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Abstract
Minima of the loss function landscape (LFL) of a neural network are locally optimal sets of weights
that extract and process information from the input data to make outcome predictions. In
underparameterised networks, the capacity of the weights may be insufficient to fit all the relevant
information. We demonstrate that different local minima specialise in certain aspects of the
learning problem, and process the input information differently. This effect can be exploited using
a meta-network in which the predictive power from multiple minima of the LFL is combined to
produce a better classifier. With this approach, we can increase the area under the receiver
operating characteristic curve by around 20% for a complex learning problem. We propose a
theoretical basis for combining minima and show how a meta-network can be trained to select the
representative that is used for classification of a specific data item. Finally, we present an analysis of
symmetry-equivalent solutions to machine learning problems, which provides a systematic means
to improve the efficiency of this approach.

1. Introduction

Deep learning with neural networks is a high-dimensional, non-convex optimisation problem for a loss
function landscape (LFL). The coordinates of aminimum in the LFL are a set of weights for the machine
learning model and a locally optimal solution to the learning problem, and these terms will therefore be used
interchangeably throughout. It follows that the coordinates of the global minimum of the LFL are the weights
that produce the lowest possible value of the loss function for the training data. The aim of machine learning
is usually for the model to find a set of weights that fit the training data, but also generalise well to unseen
testing data. Our approach extends this view. Instead of looking at just one minimum of the LFL, we are
interested in the expressive power of multiple minima. To analyse how different minima extract and process
information from the input data, we survey numerous low-lying minima of the LFL. Here, we employ tools
from the energy landscape approach (Wales 2003) to gain new insight into machine learning LFLs (Ballard
et al 2017). We note that the role of local minima is somewhat different in ML landscapes compared to
molecular systems. While in a molecular energy landscape only minima provide valid configurations for a
stable molecule, this restriction does not apply to LFLs for machine learning. In fact, some low-lying
non-minima will have a smaller loss value and higher classification accuracy than a high-lying minimum.
Here, we are interested in developing a better understanding of the capacity of diverse minima of the LFL,
and we show that by combining the expressive power of different minima, we can build a better classifier. The
compact form of this predictor provides a balance between accuracy and efficiency, which will be useful in
applications where evaluation is a computational bottleneck.

1.1. Background
Machine learning models are structurally limited in the amount of data they can fit: their capacity is finite.
The most commonly known measure of capacity is perhaps the Vapnik-Chervonenkis (VC) dimension
(Vapnik and Chervonenkis 1971, Vapnik et al 1994). The higher the VC dimension, the more complex are the
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data that can be fitted. More rigorously, VC dimension is defined as the largest cardinality of a set of data
points that the NN can shatter (for our purpose, shatter means classify correctly). Thus, the weights of an
underparameterised model (i.e. fewer parameters than training data points) may be incapable of fitting the
entire test data set, but instead fit just parts of it.

The approach we employ to study the expressive power of combinations of individual minima is a
variation of ensemble learning, where the results of multiple different predictors are combined to improve
the overall accuracy of an approximation problem (Dong et al 2020). The idea of combining multiple sources
of information, specifically the output predictions of multiple classifiers, has been considered for over two
decades (Breiman 1996, Hashem 1997, Jin and Lu 2009). Two of the most important questions in ensemble
learning are: which classifiers to consider, and how to combine the individual predictions (Wang 2008). For a
detailed review see Kuncheva (2014).

1.2. Motivation
In this contribution, we are interested in quantitatively and systematically characterising a cornerstone of
ensemble learning, namely classifier diversity. Logically, ensemble learning works if different classifiers
extract different information from the input data or process it differently (Melville and Mooney 2005, Zaidi
et al 2020). In the present work, the classifiers in question correspond to local minima of a reference neural
network. We aim to visualise diversity of minima from the corresponding LFL and show how to select a few
of them to produce a compact, yet more accurate, classification. We will show that different minima of the
LFL successfully classify distinct subsets of the entire input dataset. Hence different local minima specialise in
distinct parts of the test dataset, which we believe has not been shown before.

In summary, our main contributions are:

• Showing that different local minima specialise in distinct subsets of the input;
• MLSUP, a proof-of-conceptmethod that exploitsminima diversity to improve classification results for com-
plex problems;

• An interpretation of the limitation of single-minimummodels and visualisation of the differences between
minima;

• Novel insights into the symmetry properties of minima in neural network LFLs.

2. Superposition of machine learning solutions: MLSUP

We will show that different local minima of a reference neural network extract different information from
the input data and that combining just a few examples can improve classification significantly. To study this
effect, we employ a modified stacking approach where multiple minima from the same classifier are
combined, rather than multiple classifiers. We do not obtain these minima by different random initialisation
but rather from exploring the LFL. This approach provides insight into the functional landscape and a
deeper understanding of LFL minima. To answer the second important question in ensemble learning
design, we employ a second neural network to select one of the local minima for a given input data item. This
idea is related to previous theory, Jordan and Jacobs (1994) where a gating network chooses which classifier
to apply to some problem (McGill and Perona 2017, Shazeer et al 2017). We call our method MLSUP, to
denote a superposition of machine learning solutions (local minima of the LFL). We describe MLSUP in a
four step process (figure 1).

The first step involves characterising local minimaM by exploring the LFL during training. Next, we
choose a subset of minimaM ′ ⊆M and evaluate eachm ∈M ′ for every training datapoint, which reveals
how well each of them can classify specific data items (step 2 in figure 1). A detailed discussion of how a few
minima are selected for combination is included below. The superposition of chosen minima is done by
training a second, meta-network (classifier 2, i.e. step 3 in figure 1) to learn which of them ∈M ′ minima is
best suited to classify a specific input datapoint. Thus, the second network learns to apply different minima
to classify different types of input data, as shown in Step 4 of figure 1. A pseudocode version of MLSUP is
provided in the appendix.

3. Model

We consider a classification problem for C classes with a single hidden layer, as we are specifically interested
in underparameterised networks. For some dataD = (X,c), the inputs are denoted X= {x1, . . . ,xN}, where
N is the number of data points in the training or testing set, which are denoted as Xtrain and Xtest respectively.
The correct label for some data point d is defined as cd. We use tanh as the nonlinear activation function to
the hidden layer, since it has continuous derivatives, which we require for optimisation. Outputs at node yi
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Figure 1. Diagrammatic representation of the MLSUP learning procedure. Ellipsoid boxes contain the true outputs, which are
compared to the predicted output for training/evaluation purposes.

for input data item x are converted to softmax probabilities pi(W;x) = exp(yi)/exp(
∑

j e
yj), whereW

denotes the vector containing all weights. During training, we minimise a loss function L(W;X) with respect
to these weights. We use a cross-entropy loss function:

L(W;X) =− 1

N

N∑
d=1

lnpc d(W;X)+λW2, (1)

where cd is the correct class for some data item xd. A L2 regularisation term λW2 is added to eliminate zero
Hessian eigenvalues, which by Noether’s theorem arise as a consequence of continuous symmetries in the
loss function when additively shifting all the output bias weights (Ballard et al 2017). We find λ= 10−5 to be
appropriate for the tests considered; our conclusions are largely insensitive to λ. This setup is used for the
neural networks in steps 1, 2 and 4 of figure 1.

3.1. Defining the meta-network loss function
For step 3 of figure 1, the loss function is different from equation (1). This section describes Classifier 2 from
figure 1, which is distinct from the one used for steps 1, 2 and 4. For Classifier 2, we are not interested in
learning cd, i.e. the correct output class, but rather the best local minimum to classify some input data item d,
which is defined by the highest corresponding probability:

bd = arg maxm mpc d ∀m ∈M ′, (2)

for data item d, wherem is one set of weights. This formulation changes the loss function to:

L(W̃;X) =− 1

N

N∑
d=1

lnpbd(W̃;X)+λW̃2, (3)

with W̃ representing the weights for network 2. We evaluate the classification predictions of our model using
the area under the receiver operating characteristic curve (ROC-AUC) (Fawcett 2006). The change in loss
function also impacts the way we calculate the AUC for Step 4 in figure 1. In the usual case, the AUC is given
as:

AUC=

ˆ 1

0
T(P)dF(P), (4)
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with the true positive rate for outcome number one, T(P), and the false positive rate, F(P):

T(P) =

∑Ndata

d δ(cd − 1)Θ(p1 − P)∑Ndata

d δ(cd − 1)
F(P) =

∑Ndata

d [1− δ(cd − 1)]Θ(p1 − P)∑Ndata

d 1− δ(cd − 1)
, (5)

where δ(cd − 1) is the Dirac delta function, andΘ(p1 − P) the Heaviside step function, defined as:

δ(cd − 1) =

{
1 if cd = 1,
0 if cd ̸= 1

Θ(p1 − P) =

{
1 if p1 ⩾ P,
0 if p1 < P

(6)

However, we now have |M ′| possibilities. Thus, we must evaluate the AUC using the minimum bd that is
chosen by Classifier 2 from figure 1:

T(P) =

∑Ndata

d δ(cd − 1)Θ(pb
d

1 − P)∑Ndata

d δ(cd − 1)
F(P) =

∑Ndata

d [1− δ(cd − 1)]Θ(pb
d

1 − P)∑Ndata

d 1− δ(cd − 1)
, (7)

Unless described otherwise, Classifier 2 is a single hidden-layer network with 3 hidden nodes.

3.2. Optimisation routine
To survey the LFL we employ methods from the energy landscape approach, which has been widely used to
study molecular and condensed matter systems in the physical sciences (Wales 2003). Specifically, global
optimisation is performed using the basin-hopping method (Li and Scheraga 1987, Wales and Doye 1997)
with a customised quasi-Newton L-BFGS (Nocedal 1980) optimiser (appendix). Candidates for transition
states are obtained using a doubly-nudged (Trygubenko and Wales 2004a, 2004b) elastic band (Henkelman
et al 2000, Henkelman and Jónsson 2000) approach and accurately refined by hybrid-eigenvector following
(Munro and Wales 1999, Zeng et al 2014). The transition states are identified solely for visualisation of the
global organisation of the landscape using the OPTIM program. Transition states are clearly distinguished
from local minima by the Hessian eigenvalue structure, and only local minima are explored in the global
optimisation procedure by the GMIN program (see appendix). Transition states are not used in training or
testing procedures. They are used to understand how the local minima obtained in training are organised in
the LFL. All the routines employed in LFL exploration are implemented in the GMIN (Wales 2003a), OPTIM
(Wales 2003b) and PATHSAMPLE (Wales 2003c) programs.

4. Minima selection

The problem analogous to classifier selection in ensemble learning for MLSUP is minima selection. Here our
motivation is to identify a small number of minima that significantly enhance the accuracy of the
predictions, to produce a compact representation suitable for use in large-scale simulations that are typical in
physical science applications. Hence we need to identify complementary minima that can be combined to
improve the classification. We compare two methods for minima selection: one based on the theory of a
thermodynamic analogue for the LFL, the other on more abstract machine learning concepts. We will also
explain why simply picking minima that are ‘far away’ in Euclidean distance can be ineffective.

4.1. Euclidean distance
The Euclidean distance between two weight vectors is simply |w1 −w2|=

√
(w1 −w2)2. However, minima

‘far away’ from each other in Euclidean space may not extract different information from the training data.
In fact, there are symmetry-related minima, potentially distant in Euclidean space, which for the same input
data will return exactly the same loss value. We refer to these solutions as permutational invariants or
isomers, as for molecular systems. This sort of problem was considered in Dinh et al (2017), where
redundant minima are shown to exist for non-negative homogeneous nonlinear functions, such as the
rectifier function ϕrect(x) =max(x,0). However, these results do not apply here because tanh is not
homogeneous. Instead, let G denote the permutation group for some set of weights w, i.e. all permutations
allowed such that for the same input, they return the same output. By shuffling hidden nodes (Brea et al
2019), and the fact that tanh is an odd function, we can show that for each minimum, there exist:

|G|=
H∏
l=1

(nl!× 2nl) or |G|=
H−1∏
l=1

(nl!× 2nl)× nH!, (8)

degenerate solutions for each minimum, depending on whether the number of hidden layers H is odd or
even, respectively, where nl is the number of nodes in hidden layer l. Because tanh is an odd function, we can

4



Mach. Learn.: Sci. Technol. 3 (2022) 025004 M P Niroomand et al

change the sign of the weights before and after each hidden node and each combination of any number of
nodes for an odd number of hidden layers. This result increases the per-layer number of degenerate minima
from n! to n!× 2n, i.e. for each node swap, any nodes in each element of the power set of the nodes P(n) could
be multiplied by a factor of−1 with no effect on the output. Thus, randomly picking some ‘far away’ minima
might just return permutationally invariant solutions, which does not lead to any performance improvement
in MLSUP. For further interest, we have included in the appendix an example of four such permutational
invariants and a pairwise distance matrix of permutational isomers of one minimum. In conclusion, a large
Euclidean distance for minima selection is neither a necessary, nor a sufficient selection condition.

4.2. Misclassification space
Instead of computing the distance between two sets of weights in Euclidean space, we can compute a metric
in misclassification space. The rationale behind this approach is that minima with a high pairwise
misclassification rate will be complementary, and therefore good candidates for MLSUP. We denote a vector

containing the predicted output class for each data item i ∈ X for some minimumm as c(m)
i , and define the

set Ξ = {n | c(1)n ̸= c(2)n }, which contains the indices of all elements that are classified differently by the two
minima. To obtain a misclassification ratio Λ from this set, we simply represent the cardinality of Ξ as a
fraction of the number of data points Λ = |Ξ|/N, i.e. the number of misclassified items divided by the total
number of items. If we compute Λ for allm ∈M, whereM again denotes the set of all known minima, we
obtain a symmetric matrix of pairwise differences in classification space. We can then train MLSUP on
selected minima that are distant in classification space. Below, we will abbreviate the Maximum
Misclassification Distance to the Best Minimum as MMDBM. A more theoretical basis for weighting
classifiers according to correlation of errors is given in Masegosa et al (2020).

4.3. Heat capacity (CV)
Building on results for molecular systems, we can compute a theoretical analogue of the heat capacity (CV )
(Wales 2017). The heat capacity reports upon the changing occupation probabilities of local minima as the
temperature changes, which depends on both the relative loss function value for the minimum, and a local
density of states (the analogue of entropy) in weight space. By computing the partial derivatives of the
occupation probabilities with respect to temperature, we can identify the minima with the largest rate of
change of probability, which theory shows make the largest contribution to the heat capacity (Wales 2017).
Peaks in the heat capacity correspond to changes in occupation between local minima with different loss
function values and entropy. Thus, in physical systems, the minima with the largest positive and negative
partial derivative around a peak generally have qualitatively different properties. Peaks in CV therefore tell us
where to find local minima with complementary properties (Wales 2017), which may provide good
candidates for combinations in a new classifier. This reasoning was the original motivation for the MLSUP
procedure, since the heat capacity analysis is computationally efficient and physically insightful.

4.4. Data
To test MLSUP, we chose to study the spiral data problem (Lang and Witbrock 1988). An example can be
seen in figure 4. This problem is considered to be relatively difficult because of its high degree of non-linear
separability. We further increase the difficulty by adding a small uniform noise term to each datapoint. Our
models are trained on 3200 data points and tested on 800. To show that the MLSUP approach is
generalisable, we report results for other datasets in the appendix.

5. Results

In this section, we report general results for MLSUP and specifically the impact on the AUC for different
minima selection methods and different numbers of minima combined in MLSUP. We benchmark the
MLSUP AUC in four ways. First, we compare it to the best individual AUC of the minima that we choose for
MLSUP. Second, we compare it to the best AUC of the non-MLSUP system (classifier 1 in figure 1) from
which the MLSUP minima are selected. Third, in order to evaluate MLSUP, we compare its AUC with the
best possible AUC achievable from combining the selected nminima. To compute this theoretical maximum
AUC (TMA), for each datapoint we select the maximum Softmax probability of the correct class amongst all
minima considered. The TMA gives an upper bound for the accuracy of MLSUP. Thus, to evaluate the
quality of Classifier 2 alone, an AUC achieved with MLSUP should be compared against the TMA. Lastly, we
compare it with a simple majority vote (with ties considered as correctly classified).
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Figure 2. Four sets of weights, shown for a small network. All four minima have very different sets of weights, as evidenced by the
colours. However, their AUC values for the test data are similar.

Table 1. AUC improvements for different MLSUP settings.

AUC

Selection method # minima Best individual MLSUP TMA Majority vote

CV peak 1 2 0.70 0.88 0.98 0.76
CV peak 2 2 0.70 0.86 0.97 0.73
MMDBM 2 0.76 0.91 0.97 0.78
MMDBM & CV peak 1 4 0.76 0.93 0.99 0.86
MMDBM & CV peak 2 4 0.76 0.94 0.99 0.85
Max Euclidean distance 2 0.65 0.67 0.68 0.66

5.1. MLSUP effect
A substantial increase in the AUC can be achieved with MLSUP. For the original network (Classifier 1 in
figure 1), we found 7842 minima and a maximum AUC value of 0.76. Using MLSUP with two of these
minima (6436 and 656), we obtain an AUC of 0.91. By combining four minima, the AUC increases to 0.94
(table 1). The weights for these four minima are shown in figure 2. There is no apparent relationship between
these four sets, yet they are all minima of the original LFL and have similar AUCs. We also find that MLSUP
outperforms a majority vote and include results for other benchmark datasets, higher-dimensional problems
and MLSUP hyperparameters in the appendix.

5.2. Minima selection
Table 1 clearly shows why a minima selection routine is necessary. Choosing the two minima with the largest
Euclidean distance, we obtain an AUC of 0.67, substantially lower than for either of the systematic minima
selection methods. Furthermore, the Pearson correlation coefficient between distance in Euclidean and
misclassification space is only 0.06, which demonstrates that Euclidean distance alone is not useful for
minima selection. Additional details can be found in the appendix.

5.2.1. Misclassification space
The distance between minima in misclassification space is the best minima selection method for an MLSUP
meta-network based on two minima. By combining the best individual AUC minimum (number 656) with
the minimum furthest away from it in misclassification space (number 6436), we obtain an AUC value of
0.91 (MMDBM). We note that the individual AUC values of both these minima were reasonably high
already, at 0.74 and 0.76. The best possible AUC that MLSUP could have achieved, if for each data item the
better minimum had been chosen for this system (TMA) is 0.97 (table 1).

5.2.2. Heat capacity
The heat capacity (CV ) curve for the LFL has two peaks, a small one at low T and a larger peak at
T≈ 3× 10−3 (figure 3). Such a CV curve in a molecular system would indicate a solid-solid phase transition
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Figure 3. Heat capacity (CV ) curve for ML landscape. As the temperature is increased, the occupation probabilities change and
more minima become accessible. CV is calculated using an analogue of normal mode analysis for each minimum (Ballard et al
2017).

at low temperature (first peak), and a solid-liquid transition (melting) at higher temperature (second peak)
(Wales 2003). In the neural network case, these peaks can be understood in terms of transitions between two
energetically/entropically different sets of minima. By combining the minima that make the greatest
contributions to CV at the larger peak (figure 3) in MLSUP, we improve the AUC to 0.86 (table 1). For the
minima that produce the smaller peak, the improvement is similar, with an AUC value of 0.88 (table 1). The
TMA of MLSUP is 0.98 for the first and 0.97 for the second peak.

6. Discussion

Combining different minima in one classifier can substantially improve the ROC-AUC for a complex
problem like spiral data. This result strongly suggests that different minima extract different information
from the input and/or process it in a different way. Our results shed new light on the LFLs of complex
problems. Even the global minimum is limited in the amount of information it can extract and process. To
maximise the efficiency of MLSUP, we therefore aim to identify complementary high-AUCminima for which
the intersection of correctly classified datapoints is small. This selection translates to a large distance in
misclassification space. Such minima are ideal candidates for MLSUP.

6.1. Computational resources
Training MLSUP for four minima is fast and hence does not constitute a bottleneck. All tasks were run on
six-core dual Xeon X5650 (2.6 GHz) nodes with 24Gb RAM per node. Using just one core, MLSUP is trained
within a few hours. The initial analytical landscape exploration requires more subtle considerations. Due to
the nature of the LFL (theoretically infinitely large, yet implicitly bounded by L2-regularisation), more
minima can generally be found. For reference, finding 7842 minima took us around 92 hours. The
computing time required for landscape exploration depends on system size, number of data points, and
various parameters in the optimisation routine, but also the structure of the LFL, which is specific to a given
problem. Landscape exploration can be parallelised, so there is scope to speed up the calculations
significantly in the future.

6.1.1. Applications for MLSUP
We emphasise that our main objective in the present contribution is to improve our understanding of the
LFL and investigate whether the MLSUP approach might be useful. In particular, we have investigated the
underlying assumptions concerning the information extracted by different minima for underparameterised
networks. For larger, overparameterised networks, a single minimum may suffice to achieve near-perfect
AUC. However, evaluating a complex classifier could become a computational bottleneck in large-scale
simulations of physical systems. Hence, a compact MLSUP representation will be useful in such situations.
For example, we have an application where predicted values of specific molecular properties are required at
every step in a molecular simulation (Dedmon et al 2005, Lindorff-Larsen et al 2005, Vendruscolo and
Dobson 2005, Clore and Schwieters 2006, Cavalli et al 2007). The properties depend on the atomic
coordinates, which vary throughout the simulation, and we need analytical derivatives of the properties
(outputs) with respect to the coordinates (inputs). A compact but computationally efficient prediction

7



Mach. Learn.: Sci. Technol. 3 (2022) 025004 M P Niroomand et al

Figure 4. Contribution of each of four selected minima (right) to the MLSUP prediction of binary test data (left). Marker shape
indicates the label, colour of the respective minimum, and size the Softmax probability that the respective minimum obtains for
the correct class of this datapoint (scaled quadratically). Only points that are classified correctly by the respective minimum are
included.

engine, such as MLSUP, is needed to prevent these computations from becoming a bottleneck in the
simulations.

6.1.2. Minima selection
Selecting the correct minima for MLSUP is a key problem. Even when combining just two out of |M|
minima, there are

(|M|
2

)
possible combinations. While a choice guided by Euclidean distance may be

appealing, this approach is ineffective due to low misclassification distance or permutationally equivalent
solutions. Hence, we have analysed two other methods, one based on a theoretical analogue of the heat
capacity, and the other on misclassification space. Combining minima of high misclassification distance
achieves the best results. However, evaluating the misclassification space is relatively expensive and scales as
O(n2), where at each step, all data points must be evaluated for one of nminima. In contrast, the analysis of
CV scales linearly asO(n). Additionally, a high misclassification rate between two individually poor minima
is unlikely to substantially improve results, as the confidence in each minimum would be low, and a
superposition would not necessarily improve this situation. We have not observed any such issues with the
CV approach. The superior results of CV as opposed to random initialisation are striking, and demonstrate
how a methodology developed for molecular energy landscapes can provide new insight into machine
learning LFLs.

6.1.3. Interpretation of differences between minima
Figure 4 provides an explanation for the substantial improvements that are achieved in MLSUP. While
figure 2 shows that the individual minima are very different from each other, it does not show how these
differences are propagated to classification decisions. Figure 4 shows that individual minima are good at
predicting specific ranges of the input data, and only in combination do they manage to classify points all
around the spiral. Note that the Softmax probability cannot generally be read as true probability because it
lacks uncertainty quantification (Sensoy et al 2018). However, it can be used here as a visualisation proxy due
to the well-behaved nature of the synthetic data. We see that the number of large points per minimum
correlates with the AUC. Minima 6436 and 656 have AUCs of 0.74 and 0.76, respectively. In the right panel of
figure 4, large parts of the MLSUP predictions are red or blue, corresponding to these two minima. In
contrast, minimum 2428, which only seems to be able to accurately predict datapoints from Class 1 in the
upper right quadrant, has a lower AUC (0.66). Another feature clearly illustrated in figure 4 is the input-sign
dependence of the minima. In particular, minima 1223 and 2428 only have high confidence for datapoints
that lie in one of the four segments. While 2428 is good at classifying Class 1 datapoints with positive sign for
both inputs, minimum 1223 works best for classifying Class 0 datapoints with positive x and negative y.
Thus, if MLSUP receives an input data point where both coordinates are positive (and perhaps at least one of
them large), it is likely to classify it using the weights from minimum 2428.

Combining the above results with figure 2, we see that minimum 6436 has strongly positive weights going
into the upper output node O0 and strongly negative weights into O1, while the opposite holds for minimum
656. Indeed, figure 4 confirms that 6436 is very good at classifying data belonging to output class 0, while 656
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is very good at classifying data belonging to output class 1. We therefore conclude that different minima truly
‘specialise’ in parts of the input data, thus providing the foundations for the MLSUP approach. Visualising
the results we provides an intuitive way to confirm that different minima process the same information in a
different way. This observation raises various questions around initialisation methods and interpretability of
ML models. Instead of considering model interpretability, it may be more appropriate to discuss the
interpretability of different minima, as various solutions may extract, and hence focus on, completely
different information from the input data. The overparameterisation of neural networks (Belkin et al 2019)
may explain why different minima achieve such good results individually. However, to explain neural
network decision making, understanding that different minima process the input differently seems a crucial
first step.

7. Conclusions

Different sets of weights associated with different minima of the LFL extract different information from the
input data, or process it differently. By training a meta-network to decide which minimum should be applied
for any specific input data point, we can substantially improve classification accuracy. These results explain
why different solutions to the same learning problem, obtained with different initialisation methods, have
varying degrees of accuracy. Furthermore, we show that if the capacity of the network is limited, individual
minima specialise in parts of the network. In future work, it will be interesting to consider these results in the
light of mathematical measures of network capacity, such as VC-dimensions.

In addition to this insight, we also provide an analysis of redundant minima which, although they might
appear to be different, return the same loss value for some input. Such symmetries make minima selection
more challenging. Simple measures, such as the Euclidean distance in weight space, are insufficient due to
low correlation with misclassification distance. To solve this problem, we can exploit thermodynamic
analogues for the LFL by analogy to molecular systems. In particular, we find that defining a heat capacity
analogue for the LFL provides an efficient and direct approach for locating complementary local minima.
Computing the heat capacity, and identifying the minima that make the largest contributions to the peaks, is
a promising method for constructing a compact but relatively accurate classifier in the MLSUP approach.
This representation may prove useful for applications where evaluation of the classifier is a potential
bottleneck, as for simulations in the physical sciences, where predictions of molecular properties are required
at every step (Dedmon et al 2005, Lindorff-Larsen et al 2005, Vendruscolo and Dobson 2005, Clore and
Schwieters 2006, Cavalli et al 2007). The analogy to physical systems provides further motivation for pursing
the energy landscape view of machine learning LFLs.
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Appendix

Further experiments
Table 2 includes some additional results that reinforce our conclusions. Importantly, we also want to test
MLSUP on other datasets to provide evidence that the performance increase is not specific to the spiral
dataset. We first considered the well known Iris flower dataset and, to make it more difficult, mislabelled 45%
of the training samples. The second additional test for MLSUP was for the checkerboard dataset, another
synthetic, nonlinear problem. Similar to Iris, we achieve significant improvements using MLSUP. When the
number of minima is increased substantially (e.g. to 20) the AUC only increases slightly. Training MLSUP for
20 minima takes around 10 times as long as for four minima using the same setup as above. These results
again suggest that MLSUP can be effective for a small number of local minima, with the potential to provide
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Table 2. AUC improvements by MLSUP.

AUC

Description # minima Best individual MLSUP TMA

Large hidden layer (n= 100) 2 0.99 0.99 1
Small training set N= 400 2 0.62 0.78 0.86
5 MLSUP minima 5 0.76 0.94 0.99
20 MLSUP minima 20 0.76 0.97 1
100 randomly chosen (mean) 2 0.74 (0.67) 0.7–0.89 (0.78) 0.98
100 randomly chosen (mean) 4 0.76 (0.67) 0.78–0.93 (0.84) 0.99
Mislabelled Iris flower dataset 2 0.85 0.96 0.99
Checkerboard 2 0.68 0.84 0.96

Figure 5. Euclidean distance between 48 permutationally equivalent local minima of the global minimum for a particular LFL.

useful accuracy at a low computational cost. This balance of accuracy and efficiency will be valuable in
applications where reasonable predictions are required without a significant overhead.

Permutational invariants
Examples
Here we provide additional insight into the issue of permutationally equivalent sets of weights.

Figure 5 shows how distant permutationally equivalent local minima can be in Euclidean space. The
system contains a single hidden layer with n= 3 nodes. Shuffling the nodes leads to n! = 6 permutations and
within each permutation, the weights going in and out of any combination of the hidden nodes can be
multiplied by−1. Thus, for each shuffle-permutation there are an additional 2n = 8 isomers, producing 48
in total. In misclassification space, the distance between all these 48 minima would be 0, as in figure 6, which
shows how far apart these equivalent solutions can appear to be.

Comparison of Euclidean andmisclassification space
This section presents further evidence that the Euclidean distance alone is insufficient for minima selection.
Figure 7 shows that only a very weak correlation exits between Euclidean and misclassification distance.
Large misclassification distance can be observed roughly as often for points of large Euclidean distance as it is
observed for points close together in the parameter space defined by the weights. Given the good results of
misclassification distance for minima selection, the low correlation coefficient indicates that Euclidean
distance alone is not useful.

MLSUP algorithm
The MLSUP algorithm 1 can be represented in pseudocode as:

10
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Figure 6. An example of four very different looking minima that are actually permutationally equivalent, i.e. redundant solutions.
For any input, these four networks will all return exactly the same loss value.

Figure 7. Euclidean vs Misclassification distance for each of the
(n
2

)
combinations of nminima of the spiral data LFL. The Pearson

correlation coefficient for Euclidean distance vs misclassification is 0.06.

Algorithm 1. Train MLSUP.

Require: D = (X,c)
Sample LFL, find |M|minima
Pick some |M ′|minima candidates
Evaluate each minimumm ∈ |M ′| on training data
Train second nn to learn argmaxm mpc d
for d ∈ D do
Evaluate first network, query second network for which minimum to use

end for

11
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Choosingm′minima by pairwise misclassification distance
One may wish to compute MLSUP withm′ minima, chosen to have the maximum misclassification distance
from another. This is a combinatorial optimisation problem, analogous to havingm cities with pairwise
distances and trying to find them′ cities that are furthest from each other. This problem can be solved by
quadratic programming with convex relaxation. Let D be an upper triangular matrix with element Dij

denoting the misclassification distance from point i to point j, where i< j. The square matrix D has 0
diagonal. Denote x as am-dimensional binary vector, which contains the value 1 at the position of a chosen
minimum and 0 elsewhere. The objective is then to maximise x⊤Dx. In practice, the values of x will be
relaxed so they need not be discrete, and the optimisation procedure becomes:

max
y

y⊤Dy subject to 0⩽ yi ⩽ 1 ∀i, 1 · y=m ′. (9)

The final task is then to discretise y back to x such that y⊤Dy is very close to x⊤Dx. We have achieved this
mapping by simply setting them′ largest elements of y to 1 and all others to 0, but other methods of
approximation may work equally well or even better.

Basin-hopping global optimisation
The first step in surveying the LFL for a neural network is to locate the global minimum. We perform global
optimisation using the basin-hopping method, which uses a Metropolis criterion to accept or reject
proposed moves between minima (Li and Scheraga 1987, Wales and Doye 1997). For local minimisation we
use a modified quasi-Newton L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno) algorithm
(Nocedal 1980). After a new local minimum is found via L-BFGS optimisation, a basin-hopping step to that
minimum is accepted if the energy, here loss value, is lower than the current minimum. If the loss value of
the new minimum is higher, it is accepted with probability:

P∝ exp

(
−∆Ẽ

kBT

)
, (10)

where∆Ẽ is the difference in loss value between the current minimum and the new minimum, kB the
Boltzmann constant and T a fictitious temperature. Intuitively, if the energy difference between the old and
new minima is large, the move is less likely to be accepted. Local minima are defined as stationary points
with an RMS gradient below 10−10 and no negative Hessian eigenvalues. Each basin-hopping run naturally
produces a sampling of low-lying minima as it progresses, in addition to the global minimum.
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