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Objective

To systematically identify and compare the performance of prognostic models providing estimates of survival or recurrence
of localized renal cell cancer (RCC) in patients treated with surgery with curative intent.

Materials and Methods

We performed a systematic review (PROSPERO CRD42019162349). We searched Medline, EMBASE and the Cochrane
Library from 1 January 2000 to 12 December 2019 to identify studies reporting the performance of one or more prognostic
model(s) that predict recurrence-free survival (RFS), cancer-specific survival (CSS) or overall survival (OS) in patients who
have undergone surgical resection for localized RCC. For each outcome we summarized the discrimination of each model
using the C-statistic and performed multivariate random-effects meta-analysis of the logit transformed C-statistic to rank
the models.

Results

Of a total of 13 549 articles, 57 included data on the performance of 22 models in external populations. C-statistics ranged
from 0.59 to 0.90. Several risk models were assessed in two or more external populations and had similarly high
discriminative performance. For RFS, these were the Sorbellini, Karakiewicz, Leibovich and Kattan models, with the UCLA
Integrated Staging System model also having similar performance in European/US populations. All had C-statistics ≥0.75 in
at least half of the validations. For CSS, they the models with the highest discriminative performance in two or more
external validation studies were the Zisman, Stage, Size, Grade and Necrosis (SSIGN), Karakiewicz, Leibovich and Sorbellini
models (C-statistic ≥0.80 in at least half of the validations), and for OS they were the Leibovich, Karakiewicz, Sorbellini and
SSIGN models. For all outcomes, the models based on clinical features at presentation alone (Cindolo and Yaycioglu) had
consistently lower discrimination. Estimates of model calibration were only infrequently included but most underestimated
survival.

Conclusion

Several models had good discriminative ability, with there being no single ‘best’ model. The choice from these models for
each setting should be informed by both the comparative performance and availability of factors included in the models. All
would need recalibration if used to provide absolute survival estimates.
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Introduction
International guidelines recommend that the surveillance of
individuals with localized clear-cell RCC (ccRCC) should be
stratified according to the risk of developing recurrence.
The AUA [1] and the National Comprehensive Cancer
Network (NCCN) [2] recommend stratification based on
TNM staging. The European Society for Medical Oncology
(ESMO) [3] and European Association of Urology (EAU)
[4] provide a strong recommendation for the use of other
prognostic models, considering them more accurate than
TNM stage or grade alone for predicting clinically relevant
outcomes. A large number of such prognostic models have
been developed and many have been compared with each
other in external validation studies. Existing reviews of
these models [5,6], however, are non-systematic and do not
provide data on direct comparisons between the models.
Both the ESMO and EAU state that there is insufficient
evidence to recommend one prognostic model over another,
with the ESMO giving the examples of the UCLA
Integrated Staging System (UISS) and the Stage, Size, Grade
and Necrosis (SSIGN) score, and the EAU citing the UISS,
Leibovich and Grade, Age, Nodes and Tumour (GRANT)
models as being the current most relevant prognostic
models for ccRCC. The decision on which model to use is,
therefore, left to the individual clinician, with potential for
variation in patient care.

Recent advances in adjuvant treatment for ccRCC, in
particular the KEYNOTE-564 trial which showed a
significant disease-free survival benefit for
pembrolizumab over placebo [7], additionally make it
likely that, for the first time, adjuvant immunotherapy will
be recommended to patients at high risk of recurrence in
the near future. Prognostic models will therefore become
even more important as they will be needed to identify
high-risk patients likely to benefit from such adjuvant
therapy.

To inform future guidelines both for surveillance and
adjuvant immunotherapy and to support clinicians to make
an informed choice of model, we performed the first
systematic comparison of the performance of prognostic
models that provide estimates of recurrence or survival after
ccRCC treated with surgery with curative intent.

Materials and Methods
We performed this review according to a published
protocol (PROSPERO 2019 CRD42019162349 Available
from: https://www.crd.york.ac.uk/prospero/display_record.
php?ID=CRD42019162349) and in line with guidance for
systematic reviews of prediction model performance [8].
The results are reported in accordance with the TRIPOD
guidelines [9].

Search Strategy

We systematically searched Medline, EMBASE and the
Cochrane Library for studies published from 1 January 2000
to 12 December 2019 using a combination of subject
headings incorporating ‘kidney cancer/renal cell cancer’,
‘recurrence/survival/prognosis’ and ‘prediction/model/score’
(Tables S1 and S2). The search was extended by manually
screening the reference lists and electronically searching for
citations of included papers.

Inclusion Criteria

We included peer-reviewed studies that reported a
quantitative measure of the performance of one or more risk
model(s) including a combination of ≥2 risk factors to predict
at least one of the outcomes of interest at an individual level
in patients after surgical resection for localized RCC. The
outcomes of interest were drawn from the DATECAN
guidelines for time-to-event endpoints in RCC clinical trials
[10] and included recurrence-free survival (RFS), cancer-
specific survival (CSS) and overall survival (OS). RFS included
metastasis-free survival, local recurrence-free survival,
progression to metastatic disease and recurrence of disease.
To avoid overestimates of performance due to overfitting, we
included only studies measuring the performance of models
in a population distinct from the model development
population (external validation) in the primary analysis. To
inform future models and identify potentially promising
prognostic markers, we included studies for a secondary
analysis that reported the performance of an existing model
in an external population alongside the performance of that
model plus any additional prognostic markers in the same
population.

We excluded studies in which it was not possible to separate
patients with localized disease from those with metastatic
disease at the time of recruitment and studies including only
specific groups, for example, studies including only patients
with high-grade or locally advanced disease and those limited
to transplant recipients, individuals with inherited renal
cancer syndromes, or non-clear-cell subtypes of RCC.

Study Selection

Title and abstract screening were performed using Rayyan
(https://rayyan.ai). After piloting the inclusion and exclusion
criteria to achieve >98% agreement, titles and abstracts were
assessed by one author, with a random 10% checked by a
second. Full-text screening was performed by four reviewers
in two stages. In the first stage, review articles, conference
abstracts, studies with no performance measures, duplicate
studies and studies including only single risk factors were
excluded. In the second stage, the remaining papers were
screened by two reviewers against the other inclusion criteria.
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Data Extraction

Data were extracted directly into data tables by two authors. A
random 10% of data were additionally checked by a third. For
studies that reported the stepwise performance of models, only
the model with the best performance was extracted. Where
studies included estimates of discrimination for multiple
durations, only data for the longest time period were extracted.
Where the same risk model was assessed in participants
recruited from the same site during the same time period in
more than one study, we extracted only the performance data
from the study with the greatest number of outcomes.

Risk-of-Bias Assessment

A risk-of-bias (RoB) assessment was performed separately for
each external validation, model and outcome using the
PROBAST tool (Method S1) [11]. We extracted data relevant
to the assessment of RoB at the same time as data extraction.
One author then completed the RoB assessment, with a
random 10% checked by a second author.

Data Synthesis

Data were synthesized separately for the three outcomes (RFS,
CSS and OS). The discrimination for each model was
summarized graphically with the C-statistic. For each model
for each outcome we also estimated heterogeneity in model
performance using the I2 statistic [12] within the ‘metan’
command in Stata with the logit transformed C-statistics
[8,13] and restricted maximum likelihood estimation.

As the heterogeneity across the studies was high (up to 95%)
we did not estimate pooled C-statistics. To enable us to rank
the relative discrimination of the models and incorporate
both direct and indirect evidence from risk model
comparisons across the studies, we performed multivariate
random-effects meta-analyses, again using the logit
transformed C-statistic, using the ‘mvmeta’ command in Stata
[14,15]. For these analyses we used the Riley method to
estimate within-study correlations [16] and used the
conventional assumption that all the pairwise between-study
correlations were 0.5. We present the borrowing of strength,
which is the percentage weight in the meta-analysis that is
given to the indirect evidence [17], the mean rank, which is
the average ranking for each model included in the analysis
[18], and the surface under the cumulative ranking curve
(SUCRA), which is the mean rank scaled from 0 to 1 to
enable comparisons across outcomes, from that analysis.
Studies where it was not possible to calculate a confidence
interval of the C-statistic were excluded from that analysis.

To explore potential sources of heterogeneity among the
studies we performed subgroup analyses by study
geographical region (Europe/US and Asia) and, where there

were eight or more external validations of the same model,
we used meta-regression to explore the association between
study-level characteristics (event rate, proportion of
participants with ccRCC, baseline year of recruitment and
duration over which risk was predicted) and the C-statistic.

The measures of calibration, estimated survival for patients in
different categories of risk defined by the models and increase
in performance of risk models with the addition of other
prognostic markers are summarized descriptively.

Results
Our search identified 13 549 articles. Of these, 75 met our
inclusion criteria (Fig. S1 and Table S3). The most common
reasons for articles to be excluded at full-text review were that
the cohort included patients with metastatic disease or specific
groups of patients, such as only those with low-risk or high-
risk disease, or that the study was not an external validation.
Fifty-seven included data on the performance of 22 risk
models in an external population and 40 included data on the
improvement in performance of previously published risk
models with the addition of one or more additional prognostic
markers. Most studies recruited participants from single
centres, with all but two [19,20] recruiting participants
retrospectively. The RoB assessments for each study for each
external validation are detailed in Tables S4–S6. Of the 150
validations assessed (69 RFS, 38 CSS and 43 OS), 95 were
rated as having high RoB, 49 as having unclear RoB (typically
due to a lack of clear reporting) and six as having low RoB.
Across the four domains assessed (Method S1), issues with
analysis were most frequently noted. Common problems
included the management of participants lost to follow-up and
the use of datasets with very few events (<50).

Details of the risk factors included and scoring for each of the
22 risk models are given in Table 1 [21,22,23,24–30,31–40,41].
The majority included pathological or clinical prognostic
factors that are likely to be available in routine clinical practice.
Two included genetic risk factors (Wei et al. [26] and the
Recurrence score [24]), one included molecular markers [23]
and five included biochemical markers (e.g. albumin and C-
reactive protein [CRP]) that may be available in some settings
(CONtrolling NUTritional status (CONUT) [36], glasgow
prognostic score (GPS) [39], modified GPS (mGPS) [30],
prognostic nutritional index (PNI) [41] and Chen et al. [21]).

Recurrence-free Survival

Discrimination

A total of 36 studies reported 69 C-statistics for external
validations of 19 models for RFS after surgery (Table S4).
The median duration of follow-up was reported for 59 of the
external validations and ranged from 33 to 128 months, with
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most (n = 41/59) having a median follow-up of between 60 and
90 months. The discriminative performance within all the
external validations for the 19 models is shown in Fig. 1. The
most frequently assessed models were the Leibovich model (n =
16), the UISS model (n = 9), the Kattan model (n = 7) and the
SSIGN model (n = 7). There was substantial variation in
discriminative performance both between different models and
between different studies assessing the same model (Fig. 1).
Meta-regression with the three risk models with eight or more
external validations (Leibovich, UISS and SSIGN) showed no
evidence that baseline year of recruitment, duration of
prediction, study event rate or proportion of ccRCC were able
to explain that heterogeneity (Table S5). The high
heterogeneity also persisted in subgroup analysis based on the
country of the study (Europe/US or Asian).

Figure 1 does, however, show that eight models (Jeong,
Karakiewicz, Kattan, Klatte, Leibovich, Recurrence, Sorbellini
and Wei) have higher discrimination than others (C-statistic
≥0.75 in at least half of the external validations and none or
few C-statistics <0.7). This was confirmed in multivariate
meta-analysis, where direct comparisons between the models
within studies is incorporated (Fig. 2A). Those eight models
all had a SUCRA of ≥0.6 (Table 2 and Fig. S2). With the
exception of the Karakiewicz model that was developed for
CSS, all eight had been developed for RFS in RCC. Four
(Sorbellini, Karakiewicz, Leibovich and Kattan) included
pathological or symptom prognostic markers that are likely to
be routinely available and have been validated in at least two
external populations. Jeong et al. [22] was the only model to
also include age. The other three included either genetic
markers (the Recurrence score), single nucleotide
polymorphisms [26] or molecular markers [23] not currently
available in clinical practice. These three, as well as the model
by Jeong et al. [22], had only been externally validated in one
population.

Conversely, the two clinical models (Yaycioglu and Cindolo),
the two models based on CRP and albumin (GPS and mGPS)
and the TNM criteria all had comparatively poor
discrimination (SUCRA 0.1 and 0.3 and reported C-statistics
of 0.63–0.70 and 0.63–0.75, respectively). Additionally, despite
including the same variables as the Leibovich model, the
SSIGN model, which was developed for CSS, was one of the
poorest performing models, with a SUCRA of 0.4 and C-
statistics below 0.7 in three of the seven external validations
(range 0.63–0.78).

The multivariate meta-analysis for the Europe/US and Asian
subgroups are presented in Tables S8 and S9, respectively.
Except for the UISS score that performed better in European/
US populations, the results were similar to those for the
combined population.

In addition to the discriminative performance for RFS from
the date of surgery, one study [42] included assessment of the

UISS model for predicting late recurrence in patients free of
disease 5 years after surgery. There was no significant
difference in the probability of recurrence among those
patients classified as low, intermediate and high risk based on
the UISS model.

Calibration

Six studies reported calibration [20,43–47]. In a
Singaporean population [47], all four models assessed
(Karakiewicz, Leibovich, Kattan and Sorbellini) had
reasonable calibration graphically at 5 years, with maximum
departure of predicted from observed outcomes of 4%,
17%, 11% and 15%, respectively. Beisland et al. [44] found
no overall evidence of miscalibration for the Leibovich
model over a 10-year period in patients recruited from
Norway (calibration slope 0.958). The Kattan model
overestimated RFS at 5 years in two Japanese populations
[43] but underestimated RFS at 5 years in a French
population [46]. In a US population, the Sorbellini model
[45] also underestimated the actual 5-year RFS probability
in patients who had a predicted 5-year RFS probability
<0.8. In a contemporary UK cohort recruited between 2011
and 2014, Vasudev et al. [20] similarly found a degree of
miscalibration for 5-year RFS estimated using the Leibovich
model, with the Leibovich model underestimating RFS,
particularly in those at higher risk of recurrence.

Estimates of Survival for Risk Groups

Eleven studies [20,22,55,44,48–54] reported the probability of
RFS 2–10 years after surgery for risk groups determined by
models (Table 3). It was not possible to pool the probabilities
across studies. In all cases, the observed probability of
survival decreased from the low-risk to high-risk groups.

Cancer-Specific Survival

Discrimination

Fifteen studies (Table S6) reported the discrimination of 38
external validations of 12 models for CSS from surgery. The
median duration of follow-up was 33–128 months, with over
half of those reporting the duration of follow-up (n = 18/34)
having a median follow-up period between 60 and
90 months. As was observed for RFS there was substantial
variation in the C-statistics (Fig. 3). Seven risk models,
however, appeared to perform better than others, with a C-
statistic of ≥0.80 in at least half of the studies in which they
had been validated (Karakiewicz, Klatte, Leibovich, SSIGN,
Sorbellini, Zisman and mGPS). These same seven models all
had a SUCRA ≥0.6 in multivariate meta-analysis (Table 2,
Fig. S3) incorporating direct comparisons (Fig. 2B).
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Fig. 1 Forest plot showing the C-statistics from individual studies for recurrence-free survival (RFS).
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Of these, the four models with the highest SUCRA (≥0.7) were
the only three models developed primarily for estimating CSS
(Zisman, SSIGN and Karakiewicz) and the Klatte et al. [23]
model, which includes molecular markers but had only been
externally validated in one cohort. The Leibovich and Sorbellini
models, originally developed for RFS, were also in this group,
along with the mGPS model which was originally developed for
colorectal cancer prognosis and includes CRP and albumin but
had also only been externally validated in one cohort.

As seen for RFS, the two models based on clinical features at
presentation alone, Cindolo and Yaycioglu, had the lowest
discrimination (C-statistics 0.65–0.71 and 0.63–0.65,
respectively). Additionally, despite including the same
variables as the Zisman model, the UISS model, which was
developed with OS as the outcome, was one of the poorest
performing models, with C-statistics for three of the five
validations ≤0.65 and a SUCRA of 0.2. The comparative
discrimination of the models was very similar when
considering only European/US populations (Table S8).

In addition to the 5-year CSS from the time of surgery, Fu
et al. [56] reported the performance of the SSIGN and UISS
models at predicting 5-year conditional CSS, defined as the
probability that a patient with RCC will survive an additional
5 years after already surviving between 1 and 5 years after
surgery. The SSIGN model performed better than UISS at up
to 1 year post-surgery (C-statistics 0.70 [0.62–0.76] and 0.65
[0.58–0.70], respectively) but there was no difference between
the models from 2 to 5 years after surgery.

Calibration

Only the study by Tan et al. [47] assessed calibration. As for
RFS in the same study, all four models assessed (Karakiewicz,
Leibovich, Kattan and Sorbellini) had reasonable calibration
graphically.

Estimates of Survival for Risk Groups

Seven studies [19,49,50,57–60] reported the probability of CSS
between 1 and 10 years after surgery for risk groups
determined by models (Table 3). As for RFS it was not
possible to pool the probabilities across studies. In all cases,

Yaycioglu

Yaycioglu

Yaycioglu

mGPS

mGPS

Cindolo

Cindolo

Cindolo

Chen

CONUT

GPS

Karakiewicz

Karakiewicz

Karakiewicz

Kattan

Kattan

Kattan

Leibovich

Leibovich

Leibovich

Recurrence

(A)

(B)

(C)

SSIGN

SSIGN
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Sorbellini

PNI

TNM

Sorbellini

Sorbellini

TNM_2002
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TNM_2016

UISS
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UISS

Wei

Fig. 2 Plot of direct risk model comparisons included within the multivariate

meta-analysis for (A) Recurrence-free survival (RFS), (B) cancer-specific
survival (CSS), and (C) overall survival (OS). The size of the circles and

thickness of the lines are weighted according to the number of studies

involved in each direct comparison. Risk models with a larger circle are

therefore compared more across the studies than those with smaller

circles, and risk models linked by the thickest lines are those that were

most frequently compared directly against each other within the studies.

CONUT, CONtrolling NUTritional status; GPS, Glasgow Prognostic Score;

mGPS, modified GPS; PNI, Prognostic Nutritional Index; SSIGN, Stage, Size,

Grade and Necrosis; UISS, UCLA Integrated Staging System.
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the observed probability of survival decreased moving from
the low-risk to the high-risk groups.

Overall Survival

Discrimination

Twenty studies (Table S7) reported the discrimination of 43
external validations of models for OS. As for RFS and CSS,

heterogeneity was high (I2 up to 87.5%), therefore,
estimates were not pooled. The reported C-statistics for
different models ranged from 0.59 to 0.90 (Fig. 4). The
model with the highest discrimination in any validation
(C-statistic 0.90 [0.80–0.95]) was the model developed by
Chen et al., which includes pathological T-stage along with
three biochemical ratios. That model, however, had only
been validated in one small population (23 cases of RCC)

Table 2 Multivariate meta-analysis of discrimination of risk models.

Risk model Number of
external

validations

Summary
risk of bias

Number of
patients

Events Borrowing of
strength

Mean
rank

SUCRA

Recurrence-free survival
Jeong 2017 1 1U 93 399 0 4.5 0.8
Recurrence score 1 1U 50 1642 23.1 4.8 0.8
Sorbellini 4 3H, 1U 312 2817 22.7 4.7 0.8
Wei 2009 1 1U 98 410 23.2 5.7 0.7
Karakiewicz 2 1H, 1U 254 1043 34.7 6.1 0.7
Klatte 2009 1 1H – 343 0 6.3 0.7
Leibovich 16 7H, 8U, 1L 1481† 7897 8.7 7.1 0.7
Kattan 7 6H, 1U 615 2851 15.7 8.2 0.6
Sao Paulo 1 1H 173 771 0 10.2 0.5
UISS 9 5H, 3U, 1L 667† 5167 17.7 10.3 0.5
S-TRAC trial 1 1H – 730 0 10.6 0.5
TNM 2002 1 1H 443 2127 16.3 10.6 0.5
SSIGN 7 4H, 2U, 1L 542 2552 14.4 12.1 0.4
TNM 2016 1 1U 98 410 23.3 14.1 0.3
Cindolo 5 5H 532 2456 21.0 14.2 0.3
TNM 2010 3 1H, 1U, 1L 576 2580 13.1 13.9 0.3
mGPS 1 1H – 627 22.6 15.1 0.2
GPS 1 1H – 627 22.6 15.2 0.2
Yaycioglu 4 4H 359 1685 27.6 16.5 0.1

Cancer-specific survival
Zisman 3 3U 1060 276 0 3.0 0.8
SSIGN 6 3H, 2U, 1L 2628 564 12.2 4.5 0.7
Karakiewicz 3 2H, 1U 1608 218 22.0 4.6 0.7
Klatte 2009 1 1H 343 – 0 4.8 0.7
Leibovich 4 3H, 1U 1524 182 17.8 5.0 0.6
mGPS 1 1H 169 35 36.6 5.3 0.6
Sorbellini 2 1H, 1U 975 174 29.2 4.9 0.6
Kattan 4 3H, 1U 3616 581 19.1 7.0 0.5
Sao Paulo 1 1H 771 122 0 8.5 0.3
UISS 6 5H, 1L 4209 659 12.6 9.9 0.2
Cindolo 2 2H 3057 483 25.8 9.7 0.2
Yaycioglu 2 2H 3057 483 24.7 10.8 0.1

Overall survival
Chen 2017 1 1H 176 23 34.7 1.2 1
Leibovich 6 2H, 4U 1897 394 15.3 4.9 0.7
Karakiewicz 2 1H, 1U 1043 209 27.6 4.7 0.7
Sorbellini 2 1H, 1U 975 193 27.7 5.0 0.7
SSIGN 6 4H, 2U 2034 429 17.9 5.5 0.6
CONUT 1 1H 325 39 0 6.5 0.5
Kattan 3 2H, 1U 3447 750 17.9 6.5 0.5
PNI 1 1H 325 39 0 8.1 0.4
mGPS 1 1H 268 50 0 8.4 0.4
TNM (2010) 3 2H, 1U 442 118 20.8 8.5 0.4
UISS 7 3H, 4U 4622 1022 10.2 9.2 0.3
Cindolo 2 2H 3057 664 22.9 10.3 0.2
Yaycioglu 2 2H 3057 664 22.9 12.3 0.1
GRANT* 1 1H 73 217 10 059 – – –

CONUT, CONtrolling NUTritional status; GPS, Glasgow Prognostic Score; GRANT, Grade, Age, Nodes and Tumour; H, high risk of bias, L, low risk of bias;
mGPS, modified GPS; PNI, Prognostic Nutritional Index; SSIGN, Stage, Size Grade and Necrosis; U, unclear risk of bias; UISS, UCLA Integrated Staging
System. *Excluded from multivariate analysis as only assessed in one population with no other risk models. †Events not reported for two studies.
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Fig. 3 Forest plot showing the C-statistics from individual studies for cancer-specific survival (CSS).
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from the same hospital at which the model was developed.
The model may not perform as well in other populations.

As seen for RFS and CSS, the two models based on clinical
features at presentation alone, Cindolo and Yaycioglu, had
the lowest discrimination (C-statistics 0.62–0.70 and 0.59–
0.62, respectively). Despite being developed for OS, the UISS
model also had comparatively low discrimination, with a C-
statistic of <0.7 in four of the six validation studies and C-
statistics consistently lower than those for Leibovich, SSIGN,
Karakiewicz and Sorbellini in direct comparisons. This was
reflected in the multivariate analysis where the UISS model
had a SUCRA of 0.3 and, together with the Chen et al.
model, the four highest ranking models with SUCRA values
≥6 were the Leibovich, SSIGN, Karakiewicz and Sorbellini
models. There was little to distinguish among those four, with
all the models also including pathological or symptomatic
prognostic factors likely to be routinely available in clinical
practice. The comparative discrimination of the models was
very similar when considering only Asian populations
(Table S9).

Calibration

Two studies reported data on calibration. As for RFS and
CSS, the study by Tan et al. reported that all four models
assessed (Karakiewicz, Leibovich, Kattan and Sorbellini) had
reasonable calibration graphically [47]. Using the ‘validation
by calibration’ approach [61], Cindolo et al. [62] found that
the UISS model significantly (likelihood ratio test P < 0.0001)
underestimated OS, particularly at the extremes. The
difference was mainly attributable to a population-level
underestimation bias, with no evidence that the relative
effects of the risk factors in the model were inadequately
estimated.

Estimates of Survival for Risk Groups

Five studies [50,53,58,62,63] reported the probability of OS
between 1 and 5 years after surgery for risk groups
determined by models (Table 3). As for RFS and CSS, it was
not possible to pool the probabilities across studies and in all
cases the probability of survival fell when moving from low-
risk to high-risk groups.

Improvement in Performance of Previously Published
Risk Models with the Addition of Additional
Prognostic Markers

Forty studies externally validated pre-existing risk models and
also investigated the improvement in the performance of
these models when additional prognostic markers were
incorporated (Table S10). Thirty-five studies evaluated
additional prognostic markers for RFS, three for CSS and 15
for OS. Improvements in the C-statistic of up to 0.171 were

observed. However, of the 40 additional prognostic markers,
28 required assessment using immunohistochemistry, in situ
hybridization, or quantitative RT-PCR not currently routinely
available in clinical practice.

Discussion
This review shows that there is no clear single ‘best’ model
for any of the three outcomes considered (RFS, CSS and
OS). Instead, there are several risk models that have all
been assessed in at least two external populations and have
similarly high discriminative performance. For RFS, these
are the Sorbellini, Karakiewicz, Leibovich and Kattan
models, with UISS also having comparable performance in
European/US populations. For CSS, they are the Zisman,
SSIGN, Karakiewicz, Leibovich and Sorbellini models, and
for OS they are the Leibovich, Karakiewicz, Sorbellini and
SSIGN models. All performed better than TNM alone.
Ideally the choice between these models for a given setting
would be based on validation studies in the relevant
population of interest [9]. This review provides the most
comprehensive summary to date of the performance of the
models in different populations. Where data are not
currently available for a specific population or several
models remain similar, the choice should depend on the
availability and accuracy of data on the prognostic factors
included in each risk model. For example, from the six
better-performing models across the three outcomes, the
Leibovich and SSIGN models require only routinely
reported tumour pathology data, while the Karakiewicz,
Sorbellini and Kattan models include symptoms at
presentation and the Zisman model includes Eastern
Cooperative Oncology Group performance status. Three
models (Sorbellini, Karakiewicz and Leibovich) also ranked
highly for all three survival outcomes so, if a prognostic
model is to be used to predict all three, one of those
models would be most appropriate.

In addition to these six models, there were also several
models that had similar performance but had only been
assessed in one external population so further validation
studies are required. These include models which use genetic
risk markers (Recurrence score) [26], molecular markers
(Klatte), biochemical markers [21] (mGPS) and age [22].
While these models have limited current clinical utility within
routine practice, they may be of utility in the future or within
clinical trials.

This review additionally shows that there are some models
that are unlikely to be the most appropriate choice in any
setting. Of particular note, the SSIGN model cited in the
ESMO guidelines performed comparatively poorly for RFS,
and the UISS model, highlighted in both the ESMO and
EAU guidelines, is unlikely to be best choice for either CSS
or OS.
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Fig. 4 Forest plot showing the C-statistics from individual studies for overall survival (OS).
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While estimates of model calibration were only infrequently
included, most models that were assessed underestimated
survival, particularly in more recent populations. As discussed
elsewhere [20] this may be due to improvements in imaging
and surgical techniques. If the models are to be used to
provide individualized estimates to patients or to compare
RCC outcomes with competing health risks, all would need
recalibrating to the specific setting.

A key strength of this review was our systematic search of
multiple databases, enabling us to identify more models and
more external validations than previous reviews [5,6].
Although the heterogeneity of the included studies limited the
pooling of data, our use of multivariate meta-analysis
techniques enabled us to rank the relative discrimination of
the models. This approach incorporates both direct and
indirect comparisons and so takes into account the relative
performance of risk models within individual studies and
limits the effects of heterogeneity among the studies. It does,
however, assume that the relative performance of risk models
in one study is transferable to other studies and that missing
comparisons are missing at random. These assumptions are
unlikely to be true in all cases owing to selective outcome
reporting [64] or to selective choice of analyses [65]. Most of
the included studies were also at moderate or high risk of
bias and the small number of studies at low risk of bias
meant it was not possible to perform a subgroup analysis
including only those studies. All but two of the included
studies also evaluated the performance of models in
retrospective cohorts. These studies are at risk of both
collection and ascertainment bias through a lack of
standardization over data collection, potential differences in
reporting and collection methods both between centres and
over time, and a lack of centralized pathological review. The
recruitment periods of many of the studies also began more
than 20 years ago and so the outcomes may not reflect
current practice. The biggest change in clinical care over that
time, the shift from routine open partial nephrectomy to
robot-assisted partial nephrectomy, however, is unlikely to
have significantly impacted on survival estimates as current
data suggest that there are no differences in oncological
outcomes after open partial nephrectomy, laparoscopy partial
nephrectomy or robot-assisted partial nephrectomy [66–68].
However, further validation in contemporary cohorts, ideally
from large prospective studies, are needed.

Reflecting their intended use in clinical practice, most models
were also assessed as scores rather than using the original
model coefficients. By including only those models that had
been externally validated, we have also not included more
recent models that are yet to be assessed externally, for
example, the D-SSIGN adaptation of the SSIGN model
developed for dynamic risk prediction [69], the RCC
histology-specific Leibovich models [70] and a new model
developed in the ASSURE trial population for patients with

high-risk localized and locally advanced RCC [71]. Although
our decision to only include external validation studies in
unselected cohorts of patients presenting with RCC or ccRCC
means that our findings reflect the performance of the risk
models in routine clinical practice, we note that the
performance metrics may differ within select groups, such as
those considered at high risk and recruited to adjuvant
clinical trials. As seen in a recent validation [71], the
discrimination is likely to be poorer in such populations
where the case mix is narrower due to the prior exclusion of
those at low risk [72].

In summary, this review shows that there are at least six
prognostic models that include data available within routine
clinical practice and that have better discriminative ability
than TNM staging alone for RFS, CSS and OS in patients
treated with surgery for localized ccRCC. This supports
current EAU and ESMO guideline recommendations to use
prognostic models to inform surveillance, while also
confirming that there is currently no single ‘best’ model. The
findings on the comparative performance and the prognostic
factors included in the models in this review should support
clinicians and guideline developers to make an informed
choice of which model to use for current surveillance.
Additionally, in light of recent promising data from adjuvant
trials [7], the findings are likely to be of increasing
importance. As highlighted recently [73], all of the 11 largest
RCC adjuvant trials that have completed or are currently
recruiting rely on one or more prognostic models to
determine eligibility. Selection of the most appropriate
prognostic model is therefore important not only for the
design and recruitment of future clinical trials but also for
decisions on who may or may not be offered adjuvant
treatment. Given the significant potential harms associated
with adjuvant treatment, prognostic models will be a key
resource for supporting informed decision making with
patients. All would need recalibration if individualized risk
estimates of outcomes are used.
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