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Supplementary Material for
“Fermi surface and mass renormalization in the iron-based superconductor YFe2Ge2”

This material details quantum oscillation results not
shown in the main paper, including de Haas-van Alphen
traces obtained in S2, in which â is aligned with the axis
of the pickup coil, and a Dingle analysis of the mean free
paths in S1 and S2. It also provides a brief account of
the origin of the magnetic torque interaction, which in
the main paper is shown to produce clear quantum os-
cillation signatures attributable to the electron pocket in
YFe2Ge2.

FURTHER QUANTUM OSCILLATION DATA

Sample S2

In the main de Haas-van Alphen study carried out on
the Cambridge cryomagnet facility, two samples were
mounted on the same rotation mechanism, one (S1) with
ĉ aligned with the pickup coil and the other (S2) with
the â axis aligned with the axis of the pickup coil. Be-
cause both pickup coils were approximately parallel to
each other, the angles between the applied field and
the crystallographic ĉ direction are related roughly by
θS2 = 90◦ − θS1, although a further small correction was
necessary to account for misalignments within the ro-
tation mechanism. Figure 3 in the main paper shows
distinct quantum oscillations recorded in sample S1. In
S2, quantum oscillations could also clearly be observed
(Fig. S1), but with reduced signal-to-noise ratio com-
pared to the data obtained in S1. We attribute the
smaller signal-to-noise ratio in S2 largely to a lower mean
free path than in S1, as is evaluated in the following sec-
tion.
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Figure S1. Typical de Haas-van Alphen data obtained in
sample 2 (S2) of YFe2Ge2: oscillations are weaker than in
S1 (Fig. 3 in main paper), but signatures of the three hole
pockets can be resolved at most orientations.

Dingle analysis

Mean free paths can be estimated from the dependence
of the quantum oscillation (QO) amplitude on applied
field B by using the standard Dingle analysis (e.g. [1]).
We assume that the QO contribution at each frequency
has an amplitude given by Lifshitz-Kosevich theory as

ỹ ∝ X

sinhX

e−B0/B

B3/2
, (1)

where B0 specifies the primary field dependence and
X = π2m∗

me

kBT
µBB

. The X/ sinh(X) term introduces the
dependence on temperature T , which is used in the
main part of the paper to extract the ratio of effective
mass m∗ over bare electron mass me. The field scale
B0 relates to the quasiparticle scattering rate τ−1 via
B0/B = π/(ωcτ), where ωc = eB/m∗ is the cyclotron
frequency, as τ−1 = B0e/(πm

∗). The mean free path
follows as ` = vF τ . The Fermi velocity vF is linked to
the Fermi wavevector kF by vF = ~kF /m∗. We extract
kF from the measured QO frequency F via the Onsager
relation, giving an expression for ` that does not depend
on the effective mass m∗:

` =
π

B0

√
2~F/e . (2)

We obtain estimates of ` for samples S1 and S2 by
choosing a rotation angle at which high quality data
was recorded and at which a single frequency is most
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Figure S2. QO Dingle analysis of mean free paths in
YFe2Ge2. (a) For sample S1 (` ' 1898(2) �A), using oscilla-
tions at the β frequency and (b) for sample S2 (` ' 912(8) �A),
using oscillations at the γ frequency.
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prominent. The contribution from this frequency was
extracted by applying a band-pass filter with passband
width 200 T. The envelope was determined from the
maxima of these oscillations by averaging over a narrow
field interval. The resulting envelope ỹ(B) was multi-
plied with B5/2 sinhX, where X can be calculated from
the effective mass previously determined by analyzing the
T -dependence of oscillation amplitudes (see main paper),
producing the data summarized in Fig. S2. An exponen-
tial decay of the form e−B0/B was fitted to these data,
resulting in estimated mean free paths of the order of
1900 �A for S1 and 900 �A for S2.
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Figure S3. Field dependence of QO masses (blue circles with
errorbars) extracted at a field angle θ = 70◦ for oscillations
arising from the γ−orbit in Cambridge measurements at up
to 18 T and in higher field measurements at HFML Nijmegen.
Horizontal errorbars indicate the field range over which the
LK-form was applied to extract a mass estimate. The down-
ward trend of masses vs. applied field is compared to the field
dependence of the Sommerfeld ratio of the heat capacity C/T
determined at T = 1.5 K in fields of up to 14 T (black circles).
The red line indicates the result of a parabolic fit to the C/T
data, extrapolated to higher fields.

Field dependence of effective masses

The dependence of the Sommerfeld ratio C/T on applied
magnetic field shown in the inset of Fig. 4a of the main
paper suggests that quasiparticle effective masses are re-
duced in applied field. A reduction by about 20% at fields
of about 18 T would be consistent with the discrepancy
between the zero-field C/T ' 95 mJ/molK2 and the DFT
prediction renormalised by a uniform mass enhancement
of 4.7 determined in the field range 16−18 T, which would
give C∗/T ' 76 mJ/molK2. Figure S3 shows the field
dependence of the Sommerfeld ratio and effective masses
on the γ−orbit, extracted from QO measurements at a
field angle of θ = 70◦ in fields beyond 18 T in the re-
sistive magnet system at HFML Nijmegen and at up to

18 T shown in the main paper. The comparison between
the HFML Nijmegen data and the lower field Cambridge
data suggests that the trend indicated by heat capacity
measurements in field, namely that quasiparticle masses
are reduced in high applied fields, continues beyond 20 T,
although with a weaker field dependence. This prelimi-
nary study suffers from large error bars on the quasiparti-
cle masses extracted from the highest field QO measure-
ments. A more detailed investigation of the field depen-
dence of effective masses on all orbits and to lower fields
that overlap with the range of the heat capacity mea-
surements will be required to pin down the origin of the
' 20% discrepancy between zero-field Sommerfeld ratio
and the effective masses observed at ' 18 T.

MAGNETIC TORQUE INTERACTION

The response of a torque cantilever in high magnetic
fields is complicated by the fact that the bending of the
cantilever itself changes the angle between the applied
field and the sample. Quantum oscillations at one fre-
quency F1 thereby cause a modulation in the effective
angle which is overlaid with oscillations at a second fre-
quency F2. This causes sum- and difference-frequencies
F1±F2 to appear in the QO power spectrum. The ’torque
interaction’ phenomenon is discussed in detail in [1, 2].

To illustrate this effect, we note that the oscillatory
torque τ̃ is given by the oscillatory magnetisation M̃t

transverse to the applied field B as

τ̃ = M̃tB . (3)

For a single oscillatory component, the oscillatory trans-
verse magnetization, in turn, is related to the oscilla-
tory longitudinal magnetization M̃` via M̃t = − 1

F
∂F
∂θ M̃`,

where F is the QO frequency and θ is the rotation angle of
the sample. More generally, the longitudinal and trans-
verse magnetization contain quantum oscillations over a
discrete set of frequencies Fi.

Because M̃t in Eqn. 3 itself depends on θ via the θ
dependence of the QO frequencies, and θ depends on
the torque, we need to consider the feedback effect on
the torque. The torque causes the angle between sample
and field to change from the angle θ0 set by the rotation
mechanism to a new angle θ = θ0 +ατ to first order in τ ,
where α depends on the stiffness of the cantilever. This
results in an implicit equation for the observed torque at
the actual angle θ, which can be expanded to first order
and thereby related to the torque that would have been
present at the angle θ0 set by the rotation mechanism,
as:

τ(θ) = τ(θ0 + ατ) ' τ(θ0)

(
1 + α

∂τ

∂θ

)
. (4)

The nonlinearity which mixes QO frequencies arises
from the product τ ∂τ∂θ in Eqn. 4. Writing the oscillatory
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contributions to τ(θ0), or to τ(θ) in the limit of infinite
cantilever stiffness, as

τ̃(θ0) =
∑
i

Ri sin

(
2πFi
B

+ φi

)
(5)

and dropping the phase-shifts φi, we find for the actual
observed torque at finite cantilever stiffness

τ̃(θ) =
∑
i

Ri sin

(
2πFi
B

)
+

απ

B

∑
ij

RiRj
∂Fj
∂θ

sin

(
2π

B
(Fi + Fj)

)
+

απ

B

∑
ij

RiRj
∂Fj
∂θ

sin

(
2π

B
(Fi − Fj)

)
. (6)

The measured oscillatory torque therefore shows oscil-
lations not only at the fundamental frequencies Fi but
also at sum and difference frequencies Fi ± Fj . If the
analysis is extended beyond first order in Eqn. 4, a comb
of frequencies Fi ± nFj will be obtained, as was indeed
observed in some high field runs in YFe2Ge2. More dra-
matic effects of the torque interaction such as instabilities
and hysteresis phenomena are beyond this analysis and
were not observed in our high field measurements.
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