊)

2
(3.14)

using a set of r œ R independently drawn input-output samples {Or, Hr}R

r=1. The
mismatch between the expected and the empirical loss often leads to phenomenon known
as overfitting to the training data where careful searching through the parameter space
X leads to the selection of a candidate f that achieves the greatest reduction in the
empirical loss but fails to generalise to new examples. To alleviate this issue, training is
often accompanied with regularisation approaches that serve to penalise candidates that
over fit to the training data. Section 4.4 discusses the standard regularisation methods
currently used with derivative based optimisation methods for DNN based models.

From (3.11) and (3.14), it can be also seen how the eventual choice of the inference
model P◊(H|O) depends on the loss function used in the respective risk criterion. In ASR,
the WER is the evaluation metric of interest which however corresponds to a discontinuous
function of the model parameters. Hence, employing such a metric directly within a
empirical risk criterion is not viable with standard derivative based optimisers. The
standard approach is to formulate either generative or discriminative learning framework
as discussed in Sec.2.4 to identify a set of viable parameter candidates f(O, ◊) œ M
using the training set. The generalised performance of each of these candidates is then
estimated using the validation set and the best function is chosen.

3.6 Error Gradient of DNN based models
For DNN based models, the objective function Fobj(◊) over model parameters can be
expressed as the composition L ¶ ẑ ¶ â where

• â represents the accumulated m dimensional vector representations at of the
network’s pre-softmax output at di�erent time steps.
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Cost function Form of ÒL
r

obj,t
FML ÒL

r

ML,t = z
r

t
≠ “

r,Num
t (see Appendix B.2)

where “
r,Num

t is the posterior probability of HMM states at time t
computed over the numerator lattice associated with utterance r.

FCTC ÒL
r

CTC,t = z
r

t
≠ “

r,CTC
t

where “
r,CT C

t is the normalised forward-backward probabilities computed
over the CTC state model [53, 114].

FCE ÒL
r

CE,t = z
r

t
≠ y

r

t

where y
r

t
is the target label of frame t associated with utterance r.

FMMI ÒL
r

MMI,t = “
r,Den
t ≠ “

r,Num
t

where “
r,Den

t is the posterior probability of HMM states at time t
computed over the denominator lattice associated with utterance r [115, 116].

FMBR ÒL
r

MBR,t = “
r

t
§ L

“
r

t
here is the posterior probability associated with HMM states at time t

and the entries of L corresponds to the loss associated with these arcs
within the consolidated lattice [1, 115, 116].

Table 3.3 shows the form of the gradient of various cost functions w.r.t DNN linear
output activations

• L ¶ ẑ is the composition of the loss function L with the softmax zt accumulated at
various time instances.

Using the chain rule, the gradient ÒFobj(◊) with respect to ◊ at time t is:

ÒFobj(◊)|
t

= 1
R

Rÿ

r

1
ÒL

r

obj,t
2T

J
r

◊,t
(3.15)

where ÒL
r

obj,t is the time dependent gradient of Fobj with respect to the linear DNN
output activations and J

r

◊,t
is the Jacobian of the DNN’s pre-softmax output w.r.t ◊

at time t. For the types of objective functions discussed in Sec. 2.4, it can be seen
that to compute ÒFobj(◊), all that is necessary is to derive ÒL

r

obj,t w.r.t to the DNN’s
pre-softmax activations at each time step t. Table 3.3 shows the form of ÒL

r

obj,t associated
with the various sequence level loss functions. With the exception of the CE objective
function, it can be seen that the computation of the ÒL

r

obj,t term for the individual loss
functions relies on the statistic “

r

t
being computed. In Sec. 2.3, it was discussed how

such a statistic can be computed e�ciently using the forward backward algorithm.
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Accumulating the frame-level gradients across time, the gradient w.r.t. a sequence
level loss corresponds to:

ÒFobj(◊) = 1
R

Rÿ

r

ÿ

t

1
ÒL

r

obj,t
2T

J
r

◊,t
(3.16)

3.6.1 Computing the Jacobian w.r.t Pre-Softmax Activations

The back-propagation algorithm [102] is the method that is most widely used to compute
the Jacobian J

r

◊,t
. The algorithm uses a local message passing scheme in which information

is sent alternately forwards and backwards through the network. At the heart of back-
propagation is the chain rule which is used recursively to compute the Jacobian J

r

◊l,t

at every layer l. Let a
l denote the output of l in a network of k layers deep. Then for

feedforward networks,

J◊l,t =
S

U
Ÿ

lÆiÆk

Ò
a

i≠1
t

a
i

t

T

V Ò◊la
l

t
(3.17)

To keep the notation uncluttered, the dependency on r here has been dropped. In Sec.
3.4.2, it was shown how standard RNNs can be unrolled across time in the form of a
feedforward network where parameters are tied across di�erent layers. In this case, J◊,t

takes the form:

J◊,t =
kÿ

l

S

U
Ÿ

lÆiÆk

Ò
a

i≠1
t

a
i

t

T

V Ò◊a
l

t
(3.18)

This modification of the back-propagation algorithm is popularly known as back-propagation
through time (BPTT) [102, 103]. For TDNNs, a similar expression to (3.18) can be
derived for each individual layer with the summation now performed over the number of
context shifts.

3.7 Problem of Vanishing and Exploding Gradients
Using chain’s rule, the derivative Ò

a
i≠1
t

a
i

t
in eqn. (3.17) and eqn. (3.18) can be shown to

correspond to:

Ò
a

i≠1
t

a
i

t
= diag(Òai

t

‡ § a
i

t
)W i

◊
(3.19)



48 Deep Neural Networks: an overview

where W
i

◊
is the weight matrix associated with the layer i. Taking norms on both sides:

ÎÒ
a

i≠1
t

a
i

t
Î = Îdiag(Òai

t

‡ § a
i

t
)W i

◊
Î (3.20)

Æ Îdiag(Òai

t

‡ § a
i

t
)ÎÎW

i

◊
Î (3.21)

By singular value decompositon theorem [117],

ÎÒ
a

i≠1
t

a
i

t
Î = Îdiag(Òai

t

‡ § a
i

t
)ÎÎU

i�i(V i)TÎ

Æ ’ i

max
Îdiag(Òai

t

‡ § a
i

t
)ÎÎU

i(V i)TÎ (3.22)

Equ.(3.22) provides an upper bound on the norm of Ò
a

i≠1
t

a
i

t
where ’ i

max
corresponds

to the largest singular value of the matrix W
i

◊
. In the scenario when Î‡Õ(x)Î Æ ‘ œ R and

‘ · ’ i

max
Æ 1 ’i, information from gradients of deeper layers rapidly attenuate as they are

backpropagated down the network. This phenomenon is termed as vanishing gradients
[118] and impedes deep networks from learning useful intermediate representations. The
problem of vanishing gradients is specially prevalent when the choice of ‡ corresponds to
a member from the parameterised sigmoid family [119]:

‡(x) = µ.
1

1 + exp(≠Ëx) ≠ µ̂ (3.23)

where µ, µ̂ and Ë correspond to either fixed or tuneable parameters. From (3.23), it can
be seen that Î‡Õ(x)Î is bounded and for certain choices of µ, µ̂ and Ë 6, its norm is less
than 1. For such cases, employing these functions makes the network more susceptible to
su�er from vanishing gradients.

The sigmoid function is a smooth approximation of the Heaviside step function
that exhibits asymptotic behaviour when ◊ takes large values. In the scenario when
‘ · ’ i

max
Ø 1 ’i, the norm of gradients from deeper layers grow as they are backpropagated

down the network. This phenomenon is popularly known as the problem of exploding
gradients [118] and impedes learning by saturating the individual nodes.

3.7.1 Rectified Linear Units

To stabilise training, there is ongoing research of finding suitable choices of ‡ that can
lead to considerable speeds up in learning [120]. In literature, the current most popular

6
for the standard sigmoid function, both µ and Ë correspond to 1 and µ̂ is 0, whereas for the tanh

function µ and Ë equal to 2 and µ̂ is 1.
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choice is the rectified linear unit (ReLU) unit [121]:

‡(x) = max
3

0, ◊
T (x) + b◊

4
(3.24)

The function corresponds to an identity map when ◊
T (x) + b◊ Ø 0 and 0 otherwise. The

use of such a function can be seen to have a regularising e�ect as depending on the input
signal, nodes at intermediate layers can switch o� and not partake in producing the
underlying mapping. This induces sparsity in the model and reduces the model’s ability
to overfit the training data. The derivative of the ReLU function corresponds to either
0 or 1 which means that gradient information from deep layers can propagate well to
active nodes in the lower layers. However for deactivated nodes as a consequence of the
gradient being 0, nodes which go into that state will stop responding to variations in
error or input. This is called dying ReLU problem [122] and can result in the network
being passive. To address this issue, recent works have modified the activation function
to allow a small, non-zero gradient when the unit is not active [123, 124].

This work will focus on training standard RNNs with both the sigmoid and the
standard ReLU activation function. In comparison to their sigmoid counterparts, RNNs
using ReLUs have been observed to less prone to vanishing gradients [125].

3.7.2 Model Re-Design

To improve learning, the easiest strategy is not always to improve the optimisation
algorithm. Instead many improvements in the training deep models have come from
re-designing the models such that they can be better optimised with SGD. To train
recurrent models over longer sequences, the standard approach is to enforce some form
of gating mechanism to control the information inflow to the individual units in a layer.
In Sec. 3.4.2.1, it was shown how this corresponds to using a state transition function of
the form (3.9). One of the very first gated RNNs introduced is the Long Short Term
Memory(LSTM) network [12]. A LSTM is an artificial neural network that contains
specialised gated ‘cells’ instead of regular network units. Each cell can be described as a
“smart" network that maintains its own local memory. At each time step, the memory
cell is modified using 3.4.2.1 as shown below:

mt = gm ¢ mt≠1 + gx ¢ ‡ §
5
W◊,xxt + W◊,hht≠1 + b◊

6
(3.25)

ht = gh ¢ mt (3.26)
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The information from the memory cell gets diluted using an output gate that controls the
output flow of cell activations into the rest of the network (3.26). Through the use of the
gates, the model can maintain knowledge of important events across multiple time steps.
Although gated RNNs are able to better model long term trends from sequential data,
the use of such structures contribute to significant computational cost during training. As
the gates themselves are functions of the form (3.8), training a gated RNN is significantly
slower than a standard RNN of the same depth as these structures posess 4 times as
many parameters as the RNN. To address the computational drawback, Gated Recurrent
Units (GRU) [111] and recently Semi-Tied Units (STUs) [126] have been proposed to
solve the ine�ciency issue by using some form of parameter tying of the gated units.

To improve training of deep feed forward networks, adding additional connections
between non adjacent layers have to shown to improve learning with SGD. For standard
RNNs using the state transition of the form 3.8, the same idea was pursued with High
Order RNN architecture (HORNN) [127]. The activation of hidden states of · steps back
are directly propagated to compute the current state ht. The HORNN architecture can
be viewed as a precursor to the recently proposed attention mechanism [128] where the
hidden states associated with every times steps are used to compute the activation of
the next layer.

3.8 Summary
This chapter presented a literature review of Deep Neural Networks within the context
of acoustic modelling in ASR. Section 3.1 presented the definition of an Artificial Neural
Network while Sec. 3.2 reviewed the principle concept behind the Multi Layer Perceptron
(MLP) model. Section 3.3 discussed the particular importance of using a good initial
starting point when training deep models. Section 3.4 presented the standard DNN
architectures currently used for acoustic modelling, and discussed how the choice of DNN
architecture controls the representational capability of a model. The problem of model
selection was presented in Sec. 3.5 while the back-propagation algorithm along with the
gradient of various sequence level losses was presented in Sec. 3.6. The chapter concluded
with a discussion of the vanishing and exploding gradients problem that plagues gradient
based training of deep models alongside a review of the various approaches used to
alleviate these issues.



Chapter 4

Derivative based optimisation
methods

While the structure of DNN models allows rich modelling capacity, it also creates complex
dependencies between the parameters which makes learning appropriate parameter values
for such models quite a complex and challenging task. This chapter presents a literature
review of derivative based optimisation approaches used to train DNN models. The
chapter begins with a description of first and second optimisation frameworks and presents
the two most popular approaches used to model the Hessian of DNN based cost functions.
This is followed by the development of a framework to formally describe a stochastic
optimisation algorithm (Sec. 4.2). The rest of this chapter is organised as follows: section
4.3 presents a careful analysis on the behaviour of stochastic method at each iteration.
Using this analysis, Sec. 4.3.2 shows how noise reduction methods like momentum and
Nesterov momentum can help SGD in finding better paths in the parameter space. The
chapter concludes with a review of the standard regularisation approaches used with
DNN training to improve the generalisation performance of these models.

4.1 Framework behind Derivative based Optimisa-
tion Approaches

Let ◊0 be a element in X. Initialised with a starting point, the goal of an optimisation
algorithm is to construct a path ◊0, ◊1, ◊2, ◊3 · · · ◊k in X that will converge to a local
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optimum of using the following update rule:

◊k+1 Ω ◊k + �◊k (4.1)

The core premise behind standard derivative based optimisation methods is Taylor’s
theorem. Assuming that the objective function Fobj(◊) is su�ciently smooth, Taylor’s
second order approximation models the local behaviour of the function by the following
quadratic:

Fobj(◊k + �◊) ƒ Fobj(◊k) + �◊
T ÒFobj(◊k) + 1

2�◊
T H�◊ (4.2)

where �◊ represents any o�set within a convex neighbourhood of ◊k and H is the Hessian
of Fobj computed w.r.t ◊k. Instead of directly optimising the objective function, derivative
based approaches generate a candidate �◊k at each iteration by minimising the above
quadratic approximation. Depending on the number of components considered on the
right hand side of (4.2), standard derivative methods can be categorised as either first
or second order. First order approaches consider only the first two terms to generate a
candidate �◊k at each training iteration. In other words, these methods use the direction
of steepest descent to traverse along the parameter space. Second order approaches on
the hand, attempts to minimise (4.2) directly using some form of approximation of the
Hessian:

�̂◊ = argmin
�◊

Fobj(◊k) + �◊
T ÒFobj(◊k) + 1

2�◊
T B�◊ (4.3)

where the matrix B is an approximation of the Hessian H. Di�erentiating (4.3) and
setting it to zero yields the critical point �◊ = ≠B≠1ÒFobj(◊). This is the Newton
direction [129] and corresponds to a unique minimiser within a convex neighbourhood
of ◊k when B is positive definite. There are di�erent approaches to constructing the
matrix B. The following highlights the two most common approaches used for DNN
based models.

4.1.1 The Broyden-Fletcher-Goldfarb-Shanno(BFGS) method

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) [130] belongs to the class of Quasi-
Newton methods that approximates the Hessian matrix using updates specified by
previous gradient evaluations. Like 2nd order methods, Quasi-Newton methods model
the local behaviour of the objective function with (4.3) but with the added condition
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that the fitted quadratic should not only match the gradient of the objective function
Fobj at ◊k but also the gradient at ◊k≠1:

ÒFobj

3
◊k ≠ �◊k≠1

4
= ÒFobj(◊k) ≠ Bk�◊k≠1 = ÒFobj(◊k≠1) (4.4)

Rearranging the above terms gives us the secant equation [130]:

B≠1
k

(ÒFobj(◊k) ≠ ÒFobj(◊k≠1)) = �◊k

The matrix B≠1
k

has D(D + 1)/2 degrees of freedom whereas the above system comprises
of D independent equations of D variables. To determine B≠1

k
uniquely, Quasi Newton

approaches impose the additional conditions:

B≠1
k

= argmin
B̂

ÎB̂ ≠ B≠1
k≠1Îp

subject to B̂ = B̂T , B̂�yk = �◊k (4.5)

where yk denotes ÒFobj(◊k≠1) ≠ ÒFobj(◊k). Di�erence choices of the matrix norm ÎAÎp

give rise to di�erent Quasi-Newton methods. In the BFGS approach„ the matrix norm
chosen is the weighted Frobenius norm:

ÎAÎW = ÎW 1/2AW 1/2Î

where the matrix W is chosen to be the inverse of the average Hessian :

W ≠1 =
⁄ 1

0
Ò2Fobj(◊k≠1 ≠ t�◊k≠1)dt

Using the weighted Frobenius norm, (4.5) has the unique solution:

B≠1
k

=
1
I ≠ flk�◊kyT

k

2
B≠1

k≠1
1
I ≠ flkyk�◊

T

k

2
+ flk�◊k�◊

T

k
(4.6)

where flk = 1
y

T

k
�◊k

. Therefore in the BFGS approach, instead of computing a completely
new Bk at each iteration, the method iteratively updates an existing Bk by making a rank
2 modification of the matrix using the most recent iterate and gradient displacements.
By choosing the initial guess B≠1

0 to be positive definite and ensuring flk > 0, it can be
shown by induction that the updated matrices {B≠1

k
} will always be positive definite

[131]. A key feature of this approach is that the matrices {B≠1
k

} need not be formed
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explicitly; instead, each product can be computed using a formula that only requires
recent elements of the sequence of displacement pairs that have been saved in storage.
However, as seen from eqn. (4.6), the method demands that a history of {(yk, �◊k)} is
maintained for each iteration. This results in substantial memory overhead especially for
large models. A common solution for this is to employ a limited memory scheme where
a limited number of the most recent iterate and gradient displacements are used. This
approach is known popularly known as Limited Memory BFGS [132].

4.1.2 Gauss Newton approach

In Sec. 3.6, it was shown how for the types of learning frameworks discussed in Sec. 2.4 ,
the gradient ÒFobj(◊) takes the form:

ÒFobj(◊) = 1
R

Rÿ

r

ÿ

t

1
ÒL

r

obj,t
2T

J
r

◊,t

where ÒL
r

obj,t corresponds to the time dependent gradient of Fobj with respect to the
linear DNN output activations and J

r

◊,t
is the Jacobian of the DNN’s pre-softmax output

w.r.t ◊ at time t. Then the Hessian of Fobj(◊) at any point ◊ equates to:

Ò2
Fobj(◊) = Ò

A
1
R

Rÿ

r

ÿ

t

1
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r

obj,t
2T
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◊,t
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ÿ
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1
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obj,t
2T
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r

◊,t
(4.7)

From the above expression, it can be seen that when working with DNN models, the
Hessian at any particular point ◊ on the error surface can be written as the sum of two
matrices:

H◊ = G◊ + K◊ (4.8)

where G◊ = JT

◊
Ò2L◊J◊ and K = ÒL◊ÒJ◊. The matrix G◊ is called the Gauss Newton

(GN) [133] matrix and if the loss function is convex, it is guaranteed to positive semi-
definite. Under the Gauss Newton approximation, the quadratic minimised at each
iteration then corresponds to:

�̂◊ = argmin
�◊

Fobj(◊k) + �◊
T ÒFobj(◊k) + 1

2�◊
T G◊�◊ (4.9)
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If K◊ is sparse, then such a quadratic becomes a good approximation of the local
behaviour of the error surface.

4.2 Stochastic and Batch Optimisation Methods
Irrespective of whether a method is first or second order, all optimisation methods in
machine learning can be essentially categorised into two groups: stochastic and batch.
Batch based optimisation methods correspond to the class of approaches where an update
to the model parameters is made only after processing the entire training dataset. A
prototypical batch optimisation method is the full gradient descent where at each iteration
k, the model parameters are updated using the following rule:

◊k+1 Ω ◊k ≠ –kÒFobj(◊) (4.10)

with –k being the learning rate. An alternative to the batch based approach is stochastic
optimisation. At iteration k, a random seed ›k

1 is sampled to generate a stochastic
direction g(◊k, ›k) which is used to update the model parameters as follows:

◊k+1 Ω ◊k ≠ –k g(◊k, ›k) (4.11)

For any general stochastic optimisation approach, the following 3 mechanisms need
to exist:

1. a mechanism for generating a realisation of a random variable ›k. This normally
involves picking a sample or subset of samples from the training data.

2. given an iterate ◊k and the realisation of ›k, a mechanism for computing a stochastic
vector g(◊k, ›k).

3. a mechanism for setting the learning rates –k.

This framework can be inherently seen to be Markovian: ◊k+1 is a random variable
that depends only on the iterate ◊k, the seed ›k, and the step size –k, and not on any
past iterates. In this work, the direction g(◊k, ›k) will correspond to either:

1
› denote a sampled utterance
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g(◊k, ›k) =

Y
_]

_[

ÒFobj(◊k, ›k) where ›k corresponds to a sampled utterance

A≠1 1
Nb

qNb

k
ÒFobj(◊k, ›k)

(4.12)

This gives the flexibility for describing stochastic methods using di�erent batch sizes,
and also provides a framework to describe both first order and second methods under a
stochastic approach.

4.3 E�ectiveness of Stochastic methods
Having introduced the two broad categories of optimisation methods, this section the
expected behaviour of stochastic based methods at each training iteration. Let the
objective function Fobj : Rd æ R be such that it is continuously di�erentiable and its
gradient ÒFobj : Rd æ Rd is Lipchitz continuous. Formally, such an assumption implies
’�◊:

Fobj(◊k + �◊) Æ Fobj(◊k) + ÒFobj(◊k)�◊ + 1
2L�◊

T �◊ (4.13)

Proof : By Fundamental theorem of Calculas

Fobj(◊k + �◊) = Fobj(◊k) +
⁄ 1

0

d

dt
Fobj(◊k + t�◊) dt

= Fobj(◊k) +
⁄ 1

0
ÒFobj(◊k + t�◊)T �◊ dt

= Fobj(◊k) + ÒFobj(◊k)�◊ +
⁄ 1

0
[ÒFobj(◊k + t�◊) ≠ ÒFobj(◊k)]T �◊ dt

Æ Fobj(◊k) + ÒFobj(◊k)�◊ +
⁄ 1

0
L [t�◊]T �◊ dt

Requiring that the gradient at any point is Lipchitz continuous ensures that it does
not change arbitrarily quickly with respect to the parameter vector. Such an assumption
is essential for convergence analyses of most gradient-based methods [16] and without it,
derivative based stochastic approach will not be a good algorithm for achieving decrement
in Fobj.

Now, let E›k
denote the expected value taken with respect to the distribution ›k given

◊k. From (4.11), it can be seen that E›k
[F (◊k+1)] will then be a meaningful quantity as
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◊k+1 depends on ›k. By substituting (◊k+1 ≠ ◊k) with g(◊k, ›k) in eqn 4.13, the iterates
of any general stochastic algorithm can hence be shown to satisfy:

E›k
[Fobj(◊k+1)] ≠ Fobj(◊k) Æ ≠–kÒFobj(◊T

k
)E›k

[g(◊k, ›k)] + 1
2–2

k
LE›k

Ë
|g(◊k, ›k)|2

È

(4.14)

The above inequality shows that regardless of how any stochastic method arrived at
◊k, the expected decrease yielded by the kth step is bounded above by a quantity that
involves:

1. the expected directional derivative of F at ◊k along g(◊k, ›k)

2. the second moment of g(◊k, ›k)

where

V›k
[g(◊k, ›k)] = E›k

Ë
|g(◊k, ›k)|2

È
≠ |E›k

[g(◊k, ›k)] |2 (4.15)

To clarify for the reader, the term V›k
here is the variance of g(◊k, ›k). The first term of

right hand of the inequality of eqn. (4.14) will be negative if in expectation, the vector
≠g(◊k, ›k) is a direction of su�cient descent for Fobj from ◊k. However, the second term
in eqn. (4.14) could be large enough to allow the objective value to increase. Balancing
these terms is critical in the design of a good stochastic optimisation algorithm.

4.3.1 Learning Rate Schedulers

From eqn. (4.14), it can be seen how the choice of learning rate influences the expected
decrease yielded by the k th step of the stochastic optimisation process. In [134], it is
shown that SGD will converge to a local minimum as long the choice of learning rates
satisfy:

Œÿ

k

–k = Œ and
Œÿ

k

–2
k

< Œ (4.16)

This can be achieved through the use of good learning rate scheduler that makes to
appropriate changes the learning rate over time. A good strategy as mentioned in [16], is
to have larger step sizes at the beginning that enable a rapid increase in the objective
function, and then switch to smaller learning rates at the later stages to allow SGD to
descend into finer features of the loss landscape.
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For training DNN models, a brief review of the standard learning rate schedulers is
given below:

1. List: this is most naive learning rate scheduler that uses a pre-determined learning
rate through out the epoch.

2. Exponential Scheduling: the learning rate decays exponentially after each epoch as
shown below

–k = –0 ◊ p≠k

where p controls the rate the decay.

3. NewBob [45]: the learning rate is kept fixed as long as the classification error on the
cross-validation (CV) set improves by at least defined percentage. In all subsequent
epochs, the learning rate is halved. Training is terminated when the improvement
falls below a certain threshold.

4. Adaptive Learning Rate Scheduling: corresponds to a class of approaches that
adapt the general learning rate – at each time step t for each parameter ◊ based on
the past gradients that have been computed for ◊. For highly curved error surfaces,
such approaches has been argued [135] to help SGD reach a good local minimum.
Apart from Adam [136] which will be introduced later, the following procedures
are most commonly used:

(a) AdaGrad [137, 138]: this approach adapts the learning rate of parameters
such that smaller updates (i.e. low learning rates) are made to parameters
associated with frequently occurring features, and larger updates (i.e. high
learning rates) are applied to parameters associated with infrequent features.
For this reason, it is well-suited for dealing with sparse data [139]. Formally,
under this scheduler, the parameters are updated as follows:

◊k+1 Ω ◊k ≠ –
Ò

D◊,t + ‘
g(◊k, ›k) (4.17)

where g(◊k, ›k) is the noisy gradient w.r.t the parameter ◊ and D◊,t is the
accumulated sum of squared gradients up to time t. However, since every
added term to D◊,t is positive, the accumulated sum keeps growing during
training. This in turn causes the learning rate to shrink and eventually become
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infinitesimally small, at which point the algorithm is no longer able to acquire
additional knowledge. This is the main weakness of AdaGrad.

(b) RMSprop [140] is an extension of AdaGrad that seeks to reduce its aggres-
sive, monotonically decreasing learning rate. Instead of accumulating all
past squared gradients, RMS prop restricts the window of accumulated past
gradients to some fixed size w. Instead of ine�ciently storing w previous
squared gradients, the sum of gradients is recursively defined as a decaying
average of all past squared gradients.

D◊,t+1 Ω ËD◊,t + (1 ≠ Ë)g(◊k, ›k)2 (4.18)

(c) Adadelta [141] can be seen as a further extension on RMSprop. In comparison
to RMSprop, the method di�ers in the aspect that the numerator term of the
update in eqn. (4.17) is replaced by a decaying average of squared updates.

�◊k Ω

Ò
P◊,t≠1 + ‘

Ò
D◊,t + ‘

g(◊k, ›k) (4.19)

◊k+1 Ω ◊k + �◊k (4.20)

where P◊,t≠1 is the decaying average of all past squared updates similar to
eqn (4.18). Although the method doesn’t require an initial learning rate, the
use of moving averages makes the method heavily biased to the values of the
decay parameters Ë.

4.3.2 Noise Reduction Methods

In the last section, it was shown how the progress of a stochastic optimisation algorithm
is hindered by the variance associated with g(◊k, ›k). To limit the harmful e�ect of
the second term in eqn. (4.14), stochastic methods are often equipped with dynamic
sampling or gradient aggregation based approaches or a even combination of both.
Dynamic sampling methods achieve noise reduction by gradually increasing the mini
batch size used at each iteration [142]. Gradient aggregation methods on the other hand
achieve noise reduction by storing gradient estimates employed in previous iterations.
Information of the previous directions are employed to generate a g(◊k, ›k) whose variance
is bounded [16]. To train DNN models, the use of the following two gradient aggregation
methods are commonly used:
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1. Gradient methods with momentum

2. Accelerated gradient based methods

4.3.2.1 Gradient Methods with Momentum

Gradient methods with momentum are procedures in which the update chosen at each
iteration is a combination of the steepest descent direction and the most recent iterate
displacement. Specifically, in comparison to the generalised stochastic optimisation
algorithm presented in Sec. 4.2, momentum based methods only di�er in the aspect
that they maintain a separate scalar sequence {Ëk} that they use to scale the most
recent displacement. Like learning rates, these parameters are either predetermined or
set dynamically. Given an initial point ◊0, the update at each iteration corresponds to:

◊k+1 Ω ◊k ≠ –kg(◊k, ›k) + Ëk(◊k ≠ ◊k≠1) (4.21)

Now if set vk+1 Ω ≠–kg(◊k, ›k) + Ëk(◊k ≠ ◊k≠1) then the above update can be broken
down into the following steps :

vk+1 Ω ≠–kg(◊k, ›k) + Ëkvk (4.22)

◊k+1 Ω ◊k + vk+1 (4.23)

The above representation is the most popular formulation of gradient based momentum
updates [102]. An alternative view of this approach can be done by expanding (4.23):

◊k+1 Ω ◊k ≠ –k

kÿ

j=1
Ëk≠jg(◊j , ›j) (4.24)

Thus, each step can be viewed as an exponentially decaying average of past search
directions. Assuming that g(◊k, ›k) is chosen such that

E›k
[g(◊k, ›k)]T F (◊k) Ø ÁÎF (◊k)Î2

where Á Ø 0 then by writing the iteration this way, one can see that the steps tend
to accumulate contributions in directions of persistent descent, while directions that
oscillate tend to get cancelled, or at least remain small.
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4.3.2.2 Accelerated Gradient Methods

The Accelerated Gradient (Nesterov) method was first proposed by Nesterov [143] and is
similar to the gradient methods with momentum. As a two step procedure, it involves
the updates:

◊̂k Ω ◊k + Ëk(◊k ≠ ◊k≠1) (4.25)

◊k+1 Ω ◊̂k ≠ –kg(◊̂k, ›k) (4.26)

which leads to the condensed form:

◊k+1 Ω ◊k + Ëk(◊k ≠ ◊k≠1) ≠ –kg(◊k + Ëk(◊k ≠ ◊k≠1), ›k) (4.27)

In particular, the di�erence between Nesterov and standard momentum based ap-
proach can be described as a reversal in the order of computation. In eqn. (4.23), one can
imagine taking the steepest descent step and then applying the momentum term, whereas
eqn. (4.27) results when one follows the momentum term first, then applies a steepest
descent step. If both Ëk and –k are fixed across all iterations, then the accelerated
gradient can be also presented as:

◊k+1 Ω ◊k ≠ –
kÿ

j=1
Ëk≠jg(◊j + Ëk(◊j ≠ ◊j≠1), ›j) (4.28)

4.3.3 Adaptive Moment Estimation (Adam)

Having discussed adaptive learning rate schedulers and noise reduction methods, it is
worth discussing the method of Adaptive Moment Estimation (Adam) [136]. Adam
e�ectively combines RMSprop with noise reduction methods. In addition to storing an
exponentially decaying average of past squared gradients like Adadelta and RMSprop,
Adam also keeps an exponentially decaying average of past gradients similar to momentum.
Whereas momentum can be seen as a ball running down a slope, Adam behaves like a
heavy ball with friction, which thus prefers flat minima in the error surface.

In recent work [144, 145], the method has been shown to be outperformed by SGD
with momentum when applied to an object recognition and machine translation task. In
[146], the authors attributes this to the use of the exponential moving average of past
squared gradients. In settings where Adam converges to a sub-optimal solution, it was
observed that some mini-batches provide large and informative gradients, but as these
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mini-batches only occur rarely, exponential averaging diminishes their influence, which
leads to its poor convergence.

4.4 Regularisation
The space of functions M that result from di�erent realisations of model parameters ◊

should be considered with two potentially competing goals in mind. First, M should
contain functions that are able to achieve a low empirical risk over the training set, so
as to avoid bias or underfitting the data. Second, the gap between the expected and
the empirical risk should be small for all f œ M. The first goal can be achieved by
selecting a rich family of functions or by using a prior knowledge to select a well-targeted
family. Deep Neural Networks consist of large number of parameters that provides
enough flexibility to describe a wide range of phenomena. However due to their large
model complexity, it is possible for such models to describe almost any data set of a
fixed size without capturing any genuine insights of the underlying phenomenon. This as
mentioned in Sec. (3.5) often leads to the phenomenon of overfitting and results in a
situation where satisfying the first goal is at odds with accomplishing the second.

4.4.1 Early stopping

To tackle overfitting, the most common approach is to use an experimental procedure
that involves splitting the training examples into three disjoint subsets: a training set, a
validation set, and a testing set. Having a separate held out validation set allows us to
approximate the generalisation performance of the network after each training epoch.
By monitoring how the network fares on the held out set, training is stopped as soon as
performance on this subset saturates. This strategy is called early stopping.

4.4.2 LP Norm Regularisation

Along with employing early stopping using a held out validation set, the training of DNN
models often employ Lp-norm regularisation techniques. The idea behind Lp-norm [147]
regularisation methods is to add an extra term (often called as the regularisation term)
of the form shown below to the training criterion:

F̂obj(◊) = Fobj(◊) + µ

2 Î◊Îp (4.29)
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Intuitively, adding such a term to the cost function can be seen to have the e�ect
on inducing the network to learn parameters with small magnitude while minimising
the original cost function. Large parameter values are only allowed if they considerably
improve the first part of the cost function. The value µ in (4.29) controls the compromise
made on the relative importance of the two elements.

To understand how Lp norm regularisation methods impact learning, suppose the
network parameters take small values as will tend to happen in a regularised network.
When the parameter values are small, that the behaviour of the network won’t change too
much to changes in input values. This makes it more di�cult for a regularised network
to learn the e�ects of local noise in the training data. An intuitive way to understand
this is that single pieces of evidence no longer matters as much to the output of the
network. Instead, a regularised network learns to respond to types of evidence which are
seen often across the training set. By contrast, a network with large parameters may
change its behaviour quite a lot in response to small changes in the input. In the context
of neural network training, the two approaches from the family of Lp-norm regularisation
methods that are mostly used are L2 and L1 norms.

4.4.2.1 L2 Norm Regularisation

In L2 norm regularisation [148], the regularisation term added to the objective function
takes the form µ

2 Î◊Î2:
F̂obj(◊) = Fobj(◊) + µ

2 Î◊Î2

When applied with in a stochastic optimisation framework, the update produced at
each iteration then corresponds to:

◊k+1 = ◊k ≠ –k

3
g(◊k, ›k) + µ◊k

4

= (1 ≠ –kµ) ◊k ≠ –kg(◊k, ›k) (4.30)

From (4.30), it can be seen that applying L2 norm regularisation has the e�ect of re-
scaling the model parameters by a factor (1 ≠ –kµ) before applying the stochastic update
rule. This re-scaling is sometimes referred to as weight decay.
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4.4.2.2 L1 Norm Regularisation

In L1 norm regularisation [149], on the other hand the regularisation term takes the form
µ

q
i |◊i| which results in the following modified objective function:

F̂obj(◊) = Fobj(◊) + µ
ÿ

i

|◊i|

With in a stochastic optimisation framework, the update produced at each iteration
then corresponds to:

◊k+1 = ◊k ≠ –k

A

g(◊k, ›k) + µ
ÿ

i

|(◊i)|
B

= ◊k ≠ –kµsign § (◊k) ≠ –g(◊k, ›k) (4.31)

In both expressions (4.30) and (4.31), the e�ect of adding the regularisation term can
be seen to shrink the parameters during optimisation. However, the relative e�ectiveness
of both approaches is dependent on the norm of ◊. In L1 regularisation, the parameters
are shrunk by a constant amount toward 0 while in L2 regularisation, the parameters are
rescaled by a factor less than 1. When Î◊Î is large, it can be hence seen that L2 is more
e�ective than L1 in shrinking the parameters quickly. However, when Î◊Î is small, L1
regularisation can be seen to be more e�ective in driving the parameters to 0. The net
result is that L1 regularisation tends to concentrate the parameters of the network in a
relatively small number of high-importance connections, while driving the rest toward
zero. This tends to make the network weights sparse.

4.4.3 Weight Clipping

One way to ensure the parameters of the network are less responsive to local noise is to
restrict them between the interval [◊min, ◊max]. This is known as ‘clipping’. An minimum
lower bound on the value that a parameter can take ensures that our model doesn’t
under-fit the data while an upper bound ensures that the network’s output doesn’t change
too much for small changes in input.
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There are two ways to achieve this: In the first approach, individual parameters are
clipped after each update using the following rule:

◊ =

Y
____]

____[

◊min if ◊ Æ ◊min

◊ if ◊min < ◊ < ◊max

◊max if ◊ Ø ◊max

(4.32)

Alternatively, clipping can be directly enforced on the search direction g(◊k, ›k) rather
than on the updated ◊:

g(◊k, ›k) =

Y
____]

____[

◊min if ◊ Æ ◊min

g(◊k, ›k) if ◊min < g(◊k, ›k) < ◊max

◊max if ◊ Ø ◊max

(4.33)

By setting appropriate values for ◊max and ◊min, only extreme values of the individual
updates g(◊k, ›k) are clipped to prevent saturation.

4.4.4 Dropout

Apart from the above procedures, a recent popular approach that is popularly used to
regularise network training is Dropout [150]. Dropout is a technique where randomly
selected hidden units are ignored during training i.e their contribution to the activation
of downstream hidden units are temporally removed on the forward pass and their
parameters are not updated during the backward pass. The purpose of dropout is to
make the network become less sensitive to the specific parameters of individual hidden
units. During the course of training, parameters of hidden units are tuned for specific
features providing some specialisation. Neighbouring hidden units become to rely on this
specialisation, which if taken too far can result in a fragile model that is too specialised
to the training data. This reliance on context for a neuron during training is referred
as complex co-adaptations. It can be imagined that when hidden units are randomly
dropped out of the network during training, that other hidden units will have to step in
and handle the representation required to make predictions for the missing hidden units.
This is believed to result in multiple independent internal representations being learned
by the network.
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From a modelling perspective, the method of dropout essentially can be viewed as
form of ensemble learning. In ensemble learning a number of ‘weaker’ classifiers are
trained separately and then at test time some form of averaging of the responses of all
ensemble members is used. Since each classifier has been trained separately, it has learned
di�erent ‘aspects’ of the data and their mistakes are di�erent. Combining them helps to
produce an stronger classifier, which is less prone to overfitting. Random Forests [151]
are a typical example of ensemble classifiers. One ensemble variant is bagging, in which
each member of the ensemble is trained with a di�erent sub sample of the input data,
and thus has learned only a subset of the whole possible input feature space. Dropout,
then, can be seen as an extreme version of bagging [152]. Applying dropout to a neural
network amounts to sampling a ‘thinned’ network to process each mini-batch and only
updating the parameters of the sampled network based on the data corresponding to the
mini-batch.

At test time, it is not feasible to explicitly average the predictions from exponentially
many thinned models. However, a very simple approximate averaging method works well
in practice. The idea is to use a single neural net at test time without dropout. The
parameters of this network are scaled-down versions of the trained parameters. If a unit
is retained with probability p during training, the outgoing parameters of that unit are
multiplied by p at test time. This ensures that for any hidden unit the expected output
(under the distribution used to drop units at training time) is the same as the actual
output at test time. The undesirable property of this scheme presented above is that the
activations must be scaled by p at test time. Since test-time performance is so critical, it
is always preferable to use inverted dropout, which performs the scaling at train time,
leaving the forward pass at test time untouched. Inverted dropout is used in the HTK
implementation of dropout.

4.5 Summary
This chapter presented a review of derivative based optimisation methods used to train
parametric models like DNNs. At the beginning of the chapter, a description of first
and second optimisation frameworks was presented followed by a review of the two most
popular approaches used to model the Hessian of DNN based cost functions. Section 4.2
presented a formal framework to describe any stochastic optimisation algorithm. This
was followed by careful analysis to understand the behaviour of any generalised stochastic
algorithm. Using this mathematical framework, in Sec. 4.3.2, it was shown how noise



4.5 Summary 67

reduction methods like momentum and Nesterov momentum can potentially aid SGD to
construct better paths along the parameter space. The chapter concluded with a review
of standard regularisation approaches currently used with DNN training to improve the
generalisation performance of DNN models.





Chapter 5

Framework for Large Scale
Optimisation

This chapter presents the implementation details of the Hessian Free (HF) optimisation
method investigated in this thesis. The chapter begins with an analysis of batch and
stochastic methods, and presents a discussion on the potential advantages of having
a batch styled optimisation framework that achieves a good balance between data
parallelisation and requiring far less updates than SGD to converge. The chapter is
organised is as follows: Section 5.2 presents a review the HF method with particular
emphasis to the Conjugate Gradient (CG) algorithm, which serves as the core component
of the HF approach. The section also presents a detailed description on how curvature
vector products using the Gauss Newton (GN) matrix can be computed in a DNN.
Section 5.4 provides the details about the implementation of CG algorithm, and presents
two novel contributions of this thesis:

• A procedure to stabilise CG training to allow e�ective updates to be yielded only
from few iterations.

• An approach to adapt the CG algorithm to better handle DNN architectures with
shared parameters.

The chapter concludes with preliminary experiments using the HF method on the 50hr
MGB1 training set.
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5.1 Motivation for Batch Styled Second Order Op-
timisation Frameworks

When processing extremely large datasets, both batch and stochastic based optimisation
methods have significant impact on the computational workload associated with solving
an underlying machine learning problem. Suppose that both the expected risk Q and
the empirical risk Q̂ attain their minima with parameter vectors ◊

ú œ argmin Q(◊) and
◊n œ argmin Q̂(◊) respectively. In addition, let ◊̂n be the approximate empirical risk
minimiser returned by a given optimisation algorithm when the time budget Tmax is
exhausted. Then, the error associated with ◊̂n can be represented as:

Q(◊̂n) = Q(◊ú) + [Q(◊n) ≠ Q(◊ú)] + [Q(◊̂n) ≠ Q(◊n)] (5.1)

Accounting for di�erent possible initialisations, the expected error associated with ◊̂n

corresponds to:

E[Q(◊̂n)] = Q(◊ú) + [Q(◊n) ≠ Q(◊ú)] + E[Q(◊̂n) ≠ Q(◊n)] (5.2)

Taking expectation to all possible data sets

E[Q(◊̂n)] = Q(◊ú) + E[Q(◊n) ≠ Q(◊ú)] + E[Q(◊̂n) ≠ Q(◊n)] (5.3)

From (5.3), it can be seen that minimisation of the expected error requires finding
a careful balance between the contributions made by each of the three terms on the
right-hand side. The term E[Q(◊̂n) ≠ Q(◊n)] is the expected o�set between the minimiser
found by the optimisation algorithm and the minimum of the empirical risk Q̂(◊). The
term Q(◊ú) is dependent on the choice of the model while E[Q(◊n) ≠ Q(◊ú)] will be
minimised as the size of the training set is increased. Thus, minimising E[Q(◊̂n)] w.r.t. a
fixed amount of training data corresponds to finding a candidate in M that minimises
E[Q(◊̂n) ≠ Q(◊n)].

In [16], Bottou shows how batch methods in comparison to stochastic approaches do
better in converging to a good ◊̂n for both convex and non-convex problems. However,
the ability of such methods to converge to a good local minima depends highly on the
capacity to perform a large number of updates. When constrained to a single machine,
this becomes impractical in the scenario where either the training dataset is too large or
when the computational budget is fixed. In contrast, the per iteration cost of a stochastic
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approach is not tied to the training set size. The ability to perform more updates within
an epoch allows such methods to achieve greater reductions in E[Q(◊̂n) ≠ Q(◊n)]. In the
particular case of sequence training, stochastic optimisation frameworks are restricted
to operate within a utterance randomisation scheme rather than the standard frame
randomisation approach: the gradients associated with individual time steps rely on
the forward and backward statistics computed on the whole utterance, which forces the
gradient computation to be serial at the level of utterances. When faced with thousands
of hours of training data, methods like utterance level stochastic gradient descent may
not at times be able to complete an entire epoch as the cost of an epoch scales linearly
with the number of utterances in the training set.

These issues can be alleviated by having a parallel optimisation framework where the
computation is shared between di�erent worker nodes. With stochastic methods like
standard SGD, parallelisation can be achieved either in a synchronous or asynchronous
way. In synchronous SGD (SSGD) [17], local workers compute the gradients over their own
mini-batches1 and then propagate the gradients to the global model. In this framework,
the workers wait for each other and will only proceed their own local training once
gradients from all the workers have been added to the global model. When the gradient
is computed over the entire training set, such an approach can be seen to be equivalent to
a full batch approach where gradient computations are inherently data parallel. A major
drawback is SSGD is that the global model needs to always wait for the slowest worker
to reply before applying an update. In the scenario where the optimisation approach
requires a lot of updates to converge, this waiting process makes a significant contribution
to the computational overhead incurred during training.

To improve training e�ciency, asynchronous SGD (ASGD) is proposed in [18] where
each local worker continues its training process right after its gradient is added to the
global model. Although ASGD can achieve faster speed due to no waiting overhead,
it su�ers from a problem called delayed gradient [19], where the global model receives
‘stale’ gradients from worker nodes i.e gradients computed with respect to previous
parameter settings. This makes the approach not mathematically sound and may cause
the training trajectory to su�er from unexpected turbulence. The drawbacks of ASGD
can be alleviated by having a synchronous optimisation framework that finds convergence
within very few updates.

In [15], it has been shown that both faster and better convergence can be achieved for
convex problems by employing second order approaches to adjust the gradient direction

1
for sequence training, this corresponds to a subset of utterances.
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when there is high non-linearity and ill conditioning of the objective function. For
discriminative sequence training, it has been shown in [20] that better convergence than
serial SGD can be achieved by having a synchronous second order Hessian Free (HF)
optimisation framework where the master (i.e the global model) employs second order
curvature information to rescale the accumulated gradients before applying an update.
For the particular case of lattice based sequence training, apart from transferring DNN
models parameters, lattices associated with individual utterances needs to transferred
across multiple workers. In [20, 153], it is shown that compared to parallel forms of SGD
training, the HF approach, by employing large batch sizes, achieves a better balance
between data parallelisation and communication overhead. Following the work in [20],
the next section presents our implementation of a batch style HF optimisation framework
using the HTK DNN Toolkit [47].

5.2 Hessian Free Optimisation Framework
Assuming that the objective criterion Fobj(◊) is su�ciently smooth, within a convex
neighbourhood of a given point ◊k in the parameter space X, the behaviour of Fobj can
be locally approximated as:

Fobj(◊k + �◊) ƒ Fobj(◊k) + �◊
T ÒFobj(◊k) + 1

2�◊
T H�◊ (5.4)

In Sec. 4.1, it was shown how second order approaches instead of minimising Fobj(◊)
directly, at each iteration, choose to minimise a quadratic of the form:

�̂◊ = argmin
�◊

Fobj(◊k) + �◊
T ÒFobj(◊k) + 1

2�◊
T B�◊ (5.5)

where the matrix B is an approximation of the Hessian H. Di�erentiating eqn (5.5)
and setting it to zero yields the Newton direction �◊ = ≠B≠1ÒFobj(◊). However, the
Newton direction does not scale well with the dimensionality of the parameter space X.
Computing this direction directly is expensive in terms of both computation and storage as
storing B requires O(D2) storage and inverting it incurs a cost of O(D3). These obstacles
however, can be overcome if we employ inexact Newton methods. In particular, rather
than computing the Newton direction exactly through matrix factorisation techniques,
the system is solved B�◊ = ≠ÒF (◊) using the iterative linear Conjugate Gradient(CG)
algorithm [154]. An overview of the algorithm is presented in Algorithm 1.
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Algorithm 1 Overview of Linear Conjugate gradient method
1: Initialise initial search direction b, #CGIter)
2: Set r0 Ω b, d0 Ω r0, k Ω 0
3: while k < #CGIter do
4: Compute r

T

k
rk

5: Set ak Ω r
T

k
rk

dT

k
Bdk

6: Update �◊k+1 Ω �◊k + akdk

7: Update rk+1 Ω rk ≠ akBdk

8: Compute r
T

k+1rk+1

9: Set —k+1 Ω r
T

k+1rk+1
rT

k
rk

10: Update dk+1 Ω rk+1 + —k+1dk

11: Return �◊k

5.2.1 The CG algorithm

The linear conjugate gradient (CG) is an iterative method that have been originally
developed to solve a linear system of the form

A�◊ = b (5.6)

where A corresponds to a symmetric positive definite matrix. Alternatively, it can be
also interpreted as a method for finding the minimum of a quadratic error surface

F (�◊) = 1
2�◊

T A�◊ ≠ b�◊ + c (5.7)

The above quadratic F (�◊) is minimised at the critical point �◊ = A≠1
b. For high-

dimensional spaces, computing A≠1
b is highly expensive. One way to avoid this expensive

computation is to solve the system A�◊ = b. This is where CG comes into the picture.
It is an e�cient iterative method for solving such systems. It should be mentioned that
the quadratic problem of (5.7) can be also solved with alternative iterative techniques
like the method of steepest descent, where exact step sizes can be computed for each
descent direction. To understand why the steepest descent method is sub optimal, recall
that the method is an iterative algorithm that attempts to find the minimum of the
quadratic (5.7) using the following update rule:

�◊k+1 = �◊k + –irk
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where rk = b ≠ A�◊k is called the residual and corresponds to the direction of steepest
decent i.e ≠ÒF (�◊) of eqn.(5.7). For quadratic problems such as eqn.(5.7), the step
sizes –k can be computed exactly by taking the derivative of F (�◊k+1) with respect
to – and setting to 0. The value of –k that minimises of F (�◊k+1) occurs when of
ÒF (�◊k+1)T

rk = 0. i.e

r
T

k+1rk = 0 (5.8)

(b ≠ A�◊k+1)T
rk = 0 (5.9)

3
b ≠ A(�◊k + –krk)

4
T

rk = 0 (5.10)

–k = r
T

k
rk

rT

k
Ark

(5.11)

Intuitively, this means that the optimisation algorithm will move in the negative direction
of the current gradient until it reaches a point where the new derivative is orthogonal to
direction currently being traversed. This causes the method to move in a zig-zag path
to reach the minimum of the quadratic surface. Such a feature is quite ine�cient as it
forces the method to often visit previous directions.

Let the error at step k be ek = �◊k ≠ �◊min, a vector that indicates the o�set from
the minimum �◊min. Also let dk denote the search direction used at step k. Instead of
revisiting the same direction multiple times, it will be ideal to take an appropriate step
along a chosen direction once. This provides the motivation to consider directions that
ensures ek+1 is orthogonal to previously visited directions. Mathematically, this complies
to:

e
T

k+1dk = 0 (5.12)

To achieve this, –k must satisfy:

(ek + –dk)T
dk = 0

–k = d
T

k
ek

dT

k
dk

(5.13)

Unfortunately, to compute the correct step size, knowledge of the error o�set is required
which is unavailable. The next best alternative is to have conjugate search directions A
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orthogonal to each other

d
T

k
Adj = 0

’k ”= j. The value of – that minimises F (�◊k+1) will then occur when

d
T

k
Aek+1 = 0 (5.14)

Using the fact that rk = b ≠ A�◊k, it can be shown that eqn (5.14) simplifies to:

d
T

k
rk+1 = 0 (5.15)

Solving the above equation results in

–k = d
T

k
Aek

dT

k
Adk

= d
T

k
rk

dT

k
Adk

(5.16)

Let Di be the the i dimensional subspace spanned by the first i conjugate directions
{d0, d1 · · · di}. It can be shown that the steps taken by CG along these directions is
optimal [154] in the sense that the subspace will no longer be revisited at subsequent
iterations of the algorithm. This is basis of the CG algorithm. From the residual
directions, the method constructs conjugate directions on which it takes appropriate
step sizes only once. This makes the algorithm, in comparison to steepest descent, more
e�cient in finding the minimum of the quadratic function (5.7).

5.2.1.1 Key features of the CG algorithm

• Like many iterative linear system techniques, CG applied to eqn (5.5) does not
require access to the Hessian itself, only Hessian-vector products. In this sense, such
a method is called Hessian-Free (HF) [16, 155] when B is chosen to approximate
the Hessian.

• If �◊0 is set to 0, the linear CG algorithm immediately improves upon the direction
used to initialise the algorithm. If this corresponds to the full gradient or stochastic
gradient step, then the very first iteration of CG finds an appropriate step size
(learning rate) for this direction while subsequent iterations monotonically improve
upon this step.
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• If A has only r distinct eigenvalues, then the CG iteration will terminate at the
solution in at most r iterations [131]. Furthermore, the subspace associated with
the eigenvectors having larger eigenvalues will be traversed first.

5.3 Computing Matrix Vector Products with the
Gauss Newton matrix

Martens [155] in his initial paper on the HF method used the Gauss Newton (GN)
approximation to successfully apply the HF optimisation in training auto-encoders on
three small standard datasets using the squared error criteria. Wiesler and Li [156] have
applied this approximation for HF training w.r.t the CE loss criteria on the MNIST
[157] task and on a small message dictation task. For sequence training, Sainath and
Kingsbury [153] have reported to achieve significant reductions in WER on large datasets,
when they employ a GN approximation of the Hessian matrix. Following their approach,
the HF method implemented implemented in this thesis will employ the GN matrix as
an approximation to the Hessian.

In Sec. 4.1.2, it was shown how the GN matrix can be expressed as the product of
three matrices:

G◊ = 1
R

Rÿ

r

ÿ

t

1
J

r

◊,t

2T
Ò2

L
r

obj,tJ
r

◊,t

where

• Ò2
L

r

obj,t is the Hessian of the loss associated with the rth utterance at time t w.r.t
the DNN linear output activations.

• J
r

◊,t
is the Jacobian of the DNN output activations w.r.t ◊ at time t when processing

the rth utterance.

Thus, a multiplication of the GN matrix with a vector v amounts to a sequential
multiplication of the vector with the three matrices [158] using the following steps.

1. The product of J
r

◊,t
(v) corresponds to the directional derivative. In [159], Pearl-

mutter showed how this can be performed e�ciently through a single forward pass
of the network by employing a method called forward di�erentiation [159, 160].

2. Multiplying the output of the forward di�erentiation with Ò2
L

r

obj,t results in1
Ò2

L
r

obj,t
2

J
r

◊,t
(v).
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3. The back-propagation algorithm takes derivatives with respect to predictions as
input i.e ÒL

r

obj,t and computes the derivative with respect to the parameters
i.e

1
J

r

◊,t

2T
ÒL

r

obj,t. Replacing ÒL
r

obj,t with Ò2
L

r

obj,tJ
r

◊,t
(v), allows the required

curvature vector product to be computed.

5.3.0.1 Computing the Directional Derivative

The computation of J
r

◊,t
(v) can be achieved by making appropriate modifications to

forward propagation equations such that the output of the resultant forward pass
corresponds to the necessary directional derivative. To see how this can be achieved, let
us consider a standard DNN with 2 hidden layers. For notational clarity, let the layer ids
be denoted by superscripts and the node ids corresponding to the t-th input be denoted
by subscripts. Using this notation, the forward pass equations for a particular node at
each layer can be represented as:

a1
t,j

=
Nÿ

i

◊1
ji

xt,i + ◊j0 (5.17)

z1
t,j

= ‡(a1
t,j

) (5.18)

a2
t,k

=
ÿ

j

◊2
kj

z1
t,j

+ ◊k0 (5.19)

z2
t,k

= ‡(a2
t,k

) (5.20)

a3
t,l

=
ÿ

k

◊3
lk

z2
t,k

+ ◊l0 (5.21)

z3
t,l

=
exp(a3

t,l
)

q
lÕ exp(at,lÕ}3) (5.22)

Here a
i

t
represents the linear activations associated with nodes in layer i after the

application of the a�ne map and z
i

t
corresponds to the activations of the layer after

the point wise application of ‡. Appendix A.4 introduces the concept of a directional
derivative d�|◊ which corresponds to a linear map of the vector v from the tangent space
of ◊ to the tangent space of �(◊). In DNN literature [86, 159], this is commonly referred
to as the R operator R = vÒ:

R(f(◊)) = ˆf

ˆ◊
(◊ + tv) |

t=0

= (Ò◊f)T
v
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For the individual coordinates ◊k

i,j
, applying this operator results in:

R(◊k

i,j
) =

ÿ

iÕ,jÕ,kÕ

ˆ◊k

i,j

ˆ◊kÕ

iÕ,jÕ

vk
Õ

iÕ,jÕ = vk

i,j

For the first layer, applying the operator to the forward equations yields:

R(a1
t,j

) =
Nÿ

i

v1
ji

xt,i (5.23)

R(z1
t,j

) = ‡Õ(a1
j
)R(a1

t,j
) (5.24)

where (5.24) is a consequence of applying the chain rule. Since the operator vÒ is a
linear map, it can be also shown to satisfy the following conditions:

R(cf(◊)) = cR(f(◊)) (5.25)

R(f(◊) + g(◊)) = R(f(◊)) + R(g(◊)) (5.26)

Using the above expressions, the forward di�erentiation equations associated with indi-
vidual nodes in all subsequent layers equates to:

R(a2
t,k

) =
ÿ

j

v2
kj

z1
t,j

+
ÿ

j

w2
kj

R(z1
t,j

) (5.27)

R(z2
t,k

) = ‡Õ(a2
t,k

)R(a2
t,k

) (5.28)

R(a3
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) =
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k

v3
lk

z2
t,k

+
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k

w3
lk

R(z2
t,k

) (5.29)

5.4 Implementation Details
In the last section, it was shown how the computation of the matrix vector products
within each CG iteration is as expensive as a gradient evaluation. For large scale problems,
this is quite a concern as for tasks like sequence training, the cost of a single CG iteration
increases linearly with the number of utterances in the training set. This makes CG quite
uncompetitive against alternative approaches such as SGD or a limited memory BFGS
method. Interestingly, however, the structure of the risk measures given by eqn (3.14)
and eqn (2.34) can be exploited so that the resulting method has lower computational
overhead as described next.
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5.4.1 Sub-sampled Hessian Free method

To reduce the cost associated with individual CG iterations, this thesis employs a sub-
sampled Hessian Free method, where an approximation of B is used when minimising
the quadratic function of eqn (5.5). The motivation stems from the observations made
by [155] where the author discovered that with inexact Newton methods, the B matrix
need not be as accurate as the gradient to yield an e�ective update. Translated to the
context of large-scale machine learning applications, this means that the CG iteration
is more tolerant to noise in the Hessian estimate than it is to noise in the gradient
estimate. Based on this idea, the technique stated here employs a smaller sampled subset
for estimating the candidate matrix B than for the gradient estimate. So for a given
min-batch Sk, if the gradient estimate is

ÒFobj(◊) = 1
|Sk|

|Sk|ÿ

r

ÿ

t

1
ÒL

r

obj,t
2T

J
r

◊,t
(5.30)

then the approximation of the candidate B matrix is made on a subset SB

k
µ Sk. If the

subset SB

k
is chosen to be small, the cost of each CG iteration can be reduced significantly.

On the other hand, the size of SB

k
should be at least large enough for the information

carried by the matrix vector products to be productive. From preliminary experiments
on the WSJ0 debugging dataset (Appendix C.1) and on the 50hr MGB1 training set, it
was observed that using 0.5 hrs of randomly sampled audio data provides a good balance
between increased computational cost and improved training.

5.4.2 Improving CG Training

The main reason why HF has seen fewer practical applications than SGD is due to
the CG algorithm dominating the computation cost. Each matrix vector product is
as expensive as a forward and backward pass. In sequence training, this equates of
processing a single utterance. As the number of forward and backward passes scales
linearly with the number of CG iterations and size of CG mini batch, running CG for
many iterations can be seen to computationally expensive. Martens in [155], claims
that reasonable updates from CG can be only achieved by running the algorithm for
more than 150-200 iterations. The same claims were made by the authors in [153] when
they applied HF to do discriminative sequence training. Careful investigation in this
thesis has found that the need to have long CG runs is a consequence of how the matrix
vector products are computed. Recall that at each iteration of the CG algorithm (see
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Sec. 5.2.1), the step size to be taken along each update direction is computed by:

–k = r
T

k
rk

dT

k
Bdk

(5.31)

This is guaranteed to be positive when the choice of B is restricted to a positive definite
matrix. For CE training, the associated the GN matrix is guaranteed to be positive semi-
definite, it was observed that the denominator term in eqn (5.31) was frequently negative
at the initial CG iteration even though the code implementation was correct. Martens
describes this phenomenon as the problem of negative curvature and proposes to run
the CG algorithm longer with the aim of having enough iterations where the directions
and associated step sizes are valid. Such an approach, however, greatly increases the
computational workload and makes the method less competitive against standard SGD.

This thesis has found the prevalence of negative curvature to be the result of the
norm of the conjugate search direction being too small in relation to the norm of the
model parameters. Recall that when B corresponds to the GN matrix, the matrix vector
product B(dk) is computed by sequentially multiplying the vector with J◊ followed by
Ò2L◊ and JT

◊
. The parameter vector dk can be viewed as alternative choice for the weight

matrices associated with the various layers. Section 5.3.0.1 showed how the computation
of the product J◊(dk) can be achieved e�ciently by running the R operator on the
forward propagation equations: in the very first layer, applying this operator conforms
to performing an alternative a�ne transformation of the input with the layer’s weight
matrix replaced by the associated matrix in dk:

R(a1
t,j

) =
Nÿ

i

d1
ji

xt,i (5.32)

This is followed by point wise multiplication of the result with cached forward activations:

R(z1
t,j

) = ‡Õ(a1
j
)R(a1

t,j
) (5.33)

For all subsequent layers l, applying the R operator corresponds to taking the sum of
two a�ne transformations:

R(al

t,k
) =

ÿ

j

dl

kj
zl≠1

t,j
+

ÿ

j

◊l

kj
R(zl≠1

t,j
) (5.34)
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In the scenario when ÎdkÎ << Î◊Î, eqn (5.34) gets reduced to an a�ne transformation
with respect to the actual network weights:

R(al

t,k
) =

ÿ

j

dl

kj
zl≠1

t,j
+
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j

◊l

kj
R(zl≠1

t,j
) ¥

ÿ

j

◊l

kj
R(zl≠1

t,j
) (5.35)

The prevalence of numerical underflow prevents the directional derivatives from being
properly computed, resulting in the inner product to be at times negative. By maintaining
a sparse initialisation, Martens implicitly allows the norm of the weights to be comparable
to search directions computed on the CG mini-batch [155]. To make CG robust, this
thesis found the following approach to greatly stabilise CG training:

• Before computing J(dk), temporarily scale dk to have the same norm as ◊ and
then proceed to apply the R operator.

• After the directional derivatives have been computed, rescale dk to its original
norm.

Employing this temporal scaling was found to allow CG to yield e�ective updates only
from few iterations.

5.4.3 Adapting CG for shared architectures

For tied architectures such as RNNs, initial experiments have found improvements from
HF training to be considerably slow. A recurrent layer unrolled for T time steps is often
modelled as a feed forward network of depth T with the weights of the layers being
tied. Inspection of the CG algorithm in Sec. 5.2 shows how the choice of the step size
and scaling of the conjugate directions depend on the dot product rT

k
rk and the vector

Gpk. For the first iteration of CG, the vector r0 corresponds to the accumulated average
gradient. In Sec. 5.3.0.1 it is shown how the product Gpk, like the gradient, can be
e�ciently computed by a forward and backward pass. For tied architectures like an RNN,
shared parameters receive more updates and hence will contribute more to the norm of
the vectors r0 and Gpk than parameters which are not shared. Careful investigation in
the work reported here found that in situations where the shared parameters dominate
the norm of the mentioned vectors, the CG algorithm becomes considerably slow in
finding updates that improve upon the MPE criterion. This thesis has found that this
issue can be alleviated by scaling the conjugate search directions with a diagonal matrix
�, whose non-zero entries correspond to the square root of the reciprocal of the number
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of times a parameter has been shared. Scaling r0 and Gpk with � ensures that the norms
of these vectors are not dominated by the contribution of the tied weights and makes the
information carried by untied weights to be more available when constructing an update
direction. It is shown in Sec. 5.5.4 that using this modification allows HF to produce
progressively better updates at each iteration of training.

5.4.4 Choice of CG initialisation

In this thesis, the initial default direction probed by the CG algorithm is an approximation
of the gradient. At each subsequent iteration, the algorithm iteratively finds conjugate
directions that improve upon this initial direction. At the end of each run, the resultant
update is the search direction that yields the greatest improvement on the CG mini-batch
w.r.t the training criterion. When constrained with a hard limit on the number of allowed
iterations, the ability of CG to find a reliable update becomes highly dependent on the
choice of the initial search direction. In Sec. 4.3.2, it was discussed how noise reduction
methods like momentum can help reduce the variance associated with estimation of
the gradient estimate. Motivated by this, apart from using large batches to get better
gradient estimates, Sec. 6.6.2, investigates the e�ect of initialising CG with:

d0 Ω ≠
kÿ

j=1
Ëk≠jÒF̂obj(◊j) (5.36)

where ÒF̂obj(◊j) is the stochastic approximation of the true gradient computed at the
point ◊j, and Ë is the momentum coe�cient. This variant of HF can be shown to be
equivalent to the DSAG-HF method proposed by Dognin and Goel in [161] and will be
referred to as DSAG-HF in this work.

5.4.5 Damping

Due to noise associated with the estimate of B, minimising eqn (5.5) may not necessarily
guarantee a decrement in the objective function Fobj. Martens in [155] proposed to add
an extra L2 norm regularisation term to eqn (5.5) to give:

�◊̂ = argmin
�◊

Fobj(◊k) + �◊
T ÒFobj(◊k) + 1

2�◊
T B�◊ + µ

1
2�◊

T �◊ (5.37)
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Di�erentiating (5.37) and equating it to zero yields critical point:

�◊ = ≠(B + µI)≠1ÒFobj(◊k) (5.38)

When such a linear system is solved with CG, the e�ect of adding the L2 regulariser
corresponds to taking comparatively more conservative steps along the individual conju-
gate directions. This approach is the most general form of Tikonov damping [148, 162].
However, a costly side e�ect of this approach is that training slows down considerably
and more CG iterations are required to make relatively good progress with each update.
This significantly increases the computational overhead and makes HF un-competitive
against alternative approaches for solving large scale problems. An alternative to Tikonov
damping is to restrict the number of CG iterations and periodically check the quality
of the current CG direction on the CG mini-batch. For sequence training, this thesis
has found the latter approach to be particularly useful. From initial experiments on the
WSJ0 debugging (Appendix C.1) and MGB1 50hr training set, it was found that under
the latter approach, running CG for 5-8 iterations was su�cient to make good progress
while contributing only a small fraction to the total computational cost.

5.5 Preliminary Experiments with the 50h MGB1
dataset

The chapter concludes with preliminary experiments with MPE training on the 50hr
MGB1 training set. This section investigates the following:

1. How re-scaling the gradient directions with matrices that capture local curvature
information can speed up the convergence of batch methods.

2. How the noise associated with the gradient estimate influences the ability of HF to
yield good solutions under a fixed computational budget.

3. How modifications presented in Sec. 5.4.3 to the algorithms improves training for
tied architectures.

5.5.1 Details of Experimental Setup

To investigate the importance of using curvature information and e�ect of initialising CG
with increasingly noisy gradients, experiments were conducted using a standard DNN
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composed of 5 hidden layers each with 1000 nodes and equipped with sigmoid activation
function on the 50hr MGB1 training set (Appendix C.2). To investigate CG training
with tied architectures, a sigmoid RNN consisting of two recurrent layers of width 500
stacked one over the other followed by a feedforward layer with 500 nodes was used.
The input to all the models was produced by splicing together 40 dimensional log-Mel
filter bank (FBK) features extended with their delta coe�cients. Prior to sequence
training, the model parameters were initialised using frame-level CE training and during
training, the unrolling of the recurrent layers was performed from -15 to +5 time steps2.
For both models, the output softmax layer had 4k nodes context dependent sub-phone
targets formed by conventional decision tree context dependent state tying. To make
comparisons between di�erent HF optimisation setups, information about the amount
of compute time and the number of epochs are also presented. All experiments in this
chapter have been conducted on machines using GPU cards of the Tesla K series. For all
experiments, decoding was performed using the weak MPE LM3 at intermediate stages
of training to monitor how learning to minimise the MPE loss correlates with the model’s
ability to minimise the WER, the criterion of interest.

Details of lattice generation: To perform MPE training, word lattices were gener-
ated once using the CE trained HMM-DNN model and a pruned bigram LM constructed
from an extended transcript containing utterances belonging to both the training and
validation dataset. These lattices were then used repeatedly for several iterations of MPE
training. Since the o�cial MGB1 dev.sub dataset is used as the validation set, a new
pronunciation dictionary was created to handle missing pronunciations.

5.5.2 E�ectiveness of using Curvature Information

In [16], it is shown how second order optimisation approaches can help speed up con-
vergence by re-scaling the stochastic update direction g(◊k, ›k) to adjust for the high
non-linearity and ill-conditioning of the objective function. To verify this claim, this
section compares an optimisation framework that uses gradient descent with large batch
sizes to the HF optimisation framework presented in Sec. 5.2. For this experiment, the
batch sizes corresponding to roughly 25hr of audio was used and the maximum number
of training epochs was restricted to 15. Figure 5.1 shows the di�erences in performance
between the two optimisers at intermediate stages of training. The plot also presents the

2
RNNs by maintaining an internal state are better equipped in incorporating longer context [104]

3
Using a weaker LM allows the acoustic model to have better leverage in choosing the best path

during the Viterbi pass.
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performance of utterance level standard SGD for comparison. For the system trained
with batch styled gradient descent, the best results were found using larger learning rates
than the ones used with standard online SGD.
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Fig. 5.1 The blue and black plots show the di�erences in performance between batch
styled gradient descent and HF optimisation at intermediate stages of sequence training.
To show how both these optimisers fare with standard SGD, the performance achieved
at intermediate stages of training with SGD is also given (red).
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method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE N/A N/A 0.7988 0.6549 45.2
SGD 8 2.62 ◊105 0.8532 0.7044 42.0
HF 15 30 0.8356 0.6904 42.5

SGD-Large Batches 15 30 0.8171 0.670 44.0
Table 5.1 Sequence training and dev.sub MPE phone accuracy/WER for the 50hr
training set with HF and variants of gradient descent. The WERs shown at the last
column were computed using the weak pruned biased MPE LM.

Average computation cost per Epoch
Gradient CG

3.68 hours 0.62 hours
Table 5.2 Computation cost (elapsed time) associated with gradient accumulation and
CG training in HF

From Figure 5.1, it can be observed that although increasing the batch size reduces the
variance associated with the noisy estimate of the gradient, it now causes the optimiser
to perform far fewer updates within each epoch. After 15 epochs, the improvement on
the validation dataset achieved with gradient descent using large batch sizes is far less
than for standard SGD. The figure also shows how by scaling the gradient direction with
local curvature information, the HF optimiser outperforms the batch styled gradient
descent within two iterations. From observation of Table 5.1, it can be seen that after
performing the same number of updates as the batch styled SGD, the HF optimiser
achieves a relative Word Error Rate Reduction (WERR) of 6% over the CE trained
model and 3% over the batch styled SGD. However, in comparison to utterance based
SGD, the method fails to achieve a better solution after 30 updates. By performing many
more updates within few epochs, SGD can be seen to relative WERR of 7% over the CE
trained model.

Table 5.2 shows how under the proposed setup, the CG iterations only correspond to
15% of the total computational cost in terms of elapsed time. The low computational
overhead along with improved performance over batch styled SGD makes HF an e�ective
optimisation framework that can exploit the use of large batches. Even though the
method doesn’t achieve better convergence than SGD, HF in comparison to SGD was
observed to be highly stable and did not require any form of additional update clipping.
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5.5.3 Investigating the influence of using noisy gradients

The CG algorithm minimises a local quadratic by iteratively improving the search
direction it initially starts with. In the implementation developed here, the very first
iteration of each CG run immediately improves upon the stochastic gradient direction by
computing an appropriate step size to be taken along that direction. Thus, initialising CG
with a good estimate of the true gradient can allow the algorithm to make significantly
more progress in the initial iterations. This proves to be an advantage especially when
there is a hard limit on the maximum number of allowed CG iterations. However, this
improvement from CG comes at the cost of fewer updates per epoch as large batch sizes
are needed to reduce the variance associated with the gradient estimate. Thus, to find
a balance between doing more intra-epoch updates and using a better estimate of the
gradient, this section investigates the performance of the HF optimiser with di�erent
gradient batch sizes. Table 5.3 summarises the setup.

Experimental Run Gradient batch size Updates Per Epoch
1 25 hours 2
2 12.5 hours 4
3 6.25 hours 8

Table 5.3 Batch sizes used in di�erent HF setups.

To achieve fair comparisons, the same number of updates were applied at each run,
which for this experiment was restricted to 80. The maximum number of allowed CG
iterations was kept to 5 and the HF mini-batch size was set 0.5 hours (default). Table 5.4
summarises the results while Figure 5.2 shows the performance of the di�erent variants
of the HF optimiser at intermediate stages of training.

method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE N/A N/A 0.7988 0.6549 45.2
HF-25hr 40 80 0.8461 0.6967 42.2

HF-12.5hr 20 80 0.8427 0.6949 42.4
HF-6.25hr 10 80 0.8421 0.6932 42.4

Table 5.4 Sequence training and dev.sub MPE phone accuracy/WER for the 50hr
training set with HF using di�erent batch sizes. The WERs were computed using the
weak pruned biased LM used in MPE training.
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Method Average cost per epoch Average cost per epoch
with gradient estimate (hours) with CG (hours)

HF-25 hr 3.68 0.62
HF-12.5 hr 3.67 1.39
HF-6.25 hr 3.66 2.94

Table 5.5 Computation cost (elapsed time) associated with gradient accumulation and
CG training in HF when employed with di�erent batch sizes
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Fig. 5.2 Sequence training a standard DNN with di�erent variants of HF optimisation.

It can be observed from Table 5.4 that gains in the MPE accuracy observed with
having a better CG initialisation do carry over to larger WER reductions. Using batch
sizes of 25 hours, the improvements achieved by the HF optimiser after 80 updates
in comparison to its other variants was found to statistically significant under the
p-value approach. Although, decreasing the gradient batch size allows more CG runs to
performed at each epoch, as evident from Table 5.5, this has the side e�ect of increasing
the contribution of the CG iterations to the cost associated with doing one training
epoch. Therefore, having a optimisation framework that employs large batch sizes can
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be seen to be advantageous as it leads to both improved convergence and reduced cost
through gradient parallelisation.

5.5.4 Improving CG training with Tied Architectures

This section investigates the e�cacy of using the modification proposed in Sec. 5.4.3
to improve CG training for tied architectures. Figure 5.3 compares how the evolution
of MPE phone accuracy on the training and validation set varies under the proposed
modification, while Table 5.6 summaries the results.
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method #epochs #updates phone acc. WER with
train dev.sub MPE LM

CE N/A N/A 0.809 0.682 43.7
HF 5 10 0.818 0.689 43.0

HF-adapted 5 10 0.821 0.694 42.7
Table 5.6 Sequence training and dev.sub MPE phone accuracy for the 50hr training
set with HF adapted for tied architectures. The WERs shown at the last column were
computed using the weak pruned biased MPE LM.

From Figure 5.3, it can be observed that by allowing information from un-tied param-
eters to play more of a role in constructing CG updates, the HF optimiser progressively
finds better updates that improve upon the MPE criterion at each iteration of training.
An observation on Table 5.6 shows how the improvements on the MPE criterion carry
over to better WER reductions on the dev.sub i.e the validation set.

5.6 Summary
This chapter presented the implementation details of the Hessian Free (HF) optimisation
method investigated in this thesis. At the beginning of the chapter, a careful analysis
of batch and stochastic methods was presented along with a discussion of the potential
advantages of using batch styled optimisation frameworks like HF. A key contribution of
this thesis has been to provide an e�ective procedure to stabilise the CG algorithm for
DNN models. Table 5.1, shows how under the proposed modifications, e�ective updates
can be generated by running only few iterations of CG. From preliminary experiments
on the MGB1 50hr training set, in comparison to standard SGD, the method was found
to be quite stable and didn’t require any form of addition update clipping. However as
shown in Table 5.1, although the method requires far fewer updates, it fails to achieve
better generalisation performance on the validation set than standard SGD. This provides
the motivation to explore alternative optimisation approaches that provide the same
advantages as HF in terms of stability and being data parallel but have the ability to
converge to better solutions than SGD. Also in this chapter, an approach to improve
CG training for shared architectures was presented. On preliminary experiments with a
standard RNN, it was shown how under the proposed modification, the HF optimiser
progressively finds better updates at each iteration of training.



Chapter 6

Sequence training with Natural
Gradient

In the last chapter, experiments on the 50hr MGB1 training set using the Hessian Free
(HF) approach showed that although the method of HF makes more progress per update,
it fails to converge to a better solution than SGD. This provides the motivation to explore
alternative optimisation approaches that o�er the same advantages as HF in terms of
stability and being data parallel, but have the ability to converge to better solutions than
SGD. One particular approach for training DNNs that has recently experienced renewed
popularity is the method of Natural Gradient (NG)[6, 163–165]. This method was first
proposed in [25] as an e�ective optimisation method for training parametric density
models with the Maximum Likelihood (ML) objective criterion1. Instead of formulating
steepest descent in the flat Euclidean parameter space, the method of steepest descent
is formulated directly on the model space M (Sec. 6.1). Section 6.2 shows that when
re-framed in the parameter space, this is equivalent to rescaling the gradient direction
with the inverse of the model’s positive definite Fisher Information (FI) matrix. In DNN
literature [6, 164, 165], it has been reported that applying such a rescaling allows DNNs
to be trained in a more e�ective way then using SGD. Section 6.1.1 attributes these
observed gains to the fact that for ML methods, using NG becomes increasingly similar
to a second order approach in the context of large amount of data. A novel contribution
of this thesis is to extend this approach to the domain of MBR objective functions for
discriminative sequence training.

For CE training, the approach of NG has previously been applied under a di�erent
optimisation framework [7, 165–167]. In all of these works, the authors assume a block

1
For HMM based discriminative models, this is equivalent to MMI training.
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diagonal structure for the FI matrix. In contrast, this work makes no assumption about
the structure of the empirical FI matrix and uses a stochastic estimate of the matrix.
However in practice, approximating the FI matrix by its empirical estimate results in
a matrix that is only guaranteed to be positive semi-definite. To ensure mathematical
consistency, this chapter provides the derivation of a damped FI matrix, which when
used in an HF framework has the property that directions considered important by the
empirical Fisher are traversed first during the initial iterations of CG.

The chapter also addresses the particular issue of overfitting due to criterion mismatch
that particularly accompanies MBR training with ReLU DNNs. A key contribution of
this thesis is to how this particular form of overfitting can be alleviated by scaling the
update directions with the Gauss Newton matrix. The organisation of the chapter is as
follows: Section 6.1 develops the necessary geometry needed to develop steepest descent
on the DNN function space M. Section 6.2 formulates the NG method for sequence
training. Section 6.4 adapts the empirical Fisher to yield a proper Riemannian metric.
Section 6.5 presents the experimental setup for training sigmoid based DNN models
while results of sigmoid models trained with di�erent optimisers are presented in Sec. 6.6.
Section 6.7 extends our investigation to training ReLU based DNNs and addresses the
particular issue of overfitting due to criterion mismatch. Section 6.8 investigates the use
of standard regularisation methods to alleviate this issue while the last section discusses
the particular e�ect of scaling the DNN frame posteriors with the Gauss Newton matrix.

6.1 Defining a geometry in the space of M
Before formulating steepest descent on the space of M, it is first necessary to define an
appropriate geometry in M that allows measurements such as length and area to be
performed on the manifold. The manifold M consists of the family of all probability
distributions P◊(H|O) that result from di�erent realisations of ◊. As each P◊(H|O) œ M
corresponds to a unique discrete distribution, the space M can be represented as a
probability simplex Sk parameterised by a coordinate vector ÷ in Rk.2 A curve on M
is a smooth map c : (a, b) µ R æ M. By endowing M with a coordinate chart ÷, the
derivative of c at given point t0 can then be defined as the linear map from the tangent

2
k is an arbitrary large number denoting the number of distinct hypotheses.
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space (see Appendix A.3) Tt0R at t0 to the tangent space Tc(t0)M:

dc|t0

A
d
dr
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= ( ˆ

ˆ÷1
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i

dc
i

dt
|t0

ˆ

ˆ÷i

(6.1)

Here d

dr
denotes the basis vector of Tt0R and { ˆ

ˆ÷i

}i is the basis of Tc(t0)M w.r.t the
chart ÷ (Appendix A.1). Assuming that the curve is regular i.e. dc is injective at every
point t œ (a, b), the arc length of the curve from a is:

s(·) =
⁄

·

a
Î Èdc(t), dc(t)Í Îdt (6.2)

To be able to compute the above measurement and similar measurements like area, eqn
(6.2) shows that it is necessary to assign the tangent space associated with ÷ œ M, a
geometric structure of an inner product.

A Riemannian metric [168] is a smooth map that assigns to each ÷ œ M an inner
product I÷ on T÷M. One way to construct such a metric is to establish the notion of a
divergence measure in the space M. Let P and Q be two points in M with coordinates
÷P and ÷Q. A divergence D[P : Q] [23] is a function of ÷P and ÷Q which satisfies the
following criteria:

1. D[P : Q] Ø 0.

2. D[P : Q] = 0 when ÷P © ÷Q

3. When P and Q are su�ciently close i.e ÷Q = ÷P + d÷, the Taylor expansion of D

takes the form:

D[P : Q] ƒ 1
2

ÿ
gi,j(÷P )d÷id÷j (6.3)

where the matrix I÷P
= (gi,j(÷P )) is positive definite.

A divergence measure represents a degree of separation from the perspective of an
anchored point and should not be confused with the notion of metric. For any two points
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P and Q œ M, D[P : Q] is neither guaranteed to be symmetric nor satisfy the triangular
inequality. However as shown above, when two points in M are su�ciently close, the
second order Taylor approximation of such a measure allows M to be annotated with
the Riemannian metric I÷. As the space M represents a set of probability distributions
P◊(H|O), an ideal choice for divergence measure is the KL divergence [169]. The KL-
divergence KL (p◊(H|O)Îp◊+�◊(H|O)) is a binary functional that maps the space of
distributions M to R. From an information theory view point, it describes the extra
number of bits needed to convert an arbitrary distribution to an anchored distribution.

6.1.1 The Riemannian metric of the KL divergence

By construction, each distribution P◊(H|O) œ M is a smooth map of ◊. Thus, the
derivatives of the distribution satisfy:

ÿ

H

ˆ

ˆ◊i

P◊(H|O) = ˆ

ˆ◊i

ÿ

H

P◊(H|O) = ˆ

ˆ◊i

1 = 0 (6.4)

As the map between the parameter space X and M is surjective, adding a small
quantity �◊ to the current iterate ◊ results in a unique distribution P◊+�◊(H|O).
The degree of separation of this new point in M from the previous point P◊(H|O) is
captured by KL (P◊(H, |O)ÎP◊+�◊(H|O)). As P◊(H|O) itself is function of ◊, by utilising
compositionally, the local behaviour of this divergence within a convex neighbourhood of
◊ can be captured by Taylor’s second order approximation:

KL (P◊(H|O)ÎP◊+�◊(H|O)) =EP◊(H|O) [ log P◊(H|O) ≠ log P◊+�◊(H|O)]

ƒ ≠ 1
2�◊

T EP◊(H|O)
Ë
Ò2 log P◊(H|O)

È
�◊ (6.5)

In (6.5), the first order term is dropped since it equates to zero by (6.4). This allows the
KL divergence to be approximate by the above bilinear norm.
For HMM-DNN models, the term Ò2 log P◊(H|O) in (6.5) represents the sample Hessian
of the MMI objective criterion (Sec. 2.4.2.2). Such a matrix decomposes into the
particular sum

Ò2 log P◊(H|O) = ≠Ī◊ + K◊ (6.6)

where
Ī◊ = (Ò log P◊(H|O)) (Ò log P◊(H|O))T
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and K◊ has the property of EP◊(H|O)[K◊] = 0. This means in the context of large amounts
of data, Ī◊ increasingly becomes a close estimate of the Hessian. For parametric models,
the Fisher Information I◊ corresponds to the expected outer product of gradient of the
log likelihood:

I◊ = EP◊(H|O)
Ë
(Ò log P◊(H|O)) (Ò log P◊(H|O))T

È
(6.7)

which equates to the expectation of Ī◊ for disciminative HMM-DNN models. Thus, using
the fact that EP◊(H|O)[K◊] = 0, the Fisher Information I◊ can be seen to be the negative
curvature of the MMI criterion in expectation. By substituting the expression of I◊ into
(6.5), the KL divergence measure is locally equivalent to the inner product:

KL (P◊(H|O)ÎP◊+�◊(H|O)) ƒ 1
2�◊

T I◊�◊ (6.8)

Eqn. (6.8) shows that annotating the tangent space of each ◊ œ X with I◊ defines an
appropriate Riemannian metric I÷P

for the KL divergence measure. Equipping M with
I◊ defines a well defined framework to make geometric measurements such as length and
areas on the surface M.

6.2 Formulating the Natural Gradient method for
Sequence Training

Having setup the geometry needed to probe the space of M, the next task is to develop
an algorithm that traverses this space to find a minimiser w.r.t. an appropriate loss
functional L : P◊(H|O) œ M æ R. Each iteration of a typical iterative optimisation
algorithm computes an iterate P◊k+1(H|O) on the basis of information pertaining to
the current iterate P◊k

(H|O). Since the Riemannian geometry describes only the local
behaviour around P◊k

(H|O), the following greedy strategy is employed to generate a
candidate function:

P̂◊k+1(H|O) = arg min
P◊

k+1
L(P◊k+1) s.t KL (P◊k

ÎP◊k+�◊) Æ ‘k (6.9)

Let MÕ µ M be the subset that contains all distributions that place probability mass on
areas in the hypothesis space where the previous iterate P◊k

(H|O) is non-zero. The KL
divergence constraint forces the candidate update chosen at the current iterate to be a
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member of MÕ. In Sec. 2.4.2.3, it was shown how for sequence to sequence classification
tasks such as ASR, an appropriate loss function is the MBR family of objective functions:

FMBR(◊) = 1
R

Rÿ

r

C
ÿ

H
P◊(H|Or, M)L(H, Hr)

D

(6.10)

MBR training essentially aims to concentrate probability mass: a su�ciently flexible
model trained to convergence with MBR will assign a high probability to those hypotheses
that have the smallest loss. It is expected that by equipping MBR training with the
KL divergence constraint, training will converge to the candidate distributions that
concentrate probability mass in those regions covered by the initial P◊0(H|O) that
correspond to low loss. In other words, the generative model becomes increasingly more
discriminative at each iteration.

As P◊(H|O) itself is a function of ◊, eqn (6.9) can be reformulated as an equivalent
optimisation problem in the parameter space:

◊k+1 = arg min
�◊

Fobj(◊k) s.t 1
2(◊ ≠ ◊k)T I◊k

(◊ ≠ ◊k) Æ ‘k (6.11)

When the exploration of the parameter space is restricted to be within an region of
◊k, where Fobj(◊k) closely approximates its first order approximation, the optimisation
problem corresponds to a first order minimisation problem within a trust region. As the
minimum of this linearised problem is at infinity, the optimisation dynamics will always
jump to the border of the trust region. The constrained optimisation problem solved at
each iteration then corresponds to:

�◊̂ = arg min
�◊

Fobj(◊k) + �◊
T ÒFobj(◊k) + ⁄

2 �◊
T I◊k

�◊ (6.12)

Intuitively, the method of NG can be interpreted as applying a linear transform on the
gradient that results in the learning algorithm to land on a region in the parameter
space where the new distribution P◊+�◊(Y|X ) has the same support as the distribution
P◊(Y|X ). This is illustrated by Figure 6.1.
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Fig. 6.1 NG learning adapts the direction of steepest descent such that the distribution
yielded by the resultant update has the same support as the previous distribution.

6.3 Computing the Natural Gradient Direction
Under the above formulation, solving eqn (6.12) is equivalent to solving a quadratic of
the form of eqn (4.3) where B = ⁄I◊k

. Di�erentiating eqn (6.12) and setting to 0 leads
to the NG direction:

�◊ = (⁄I◊k
)≠1 ÒFobj(◊k) (6.13)

The value ⁄ controls the compromise between the relative importance of minimising the
MBR gradient and satisfying the KL divergence constraint. For large networks, with
potentially millions of parameters, computing this inverse naively is computationally
impractical. To overcome this issue, in present literature [7, 165–167], most approaches
assume a block diagonal structure of the Fisher Information Matrix. Among these
works, at present the most popular is the approach proposed by Martens and Grosse in
their paper [7]. In their approach, the approximation of the FI matrix is built in two
stages: first, the rows and columns of the Fisher are divided into groups, each of which
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corresponds to all the weights in a given layer, and this gives rise to a block-partitioning
of the matrix. These blocks are then approximated as Kronecker products between much
smaller matrices. In the second stage, this matrix is further approximated as having an
inverse which is either block-diagonal or block-tridiagonal. Before describing the KFAC
approach in more detail, it is first necessary to define the following notations. Let

• gi be the gradient back-propagated to layer i and zi be the output of that layer.

• D◊ denote the gradient of the log likelihood w.r.t the parameter vector ◊. For
the weight matrix of the l th layer, this corresponds to DW l which equates to
DW i = giz

T

i≠1

• vec denote the operator which vectorizes matrices by stacking their columns to-
gether.

Then the Fisher Information matrix can be written as:

I◊ = E
Ë
D◊D◊

T
È

= E
Ë
[vec(DW 1)T vec(DW 2)T vec(DW 3)T ..]T [vec(DW 1)T vec(DW 2)T vec(DW 3)T ..]

È

=

S

WWWU

E[vec(DW 1)vec(DW 1)T ] E[vec(DW 1)vec(DW 2)T ] ...
... ... ...

E[vec(DW L)vec(DW 1)T ] E[vec(DW L)vec(DW 2)T ] ..

T

XXXV

Under the above decomposition, I◊ can be viewed as an L ◊ L matrix where L denotes
the depth of the network and the I◊(i, j) block is given by E[vec(DW i)vec(DW j)T ].
Noting that DW i = giz

T

i≠1 and that vec(uv
T ) = u ¢ v, then

E[vec(DW i)vec(DW j)T ] = E[vec(giz
T

i≠1)vec(gjz
T

J≠1)T ]

= E[(gi ¢ zi≠1)(gj ¢ zj≠1)]

= E[gig
T

j
¢ zi≠1z

T

j≠1]

In their paper [7], the authors make the following assumptions:

1. E[gig
T

j
¢ zi≠1z

T

j≠1] ¥ [E(gig
T

j
) ¢ E(zi≠1z

T

j≠1)]

2. I◊ is assumed to be block diagonal or triagonal i.e only (i, j) blocks are considered
where i = j or i = j + 1. Using the identity (A ¢ B)≠1 = A≠1 ¢ B≠1. Under the
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diagonal approximation, I≠1
◊

becomes:

I≠1
◊

= diag
1
E(g1g

T

1 )≠1 ¢ E(z0z
T

0 )≠1, E(g2g
T

2 )≠1 ¢ E(z1z
T

1 )≠1 · · ·
2

and to compute I≠1
◊

v, the following identity can be applied (A ¢ B)(vec(X)) =
vec(BXAT ) to get the approximate NG direction. In terms of implementation,
this corresponds to adding additional transforms between layers. This however ties
this approach to optimising only ML based objectives.

3. E(gig
T

j
) is computed by its Monte-Carlo estimate that is obtained by sampling Y

from the network’s predictive distribution and then rerunning the backwards phase
of back-propagation as if these were the training targets.

When extended to sequence training, such an approach becomes infeasible as the method
can not be easily extended to MBR loss functions. Also in the scenario where Y
corresponds to H, sampling Y corresponds to doing an additional forward backward
pass through the lattices. This is makes the method quite expensive in the regime where
the method is applied within a stochastic context and requires many more updates to
converge.

In section 6.1.1, it is shown for sequence level discriminative models, the Fisher
Information Matrix takes the form:

I◊ = EP◊(H|O)
Ë
(Ò log P◊(H|O)) (Ò log P◊(H|O))T

È
(6.14)

= EP◊(H|O)
Ë
JT

◊
(ÒLMMIÒLT

MMI
)J◊

È
(6.15)

By comparing the above decomposition with the Gauss Newton matrix in Sec 5.3, it
can be seen that the quadratic problem of eqn (6.12) can also be iteratively solved using
linear Conjugate Gradient (CG) algorithm within the HF style optimisation framework.
Such an approach makes no assumption about the structure of the FI matrix and can be
easily used to do NG training with objective functions other than ML objectives.

It is worth mentioning that when (6.12) is solved approximately with CG, ⁄ controls
the speed of training. To understand why, recall how in the CG algorithm highlighted in
Sec. 5.2, the step –k taken at each CG direction is computed as –k = r

T

k
rk

dT

k
Bdk

. When B

corresponds to ⁄I◊k
, large values of ⁄ e�ectively scales down the steps taken along the

individual conjugate directions.
In practice since the true distribution is unknown, the Fisher Information is approximated
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by its Monte-Carlo estimate:

Î◊ = 1
R

Rÿ

r=1

Ë
(Ò log P◊(Hr|Or)) (Ò log P◊(Hr|Or))T

È
(6.16)

The matrix Î◊ is the empirical FI matrix and corresponds to the outer product of the
Jacobian of the MMI criteria. However such a matrix is only guaranteed to be positive
semi-definite and thus its inverse does not exist. To address this issue, the next section
shows how the empirical FI matrix can be adapted to yield a proper Riemannian metric
which when used with CG guarantees that directions relevant to the empirical Fisher are
first traversed during a CG run.

6.4 Adapting the empirical Fisher to a yield a proper
Riemannian metric

To recap, a Riemannian metric on a smooth parameter manifold X (see Appendix A.1)
is a smooth map that assigns to each ◊ œ X an inner product I◊ in T◊X. As Î◊ is real
and symmetric, by the spectral decomposition theorem [117], there exists a unitary basis
of eigenvectors w.r.t the matrix becomes diagonalisable:

Î◊ © V◊�◊V T

◊
(6.17)

where V◊ is a square matrix whose i-th column corresponds to the i-th eigenvector of Î◊,
and �◊ is the diagonal matrix whose non-zero entries represent the associated eigenvalues.
It should be noted that the entries of these two matrices are functions of ◊. To keep
the notation uncluttered, the dependency on ◊ will be dropped for the remainder of
this section whenever any of the individual factors in V◊�◊V T

◊
is mentioned. Since Î◊ is

only guaranteed to be positive semi-definite, there will exist zero diagonal entries in �
resulting in its rank being m where m < D (the dimensionality of the parameter space).
Under such circumstances, Î≠1

◊
will not exist and it will no longer be possible to endow

X with Riemannian metric of the form Î◊. To address this issue, this section derives
an alternative metric to Î◊ that has the same structure and properties as the damped
FI matrix but is guaranteed to be positive definite. From a high level perspective, the
construction of the proposed metric is achieved in two stages.

Step 1: partition the tangent space T◊X into two disjoint subspaces such that one
subspace is spanned by eigenvectors of Î◊ associated with non-zero eigenvalues.
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By re-arranging the columns of V such that the eigenvectors associated with the non-zero
eigenvalues occupy positions within the first m columns, the image space of Î◊ can be
then essentially captured by the matrix V:,1:m�1:m,1:mV T

:,1:m.
Let „ be a map from X to Rm given by

„(◊) = V T

:,1:m◊ (6.18)

By the Replacement theorem [117], such a map can be shown to be maximal i.e
the derivative d„ is of full rank. Under the Implicit Function theorem [129], there
exists a chart h (see Appendix A.1) on X and a neighbourhood V of h(◊) such that
„ ¶ h≠1|V = fi|V with fi : RD æ Rm being the projection map. It is easy to see that from
the definition of „ that such a chart does exist and corresponds to V:,1:m. Thus, within
the open neighbourhood V , the derivative of „ ¶ h≠1 corresponds to the linear map:

d
1
„ ¶ h≠1

2
(v) =

Ë
Im◊m 0(m+1)◊D

È
(v) (6.19)

With respect to the map „, the tangent space T◊X can thus be expressed the disjoint
sum:

T◊k
X = T„¶h≠1(◊)Rm

n
ker

1
d(„ ¶ h≠1)

2
(6.20)

where ker (d(„ ¶ h≠1)) denotes the null space3. By the above construction, T„¶h≠1(◊)Rm

can now be identified as a subspace of T◊X.
Step 2: assign the identity matrix scaled by a very small number ‘ to the tangent

subspace captured by the kernel of d(„ ¶ h≠1). As the entries in the diagonal of �1:m,1:m

are functions of ◊, endowing T„¶h≠1(◊)Rm with the inner product �1:m,1:m is equivalent to
assigning a Riemannian metric to the associated subspace in T◊X. Together, the tangent
space of X can now be assigned with the following Riemannian metric:

S

U �1:m,1:,m 0
0 ‘ I(D≠m)◊(D≠m)

T

V

3
the ker of a linear map L : N æ W between two vector spaces N and W , is the set of all elements

v œ N for which L(v) = 0
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Switching back to the original basis coordinates, the proposed metric then takes the
particular form:

V

S

U �1:m,1:m 0
0 ‘ I(D≠m)◊(D≠m)

T

V V T = Ĩ◊ (6.21)

It can be seen that by construction Ĩ◊ corresponds to a positive definite matrix
whose image space is the direct sum of the image and the kernel space of the empirical
Fisher matrix Î◊. Apart from being a proper Riemannian metric, using CG to solve the
appropriate linear system Ĩ◊�◊ = ≠ÒF (◊k), has one particular advantage: the very first
directions explored by the CG algorithm constitute to directions in the image space of
Î◊ [131] i.e directions considered important by the empirical Fisher are traversed first
during the initial stages of a CG run.

6.5 Experimental Setup
To evaluate the e�ectiveness of NG, the method will now be compared with standard
SGD and variants of HF using the 50hr and 200hr MGB1 training datasets (Appendix
C.2). This section presents results on training hybrid DNN HMMs using traditional
fully-connected feed-forward layers. The input to the DNN was produced by splicing
together 40 dimensional log-Mel filter bank (FBK) features extended with their delta
coe�cients across 9 frames to give a 720 dimensional input per frame. These features were
normalised at the utterance level for mean and at the show-segment level for variance
[22]. The DNN used an architecture of 5 hidden layers each with 1000 nodes with both
sigmoid and ReLU activation functions (see Sec. 6.7 for results with ReLU models). The
output softmax layer had context-dependent sub phone targets formed by conventional
decision tree context-dependent state tying. The output layer contained 4k/6k nodes for
the 50h/200h training sets.

To make fair comparisons between di�erent optimisation frameworks all models were
trained using lattice-based MPE training. Prior to sequence training, the DNN model
parameters were initialised using frame-level CE training. To check the e�cacy of each
optimisation method, decoding was performed on the validation set at intermediate
stages of training using the same weak pruned biased LM used to create the initial MPE
lattices. Monitoring the intermediate stages of training allows us to detect the emergence
of overfitting due to training criterion mismatch between the MPE criterion and the
WER.



6.6 Experimental Results on sigmoid DNNs 103

6.5.1 Training configuration for SGD

From initial experimental runs, the best results with SGD were observed using a fixed
learning rate of 1 ◊ 10≠4 for the sigmoid models and a learning rate of 1 ◊ 10≠5 for the
ReLU model. As an optimiser, SGD on its own can be fairly unstable with network
topologies where the gradient has to propagate through many layers. To stabilise training,
sequence training with SGD was accompanied by layer dependent gradient clipping to
prevent network saturation and ensure smooth propagation of gradients during the
training process.

6.5.2 Training configuration for NG & HF-variants

When the number of CG iterations is limited, initialising CG with a good estimate of the
gradient is desirable, as within a few iterations a good descent direction can be found.
However this comes at the cost of fewer HF/NG updates per epoch as larger batch sizes
are needed to reduce the variance associated with the gradient estimates. From the
preliminary experiments in Sec. 5.5.3, using batch sizes of roughly 25 hrs was found to
give a good balance between the number of updates and using good gradient estimates.
The CG mini-batch used in these experiments comprised 0.5 hours of sampled audio.
From preliminary experimental runs, the best value of ⁄ for NG training was found to
be 16.

6.6 Experimental Results on sigmoid DNNs

6.6.1 Experiments on 50hr MGB1 dataset

On the 50hr training setup, the e�cacy of the proposed NG optimisation framework was
investigated and compared to both SGD and HF. Table 6.1 summarises the results.
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method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE N/A N/A 0.7988 0.6549 45.2
SGD 8 2.62 ◊105 0.8476 0.7044 42.0
HF 40 80 0.8461 0.6967 42.2
NG 30 60 0.8677 0.7089 41.6

Table 6.1 Sequence training and dev.sub MPE phone accuracy/WER for the 50hr
training set for sigmoid DNN. The WERs shown at the last column were computed using
the weak pruned biased LM used in MPE training.

Table 6.1 shows that of the sequence training approaches, the NG method produces
the highest training and validation (dev.sub) MPE phone accuracies and the lowest WER
using the MPE small biased LM. The method achieves a relative WER reduction of 8%
over the CE trained model and 1% over SGD. Replacing the ‘Hessian’ component of
the HF optimiser with the damped FI matrix can be seen to lead to both faster and
improved convergence in terms of number of updates. The NG optimiser requires just 60
updates to both better model the training data and improve the WER on the validation
set4. In comparison to the SGD baseline, both HF and NG training were observed to
be highly stable and did not require any form of additional update clipping. This is
attributed to the fact that at each iteration, the direction explored is a modified gradient
estimate that has been appropriately rescaled using either the local KL divergence or
error curvature information.

While both the HF and NG optimisers use more training epochs than SGD, each
epoch has far fewer updates and is somewhat more e�cient in constructing a geodesic in
the parameter space. The relative contribution to the total computational cost by the
CG iterations were 15% for HF and 18% NG5. Since the batch gradient computations
dominate the computation cost and are inherently data parallel, a batch style optimisation
framework such as HF/NG can be seen to be time e�cient in a synchronous distributed
setting. Furthermore, unlike ASGD such frameworks apart from being mathematically
sound have the ability to produce identical results on repeated runs.

4
These gains were found to be consistent when we re-ran training with di�erent sampling schemes.

5
The extra CG cost associated with NG is attributed to doing more CG iterations. With HF, in our

preliminary runs, running CG beyond 5 iterations was not found to yield any significant improvement in

the quality of the updates. Since NG is e�ectively a first order method, we found that in its case we

needed to do slightly more iterations at each run.
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To investigate whether the WER reductions still hold with stronger LMs, additional
decoding passes on the dev.sub validation set were run with 158k vocabulary bigram and
trigram LMs used in [22]:

LM SGD HF NG
158k Bigram 39.2 39.4 39.0
158k Trigram 32.8 33.0 32.6

Table 6.2 WER for optimisers on dev.sub with 158k vocabulary bigram/trigram LMs on
dev.sub (50hr training set)

From Table 6.2, it can be seen that the trends seen with MPE LM on dev.sub continue
with NG giving greater reductions in WER than models trained with either SGD or HF.

6.6.2 Experiments using 200hr MGB1 training dataset

The experiments on the 200hr training set were performed to ensure that the sequence
training techniques generalise to a somewhat larger training set (and output layer size)
and also to present more detailed comparisons of how training proceeds. On this set, the
use of NG was also compared to the Dynamic Stochastic Average Gradient HF variant
(DSAG-HF) discussed in Sec 5.4.4. Table 6.3 provides a summary of the results while
Fig. 6.2 compares the performance at intermediate stages of training.
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Fig. 6.2 The evolution of the MPE phone accuracy criterion on the training and validation
(dev.sub) sets (top 2 graphs) with 200hr sigmoid DNN. Also (lower graph) WER with
MPE LM on dev.sub as training proceeds (200hr).
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method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE N/A N/A 0.8106 0.6986 41.2
SGD 8 9.27 ◊105 0.8684 0.7601 38.2
HF 15 120 0.8417 0.7365 38.8

DSAG-HF 15 120 0.8499 0.7456 38.5
NG 15 120 0.8601 0.7534 37.9

Table 6.3 Performance of the 200hr sigmoid DNN with di�erent optimisers. The WERs
were computed using the weak MPE LM.

Table 6.3 shows that as for the 50hr case, sequence training produces increases in MPE
phone accuracy and reductions in validation set WER for all optimisers. In this case a
total of 8 epochs were performed with SGD and 15 epochs (120 updates) with HF, DSAG-
HF and NG. In DSAG-HF, the HF optimiser is equipped with a ‘momentum’ component
which essentially contributes to initialising CG with a weighted sum of the current and
previous gradient directions. In Fig. 6.2, it can be observed that for the sigmoid DNN
model, such a modification improves both the speed and convergence of HF training.
However, this comes at the cost of introducing more hyper-parameters in training. By
contrast, replacing the GN with the empirical FI matrix leads to progressively better
updates at each epoch. From Table 6.3, the NG method can be seen to achieve a relative
WER reduction of 9% over the CE trained model. In comparision to SGD, from Fig. 6.2,
the method can be seen to achieve similar WER reductions in validation set over the
first 8 epochs but by making far fewer updates. Furthermore, it can be seen that the NG
optimiser follows a path in the parameter space where optimising w.r.t MPE criterion
better correlates with WER reductions.

LM SGD HF DSAG-HF NG
158k Bigram 35.0 35.3 35.2 34.7
158k Trigram 29.3 29.3 29.2 29.0

Table 6.4 WER di�erences between di�erent optimisers on dev.sub with 158k vocabulary
bigram/trigram LMs on dev.sub (200hr).

The resulting DNN acoustic models were tested with stronger LMs as for the 50hr
setup setup and the results are shown in Table 6.4. It can be seen again that the NG
method results in lower WERs than either SGD or the HF variants.
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LM CE SGD HF DSAG-HF NG
158k Trigram 33.1 30.8 31.0 30.8 30.5

Table 6.5 WER di�erences between di�erent optimisers on dev.sub2 with 158k trigram
(200hr)

Finally, these DNNs were tested on the dev.sub2 set ,as an evaluation set that was not
used for setting training hyper-parameters or used in any way during the training process
to ensure that the trends observed above generalise. Table 6.5 shows the WER results
using the 158k trigram model and shows that again that the model trained with NG
achieves the largest reductions in the WER due to sequence training. Furthermore these
improvements have been fairly consistent between the validation dev.sub and evaluation
dev.sub2 test sets.

On average the NG method can be seen to provide approximately a 1% relative
reduction in WER over both the SGD baseline and the DSAG-HF variant. While this
improvement it fairly small, it is consistent and a statistical significance test (sign. test
of the word error rates at the episode level) showed that the improvement due to NG
over each of the other methods is highly statistically significant (p < 0.001). Thus even
though under the MBR criterion, the method no longer corresponds to a second order
approach, it can be seen to be the most e�ective in training sigmoid based DNN models.

6.7 Sequence training with ReLU DNNs
Having seen the e�cacy of the batch styled NG optimisation framework on sequence
training sigmoid DNNs, this section extends the investigation to training ReLU DNN
systems. For this preliminary work, the training data set used is the 50hr MGB1 dataset.
The experiment setup and the DNN topology used is discussed in Sec 6.5. As before,
prior to sequence training, the DNN model parameters were initialised using frame-based
CE training using standard SGD. For NG and HF training, the setup described in Sec
6.5.2 is used. Table 6.6 compares the CE trained ReLU DNN model against its sigmoid
counterpart. It can be seen equipping DNNs with the ReLU activation function allows
sequence training to begin from a much better initialisation.
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method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE-sigmoid N/A N/A 0.7988 0.6549 45.2
CE-ReLU N/A N/A 0.815 0.67 43.8

Table 6.6 Comparisons between DNNs using sigmoid and ReLU activation function on
the 50hr MGB1 training set. The WERs are computed using the weak MPE LM

6.7.1 Preliminary Experimental Results

Figure 6.3 compares the performance of the NG optimiser against standard SGD and
HF at intermediate stages of training. As the MPE criterion is an approximation to
the WER which is the criterion of interest, the third plot of the figure compares WER
generalisation performance of the intermediate trained models using the weak MPE LM.
Using a weaker LM allows the acoustic model to have better leverage in choosing the
best path during the Viterbi pass.

As shown in Figure 6.3, by doing considerably more updates at every epoch, the
model trained with SGD achieves the best generalisation performance w.r.t the MPE
criterion. Overfitting to the training data can be seen to occur from the 4th epoch
onwards. The MPE training criteria is only an approximation of the WER, which is the
criterion of interest. The mismatch between these two criterion can be seen to occur from
the second epoch onwards6. This prevalence of overfitting as a consequence of criterion
mismatch was also observed when the SGD optimisation was run with smaller learning
rates. In this setup, even though the criterion mismatch occurred in the later epochs,
the optimiser failed to achieve better WER reductions than shown in Figure 6.3.

Consistent with the observations seen with sigmoid DNNs, in Figure 6.3, it can
be seen that replacing the Gauss Newton Matrix with the damped FI matrix leads to
progressively better updates w.r.t MPE criterion. However, like SGD the method can be
seen to also su�er from overfitting due to criterion mismatch, where improvements with
the MPE criterion fails to correlate with reductions in WER.

To understand this phenomenon of overfitting due to criterion mismatch, various
statistics were examined. It was found that the prevalence of this particular form of
overfitting is highly correlated with the sharp decrease in the average entropy of the
DNN frame posteriors. Figure 6.4 shows how the average entropy of the DNN frame
posteriors varies during sequence training for ReLU DNNs.

6
This behaviour was consistent when decoding was performed with 158k bigram and trigram LM
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Fig. 6.3 Performance of the 50hr ReLU DNN on both the training and validation set
w.r.t MPE criterion at intermediate stages of training with di�erent optimisers. WER
performance of the intermediate models using the MPE LM is also given.
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Fig. 6.4 Evolution of average entropy of DNN frame posteriors of ReLU DNNs during
sequence training with di�erent optimsers

Comparing Figure 6.4 with the WER plot in Figure 6.3, shows that beyond a certain
point if the DNN frame posteriors become overly sharp, training the model using the
MPE criterion fails to correlate with the model’s ability to achieve better WER reductions.
Table 6.7 compares the average entropy statistic of the sigmoid based model of Sec. 6.6.1
after it has been trained with di�erent optimisers. Comparing the statistics with Figure
6.4, it can be seen that the drop in average entropy is not as pronounced with a sigmoid
model as it is with a ReLU based system. This might explain why the prevalence of
criterion mismatch was not observed with either SGD or NG training for sigmoid DNNs.

method Average Entropy of
DNN frame posteriors

CE 2.514
SGD 2.12
NG 2.05
HF 2.21

Table 6.7 Average entropy of DNN frame posteriors of sequence trained sigmoid DNN
models w.r.t to di�erent optimisers.
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6.7.2 The Particular E�ect of ReLUs

In Sec. 3.2, it was discussed how a standard DNN layer conforms to a bivariate map
that maps parameters and the previous layer’s representation to a new space:

f l(x, ◊
l) : Rdl≠1 ◊ Rdl◊dl≠1+1 æ Rdl

where dl≠1 is the dimensionality of the layer at depth l ≠ 1 and dl is the dimensionality of
the transformed space. If ◊

l is fixed, the function f l

◊l corresponds to a particular sample
from the family of functions {f l(:, ◊

l) : ◊
l œ Rdl◊dl≠1+1}. The derivative of f l

◊l at a given
point x is a linear map from the tangent space at x to the tangent space f l

◊l(x):

df l

◊l : T◊lRdl≠1 æ Tf l(.;◊l)Rdl

Let
I

ˆ

ˆxi

J
dl≠1

i=1
be a basis of T◊lRdl≠1 and

I
ˆ

ˆyj

J
dl

j=1
be the basis for Tf l(.;◊l)Rdl. Then

the linear map df l

◊l conforms to:

df l

◊l

A
ˆ

ˆx1
,

ˆ

ˆx2
, · · · ,

ˆ

ˆxdl≠1

B

=
A

ˆ

ˆy1
,

ˆ

ˆy2
, · · · ,

ˆ

ˆydl

B

diag(Òal‡ § a
l) W◊l (6.22)

where W◊l is the layer’s weight matrix and diag(Òal‡ § a
l) is the diagonal matrix

whose non-zero entries correspond to the derivative of the layer’s output w.r.t its linear
activation. Using the Mean Value theorem [129], the behaviour of f l

◊l for small changes
in �x can be shown to be bounded by:

---f l(x + �x, ◊
l) ≠ f l(x, ◊

l)
... Æ diag(Òal‡ § a

l) W◊l�x (6.23)

If diag(Òal‡§a
l) is the identity and in the scenario where the largest singular value of

W◊l is greater than 1, then small changes in x can potentially induce large variances in the
subsequent layers. When the choice of ‡ is restricted to sigmoid activations, multiplying by
diag(Òal‡ § a

l) has the e�ect of ensuring that changes in the parameters at intermediate
layers does not induce large changes on the output of subsequent layers. However, when
the choice of ‡ is restricted to ReLUs, the individual entries of diag(Òal‡ § a

l) will either
be 1 or 0. This has the e�ect of producing sparse vectors but at the same time allows
updates made to parameters at intermediate layers to have a greater influence on the
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output of subsequent layers. When intermediate layer representations are learned with
CE training, this results in sharper DNN frame posteriors than an equivalent sigmoid
CE trained model (as evident from Table 6.7).

Referring back to Figure 6.4 and Table 6.7, the gradient of the MPE loss criterion
corresponds to ÒL

r

MBR,t = “
r

t
§ L where “

r

t
is the posterior probability associated

with HMM states at time t and the entries of L correspond to the loss associated with
these arcs. By the same argument, the use of ReLUs allows the lower layers to learn
representations that induce “

r

t
to be concentrated on states which contribute to lower

loss. For NG training, this e�ect will be even more pronounced. As NG induces the
model to become more discriminative, the use of ReLUs accelerates the DNN frame
posteriors to become overly sharp within a few updates (as evident from Figure 6.4).

6.8 ReLU Sequence Training with Standard Regu-
larisers

To reduce this strong prevalence of overfitting due to criterion mis-match seen with SGD
and NG, this section investigates the use of standard regularisation methods with ReLU
sequence training with SGD and NG. To be more specific, in this section the following
are investigated:

1. Using L2 norm regularisation with both NG and SGD.

2. Using SGD with dropout.

6.8.1 L2 norm regularisation

To allow DNN models to generalise well, a popular approach is to employ L2 norm
regularisation during training. The use of L2 norm regularisation belongs to the broader
class of LP-norm regularisation methods which aims to bias the network to learn small
parameters while minimising the original cost function. As discussed in Sec. 4.4.2, the
basic principle behind such approaches hinges on modifying the objective function by
adding a penalty term.

For L2-norm regularisation, this corresponds to adding a quadratic component µ1
2◊

T
◊

to the objective function being minimised.

F̂obj(◊) = Fobj(◊) + µ

2 Î◊Î2
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In eqn (4.30), it was shown how for SGD training, applying L2 norm regularisation
conforms to re-scaling the model parameters by a factor (1 ≠ ckµ) before applying
the stochastic update rule. For second order methods and our proposed batched style
optimisation framework, the e�ect of L2 norm regularisation is quite di�erent. At each
iteration, the function minimised is of the form (4.3). Applying the L2 norm thus
corresponds to minimising a ‘damped’ quadratic of the form:

�̂◊ = argmin
�◊

Fobj(◊k) + �◊
T ÒFobj(◊k) + 1

2�◊
T B�◊ + µ

1
2�◊

T �◊ (6.24)

where B represents either the scaled ⁄Î◊k
or the GN matrix G◊. Di�erentiating eqn.

(6.24) and equating it to 0 yields the critical point �◊ = (B + µI)≠1ÒFobj(◊k). When
using CG to solve the equivalent linear system (B + µI)�◊ = ÒFobj(◊k), the e�ect
of adding the extra diagonal matrix µI results in more conservative steps along each
conjugate direction. This e�ect parallels with the e�ect of increasing ⁄ when B = ⁄Î◊k

.
Although both parameters control the size of the CG steps, increasing the value of µ

has a less severe e�ect on the speed of learning. Figure 6.5 compares how SGD and NG
varies when used with L2 norm regularisation. For both optimisers, the best choices for
µ were found through initial careful grid search.

From the average entropy plot in Figure 6.5, it can be seen that the modification
to the NG steps can help to regulate the decrease in entropy. However as evident from
the WER and MPE plots, the regularised NG fails to achieve better WER or MPE
convergence on the validation set. Since the training configuration used for SGD training
is already optimised, adding weight decay to optimiser does little to improve the MPE
convergence on the validation dataset. Furthermore, as evident from Figure 6.5, the use
weight decay fails to regularise the sharp drop in the average entropy of DNN frame
posteriors and thus can be seen to be ine�ective in alleviating the problem of overfitting
due to criterion mismatch.

6.8.2 Using SGD with Dropout

Apart from L2 norm weight decay, at present the most popular regularisation approach
used with SGD training is dropout. The purpose of dropout (Sec. 4.4.4) is to make
the network less sensitive to the specific parameters of individual hidden units. Figure
6.6 shows how employing dropout at intermediate stages of training impacts validation
performance, while Table 6.8 provides further information on the overall convergence of
the optimiser.
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Fig. 6.5 Comparison of the performance of SGD and NG on the validation set when
training 50hr ReLU model with L2 norm regularisation. The third plot show the evolution
of average entropy of DNN frame posteriors at intermediate stages of training.
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Fig. 6.6 Performance of SGD with dropout on the 50hr ReLU DNN model at intermediate
stages of training. The third plot show the evolution of average entropy of DNN frame
posteriors at intermediate stages of training.
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method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE N/A N/A 0.815 0.671 43.8
SGD 1 3.2 ◊ 104 0.865 0.718 42.3

SGD-Dropout 2 6.4 ◊ 104 0.859 0.728 43.2
Table 6.8 Summary of the performance achieved with sequence training using SGD and
SGD-dropout on the 50hr MGB1 training set. The WERs shown at the last column were
computed using the weak pruned biased LM used in MPE training.

From Figure 6.6 and Table 6.8, it can be seen that enabling dropout allows the
SGD optimiser to achieve better generalisation performance on the validation set w.r.t
MPE criterion. However as evident from the WER plot in figure 6.6, the method can
be seen to be ine�ective in addressing this particular form of overfitting. The use of
dropout can be seen to slightly accelerate the decrease in the average entropy of the
DNN frame posteriors. These observations were consistent when training was conducted
with di�erent sampling schemes.

6.9 ReLU sequence training with Adam
Having seen the ine�ectiveness of standard regularisation approaches in alleviating this
particular form of overfitting, this section concludes with an experimental investigation
of using Adam instead of standard SGD to sequence train ReLU models.

For this investigation, the DNN topology used is a subsampled TDNN. The network
consisted of seven hidden layers each with 500 hidden units. The context specification
used for the various TDNN layers is as follows: [-2, +2] for layer 1, {≠1, 2} for layer
2, {≠3, 3} for layer 3, {≠7, 2} for layer 4 and [0] for the remaining layers. The output
layer consisted of 4k nodes and corresponds to context-dependent sub-phone targets
formed by conventional decision tree context-dependent state tying. The input to the
model consisted of 40 dimensional log-Mel filter bank features which were normalised
at the utterance level for mean and at the show-segment level for variance [22]. Prior
to sequence training, the models were initialised with standard CE training. Table 6.9
compares the performance of Adam against standard SGD.
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method #epochs #updates WER
dev.sub

CE N/A N/A 33.2
SGD 2 6.4 ◊ 104 31.2
Adam 2 6.4 ◊ 104 32.5

Table 6.9 Summary of the performance achieved with sequence training using SGD and
Adam on 50hr MGB1 training set. The WERs shown at the last column were computed
using the trigram 158 k LM.

From Table 6.9, it can be seen that scaling the individual parameter gradients with
the inverse of the running average of the squared gradients leads the optimiser to converge
to a worse solution (in terms of WER) than before. Thus switching to an adaptive
learning scheduler can not be considered as an appropriate solution to handle this form
of overfitting.

6.10 E�ect of Scaling Directions with the Gauss New-
ton Matrix

From Figure 6.3, it can be seen that only HF is e�ective in achieving WER reductions
on the 50hr ReLU based model with sequence training . A quick glance on Figure 6.4
shows how scaling the gradient direction with the inverse of G◊ regularises the change in
entropy of DNN frame posteriors. To understand why, recall that for DNN models G◊

can be shown to take the particular form of JT

◊
Ò2L◊J◊ where

• Ò2L◊ is the Hessian of the loss function w.r.t the DNN linear output activations,
with individual entries being functions of ◊.

• J◊ is the Jacobian of the DNN output activations w.r.t ◊.

To keep the notation uncluttered, the dependency on ◊ will be dropped for the remainder
of this section when dealing with the individual factors of the product JT

◊
Ò2L◊J◊. As

both Ò2L and the product JT Ò2LJ are real and symmetric, by the spectral decomposition
theorem:

JT Ò2LJ © JT U�UT J

© V �̂V T (6.25)
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Here �̂ corresponds to � extended by padding zero rows and columns to become D byD

matrix. An interpretation of each eigenvector vi in V will now be found. Let k denote
the rank of the GN matrix. By re-arranging the columns of V such that the eigenvectors
associated with the non-zero eigenvalues occupy positions within the first k columns, the
image space of GN can be then essentially captured by:

JT U � UT J = V:,1:k �̂1:k,1:k V T

1:k,: (6.26)

This construction is very important as it e�ectively allows us to establish a one to one
correspondence between the eigenvectors of V:,1:k with the column vectors of JT U by
matching the diagonal entries in � and �̂1:k,1:k. On these relevant directions, solving the
linear system with CG corresponds to scaling the steps taken in the eigen directions with
the inverse of the curvature/eigen value. To get an intuition behind how scaling with
�≠1 impacts training, the structure of individual vis will now be derived.

A neural network can be essentially viewed as a mapping:

f(x, ◊) : Rdx ◊ RD æ Rk (6.27)

where dx is the dimensionality of the input and k is the dimensionality of the output
layer. Under this framework, fixing x, the map fx corresponds to a particular vector map
fx : ◊ œ RD æ Rdl that maps the networks parameters to its pre-softmax activations.
The derivative of fx at given point ◊ is then a linear map from the tangent space at ◊ to
the tangent space fx(◊) and is given by the matrix J . Formally, the map is defined by:

dfx(◊l) : T◊RD æ Tfx(◊)Rk

where

dfx(◊)
A

ˆ

ˆ◊1
,

ˆ

ˆ◊2
, · · · ,

B

=
A

ˆ

ˆy1
,

ˆ

ˆy2
, · · · ,

ˆ

ˆydl

B

J
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Here
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denotes the basis of T◊RD and
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denotes the basis for Tf(x,:)Rk

and J takes the form:
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Multiplying J with the matrix UT yields:
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Each eigenvector vj of JT Ò2LJ can now interpreted as a vector whose ith entry
corresponds to a particular weighted sum of the gradients of the DNN pre-softmax
activations w.r.t ◊.

Switching from the standard basis to the basis spanned by UT J , updates conforming
to directions of steepest descent can be expressed as:

�◊ =
kÿ

j=1
–

1
v

T

j
ÒFobj

2 ÿ

i

UT

j,i

ˆfx,i

ˆ◊

where – is the learning rate. With respect to this basis, scaling with the inverse of the
GN matrix e�ectively corresponds to rescaling the steps taken along individual vj by a
factor 1

’j

:

�◊ =
kÿ

j=0

1
’j

1
v

T

j
ÒFobj

2 ÿ

i

UT

j,i

ˆfx,i

ˆ◊
(6.28)

where ’j is the eigenvalue associated with vj in V . Recall that Ò2L can alternatively
be presented as Ò.(ÒLobj) where Lobj is the loss w.r.t linear DNN output activations.
Therefore, eigenvectors uj in U with large eigenvalues correspond to directions that can
induce large changes in the gradient of ÒLobj. By establishing a one-to one correspondence
between eigenvectors of Ò2L with eigenvectors of JT Ò2LJ , it can be seen that re-scaling
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with 1
’j

e�ectively de-weights back propagation information carried by those paths through
the network that can induce large changes in Lobj. In the context of discriminative
sequence training, this ensures that the DNN frame posterior distribution does not
become overly sharp.

6.11 Summary
This chapter extends the method of Natural Gradient (NG) to the domain of discrimina-
tive sequence training. In the DNN literature, the method has been previously applied
for non-sequence classification tasks within a framework that employs a block diago-
nal approximation of the Fisher Information (FI) matrix. This work makes no such
assumption and uses a stochastic estimate of the FI matrix. To ensure mathematical
consistency, it was shown in Sec. 6.4 how this matrix can be adapted to yield a positive
definite matrix, which when used with CG has the property that directions considered
important by the empirical Fisher are traversed first at the initial iterations of CG. By
replacing the ‘Hessian’ component of the HF optimiser with the damped FI matrix, the
NG method applied within the HF optimisation framework was shown to achieve both
better and faster convergence (w.r.t number of updates) than variants of HF. On sigmoid
DNNs trained on the 200hr MGB1 dataset, the method was shown to achieve a relative
WER reduction of 8% over CE on both the dev.sub and test dataset. Over SGD, the
NG method on average was shown to provide approximately a 1% relative reduction
(statistically significant at the episode level) in WER.

In addition to extending the NG approach to the domain of MBR objective functions
for discriminative sequence training, this chapter also addresses the di�culty of getting
WER reductions with ReLU sequence training. From preliminary experiments with
ReLU models, it was observed that both NG and SGD su�er from overfitting due to
criterion mismatch. Improvements made w.r.t. the MPE criterion on the validation set
fail to correlate with the WER reductions. A key contribution of this thesis has been to
show how this problem can be alleviated by scaling the update directions with the GN
matrix.





Chapter 7

Introducing NGHF: a novel
optimisation approach

The goal of learning is to identify a viable candidate f(O, ◊) œ M which when used in
conjunction with decision theory allows optimal classifications to be made with respect
to a given risk criterion. For parametric models such as DNNs, this is achieved by
formulating an appropriate optimisation problem on the parameter space X. As di�erent
realisations of model parameters lead to di�erent f(x, ◊), finding a solution of the
optimisation problem in X corresponds to selecting a good candidate function from M.

In practice, designing a good optimisation algorithm to e�ectively probe X is a
complex task. To improve the training of deep models, the general strategy has not
always been to improve the optimisation algorithm. Instead, many improvements in
the optimisation of deep models have come from re-designing the models [11–13] such
that a good set of parameters can be found by standard gradient descent. This thesis
however has taken a di�erent route. In Sec. 6.1, by elucidating the space of functions
M with the minimum geometry needed to make measurements of length, area etc,
it was shown how the method of steepest descent can be formulated directly on the
space of M. When framed in a Hessian Free (HF) styled optimisation framework, the
Natural Gradient (NG) method was shown to be the most e�ective optimiser in achieving
WER reductions with discriminative sequence training for sigmoid models (Sec. 6.6).
However, as highlighted in Sec 6.2, the e�cacy of the method is reliant on the initial
model initialisation used for sequence training. From preliminary experiments with ReLU
DNNs, it was observed that NG similar to SGD was ine�ective in achieving consistent
WER reductions from a sharp CE initialised model. In comparison, the HF approach,
which was previously found to sub-optimal with sigmoid DNNs, was observed to be
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the most e�ective optimiser in achieving consistent WER reductions with ReLU based
models. Seeing that di�erent optimisers work best with di�erent models, it is attractive
to have a consistent optimisation framework that is agnostic to the choice of activation
function.

This chapter addresses the design considerations that must be considered when devel-
oping an e�ective optimisation algorithm, and proposes a novel optimisation approach to
e�ectively probe the DNN function space M. The chapter begins with the development
of the topological structure of the manifold M associated with DNN based models and
discusses the minimum property required for optimisation methods to be well defined on
the space M. The chapter then introduces a new optimisation called NGHF that uses
both the direction of steepest descent on a probabilistic manifold and local curvature
information to e�ectively probe M. Apart from being well defined on M, the method
when framed within the batch style HF optimisation framework will be shown to achieve
the greatest WER reductions from sequence training with both sigmoid and ReLU based
models. The derivation of the method relies on an alternative derivation of Taylor’s
theorem using the concepts of manifolds, tangent vectors and directional derivatives from
the perspective of Information Geometry [23, 24]. Appendix A contains a glossary of
terms referenced in this work but a more in-depth discussion can be found in Amari’s
text book [23].

This chapter is organised as follows: Section 7.1 develops the underlying geometric
structure of the function space M and presents the minimum property needed for
optimisation methods to be well defined on M. Section 7.3 presents an alternative
re-derivation of Taylor’s theorem and formulates first and second order optimisation
problems as minimisation problems in the tangent space of X. Using this alternative
formulation of Taylor’s theorem, the method of NGHF is developed in Sec. 7.5 and the
e�cacy of the method is shown in Sec. 7.6 using experiments on 200hr MGB1 training set
with di�erent feed forward architectures. The chapter concludes with experimental results
from sequence training recurrent networks with the di�erent optimisation methods.

7.1 Structure of Function Space of DNN Models
Although the parameter manifold X essentially captures the space of all functions M
that can be generated by a particular model, the manifold cannot be used directly as a
coordinate space of M. DNNs as a consequence of their hierarchical architecture su�er
from parameter space symmetries [86, 170] where multiple distinct choices of ◊ can give
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rise to the same input-output mapping. This prevents a one to one correspondence
between vectors in X and functions in M. The symmetries are induced by transpositions
applied to intra layer nodes, where nodes are switched by interchanging all the weights
(and the bias) leading both into and out of them1. Such a transposition can be seen to
leave the network input-output mapping function unchanged but results in a new vector
◊̂. For M hidden units in a layer, assuming that the activation function is not odd, the
number of such permutations is M !. Thus, for a network with K distinct layers, the
overall weight space symmetry factor will be K ◊ M !.

To develop the notion of a coordinate space for the manifold M, it is first necessary
to formally define the concept of permutation acting on a vector space ◊. A permutation
map on ◊ corresponds to a particular form of bijective linear map with the property that

• every row and column contains precisely a single 1 with 0s everywhere else. In
other words, every row and column correspond to a distinct 1-K encoding.

• the transpose of the matrix is its inverse.

Let G denote the set of all permutation maps associated with the parameter vector
◊. Equipping G with function composition operator ‘¶’ gives the set the structure of a
group [171]:

1. P ¶ Z œ G for all P, Z œ G (closed operation).

2. (P ¶ Z) ¶ K = P ¶ (Z ¶ K) (associative law).

3. The identity map iG belongs to G,

4. Each map has a unique inverse.

Let N µ G be the subset of permutations that induce parameter space symmetries
in X. It is easy to see that such a set when equipped with the function composition
operator ‘¶’ corresponds to a subgroup of G. Using this set, it is now possible to define
an equivalence relation on X where the equivalence class for a vector ◊ is defined as the
set:

[◊] = {◊̂ œ X|÷P œ N which maps ◊̂
P≠æ ◊} (7.1)

1
For odd activation functions, such symmetries can also arise from switching the signs of the incoming

and out-going parameters of a node
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Intuitively, the enforcement of an equivalent relation can be viewed as inherently gluing
together points in the space, resulting in its geometric structure to considerably change.
Figure 7.1 shows the action of particular equivalence relation that clusters points along
the boundary of a plane to the same equivalence class. From the figure, it can be seen
that by gluing together the edges, the equivalence relation inherently morphs the two
dimensional plane into a torus.

Fig. 7.1 Illustration of an equivalence relation that clusters points along the boundary of
the plane. This e�ectively corresponds to gluing the edges of the plane to form an torus.

Under the equivalence relation given in eqn 7.1, the resultant quotient space X/ ≥
now exhibits a one-one correspondence with the function space M. In other words, each
function f(x, ◊) œ M corresponds to the realisation of a unique element in X/ ≥.

7.2 Formulating optimisation directly on the func-
tion manifold M

The goal of statistical inference is to use observed data to identify the best viable candi-
date f(x, ◊) œ M that avoids rote memorisation and guarantees optimal classification
performance. To aid good selection, a candidate f is picked from M that minimises the
expected loss using some form of risk measure over the adequately selected family of
predictive models:

f̂(x, ◊) = arg min
f(x,◊)œM

EL[f(x, ◊)] (7.2)
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Using the one to one correspondence between X/ ≥ and M, the above optimisation
problem can be formulated as an equivalent optimisation problem in the X/ ≥:

[◊̂] = arg min
[◊]œX/≥

EL[f(x, ◊)] (7.3)

Formulating optimisation in this partitioned space X/ ≥ is more attractive as the function
that gives the lowest expected loss corresponds to a unique element in X/ ≥ i.e the
partitioned space guarantees the existence of a unique global optimum.

Let ◊0 be a element of an equivalent class [◊]. Given this starting point, an optimisation
algorithm acting on X will aim to construct a path ◊0, ◊1, ◊2, ◊3 · · · ◊k towards a local
optimum using the following update rule at each training iteration:

◊i = ◊i≠1 + �◊i

To be able to traverse on the quotient space X/ ≥, it is necessary to have a well defined
framework that allows similar paths to be constructed in X/ ≥.

Let ◊
Õ
0 = P (◊0) where P œ N . Initialised with this di�erent initial point, if the

sequence of points ◊
Õ
0, ◊

Õ
1, ◊

Õ
2, ◊3 · · · ◊

Õ
k

constructed by the chosen optimiser are such that
at each point satisfies ◊

Õ
i

= P (◊i), then such an algorithm can be seen to provide a well
defined framework to traverse along the quotient space X/ ≥. Eqn (7.4), shows how
satisfying this criterion corresponds to the class of methods whose updates are invariant
w.r.t permutation maps in X:

◊
Õ
k

= P (◊k)

◊
Õ
k≠1 + �◊

Õ
k

= P (◊k≠1 + �◊k)

◊
Õ
k≠1 + �◊

Õ
k

= P (◊k≠1) + P (�◊k)

As a consequence of weight space symmetry

◊
Õ
k≠1 + �◊

Õ
k

= ◊
Õ
k≠1 + P (�◊k)

�◊
Õ
k

= P (�◊k) (7.4)

Intuitively, for an optimisation algorithm to be well defined on M means that if the
algorithm requires k steps to find a local minimum, then when re-initialised with the
permuted initialisation ◊

Õ
0 = P (◊0), the algorithm should take the same number of steps

to find a minimum which has the same critical value as before.
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7.2.1 Gradient Descent is well defined

With the method of Gradient Descent, the updates produced at each training iteration
equates to a scaled multiple of the negative gradient:

�◊k = ≠–ÒFobj(◊k)

where Fobj is the objective function. When re-parameterised under a permutation P œ N ,
the gradient of Fobj w.r.t the individual components of the re-parameterised vector ◊

Õ
k

is:

ˆFobj
ˆ◊Õ

i

|◊Õ
k

=
ÿ

j

ˆFobj
ˆ◊j

|◊k

ˆ◊j

ˆ◊Õ
i

=
ÿ

j

ˆFobj
ˆ◊j

|◊k
P ≠1

j,i

which in vector form can be compactly written as:

ÒFobj(◊Õ
k
) = P ≠TÒFobj(◊k) (7.5)

Using the fact that for each P œ N , its transpose is its own inverse, ÒFobj(◊Õ
k
) corresponds

to:

�◊
Õ
k

= ≠P ≠TÒFobj(◊k) © ≠P ÒFobj(◊k)

The above analysis shows although that method of gradient descent is not invariant to
general linear re-parameterisations, the method is well defined to probe the space X/ ≥.

7.2.2 NG and HF methods are well defined

Both NG and HF belong to the class of optimisation methods that employ the following
update rule at each training iteration:

�◊k = ≠(B◊k
)≠1ÒFobj(◊k)
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where B◊ corresponds to either the FI matrix or an estimate of the Hessian. When
re-parameterised under a permutation P œ N ,

�◊
Õ
k

= ≠(P ≠TB◊k
P ≠1)≠1P ≠TÒFobj(◊k)

= ≠P (B◊k
)≠1ÒFobj(◊k)

= P (�◊k) (7.6)

From eqn (7.6), it can be seen that both the NG and HF methods present a well
defined framework to e�ectively probe the manifold M. When M corresponds to the
space of probabilistic distributions that can captured by the given model, NG apart from
being well defined utilises information of the underlying geometry of M. However the
method as shown in Sec 6.2 doesn’t take into account the second order information of
the non ML objective functions. In the following sections, a detailed derivation of a
well defined novel optimisation method will be provided which utilises both information
about the underlying geometry of M and second order information of the cost surface.
The method will be shown to achieve the greatest WER reductions from discriminative
sequence training with relatively large models using either ReLU and sigmoid activation
functions.

7.3 Alternative derivation of Taylor’s theorem
A curve on a parameter manifold X (Appendix A.1) is a continuous map c : (a, b) µ
R æ X. Let U be an open convex neighbourhood of the current iterate ◊k. Thus for any
point ◊ in U , ÷ a curve of the form ◊k + t(◊ ≠ ◊k) where t œ [0, 1] that is contained in U .

Let c : [0, 1] æ X be a continuous curve such that:

c(t) = ◊k + t�◊ (7.7)

where �◊ corresponds to arbitrary o�set from ◊k such that c in contained in U . The
derivative of c at given point t0 is then the linear map from the tangent space (Appendix
A.3) at t0 to the tangent space Tc(t0)X:
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(7.8)

where d

dr
denotes the basis vector of Tt0R.

Let F (◊) be a germ (Appendix A.2) that corresponds to a smooth map from the
parameter manifold X to R. In the context of optimisation, this corresponds to the
smooth objective training criterion. The derivative of F (◊) at any given point ◊ is a
linear map from the tangent space T◊X to the tangent space TF (◊)R:
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aD

T

XXXXXXV
(7.9)

Here the vector ÒF (◊k) is the Jacobian and denotes the particular vector in T◊M that
yields the greatest directional derivative (Appendix A.4).

Constraining F on the curve c is equivalent to applying the composite map F ¶ c

from R æ R. The derivative of such a map at given point t0 will now correspond to a
linear map from a tangent space in Tt0R to the tangent space of TF ¶c(t0)R. By applying
chain rule such a linear map can be shown to correspond to:

d(F ¶ c)|t0

A
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dr

B
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A
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B
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(7.10)
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Using the fact that F ¶ c is di�erentiable and corresponds to a map from R æ R, by
the fundamental theorem of calculus:

F (◊k + �◊) = F (◊k) +
⁄ 1

0
(F ¶ c(t))Õ dt

= F (◊k) +
⁄ 1

0

ÿ

i

�◊i

ˆF

ˆ◊i

(◊k + t�◊) dt
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�◊i
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0
ˆF

ˆ◊i

(◊k + t�◊) dt (7.12)

Since individual terms
As 1

0
ˆF

ˆ◊i

(◊k + t�◊) dt

B

themselves are smooth functions de-

fined on the convex neighbourhood of ◊k, eqn (7.12) can be expanded even further by
recursively applying the fundamental theorem of calculus:
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As the function ˆ2F

ˆ◊jˆ◊i

(◊) is continuous, when �◊ is su�ciently small, ˆ2F
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(◊k +

t�◊) can be approximated by ˆ2F

ˆ◊jˆ◊i

(◊k + t�◊) |t=0 Under this approximation, the local

behaviour of the germ F (◊) can be approximated by:

F (◊k + �◊) ƒ F (◊k) +
ÿ

i

ˆF

ˆ◊i

(◊k)�◊i +
ÿ

i

�◊i

⁄ 1

0

Q

a
ÿ

j

�◊j

⁄ 1

0

ˆ2F

ˆ◊jˆ◊i

(◊k)dt

R

b dt

ƒ F (◊k) +
ÿ

i

ˆF

ˆ◊i

(◊k)�◊i + 1
2

ÿ

i

�◊i

ÿ

j

�◊j

ˆ2F

ˆ◊jˆ◊i

(◊k) (7.14)

In vector notation, this corresponds to:

F (◊k + �◊) ƒ F (◊k) + �◊
T ÒF (◊k) + 1

2�◊
T H�◊ (7.15)
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with entries Hj,i of the Hessian matrix corresponding to
A

ˆ2F

ˆ◊jˆ◊i

(◊k)
B

. The above

expression corresponds to Taylor’s second order approximation. Re-deriving this expres-
sion from the perspective of manifold theory shows how the product �◊

T ÒF (◊k) can
be interpreted as an inner product between vectors �◊ and ÒF (◊k) in T◊X. This
interpretation will be used in the next section.

7.4 Formulating Taylor’s Quadratic as a Minimisa-
tion problem in Tangent Space

Instead of minimising the objective function directly, second order methods focus on
minimising the quadratic function of (7.15) at each iteration. The quadratic corresponds
to a local model of the behaviour of F (◊) within a convex neighbourhood of the current
iterate ◊k. By deriving Taylor’s second order approximation from the perspective of
manifold theory, �◊ can now be interpreted as a particular choice of a tangent vector
from T◊k

X while ÒF (◊k) represents the particular vector in T◊X that yields the greatest
directional derivative under the linear map dF|◊ . As F (◊k) is a constant, solving the
minimisation problem in eqn (7.15) is equivalent to solving the following minimisation
problem in T◊k

X:

�◊̂ = arg min
�◊œT◊

k
X

F (◊k) + È�◊, ÒF (◊k)Í + 1
2�◊

T H�◊ (7.16)

where È�◊, ÒF (◊k)Í corresponds to the standard inner product between vectors in T◊k
X

and �◊
T H�◊ corresponds to a linear map g : u œ T◊k

X æ R.

7.4.1 Relating Gradient Descent to Natural Gradient

Under this framework, first order methods can be seen to solve the following optimisation
problem in the tangent space T◊k

X:

�◊̂ = arg min
�◊œT◊

k
X

F (◊k) + È�◊, ÒF (◊k)Í (7.17)

Since X is a manifold, the inner product endowed on the tangent space T◊X at any
point ◊ need not be just the identity matrix. The parameter manifold X can be equipped
with any form of a Riemannian metric, a smooth map that assigns to each ◊ œ X an
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inner product in T◊X. When the underlying model corresponds to a discriminative
probabilistic model P◊(H|O), Sec. 6.2 showed an ideal choice of I◊ corresponds to the
expectation of the outer product of the Maximum Mutual Information (MMI) (3.3)
gradient:

I◊ = EP◊(H|O)
Ë
(Ò log P◊(H|O)) (Ò log P◊(H|O))T

È

Equipping the tangent space T◊X with the above Riemannian metric allows lengths of
paths traversed to be interpreted in the parameter space as changes in the KL divergence
(Sec. 6.1.1). When X possesses such a structure, performing first order optimisation
within a trust region defined by I◊ can be shown to produce the update �◊ = ≠I≠1

◊
ÒF (◊)

at each iteration.
Using the fact that I◊ is symmetric and positive definite, it is also possible to endow

X with a Riemannian metric of the form I≠1
◊

by the spectral decomposition theorem.
With respect to such a metric, solving the minimising problem of (7.17) in the tangent
space T◊k

X becomes equivalent to performing NG on the parameter surface. Hence,
recasting the optimisation problem to a minimisation problem in T◊k

X provides a nice
framework to relate gradient descent with the method of NG.

7.5 Formulating NGHF
In Sec. 7.4, it was shown how solving the second order Taylor’s quadratic is equivalent
to solving an equivalent minimisation problem in the tangent space T◊k

X, equipped with
the standard inner product. As X is a manifold, equipping the tangent space T◊k

X with
the inverse of the Fisher Information matrix I≠1

◊
, and considering the entire eqn. (7.16)

leads to the critical point:

�◊ = ≠H≠1I≠1
◊

ÒF (◊k) (7.18)

We call this approach NGHF as the resultant direction can be seen to correspond to
an NG direction regularised by the curvature information of the underlying objective
function.
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When re-parameterised under a permutation P œ N , the updates produced by the
method as shown below are well defined in X/ ≥.

�◊
Õ
k

= ≠(P ≠TH◊k
P ≠1)≠1(P ≠TI◊k

P ≠1)≠1P ≠TÒFobj(◊k)

= ≠P (H◊k
)≠1P T P (I◊k

)≠1ÒFobj(◊k)

Using the fact that the inverse of P is its transpose,

�◊
Õ
k

= ≠P (H◊k
)≠1(I◊k

)≠1ÒFobj(◊k)

= P (�◊k) (7.19)

Computing the individual inverse matrix scalings directly is expensive in terms of both
computation and storage. Using the HF approach, the individual matrix scalings is
approximated by solving equivalent linear systems using the Conjugate Gradient (CG)
algorithm (Sec. 5.2.1). In this work, we approximate I◊ with Ĩ≠1

◊
(see Sec. 6.4) and the

Hessian with the GN matrix G◊. A quick look at the CG algorithm presented in Sec. 5.2
shows how the update direction proposed at each CG iteration corresponds to:

�◊k+1 Ω �◊k + akdk

where dk represents the current conjugate direction. At the very first iteration of CG,
this corresponds to direction the algorithm has been initialised with. In contrast to NG
and HF, in the method of NGHF, the initial direction corresponds to approximation of
the NG direction instead of the gradient. Thus when H≠1

3
I≠1

◊
ÒF (◊k)

4
is solved with

CG, the resultant update corresponds to:

�◊ = w1�◊NG + w2�◊HF (7.20)

a weighted combination of the NG direction and conjugate directions computed using
local curvature information. In Sec. 7.6.2, employing such a direction will be shown to
lead to paths traversed in the parameter manifold where optimisation w.r.t. the MPE
criterion closely mirrors with reductions in the WER.
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7.6 Experiments on Feed Forward Architectures

7.6.1 Experimental Setup

The e�cacy of the proposed novel optimisation method was evaluated on the MGB1
200hr training set (see Appendix C.2). The o�cial MGB1 dev.sub set was employed
as a validation set and consists of 5.5 hours of audio data. As in Sec. 6.6, the test set
dev.sub2 was used to estimate the generalisation performance of candidate models. This
comprises roughly 23 hours of audio from the remaining 35 shows belonging to the MGB1
dev.full set. Further details related to the data preparation can be found in [22].

In this chapter, experimental investigation has been extended to sub-sampled Time
Delay Neural Networks (TDNNs) (Sec. 3.4.1) along with standard DNNs. Models with
both ReLU and sigmoid activations were trained. The architecture used for DNNs
consisted of five hidden layers each with 1000 nodes. For TDNNs, the network topology
consisted of seven hidden layers each with 1000 hidden units. The context specification
used for the various TDNN layers is as follows: [-2, +2] for layer 1, {≠1, 2} for layer 2,
{≠3, 3} for layer 3, {≠7, 2} for layer 4 and [0] for the remaining layers. For both models,
the output layer consisted of 6k nodes and corresponds to context-dependent sub-phone
targets formed by conventional decision tree context-dependent state tying. For DNNs,
the input to the model was produced by splicing together 40 dimensional log-Mel filter
bank (FBK) features extended with their delta coe�cients across 9 frames to give a 720
dimensional input per frame. While for TDNNs, only the 40 dimensional log-Mel filter
bank features were considered. For all experiments, the input features were normalised
at the utterance level for mean and at the show-segment level for variance [22].

All models were trained using lattice-based MPE training [70]. Prior to sequence
training, the model parameters were initialised using frame-level CE training. To track
the occurrence of overfitting due to training criterion mismatch, decoding was performed,
at intermediate stages of sequence training, on the validation set using the same weak
pruned biased LM used to create the initial MPE lattices. To evaluate the generalisation
performance of the trained models, a 158k word vocabulary trigram LM was used to
decode the validation and test set.

Training configuration for SGD: The best results with SGD were achieved through
annealing of the learning rates at subsequent epochs. The initial learning rates were
found through a grid search. For TDNNs, using momentum was found to yield the best
WERs.
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Training configuration for NGHF, NG & HF: The recipe described in Sec.
5.4.1 was used: gradient batches corresponding to roughly 25 hours and 0.5 hrs of audio
were sampled for each CG run. In all experiments, running each CG run beyond 8
iterations was not found to be advantageous. The CG computations varied between 18%
to 26% of the total computational cost. It should be noted that the DSAG-HF method
is not explored in this chapter. In preliminary experiments with TDNNs, the method
was not found to provide better WER reductions than HF.

7.6.2 Experimental Results

Figure 7.2 compares the performance of various optimisation methods on training a
ReLU based 200hr HMM-DNN model while Table 7.1 shows the performance of these
optimisers for a ReLU based HMM-TDNN system.

method #epochs #updates phone acc. WER with
train dev.sub MPE LM

CE N/A N/A 0.870 0.754 36.9
SGD 4 4.64 ◊105 0.888 0.760 36.4
NG 4 32 0.913 0.789 36.2
HF 4 32 0.899 0.783 35.9

NGHF 4 32 0.911 0.791 35.6
Table 7.1 Sequence training with di�erent optimisers on the TDNN-ReLU model. WERs
on dev.sub.

From Figure 7.2 and Table 7.1, it can be seen that among all the optimisers, NGHF
is the most e�ective in achieving the largest WER reductions on dev.sub with the
weak MPE LM. At each iteration, the update produced by the method conforms to
�◊ = w1�◊NG + w2�◊HF , a weighted combination of NG direction and conjugate
directions computed using local curvature information. In Fig. 7.2, it can be seen that by
utilising information from both the KL divergence in the probabilistic manifold and local
curvature information, the proposed method follows a path where optimising the MPE
criterion better correlates with achieving reductions in WER. With the ReLU TDNN
model, as evident from Table 7.1, the method also achieves the greatest WER reductions
on the validation set. To investigate whether the relative gains are not constrained to only
ReLU based systems, equivalent systems using sigmoids were trained. Table 7.2 compares
the performance of the various optimisers on the validation set with the di�erent models
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Fig. 7.2 Evolution of MPE phone accuracy criterion on the training and validation
(dev.sub) sets with di�erent optimisers in sequence training the ReLU based DNN (top 2
graphs). Also (lower graph) WER with MPE LM on dev.sub as training proceeds.

using the 158k LM. Here a stronger LM has been to use to ensure that WER reductions
hold even when coupling between the AM and LM is changed during decoding.
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Model CE MPE
SGD NG HF NGHF

DNN-ReLU 30.9 29.9 29.8 28.9 28.1
TDNN-ReLU 28.6 28.5 28.7 28.1 27.5
DNN-sigmoid 31.9 29.3 29.0 29.3 29.0

TDNN-sigmoid 28.5 27.1 26.9 27.0 26.6
Table 7.2 WERs on MGB1 dev.sub from sequence training with 158k trigram LM.

From Table 7.2, it can be seen that again models using NGHF achieve the largest
reductions in WER. For ReLU based models, sequence training with NGHF achieves a
relative Word Error Rate Reduction (WERR) of 9% with the DNN and 4% with the
TDNN over the CE trained models. Whereas with the sigmoid based models, the method
achieves a relative WERR of 6% with the DNN and 7% with the TDNN over the CE
trained models. Compared to SGD, NGHF is especially e�ective with the ReLU based
models. For the DNN, the method achieves a relative WERR of 6% over SGD, while
with the TDNN the relative WERR is 4%.

Finally, the generalisation performance of the trained models were estimated by
performing Viterbi decoding on dev.sub2 using 158k LM. Results are shown in Table 7.3.

Model CE MPE
SGD NG HF NGHF

DNN-ReLU 32.3 31.9 31.4 30.6 29.8
TDNN-ReLU 30.6 29.8 30.6 29.6 29.3
DNN-sigmoid 33.2 30.8 30.5 30.9 30.5

TDNN-sigmoid 29.9 28.6 28.2 28.4 27.9
Table 7.3 WERs on MGB1 dev.sub2 with 158k trigram LM.

It can be observed that as before the model trained with NGHF achieves the largest
reductions in WER. With sigmoid based models, the method can be seen to achieve
a relative WERR of 8% with the DNN and 7% with the TDNN over the CE trained
models. Compared to NG, the method achieves a relative WERR of 1%. Although this
improvement was fairly small, it was found to be statistically significant (sign. test of the
WERs at the episode level). With the ReLU models, NGHF achieves a relative WERR
of 7% with the DNN model and a 2% with the TDNN over standard SGD. In comparison
to HF, using the method results in a further WERR of 3% with the DNN and 1% with
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the TDNN. Both of these gains again was found to statistically significant (at the episode
level).

From Tables 7.3 and 7.2, it can be seen that ReLU based systems failed to achieve
similar WERRs as sigmoid based systems from sequence training with either SGD or
NG. During training, it was observed that improvements made on the MPE criterion
failed to correlate with the model’s ability to achieve lower WERs after first few epochs.
This e�ect was particularly noticeable with the TDNN model. MBR training broadly
speaking tries to concentrate probability mass: a su�ciently flexible model trained to
convergence with MBR will assign a high probability to those hypotheses that have the
smallest loss. In Sec. 6.7.2, it was discussed that ReLUs improve the flow of gradients
and help accelerate the posterior distribution of states “

r

t
(i), associated with high local

losses L(i), to become zero. With hyper-parameters such as the LM and acoustic model
scale factor fixed, the sharp decrease in the DNN output entropy shown in Fig. 7.3,
directly reflects that the distribution “

r

t
is becoming overly sharp for the ReLU models

when training is performed with SGD or NG.
From Fig. 7.3, it can also be seen how scaling with the GN matrix helps regularise

the entropy of the DNN frame posteriors. When compared to HF, the proposed NGHF
approach is better in finding a balance between improving the MPE criterion and
regularising the entropy changes of the DNN frame posteriors.
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Fig. 7.3 Evolution of average entropy of DNN output activations during MPE training
with ReLU based DNN models. Left graph is for DNNs and the right graph for TDNNs.

7.7 Experiments on Recurrent Neural Networks
Having investigated sequence training with feed forward architectures, the investigation
will now be extended to improving lattice-based MPE training with standard recurrent
neural networks. In this section, experiments on both the 50hr and 200hr MGB1 training
set is presented. To make fair comparisons between the various optimisation approaches,
models with both ReLU and sigmoid activations were trained.

7.7.1 Experimental Setup

The architecture used for the RNNs consisted of stacking two recurrent layers of width
1000 nodes followed by a feedforward layer composed of 1000 nodes. The output softmax
layer had context-dependent sub-phone targets formed by conventional decision tree
context-dependent state tying, and comprised of 4k/6k nodes for the 50h/200h training
sets. The input to all the models was produced by splicing together 40 dimensional log-
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Mel filter bank (FBK) features extended with their delta coe�cients. Prior to sequence
training, the model parameters were initialised using frame-level CE training and during
training, the unrolling of the recurrent layers was performed from +5 to -15 time steps.
To track the occurrence of overfitting due to training criterion mismatch, decoding was
performed, at intermediate stages of sequence training, on the validation set using the
same weak pruned biased LM used to create the initial MPE lattices. Finally, to evaluate
the generalisation performance of the trained models, a 158k word vocabulary trigram
LM was used to decode the validation and test set.

Training configuration for NGHF, NG & HF: As before, the recipe described
in Sec. 5.4.1 was used: gradient batches corresponding to roughly 25 hours and 0.5 hrs
of audio were sampled for each CG run. For the RNNs, running each CG run beyond 8
iterations was not found to be advantageous.

7.7.2 Di�culty in finding SGD baseline for ReLU RNN models

With the ReLU RNN models, finding improved WERs from sequence training with SGD
was particularly di�cult. The training of the models su�ered from overfitting due to
mismatch between training criterion and WER. To get stable WER reductions, it was
found that using an extremely small learning rate in the region of 10≠6 ensured that
SGD traversed along paths where optimising the MPE criterion closely mirrored with
reductions in the WER. Tables 7.4 and 7.5 compares two variants of SGD training for
the 50hr ReLU RNN model: the first setup employs an initial learning rate that has been
carefully tuned to maximise the MPE validation performance while the second setup
employs an initial rate which is 100 times smaller. From comparing the two tables, it
can be seen that the training setup that yields the best MPE generalisation performance
on the validation fails to achieve WER improvements at intermediate stages of training.
Figure 7.4 shows that initialising SGD with a larger learning rate speeds up the rate of
the DNN frame posteriors becoming overly sharp.
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Epochs Avg.Phone acc. Avg.Phone acc. WER with MPE LM
Training set Validation set Validation set

0 0.849 0.705 41.7
1 0.864 0.730 44.2
2 0.880 0.737 44.2
3 0.885 0.741 44.6
4 0.889 0.744 45.1

Table 7.4 shows the performance of sequence training on the 50hr ReLU RNN model with
SGD with a learning rate that has been carefully tuned to improve the MPE validation
performance. The table also shows the WERs on the validation set with the weak MPE
LM

Epochs Avg.Phone acc. Avg.Phone acc. WER with MPE LM
Training set Validation set Validation set

0 0.849 0.705 41.7
1 0.851 0.708 41.2
2 0.854 0.711 41.1
3 0.856 0.712 41.0
4 0.857 0.713 41.0

Table 7.5 shows the performance of sequence training the 50hr ReLU RNN model with
SGD using a learning of the order of 10≠6. The table also shows the WERs on the
validation set with the weak MPE LM
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Fig. 7.4 Evolution of average entropy of ReLU RNN frame posteriors with di�erent
setups of SGD.

7.7.3 Experiments on 50hr MGB1 training set

Table 7.6 compares the performance of the various optimisation methods in training
the 50hr ReLU RNN model. In comparison to SGD, the 3 batch style optimisation
frameworks do better in achieving WER reductions on the validation set: HF achieves a
WERR of 4% while both NG and NGHF achieves WERR of 3% over the CE trained
model. For this particular model as highlighted in figure 7.4, the HF optimiser can be
seen to achieve the best balance between improving the MPE criterion and regularising
the entropy changes of the DNN frame posteriors.
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method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE N/A N/A 0.849 0.705 41.7
SGD 4 1.31 ◊ 105 0.857 0.713 41.0
HF 13 26 0.870 0.724 40.1
NG 15 30 0.884 0.734 40.4

NGHF 10 20 0.872 0.728 40.4
Table 7.6 shows the performance of di�erent optimisers on the ReLU RNN. The WERs
shown at the last column were computed using the weak pruned biased LM used in MPE
training.
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Fig. 7.5 Evolution of average entropy of ReLU RNN frame posteriors with di�erent
setups of SGD.

To investigate how these optimisers fair with di�erent activation functions, equivalent
systems using sigmoids were trained. Table 7.7 compares the performance of the various
optimisers for a sigmoid RNN. Like in the ReLU case, the 3 batch style optimisation
frameworks can be seen to be more e�ective than SGD in achieving better WERRs
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with MPE training. SGD achieves a relative WERR of 3% while NG achieves a relative
WERR of 4% over the CE trained model. In Sec 6.7.2, it was shown how sigmoids in
comparison to ReLUs impedes the speed of learning. A glance in Table 7.8 shows that by
adjusting the gradient with the local curvature of the KL-divergence, NG achieves the
best balance in making the HMM-DNN sigmoid model discriminative without making
the DNN frame posteriors overly sharp.

method #epochs #updates phone acc. WER with
train dev.sub MPE LM

CE N/A N/A 0.83 0.682 43.9
SGD 4 1.31 ◊ 105 0.876 0.718 42.6
NG 15 30 0.857 0.703 42.0
HF 15 30 0.852 0.697 42.4

NGHF 14 28 0.852 0.699 42.2
Table 7.7 shows the performance of di�erent optimisers on the 50hr sigmoid-RNN. The
WERs shown at the last column were computed using the weak pruned biased LM used
in MPE training.

method Average Entropy of
DNN frame posteriors

CE 2.024
SGD 1.94
NG 1.833
HF 1.972

NGHF 1.927
Table 7.8 Average entropy of the DNN frame posteriors at the end of training of sigmoid
DNN models using di�erent optimisers.

Compared to the feed forward architectures, the RNN models investigated in this
section have far fewer parameters. From Table 7.7 and Table 7.6, it was observed that
the method of NGHF although being agnostic to the choice of activation function doesn’t
achieve the best WER reductions on the validation set. Figure 7.5 and Table 7.8 seems to
suggest that for small models, the method appears to over regularise the decrease in the
entropy of the DNN frame posteriors. To investigate this, the next section investigates
using RNNs with a larger output layer (hence more parameters).
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7.7.4 Experiments on 200hr MGB1 training set

Table 7.9 compares the performance of various optimisation methods on training the 200hr
ReLU RNN model while Table 7.10 compares the optimisers on training an equivalent
sigmoid model. As in the 50hr case, all 3 batch style optimisation frameworks can be
seen to be more e�ective in achieving greater WERRs from sequence training that SGD.
From Table 7.9 and Table 7.10, it can be seen that NGHF with the MPE LM achieves a
relative WERR of 5% for both the ReLU and sigmoid model over CE. Over SGD, the
method achieves a relative WERR of 4% for the ReLU model and 3% for the sigmoid
model.

Comparing the average entropy plot given in Figure 7.5 with plot in Figure 7.6, it
seems the method of NGHF becomes better in finding a balance between improving the
MPE criterion and regularising the entropy changes of the DNN frame posteriors as we
increase the model size. In future work, this will be investigated further.

method #epochs #updates phone acc. WER
train dev.sub dev.sub

CE N/A N/A 0.825 0.736 38.7
SGD 4 4.63 ◊105 0.851 0.748 38.5
HF 8 64 0.854 0.757 37.0
NG 5 40 0.862 0.768 37.3

NGHF 10 80 0.854 0.759 37.0
Table 7.9 shows the performance of di�erent optimisers on the 200hr ReLU RNN. The
WERs shown at the last column were computed using the weak pruned biased LM used
in MPE training.
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Fig. 7.6 Evolution of average entropy of ReLU RNN frame posteriors with di�erent
setups of SGD.

method #epochs #updates phone acc. WER with
train dev.sub MPE LM

CE N/A N/A 0.80 0.725 39.9
SGD 4 4.63 ◊ 105 0.858 0.749 39.1
NG 9 72 0.854 0.751 37.9
HF 10 80 0.846 0.743 38.3

NGHF 7 56 0.844 0.742 38.1
Table 7.10 shows the performance of di�erent optimisers on the 200hr sigmoid-RNN.
The WERs shown at the last column were computed using the weak pruned biased LM
used in MPE training.

To investigate whether the relative reductions in WER are not constrained to the
choice of LM, decoding on the validation set was performed using the 158k LM. Table
7.11 compares the results: the NGHF method achieves a relative WERR of 4% for the
ReLU model and 6% for the sigmoid model over the CE trained model. Over SGD, the
method achieves a relative WERR of 4% for the ReLU model and 3% for the sigmoid
model.
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Model CE MPE
SGD NG HF NGHF

RNN-ReLU 29.7 29.6 29.2 28.9 28.5
RNN-sigmoid 31.0 30.4 29.2 29.6 29.3

Table 7.11 WERs on MGB1 dev.sub from sequence training RNNs with 158k trigram
LM.

Finally, the generalisation performance of the trained models were estimated by
performing Viterbi decoding on dev.sub2 using 158k LM. Results are shown in Table
7.12. It can be observed that NGHF achieves the best reductions in WER from sequence
training for both the ReLU and sigmoid model. Over CE, the method can be seen to
achieve a relative WERR of 5% for the sigmoid model and 4% for the ReLU model. Over
SGD, the proposed method achieves a relative WERR of 3% for both the ReLU and
sigmoid based model. These gains were found to be statistically significant (sign test of
the WERs at the episode level).

Model CE MPE
SGD NG HF NGHF

RNN-ReLU 31.1 30.8 30.7 29.8 29.8
RNN-sigmoid 32.2 31.6 30.6 30.7 30.5

Table 7.12 WERs on MGB1 dev.sub2 from sequence training RNNs with 158k trigram
LM.

7.8 Summary
This chapter discussed the design considerations needed for developing an e�ective
optimisation algorithm for the DNN function space M, and presented a novel optimisation
approach to probe this space. The chapter began with the development of the geometric
structure of the function space captured by di�erent parameter realisations of a DNN
model, and discussed the property needed for optimisation methods to be well defined on
this space. In Sec. 7.3, an alternative derivation of Taylor’s theorem was presented using
the concepts of manifolds, tangent vectors and directional derivatives from the perspective
of Information Geometry. Using this alternative formulation of Taylor’s theorem, it was
shown how first and second order optimisation problems can be formulated as equivalent
minimisation problems in the tangent space of X without any Riemannian structure.
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By elucidating the tangent space with a Riemannian metric of the form of the Fisher
Information, the method of NGHF was developed in Sec. 7.5. When framed within
a Hessian Free style optimisation framework, the method enjoys the same benefits as
HF in terms of stability and being data parallel but by utilising both the direction of
steepest descent on a probabilistic manifold and local curvature information, the method
was shown to be more e�ective in achieving consistent WER reductions from sequence
training. The e�cacy of the method was shown in Sec. 7.6 using experiments on 200hr
MGB1 training set with di�erent feed forward architectures. With sigmoid based models,
the method achieved a relative WERR of 1% with the DNN and 3% with the TDNN
over SGD. Whereas with the ReLU models, the method achieved a relative WERR of 7%
with the DNN model and a 2% with the TDNN over SGD. Compared to HF, the method
gave a further WERR of 3% with the DNN-ReLU model and 1% with the TDNN-ReLU
model. These gains were found to be statistically significant (at the episode level). The
performance of the various optimisers were also compared in training RNN models for
the 50hr and 200hr MGB1 training set. On the 200hr training set, the method of NGHF
was found to lead to the best reductions in WER from sequence training for both the
ReLU and sigmoid models. This presents a promising argument that proposed method
of NGHF is agnostic to the choice of activation functions and is quite e�ective in getting
WERR from sequence training for large models.





Chapter 8

Conclusion and Future Work

8.1 Conclusion and Key Contributions
DNNs due to their deep and complex structure have the ability to e�ectively model the
underlying non-linear data manifold. However, from experiments with sequence training
of various DNN acoustic models, it was observed that although the structure of these
models give rich modelling capability, it also creates complex dependencies between model
parameters that makes learning di�cult with gradient descent. This thesis focused on
developing alternative optimisation techniques to train hybrid HMM-DNN models more
e�ectively with discriminative sequence training. The work primarily investigated the
design of batch styled optimisation frameworks that require far fewer updates than SGD
and can be extended to a synchronous distributed setting. Furthermore, unlike ASGD,
the frameworks proposed here are both mathematically sound and have the ability to
produce identical results on repeated runs.

The major contributions of this thesis are summarised below:

1. An implementation of the Hessian Free optimisation framework was presented that
is inherently data parallel in terms of gradient computation.

2. A procedure to stabilise CG training, that allows e�ective updates to be found in
only a few iterations of the algorithm, was devised. It was also shown how the CG
algorithm can be modified to yield updates that result in larger WER reductions
for models with tied parameters.

3. The method of Natural Gradient was extended to the domain of Minimum Bayes
Risk discriminative sequence training for hyrbid HMM-DNN models. In the DNN
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literature, the method has been previously applied for non-sequence classification
tasks within frameworks that employ a block diagonal approximation of the Fisher
Information (FI) matrix. This work makes no such assumption about the structure
of the matrix and uses a stochastic estimate of the FI matrix. When framed within
an HF styled optimisation method, the method was shown to achieve both better
and faster convergence (w.r.t. number of updates) than variants of HF. On sigmoid
DNNs trained on the 200hr MGB1 dataset, the method was shown to achieve a
relative WER reduction of 8% over CE on both the dev.sub and test dataset. Over
SGD, the NG method on average was shown to provide approximately a 1% relative
WER reduction (statistically significant at the episode level) in WER.

4. Instead of making a strict assumption on the structure of the FI matrix, this thesis
derived an alternative dampened positive definite Fisher matrix, which when used
with CG has the property that directions considered important by the empirical
Fisher are first traversed during the initial stages of a CG run.

5. The issue of overfitting due to mismatch between training criterion and WER that
primarily arises during sequence training of ReLU-DNN models was addressed. It
was shown how this particular form of over-fitting can be alleviated by scaling the
update directions with the Gauss Newton matrix.

6. The geometric structure of the function space captured by di�erent parameter
realisations of a DNN model was developed. The property needed for an optimisation
method to be well defined on this space was also presented.

7. Introduced NGHF, a novel optimisation approach that combines the method of
Natural Gradient with second order approaches. The method is derived from an
alternative derivation of Taylor’s theorem using principles from Information Geome-
try and manifold theory. When framed in an HF style optimisation framework, the
method enjoys the same benefits as HF in terms of being inherently data parallel
in gradient computation. But, by utilising both the direction of steepest descent
on a probabilistic manifold and local curvature information, the proposed method
is shown to converge to a better solution than any of the other methods within few
updates. On models trained on the 200hr MGB1 training set, the e�cacy of the
method is shown to be agnostic to the choice of the network activation function.
With standard DNNs, the method achieved a relative WERR of 7% on the test set
for both ReLU and sigmoid models over CE. When applied to train sub-sampled
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TDNNs, the relative WERRs corresponded to 7% for the sigmoid model and 4%
with the ReLU model. Over SGD, the method was observed to consistently get
larger WER reductions while making far lesser updates. The e�ectiveness of the
approach was also found to extend to 200hr systems trained with standard RNNs.
On the test set, the NGHF method was observed to lead to consistent lead to the
greatest reductions in WER for ReLU and sigmoid models.

8.2 Future Work
A natural extension of this thesis is to extend the methods developed in this work to a
synchronous distributed setting. As the proposed methods by design are inherently data
parallel in terms of gradient computation, these computations can be parallelised across
multiple machines. In collaboration with Dr.Chao Zhang1, the methods proposed in this
thesis will be extended within a distributed framework that has three distinct stages:

1. Parallel gradient computation: in Sec 5.5.2, it was shown how the gradient com-
putations dominate the computation cost (measured in terms of elapsed time) in
the implemented batch styled HF optimisation framework. In a distributed setting,
this computation can be easily distributed, resulting in a significant decrease in the
overall elapsed time of training. Figure 8.1 shows the operation of this process.

1
Research Associate in Machine Intelligence Laboratory, Department of Engineering, University of

Cambridge
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Fig. 8.1 Parellel gradient computation

2. Parallel CG runs: To reduce the cost associated with individual CG iterations,
this thesis employs a sub-sampled approach where an approximation of the Gauss
Newton or the FI matrix is made using only 0.5 hrs of sampled data. The motivation
behinds this approach stems from the observations made by [155], where the author
discovered that with inexact Newton methods, the estimate of the Hessian matrix
need not be as accurate as the gradient to yield an e�ective update. If the CG
mini-batch is chosen to be small, the cost of each CG iteration can be reduced
significantly. But on the other hand, the size of this subset should be at least
large enough for the information carried by the matrix vector products to be
productive. In the distributed framework, to reduce the noise associated with the
approximation of the various matrices, the individual CG runs will be parallelised
across multiple machines. In this setting, each worker will start with the same
accumulated gradient direction but will be operating on a di�erent sampled mini-
batch. Figure 8.2 illustrates this process. In addition to reducing the noise of the
CG updates, having workers operating with di�erent CG mini-batches has one
other potential advantage. Recall, how the update direction proposed at each CG
iteration corresponds to:

�◊k+1 Ω �◊k + akdk
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where dk represents the current conjugate direction. In Sec. 5.2.1, it was discussed
how the algorithm initially focuses its search along the subspace spanned by the
eigenvectors with the largest eigenvalues [131]. For di�erent CG mini-batches, this
subspace will be most likely di�erent. This might allow the parallel CG framework
to traverse along a larger subspace for the same number of CG iterations.

Fig. 8.2 Parallel CG runs

3. Model averaging: the updates produced by the di�erent CG workers will be passed
to a model averaging stage. Modelling averaging belongs to the class of approaches
known as ensemble methods. In this particular form of ensemble learning, a number
of classifiers are trained separately on di�erent portions of the dataset. Since each
classifier has been trained on a di�erent portion of the dataset, it has learned
a di�erent ‘aspects’ of the data and will not make the same mistake as others.
It is believed by combining the model parameters, a stronger classifier can be
yielded which is less prone to overfitting. In [166, 172], it has been argued that
averaging the parameter vectors from di�erent workers can help reduce the variance
associated with update directions and improve convergence to a better solution.
Such an approach has been shown in [173] to particularly useful at the latter stages
of training. Building on these works, the CG updates will be averaged before being
applied to the global model. Such a framework has the flexibility that apart from
decreasing the noise associated with the CG mini-batch, the updates can come
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from di�erent methods. For example some CG workers may be propagating an
estimate of the NG direction while others can propagate an equivalent HF direction.
Hence, this framework can provide an alternative way to combine the NG method
with second order approaches.

Apart from extending the methods to a distributed setting, future work will involve
applying the methods developed in this thesis to training di�erent recurrent architectures
such as LSTMs and bi-directional RNNs. It will be interesting to observe how optimisation
methods, designed to exploit the underlying geometric structure of the DNN function
space, improve the ability of these models to maintain information about important
events across multiple time steps. Finally, in Appendix B.1, it is shown how the GN
matrix for the MBR objective function is not guaranteed to be positive definite. Future
work will investigate in constructing an appropriate divergence on the space of M such
that the associated Riemannian metric encapsulated information of the MBR loss.



Appendix A

Elements of Di�erential Geometry

This section gives a brief introduction on the concept of manifolds, tangent vectors and
directional derivatives from the perspective of di�erential geometry. The section begins
with a formal description of a smooth manifold X and introduces the concept of a tangent
vector associated with each point in X. By utilising the notion of a tangent space, the
concept of directional derivatives is then defined.

Conceptually, a manifold corresponds to any geometric object embedded in Rk that
is locally Euclidean i.e any local patch of the object is topologically equivalent to an
open unit ball in a smaller dimensional Euclidean space. In R3, curves and surfaces are
examples of an embedded manifold. When movement is constrained only along these
objects, the degrees of freedom with which one can traverse is lower than dimensionality
of the embedded 3 dimensional space.

A.1 Formal definition of a manifold
A topological manifold X of dimension D is a second countable Hausdor� topological
space that is locally homeomorphic to RD; that is, for any point ◊ œ X, there exists an
open neighbourhood U of ◊ and a homeomorphism g : U æ O µ RD, where O is open
in RD. We call the homeomorphism g : U æ O a chart, and the neighbourhood U a
coordinate neighbourhood of ◊.

To clarify for the reader, in topology the concept of a homeomorphism is equivalent to
a bijective continuous map and the concept of Hausdor� means that for any two points
◊̂, ◊̄ œ X, it is always possible to find disjoint open neighbourhoods that contain each
point.
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Let ri : RD æ R denote the projection onto the ith coordinate. Given a chart
g : U æ O µ RD, let ◊i : ri ¶ g : U æ R. The functions ◊i are the local coordinates w.r.t
the chart g on U . Having established a notion of what it means to be manifold, the next
concept that will be introduced is the concept of a tangent vector. To formally define
the concept of a tangent vector at any point ◊ œ X, it is first necessary to formalise the
notion of germs associated with a given point in a manifold.

A.2 Germs
Let X be a manifold and ◊ œ X. Functions f , g defined on open subsets U , V respectively
containing ◊ are said to have the same germ at ◊ if there exists a neighbourhood W of
◊ contained in U fl V such that f |W © g|W . The notion of germs therefore defines an
equivalence relation on the space of functions defined on an open neighbourhood of ◊

where (U, f) ≥ (V, g) if and only if there exists a neighbourhood W of ◊ contained in
U fl V such that f |W © g|W . Let CŒ

◊
be the set of all such equivalent function classes.

Having defined the concept of class of germs associated with a given point ◊ œ X, the
necessary machinery is now in place to define the concept of a tangent vector associated
with the point ◊ œ X.

A.3 Tangent vector
A tangent vector v at given point ◊ œ X is a linear derivation of CŒ

◊
, that is it a special

form of a linear map CŒ
◊

æ R that satisfies the property v(f · g) = f(◊)v(g) + v(f)g(◊)
where f · g denotes the product of functions f and g œ CŒ

◊
. The tangent vectors form a

real vector space in the obvious way; this space is denoted by T◊(X) and is called the
tangent space to X at ◊.

The concept of tangent vectors is necessary to do calculus on manifolds. Since
manifolds are locally Euclidean, the usual notions of di�erentiation and integration make
sense in any coordinate chart and can be carried over to manifold space.

Basis for Tangent space Let (◊i, ◊2, · · · ◊D) denote the standard coordinates of
the parameter space X. Consider the operator ˆ

ˆ◊i

|◊ defined by ˆ

ˆ◊i

|◊(f) = ˆf

ˆ◊i

(◊). Then

the set
Ó

ˆ

ˆ◊i

|◊
Ô

i
can be shown to be linear derivations of CŒ

◊
and hence members of
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T◊(X). Furthermore, for ’◊j, each operator in this set satisfies

ˆ

ˆ◊i

|◊(◊j) =

Y
_]

_[

1 i © j

0 otherwise

It can be shown that, by satisfying the above constraint, the members of { ˆ

ˆ◊i

|◊}i

correspond to a basis of T◊(X). Therefore, w.r.t this basis if v œ T◊(X) then v =
q

i ai ˆ

ˆ◊i

|◊.

A.4 Concept of directional derivative
Let � : X æ N be a vector valued function that corresponds to a smooth map between
two manifolds. The directional derivative of � at any point ◊ œ X is the linear map

d�|◊ : T◊(X) æ T�(◊)(N)

defined by:
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ÿ
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(A.1)

where { ˆ

ˆyj

|�(◊)}j denotes the basis of T�(◊)(N) and J� is the Jacobian of � at the given
point ◊. Each coordinate of ˆ

ˆyj

|�(◊) then corresponds to the directional derivative of �j

w.r.t ◊. Under the above construction, the chain rule can be seen to be tautologous: if
� : N æ P is a smooth map of smooth manifolds such that � ¶ � : M æ P is defined
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then

d(� ¶ �)|◊(
ÿ

i
ai ˆ

ˆ◊i
|◊) = ( ˆ

ˆsi

|�(�(◊)),
ˆ

ˆsi

|�(�(◊)), · · · ˆ

ˆsk

)J�J�

S

WWWWWWU

a1

a2

...
aD

T

XXXXXXV

(A.2)
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B.1 Issues with the Gauss Newton
In the context of DNN models, the GN matrix takes the particular form :

1
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2T 1
Ò2

L
r

obj,t
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J
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where

• Ò2
L

r

obj,t is the Hessian of the objective function with respect to DNN output
activations at time t for the r-th utterance.

• J
r

◊,t
is the Jacobian of the output activations of the network w.r.t the parameters

at time t for the r-th utterance.

For MBR loss functions, Ò2
L

r

obj,t takes the following form:
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diag(“r
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(B.1)

with “̂
r

t
= “

r

t
§ L(s). Here,

• L(s) is a vector whose ith entry corresponds to the di�erence between Ľ(i), the
posterior weighted sum of the local losses computed over all the lattice paths that
pass through arcs containing the state i, and cL

avg
, the posterior weighted sum of

the loss computed over all the lattice paths.

• the normalisation coe�cient R corresponds to the total number of utterances.

• “
r

t
is a probability vector whose entries correspond to the posterior probability

associated with the states(DNN output nodes) at time t within the consolidated
lattice of the rth utterance.
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• Ÿ as the acoustic scaling factor

If we assume L(s) to be a vector of 1s, then matrix
Ë
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However, in the context when L(s) is not constrained to be a vector of 1s, Ò2
L

r

obj,t

is no guaranteed to a positive semi definite matrix. Thus w.r.t MBR criteria, the GN
matrix is not guaranteed to be positive semi-definite.

B.2 Gradient of ML objective function
For HMM-DNN models, the ML objective function when framed in the form of a cost
function corresponds to:

FML(◊) = ≠ 1
R

Rÿ

r

log p◊(Hr, Or|M) (B.2)

where M is space of the all probability densities captured by di�erent DNN parameter
realisations. Let bj(ot) denote p◊(ot|Ō, „t(j) = 1) and aij denote the transition probability
P◊(„t(i) = 1|„t≠1(j) = 1). Then,
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where “
r

t
encodes the posterior probabilities of individual states in the composite

HMM model constructed from the correct hypothesis. Using the above derivation,
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In vector notation, the ML gradient w.r.t DNN output activations is then the vector:
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(B.5)
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When compared to MMI training, “
r

t
here is equivalent to “

r,Num

t ,the posterior
probabilities of individual states in the numerator lattice.



Appendix C

Dataset Descriptions

C.1 Debugging dataset
For this work, the debugging dataset used is the WSJ0 [174] SI84 training set from the
Wall Street Journal. This particular training set consists of 7185 utterances recorded from
84 speakers and roughly encapsulates 15 hours of speech. Details of data preparation
can be found in [116].

C.2 Details of 50hr and 200hr MGB1 dataset
The DNN training techniques investigated in this work were evaluated on data from
the 2015 Multi-Genre Broadcast ASRU challenge task (MGB1) [21]. The full audio
data consists of seven weeks of BBC television programmes with a raw total duration of
1,600 hours, and was sampled at a 16kHz sampling rate. The data covers a full range of
genres, e.g. news, comedy, drama, sports, quiz shows, documentaries etc. The audio was
pre-processed using a lightly supervised decoding process. Systems were trained using a
200hr training set sampled randomly from 2,180 shows for which the subtitles and the
lightly supervised output had a phone matched error rate of less than 20% [175]. This
sampled training set consists of 115,932 utterances that were automatically clustered
into 10,930 speaker clusters [176]. For preliminary experiments, a 50 hour subset evenly
sampled from this set was used. This consists of 32,771 utterances and 3,272 speaker
clusters.

Choice of validation and test set: The o�cial dev.sub set was employed as a
validation set and consists of 5.5 hours of audio data from across 12 episodes. A separate
evaluation set was used to estimate the generalisation performance of each candidate
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model. For our experiments we took the remaining 35 shows from the MGB1 dev.full
and denote this set as dev.sub2 for evaluation purposes. The segmentations used for all
experiments were taken from the reference transcriptions. Further details of the data
preparation are in [22].
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