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In this supporting information, we show that while using a ‘mirrored slab’ geometry

may remove the net dipole of the simulation cell, it does not provide polarity com-

pensation. A derivation of the CNC conditions is presented in the case that R1 6= R2,

which is the relevant case for AgI. We also present results not included in the main

article for various combinations of fields and slab mobility, as well as results using

different force fields and cell sizes. Finally, we give values of the parameters used in

nonelectrostatic interactions.
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I. MIRRORED SLAB GEOMETRY: REMOVING THE NET DIPOLE VS.

POLARITY COMPENSATION

In the main article, we compared the behavior of AgI in contact with pure H2O at

Dz = 0 against simulations performed at DCNC and ECNC. Recall that the Hamiltonian

for Dz = 0 is equivalent to the commonly used Yeh-Berkowitz correction,1 which adds a

force Fz,i = −4πqiPz to each particle i in the simulation cell. In those simulations, the

system comprised a single AgI slab immersed in H2O. We found a stark contrast in the

behavior of the system under CNC conditions versus at Dz = 0, with a large potential drop

of ∆xtlφ = −46.2 V across the crystal slab in the case of the latter. As the force applied by

the YB correction is proportional to the net dipole of the simulation cell, another approach

that has been taken is to use a ‘mirrored slab’ geometry, in which two slabs are used in the

simulation, positioned in such a way that their dipoles cancel. If the net polarization of the

simulation cell vanishes on average, and standard tin-foil boundary conditions are used, then

we argue that this is equivalent on average to the Dz = 0 ensemble. This is because tin foil

boundary conditions correspond to the Ez = 0 ensemble, giving 〈Dz〉Ez = Ez+4π〈P 〉Ez = 0.

We therefore do not expect the mirrored slab geometry to enforce CNC conditions.

To test the above hypothesis, we have performed a simulation with Lz = 21.75 nm. An

immobile AgI crystal is placed with its lowermost Ag-(0 0 0 1) face at z = −7.42 nm and its

uppermost I-(0 0 0 1) face at z = −4.33 nm. A second crystal is then placed such that its

dipole points in the opposite direction, with its lowermost I-(0 0 0 1) face at z = +4.33 nm

and its uppermost Ag-(0 0 0 1) face at z = +7.42 nm. In the region −4.33 < z < +4.33 nm

we placed 750 TIP4P/2005 water molecules. The remaining volume was occupied by vacuum.

All other simulation settings are the same as outlined in the main article. The resulting

electrostatic potential profile is shown in Fig. S1 (a). We can see that the potential drop

across each slab closely resembles that seen for the simulations presented in the main article

at Dz = 0. Indeed, we find |∆xtlφ| ≈ 46.2 V/nm in excellent agreement with the Dz = 0

result presented in Fig. 3. We have also performed the simulations with the polarity of

the AgI crystals reversed, such that water is in contact with the Ag-(0 0 0 1) faces instead,

and again find |∆xtlφ| ≈ 46.2 V/nm, see Fig. S1 (b). These results clearly demonstrate

that removing the net dipole of the simulation cell is not the same as providing polarity

compensation.2 As in the Dz = 0 ensemble, the mobile slab is unstable in this mirrored slab
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(a)

(b)

FIG. S1. Electrostatic potential profile φ(z) obtained from the mirrored slab geometry at Ez = 0.

The dashed silver and pink lines indicate the positions of the Ag-(0 0 0 1) and I-(0 0 0 1) surfaces

respectively. The region −4.33 < z < +4.33 nm is occupied by water, and the remaining volume

(|z| > 7.42 nm) is occupied by vacuum. As in the single slab geometry at Dz = 0, we find

|∆xtlφ| ≈ 46.2 V/nm. In (a), the AgI crystals are arranged such that the I-(0 0 0 1) faces are in

contact with water, whereas in (b), the Ag-(0 0 0 1) faces are in contact with water.

geometry [see Fig. 4 (a)]. Moreover, we also find that the structure of water is similar to

that at Dz = 0, as shown by the bond orientation statistics in Fig. S2 (a). In Fig. S2 (b)

we also show the charge density profile ρq(z) = (LxLy)
−1∑

i qiδ(z − zi) close to one of the

Ag-(0 0 0 1) interfaces. Results are also shown for a single slab geometry with different fields

and slab mobility, for comparison.

II. DERIVATION OF THE CNC CONDITIONS

Consider the system shown schematically in Fig. S3, which comprises a polar crystal

surrounded on either side by an aqueous electrolyte solution. The system is placed under

three dimensional periodic boundary conditions, however, for the ensuing discussion, we are

only concerned with the periodicity in the direction normal to the crystal’s surfaces. The
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(a)

(b)

FIG. S2. (a) Bond orientation statistics in the mirrored slab geometry with water in contact with

Ag-(0 0 0 1) [see Fig. S1 (b)]. The results are consistent with the Dz = 0 ensemble [see Fig. 5 (c)].

A value of cos θ = −1 indicates a bond directed away from the surface, and cos θ = +1 indicates a

bond directed toward the surface. (b) Charge density profile ρq(z) from the Ag-(0 0 0 1) interface.

The z-coordinate has been shifted such that the Ag-(0 0 0 1) interface is located at z = 0, and

the liquid extends to z < 0. Results are shown for different simulation geometries and fields, as

indicated by the legend.

length of the periodic supercell in this direction—which we take to be the z direction—is Lz.

We consider the ‘insulator centered cell’ (ICS) where the crystal is centered at z = 0, and

the cell spans −Lz/2 < z < Lz/2. The crystal is made up of n+ 1 planes of ions, each with

a surface charge density ±σ0. (n is an odd integer.) As the crystal is a dielectric material, it

can sustain finite electric fields in its interior. Here, we assume the field alternates between

values E1 and E2 between the different ionic planes, as shown in Fig. S3. We have also

assumed that the dielectric constant εxtl is constant throughout the material. On the other

hand, the surrounding electrolyte is a conductor, and the electric field in its interior strictly

vanishes. In other words, the electrolyte screens the crystal’s surface charge. This screening

induces planes of surface charge density ±σ near the surface of the crystal, and the regions

between these planes and the crystal are referred to as the Helmholtz layers. The electric

field in the Helmholtz layer is denoted EH, and its dielectric constant by εH. As the electric

displacement field must be continuous across the boundary separating the Helmholtz layer

and the electrolyte, EH 6= 0 implies a finite polarization in the electrolyte. [This can be seen

most readily by considering 4πP = limε→∞ ε
−1(ε − 1)D.] An important implication of this
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FIG. S3. Schematic of the continuum model used in the derivation of the CNC conditions. As

in the main article (Fig. 1), the crystal comprises alternating layers with charge density ±σ0. E1

and E2 are the electric fields between layers in the crystal (assumed to have constant dielectric

constant εxtl), with respective polarizations P1 and P2. EH is the electric field in the Helmholtz

layer (situated a distance `H from the crystal), which also has a polarization PH. The leftmost and

rightmost orange dashed lines indicate the cell boundaries. Due to the uniform polarization in the

electrolyte, there are formally charge densities ±σ at these boundaries.

is that there are formally surface charge densities of ±σ at the boundaries of the simulation

cell (see Fig. S3).

This configuration of charges produces dielectric polarization in each continuum region

that alters the net charge at the boundaries. It is these net charges that determine the

dipole moment. Explicitly they are,

σ1 = σ0 − PH − P1,

σ2 = σ0 − P1 − P2,

σH = σ − PH.

The dipole moment of the simulation cell is then,

Pz,cell =
1

L

∑
i

σizi. (S1)
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Performing this sum leads to,

LPz,cell = −σ1
[(

n+ 1

2

)
R1 +

(
n− 1

2

)
R2

]
+σH

[
2`H +

(
n+ 1

2

)
R1 +

(
n− 1

2

)
R2

]
+σ2

(
n− 1

2

)
R2. (S2)

In the case that R1 = R2, Eq. S2 reduces to the result previously derived in Ref. 3.

One of the central themes of the main article was the notion of polarity compensation.

In macroscopically sized crystals, this means that the average field Extl = −∆xtlφ/w across

the crystal must vanish in order to avoid a divergent surface energy. Clearly, the potential

drop across the slab is the sum of electric fields inside the slab, appropriately weighted by

the width of each region,

wExtl =

(
n+ 1

2

)
R1E1 −

(
n− 1

2

)
R2E2, (S3)

where the width of the slab is given as

w =

(
n+ 1

2

)
R1 +

(
n− 1

2

)
R2. (S4)

By construction, at CNC the potential drop across the crystal is zero. This allows us to

write,

(n+ 1)R1E1 = (n− 1)R2E2. (S5)

We now express the surface charge densities by applying the Maxwell displacement equations

across the boundaries, resulting in the following set of simultaneous equations,

εHEH = 4πσ (S6)

εHEH + εxtlE1 = 4πσ0 (S7)

εxtlE2 + εxtlE1 = 4πσ0. (S8)

We can solve Eq. S5 for E1 and then substitute it into Eq. S8 to find E2 in terms of R1, R2,

σ0 and εxtl. Solving the simultaneous equations S6–S8 ultimately yields,

σCNC =
(n+ 1)R1

(n+ 1)R1 + (n− 1)R2

σ0, (S9)
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where we have added the subscript ‘CNC’ to acknowledge that this is the value of σ that

ensures ∆xtlφ = 0. We again note that for R1 = R2 we recover the result obtained in Ref. 3.

We will now show how σCNC is related to DCNC, the value of the electric displacement

field that enforces CNC conditions. This was derived in Ref. 4 for the case R1 = R2. Here

we generalize the result to R1 6= R2. Ultimately we will find that the difference between

the two scenarios manifests itself entirely in the value of σCNC. In other words, for the ICS

geometry we will find,

DCNC = −4πσCNC, (S10)

with the value of σCNC determined by Eq. S9. To demonstrate this, we note the Maxwell

field equations across the boundaries,

EH = 4πσH (S11)

EH + E1 = 4πσ1

E2 + E1 = 4πσ2.

We can use these to write Pz,cell given by Eq. S2 in terms of electric fields rather than surface

charge densities,

4πLPz,cell = −E1

(
n+ 1

2

)
R1 + 2EH`H + E2

(
n− 1

2

)
R2. (S12)

Like the potential drop across the crystal, the total potential drop across the cell ∆cellφ =

−LEz can itself be written as the sum of all electric fields, appropriately weighted by the

widths of the regions they occupy. This leads to,

Ez =
1

L

[
E1

(
n+ 1

2

)
R1 − 2`HEH − E2

(
n− 1

2

)
R2

]
, (S13)

allowing us to write,

4πPz,cell = −Ez. (S14)

At this point it is important to realize that Ez is the Maxwell field and includes all possible

contributions. Thus Ez comprises contributions from both the cell polarization and applied

fields. In the current context, this manifests itself in the form of the induced charges ±σ
at the cell boundaries. The full polarization must also include the charge induced at the

boundaries of the supercell,

4πPz = −4πσ − Ez. (S15)

From the Maxwell relation Dz = Ez + 4πPz, Eq. S10 follows immediately when enforcing

CNC conditions.
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(a)

(b)

FIG. S4. Trial-and-error approach for locating ECNC. (a) φ(z) for Ez = 0 V/nm (dark blue) and

Ez = ECNC (cyan). (See Fig. 2.) At Ez = 0 V/nm there exists a potential drop ∆xtlφ across the

crystal, as indicated. (b) ∆xtlφ vs Ez exhibits an approximately linear relationship, as indicated

by the dashed line. The cyan and dark blue data points correspond to ECNC and Ez = 0 V/nm,

respectively.

III. ESTABLISHING CNC CONDITIONS UNDER CONSTANT Ez

In the main paper, we discussed the trial-and-error procedure for finding ECNC. This is

displayed pictorially in Fig. S4. To help orient the reader, Fig. S4 (a) is a replica of Fig. 2.

To find ECNC we simply perform simulations at different values of Ez and measure the value

of ∆xtlφ that results. The value of ECNC that causes ∆xtlφ to vanish (or in practice, to

be sufficiently small e.g. |∆xtlφ| < 0.2 V), is the value of ECNC. In general this procedure

is greatly facilitated by the approximately linear relation between ∆xtlφ and ECNC, which

allows us to extrapolate to ECNC with just a few data points. Results from a typical trial-

and-error procedure are shown in Fig. S4 (b).

8



IV. VALUES OF Ez AND Dz USED IN SIMULATIONS OF CNC

CONDITIONS

We have performed a number of simulations with different values of Ez and Dz in order

to approximate CNC conditions. The different values used are summarized in Table S1,

where we also give the corresponding values of ∆xtlφ. Due to relaxation of the Ag+ and

I– ions, in the case of the mobile slab there is no reason to expect the values of ECNC and

DCNC to remain unchanged from those for the immobile crystal. For the AgI + pure H2O

system, we find that Ez = −0.56 V/nm is a good approximation for ECNC in both cases,

but that DCNC changes from Dz = −14.99 V/nm to Dz = −15.74 V/nm. For the AgI +

electrolyte system, on the other hand, using the same value of Ez = −0.31 V/nm for the

immobile and mobile slab leads to a potential difference of ∆xtlφ ≈ +0.39 V across the

crystal in the latter case. This was the value used in the simulations of ice formation at

ECNC with a mobile slab. The average value of the electric displacement field at 298 K was

found to be 〈Dz〉Ez=−0.31 ≈ −15.88 V/nm. Performing a simulation with a mobile slab at

Ez = −0.26 V/nm (which gives ∆xtlφ ≈ −0.04 V) gives 〈Dz〉Ez=−0.26 ≈ −15.51 V/nm, and

this was the value used in the simulations of ice formation at DCNC with a mobile slab.

Nevertheless, we observe similar results between the two ensembles, suggesting that the AgI

crystal—and ice formation in its presence—is sufficiently robust to such relatively small

potential drops across the crystal, at least for the simulation cell sizes investigated in the

main article. See e.g. Figs. S5-S10.

V. RESULTS NOT PRESENTED IN THE MAIN ARTICLE

In this section we give results not presented in the main article. Figs. S5–S8 show orienta-

tion statistics at Ag-(0 0 0 1) for different combinations of fields, temperatures, and whether

or not the slab is mobile. The reader is referred to the figure captions for details. Good

agreement with those results presented in the main manuscript is seen in all cases. Fig-

ure S9 shows the number of ice-like molecules, Nice, vs. time, t, in the absence of dissolved

ions. To determine Nice, we have used the CHILL+ algorithm.5 As the crystal structure

of AgI resembles that of ice, we have included the Ag+ and I– ions in the analysis, and

we have also shifted the y coordinates of the Ag+ and I– ions by −0.2651 nm to enhance
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TABLE S1. Summary of Ez and Dz values used for the CNC simulations presented in the main

article (reported in V/nm), along with corresponding ∆xtlφ (reported in V). For the case of a

mobile AgI slab in contact with NaCl electrolyte, these were performed at a value close to ECNC,

and have therefore been marked with an asterisk (see text).

System ECNC DCNC ∆xtlφ at ECNC ∆xtlφ at DCNC

immobile AgI, pure H2O −0.56 −14.99 −0.06 +0.15

immobile AgI, NaCl electrolyte −0.31 −14.99 +0.02 +0.15

mobile AgI, pure H2O −0.56 −15.74 −0.08 +0.10

mobile AgI, NaCl electrolyte −0.31∗ −15.51 +0.39∗ −0.10

the performance of the algorithm at Ag-(0 0 0 1). (This shifting is only performed during

the CHILL+ analysis.) Figure S10 shows the corresponding plots for the electrolyte system.

Both of these results are discussed in Sec. IIIB in the main article. In Fig. S11 we show

snapshots from simulations (DCNC and ECNC for pure H2O in contact with AgI) in which ice

formation is seen to occur at I-(0 0 0 1) as well as Ag-(0001). We stress that ice formation

is still seen to occur preferentially at Ag-(0001), even in the simulations shown in Fig. S11.

Due to this prefrence for ice formation at Ag-(0001), all the results for P (cos θ) shown in

the main article and in this supporting information have focused on the contact layer at this

interface. In Fig. S12 we present P (cos θ) for the contact layer at I-(0 0 0 1) from Dz = 0, and

under CNC conditions. We see analogous behavior to that reported at the Ag-(0 0 0 1), i.e.,

at Dz = 0 no water molecules direct O–H bonds toward the negatively charged interface,

whereas under CNC conditions, a significant proportion do. In Fig. S13, we present orienta-

tion statistics of water dipoles at Ag-(0 0 0 1) for Dz = 0 and at DCNC. This is an alternative

way of elucidating water’s structure at the interface, rather than looking at statistics of O–H

bonds.

All results presented so far have been obtained with the TIP4P/2005 water model,6 and the

Madrid model for the NaCl ions.7 While we may expect the thermodynamics and kinetics of

ice formation to depend sensitively on force field parameters, the CNC conditions have been

derived from a continuum model (see Sec. II). We therefore expect the CNC conditions to

be robust to the force field used for the water and dissolved ions. To demonstrate this, we
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have performed simulations at 298 K using 864 SPC/E water8 (qO = −0.8476e) and three

Joung-Cheatham NaCl ion pairs9 (qNaCl = 1e). The resulting φ(z) for an immobile crystal

are shown in Fig. S14, both for at Dz = 0 and DCNC = −14.99 V/nm. At Dz = 0, we find

|∆xtlφ| = 46.2 V, while at DCNC we find |∆xtlφ| = 0.15 V. These are in excellent agreement

with the results obtained with the TIP4P/2005 and Madrid models. In Fig. S15 we show

the corresponding orientation statistics of O–H bonds at Ag-(0 0 0 1). Similar behavior is

observed compared to results obtained with the TIP4P/2005 and Madrid models.

In addition to being insensitive to the water and NaCl force field parameters, the CNC

conditions also appear to be independent of Lx and Ly. Indeed, doubling the extent of

the simulation cell in these dimensions while keeping Lz fixed (such that the system is four

times as large) results in the φ(z) profiles shown in Fig. S16. These results for the immobile

crystal agree excellently with the those found in the main article (see Fig. 3). Importantly,

the field in the solvent is the same for both simulation setups, Ez,solv ≈ −0.39 V/nm. This

leads to similar structures as reported in the main article, as seen in Fig. S17. With such

a large field in the solvent, we expect a similar proton ordered ice structure to form in this

system too. For the mobile crystal, however, we have found that ECNC changes slightly from

−0.56 V/nm to −0.55 V/nm, whereas for the system studied in the main article, we found

no discernible difference upon moving to a mobile crystal in the presence of pure water (see

Table S1).

VI. FURTHER SIMULATION DETAILS

As discussed in Sec. V of the main article, we used the reparametrized10 PRV potential11

to model AgI, as detailed in Ref. 12. To this end, we found it convenient to used a look-up

table to compute non-electrostatic interactions for the PRV potential. These interactions

take the form,

uPRV(r) =
H

rη
− C

r6
− P

r4
(S16)

where r is the interatomic separation, and H, η, C and P are parameters that take specific

values for the different types of interactions (i.e. Ag+–Ag+, Ag+–I– and I––I– ). Like all

other non-electrostatic interactions, these were truncated and shifted at r = 10 Å. uPRV

was then tabulated with a spacing ∆r = 0.02 Å. In Fig. S18 (a) we show the output from

LAMMPS of the interpolated potential, at a resolution δr ≈ 0.015 Å. It is clear that the
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(a) (b)

FIG. S5. Orientation statistics for pure H2O in contact with an immobile AgI crystal, at ECNC.

(a) Simulation performed at 298 K with water in its liquid state. (b) After ice formation at 242 K.

Good agreement with the simulations performed at DCNC is observed, see Figs. 5 (d) and 6 (d).

(a) (b) (c)

FIG. S6. Orientation statistics of water (NaCl electrolyte) in the contact layer and away from the

crystal, in the presence of an immobile AgI crystal. Simulations at 298 K at (a) DCNC and (b)

ECNC. In both cases, no orientation order is observed away from the surface. No water molecules

in the contact layer direct O–H bonds toward the surface. (c) After ice formation at 242 K at

ECNC. These results are consistent with those seen at DCNC, see Fig. 7 (b).

interpolation agrees well with the analytic form given by Eq. S16. In Fig. S18 (b) we show

radial distribution functions g(r) between the different species obtained for molten AgI at

923 K (250 AgI ion pairs, in a cubic simulation box with dimension L = 26.1069 Å). These

appear to agree well with those reported by Bitrián and Trullàs.12

In Table S3 we report the parameters for the Lennard-Jones (LJ) interactions between
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(a) (b)

FIG. S7. Orientation statistics after ice formation for pure H2O in the contact layer and away from

the crystal, in the presence of a mobile AgI crystal. Simulations have been performed both at (a)

ECNC and (b) DCNC. The results agree well with those presented in Fig. 6 (d), where an immobile

AgI crystal was used.

TABLE S2. Parameters used in the PRV potential, see Eq. S16. η is dimensionless. H, C and P

are given in eV Åη, eV Å4 and eV Å6, respectively.

interaction pair η H P C

Ag+–Ag+ 11 0.16 0 0

Ag+–I– 9 1310.0 14.9 0

I––I– 7 5328.0 29.8 84.5

different species, where the LJ potential is,

uLJ(r) = 4εLJ

[(
σLJ
r

)12

−
(
σLJ
r

)6
]
. (S17)

Interactions between H2O, Na+ and Cl– use the Madrid model.7 Interactions between H2O,

Ag+/I– use the parameters of Hale and Kiefer,13 as reported by Fraux and Doye.14 Remaining

interactions between Na+/Cl– and Ag+/I– were computed using Lorentz-Berthelot mixing

rules. The hydrogen atoms of the water molecules do not interact via the LJ potential, and

have been omitted from Table S3.
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(a) (b)

FIG. S8. Orientation statistics of water (NaCl electrolyte) in contact with a mobile AgI crystal,

at ECNC. (a) Simulation performed at 298 K with water in its liquid state. Good agreement with

the simulations performed with an immobile slab is observed, see Fig. S6. (b) After ice formation

at 242 K. Again, good agreement is seen with the immobile slab simulations. Moreover, the results

are also consistent with those performed at DCNC, see Fig. 7 (b).

TABLE S3. LJ interaction parameters (εLJ, σLJ) reported to four decimal places. εLJ is reported

in kcal/mol, and σLJ is reported in Ångstrom. ‘−’ indicates no LJ interaction is specified between

this pair of species.

O Na+ Cl– Ag+ I–

O (0.1852, 3.1589) (0.1896, 2.5134) (0.0148, 4.2687) (0.5467, 3.1710) (0.6220, 3.3420)

Na+ (0.3519, 2.2174) (0.3439, 2.9051) (0.7536, 2.7002) (0.8574, 2.8712)

Cl– (0.0184, 4.8491) (0.1723, 4.0161) (0.1960, 4.1871)

Ag+ − −

I– −
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(a)

(b)

(c)

FIG. S9. Nice vs t for pure H2O in contact with AgI. Blue, green and orange lines indicate

the results obtained with an immobile AgI crystal, while purple, brown and pink indicate results

obtained with a mobile AgI crystal. (a) Simulations performed at Dz = 0 (immobile slab only).

(b) Simulations performed at DCNC. (c) Simulations performed at ECNC. The black dashed line

indicates the number of AgI ions, which have also been included in the CHILL+ analysis.
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(b)

FIG. S10. Nice vs t for NaCl electrolyte in contact with AgI. Color scheme as in Fig. S9. (a)

Simulations performed at DCNC. (b) Simulations performed at ECNC. In contrast to the pure

water system, ice formation in the presence of ions appears to be preceded by an induction time

followed by rapid growth. The black dashed line indicates the number of AgI ions, which have also

been included in the CHILL+ analysis.
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FIG. S11. Examples of ice formation at I-(0 0 0 1) for pure H2O in contact with AgI. We stress

that ice formation occurs preferentially at Ag-(0 0 0 1), even in the simulations shown in this figure.

(a) and (b) show snapshots from simulations performed at DCNC and ECNC, respectively, with an

immobile crystal. (c) Snapshot from simulation performed at ECNC with a mobile crystal.
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FIG. S12. Orientation statistics of water at I-(0 0 0 1), at Dz = 0 and under CNC conditions

(see legend). The results are analogous to those at Ag-(0 0 0 1): At Dz = 0, essentially no water

molecules direct O–H bonds toward the surface, whereas under CNC conditions, many water

molecules do direct O–H bonds toward the negatively charged surface. Note that in contrast to

our analysis at Ag-(0 0 0 1), cos θ = −1 indicates a bond directed toward the surface, and cos θ = +1

indicates a bond directed away from the surface.
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(a) (b)

(c) (d)

FIG. S13. Orientation statistics of water dipoles at Ag-(0 0 0 1). θµ is the angle between a water

dipole and the z-axis of the simulation cell. (a) and (b) show results for liquid water at 298 K

for Dz = 0 and at DCNC, respectively. (c) and (d) show results after ice formation at 242 K for

Dz = 0 and at DCNC, respectively. A value of cos θ = −1 indicates a dipole directed away from

the surface, and cos θ = +1 indicates a dipole directed toward the surface. All results used an

immobile crystal.
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FIG. S14. φ(z) using SPC/E water and Joung-Cheatham NaCl (three ions pairs) at 298 K. The

striking similarity to the results obtained with TIP4P/2005 and the Madrid model demonstrate the

robustness of the CNC conditions to the underlying atomic model of the electrolyte. Results have

been obtained with an immobile crystal.
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FIG. S15. Orientation statistics of water (NaCl electrolyte) in contact with an immobile AgI

crystal, at 298 K. Results have been obtained with the SPC/E and Joung-Cheatham force fields.
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FIG. S16. Comparing φ(z) from different ensembles for AgI (n = 17) in contact with pure water

at 298 K, with the system doubled in the x and y dimensions. At Dz = 0 we find ∆xtlφ ≈ −46.2 V.

At ECNC we find ∆xtlφ ≈ −0.04 V, and |Ez,solv| ≈ 0.39 V/nm. The result obtained at DCNC =

−14.99 V/nm (dotted line) agrees well with the ECNC result.

(a) (b)

FIG. S17. Bond orientation statistics at 298 K for a system at whose extent in x and y has been

doubled. (a) and (b) show P (cos θ) at Dz = 0 and DCNC, respectively, both for water molecules

in the contact layer (blue circles) and in bulk solvent (orange squares). cos θ = +1 and cos θ = −1

indicate O–H bonds directed immediately toward and away from Ag-(0 0 0 1), respectively. All

results have been obtained with an immobile crystal.
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(a) (b)

FIG. S18. (a) Non-electrostatic portion of uPRV vs interatomic separation. The symbols have been

output from LAMMPS at a resolution of approximately 0.0015 nm, while the solid lines show the

analytic form of the PRV potential (truncated and shifted at r = 1 nm). (b) Radial distribution

functions from simulations of molten AgI at 923 K. These appear to agree well with those reported

in Ref 12.
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