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ABSTRACT
We investigate misaligned accretion discs formed after tidal disruption events that occur when
a star encounters a supermassive black hole. We employ the linear theory of warped accretion
discs to find the shape of a disc for which the stream arising from the disrupted star provides a
source of angular momentum that is misaligned with that of the black hole. For quasi-steady
configurations, we find that when the warp diffusion or propagation time is large compared to
the local mass accretion time and/or the natural disc alignment radius is small, misalignment is
favoured. These results have been verified using smoothed particle hydrodynamics simulations.
We also simulated 1D model discs including gas and radiation pressure. As accretion rates
initially exceed the Eddington limit, the disc is initially advection dominated. Assuming the
α model for the disc, where it can be thermally unstable, it subsequently undergoes cyclic
transitions between high and low states. During these transitions, the aspect ratio varies from
∼1 to ∼10−3 which is reflected in changes in the degree of disc misalignment at the stream
impact location. For maximal black hole rotation and sufficiently large values of viscosity
parameter α > ∼0.01–0.1, the ratio of the disc inclination to that of the initial stellar orbit is
estimated to be 0.1–0.2 in the advection-dominated state, while reaching of order unity in the
low state. Misalignment decreases with decrease of α, but increases as the black hole rotation
parameter decreases. Thus, it is always significant when the latter is small.

Key words: accretion, accretion discs – hydrodynamics – relativistic processes – quasars:
supermassive black holes.

1 IN T RO D U C T I O N

A tidal disruption event (TDE) occurs when a star approaches suf-
ficiently close to a supermassive black hole that it is ripped apart by
tidal forces. Its orbit must take it within the so-called tidal disruption
radius, RT. This radius is such that the mean density of a mass equal
to that of the black hole, assumed to be enclosed within a sphere of
radius, RT, is equal to that of the star. The ensuing tidal disruption
results in an accretion disc around black hole being formed from the
stellar gas. This in turn gives rise to a luminous source of radiation.

Over the past two decades or so, around 30 candidate TDEs,
where stars are tidally torn apart by supermassive black holes, have
been identified, see e.g. Komossa (2015) for a review and further dis-
cussion. Normally, these are associated with non-stationary flares of
soft X-ray radiation in the centres of previously non-active galaxies
(e.g. Esquej et al. 2008). They are observed to decay on a time-
scale of the order of several years. Some manifest themselves as
sources of transient optical line emission thought to originate from
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interstellar gas that has been ionized by X-ray radiation coming
from a TDE (e.g. Komossa et al. 2008, 2009). Additionally, there
are non-stationary powerful bursts of radiation over a very wide
waveband, ranging from radio to X-rays, which are interpreted as
being produced by processes occurring in a jet directed almost par-
allel to the line of sight. This is assumed to be formed during an
early stage of the evolution of the accretion disc formed after a
TDE. A canonical example of such an event is Swift J1644+57
(see Burrows et al. 2011).

TDEs provide an excellent opportunity to determine black hole
parameters, study the physics of accretion and jet formation as well
as investigate the nature of stellar populations in galactic centres.
Theoretical investigations of TDEs were initiated approximately
40 years ago following a seminal paper of Hills (1975). Subse-
quently, many researches have considered aspects of the formation
of TDEs, their properties and observational appearance. These stud-
ies can be characterized by allocating them to one of four interrelated
groups.

The first of these is devoted to stellar dynamical processes oc-
curring in the vicinity of single or binary supermassive black
holes which result in the formation of stellar orbits with their
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periastrons close enough to the black hole for the stars on them
to be tidally disrupted. Tidal disruption rates were evaluated for dif-
ferent parameters characterizing the central star clusters and black
holes (see e.g. Frank & Rees 1976; Lightman & Shapiro 1977;
Magorrian & Tremaine 1999; Syer & Ulmer 1999; Ivanov, Polnarev
& Saha 2005; Stone & Metzger 2016). The second group focuses
on the process of tidal disruption itself under different assumptions
concerning the structure of the star, its orbit and the gravitational
field of the black hole (e.g. Carter & Luminet 1983, 1985; Evans
& Kochanek 1989; Khokhlov, Novikov & Pethick 1993a,b; Ivanov
& Novikov 2001; Ivanov, Chernyakova & Novikov 2003; Ivanov &
Chernyakova 2006; MacLeod, Guillochon & Ramirez-Ruiz 2012;
Guillochon & Ramirez-Ruiz 2013; Dremova, Dremov & Tutukov
2014; Mainetti et al. 2016). The third group studies the formation,
properties and dynamics of the accretion disc formed after a TDE
(e.g. Cannizzo, Lee & Goodman 1990; Kochanek 1994; Kim, Park
& Lee 1999; Stone & Loeb 2012; Hayasaki, Stone & Loeb 2013;
Kelley, Tchekhovskoy & Narayan 2014; Shen & Matzner 2014;
Franchini, Lodato & Facchini 2015; Guillochon & Ramirez-Ruiz
2015; Bonnerot et al. 2016; Coughlin et al. 2016). The fourth group
explores the observational consequences of TDEs (e.g. Bogdanovic
et al. 2004; van Velzen et al. 2011; Khabibullin et al. 2014; Miller
2015; Zhang et al. 2015).

It was pointed out by Lacy, Townes & Hollenbach (1982) with
further development by Rees (1988) that when the stellar orbit is
assumed to be parabolic and tidal forces totally disrupt the star,
approximately one half of the stellar material gains positive orbital
energy and is expelled from the system, while the remainder attains
negative energy (or equivalently positive binding energy) and, ac-
cordingly, becomes gravitationally bound to the black hole. This
can be seen if we adopt a simplified view of tidal disruption as oc-
curring in an abrupt manner when the star reaches periastron. At that
point, one half of the stellar material is situated closer to the black
hole relative to the centre of mass of the star, while the remainder
is further away. As the centre of mass follows an orbit with zero
binding energy, the stellar material located deeper in the potential
well of the black hole that is moving with the same velocity at the
point of disruption will have a binding energy per unit mass equal
to the difference between its potential energy per unit mass and the
potential energy per unit mass at the centre of mass of the star. The
corresponding discussion for material further away than the centre
of mass implies that this will become unbound.

Gas elements comprising the bound material will in general have
binding energies ranging between some largest absolute value and
zero. Assuming that their subsequent motion is ballistic, their cor-
responding orbital periods will be in the range Pmin < Porb < ∞,
where Pmin corresponds to the orbital period of the most strongly
bound material. Accordingly, they return to periastron at different
times after the TDE forming a stream of gas that first arrives at
periastron when a time, ∼Pmin, has elapsed after the star was tidally
disrupted (e.g. Rees 1988). Supposing that the amount of mass
occupying any small binding energy interval of a fixed extent is
approximately uniform, it is easy to estimate that mass flux from
this stream should be ∝ t−5/3 when t � Pmin (e.g. Lodato, King &
Pringle 2009, and references therein). At times of the order of Pmin,
the stream starts to intersect itself near periastron as a result of e.g.
Einstein precession, giving rise to the formation of strong shocks.
These shocks convert stream kinetic energy into heat, which is later
radiated away.

On the other hand, at a sufficiently early stage of the process,
when friction arising from any effective viscosity will not have
had enough time to produce significant effects, its specific angular

momentum remains approximately equal to that of the initial stellar
orbit. Thus, there is a tendency to form a gaseous torus with this
specific angular momentum in the vicinity of the black hole (e.g.
Cannizzo et al. 1990). On longer time-scales, action of an effective
viscosity can cause the torus to spread, leading to the formation
of an accretion disc (e.g. Lynden-Bell & Pringle 1974). Initially,
estimates of the accretion rate from the stream indicate that it will
be strongly super-Eddington. The disc is expected to be optically
thick, radiation pressure dominated, and, possibly, associated with
strong outflows.

When the black hole is non-rotating, the mid-plane of the accre-
tion disc will coincide with that of the initial stellar orbit. However,
in the case of a Kerr black hole, the Lense–Thirring force acts to drag
it to coincide with the black hole equatorial plane (see e.g. Franchini
et al. 2015, and references therein). On the other hand, the stream
orbital plane is the same as that of the initial stellar orbit. This is
in general expected to be inclined with respect to the black hole
equatorial plane with an inclination angle order of unity. Accord-
ingly, the stream material arriving in the region close to the initial
periastron, after accretion disc formation and assumed relaxation to
the equatorial plane, will impact the disc obliquely, pushing it out
of the black hole equatorial plane. Thus, there is a possibility that
the disc is inclined with respect to the black hole equatorial plane
at radii of the order of the stream impact radius. This is expected
even in the presence of precession of the stream orbit through some
angle produced by black hole rotation; the magnitude of this angle
is a function of the stellar orbital parameters, the black hole rotation
parameter and time.

In addition, the combined action of black hole rotation and
oblique stream impact leads to a non-trivial dependence of the disc
tilt and twist angle on the distance from black hole. That the accre-
tion disc is twisted could have a profound effect on its observational
properties (see e.g. Bachev 1999; Caproni et al. 2007; Wu, Chen &
Yuan 2010; Dexter & Fragile 2013). This could potentially be used
as a diagnostic for the determination of the black hole mass and
angular momentum as well as to probe the physical conditions in
the accretion flow.

It is the purpose of this paper to determine the conditions under
which the inclination angle at the stream impact radius can be large
as well as to investigate the properties of twisted accretion discs
formed after TDE. We tackle the problem using a combination of
analytic and numerical techniques. First, we adapt the linear the-
ory of twisted accretion discs (see e.g. Papaloizou & Pringle 1983;
Papaloizou & Lin 1995). This formally assumes that the local in-
clination angle between the orbital plane of an annulus of orbiting
disc material and the black hole equatorial plane is small through-
out the disc.1 In this theory, the disc tilt and twist are treated as
perturbations on a flat disc (background) model. We suppose that
the relaxation time for the disc to attain a quasi-steady twisted tilted
configuration is smaller than a time-scale characterizing the evolu-
tion of the background flat disc. As the propagation time for either
bending waves or warp diffusion is in general expected to be short
compared to the disc evolution time on account of mass redistri-
bution (see Papaloizou & Pringle 1983; Papaloizou & Lin 1995),
for the most part this is expected to be reasonable. Accordingly,

1 In a situation where the inclination angle at the stream impact radius is of
the order of the inclination of the stellar orbit, as we have indicated, it is in
general expected to be large. However, we believe that our assumption that
it is small does not affect estimates of the conditions under which this angle
will be significant.
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we limit consideration to such quasi-stationary configurations. We
derive an equation governing the tilt and twist of the disc for which
the stream provides a torque through a source term acting at the
stream impact location. The magnitude of the torque is determined
by the magnitude of the inflowing angular momentum components
perpendicular to the black hole rotation axis which arise on account
of obliquity of the orbital plane of the stream.

We use the governing equation to determine the parameters of
the problem that are important for indicating when there will be
significant misalignment between the disc mid-plane and the black
hole equatorial plane. These are found to be a quantity measuring
the ratio of the warp diffusion or propagation time to the local mass
accretion time, together with the ratio of the alignment radius to the
stream impact radius. For radii smaller than the alignment radius,
the disc mid-plane is significantly modified by the black hole in
the absence of the stream. The dependence on these parameters is
investigated using numerical solutions of the governing equation as
well as an asymptotic analytic approach. In particular, we find that
large values of the first parameter and small values of the second
favour misalignment.

We test the above approach by performing three-dimensional
numerical simulations using an appropriately modified smoothed
particle hydrodynamics (SPH) code GADGET-2. These simulations
follow the development of a twisted tilted disc sourced by a stream
produced from tidally disrupted stellar material with the expected
range of orbital binding energies. We find that the approaches obtain
the same dependence of misalignment on the black hole rotation
parameter with a typical difference between disc inclination angles
at the stream impact radius, estimated from the analytic approach,
and those obtained from the numerical simulations, after an initial
relaxation period, of about 30 per cent, even when the angles are
not small, thus validating our general approach.

We go on to study the longer term evolution of the background
disc taking account of both gas and radiation pressure using a one-
dimensional numerical scheme based on the finite difference code
NIRVANA. This is a practical approach given the large dynamic range
in this problem coupled with the need to consider evolution times
greatly exceeding the shorter dynamical time-scales present in the
system. It is approximate in that a vertical average is performed even
though the disc is thick at an early stage when thermal instability
leads to the disc being in a high advection-dominated state (see also
the slim disc modelling of Abramowicz et al. 1988). We determine
the evolution of the background accretion disc model, incorporating
a mass supply from the stream, through the advection-dominated
super-Eddington stage until the beginning of the standard thin disc
radiative stage, for different values of the Shakura–Sunyaev vis-
cosity parameter α. In the course of this evolution, the disc semi-
thickness, H, experiences a very dramatic change from being of the
order of the radial scale, R, during the advection-dominated stage
down to values of the order of 10−3R at the radiative stage, which
has an important consequence for the evolution of the inclination
angle.

This transition happens when a typical accretion rate through the
disc at scales of interest is of the order of a few Eddington accretion
rates.2 It occurs in an unsteady manner with parts of the disc alter-
nating between high and low states as the accretion rate due to the

2 We define the Eddington accretion rate, ṀE, as the Eddington luminosity

divided by square of speed of light c: for pure hydrogen ṀE = 4πGmpM

cσT
,

where G is the gravitational constant, mp and M are the proton mass and
black hole mass, respectively, and σT is the Thomson cross-section.

stream slowly declines. In this context, we note that in the standard
Shakura–Sunyaev model for which the vertically integrated viscous
stress is proportional to the vertically integrated sum of the radia-
tion and gas pressures with the constant of proportionality being α,
a thermal instability operates when the radiation pressure is larger
than that of gas (see e.g. Shakura & Sunyaev 1976). This results
in a limit cycle-like behaviour at various locations in the disc af-
ter the transition to the radiative phase begins. The transitions are
found to occur at progressively smaller radii as the accretion rate
into the disc decreases. During such transitions, the disc aspect ratio
δ = H/R experiences a set of transitions between ‘low’ δ ∼ 10−3

and ‘high’ δ ∼ 1 values until the total pressure in the disc drops
down to values such that it becomes dominated by that of gas (see
e.g. Szuszkiewicz & Miller 1997, 1998, 2001).

Under our assumption that the disc inclination relaxation time
is short compared to the background disc evolution time when it
undergoes such cycles, we will see that the cyclic behaviour is re-
flected in similarly sharp changes of the disc inclination angle at
the stream impact radius between relatively large values at a low
state and smaller values during a high state. We use numerical mod-
els of the background disc obtained from the 1D evolution studies
as background models for the quasi-stationary equation describing
the disc twist and tilt introduced above, and use this to calculate the
evolution of disc inclination through the advection-dominated stage
until the transition to the radiative stage.3

We show that when α > ∼0.1 and black hole rotation is close to
maximal, typical inclination angles of the disc are of the order of
∼0.1–0.2 of the stream inclination angle at the advection-dominated
stage.4 However, the inclination angle becomes larger as the disc
aspect ratio decreases, even in high states, at later times. In addition,
the inclination can grow to values close to that of the stream during
transitions to low states. Furthermore, disc inclinations get larger
for smaller black hole rotations at all stages of the evolution of the
disc.

The plan of the paper is as follows. In Section 2, we introduce
basic quantities and associated space and time-scales used below.
In Sections 3–3.2 we discuss the equation governing the disc tilt
and twist as well as its solution for a model case with constant as-
pect ratio, δ. Section 4 is devoted to SPH modelling of the problem
on hand and the comparison between the semi-analytic and SPH
approaches. In Section 5, we describe the 1D grid-based simula-
tions and go on to describe the evolution of the background aligned
disc models. We go on to discuss solutions to our equation govern-
ing the disc inclination which incorporates models obtained from
the 1D simulations as background models in Section 5.8. In Sec-
tion 6, we provide analytic estimates of the disc inclination during
the low state for values of the viscosity parameter smaller than those
adopted for our numerical work. These are based on an asymptotic
analytic theory of solutions of the equation governing disc tilt and
twist developed in Appendix A. Finally, in Section 7, we discuss
our results and set down our conclusions.

3 Note that, strictly speaking as we assumed the disc to be thin, our twist
equation should be modified when the advection-dominated stage is con-
sidered. However, again we assume that this equation can be used during
this stage to obtain approximate estimates. In particular, the result that the
inclination is relatively small then is unlikely to be affected as this is a con-
sequence of the relatively short accretion time in comparison to the warp
diffusion time. A more accurate treatment of the problem will be considered
elsewhere.
4 At smaller values of α, the angles are estimated to be even smaller during
this stage.
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Table 1. Table of parameters, variables and symbols.

Symbol Definition

R, Rin, Rout, R∗, RS Radius, disc inner radius, disc outer radius, stellar radius and radius to stream impact location
Rp, RT, Rg, RBP, Rrel Periastron radius, tidal radius, gravitational radius, and, alignment scales for large and small viscosity
η, ηrel These are defined by η = RBP/RS and ηrel = Rrel/RS

BS, Bp Penetration factors for stream and periastron
r, ε, rin, rout, rp Dimensionless radius, softening parameter, and inner and outer boundary radii, and rp = R/Rp

β, βS, β∗ Inclinations with respect to the black hole equatorial plane of the disc,
the disc at the stream impact and the stream

M, M6, MD Black hole mass, black hole mass in units of 106 solar masses and disc mass
Ṁ, ṀS, ṀE Mass accretion rate, mass accretion rate from stream and mass accretion rate at Eddington limit
m,mp, ṁ, κ Stellar mass, proton mass, dimensionless accretion rate and opacity
(X, Y, Z) Cartesian coordinates with (X, Y) plane coinciding with the black hole equatorial plane
(X′, Y′, Z′), (R, θ , φ) Cartesian and spherical polar coordinates with (X′, Y′) plane containing the stream
δ, H, �, δ� Aspect ratio, disc semi-thickness, relative radial width of stream input and nascent δ function
t, t∗, 
S ≡ t−1

S ,
−1
p ≡ tp Time, characteristic dynamical time of star,

orbital angular frequencies at the stream impact location and at periastron
W,W∗,W+,W− Complex inclination βeiγ of the disc in general, at the stream location, and for outer and inner solutions
�, �0 General and characteristic surface densities. Note that the dimensionless quantity �̃ = �/�0

�1, �high Scaling parameter for disc surface density and high state value. Note that �̃high = �high/�0

k = 3GM/(c2αR) Parameter measuring the importance of post-Newtonian effects relative to viscosity
ξ = �δ2R1/2 Parameter proportional to viscous mass flux in outer disc
σ , σmax, σ rel, max Parameter measuring the ratio of time-scales for warp diffusion and local mass accretion,

and estimates for this and σ rel = kσ in the high state
J, JS Black hole angular momentum(J = |J |) and specific angular momentum of stream
L = (LX,LY ,LZ), TX, TY Disc angular momentum vector and torque components
L̇ = √

GMRSṀSλW∗ Rate of input of angular momentum due to stream with λ = √
2Rp/RS normally equal to unity

ν, α, αcrit, α−2 Kinematic viscosity, viscosity parameter, critical value of α below which relativistic effects matter and 100α

Pmin, P , Pr, T ,R, μ Minimum period, pressure, radiation pressure, temperature, gas constant and mean molecular weight
�, G, c, FGM, �, Gravitational potential, gravitational constant, speed of light, gravitomagnetic force per unit mass and phase
a, aR, σT Black hole rotation parameter, Stefan–Boltzmann constant and Thompson cross-section

LT, LE Lense–Thirring frequency and Eddington luminosity
l̂, l̂∗, k̂ Unit vector in the direction of the disc angular momentum, at the stream location, and in the Z direction
v, R, v⊥ = ω × R, a, f v Velocity, position vector, velocity component perpendicular to R, acceleration and viscous force per unit area
vR, cs, U, ρ, 〈ρ〉 Velocity in radial direction, sound speed, internal energy density, density and projected density
εv , E, � The rate of energy input per unit area, and vertically integrated internal energy density and pressure
tsound, tTH, tTW Characteristic sound crossing time, thermal time and warp diffusion time at stream impact location
τ , τ crit Time in units of Pmin and value of τ at first high state-to-low state transition (time = tcrit)

2 BA S I C D E F I N I T I O N S A N D N OTAT I O N

We investigate the influence of the gas stream produced as a result
of a TDE on the form and structure of an accretion disc around a
rotating black hole using both analytic and numerical methods. We
envisage the situation where the entire accretion disc is formed from
the gas stream resulting from the TDE. At any stage, the stream
interacts with a disc produced as a result of the circularization
and subsequent viscous spreading of stream material that arrived
previously. Thus, we aim to consider a fully self-consistent picture
assuming that any accretion disc that was present before TDE had
insignificant mass and so could be neglected.

In the analytic treatment given below, we assume that the disc
mid-plane is everywhere close to the black hole equatorial plane,
while the plane in which the unperturbed stream moves coincides
with the orbital plane of the disrupted star and is inclined at an angle
β∗ with respect to the black hole’s equatorial plane. We intro-
duce a Cartesian coordinate system (XYZ) with origin at the black
hole location. The (XY) plane coincides with the equatorial plane
of the black hole. The angle between the X-axis and the line of
intersection of the plane containing the stream with the equatorial
plane of the black hole is γ∗.

In the same way, we define the inclination of the disc mid-
plane at radius R to be β(t, R) and the angle between the line

of intersection of this plane and the (XY) plane and the X-axis to
be γ (t, R). In the analysis presented below, it is very convenient
to work with the complex variables W(t, R) = β(t, R)eiγ (t,R) and
W∗ = β∗eiγ∗ . Hereafter, we use calligraphic letters for complex
quantities. The angles β and γ are associated with a tilt of the
local disc angular momentum vector such that the angle between
this vector and the Z-axis is β and the angle between its projection
on the (X, Y) plane and the X-axis is π/2 − γ. This tilt produces
a displacement of a disc fluid element in the Z direction which
in the case of small β, which will be considered below, is equal
to β(Y − iX) exp ( − iγ ).

When the disc is flat, the angles β and γ are obviously constant.
It is one of the purposes of this paper to find the conditions under
which these angles have a significant dependence on radius and
time due to the influence of stream on the disc.

An important aspect of the problem on hand is that physical
processes arising from three distinctive phenomena interact with
each other. These are associated with the stellar orbit and the stream
of gas, the dynamics of the accretions disc and relativistic effects
determined by the gravitational field of the black hole, respectively.
Accordingly, we define important quantities characterizing these
three types of processes and introduce characteristic temporal and
spatial scales for them in turn. A list of the main parameters and
symbols used in this paper is given in Table 1.
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2.1 Characteristic spatial and temporal scales and basic
quantities associated with the stellar orbit and gas stream

We now specify spatial and temporal scales associated with the
stellar orbit and the gas stream. For unit of distance, we use either
the periastron distance Rp of the initial stellar orbit or the distance
of the location where the stream impacts the disc from the black
hole, RS. In general, we have RS > Rp. When the disc is sufficiently
inclined with respect to the plane of the stellar orbit as can arise
for a black hole that rotates sufficiently rapidly, we typically have
RS ∼ Rp. These distances are expressed as multiples of the tidal
radius, RT, with the multiplication factors being 1/Bp and 1/BS,
respectively. The quantities Bp and BS are described as penetration
factors.5 The tidal radius is given by

RT = (M/m)1/3 R∗ = 7 × 1012M
1/3
6 cm = 46M

−2/3
6 Rg, (1)

where M and m are the masses of black hole and star, respectively,
R∗ is the stellar radius, M6 = M/106 M�, and we define the grav-
itational radius as Rg = GM/c2, where c and G are the speed of
light and the gravitational constant. In what follows below, we shall
assume that m and R∗ have solar values. We then have Rp = RT/Bp

and RS = RT/BS.
There are several important temporal scales associated with the

orbit and the stream. First, there are the inverse Keplerian angular
frequencies at the stream impact position and at periastron. The
former is given by

tS ≡ 
−1
S = R

3/2
S√
GM

= R3/2
∗√
Gm

B
−3/2
S ≡ B

−3/2
S t∗

= 1.6 × 103B
−3/2
S s, (2)

and the latter by

tp ≡ 
−1
p = R3/2

p√
GM

= R3/2
∗√
Gm

B−3/2
p ≡ B−3/2

p t∗

= 1.6 × 103B−3/2
p s. (3)

Secondly, there is the minimal return time of the stellar material
in the stream to periastron after the disruption of the star. This is
estimated as

Pmin = π√
2

(Rp/R∗)3 (m/M)1/2 t∗ = 3.5 × 106M
1/2
6 B−3

p s. (4)

This is simply the period of an orbit with semi-major axis equal
to R2

p/(2R∗). This orbit has a binding energy per unit mass equal
to the change in potential energy per unit mass experienced when
moving a distance R∗ towards the black hole from pericentre. This
gives the greatest specific binding energy that material originating
from the disrupted star is expected to have. After the minimal return
time, the disc accretes matter from the stream at a rate that can be
estimated as

ṀS = 0.5m

Pmin

(
t

Pmin

)−5/3

= 2.8 × 1026B3
p

(
t

Pmin

)−5/3

g s−1. (5)

We remark that this follows under the assumption that the mass that
has been accreted at any stage is all that was more strongly bound
than the material currently returning to periastron together with the
additional assumption that there is a linear relation between the

5 In the literature, Bp is often denoted by β, see e.g. Carter & Luminet
(1983, 1985). We use the symbol B to distinguish these quantities from the
inclination angles.

specific binding energy of returning material and the total mass of
material that was more strongly bound and has returned previously
(see e.g. Rees 1988).

2.2 Torques acting between stream and disc

The unit vector in the direction of the angular momentum at a point
in the disc expressed in the (XYZ) coordinate system is given by

l̂ = (sin(β(t, R)) sin(γ (t, R)),

− sin(β(t, R)) cos(γ (t, R)), cos(β(t, R))). (6)

The corresponding unit vector for the stream is

l̂∗ = (sin(β∗) sin(γ∗),− sin(β∗) cos(γ∗), cos(β∗)). (7)

The rate of change of the component of the disc angular momentum
in the (X, Y) plane as a result of interaction with the stream is

L̇ = ṀSJS(l̂∗ − k̂(l̂∗ · k̂)), (8)

where JS = √
2GMRp is the specific angular momentum of

the stream material which corresponds to that associated with a
parabolic orbit with pericentre distance Rp and k̂ is the unit vector
in the Z direction. We now assume that the inclinations β and β∗
are of small magnitude. Then with the help of equation (8), to first
order in β∗ we may write

L̇ =
√

GMRSṀSλW∗, (9)

where L̇ = iL̇X − L̇Y . Here we have written L = (LX, LY , LZ)
and λ = √

2Rp/RS = √
2BS/Bp. To find the torque acting so as

to change the specific angular momentum of the disc material, we
must subtract a contribution corresponding to inserting the stream
material with the same specific angular momentum as the local disc.
Thus, with the help of equation (7) we obtain that correct to first
order in small quantities this torque is given by

T =
√

GMRSṀS(λW∗ − W). (10)

To consider further the influence on the disc, we need to specify
how the influence of the stream is distributed. Hereafter, we assume
that it is concentrated in a narrow region around RS of size �RS �
RS, and, accordingly, that consequent torques can be approximated
as being proportional to δ� (1 − R/RS)/RS, where � = (�RS)/RS.
Here δ�(x) is the so-called ‘nascent’ delta function. This is an even
function of x such that

∫ +∞
−∞ dxδ�(x) = 1, and it converges to the

Dirac delta function in the limit � → 0.
Adopting the above assumptions and definitions, it is easy to see

that we may write

T =
∫

2π�R
√

GMRẆ∗dR, (11)

where the disc surface density is �, the integral is taken over the
disc and Ẇ∗ has the form

Ẇ∗ = ṀS

2π�R2
(λW∗ − W)δ�(1 − R/RS). (12)

Note that the parameter λ is expected to be unity when the specific
angular momentum at the circularization radius is the same as that
of the stream material. Then we see from equation (12) that Ẇ∗ =
0 when the orbital planes of the stream and disc are aligned as
expected. We assume, for simplicity, that this condition is valid,
and therefore set λ = 1 in the remainder of the paper.
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2.3 Basic quantities associated with the dynamics
of the accretion disc

For our purposes, we need to know the evolution of disc aspect ratio,
δ = H/R, with H being the local semi-thickness. In general, δ and
� are both functions of time and radial distance. Immediately after
the disc has been formed, it is expected that it will evolve in the
advection-dominated slim disc regime and δ ∼ 1. At later stages of
evolution, when the accretion rate gets smaller than the Eddington
limit, the disc becomes radiative and δ is expected to be quite small,
δ ∼ 10−3.

We adopt the usual assumption that the evolution of the disc’s ba-
sic quantities is governed by a turbulent viscosity modelled through
the α prescription, where kinematic viscosity ν takes the form

ν = αδ2
√

GMR, (13)

where the viscosity parameter α < 1 is a constant. In general, we
solve equations determining �(t, R) and δ(t, R) numerically, see
Section 5 below for a description of our method, and use the ob-
tained values as inputs for our analytic model for the evolution of
the disc tilt and twist. We choose the unit of surface density, �0, to
be determined by the stellar mass and the stream impact distance ac-
cording to �0 = m/(2πR2

S). We then use the dimensionless surface
density �̃ = �/�0 below.

2.4 Basic quantities determined by relativistic effects

Since the spatial scales we consider are assumed to be significantly
larger than the gravitational radius, we treat the influence of rel-
ativistic effects through additional effective forces acting in the
classical Newtonian description. Accordingly, our SPH simulations
are performed using the expression for the gravitational acceleration
due to the black hole, a, given by

a = −∇� + FGM. (14)

The potential � is determined by the Newtonian potential with the
addition of a correction which leads to the apsidal precession of
close free particle orbits. Thus

� = −GM

R
− 3

G2M2

c2R2
. (15)

The form of this correction is chosen so as to provide the same rate
of apsidal precession as the expected relativistic Einstein preces-
sion (Garavaglia 1987). Note that our hydrodynamical simulations
employ another form of potential proposed by Paczyński & Wiita
(1980). Although the Paczyński–Wiita potential gives the wrong
rate of apsidal precession, it gives the correct radius for the last sta-
ble orbit in the case of a Schwarzschild black hole. The reason for
these choices was that apsidal precession is potentially significant
for a tilted twisted disc at large distances but less so for an accreting
aligned disc for which the location of the last stable orbit may play
a more important role.

The gravitomagnetic force per unit mass FGM represents the
effect of frame dragging (see e.g. Thorne, Price & Macdonald 1986).
It takes the form

FGM = v × B, B = 
LT(R)

(
k̂ − 3

(k̂ · R)R
R2

)
, (16)

where · represents the scalar product, the unit vector k̂ is along
the Z-axis of the (XYZ) coordinate system and R is the po-

sition vector such that R = |R|. The Lense–Thirring frequency
given by


LT = 2a
G2M2

c3R3
(17)

determines the precession rate of circular orbits of radius R � Rg

that is slightly inclined to the equatorial plane. It is proportional to
black hole rotation parameter a. This parameter a lies in the range
−1 ≥ a ≥ 1, with negative values corresponding to the situation
when black hole rotates in the direction opposite to that of orbital
motion. When the black hole is non-rotating, a = 0.

3 TH E G OV E R N I N G E QUAT I O N
FOR A TWI STED TI LTED DI SC

In what follows, we assume that the disc aspect ratio δ and surface
density � change on a time-scale that is much longer than the
time-scale associated with evolution of the disc inclination and
orientation angles β and γ . Under this assumption, we can solve an
equation for the quantity W = βeiγ , assuming that a steady state
has been set up, in order to find twisted tilted disturbances of the
disc induced by the stream for which there is no explicit dependence
on time.

Such a governing equation has been derived by several authors un-
der various simplifying assumptions (see e.g. Papaloizou & Pringle
1983; Papaloizou & Lin 1995; Demianski & Ivanov 1997; Ivanov
& Illarionov 1997). In this paper, we adopt the form obtained by
Ivanov & Illarionov (1997, hereafter II), who assumed that β, α,
δ and the ratio of gravitational radius to a radius of interest are all
small. This takes the form

δ2
√

GM

4αξR

d

dR

(
ξR3/2 (1 + ik)

(1 + k2)

dW
dR

)
+ i
LTW + Ẇ∗ = 0, (18)

where

k = 3GM

c2αR
(19)

determines the contribution of post-Newtonian corrections to the
equation of motion. The last term in equation (18) describes the
influence of the stream on the disc. It is given by equation (12) and
is absent in II. The factor ξ = �δ2R1/2 is approximately constant for
a ‘standard’ thin accretion discs sufficiently far from the last stable
orbit. For such a disc, the inward advective flow of angular momen-
tum is approximately balanced by outward angular momentum flow
transferred by viscous forces, and, in this case ξ is proportional to
the flux of mass in the disc. In our case, there is a mass inflow in the
disc due to the presence of the stream, and the disc is, in general,
time dependent and may be moderately thick. Thus, ξ is retained
in our numerical solutions of equation (19), where both δ and ξ are
taken from a background numerical model, see below. However, we
set ξ = const in our analytic estimates for simplicity.

Note that equation (18) implies time dependence only implicitly,
through the factors δ, ξ and Ẇ∗, which are, in general, functions of
time. This is approximately valid when characteristic time-scales
associated with the evolution of disc’s tilt and twist are much smaller
than the ones corresponding to the background quantities and Ẇ∗.
This condition may be broken in course of evolution of our sys-
tem, especially during the transition of disc from ‘high’ state with
a large δ ∼ 1 to a low state with δ � 1, when the thermal instability
may operate on a relatively short time-scale tTH ∼ α−1tS and sharp
features in distribution of ξ and δ may propagate over the disc on
the sound crossing time-scale tsound ∼ δ−1tS. When α > δ, both
tTH and tsound are smaller than a characteristic time-scale of tilt and
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twist diffusion tTW ∼ (α/δ)tS. In the opposite limit, tilt and twist
have a typical propagation time of the order of tsound and dissipation
time-scale of the order of tTH. Clearly, the assumption of a stationary
twisted disc may not be valid when it is undergoing rapid transitions
in either case. However, the stationary states represent the target
states that the disc evolves towards at any time and so we shall
make the assumption in this paper in order to obtain an esti-
mate of typical possible disc inclinations and their dependence on
the parameters of the problem as a first step towards constructing
more realistic time-dependent models of a twisted disc under the
influence of a gas stream.

All the terms in equation (18) correspond to projections of torques
induced in the disc on to the equatorial plane, divided by the value
of Keplerian angular momentum stored in the disc per unit radius
which is given by dL/dR = 2π�R

√
GMR. These projections en-

ter equation (18) in combinations T = iTX − TY , where TX, Y are
X and Y components of the torques (see for example Section 2.2).

It is convenient to introduce dimensionless radial distance r =
R/RS and rewrite equation (18) in the form

1

rξ

d

dr

(
r3/2ξ

(1 + ik)

(1 + k2)

dW
dr

)

± i
η3/2

r3
W + σ (W∗ − W)δ�(r − 1) = 0, (20)

where the positive (negative) sign corresponds to prograde (retro-
grade) rotation of the black hole with respect to the disc gas; we
have used equation (12) and W∗ = λW∗.

In addition η = RBP/RS = 2

23
BS(α|a|M6δ

−2)2/3

with RBP = 4(α|a|)2/3δ−4/3 GM

c2
, (21)

and

σ = 4α

δ2

ṀS

2π�R2
S

√
R3

S

GM
. (22)

3.1 Important parameters determining the response
of the disc to the incoming stream

The quantity σ can be simply interpreted as the ratio of the time-
scale for warp diffusion over the length-scale RS to the local mass
accretion time-scale. Its value is accordingly expected to be impor-
tant for determining the expected disc misalignment produced by
a misaligned stream. A large value implies that warp propagation
should be ineffective at dispersing accreting misaligned angular
momentum and thus favour a misaligned disc. Note in addition
that RBP characterizes the scale of disc alignment with the equa-
torial plane of the black hole at small radii in the absence of the
stream. This always occurs when the relativistic correction param-
eter k may be neglected. The parameter η = RBP/RS measures the
importance of the tendency towards alignment at the stream impact
radius and therefore its value is important for determining the disc
response, a large value favouring alignment. The tendency towards
alignment with the black hole equatorial plane is known as the
Bardeen–Petterson effect (Bardeen & Petterson 1975).

However, this does not operate in the disc when α < αcrit =
|a|−2/5δ4/5 and the black hole rotation is prograde, a > 0, see II.
In that case, the relativistic correction parameter, k, is important
and there are oscillations of the inclination angle at small radii
instead of alignment (see also Demianski & Ivanov 1997; Lubow,

Ogilvie & Pringle 2002; Zhuravlev & Ivanov 2011, hereafter ZI;
Morales Teixeira et al. 2014; Zhuravlev et al. 2014). In the case
of retrograde rotation, alignment can take place at all reasonable
values of α. When α < αcrit, the alignment scale differs from RBP,
and it does not depend on α (see II). This typical radial scale, Rrel,
together with the ratio ηrel = Rrel/RS, which plays the role of η in
this case, can be defined as

Rrel = 4|a|2/5δ−4/5 GM

c2
, with

ηrel = Rrel/RS = 2

23
BS|a|2/5M

2/3
6 δ−4/5. (23)

3.2 Numerical solutions of the governing equation

3.2.1 Boundary conditions and solution method

In general, equation (20) should be solved numerically. In order to
do that, we need to specify the inner and outer boundary conditions.
As the outer boundary condition at some outer radius of the com-
putation domain rout, we adopt dW/dr = 0 to mimic a regularity
condition at the disc outer edge. In general, the inner boundary con-
dition set at an inner radius of the computation domain, rin, should
be different according to whether solutions of the homogeneous
form of equation (20) (for which W∗ = 0) possess growing and
decaying modes (i.e. when either a > 0 and α > αcrit or a < 0) or
when the solutions are oscillatory (a > 0 and α < αcrit).

However, in the former case, a precise form of the inner condition
is actually not important. Indeed, when the equation is numerically
integrated from rin towards larger radii, its solution rapidly con-
verges to the growing mode regardless of the form of the inner
boundary condition. In the latter case, setting a different boundary
condition would only lead to a different phase of the oscillations,
which should not influence our qualitative results. Therefore, in
this paper, for simplicity, we adopt dW/dr = 0 at the inner radius
of computational domain as well. Note that such inner and outer
boundary conditions ensure that disc’s inclination vanishes when
the forcing term due to the stream disappears.

In order to obtain a solution with the specified inner and outer
boundary conditions, we employ a fitting point procedure. To do
this, we solve both the homogeneous and inhomogeneous forms of
equation (20) starting from rin � 1 and ending at r = 1, and also
starting from rout � 1 and ending again at r = 1. We then choose
multiplication coefficients for the homogeneous solutions which are
such as when these are added in, the requirement of continuity of
the solution and its radial derivative at r = 1 is satisfied. When such
procedure is used, it is evident that a precise form of inner and outer
boundary conditions does not play a significant role in all cases for
which growing and decaying modes exist, since they are singled out
by the numerical procedure.

3.2.2 Numerical results for constant δ

Solutions of equation (20) using time-dependent background nu-
merical models based on either SPH or finite difference scheme
are discussed in the subsequent sections. Here we consider models
with constant δ and ξ as they provide qualitative information on the
possible behaviour of more complicated cases.

Solutions of equation (20) obtained under the assumptions stated
above are shown in Figs 1 and 2 for the case with α > αcrit and
in Fig. 3 for the case with α < αcrit. In the former case, we present
solutions representing each of the four regimes which correspond
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A twisted disc after a tidal disruption event 2249

Figure 1. The dependence of inclination angle β in units of its maximal
β∗ on radius is shown. Cases with α > αcrit and σ = 1 are illustrated. The
parameters corresponding to the different curves are given in the text.

Figure 2. A parametric representation of the solutions corresponding to
η = 8.7 shown as curves on the plane [w1 = Re(W), w2 = Im(W)]. Solid
and dashed curves show the cases with a > 0 and a < 0, respectively. For
more details, see the text.

to positive and negative values of a together with values of η greater
and less than unity. In the latter case, an analogous set of four cases,
defined as in the former case, are considered, the only difference
being that η is replaced by ηrel. In all of these cases, we set σ = 1.
We go on to discuss the dependence of a typical inclination angle
on values of σ below.

In Fig. 1, the inclination angle β is shown in units of its maximal
theoretically expected value β∗ = |W∗| as a function of r, for the
cases when α > αcrit. As λ = 1, β∗ = |W∗| corresponds to the case
where the disc and stream orbital planes are aligned. In the absence
of warp or twist propagation, the stream is not expected to misalign
the disc with respect to the equatorial plane of the black hole to a
greater extent.

Solid and dashed lines respectively correspond to prograde and
retrograde black hole rotation. For these cases, α = 0.1, δ = 0.01,

Figure 3. As in Fig. 1 but for the cases with α < αcrit. The parameters
corresponding to the different curves are given in the text.

|a| = 1, M6 = 1, accordingly, η = 8.7 > 1 and ηrel = 3.5. Dotted
and dot–dashed lines show solutions for prograde and retrograde
rotation for the case of small η = 0.2. The other parameters for
these are α = 0.5, δ = 0.056, |a| = 1, M6 = 0.02 and ηrel =
6.4 × 10−2. One can see that when η is fixed the curves correspond-
ing to a > 0 and a < 0 are almost indistinguishable. For both large
and small η, the disc aligns with the equatorial plane at small r.
However, when r > 1, these cases behave differently. When η is
large, the inclination angle drops to values much smaller than the
maximal value at r = 1 at larger radii. On the other hand, for small
η, the inclination angle is approximately constant at r > 1. These
results simply represent the effect of the alignment radius moving
outwards as η is increased and so causing the disc to align at larger
radii.

Fig. 2 shows the trajectory of the prograde and retrograde so-
lutions having η = 8.7 on the plane [w1 = Re(W), w2 = Im(W)]
with r as parameter. Note that for small inclinations the radial and
angular polar coordinates corresponding to w1(r) and w2(r) are |β|
and γ , respectively. Both curves have their origin at r = rmin. When
r grows, but is less than unity, the curve corresponding to a > 0
(a < 0) spirals clockwise (anticlockwise), but the direction of evo-
lution changes when r becomes greater than unity. That means that
when r < 1 the rotation of the polar angle γ is always directed in
the sense of the black hole rotation, see also II and ZI.

Fig. 3 shows the evolution of the inclination angle when α <

αcrit and the relativistic correction k determines the shape of the
disc. Solid and dashed curves represent the case of large ηrel =
5 > η = 1.72 for prograde and retrograde rotation of the black hole,
respectively. Other parameters corresponding for these cases are
α = 3.5 × 10−3, δ = 6.3 × 10−3, |a| = 1 and M6 = 1. Dotted and
dot–dashed curves illustrate the cases with relatively small ηrel =
0.2 > η = 3 × 10−3 for prograde and retrograde black hole rotation,
respectively. Other parameters were α = 3.5 × 10−3, δ = 6.3 ×
10−3, |a| = 1 and M6 = 1. The most important difference between
these cases and those with α > αcrit is that the disc does not align at
small radii when the black hole rotation is prograde. Instead, there
are radial oscillations of the inclination angle with wavenumber
and amplitude increasing towards black hole, see II. This effect is
much more prominent in the cases with large ηrel. Note, however,
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Figure 4. The dependence of the disc inclination at the stream impact
position, βS, is shown as a function of the parameter σ for two disc’s
models specified in the text as cases 1 and 2, where α > αcrit. The solid
line with a smaller value of βS at a given r and the dashed line represent
numerical solutions of equation (20) corresponding to case 1 with a = 1
and −1, respectively. The dotted curve with a smaller value of its argument
is for the same case, but calculated with the help of equation (A9). Solid
and dotted lines with larger values of their arguments are for case 2. The
solid line is calculated numerically, while the dotted one is given by equa-
tion (A11). Both lines correspond to a > 0.

that in this case the approximations leading to equation (20) fail
to be valid at radii r � ηrel and, therefore, oscillations in the disc
inclination with radial wavenumber �1/Rrel are likely to be absent.
We remark that values of β at r = 1 are approximately the same for
curves corresponding to the same ηrel.

We now go on to make a comparison of numerical solutions to
equation (20) with those obtained using a simple analytic approach
developed in Appendix A. The cases having η = 8.7, 0.2 and ηrel =
5, 0.2 will be hereafter referred to as cases 1–4, respectively. The
appropriate values of α, δ and M6 are specified above.

In Fig. 4, we show a comparison of our analytic approach with
numerical solutions of equation (20) having α > αcrit. We plot the
dependence of the disc inclination at the stream impact position,
βS, in units of β∗ as a function of the parameter σ . For the case with
η = 8.7 > 1 (case 1), we show two numerical curves corresponding
to prograde and retrograde black hole rotations. A typical deviation
of these curves from the result following from equation (A9) is
about 30 per cent. For the case with small η = 0.2 < 1 (case 2),
curves corresponding to prograde and retrograde rotations practi-
cally coincide; therefore, only the one with a > 0 is shown. The
analytic result following from equation (A11) is also very close to
the numerical curves. We remark that βS becomes significant for
large σ . As σ is a measure of the warp diffusion time to the accretion
time, this is as expected.

In Fig. 5, we show results of a corresponding comparison be-
tween numerical results for the cases 3 and 4 with α < αcrit and
those obtained from our analytic expression (A6). Here we plot the
dependence of the disc inclination at the stream impact position,
βS, as a function of the parameter σ rel = kσ .

The uppermost curves of a given type correspond to case 3 for
which ηrel = 5 is relatively large, while lowermost curves of a given
type correspond to case 4 for which ηrel = 0.2 is small. Solid and
dashed lines respectively show numerical results for prograde and

Figure 5. Same as Fig. 4, but for the cases 2 and 3 having α < αcrit and
βS is shown as a function of σ rel = kσ , see the text for a description of
particular curves.

retrograde rotation, while dotted and dot–dashed lines are obtained
analytically for a = 1 and −1. One can see that the disagreement
between numerical and analytic results in this case is now of the
order of 30–40 per cent. This means that the simplified analytic
solutions are accurate enough for our purposes.

Note that so far we have considered only solutions corresponding
to the case of constant δ. In our numerically obtained models of
background quantities, two qualitatively different dependences of
δ on r arise during a period of transition from a ‘high’ to ‘low’
state. Since this transition initially occurs at larger radii, there are
configurations with δ being order of unity at radii smaller than
some ‘transition’ radius rtr > 1, and δ ∼ 10−3 for r > rtr. When the
transition happens at radii of r ∼ 1, there appear distributions of δ in
the low state δ ∼ 10−3 at radii both smaller and larger than 1, while
at r ∼ 1, δ can be significantly larger than its typical ‘low’ value
due to heating of the disc gas through the input of kinetic energy
carried by the stream. Such configurations have an intermittent
nature through the development of thermal instability, provided
that radiation pressure dominates over the disc gas pressure and the
α prescription for viscosity is assumed to be valid. In principle,
they can also be treated by a technique similar to that used in
Appendix A for the case of constant δ. However, here, for simplicity,
we do not consider these more complicated cases leaving them for
a future work.

4 SPH SI MULATI ONS O F D I SCS SUPPLIED
B Y A ST R E A M R E S U LT I N G
FROM TI DA L D I SRU PTI ON

We have performed SPH simulations of the evolution of a disc
which is impacted by a gaseous stream resulting from tidal disrup-
tion of a star. We use a modified version of the publicly available
code GADGET-2 (Springel 2005). This is a hybrid N-body/SPH code
capable of modelling both fluid and distinct massive bodies that
interact with it.

In our case, we incorporate a rotating black hole of fixed mass
M. Relativistic effects are incorporated by adding effective forces
acting within a classical Newtonian description (see Section 2.4).
We adopt spherical polar coordinates (R, θ , φ) with origin at the
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location of the black hole. The associated Cartesian coordinates
(X′, Y′, Z′) are chosen such that the (X′, Y′) plane coincides with ini-
tial orbital plane of the tidally disrupted star. In addition, the location
of the Y′-axis is chosen such that the angular momentum vector of
the black hole is given by J = (0, J sin(i), J cos(i)), where J =
aGM2/c, with a being the black hole rotation parameter and i is
the inclination of this vector to the Z′-axis. We recall that J defines
the direction of the Z-axis for the coordinate system with (X, Y)
plane coinciding with the equatorial plane of the black hole that
we adopted in Section 2. In this section, for convenience we shall
choose the X-axis to coincide with the X′-axis which corresponds
to γ∗ defined in Section 2 taken to be zero. For our simulations, we
take the penetration factor Bp = 5/3, i = π/4 and M = 106 M�.

The dimensionless time unit for these calculations was taken to
be the inverse periastron frequency 
−1

p and in this section the
dimensionless unit of length is taken to be the periastron distance
Rp; thus, R expressed in dimensionless units is rp = R/Rp.

The gaseous disc and the stream are represented by SPH parti-
cles. The total unsoftened gravitational potential � at a position R
is given by equation (15) and the gravitomagnetic force per unit
mass by equation (16). An important issue for N-body/SPH simu-
lations is the choice of the gravitational softening lengths. The only
gravitational softening that is included in our simulation applies
to the gravitational interaction between the SPH particles and the
black hole. For the practical computation of the gravitational inter-
action between the black hole and the gas particles, the potential
and gravitomagnetic force were softened following the method of
Springel (2005). This was implemented with fixed softening length
ε = 0.05 in dimensionless units. Shocks were handled following
the procedure of Springel (2005). In particular, the parameter α that
scales the magnitude of the applied viscous force that is defined in
equation (14) of Springel (2005, but which is not used in that con-
text elsewhere in this paper) was chosen to be 0.5. Furthermore, the
black hole was assumed to accrete gas particles that approach it to
within 0.1 dimensionless units. Thus, such particles were removed
from the simulation. In addition, the gravitational effect of the disc
on the black hole is neglected.

4.1 Initial conditions

4.1.1 Disc setup

The disc setup is such that the angular momentum vector for all
particles was in the same direction enabling a mid-plane for the
disc to be defined. This mid-plane is set up such that the disc’s total
angular momentum vector is parallel to the magnetic spin vector of
the black hole. The particle distribution was chosen to model a disc
with surface density profile given by

� = �1R
−1/2. (24)

Here �1 is a constant. The disc mass is then given by

MD = 2π

∫ Rout

Rin

�(r ′)r ′dr ′ = 4

3
π�1R

3/2
out , (25)

where Rin and Rout are the inner and outer disc boundary radii.
When these and the disc mass are specified, equation (25) is used
to determine �1. For the simulations presented here, we adopted
MD = 0.2m, Rin = 0.5 and Rout = 1 with the last two being given
in dimensionless units. As self-gravity is expected to play a minor
role, it is neglected in the simulations. The disc was evolved for
several hundred time units in order to attain a relaxed quasi-steady
distribution before being allowed to interact with a mass stream.

4.1.2 Setting up the star at pericentre and generation
of the mass stream

We adopt a simple procedure for generating a stream generated that
might be expected to arise from a tidally disrupted star that subse-
quently provides a mass source for a disc that is formed partly from
pre-existing material as well as that from the stream. The particles
comprising a ‘star’ are initially set up so as to form a homogeneous
sphere of radius R� with its centre of gravity at the pericentre lo-
cation given in Cartesian coordinates by R0 = (Rp, 0, 0). Particles
with |R| > Rp are reflected according to

R = (
X′, Y ′, Z′) → (

2Rp − X′, Y ′, Z′) . (26)

By doing this, the particles then form a hemisphere with√
X′2 + Y ′2 < Rp. The total mass of this is taken to be 0.25m.

Most of these particles will be on weakly bound orbits when they
are given the pericentre velocity appropriate to a zero energy orbit
with pericentre at (Rp, 0, 0) in the Cartesian system. By following
this procedure, we omit consideration of the ∼50 per cent of the dis-
rupting star that will be unbound. However, this does not intersect
the disc and so it does not play a significant role in our study. In
addition, the number of bound particles that get transferred to the
disc from the stream is increased. The initial velocity of a particle
in the star is specified in the spherical polar coordinate system to be
v0 = (

0, 0, vφ,0

)
, where

vφ,0 =
√

2GM

Rp

√
1 + 3

Rg

Rp
,

with Rg = GM

c2
, Rg being the gravitational radius

and c is the speed of light. Thus, neglecting the effect of black
hole rotation which comes in at a higher order in 1/c, each particle
is given the pericentre velocity appropriate to a zero energy orbit
passing through pericentre. Being for the most part weakly bound,
they eventually return to the vicinity of pericentre in the form of a
stream that persists till arbitrarily large times. We remark that the
initial configuration of the star is not in hydrostatic equilibrium and
so pressure forces might be expected to produce some artificial ex-
pansion. However, the initial ratio of sound speed to orbital velocity
is ∼2 × 10−3 which is very small. Thus, we anticipate the effects of
pressure imbalance to be small until the stream first intersects itself.
Tests we performed showed that until this stage, the motion of the
stream was to a good approximation ballistic. At later times when
the stream impacts disc material at larger radii R/Rp ∼ 5, the ratio
of the width of the stream to the local radius is ∼0.1 indicating the
operation of some viscous spreading.

4.2 Equation of state

4.2.1 Disc particles

For the disc, we adopt a locally isothermal equation of state for
which the locally isothermal sound speed is given by cs = δ|v⊥|.
Here, δ = H/R is the disc semi-thickness with H being the disc
scaleheight and we recall that R = |R| is the distance to the black
hole. The component of the velocity vector of a particle that is
perpendicular to R is v⊥. In order to determine v⊥, we set

v⊥ = ω × R, with ω = R × v/R2, where (27)

v is the velocity vector of the particle and ω its angular velocity
vector. The direction of this is chosen so as to specify the required
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disc orientation. The disc aspect ratio is chosen to be δ = 0.1 for all
simulations.

4.2.2 Stream particles

For the stream particles, we adopt an isothermal equation of state
with a constant temperature of T = 106 K. The particles originating
from the ‘star’ are evolved separately from the relaxed disc until
just before the first particles return to periastron. After this stage, all
the particles are allowed to interact. In so doing, stream particles are
converted into disc particles. The criterion we adopted for specifying
when this first occurred for a particular particle was that the ratio of
binding energy to potential energy, calculated neglecting pressure
and viscosity, should have become <1/3. At that point, the equation
of state then switches from that for the stream to that for the disc,
provided the sound speed is larger in the latter case. We remark
that the small value of the ratio of the initial sound speed to orbital
speed is found to result in the disc temperature always exceeding
the initial stream temperature; accordingly, heating occurs when a
particle originating in the stream becomes tagged as a disc particle
and then only the equation of state changes.

The total number of particles involved in the simulations pre-
sented here is 4 × 105 with 50 per cent of these originating in the
stream and 50 per cent in the disc. They have been checked by per-
forming simulations with the particle number reduced by a factor
of 4 which gave very similar results apart from in the very central
regions with R/Rp = rp < 0.25 where there are too few particles in
the low-resolution runs.

4.3 A comparison of the disc inclination angle obtained
from SPH simulations with semi-analytic results

In order to make a comparison between the semi-analytic approach
developed above and the SPH simulations, we use the surface den-
sity � and the mass flux in the stream obtained from simulations
as input background state variables to be used in equation (20). We
determine a typical value of viscosity parameter α by comparing
the dependence of the mass of the accretion disc as a function of
time obtained from SPH simulations of a free accretion disc without
the presence of the stream with an analytic model based on solution
of the surface density evolution equation which incorporates an as-
sumed value of α, the latter quantity being chosen to provide the
best match. The analytic model is the same as described in Ivanov
et al. (2015), with the adjustment that the kinematic viscosity is
taken to be ∝ r1/2

p . This procedure gives typical values of α ≈ 0.1,
which is employed in our solution of equation (20) that yields the
disc inclination angle.6

We consider two cases, both having δ = 0.1, but different values
of rotational parameter, namely a = 1 and 0.1. The results of the
comparison are shown in Figs 6 and 7. In Fig. 6, we show the depen-
dences of the disc inclination angle at the stream impact location on
time; solid and dashed curves represent SPH results for a = 1 and

6 We recall that the disc inclination angle β is defined as the angle between
the direction of the Z-axis of our (X,Y,Z) Cartesian coordinate system,
which coincides with the direction of the black hole rotation, and the unit
vector perpendicular to the plane of a disc ring at a particular radius r. Also,
we do not show behaviour at times prior to the beginning of stream–disc
interaction, that is before the first stellar material returns to periastron.

Figure 6. The dependence of the inclination angle β, in radians, at the
stream impact position on time. See the text for a description of particular
curves.

Figure 7. The inclination angle β, in radians, shown as a function of radial
distance rp for the case with a = 1 at time t = 3500
−1

p . The solid curve
is from an SPH simulation, while the dashed one is obtained by solution of
equation (20), see the text for details.

0.1, while dotted and dot–dashed curves are their respective coun-
terparts obtained by solution of equation (20).7 Note that all curves
have been averaged over 100 data points corresponding to the time
spans 103
−1

p and 2 × 103
−1
p for a = 1 and 0.1, respectively, to

remove numerical noise.
We see that the analytic and SPH approaches are in agreement

in finding that the case with a = 1 becomes quite closely aligned
whereas the case with a = 0.1 maintains significant misalignment.
Thus, we can expect that for discs with δ ∼ 0.1 and other parameters
appropriate to the TDE we consider, significant alignments are to
be expected for some systems. One can also see from Fig. 6 that

7 For the chosen values of α, δ and a, the parameters η and ηrel are ap-
proximately 0.6 and 0.9 for the a = 1 case, and 0.1, 0.4 for the a = 0.1
case.
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A twisted disc after a tidal disruption event 2253

Figure 8. The disc and stream seen in projection at t = 8000
−1
p . The case with a = 1 is illustrated in the left-hand panel and the case with a = 0.01 in the

right-hand panel. In these plots, the long vertical axis is perpendicular to the line of sight and points in the direction of the black hole angular momentum. The
orthogonal axis shown is the X-axis as defined in the text (see Section 2). The tick marks on the axes of the plots are separated by 10 dimensionless distance
units. The colour scale indicates log 〈ρ〉, with 〈ρ〉 being the projected density.

there is good agreement between the semi-analytic curves and those
derived from SPH simulations corresponding to the case a = 1. The
typical deviation is of the order of 20 per cent. When a = 0.1, there
is a factor of 1.5–2 disagreement for times <≈104
−1

p , which can
perhaps be attributed to a slower relaxation of the twisted disc to a
quasi-stationary configuration in this case. This is not unexpected
as the time-scale associated with attaining alignment in the absence
of the stream is expected to be longer for smaller values of the
rotation parameter a. The disagreement becomes, however, quite
small at later times with typical difference of the order of 5 per cent.
To illustrate the appearance of the disc, we show projections of the
density distribution at t = 8000
−1

p for a = 1.0 and 0.1 in Fig. 8. It
will be seen that in agreement with the above discussion, the case
with a = 1.0 is almost aligned with the black hole equatorial plane
whereas there is significantly greater misalignment for a = 0.1.

In Fig. 7, we show the inclination angles as a function of radius
at the time t = 3500
−1

p . Solid curve and dashed curves illustrate
results respectively obtained using the SPH method and by solv-
ing equation (20) for a = 1. One can see that the disc inclinations
change at approximately the same radial scale. At radii rp > 1, the
inclination angle stays approximately constant with its value being
larger in the analytic approach by about 30–40 per cent.8 This may
be linked to the behaviour at small radii. For ∼0.4 < rp < ∼1, the
inclination angle decreases towards black hole in both approaches.
However, there is a qualitative difference in the behaviour of disc’s
tilt at smaller rp. While in the analytic approach the inclination angle
oscillates with a rather large amplitude, the numerical simulations
give a much more moderate evolution. This difference can be at-
tributed to an insufficient number of SPH particles to fully resolve
the oscillations of the disc tilt. In our case, N = 4 × 105. We remark
that a specially dedicated study shows that the number of particles
required to achieve this should be an order of magnitude larger (see
Nealon, Price & Nixon 2015).

8 Let us note that numerical grid-based magnetohydrodynamic (MHD) cal-
culations also give typical values of the disc tilt smaller than semi-analytic
ones by a factor of 2 (see Zhuravlev et al. 2014).

To summarize, there is full qualitative agreement between the two
approaches apart from the issue of the disc tilt behaviour at small
radii, which is not important for our purposes. For the significant
quantities and/or values of parameters, there is quite good quantita-
tive agreement. This validates the use of our analytic approach for
much more realistic backgrounds evolving over much longer times
∼105 orbital periods at periastron provided by our grid-based 1D
finite difference numerical simulations (see Section 5 below). It is
impracticable to carry out SPH simulations for such long times.

5 G R I D - BA S E D C A L C U L AT I O N S
O F T H E R M A L LY U N S TA B L E D I S C S

We have performed grid-based simulations of an accretion disc
supplied by a stream produced by a tidally disrupted star. The ex-
pected accretion rate is sufficiently large that the Eddington limit
is exceeded, radiation pressure becomes important and the disc
undergoes thermal instability. This instability produces transitions
between high and low states that in some circumstances can move
as propagating fronts. When the accretion rate is approximately
steady in the mean, cyclic behaviour may occur in which there is
alternation between high and low states.

The formalism is similar in concept to that of Szuszkiewicz &
Miller (1998), who considered the evolution of thermal instabilities
in accretion discs for which radiation pressure plays a significant
role. However, it is adapted to conditions around a 106 M� black
hole rather a 10 M� black hole that they studied. In addition, radia-
tive transfer in the radial direction and mass input from an accretion
stream produced by tidal disruption are considered.

Furthermore, our simulations have been performed with NIRVANA

which is a three-dimensional MHD code that has been described
in e.g. Ziegler & Yorke (1997). For the grid-based calculations
performed here, the magnetic field is set to zero and the code is
restricted to operate in one dimension. For convenience, we retain
spherical polar coordinates restricted to the plane θ = π/2 and
assume that the system is independent of the azimuthal coordinate.
The sole independent spatial coordinate, being the radius, R, can
then be regarded as a cylindrical coordinate. Note that we solve
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the governing equations in Eulerian form and so our procedure
differs markedly from the one-dimensional Lagrangian approach
implemented by Szuszkiewicz & Miller (1998).

5.1 Basic equations

The basic equations are those of mass, momentum and energy con-
servation appropriate to a mixture of gas and radiation. In a non-
rotating frame with origin at the location of the black hole, these
take the form

∂�

∂t
+ ∇ · (�v) = Sm , (28)

�

(
∂v

∂t
+ v · ∇v

)
= −∇� − �∇� + f v, (29)

∂E

∂t
+ ∇ · (Ev) = −�∇ · (v) + εv − 2F+ − ∇ · (2HFR̂) + SE.

(30)

Here, v = VR R̂ is the velocity, with R̂ being the unit vector in the
radial direction, � is the vertically integrated pressure and E is the
vertically integrated internal energy per unit volume. The viscous
force per unit area is f v, the rate of energy input per unit area due to
viscous dissipation is εv and the radiation flux per unit area leaving
one side of the disc is F+. The factor of 2 multiplying this quantity
accounts for the two sides of the disc. The radiative flux in the radial
direction is

F = − c

κρ

∂(aRT 4/3)

∂R
. (31)

The opacity is κ and aR is the Stefan–Boltzmann constant. The mass
input rate per unit area from the stream is Sm, which is discussed
further in Section 5.5 below, and the rate of excess thermal energy
input per unit area associated with this is SE. For these studies, we
adopt the Paczyński–Wiita potential such that � = −GM/(R −
2Rg). Here, as elsewhere, the self-gravity of the gas is neglected.

5.2 Equation of state

The two state variables we use to characterize the mixture of gas
and radiation are � and E. These are related to the mid-plane
density and internal energy density through � = 2Hρ and E = 2HU,
respectively, where H is an effective semi-thickness. We make the
assumption that this is the same for both quantities and also that � =
2HP, where P is the mid-plane pressure. Then from the expressions
for P and U in terms of ρ and T given by

P = (R/μ)ρT + aRT 4/3 and U = (3R/2μ)ρT + aRT 4, (32)

on the disc mid-plane we obtain

� = (R/μ)�T + 2HaRT 4/3 and

E = (3R/2μ)�T + 2HaRT 4. (33)

Here the mean molecular weight is μ and R is the gas constant.
Once H is related to E and �, all of the local state variables can be
found. For example, the temperature is found by solving the quartic
equation obtained from the second expression in equation (33). We
adopted the expression

H =
√

2
√

2E

3�
2
(34)

for the semi-thickness H. Regarding this, we recall that from vertical
hydrostatic we get the conventional estimate

H =
√

2P/(ρ
2). (35)

Noting that in the gas pressure-dominated limit, we have P/ρ =
2E/(3�) and in the radiation-dominated limit we have P/ρ =
E/(3�), the value of H obtained from equation (34) differs from
equation (35) by at most 21/4. As this is within the uncertainties in-
herent in carrying out the vertically averaging procedure, we adopt
equation (34). For the calculations reported here, the mass fraction
in hydrogen was taken to be 0.7 and μ = 0.615.

5.3 Radiative cooling and viscosity

The emergent radiation flux is given by

F+ = 2aRcT 4

(3κ� + 4/3)
. (36)

Equation (36) is obtained by writing F+ = aRcT 4
eff/4, where Teff

is the effective temperature. Using the Eddington approximation to
relate T and Teff then gives equation (36). We remark that κ�/2
is the optical depth of the mid-plane. For the model considered
here, we assume that the opacity is due to electron scattering and
accordingly is constant.

Viscosity is incorporated through adopting the standard α

parametrization of Shakura & Sunyaev (1973). Using this, the kine-
matic viscosity is given by

ν = αP/(Rρ|d
/dR|) leading to 〈ν〉 = α�/(R�|d
/dR|),
(37)

where 〈ν〉 is the density-weighted vertically averaged viscosity.
When the disc becomes thermally unstable, it can become very

thick, with H/R driven to values exceeding unity. Our formalism
then becomes inappropriate. It is also likely that some of the avail-
able energy goes into driving an outflow rather than mid-plane
heating. Accordingly, we have limited the heat production rate
when the disc becomes thick. For the runs considered, we applied
a reduction factor (1 − (H/R))2 to the heating rate. Although this
quenching is ad hoc, it limits the growth of H/R of the disc re-
gion modelled, but otherwise does not affect the qualitative form of
the results.

5.4 Computational domain and boundary conditions

Simulations were performed over the radial domain [Rin, Rout] with
Rin = 3.0388 × 1012 cm and Rout = 1.484 012 × 1013 cm. We
have employed Ng = 768 equally spaced grid points and checked
convergence using twice as many (Ng = 1536).

At both radial boundaries, we employ a limited outflow condition.
This is the same as the standard outflow condition but with the
additional feature that the magnitude of the outflow velocity is
limited to be less than or equal to 3〈ν〉/(2Rout). These velocities
are characteristic of the inflow velocity driven by viscosity and will
remain small if the disc remains thin. However, they can become
moderately large without causing a major pile-up of mass when the
disc becomes thick, if α is not too small. Thus, advective transport
can arise when the disc becomes thermally unstable.

5.5 Input from the stream

For a star of 1 M�, the pericentre distance for a penetration factor
Bp is given by Rp = 7 × 1012(M/(106 M�)1/3/Bp (see Section 2.1).
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A twisted disc after a tidal disruption event 2255

For our simulations, we take M = 106 M� and Bp = 14/9. Then the
pericentre distance is 4.5 × 1012 cm and the minimum return time
is Pmin = 3.5 × 106B−3

p s = 9.30 × 105 s.
We adopt the following simplified prescription for the accretion

rate ṀS from the stream generated by the tidally disrupted star. Set-
ting t = 0 to be the time of pericentre passage, we take ṀS = 0 for
t < Pmin. For t > Pmin, we set ṀS = 7.17 × 1026(t/Pmin)−5/3 g s−1.

Thus, we assume a tail off ∝ t−5/3 (Lodato et al 2009 and ref-
erences therein) and a total mass to be accreted of 0.5 M�. This
mass accretion rate is input uniformly over eight grid cells cen-
tred on the circularization radius RS = 2Rp at the lowest reso-
lution. For higher resolutions, the number of grid cells used is
proportional to the resolution. This procedure determines Sm. We
remark that this simplified model assumes that the stream has a
high enough density that it is able to penetrate any intervening
disc material in order to reach the circularization radius, avoid-
ing prior significant angular momentum exchange. This scenario
may require modification when the disc becomes very thick at late
times when the accretion rate is small. However, for simplicity, we
adopt it throughout.

When mass from the stream enters the disc, energy is dissipated.
Assuming that the plane of the stream is only slightly inclined to
that of the disc, the kinetic energy per unit mass associated with
radial motion available to be dissipated is GM/(2RS). Depending
on details of the circularization process, a part of this is radiated
away directly and a part is converted to excess internal energy of the
disc. This energy is input along with and in the same way as the mass
input in this way SE is determined. For simplicity, we have assumed
this fraction to be fst = 50 per cent for the simulations presented
here. However, we have also run cases with this input reduced by
more than an order of magnitude. We have found that this does not
change the qualitative form of the results significantly as the internal
energy provided by dissipation of stream kinetic energy ultimately
never dominates that arising from viscous dissipation throughout
the disc.

5.6 Initial disc

The steam commences to input mass at t = Pmin into an initial disc.
This was specified to have a low mass of 0.011 M� as compared
to the total to be input from the stream. The state variables were
chosen such that β = 0.5 was constant with ρ ∝ R−3 for R < 7.572
× 1013 and ρ ∝ R−1 for R < 7.572 × 1013. With this choice, �

∝ R−2 for R < 7.572 × 1013 and � ∝ R1/3 for R > 7.572 × 1013.
We remark that as after a short time the simulation is dominated
by the mass input from the stream, which occurs at a rate implying
that the Eddington limit is exceeded (see Section 6 below), results
are not expected to be affected by the choice of initial disc struc-
ture. Profiles are rapidly modified by outward propagating transition
fronts. Thus, reducing the initial value of β by a factor of 2 has no
significant effect.

5.7 Simulation of a flat disc

Simulation results for model A with α = 0.3 are illustrated in Fig. 9.
The uppermost panels show the evolution of the first outwardly
propagating transition front. The forms of the surface density and
the semi-thickness are plotted. A front is seen to have formed after
a time given by (t − Pmin)/Pmin = 0.216 and reaches the outer
boundary after a time given by (t − Pmin)/Pmin = 0.865. At this

stage, the disc attains a high state with H/R ∼ 1 in the inner and
outer parts, being somewhat smaller in the central regions. After a
time given by (t − Pmin)/Pmin = 37.83, an inwardly propagating
front is seen in the outer parts of the disc. Its evolution is shown in
the second row of panels of Fig. 9. After a time approximately given
by (t − Pmin)/Pmin = 47, this stalls at a radius R ∼ 5 × 1013 cm
and the evolution enters a quasi-steady phase with the outer disc
in a low state. The total mass content of the disc and the accretion
rate through the boundary are shown in the lowermost panels of
Fig. 9. It will be seen that during the time the disc is in a high state
between these upward and downward transitions, around 0.1 M� is
accreted through the centre by means of a strong advective flow. At
later times a series of cycles takes place in which parts of the disc
alternate between high and low states. The presence of these can
be seen through the behaviour of the mass accretion rate into the
central regions at late times where several distinct oscillations can be
seen. Before this behaviour is noticeable, there are several outbursts
for which the whole disc is again in a high state. At increasingly
late times, the outbursts become progressively more confined in the
central parts of the disc with the outer parts remaining in a low
state. This is a naturally expected outcome as the mass input rate
from the stream declines towards zero. The third row of panels
illustrate the evolution of the outburst that occurs for 18.9126.15 <

(t − Pmin)/Pmin < 128.15. During this outburst, the accretion rate
into the centre is affected and the outer parts of the disc remain
in a low state throughout. Also during the heating phase of the
disc, there are two regions in a high state separated by a region
in a low state.

Simulation results for model B with α = 0.1 are illustrated in
Fig. 10. The uppermost panels again how the evolution of the first
outwardly propagating transition front. In this case, the front is seen
to have formed after a time given by (t − Pmin)/Pmin = 0.649 and
reaches the outer boundary after a time given by (t − Pmin)/Pmin =
2.594. It is accordingly about a factor of 2 slower than for model A.
The entire disc again goes into a high state with H/R ∼ 1. However,
its duration is somewhat shorter in this case. After a time given
by (t − Pmin)/Pmin = 29.186, an inwardly propagating front can
be seen in the outer parts of the disc. Its evolution is shown in the
second row of panels of Fig. 10. After a time given approximately
by (t − Pmin)/Pmin = 44, this stalls at a radius R ∼ 4 × 1013 cm
and the evolution again enters a quasi-steady phase with the outer
disc in a low state. The total mass content of the disc and the
accretion rate through the boundary shown in the lowermost panels
of Fig. 10 indicate that when the disc is in a high state between these
transitions, around 0.05 M� is accreted through the centre being
about half of that found for model A. As for model A, a sequence of
cyclic heating and cooling events occurs. However, these are more
confined to the outer disc and tend to involve smaller radial scales,
which decrease as time progresses. The third row of panels illustrate
the evolution of the outburst that occurs for 45.131 < (t − Pmin)/
Pmin < 54.319. In this case, although the region of the disc closest to
the outer boundary remains in a low state, the heating commences
in the outer part of the disc converting a section into a high state
with very little effect on the innermost regions. During the cooling
phase, the high-state outer region collapses while the innermost
high-state region retreats inwards. Continuation of this calculation,
as for model A, results in outbursts that become progressively more
confined in the central parts of the disc as the accretion rate reduces
with the outer parts remaining in a low state but with small-scale
fluctuations.
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Figure 9. Simulation results for model A with α = 0.3 are shown. The uppermost panels show the evolution of the first outwardly propagating transition front.
The left-hand panel shows the surface density and the right-hand panel the semi-thickness. Their functional forms are given at times expressed in the form
(t − Pmin)/Pmin of 0.216 (solid curve), 0.432 (dotted curve), 0.649 (dashed curve) and 0.865 (dot–dashed curve). The second row of panels show the evolution
of the first inwardly propagating transition front. The left-hand panel shows the surface density and the right-hand panel the semi-thickness. Their functional
forms are given at times expressed in the form (t − Pmin)/Pmin of, 37.83, (solid curve) 40.00, (dotted curve) 41.08 (dashed curve) and 47.56 (dot–dashed
curve). The third row of panels show the evolution of a later outburst. The left-hand panel shows the semi-thickness during the heating phase and the right-hand
panel the semi-thickness during the cooling phase. Their functional forms are given at times expressed in the form (t − Pmin)/Pmin of 118.91 (solid curve),
120.10 (dotted curve), 121.29 (dashed curve) and 122.53 (dot–dashed curve) for the left-hand panel and of 122.96 (solid curve), 123.72 (dotted curve), 124.91
(dashed curve) and 126.15 (dot–dashed curve) for the right-hand panel. The lowermost left-hand panel shows the mass in the disc in grams as a function of
time. The lowermost right-hand panel shows the accretion rate into the central part of the disc in g s−1 as a function of time.

5.8 The evolution of the inclination angle for background disc
models obtained from the grid-based simulations

In order to find the evolution of twist and tilt angles as a function of
time, we numerically integrate equation (20) using the grid-based
models described above to specify the dependence of the semi-
thickness, δ, and surface density, �, on time, for model A with α =
0.3 and model B with α = 0.1 (see Table 2). Other disc parameters
are fixed as indicated above. Note that the surface density enters

equation (20) implicitly through the quantities, σ , defined through
equation (22), and ξ = δ2�r1/2. To find the mass flux in the stream,
we use equation (5) when t > Pmin and assume that ṀS = 0 at
earlier times. The outer radius of the integration domain was fixed
to be rout = 18, while the inner radius was taken to be rin = 0.25 for
the cases where the inclination angle exponentially grows for r < 1
and rin = 0.04 for the cases where it oscillates at small values of r.
We consider a range of values for the black hole rotation parameter
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A twisted disc after a tidal disruption event 2257

Figure 10. Simulation results for model B with α = 0.1 are shown. The uppermost panels show the evolution of the first outwardly propagating transition
front. The left-hand panel shows the surface density and the right-hand panel the semi-thickness. Their functional forms are given at times expressed in the
form (t − Pmin)/Pmin of 0.649 (solid curve), 1.297 (dotted curve), 1.946 (dashed curve) and 2.594 (dot–dashed curve). The second row of panels show the
evolution of the first inwardly propagating transition front. The left-hand panel shows the surface density and the right-hand panel the semi-thickness. Their
functional forms are given at times expressed in the form (t − Pmin)/Pmin of 29.186 (solid curve), 34.051 (dotted curve), 38.915 (dashed curve) and 44.320
(dot–dashed curve). The third row of panels show the evolution of a later outburst. The left-hand panel shows the semi-thickness during the heating phase and
the right-hand panel the semi-thickness during the cooling phase. Their functional forms are given at times expressed in the form (t − Pmin)/Pmin of 45.131
(solid curve), 45.779 (dotted curve), 46.158 (dashed curve) and 46.482 (dot–dashed curve) for the left-hand panel and of 47.563 (solid curve), 49.725 (dotted
curve), 51.887 (dashed curve) and 54.319 (dot–dashed curve) for the right-hand panel. The lowermost left-hand panel shows the mass in the disc in grams as a
function of time. The lowermost right-hand panel shows the accretion rate into the central part of the disc in g s−1 as a function of time.

a and both prograde and retrograde rotation. Note that although the
background models were obtained with this set to zero, they are not
expected to have a significant dependence on it. However, this is not
the case for the disc inclination when the disc suffers a misaligning
perturbation.

We show the value of the inclination angle β in units of the stream
inclination β∗ as a function of time τ = t/Pmin in Figs 11 and 12,
respectively, for models A and B.

Table 2. Parameters of models for
which results are described in the text.

Model α fst

A 0.3 1.0
B 0.1 1.0

MNRAS 463, 2242–2264 (2016)

 at U
niversity of C

am
bridge on N

ovem
ber 21, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2258 M. Xiang-Gruess, P. B. Ivanov and J. C. B. Papaloizou

Figure 11. The value of inclination angle β at the stream impact position
r = 1 as a function of time τ = t/Pmin shown for the grid-based model with
α = 0.3. See the text for a description of different particular curves.

Figure 12. The value of inclination angle β at the stream impact position
r = 1 as a function of time τ = t/Pmin shown for the grid-based model, B,
with α = 0.1. See the text for a description of different particular curves.

In Figs 11 and 12, solid, dashed and dot–dashed lines illustrate
calculations for prograde rotation of the black hole with a = 1, 0.1
and 0.01, respectively. From these results, it is apparent that smaller
black hole rotations lead to larger disc inclinations, as expected. In
addition, the time-averaged values of the inclination for a = 0.1 and
1 are similar in magnitude to those found for the SPH simulations
of a disc with δ ∼ 0.1 throughout as discussed in Section 4. The
dotted curves illustrate the case of retrograde rotation with a = −1.
Since results found for retrograde rotation with a smaller absolute
value of a practically coincide with those obtained for its prograde
counterpart, they are not shown.

The results illustrated in Figs 11 and 12 indicate that values of the
scaled inclination are quite substantial for our models at all times,
being of the order of 0.1 for a = 1 and larger for smaller values of
rotational parameter. The high-state super-Eddington regime of ac-
cretion corresponds to τ = t/Pmin < τ crit ≈ 80–100. When τ > τ crit,

Figure 13. Dependences of δ(R = 0.5RS) on time are shown. Solid and
dashed lines correspond to models A and B, respectively.

Figure 14. The dependence of the disc semi-thickness δ on radius r for
different disc models at different times, see the text for description of the
different curves.

a transition to the low state occurs, but, since there is a continuing
supply of mass from the stream and radiation pressure is impor-
tant, the condition for the development of thermal instability will
become satisfied with the result that the disc undergoes a sequence
of transitions between high and low states. The inclination angle
changes quite dramatically in course of these transitions being of
the order of the maximal values at low states and dropping to values
of the order of (0.05−0.1)β∗ during the intermittent high states.

These sharp changes in disc inclination are related to sharp
changes of the aspect ratio δ during these transitions. In order to
illustrate this, we show the dependence of δ(R = 0.5RS) on time in
Fig. 13. Solid and dashed lines represent models A and B, respec-
tively. One can see from this figure that the inclination angle and
disc semi-thickness experience strong variations at the same time.

We show the functional form of δ and β with radius in models A
and B immediately before and after the first transition from a high
to a low state. In Figs 14 and 15, solid and dashed curves are for
model A at τ = 115.5 and 117, while the dotted and dot–dashed
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A twisted disc after a tidal disruption event 2259

Figure 15. Same as Fig. 14, but the form of the inclination angle β is
shown, see the text for description of different lines.

curves are for model B at τ = 80.4 and 82. Solid and dotted curves
apply during the high state, while dashed and dot–dashed curves are
for the low state. It is seen that there is a clear relationship between
a sharp decrease of δ in the vicinity of r ∼ 1 and a corresponding
growth of inclination angle. Note that this is more prominent for
model A. Also note that even in the low state δ is much larger that
its ‘low’ value of 10−3 very close to r = 1. This is related to heating
the disc by the stream.

6 A NA LY TIC ESTIMATES FOR τ crit

A N D T H E PO S S I B I L I T Y O F L A R G E VA L U E S
O F T H E D I S C IN C L I NAT I O N D U R I N G
T HE TRANSITION TO A ‘LOW STATE’

In our numerical work, we have considered disc models for only
a small range of parameters characterizing them. Therefore, it is
important to obtain estimates of the transition time τ crit and maximal
values of β during these transitions, which can be applied to models
characterized by a wider range of parameters such as any value of
α < 1.

A crude estimate of the transition time τ crit, at which a major
part of the disc first transitions from a high to low state, can be
obtained from the following simple considerations (see also Shen &
Matzner 2014 and references therein). During the high state, energy
dissipated through the action of viscosity per unit time in a disc
annulus centred at radius R and of unit width is mainly advected
towards black hole. It is accordingly larger than the amount of
energy radiated away by this annulus. The rate of dissipation of
energy per unit radial width, Ėdiss, can be related to the mass flux
Ṁ through Ėdiss = 3GM/(2R2)Ṁ (e.g. Abramowicz et al. 1988),
while the rate of radiation of energy from the annulus is equal to the
flux, F+, multiplied by 4πR to take into account both disc surfaces.
In the advective stage, we therefore have

Ėdiss = 3GM

2R2
Ṁ > 4πRF+, (38)

where we assume that angular frequency of the disc material is
approximately Keplerian.

As discussed above, in the optically thick limit, we specify
F+ = 2cPr/(κ�), where κ is the Thomson opacity and Pr is radia-
tion pressure. We also use the vertical component of the hydrostatic

equilibrium equation which leads to P = GM/(25/2R3)�H, where
P is the total pressure and we recall that H = δR.

We now assume that P ≈ Pr and express the mass flux in terms
of the Eddington value ṀE = 4πGM/(cκ) as Ṁ = ṀEṁ which
introduces a dimensionless accretion rate ṁ. We then substitute the
resulting expression in equation (38) and use the expressions for
radiation flux and the total pressure given above to obtain

ṁ >
δ

3
√

2

R

Rg
, (39)

in order that advective cooling overcomes radiative cooling. Now
we assume that R ∼ RS, use the definition of BS and equation (1) to
get

ṁ > 11δM
−2/3
6 /BS. (40)

Note that this implies that a thick advective disc with M6 ∼ 1 and
BS ∼ 1 will always be accreting at a rate that implies that the
Eddington limit is exceeded.

We further make the assumption that the accretion rate may be
taken to be that provided by the stream so that Ṁ ∼ ṀS.9 We recall
that ṀE ≈ 1.7 × 1023M6 g s−1 and use equation (5) to find that in
order that the inequality (40) to be broken we should require that

τ < τcrit ∼ 20

(
BSB

3
p

δ

)3/5

M
−1/5
6 . (41)

Note that the parameters used in our simulation, δ ∼ 0.5, BS =
0.5Bp ≈ 1.55 and M6 = 1 in equation (41) give τ crit ≈ 60, which is
somewhat smaller than the numerically obtained value τ crit ≈ 80–
100. This, however, is well within an expected uncertainty based
on the approximations leading to equation (41). Also, disc’s semi-
thickness δ is smaller than 0.5 in the end of high state, which
could lead to larger τ crit in a more accurate model. It is instructive
to rewrite equation (41) in physical units. With the help of equa-
tion (4), we obtain

tcrit ≡ Pminτcrit ≈ 2(BS/δ)3/5B−6/5
p M

7/10
6 yr. (42)

Thus, the expected time to the beginning of the transition to the low
state, and, accordingly, the most prominent deformation of the disc
shape due to the stream influence is of the order of a few months to
years.

6.1 Conditions for misalignment

Now let us consider conditions under which the inclination angle
β can attain values of the order of β∗ at τ crit. As we have seen in
Section 3 and Appendix A, the important quantities determining the
degree of misalignment are the ratio of the alignment radius to RS,
η or ηrel together with σ and σ rel, respectively. The latter quantities
measure the ratio of the warp diffusion time or propagation time
to the accretion time. Accordingly, a large value for them, coupled
with small or modest values for the ratio of the alignment radius to
RS, favours misalignment (see Appendix A).

We begin by evaluating typical values of the parameter σ given
by equation (22) and accordingly, of the parameter σ rel in the two
states, see equation (A14). In order to do this, we assume that during
the high state an approximate equilibrium between mass flow in the
stream and disc is maintained with the mass flow in the disc being

9 Note that this assumption may not be valid when α is small; however, we
have checked that it holds for the considered values of α.
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close to the typical value Ṁ = 3πν�. Equating this expression to
ṀS and using equations (5) and (13), we find

�̃high ∼ 1

3
τ−5/3/

(
αδ2

highPmin
S

)
, (43)

where δhigh ∼ 1 is a typical disc semi-thickness during the high
state.

When τ ∼ τmin, δ drops to its low value δlow ∼ 10−3. At this
stage, the equilibrium between mass flows in the disc stream is no
longer possible, since a typical viscous relaxation time in the disc
becomes very long, and the disc is not able to effectively transfer
the mass supplied by the stream from the stream impact region.
Therefore, there is an accumulation of mass near R ∼ RS. However,
at the beginning of this stage, the mass accumulated in this region
will be rather small and we can roughly estimate the surface density
at this time to be equal to its value during the preceding high state.
Substituting this value which may be obtained from equation (43)
into equation (22) and remembering that δ = δlow, we get an estimate
for the value of σ in the high state as

σmax ∼ 6

(
δhigh

δlow

)2

α2 ≈ 13.5qα2
−2, (44)

where α−2 = α/10−2, and q = (δhigh/(150δlow))2. Note that in our
estimate of the typical q, we assume that the disc semi-thickness just
before downward transition is of the order of 0.15 as suggested in our
numerical simulations, see Fig. 14. Following the same procedure
to estimate σ rel in the high state, we obtain from equation (A14)

σrel,max ≈ 100BSM
2/3
6 qα−2. (45)

We remark that for α−2 > ∼10 as in our simulations, both σ max

and σ rel, max are of the order of 1000 which, as indicated above, is
favourable for misalignment.

In order to estimate values of the inclination angle, we use the
results of Appendix A together with expressions (21) and (23) with
δ = δlow = 10−3, and also equations (44) and (45). Since the re-
sults of Appendix A indicate little difference between prograde and
retrograde black hole rotation, we do not distinguish between these
here.

Expressed in terms of variables used in this section, the quantities
η and ηrel, which measure the ratio of the alignment radius to RS and
so also characterize the disc tilt, take the form η = 40BS(α−2aM6)2/3

and ηrel = 20BSa
2/5M

2/3
6 , where we set a = |a| from now on. Note

that these quantities are always small for small a. From the discus-
sion given in Appendix A, this implies that there will then always
be misalignment.

Assuming that α > αcrit = 4 × 10−3 a−2/5, we can use equa-
tion (A9), to obtain

β ∼
(

σmaxη
−3/4

2
√

3

)
β∗ ≈ 0.2B

−3/4
S qα

3/2
−2 (aM6)−1/2β∗, (46)

when the expression in parentheses is smaller than 1, with β ∼ β∗
otherwise. The latter condition can be expressed in the form

α−2 > ∼3B
1/2
S q−2/3(aM6)1/3. (47)

When α−2 is smaller than 0.4, it is the relativistic correction k in
equation (20), which determines the shape of the disc and we should
use the results of Appendix A devoted to the case α < αcrit. These
are analogous to those of the previous case, see equation (A15),
but now σ max and η must be substituted by σ rel, max and ηrel. Using
equations (A15) and (A19), we obtain

β ≈ 0.2σrel,maxη
−5/4
rel β∗ ≈ 0.5B

−1/4
S qα−2a

1/2M
−1/6
6 β∗, (48)

when σrel,max < 5η
5/4
rel , with β ∼ β∗ otherwise. When σrel,max >

5η
5/4
rel , we have

α−2 > 2B
1/4
S q−1a1/2M

1/6
6 . (49)

Equations (47) and (49) show that in order to have β ∼ β∗ at
τ ∼ τ crit, either the viscosity parameter α should be larger than, say,
10−2, or the black hole rotation parameter should be small enough.
Let us stress that the fact that the inclination angle being close to
that of the stream does not mean that the disc is flat. It has a twisted
form as long as either RBP, in the case of α > αcrit, or Rrel in the
opposite case is larger than the size of marginally stable orbit. These
conditions typically hold for accretion discs in the low state unless
the rotational parameter is very small.

7 D I SCUSSI ON

In this paper, we have considered the influence of a stream of gas
acting as a source of mass for an accretion disc around a rotating
black hole on the geometrical shape of the disc. Both the accretion
disc and the stream are assumed to have originated from the tidal
disruption of a star by the black hole. The action of the gravitomag-
netic force tends to drag the disc towards the black hole equatorial
plane, while the action of the stream is to cause disc material in
the vicinity of the stream impact radius, RS, to align its angular
momentum vector with that of the orbit the star moved in prior to
disruption.

Since, in general, this orbital plane is inclined with respect to the
equatorial plane of the black hole by some angle order of unity, the
combined action of the stream and the gravitomagnetic force due to
the black hole could result in the formation of a twisted disc. The
presence of a tilted and twisted disc could have important observa-
tional consequences. In particular, it could affect the spectrum and
produce variability (e.g. Dexter & Fragile 2013), produce distinc-
tive features in emission-line profiles (e.g. Bachev 1999), provide a
mechanism for the excitation of quasi-periodic oscillations through
a parametric instability (e.g. Ferreira & Ogilvie 2008, 2009). In turn,
measurements of disc twist and tilt could help to estimate both the
black hole parameters (its mass and spin) and quantities governing
the evolution of the accretion disc.

We have employed both analytic and numerical methods in our
study. First, we extended the linear theory of a stationary twisted
disc to incorporate an additional source of angular momentum pro-
vided by the stream in Sections 2–2.2. We used this to identify the
important parameters governing the shape of the disc in Section 3.1.
These were related to the ratio of the warp diffusion or propaga-
tion time to the mass accretion time and the ratio of the alignment
radius to the stream impact radius. By considering both numerical
solutions of the governing equation in Section 3.2 as well as an an-
alytic approach that yielded the asymptotic dependence of the disc
tilt on these quantities given in Appendix A, it was demonstrated
that a large value of the first parameter and a small value of the
second favoured the misalignment of a quasi-stationary disc.

We then used SPH simulations to test these results for a lo-
cally isothermal disc with aspect ratio ∼0.1 in Section 4. Near-disc
alignment for black hole rotation parameter, a = 1, and significant
misalignment for a = 0.1 were obtained for both approaches. We
also found reasonable agreement for the relaxed values of the disc
inclination angle, β, at the stream impact radius, RS, with a typical
difference between analytic and SPH results being ∼30 per cent.

In order to generate more realistic models, we went on to use
a one-dimensional grid-based numerical scheme to calculate the
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evolution of background model discs taking into account both gas
and radiation pressure in Section 5. Quantities such as the disc sur-
face density, � and δ entering our equation for the disc tilt were
evolved forwards in time under the assumption that the effec-
tive viscosity in the disc is described by the standard α model.
The influence of the stream is taken into account through a mass
source term localized in radius to the vicinity of RS. The total mass
flux was set equal to that of the stream. In this way, we obtained a
sequence of background models for α = 0.3 and 0.1 without tilt,
spanning times between the initial TDE and a time at which most
of the disc is in a cool state. Thus, the models were evolved through
a slim disc advection-dominated stage and the beginning of the
transition to the radiative stage. It is important to stress that the α

model predicts that this transition is accompanied by thermal insta-
bility (Shakura & Sunyaev 1976), which leads to limit cycle-like
behaviour between ‘high’ and ‘low’ states of the disc with δ ∼ 1
and 0.001, respectively.

Using these background models, we calculated a sequence of
quasi-stationary twisted disc configurations and so found the de-
pendence of β on time in Section 5.8. We found that when the black
hole rotation is close to the maximal one, β ∼ 0.1 of the stream
inclination, β∗, while it grows to ∼0.4β∗ when the disc experiences
transitions to low states. For smaller black hole rotations, these
inclinations are larger.

With help of the asymptotic analytic theory of solutions to our
twisted disc equations outlined in Appendix A, we estimate β at
the low state for accretion discs with smaller values of α than those
adopted above. Thus, β is found to be ∼0.1β∗ when α ∼ 0.01 and
the black hole rotation is close to maximal. The disc inclination gets
smaller for smaller values of α and increases with decrease of the
black hole rotation parameter.

That the disc changes its inclination during the transition to the
low state could have significant observational consequences. If the
orientation of the disc with respect to the line of sight is such that
parts of the disc with radii of the order of RS obscure the central
source when it is in the low state, there could be intermittent dips in
its luminosity. Note that such dips have indeed been observed in a
candidate TDE (Liu, Li & Komossa 2014), although they have been
given a different interpretation as being formed due to deflection of
the stream by the gravitational field of another black hole orbiting
the one that produced the TDE (Liu, Li & Chen 2009; Liu, Li &
Komossa 2014). If the disc’s orientation is such that both inner
and outer parts of it can be observed during high and low states,
the transitions could have an impact on the radiation spectrum. In
particular, when parts of the disc at R ∼ RS are inclined with respect
to inner ones, they can easily intercept radiation coming from the
central source. Disc gas being heated up by a strong flux of X-rays
could also form additional features in the radiation spectrum.

Note that a strong increase of β during a transition to the low
state is expected even for disc models where the thermal instability
does not operate. Unlike the models considered in this paper, in the
latter case, this transition happens only once, and the subsequent
alternation of β between relatively large and small values is not
expected.

It is important to point out that the results of this paper should be
viewed as first estimates. They have been obtained under a number
of significant simplifications. Perhaps, the most crucial one would
be our assumption that the disc is quasi-stationary. This holds well
during the advection-dominated stage when time-scales associated
with relaxation to a quasi-stationary state are shorter than the char-
acteristic evolution time-scale of the system. However, the relax-
ation time-scale greatly increases during the low state. A simple

estimate indicates that it is significantly longer than the evolution
time when transitions between high and low states occur. Clearly,
in such a situation, time-dependent calculations of the evolution of
the disc tilt and twist are important. The quasi-steady disc structures
we have calculated, at any time, can be viewed as targets that the
system may not realize. Accordingly, the range of oscillations in β

may be reduced in comparison to expectations from estimates made
from quasi-stationary models. On the other hand, misalignment is
expected to still remain significant.

Note too that during the advection-dominated stage, there are
additional terms in the twist equation, which have been omitted,
for simplicity, in this paper. One should also take into account the
possibility of strong outflows during this stage from the disc. The
analysis of a more complicated twist equation, which has explicit
time dependence and at least partially accounts for effects deter-
mined by advection, will be the subject of a separate study.
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APPENDIX A : A PPROX IMATE A NA LY TIC
S O L U T I O N S TO TH E G OV E R N I N G E QUAT I O N
WITH ESTIMATES OF βS F O R LA R G E
A N D S M A L L A L I G N M E N T R A D I I

When the source term in equation (20) is set to zero and δ and ξ

are constants, it can be solved exactly in two limiting cases k →
0 and k → ∞, see e.g. II. These cases correspond to the domi-
nance of either viscous terms or post-Newtonian relativistic cor-
rections in equations of motion describing the twisted disc, respec-
tively. Its dynamics and the shape of stationary configurations differ
qualitatively in these limits; in particular, as we have mentioned
above when the relativistic corrections dominate and the black hole

rotates in the same sense as the disc, the disc’s alignment with the
equatorial plane at small radii is absent.

When the source term is present, we can also find solutions in the
same limits assuming that � → 0 in equation (12) and, accordingly
δ� reduces to the Dirac delta function. Then the presence of the
source term in equation (20) results in a jump condition for the
derivative of W at r = 1. This is easily obtained by integrating
equation (20) over an infinitesimal radial domain centred on r = 1.
Assuming that W is continuous, we obtain

dW+/dr − dW−/dr = −σ (1 − ik)(W∗ − W), (A1)

where dW±/dr are respectively derivatives of solutions to equa-
tion (A5) evaluated for r > 1 and r < 1 as r → 1. Thus, in our
analytic approach, a solution to equation (20) consists of homoge-
neous solutions in the inner domain (r < 1) and the outer domain (r
> 1) which satisfy appropriate boundary conditions and are linked
through the jump condition (A1).

A1 The case α > αcrit

We begin by considering the case where viscous effects dominate
and set k = 0 in equation (20). In this case, the source-free solutions
can be expressed in the form

W = z
1/3
1 (C1J−1/3(z1) + C2J1/3(z1)),

z1 = 4

3
c±eiπ/4

(η

r

)3/4
, (A2)

where C1, 2 are arbitrary constants, Jν(z) is the Bessel functions of
order ν, the ( + ) and ( − ) signs respectively correspond to prograde
and retrograde black hole rotation, c+ = 1 and c− = i.

The solution (A2) should satisfy two boundary conditions,
|W| → 0 when r → 0, and W ′ → 0 when r → ∞, and here-
after a prime denotes the radial derivative. The inner solution, valid
for r < 1, that satisfies the inner boundary condition can be written
in the form

Win = Cinφin, with φin = z
1/3
1 (J−1/3(z1) − e−iπ/3J1/3(z1)),

(A3)

while the outer solution valid for r > 1 that satisfies the outer
boundary condition may be written as

Wout = Coutφout, with φout = z
1/3
1 J−1/3(z1). (A4)

The jump condition (A1) can be used to find Cin, Cout and ac-
cordingly, the value of WS = W (r = 1). The calculation is
straightforward with the result that

WS = σfW∗
σf + 1

, where f = −φinφout/WR,

with the Wronskian

WR = φinφ
′
out − φoutφ

′
in, (A5)

with all quantities being evaluated at r = 1.
With no loss of generality, we can assume that W∗ is real and

equal to β∗. Then βS can be found from equation (A5) in the form

βS = σ |f |β∗√
D

, where D = |f |2σ 2 + (f + f ∗)σ + 1. (A6)

From the known properties of Bessel and Gamma functions, we
obtain

WR = −2−2/335/6c
2/3
±

π
e−iπ/6η1/2r−3/2. (A7)
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A1.1 Expressions for βS in the limits of large and small η

Using equation (A7) together with asymptotic expressions for
the Bessel functions, we can express f in equation (A5) in
terms of elementary functions in the limits η � 1 and η �
1. In the former limit, we can use the asymptotic forms of the
Bessel functions for large absolute values of their arguments
to find

f = eiπ/12(1 − e−iπ/3)

2
√

3c±
η−3/4. (A8)

When the black hole rotation is prograde, we can set c± = 1 and
obtain from equation (A8)

βS = ση−3/4

2
√

D
β∗, where

D = η−3/2

4
σ 2 +

√
(
√

3 + 2)η−3/4

2
σ + 1. (A9)

When a < 0, the expression for βS is the same as equation (A9)
with the modification that as in this case f is purely imaginary, the
term proportional to σ in the expression for D is equal to zero as
can easily be seen from equation (A6). Since the contribution of
this term is quite small, we use equation (A9) for both prograde and
retrograde rotation.

When η � 1, we use the asymptotic representations of Bessel
function at small absolute values of their arguments to obtain

f =
(

24/3πeiπ/6

35/6�2(2/3)c2/3
±

)
η−1/2 ≈ 1.17

(
eiπ/6

c
2/3
±

)
η−1/2. (A10)

Since |f| is the same for both prograde and retrograde cases, for both
we approximately have

βS = 1.17ση−1/2β∗√
D

,

D = 1.3689η−1σ 2 + 1.17σ
√

3η−1 + 1. (A11)

Taking the limit η → 0, we obtain βS → β∗. In this case, although
warp propagation is efficient, the alignment radius is arbitrarily
small so that disc is unable to align with the black hole equator. As
η increases, the degree of misalignment decreases, being governed
by the magnitude of the quantity

√
η/σ. When RBP = RS, this is

proportional to the ratio of the local accretion time-scale to the
local warp diffusion time-scale. A small value of this ratio favours
misalignment as expected.

On the other hand, in the opposite limit η → ∞, corresponding
to the alignment radius moving to large radii, βS → 0 as expected.
As before, a large value of σ tends to favour misalignment.

Note that the case α > αcrit and η < 1 can be realized only when
the black hole mass is sufficiently small if we require that α < 1.
Indeed, from these conditions, we get
αcrit < α < (23/2)3/2δ2(aβSM6)−1, which leads to a <

(23/2)5/2δ2(BSM6)−5/3. Using again the fact that here we
are considering α > αcrit = a−2/5δ4/5, we obtain from the
above condition on a that α < 2/23(BSM6)2/3. Since, on the
other hand, α is required to be smaller than one, we must
have M6 < ∼39/BS.

A2 The case α < αcrit

In this case, we formally assume that the constant k in equa-
tion (20) becomes very large. In this limit, the homogeneous so-

lutions to equation (20) can be written as

W = z
3/5
2 (C1J−3/5(z2) + C2J3/5(z2)), where

z2 = 2
√

3

5c±

(ηrel

r

)5/4
, (A12)

and we recall that ηrel is given by equation (23). As for the previ-
ous case we introduce inner and outer solutions according to the
specification

W(r < 1) = Cinφin, and W(r > 1) = Coutφout, (A13)

where φin and φout are proportional to combinations of Bessel func-
tions discussed below. The expression (A5) is modified by the sub-
stitution σ → −ikσ :

WS = iσrelfW∗
iσrelf + 1

,

σrel = kσ = 12λGM

δ2c2RS

⎛
⎝ ṀS

2π�R2
S

√
R3

S

GM

⎞
⎠ . (A14)

As we will see below that now f is real and positive in both limits
of large and small ηrel. Using this fact, we easily obtain from equa-
tion (A14) that

βS = f σrel√
f 2σ 2

rel + 1
β∗. (A15)

Note that σ rel plays the role of σ in this case and may be regarded
as being equal to σ with α set equal to 3λGM/(c2R2

S).
As we have discussed above, when α < αcrit, there is a qualitative

difference in behaviour of solutions of the governing corresponding
to different signs of a (see Section 3). Therefore, it is convenient to
treat them separately.

A2.1 The case of prograde rotation a > 0

We recall that when a > 0, z2 is real and the inner oscillating
solution is characterized by a phase, �, which is determined by
conditions close to the last stable orbit, where one must consider a
fully relativistic theory of twisted discs, see ZI for such an approach.
Here we shall fix this phase, �, to be equal to −2π/3, which is
obtained in a certain limit discussed in ZI. In order to comply with
the notation of this paper, we write the inner solution in the form

φin = z
3/5
2

(
cos(� − π/20)J−3/5(z2)

+ sin(� + π/20)J3/5(z2)
)

(A16)

while the outer solution is given by φout = z
3/5
2 J−3/5(z2). The Wron-

skian WR of this pair can be written as

WR = (54/5)1/5π−1sin(2π/5) sin(� + π/20)η3/2
rel r−5/2. (A17)

When ηrel � 1, we approximately have

f = 2√
3

cos(zS − �) cos(zS + π/20)

sin(� + π/20)
η

−5/4
rel , (A18)

where zS = z2(r = 1) = 2
√

3/5η
5/4
rel .

In order to obtain an order-of-magnitude estimate of βS, we
further simplify equation (A18) by averaging over zS to obtain

f = 1√
3

tan−1(� + π/20)η−5/4
rel ≈ 0.22η

−5/4
rel , (A19)

where we assume � = −2π/3 to obtain the last equality.
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In the opposite limit ηrel � 1, we get

f = (5/27)1/5

(
2π

�2(2/5)

) (
cos(� − π/20)

cos(π/10) sin(� + π/20)

)
η

−3/2
rel

≈ 0.645η
−3/2
rel , (A20)

where we have again set � = −2π/3 in the last equality.
As expected, when the alignment radius approaches zero with

ηrel → 0, we obtain βS → β∗ corresponding to complete misalign-
ment. Similarly in the opposite limit with ηrel → ∞, we obtain
βS → 0, corresponding to complete alignment. The magnitude of
the quantity σ rel then determines the degree of misalignment for
a given ηrel through equation (A15), with a large value favouring
misalignment.

A2.2 The case of retrograde rotation a < 0

When a < 0, z2 is purely imaginary and the inner solution is fixed
by the requirement that the disc inclination should tend to zero at

small r. We then have

φin = z
3/5
2 (J−3/5(z2) − e−i3π/5J3/5(z2)), and

φout = z
3/5
2 J−3/5(z2), (A21)

which lead to

WR = −(54/5)1/5π−1cos(π/10)η3/2
rel r−5/2. (A22)

When ηrel � 1, we find from equation (A5) that

f = 1√
3
η

−5/4
rel ≈ 0.58η

−5/4
rel , (A23)

and when ηrel � 1 we obtain

f = 2π(5/27)1/5
(
cos(π/10)�2(2/5)

)−1
η

−3/2
rel ≈ 0.96η

−3/2
rel . (A24)

From equation (A15) and the expressions (A23) and (A24), it fol-
lows that the estimate of βS for the retrograde case will be to order
of magnitude the same as for the prograde case.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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