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Abstract

Spatial correlation between densely deployed sensor nodes in a wireless sensor network

(WSN) can be exploited to reduce the power consumption through a proper source coding

mechanism such as distributed source coding (DSC). In this paper, we propose the Decod-

ing Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the

classical DSC by employing the decoding delay concept which enables the use of the maxi-

mum correlated portion of sensor samples during the event estimation. In D-DSC, network

is partitioned into clusters, where the clusterheads communicate their uncompressed sam-

ples carrying the side information, and the cluster members send their compressed sam-

ples. Sink performs joint decoding of the compressed and uncompressed samples and then

reconstructs the event signal using the decoded sensor readings. Based on the observed

degree of the correlation among sensor samples, the sink dynamically updates and broad-

casts the varying compression rates back to the sensor nodes. Simulation results for the

performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event

communication and estimation for practical signal detection/estimation applications having

massive number of sensors towards the realization of Internet of Sensing Things (IoST).

Introduction

Internet of Things (IoT), which defines the seamless interconnection and autonomous coordi-

nation of massive number of sensing and computing elements and physical entities through

the Internet infrastructure, is an emerging research direction towards the long-standing goal

of enabling the connected Universe. WSNs have evolved into Internet of Sensing Things

(IoST) as part of the Internet of Things (IoT) [1], and now stand as one of the driving forces

for the IoT framework [2]. The most critical challenge in IoST applications is the power limits

as it is not practical to recharge the batteries of massive number of devices. Power consump-

tion can be divided into three parts: sensing, communication, and data processing. The power

usage of a sensor node is dominated by communication: transmission and reception [3].
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Therefore, the lifetime of the sensor nodes is highly related with the amount of information to

be communicated as throughly investigated in [4].

There have been several approaches to overcome the power limitations and increase the

lifetime of IoST applications, such as the recently introduced framework of energy harvesting

Internet of Things [5, 6], and ultra-low power sensor networks exploiting the receive diversity

with spatially separated antennas [7–9]. In this paper, we focus on data compression with the

motivation to reduce the redundancy in the information. Due to dense deployment of network

nodes, IoST applications operate with spatial redundancy [10–13]. The spatial redundancy can

be exploited by source coding. In this way, a node can reduce the number of bits to be trans-

mitted with no or very small loss of the information. Recently, the source coding is dominated

by Distributed Source Coding (DSC) because it only requires the correlation between the sen-

sors for the compression [10, 11, 13–18]. The DSC is especially promising for sources with

high correlation; this is always the case for densely employed sensor networks [19].

DSC can be defined as the compression of multiple correlated samples of sensors that do
not communicate with each other and joint decoding of these compressed samples at the central

point (sink in our case) [13]. DSC is first introduced by Slepian and Wolf [20] theoretically

showing that separate encoding (with increased complexity at the joint decoder) is as efficient

as joint encoding for lossless compression. Similar results were obtained by Wyner and Ziv

[21] with regard to lossy coding of jointly Gaussian sources.

In recent years, the basics of DSC concept are carried out in WSNs. However, most of these

works [11, 13–16, 18] only deal with data compression algorithms of spatially distributed sen-

sor samples, in which a correlation model between sensor samples is used. As a correlation

model, some predefined constant models [22] are used regardless of sensor data, which is not

realistic for many practical WSN applications. [10] uses dynamic correlation model in which

data compression and correlation update algorithms are introduced for small size networks,

and not applicable for large size networks. Moreover, it is incomplete to be used in practical

WSN applications.

Some practical usages of DSC in WSNs are introduced in [23–30]. DSC is used for data

compression of low frequency signal components in [24]; and for the effective usage of DSC in

practical WSN applications, energy efficient transmission protocol [23] and routing optimiza-

tion [25] are introduced. [17] utilizes the syndromes to perform DSC, but it does not support

varying-rate applications. These works do not effectively exploit the DSC in data compression.

DSC compression performance is optimized by applying DSC sequentially among sensor

nodes in [26] and [27]. Although all these algorithms try to maximize the achievable compres-

sion rate for DSC, their performance highly depends on sensor deployment and works well

especially for large node density distributions. Therefore, a complete and unified communica-

tion solution exploiting the potential advantages of DSC and inherent correlation characteris-

tics of WSN is yet to be developed. This reason is the main motivation for us to introduce

D-DSC.

In this paper, we present complete and unified solution, Decoding Delay-based Distributed
Source Coding, D-DSC, which incorporates DSC and decoding delay concept in WSN. D-DSC

improves the encoding and joint decoding concepts of classical DSC, and it significantly

reduces the power consumption of the nodes by maximizing the compression rates (Y) by

exploiting propagation delay between sensor readings. For the topology independent applica-

tions, D-DSC employs a self-organizing cluster-based structure and correlation tracking

method for adaptation to any changes in network. D-DSC also incorporates the reliability con-

trol and retransmission mechanism to achieve the desired event distortion bound (Dmax).

Salient features of D-DSC are as follows.
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Maximum Compression—Sensor nodes receive the same source signal with different prop-

agation delays and attenuations as explained in Section 2.2. As the delay increases, the similar-

ity between sensor samples decreases and it results in a decrease in compression rate. To this

end, D-DSC increases the correlation between sensor readings by delaying or advancing some

sensor node data in transmission. In this way, D-DSC maximizes the correlation and compres-

sion rate at the expense of increasing latency. Since DSC only exploits the correlation between

the raw sensor measurements, it is expected that significant improvements can be provided in

delay tolerant applications by utilizing D-DSC. We also introduce an efficient joint decoder to

reconstruct the maximally compressed data at the sink. Details of D-DSC compression algo-

rithm and joint decoder are given in Section 2.2 and 3.2, respectively.

Self-organizing—Since the failure of nodes and change in the topology is highly probable in

WSNs, D-DSC is design to have self-organizing capabilities. Therefore, D-DSC learns about

the topology and organizes the network into clusters by using the correlation between sensor

samples. In this way, D-DSC can be used in any WSN application regardless of network topol-

ogy. Details of self-organizing feature and clustering algorithm are given in Section 3.1.

Adaptive—The network topology may change frequently due to malfunctioning nodes or

the mobility of the event. To monitor these changes and avoid the performance degradation,

D-DSC continuously updates the correlation estimate between sensor samples and reorganizes

the clusters in order to adapt the topology changes, as explained in Section 3.2.1.

Reliability Control—D-DSC maximally compresses data in sensor nodes and reduces the

redundancy in sensor readings. Thus, any packet loss will have significant impact on the accu-

racy of the vent estimation. To this end, D-DSC continuously monitors the packet loss rate

and event distortion (De) to request retransmissions from appropriate sensor nodes. D-DSC

determines the contribution of all sensor nodes on the event estimation and find the minimum

number of retransmissions required to achieve the desired event distortion bound (Dmax) as

discussed in Section 3.2.2.

Lightweight Encoder—The complexity of the encoder have important effects on the cost of

the application. Therefore, D-DSC adopts a simple tree-based encoder as in [10]. Therefore,

D-DSC is applicable for any sensor node used in WSN applications.

The remainder of the paper is organized as follows. The basic principles and architecture of

D-DSC are specified in Section 1. A correlation model identifying the relation between opti-

mum compression rate and spatial correlation between sensor nodes is derived in Section 2.

The reliability mechanism adopted by D-DSC, the notion of decoding delay, and algorithm

operations are given in Section 3. Performance analysis and simulation results are presented in

Section 4. Lastly, the conclusions are presented in Section 5.

1 Sensor data model of D-DSC and network architecture

In this paper, we assume that there are M omni-directional sensor nodes which are densely

deployed and L point sources which are located randomly. In this model, sensor nodes receive

the source signals with different propagation delays and magnitudes, varying according to the

distance between the source and the sensor node. In addition, there is a random noise on the

observed signal at each sensor. Therefore, data observed at each sensor node are represented as

xmðnÞ ¼
XL

l¼1

e� lrm;l sl n �
rm;l
vs

� �

þ wðnÞ; 1�m�M;
1�l�L

; ð1Þ

where λ is the attenuation coefficient, rm,l is the distance between sensor node m and lth event

source, and vs is the propagation speed of the source signals. sl(n), xm(n) and w(n) are the lth

source data, received data at the sensor node i, and noise at discrete time n, respectively. It is
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assumed that the sensor samples, xm(n), 1�m�M are statistically stationary in time and

zero-mean random processes.

There is one sink which controls the sensor nodes and processes the received sensor sam-

ples. In D-DSC, one of the sensor nodes, called master node which sends its raw (uncom-

pressed) data, while the other nodes send their compressed data to the sink. From the DSC

point of view, master node data is utilized as a side information at the joint decoder at the sink.

The encoding bit numbers are determined by the sink and notified to all nodes periodically.

Therefore, all the sensor nodes send their data in different bit numbers according to their cor-

relation with the master node.

2 Data compression

In this section, data compression algorithm based on Distributed Source Coding (DSC) is

explained and the propagation delay concept which maximizes the correlation between sensor

nodes is introduced.

2.1 Distributed Source Coding

DSC is based on compression of one sensor samples by using the other correlated sensor sam-

ples. Assume that samples of sensor node j are received correctly at the sink. Then, sending the

differences between samples of sensor nodes i and j suffices to correctly reconstruct the sam-

ples of sensor node i. Instead of sending the original samples of sensor node i, sending the dif-

ferences saves the transmitted bit number. On the other hand, the communication between

sensor nodes are restricted in WSNs due to power limitations. Theoretical results in [20] and

[21] show that the compression can be performed without knowing the samples of the other

sensor data by utilizing just the correlation between them. In this way, the decoder can predict

the sensor data by utilizing the side information from the master node and compressed data

from the slave nodes.

2.1.1 Encoding. For simplicity, the encoding process is realized by using a tree-based

encoder [10] in which the root-codebook and the sub-codebooks are used as in Fig 1. Sub-

codebooks are determined by partitioning the root-codebook into two subsets consisting of

even indexed ones and odd indexed ones. Repeating this process n times yields n-level tree

structure that contains 2n sub-codebooks. Samples of master nodes are encoded simply by

finding the closest representation of the data from the 2nu values in the root-codebook

(this is typically done by an A/D converter). For encoding process of slave nodes, the

encoder first finds the closest representation of the data from the 2nu values in the root-

codebook and then determines the sub-codebook that samples of slave node belongs to at

level-n, where n is the minimum number of bits for encoding slave node data. The path

through the root-codebook to this sub-codebook specifies the bits that are transferred to the

sink [10].

2.1.2 Joint decoding. To be compatible with the encoders used in sensor nodes, the sink

uses tree-based decoder [10] in which the samples of master node are decoded simply by con-

verting the received nu-bit value in the root-codebook to the data (this is typically done by a

D/A converter). The decoder receives ni,j-bit value, f(ni,j), from the encoder of node i in cluster

j. The decoder traverse the tree starting with the least significant bit (LSB) of f(ni,j) to determine

the appropriate sub-codebook C(i) to use. The decoder then selects the value from C(i) which

is the closest to the side information (samples of master node) and converts this value to the

data [10]. If the side information is less than4sc/2 away from the samples of slave nodes, no

decoding error occurs.4sc is the spacing between the representative code values in the sub-
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codebook [10] which is represented as

4sc ¼ 2
ntri;j4; ð2Þ

where ntri;j is the minimum number of bits for encoding of slave nodes without decoding error

in tree-based encoder and4 is the spacing between representative code values in the root-

codebook [10]. Then, ntri;j can be found using the relation

4sc

2
� jei;jðnÞj;

2
ntri;j � 1
4 � jei;jðnÞj;

ð3Þ

where ei,j(n) is the difference between samples of sensor nodes i and j. As stated in [10], ntri;j is

found from (3) as,

ntri;j ¼
1

2
log2

s2
ei;j

4
2Pe

 !

þ 1; ð4Þ

where s2
ei;j

is the variance of ei,j(n), and Pe is the maximum probability error that ei,j(n) is

greater than4sc, i.e., P½jei;jðnÞj > 2
ntri;j� 1
4� � Pe.

2.2 Maximum-correlation based Distributed Source Coding

The minimum number of bits for encoding of slave nodes can be obtained by minimizing the

variance of the difference between sensor samples and the side information, s2
ei;j

as in (4). To

this end, the minimum difference between samples of sensor node i and j for the data model

Fig 1. A tree based compression.

https://doi.org/10.1371/journal.pone.0193154.g001
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that we utilized (1), can be defined as

ei;jðnÞ ¼ xiðnÞ � xxjðn � mÞ; ð5Þ

where xj(n − m) is the delayed version of samples of node j by m samples, and ξ is a real positive

value that is used to equalize the signal power in node j to in node i, which may be different

due to the attenuation in propagation (λ) in (1). For the real valued samples, the minimum

error in Mean-Square Error (MSE) sense can be found by minimizing (5) with respect to both

ξ and m as

ei;jðnÞ ¼ xiðnÞ �
Ri;jðdi;jÞ

s2
j

xjðn � di;jÞ; ð6Þ

and the minimum variance of the sample difference is found as

s2
ei;j
¼ s2

i �
R2
i;jðdi;jÞ
s2
j

; ð7Þ

where s2
i and s2

j are the variances of samples of node i and j, respectively. Ri,j(m) is the correla-

tion function. The derivation of (6) and (7) is given in S1 Appendix. di,j is the sample difference

between the maximum correlated data portion of node i and node j, which is defined as

di;j ¼ arg max
m
fRi;jðmÞg; ð8Þ

If we assume xi(n) and xj(n) are jointly ergodic processes, correlation function can be esti-

mated as

Ri;jðmÞ �
XN� 1

n¼0

x�i ðn � mÞxjðnÞ; ð9Þ

where N is the number of samples used in correlation estimation.

As in (6) and (7), D-DSC finds the maximum correlated data portion of sensor samples to

minimize the sample differences. As the sample differences are minimized, D-DSC requires

less number of bits for encoding slave node samples. The required minimum number of bits

for encoding the samples of node i when samples of node j are used as the side information in

the sink can be found for D-DSC by substituting (7) into (4), i.e.,

nD� DSCi;j ¼
1

2
log 2

s2
i �

R2
i;jðdi;jÞ
s2
j

4
2Pe

0

B
B
B
@

1

C
C
C
A
þ 1 ¼ log 2

si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

i;j

q

4
ffiffiffiffiffi
Pe
p

0

@

1

Aþ 1; ð10Þ

where ρi,j is the correlation coefficient expressed as

ri;j ¼
Ri;jðdi;jÞ

sisj
: ð11Þ

3 D-DSC protocol operation

This section explains the operational phases of D-DSC protocol including cluster organization,

separate encoding and joint decoding processes, as well as network adaptation. In D-DSC, sen-

sor nodes are responsible for only encoding operation. On the other hand, the sink performs

three main components of D-DSC, namely virtual clustering, joint decoding and network

Decoding Delay-based Distributed Source Coding
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adaptation, each of which is defined next in detail. The pseudocodes describing the operation

of the sink are given in Algorithms 1 and 2 at the end of this section.

3.1 Virtual clustering

The attenuation of the event signals (λ) and the noise on the sensor outputs result in a signifi-

cant decrease of the correlation between the sensor samples with increasing distance between

the sensor nodes. It can be also revealed from (10) that the compression rate is exponentially

degraded with decreasing correlation. Therefore, compressing the data of all the sensor nodes

based on the side information of a single master node does not seem to be rational, especially

for large networks. Hence, minimizing power consumption requires organizing the network

into clusters to use multiple master nodes for data compression.

D-DSC is a self-organizing protocol, and thus, at initialization phase it has to learn the net-

work topology and determine the energy-efficient clustering. In this phase, the sink requests

all the sensor nodes for their raw sensing data, and computes the correlation coefficients as in

(11) for each pair of sensor nodes (i, j).
D-DSC uses a virtual clustering in which only the sink knows about the node type, i.e., (mas-

ter or slave). Sensor nodes only know the number of encoding bits (ni,j). Virtual clustering is

performed by controlling two parameters, ρi,j and di,j, depending on whether or not they satisfy

the following clustering conditions

ri;j � rth;

jdi;jj � dthfs;
ð12Þ

where ρth is the correlation coefficient threshold determined by the sink, dth is the delay bound

or application-specific deadline in seconds referring to the maximum allowable latency in

communication, and fs is the sampling frequency of the sensor samples.

The initial clustering is performed as follows. Among the nodes that do not belong to any

cluster, the sink determines the master node j which is correlated with the largest set of

remaining nodes satisfying the clustering conditions in (12). Node j is assigned as the master

node, and the sensors in its correlated set are assigned as the slave nodes of cluster j.
Increasing correlation threshold (ρth) seems to be an effective way of increasing compres-

sion rate. However, this may not be always true, as the number of clusters (K) and master

nodes increases with increasing (ρth). This amplifies the power consumption in the entire net-

work as the master nodes are always required to send their uncompressed data to the sink.

Thus, ρth should be selected optimally by solving the following inequality constraint optimiza-

tion problem,

minimize Etot ¼ E
XK

j¼1

XMj� 1

i¼1

ni;j þ nu

" #

;

subject to r�
1
� rth � r�

2
;

where nu is the number of bits used for uncoded data transmission (side information), ni,j is the

number of bits used by node i in cluster j for encoding its raw data (10), and r�
1

and r�
2

are posi-

tive real numbers which depend on the system parameters. K and Mj are the number of clus-

ters and the number of sensor nodes including master node in cluster j, respectively. E is the

consumed power for one bit transmission. Since both K and Mj are functions of ρth and dth,
the optimization problem given in (13) is difficult to solve analytically. The following assump-

tions simplify the problem:

Decoding Delay-based Distributed Source Coding
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1. All cross-correlation functions (9) are modeled as exponential functions:

Ri;jðmÞ ¼ sisje�
ðm� 2di;jÞ

2þm2

2s ; ð13Þ

where σi and σj are the standard deviation of samples of node i and j, respectively, and σ is

the shape factor of the cross correlation function that is a real positive number. Larger σ
corresponds to more correlated samples. In this model, the correlation takes its maximum

value at m = di,j as in (8) and decreases exponentially as the time difference between sensor

readings increases. This is reasonable, since due to the attenuation, the signal strength at

the sensor output decreases as the sensor node goes away from the source signal and a mea-

surement noise reduces the correlation between sensor outputs.

2. Sensor nodes encode data with the same number of bits obtained by (10) for ρi,j = ρth 8i,j.

3. Sensor nodes are uniformly deployed on the event area with the size of [re, re] meters.

Based on these assumptions, the inequality constraint optimization problem in (13) can be

rewritten in a more compact form as (see the derivation of (14) in S1 Appendix).

minimize Etot ffi EMlog2 ð2
nu � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

th

p
þ 1

� �
�

E
f 2
s r

2
e

s ln rthv2
s

nu � log2ðð2
nu � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

th

p
þ 1Þ

� �
;

subject to e
�
f 2s r

2
e

sv2s � rth � e
�

f 2s r
2
e

sv2s M;

ð14Þ

where M is the number of sensor nodes in the event area, and vs is the propagation speed of

the event source.

Since this inequality constraint optimization problem cannot be solved analytically, we

numerically solve it using MATLAB, and the resultant optimum ρth for varying parameters is

illustrated in Fig 2.

Once the optimum clustering that satisfies (12) is performed, the sink asks for an extra

uncompressed data with the length of lex, i.e., excess information, from each master node to use

at the joint decoder as in Section 2.2. The length of an excess information is related with the

delay threshold by

lex ¼ dthfs; ð15Þ

While the master nodes send an excess information to the sink, slave nodes store their raw

data but do not transmit. After collecting the excess information from each master node, the

sink informs all the sensor nodes about the number of encoding bits, ni,j (10), and each sensor

node transmits their data coded with it. Slave nodes transmit their coded data starting from

their internal caches, which results lex samples delay in transmission.

3.2 Joint decoding

The decoding scheme used for one cluster is illustrated in Fig 3. Here, the inputs for the joint

decoder are the compressed data from slave nodes and uncompressed data from master node.

The main difference of the joint decoder used in D-DSC compared to the classical DSC [10] is

the use of different side information for each slave node, which is obtained by shifting the mas-

ter node samples with different values. The amount of shift for the samples of each slave node

is the decoding delay, di,j, computed for each master-slave node pair (i, j) at the sink. Most

importantly, it is possible to decode maximally compressed sensor node data with the same
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Fig 2. Optimum ρth for different (a) σ, (b) dth and σ, (c) re m and σ (d) M and σ. The constant parameters for each

figure are selected as, M = 100, nu = 12bits, re = 100m, vs = 330m/s and dth = 0.1s.

https://doi.org/10.1371/journal.pone.0193154.g002
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distortion bound (Dmax) achieved in classical DSC applications. Thus, for the same distortion

bound, D-DSC promises for more power-efficient operation than classical DSC.

The effectiveness of the proposed decoding scheme and the notion of decoding delay are

elaborated with the following illustration. Let the five nodes are grouped into one cluster in

which node 3 is selected as the master node. Based on the sensor data model in (1), samples of

these nodes are illustrated in Fig 4a in which the propagation delays between sensor nodes are

assumed to be, d1,3 = −2d d2,3 = −d d4,3 = d d5,3 = 2d. Here, the length of data packets in

decision period (Pd) and the excess information for master node are assumed to be N = 300

samples and lex = 200 samples, respectively. d corresponds to 100 data samples such as,

dfs = 100. Then, the data at the buffer of joint decoder after the last packets are received is

shown in Fig 4b, in which each block is assumed to contain 100 samples.

In D-DSC, the number of encoding bits ni,j for each slave node is calculated by using the

maximum correlation between master and slave node (10). Hence, to achieve desired distor-

tion bound (Dmax), each slave node data should be decoded with the most similar data portion

of the master node data. To realize this, the decoder should always contain the most similar

data portion of master node with each slave node in the same cluster. In D-DSC, this condition

is always guaranteed such as,

• Slave node is closer to the event—In this case, appropriate data portion is the advanced ver-

sion of the master node data. Since at the end of the clustering process, the sink receives an

excess information with the length of lex specified by (15) from only the master nodes, the

decoder has always the master node data advanced with respect to the slave node data up to

lex samples.

Fig 3. Joint decoding scheme of D-DSC.

https://doi.org/10.1371/journal.pone.0193154.g003
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• Master node is closer to the event—In this case, appropriate data portion is the delayed ver-

sion of the master node data. As initially all sensor nodes send an uncompressed data which

are decoded separately, the decoder always has the master node data delayed with respect to

the slave node data.

The decoding process of slave nodes’ data given in Fig 4(b) is illustrated in Fig 4(c).

3.2.1 Network adaptation. Node failures, environmental factors and event mobility may

change the network topology. D-DSC adapts the system parameters, correlation function,
decoding delays and cluster organization to achieve the optimum compression rate within a

given distortion bound (Dmax) in any topology.

D-DSC uses iterative-based correlation update in which only the current samples are used

in correlation function estimation (9). In this method, it is also possible to control the effects

of previous and current samples on the correlation function. The correlation update method

Fig 4. (a) Received raw data at sensor nodes based on the data model in (1) neglecting attenuation and noise, (b) Buffers on the joint decoder at

the sink, (c) Decoding of slave nodes at the D-DSC sink.

https://doi.org/10.1371/journal.pone.0193154.g004
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used in D-DSC is defined by

RU
i;jðmÞ ¼

aRP
i;jðmÞ þ bRC

i;jðmÞ
aþ b

; ð16Þ

where RC
i;jðmÞ is the current correlation estimate expressed by

RC
i;jðmÞ ¼

XN� 1

n¼0

x̂�i ðnþ PN � mÞx̂ jðnþ PNÞ; ð17Þ

and RP
i;j and RU

i;j are the previous and updated correlation estimates, respectively. x̂ i and x̂ j are

the estimated sensor outputs obtained from joint decoder, and P is the number of previous

decision periods. Coefficients α and β determine the effect of previous and current data sam-

ples on the correlation estimate, respectively. For fast topology changes, it is reasonable to

select α< β, since the last packets provide more accurate information about the current state

of the correlation in the network.

The correlation coefficients, ρi,j, and decoding delays, di,j, are recomputed by using the

updated correlation functions, RU
i;j, and then, used for determining the number of encoding

bits (ni,j) for slave nodes.

A topology change may also affect the cluster organization. Therefore, the validity of the

cluster should be periodically checked through a cluster verification procedure which is

defined as follows. At the end of each decision period, the sink controls if the cluster condi-

tions given in (12) are satisfied for each master-slave node pair. Any node that does not satisfy

the conditions is taken out of the cluster. After controlling all of the clusters in the same way,

the sink searches for a proper cluster for the nodes that do not belong to any cluster and joins

them into this cluster if they satisfy the conditions in (12). If there still remain slave nodes that

do not satisfy (12) for any given master node, the cluster organization described in Section 3.1

is performed again for these slave nodes. In this case, some slave nodes are converted to master

node, and the sink requests each new master node for an extra uncompressed data with the

length of lex as in the initialization phase. After the cluster update, the sink determines and

broadcasts the number of encoding bits (10) for each sensor node again to resume D-DSC

operation.

3.2.2 Event estimation and reliability control. In D-DSC, the event is estimated based

on the output of the joint decoder. The accuracy of the estimation directly depends on the

packet delivery performance. Packets may not be delivered successfully to the sink for various

reasons [3]. In classical WSN applications, due to highly redundant information on sensor

data, the packet loss is not very effective on the event estimation performance, since the infor-

mation in the lost packets can easily be compensated by the packets of other sensor data.

However, as D-DSC aims to minimize the redundancy in data transmission, many packets

contain unique information about the event. Thus, packet losses may substantially degrade the

estimation accuracy. Since the joint decoder uses the data of master node j as the side informa-

tion and decodes the data of all the corresponding slave nodes with respect to the appropriate

portion of the side information, 100% reliability is required for the packets generated by the

master nodes. Otherwise, samples received from slave nodes in cluster j become useless in

event estimation. This is not the case for slave nodes. Although the slave node samples are

compressed with respect to master node samples in a maximum rate, there still exists spatial

correlation among compressed sensor samples. Thus, slave nodes have relatively higher toler-

ance for packet loss.

For reliability, D-DSC determines the contribution of each sensor node on the event esti-

mation and find the most required packets among the lost ones to achieve the desired event
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distortion bound, Dmax. Then these packets are retransmitted by using in-network caching

algorithm which minimizes the number of retransmitted packets, and thus, the energy con-

sumption during the reliability control.

Let the event S is estimated by linear estimation such as

ŜðnÞ ¼
1

M

XM

i¼1

gix̂ iðnþ tiÞ; n ¼ 1; 2; . . . ; L

Ŝ— ¼
1

M
Γ—X;

ð18Þ

where τi is the propagation delay between the event source and sensor node i, and

Γ— ¼ ½g1 g2 . . . gM�;

X ¼ ½ x̂—1 x̂—2 . . . x̂—M�
T
;

ð19Þ

where x̂— i ¼ ½x̂ ið1þ tiÞ . . . x̂ iðLþ tiÞ�
T

is the estimated sensor node data obtained at the joint

decoder and shifted by τi; γi is the weighting coefficient which is a function of decoding delay

between sensor samples and attenuation coefficient, λ, in (1). M and L are the number of sen-

sors and samples, respectively.

In a similar way, the event estimation obtained using k received packets at the sink can be

defined as

ŜrkðnÞ ¼
1

k

X

i2freceivedpackets g

gix̂ iðnþ tiÞ; n ¼ 1; 2; . . . ; L

Ŝ—
r
k ¼

1

k
Γ—

r
kX

r
k;

ð20Þ

where the superscript r is used for denoting received packets and subscript k is the number of

received packets. Then, the event distortion for k packets can be defined as

Dk
e ¼

Efk Ŝ— � Ŝ—
r
kk

2
g

Efk Ŝ—k
2
g

; ð21Þ

Assume that the sink receives one more packet labeled as x̂ p to use in the event estimation.

Then, the event distortion for k + 1 packets is found as,

Dkþ1
e ¼

Efk Ŝ— � Ŝ—
r
kþ1
k

2
g

Efk Ŝ—k
2
g

: ð22Þ

Using (20), Ŝ—
r
kþ1

can be written in terms of Ŝ—
r
k, i.e.,

Ŝ—
r
kþ1

¼
1

kþ 1
Γ—

r
kþ1X

r
kþ1

¼
1

k
Γ—

r
kX

r
k �

1

kðkþ 1Þ
Γ—
r
kX

r
k þ

1

kþ 1
gp x̂—p;

¼ Ŝ—
r
k þC— k:

ð23Þ
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Substituting (23) into (22), we obtain the relation between Dkþ1
e and Dk

e , i.e.,

Dkþ1
e ¼

Efk Ŝ— � Ŝ—
r
k � C— kk

2
g

Efk Ŝ—k
2
g

¼
Efk Ŝ— � Ŝ—

r
kk

2
g

Efk Ŝ—k
2
g
�
Ef2<fð Ŝ— � Ŝ—

r
kÞðC— kÞ

H
g � kC— kk

2
g

Efk Ŝ—k
2
g

;

¼ Dk
e � Dl

p

ð24Þ

where, Dl
p is the degradation in the event distortion when samples of node p is used in event

estimation, and superscript l denotes the lost packets. Among all these lost packets, the most

informative for the event estimation is the one that yields the maximum degradation in the

event distortion Dk
e , and determined as

p� ¼ argmaxfDl
pg;

p 2 flostpacketsg:
ð25Þ

The second most informative packet can be found using (25) for the updated set of lost packets
(excluding node p�). Repeating this procedure for the entire set generates an importance

sequence for event estimation such as

Dp�
1
> Dp�

2
> . . . > Dp�Ml

; ð26Þ

where Dp�i
is the degradation in the event distortion when samples of node p�i is received at the

ith retransmission and used in the event estimation, and Ml is the number of lost packets.

Then, the minimum number of sensor nodes for which retransmission is requested can be

determined as

p 2
fp�

1
; . . . ; p�sgs:t:

Dk
e �
Ps

i¼1
Dp�i
� Dmax < Dk

e �
Ps� 1

i¼1
Dp�i

Dmax < Dk
e

;

f;g; Dmax � Dk
e ;

8
>><

>>:

ð27Þ

where Dmax is the maximum event distortion allowed by the application, and
Xs�0

i¼1

Dp�i
¼ 0. The

notation {⌀} denotes that no retransmission is required.

Algorithm 1 Pseudocode for the Sink Operation
Given SU: set of undefined sensors; SM: set of master nodes and corre-
sponding clusters; SS,j: set of slaves in cluster j; P: period number of
decision; N: number of samples received in a decision period; I: number
of samples requested in initialization process
1: procedure MAIN
2: for (k = 0; k < I; k++) do
3: for (i = 0; i < M; i++) do
4: request node i for uncoded reading of kth sample
5: end for
6: end for
7: for all node pairs (i, j) do
8: calculate correlation parameters ρ and d using (11) and (8)
9: end for
10: Cluster(SU) in Algorithm 2
11: for (P = 1; P++) do
12: determine nij for each slave-master pairs (i, j) using (10)
13: for (k = I + (P − 1)N; k < I + PN; k++) do
14: for all j 2 SM do
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15: request node j for uncoded reading of (k + lex)th sample
16: for all i 2 SS,j do
17: request node i for nij-bit reading of kth sample
18: end for
19: end for
20: end for
21: if there are lost packets then
22: request for retransmissions based on (25)–(27)
23: end if
24: decode all bits received in period P as explained in Section 3.2
25: estimate event for period P using (20)
26: update correlations R using (16)
27: ClusterValid(ρ, d) in Algorithm 2
28: end for
29: end procedure

Algorithm 2 Pseudocode for Cluster Formation and Validation Functions
Given SU: set of undefined sensors; SM: set of master nodes and corre-
sponding clusters; SS,j: set of slaves in cluster j; P: period number of
decision; N: number of samples received in a decision period; I: number
of samples requested in initialization process
1: function CLUSTER(SU)
2: while SU 6¼ ⌀ do
3: find node j in SU with largest set of correlated nodes in SU\j
satisfying clustering conditions (12)
4: SM  SM [ j; create SS,j
5: SU  SU\(j [ SS,j)
6: end while
7: for (s = k; s < s + lex; s++) do
8: for all j 2 SM do
9: ask node j for uncoded reading of sth sample
10: end for
11: end for
12: end function
13: function CLUSTERVALID(ρ, d)
14: for all node pairs (j 2 SM, i 2 SS,j) do
15: if ρij > ρth OR dij > dth then
16: SS,j  SS,j\i
17: if ρig < ρth AND dig < dth for any node g 2 SM\j then
18: determine g with largest ρig; SS,g  SS,g [ i
29: else
20: SU  SU [ i
21: end if
22: end if
23: end for
24: if SU 6¼ ⌀ then
25: Cluster(SU)
26: end if
27: end function

To minimize the number of retransmissions, in-network caching is performed. Each sensor

node has an internal cache to store its data as well as the data received from other sensor nodes

during multi-hop transmission. The maximum memory required for the internal cache is,

MNnu, where N is the number of samples in a decision period (Pd). Whenever a retransmission

is requested for node i, the required packet is provided from the internal cache of a node near-

est to the sink instead of the node i, which may be far away from the sink.
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Once the sink determines the lost packets required for achieving the desired event distor-

tion (27), it broadcasts the selective retransmission request (SRR) packet which contains the IDs

of the requested lost packets. During multi-hop transmission, each sensor node receiving the

SRR packet checks in its cache whether any of the packets matches with the IDs in the SRR

packet. If it does not have any match, it forwards the SRR packet to the next sensor node in the

routing path without any change. If the match is found, the matching IDs are removed from

the SRR packet, and the lost packets with these IDs are sent to the sink. Then, if there is

remaining IDs in the modified SRR packet, it is forwarded again. This procedure is repeated

until there remains no ID in the SRR packet. Therefore, the number of transmissions for each

lost packet is minimized and it results more energy savings.

Note that D-DSC requires the propagation delay between the source and sensor nodes for

the event estimation as in (18). In fact, many existing methods for source and sensor localiza-

tion [31] may be used to estimate the propagation delays, and its details are beyond the scope

of our work.

4 Performance evaluation

We model an event monitoring application, in which real data records are used as an event.

Three types of data are used in the simulations: music record in wav format, randomly generated
signal at 500Hz and a real temperature measurement record. Simulation environment is created

using MATLAB. Sensor nodes, sink and event source are randomly located on the event area

and the data model in (1) is utilized. The simulation parameters are given in Table 1.

Since the power consumption in WSNs is dominated by communication, compression rate

performance becomes significant for WSN applications in terms of energy efficiency. We

define the compression rate as the ratio between the total number of bits used in communica-

tion for D-DSC and the application that does not use any source coding technique. In addi-

tion, event distortion is measured as mean-square error between the source data and the event

estimation at the sink.

4.1 Clustering thresholds

D-DSC is a cluster-based solution and clusters are determined jointly by correlation coefficient

threshold (ρth) and delay threshold (dth) in (12). Therefore, we evaluate the compression rate

metric and the number of clusters with respect to ρth for different dth values for music record.

Zero delay threshold case is considered as no decoding delay concept as in the classical DSC

Table 1. System parameters used in simulations.

Parameter Music Random Temperature

# of sensors 15 15 15

Deployment area 50m×50m 50m×50m 100m×100m

Correlation thresh. (ρth) 0.95 0.95 0.95

Delay thresh. (dth) 0.5s 0.5s 1000s

Samples in decision (N) 750 200 25

# of uncoded bits (nu) 8bits 8bits 8bits

Packet loss rate (Lp) 0 0 0

Sampling frequency (fs) 8kHz 2kHz 0.002Hz

Propagation speed (vs) 330m/s 330m/s 2.5m/s

Attenuation coeff. (λ) 0.0048 0.0048 0.001

Signal to noise ratio 30dB 30dB 50dB

https://doi.org/10.1371/journal.pone.0193154.t001
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[10]. Increasing correlation coefficient threshold has two effects on the performance, namely

increasing the compression rate in each cluster and increasing the number of clusters. While

the first one decreases the power consumption, the second one increases it because in each

cluster master node sends its uncompressed samples. Thus, the trade-off between the number

of clusters and compression rate in each cluster which results optimum ρth (14) should be con-

sidered for minimum power consumption. As in Fig 5a, the optimum ρth is approximately

0.95. As the delay threshold decreases, the effect of ρth on cluster selection is restricted and

clusters are mostly determined by dth as in (12) and shown in Fig 5b. Similar result is valid for

large ρth case in which clusters are mostly determined by ρth. Hence, for the time-critical appli-

cations, there is no need to search for optimum ρth, setting it as 0 suffices for minimum power

consumption. However, for the other applications, optimum ρth should be determined as in

(12) for minimum power consumption.

D-DSC method provides significant gains in the data compression at the expense of addi-

tional delay in the network. Therefore, the proposed algorithm is especially promising for

delay tolerant IoST applications, in which the delay thresholds are not strict. Smart city appli-

cations can be considered as a promising venue for D-DSC algorithm. Smart city concept

includes the realization of various WSN in the city to monitor and optimize the physical infra-

structure. To this end, some of WSN applications, e.g. temperature sensors to detect the

medium to long term climate changes, can utilize D-DSC concept having a few 100s to 1000

second delay thresholds [32, 33]. Since IoST includes various sources of data, D-DSC is prom-

ising to enhance efficiency of the networks for data sources, which may favor higher compres-

sion rates at the expense of additional delay.

The benefits of the proposed decoding delay concept can be better observed with respect to

zero delay threshold case [10]. As shown in Fig 5a, the decoding delay concept can provide 10

times better compression rate than the DSC [10].

4.2 Decision period

Decision period (Pd) is the spatial period which defines the maximum distance between two

sensor nodes whose samples can be maximally correlated at the joint decoder, i.e., Pd ¼ N
fs
vs.

Fig 5. (a) Compression rate and (b) the number of clusters for different correlation thresholds and delay thresholds and system parameters given

in Table 1.

https://doi.org/10.1371/journal.pone.0193154.g005
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The effect of Pd on compression rate is shown in Fig 6 for three data types. Since the sampling

frequency of temperature data is very low (fs = 0.002 Hz), the decision period for this data type

is in kilometer while for the others it is in meter. As noticed in Fig 6, increasing decision period

increases the compression rate (U) for all data types and compression rate of temperature data

is much higher than the other data types. As in Section 3.2, D-DSC achieves the maximum

compression by using the most correlated data portion of sensor samples, which is determined

by the correlation lags. Therefore, the largest correlation lag among the clusters should be within
the data size in Pd for the achievable maximum compression rate. Increasing Pd up to the largest

correlation lag increases the compression rate. On the other hand, it also decreases the adapta-

tion capability for topology changes because the network is reorganized after processing the

data in Pd. Note that the achievable maximum compression rate also depends on the selection

of ρth and dth. For the optimum ρth, the minimum data size in Pd that gives the maximum

compression is limited with minfðfsdthÞ;max
i;j
fdi;jgg, where fs is the sampling frequency and

di,j is the decoding delay between sensor node i and j.

Fig 6. Compression rate for different decision period and system parameters given in Table 1.

https://doi.org/10.1371/journal.pone.0193154.g006
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4.3 Signal to noise ratio

Signal-to-noise-ratio (SNR) of an event signal affects the compression rate performance as in

Fig 7a. We assume that the noise is additive white noise and SNR is defined as the ratio of

event signal power to the noise power. As noticed, increasing SNR increases the compression

rate for all data types. Since the noise is uncorrelated for all sensors, the measured sensor data

becomes less correlated as the effects of the noise increases with the decreasing SNR values. As

in Fig 7a, while the compression rate of music record and randomly generated signal is flat-

tened after 30 dB SNR, the compression rate continues to increase for the temperature data. In

addition, the compression rate of temperature data is less than the music record and randomly

generated signal for small SNR values because the temperature data is much smoother than

the other data types and even for the large SNR values. On the other hand, for the small SNR

values, the correlation between the data of sensor nodes is more sensitive to noise for tempera-

ture data. The result of these observations can be better understood from signal frequency

analysis given in the next subsection.

The effect of SNR on event distortion is shown in Fig 7b for three data types. Since D-DSC

reconstructs the event signal from samples of the sensor nodes (18), the noise in the event sig-

nal directly affects the accuracy of the samples and event estimation. Increasing SNR decreases

the noise power and hence, the event distortion as in Fig 7b. However, further increasing in

SNR does not decrease the event distortion. because the noise power is small at high SNR val-

ues and, the major effect on the sample accuracy becomes the decoding error, which does not

depends on SNR. As noticed in Fig 7b, event distortion of temperature data is much lower

than the other data types. Thus, we can state that the decoding error becomes less for smoother

signals as in the temperature case.

4.4 Angular frequency of signal

Angular frequency (Fsig) is the frequency of the event signal normalized by the half of the sam-

pling frequency, and it determines the smoothness of the sensor samples. Its effects on com-

pression rate performance are evaluated by using the low-pass filtered version of the randomly

generated signal as an event. As in Fig 8a, increasing angular frequency at first increases the

Fig 7. (a) Compression rate and (b) event distortion for different SNR values and system parameters given in Table 1.

https://doi.org/10.1371/journal.pone.0193154.g007
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compression rate and then decreases it. Lower Fsig results in smoother sensor samples for the

same data size in packets, and hence, larger degree of correlation between sensor samples.

However, as in Fig 8a, at low angular frequencies, the sensor samples in Pd are almost constant

and even for the large SNR values noise signal can significantly reduce the correlation between

sensor samples. As Fsig increases, the effects of noise on correlation decreases and compression

rate increases. Further increasing Fsig again decreases the correlation between sensor samples,

however in this case, the reason is not the noise signal but the decreasing smoothness in sensor

samples. Thus, the angular frequency is an important parameter for compression rate perfor-

mance of D-DSC.

Angular frequency also affects the event distortion. As in Fig 8b, the event distortion

increases with angular frequency. D-DSC reconstructs the event signal from the sensor sam-

ples and the propagation delay between event and sensor nodes by using linear estimation

given in (18). Here, we assume that the propagation delay between event and sensor samples

are exactly known, and hence, Fig 8b shows only the angular frequency effect on event distor-

tion. If the time difference between propagation delay of two sensor nodes is not the integer

multiples of the sampling period, sensor nodes take samples from the event signal at different

points in time which reduces the correlation between samples of sensor nodes. This case is

highly probable for randomly deployed sensor nodes. Since increasing angular frequency

reduces the smoothness of the observed signal, the correlation between sensor samples reduces

with increasing angular frequency. Thus, the angular frequency should be as low as possible

for the minimum event distortion. However, this is not the case for compression rate as in Fig

8a, which yields an important trade-off that should be considered.

4.5 Node density and number of nodes

Fig 9a presents the compression rate vs. node density for all data types. As noticed, compres-

sion rate increases with node density because the correlation between the sensor data increases

in more closely placed sensors. As explained in Section 4.2, D-DSC achieves the maximum

compression rate when maximum distance between sensor nodes is smaller than Pd, which is

the case for temperature data after node density of 10−4. Therefore, the compression rate of

Fig 8. (a) Compression rate and (b) event distortion for different angular frequency of the source and system parameters given in Table 1.

https://doi.org/10.1371/journal.pone.0193154.g008
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temperature data is approximately the same for the node density of 10−4 m−2 as in Fig 9a. Since

this condition is not the case for audio and randomly generated signal, their compression rates

continue to increase with increasing node density. Fig 9b presents the results for the compres-

sion rates for fixed node density for music data sample. As noticed, the compression rate

improves as the number of data sources are increasing since the likelihood of correlation

between sources becomes higher with the increasing number of data source. However, the rate

of increase in the compression rate reduces and saturates between 25–30%. This effect is

caused by the decreasing correlation between sensor data due to increasing distance between

sensor nodes due to constant node density.

4.6 Network adaptation

For network adaptation results, 15 nodes are randomly deployed on the area of [160000 m

×100 m] and a heat source initially located at (0, 0) is moved with constant velocity over on the

x-axis. The maximum velocity of the source is selected as the 10% of the propagation speed of

the event signal (vs = 2.5 m/s). 10% of nodes are determined as malfunctioned at a randomly

selected time instant and 5% of packets are lost during transmission. In addition to these, the

nodes are determined as dead nodes after transmitting more than Enode = 12000 bits and not

used any more. Since the cluster verification algorithm in D-DSC continuously updates the

cluster organization such that the most appropriate nodes are used for event monitoring, the

cluster verification is expected to improve both the compression rate and event distortion per-

formance of the network.

As shown in Fig 10a, when cluster verification is applied, the compression rate performance

of D-DSC significantly improves compared to the case that cluster verification is not applied.

In addition, the even distortion is significantly reduced with the cluster verification as in Fig

10b. Thus, D-DSC becomes robust to highly varying network dynamics with the cluster

verification.

Fig 9. (a) Compression rate for different node density and system parameters given in Table 1. (b) Compression rate of music data sample of

N = 100000 bits for different number of nodes M and system parameters given in Table 1 with deployment area being set to 25m × 25m for M = 6,

25
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m� 25
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ffiffiffi
2
p

m� 50
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m for M = 200 to

have a stationary node density.

https://doi.org/10.1371/journal.pone.0193154.g009
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4.7 Packet loss rate

As in Fig 11a, event distortion increases with packet loss rate and then, decreases before reach-

ing desired event distortion Dmax. This is mainly related to retransmission rate of the packets

as in Fig 11b. For low packet loss rates, D-DSC requests small number of retransmissions and

let the event distortion to increase. However, further increase in packet loss rate increases

event distortion above Dmax, then D-DSC increases the requests for retransmission to reduce

the event distortion again below Dmax. Thus, event distortion always stays below event distor-

tion bound. Fig 11b shows that the retransmission of at most 25% of the lost packets is enough

to achieve the desired event distortion. Hence, D-DSC achieves the desired event distortion

with the minimum number of retransmission regardless of packet loss rate.

Fig 10. (a) Compression rate and (b) event distortion for different event velocity and system parameters given in Table 1 with Lp = 0.05, Rmal =

10%, Enode = 12000 bits.

https://doi.org/10.1371/journal.pone.0193154.g010

Fig 11. (a) Event distortion and (b) packet retransmission rate for different packet loss rates and system parameters given in Table 1 with ρth = 0

for music record.

https://doi.org/10.1371/journal.pone.0193154.g011
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5 Conclusion

D-DSC is a novel and unified approach that significantly improves the classical DSC by intro-

ducing a decoding delay concept for efficient data compression technique. With decoding

delay, maximum correlated portion of sensor samples is used during the estimation of event

features, and thus, power consumption is minimized. D-DSC has not only an efficient data

compression technique but also an energy efficient and reliable protocol specification for

event communication and estimation applications in WSN. Performance evaluation results

show that D-DSC achieves reliable event communication and estimation for a practical signal

detection/estimation application in sensor networks. It is observed that decoding delay con-

cept can provide 10 times better compression rate than the classical DSC algorithms. There-

fore, the proposed technique has potential to improve the performance of future IoST systems,

where massive number of sensing and computing elements are deployed in order to interact

and optimize the physical world.
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