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Abstract

This dissertation is concerned with the potential multistability of protein concentrations
in the cell that can arise in biochemical networks. That is, situations where one, or a family
of, proteins may sit at one of two or more different steady state concentrations in otherwise
identical cells, and in spite of them being in the same environment.
Models of multisite protein phosphorylation have shown that this mechanism is able to
exhibit unlimited multistability. Nevertheless, these models have not considered enzyme
docking, the binding of the enzymes to one or more substrate docking sites, which are
separate from the motif that is chemically modified. Enzyme docking is, however, increas-
ingly being recognised as a method to achieve specificity in protein phosphorylation and
dephosphorylation cycles.
Most models in the literature for these systems are deterministic i.e. based on Ordinary Dif-
ferential Equations, despite the fact that these are accurate only in the limit of large molecule
numbers. For small molecule numbers, a discrete probabilistic, stochastic, approach is more
suitable. However, when compared to the tools available in the deterministic framework, the
tools available for stochastic analysis offer inadequate visualisation and intuition.
We firstly try to bridge that gap, by developing three tools: a) a discrete ‘nullclines’ construct
applicable to stochastic systems - an analogue to the ODE nullcines, b) a stochastic tool
based on a Weakly Chained Diagonally Dominant M-matrix formulation of the Chemical
Master Equation and c) an algorithm that is able to construct non-reversible Markov chains
with desired stationary probability distributions.
We subsequently prove that, for multisite protein phosphorylation and similar models, in the
deterministic domain, enzyme docking and the consequent substrate enzyme-sequestration
must inevitably limit the extent of multistability, ultimately to one steady state. In contrast,
bimodality can be obtained in the stochastic domain even in situations where bistability is
not possible for large molecule numbers.
We finally extend our results to cases where we have an autophosphorylating kinase, as for
example is the case with Ca2+/calmodulin-dependent protein kinase II (CaMKII), a key
enzyme in synaptic plasticity.
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Notation

Graphs and Spanning Trees

α((x0,y0),(x1,y1)) Transition rate between two states represented by Cartesian coordi-
nates. The transition rate from state (x0,y0) to state (x1,y1).

E Set of edges.

G Graph.

T Directed spanning tree.

V Set of vertices.

w Weight function defined on edges.

W (T ) Weight of directed spanning tree.

wi, j The weight of the edge directed from vertex i to vertex j.

Phosphorylation networks

[S] Concentration of species S.

[Stot ] Total concentration of species S.

αK
i Rate of kinase attachment to substrate S with i phosphorylated sites.

αP
i Rate of phosphatase attachment to substrate S with i phosphorylated

sites.

β K
i Rate of kinase de-attachment from substrate S with i phosphorylated

sites.

β P
i Rate of phosphatase de-attachment from substrate S with i phospho-

rylated sites.



2 Notation

γK
i Rate of phosphorylation resulting from the complex KSi producing

Si+1.

γP
i Rate of dephosphorylation resulting from the complex PSi produc-

ing Si−1.

K Kinase.

KSi Complex formed after attachment of the kinase to the substrate S
with i phosphorylated sites.

P Phosphatase.

PSi Complex formed after attachment of the phosphatase to the substrate
S with i phosphorylated sites.

S Substrate.

Si Substrate S with i phosphorylated sites.

Markov chains, Probability and Linear Algebra

λmin(A) The smallest eigenvalue of matrix A.

A Matrix of transition rates (propensities).

AD
i, j The sub-matrix formed after deleting the ith row and jth column

from matrix A.

Ps The stationary probability distribution.

P(t) The probability landscape at time t.

x(t) The state (microstate) of the system at time t. The set of molecule
numbers of each species at a particular moment.

∥ . ∥ Matrix norm.

σmax(A) The largest singular value of matrix A.

A(xi,x j) The transition rate from state xj to state xi.

Ai
j The jth column of matrix A with element i deleted.

A j The jth column of matrix A.



Notation 3

ai j or ai, j The element of A found in row i and column j.

Ps( j) or P j
s The stationary probability of microstate x j.





Chapter 1

Dissertation Overview

1.1 Motivation and Summary of Contributions

Multistability, the ability of a cellular component to be found in more than one stable
steady state under particular biological conditions, is considered fundamental for under-
standing cellular decision making. Understanding cellular decision making is required to
understand cell signalling, that is, the communication between cells to regulate their cellular
activities. This regulation can either be done at the genetic scale, involving the regulation
of transcription (of DNA to mRNA) or translation (of mRNA to protein), or at the protein
level via post-translational protein modifications. An example of such modification is protein
phosphorylation.
Traditionally, the analysis of multistability is based on models of biochemical networks
involving Ordinary Differential Equations. This deterministic type of analysis, despite its
convenience and its large accompanying mathematical toolbox, is only exactly accurate in
the limit of infinite molecule population sizes. When the molecule numbers are large but
finite, multistability of the differential equations manifests itself as multimodality. The modes
correspond to the stable steady states of the system, and the system undergoes fluctuations
within, and random jumps between, the modes. When molecule numbers are small, however,
there may be little relationship between the continuous deterministic and discrete stochastic
analyses.
A well-studied example is the genetic toggle switch, which, in the absence of cooperativity,
is predicted to have only one stable steady state, whereas experimental results and exact
stochastic simulations have shown that the system exhibits bimodality. This is usually re-
ferred to as ‘noise-induced’ bimodality. Understanding this type of bimodality is hard, yet
even harder is the prediction of when this would take place.
Taking these into consideration, it is evident that to fully appreciate the implications of a
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biochemical mechanism to the potential multistability of the biochemical system, one should
perform analyses in both the deterministic and the stochastic domains.
The biochemical mechanism we are primarily interested in this dissertation is multisite
protein phosphorylation, because of its theoretical ability to provide unlimited multistability.
In the presence of excess substrate, it has been shown (deterministically) that the achievable
number of stable steady states can increase linearly with the number of phosphosites available.
The models used in the aforementioned analysis of multisite protein phosphorylation, how-
ever, do not consider the effects of enzyme docking, despite it being increasingly recognised
as a method of providing specificity in protein phosphorylation and dephosphorylation cycles.
Enzyme docking refers to the ability of the kinase (the enzyme catalysing the addition of a
phosphate group) or phosphatase (the enzyme catalysing the removal of a phosphate group)
to bind with one or more sites on the substrate, which are independent of the catalytic site,
making it therefore possible to form non-modifiable inactive complexes. For example, a
phosphatase molecule could be attached to a completely unphosphorylated molecule.
To perform the analysis of that system in the stochastic domain, we first need to understand
how stationary probability distributions are formed, leading to the development of the neces-
sary stochastic tools.
In particular, in Chapter 3, recognising that ODE nullclines are a poor predictor of the
behaviour of discrete state stochastic systems in the low numbers regime, we propose a dis-
crete ‘nullcline’ heuristic construct inspired by the Markov chain tree theorem to understand
the discrete genetic toggle switch phenomena. These ‘nullclines’ can, without the need to
calculate the steady state distribution, provide an efficient graphical way of predicting the
shape of the stationary probability distribution in different parameter regimes, thus allowing
for greater insights in the observed behaviours.
In Chapter 4, we focus on the stationary probability of each particular discrete state of the
state-space gird that the system can be found in (‘microstate’). Based on a Weakly Chained
Diagonally Dominant M-matrix formulation of the Chemical Master Equation, we develop a
stochastic tool that separates the effect of the output propensities of the particular microstate
from the rest of the parameters of the system (a source/sink analogy).
In Chapter 5, in an effort to better understand how stationary probability distributions are
formed, we use the results of Chapter 4 to develop an algorithm for constructing Markov
chains on finite discrete spaces, both discrete and continuous-time, with specified discrete-
state stationary probability distributions. The Markov chains constructed do not need to be
reversible and are not modifications of prior constructions of reversible Markov chains.
In Chapter 6, having developed our stochastic toolbox, we analyse the consequences of
adding enzyme docking to models of multisite protein phosphorylation and similar models
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with the resultant sequestration of phosphatase and kinase by the fully unphosphorylated
and by the fully phosphorylated substrates respectively. In the large molecule numbers limit,
where deterministic analysis is applicable, we prove that there are always values for these
rates of sequestration which, when exceeded, limit the extent of multistability. For the models
considered here, these numbers are much smaller than the affinity of the enzymes to the
substrate when it is in a modifiable state. As substrate enzyme-sequestration is increased,
we further prove that the number of steady states will inevitably be reduced to one. For
smaller molecule numbers where a stochastic analysis is more appropriate, we find that
substrate enzyme sequestration can induce bimodality even in systems where only a single
steady state can exist at large numbers. To facilitate this analysis, we use the stochastic
tool based on the Weakly Chained Diagonally Dominant (WCDD) M-matrix formulation
of the Chemical Master Equation developed in Chapter 4, allowing greater insights in the
way enzyme sequestration can shape probability distributions and therefore exhibit different
behaviour across different regimes.
In Chapter 7, we extend the framework of Chapter 6 to include the case when the substrate can
act both as the substrate and as the kinase, autophosphorylating itself, a behaviour exhibited
by Ca2+/calmodulin-dependent protein kinase II (CaMKII), a molecule with a dominant role
in synaptic plasticity. We speculate that the induced bimodality together with its associated
dependence on the system size, could provide an explanation of the experimental findings
that the Long Term Potentiation (LTP) induction is preferentially happening in smaller spines
and that the timescales of CaMKII activation are similar to the timescales governing spine
volume expansion.

1.2 Summary of mathematical tools and concepts

For the development of this dissertation, we used several mathematical tools and concepts.
The main ones are summarised below. In the brackets we mention the subsections where
they are firstly introduced and/or defined.
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Table 1.1 Summary of the mathematical tools and concepts used

1.3 Papers associated with dissertation

The work of this dissertation led to the publication of two papers, as summarised below.
In the brackets, the relevant chapters in this dissertation are mentioned.

• Petrides A. and Vinnicombe G. Understanding the genetic toggle switch phenomena
using a discrete ‘nullcline’ construct inspired by the Markov chain tree theorem.
Proceedings of the 56th IEEE Conference on Decision and Control (CDC), 2017
(Chapter 3).

• Petrides, A. and Vinnicombe, G. Enzyme sequestration by the substrate: An analysis
in the deterministic and stochastic domains. PLoS Computational Biology, 14(5),
p.e1006107, 2018. (Chapters 4 and 6).



Chapter 2

Introduction to biochemical networks

To analyse potentially multistable biochemical networks, it is imperative that one should
first understand how biochemical networks are modelled. In this introductory chapter we
present some of the methods that are frequently used to analyse biochemical networks. The
notion of stochastic analysis, central in this dissertation, is also introduced, contrasted to the
classical deterministic analysis.

2.1 Biochemical networks

The discovery of the DNA structure [175] led to great advances in molecular biology,
which have significantly enhanced our knowledge for individual cellular components, par-
ticularly regarding their biochemistry. Understanding their biochemistry, however, is not
the end of the road; we are still far from full understanding and complete appreciation of
the biological mechanisms’ importance. Individual biochemical components do not live in
isolation, hence for understanding why certain mechanisms arise in nature, we firstly need to
understand what effects these interconnections create on a systemic, network level. These
networks are found across all scales: from genes to RNAs, to transcription factors, to pro-
teins, to enzymes [80, 5, 88, 29]. Deciphering the roles of different biochemical mechanisms
in system dynamics is key to understanding experimental studies as well as guiding new
experimental research.
Of course, this is easier said than done. This is, in fact, the aim of Systems biology [88]; by
viewing different cellular components as parts of a greater system, the systemic behaviour is
modelled instead. As models are of principal importance in these type of studies, researchers
are faced in front of a two-faced problem: a) what models are accurate enough to describe
the behaviour of the problem at hand? b) what methods are available to analyse the models
selected?
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The approach taken in this dissertation, and its emphasis that the biochemical systems must
be analysed both in their corresponding deterministic and stochastic domains is a result of an
effort to contribute to both of these questions. We understand that to discover potential new
functions for a biochemical mechanism, we need, not only to use existing methods, but to
extend them, wherever possible, or even to develop new methods.

2.2 Classical deterministic analysis of biochemical networks

Biochemical networks are modelled by firstly modelling individual biochemical reactions,
which are coupled by one or more shared biochemical species. In a biochemical reaction,
one or more biochemical species, called ‘reactants’, react at a particular rate to produce some
other biochemical species, called ‘products’.

For example consider the reaction

A B

In this reaction species A is transformed to species B. In the classical deterministic
formulation, the reaction specifies the rate at which the concentration of A, [A], decreases,
causing an increase in the concentration of B, [B]. This can now be extended to coupled
biochemical reactions, forming a biochemical network [68, 29, 31]. The deterministic
formulation includes reactant concentrations varying continuously in time and governed
by a system of rate equations. A big advantage of this representation is that theoretical
methods from linear and nonlinear dynamics and control [157] can be directly utilised. In
this formulation, a molecular network is considered to be a series of elementary biochemical
reactions, whose kinetics can be described by rate equations according to the mass action
law. This law was introduced by Guldberg and Waage in the nineteenth century [65] and
states that the reaction rate is proportional to the probability of a collision of the reactants.
Therefore the reaction rate is not taken to be constant, yet instead it is proportional to the
concentrations of the reactants, with the rate constant being the constant of proportionality.
Take for example the reactions

A + B
k1 AB

AB
k-1 A + B
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This system of reactions can be represented by the following system of differential
equations [29]:

d[AB]
dt

= k1[A][B]− k−1[AB]

d[A]
dt

=
d[B]
dt

= k−1[AB]− k1[A][B]

2.2.1 Generalisation and Definitions

Generalising the above to n biochemical components, which can be proteins, mRNAs,
chemical complexes, different states of the same protein, or proteins at different locations in
a cell [29], the network can be represented with the following equation,

dx(t)
dt

= f(x, t) (2.2.1)

where x(t) = (x1(t), ...,xn(t)) ⊂ R+n represents the concentrations of all components at time
t ∈ R, where R+ is the set of non-negative real numbers. f represents the set of functions
fi : R+n ×R −→ R for i = 1, ...,n.
From Eq. 2.2.1, one can see that at steady state, x̂ ∈ R+n, f(x̂) = 0 [157] is satisfied.

Definition 2.2.1. Steady state [90, 29, 92]: A stationary state or a steady state is a point in
the phase plane, where the condition dx(t)

dt = 0 is met.

Definition 2.2.2. Multistationarity [92]: The equation system dx(t)
dt = 0 can have multiple

solutions referring to multiple steady states. This phenomenon is called multistationarity.

Definition 2.2.3. Stable steady state [23, 157]: A steady state is (asymptotically) stable, if
the system after small perturbations returns to this state for t −→ ∞.

Definition 2.2.4. Bistability [29]: The equation system has two stable solutions of dx(t)
dt = 0.

Definition 2.2.5. Multistability [29]: The system has multiple stable solutions of dx(t)
dt = 0.

2.2.2 Exploitation of timescales: Michaelis-Menten equations

An old, yet still very effective, idea is the one that tries to approximate the system of
differential equations by exploiting different timescales in fast-slow dynamics. For enzymatic
reactions, a typical model is the Michaelis-Menten equation [90, 41]. It is firstly assumed that
the enzyme is neither consumed or produced; therefore the total concentration of the enzyme
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remains constant. An enzyme–substrate complex, ES, is formed from the free enzyme E and
the substrate S which results into an irreversible release of the product P. This is presented
below.

E + S
k1

k-1
ES

k2 E + P

The corresponding system of ordinary differential equations is

d[S]
dt

= k−1[ES]− k1[E][S]

d[E]
dt

=−k1[E][S]+ (k−1 + k2)[ES]

d[ES]
dt

= k1[E][S]− (k−1 + k2)[ES]

d[P]
dt

= k2[ES]

The assumption made is that the reversible reactions governing the enzyme-substrate
complex ES formation are much faster than the reaction leading to a new product. This leads
to the quasi-steady-state assumption that the concentration of the enzyme–substrate complex
is unchanging with respect to time and is equal to

[ES] =
[E][S]
KM

where the Michaelis-Menten constant is

KM =
k−1 + k2

k1

As [Etot ] = [E]+ [ES],

[ES] =
[Etot ][S]
KM +[S]

This leads to the well-known Michaelis-Menten equation:

d[P]
dt

=
Vmax[S]
KM +[S]

where Vmax = k2[Etot ] is the maximal enzyme velocity. This equation describes the initial
velocity of the enzyme as a function of three parameters: the substrate concentration, [S], the
Michaelis-Menten constant, KM, and the maximal velocity, Vmax. [154].
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2.2.3 Cooperativity, the Hill Equation and Ultrasensitivity

Another commonly used function is the Hill equation [90, 50, 51], which is viewed as
an extension of the Michaelis-Menten function to account for cooperativity. Consider, for
example, a protein P which has n active binding sites. When n monomers I bind to P, the
protein P can either bind to n moleclues of I, forming PIn, or stay non-bound. The reaction
can be represented by:

P + nI
k1

k-1
PIn

and the associated ordinary differential equation for [PIn] is

d[PIn]

dt
= k1[P][I]n − k−1[PIn]

Assuming quasi-steady-state for the enzyme complex [PIn] and as [Ptot ] = [P]+ [PIn], we can
derive the so-called Hill equation:

[PIn] =
[Ptot ][I]n

Kn
eq +[I]n

where Kn
eq =

k−1
k1

Parameter n is the Hill coefficient. In the example above, [PIn] is a function of [I]. More
generally, a Hill function is an input-output relationship of the form Out put = Inputn

Kn+Inputn .
Related concepts are those of sensitivity and ultrasensitivity. Sensitivity refers to how much
input is needed to achieve a particular level of output. Assuming that the change in input is
infinitesimal, local sensitivity can be defined as S = dln(Out put)

dln(Input) [50]. Ultrasensitivity refers to
an output response that is more sensitive to stimulus change than the hyperbolic Michaelis-
Menten response. For simple binding interactions, the ligand concentration (input) has to
change by 81-fold in order for the protein to go from 10% to 90% bound [93]. According
to the ultrasensitivity definition by Goldbeter and Koshland [61], ultrasensitive responses
require less than an 81-fold stimulus to drive them from 10% to 90% maximal response.
An ultrasensitive response is often sigmoidal and is well-approximated by the Hill equation
[50]. The difference between an ultrasensitive and a Michaelian response is illustrated in Fig.
2.2.1.
The larger the Hill coefficient n, the steeper the Hill curve [5], producing ultrasensitive
responses, as illustrated by Fig. 2.2.2. Ultrasensitivity coupled with positive feedback
is capable of producing switch-like behaviours [167], considered fundamental in cellular
decision making. Ultrasensitivity has been mentioned to have a function in several signaling
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systems, including signaling cascades, bistable switches, and oscillators [19].

2.3 The need for analysis in both deterministic and stochas-
tic domains

Despite being the most usual way of modelling biochemical networks, deterministic
analysis is only exact at the limit of infinite molecule numbers [169, 57]. A cellular system
is inherently noisy, with finite molecule population numbers. This results to stochasticity due
to the random transitions among discrete chemical states [28]. This stochastic noise may not
only affect the dynamics of biological systems but may be exploited by living organisms to
actively facilitate certain functions. There are several examples in the literature where the
behaviour of the system is predicted to behave differently when analysed deterministically
and when analysed stochastically. These phenomena and their constructive or destructive
influence on the robustness of systems has been a topic of great interest in several areas of
biology, from the molecular to the ecological level [60, 94, 84, 141, 146, 161]. Furthermore,
taking them into account can reveal fundamental constraints on regulation [99] and even be
used in designing synthetic gene circuits [136].
In this section we provide the details of the stochastic framework, which is able to consider
the exact numbers of molecules present, which are discrete quantities. In the stochastic
framework, the components change discretely. The selection and the timing of the changes
are probabilistic.

2.3.1 The reaction rates now represent propensities

a ka b

In the stochastic framework, the scheme above now specifies the probability that the reaction
which would cause a decrease of the number of molecules of A, a, by one, and the increase
of the number of molecules of B, b, also by one, will occur. This probability, also provided
by the mass action law, is equal to kadt. As it is later to be seen it is usually easier to work
with the rate of this probability instead, ka, which is referred to as the propensity of a reaction
to take place.
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Fig. 2.2.1 Ultrasensitive vs Michaelian hyperbolic response [148]. Reproduced with per-
mission of Royal Society of Chemistry from ‘Engineering and applications of genetic cir-
cuits, Sayut, D. et al, Molecular bioSystems by Royal Society of Chemistry (Great Britain),
3(12):835–840, ©2007’ in the format Thesis/Dissertation via Copyright Clearance Center.

Fig. 2.2.2 (A) Input-output relationships for Hill functions with exponents ranging from one to
five. When n = 1 the response is Michaelian. When n > 1, the response is ultrasensitive. The
larger the Hill coefficient n, the more switch-like the response. (B) Local sensitivities for Hill
curves with exponents ranging from one to five [50]. Reproduced with permission of Elsevier
Ltd. from ‘Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity,
Ferrell, J. E. and Ha, S. H, Trends in biochemical sciences by International Union of
Biochemistry, 39(10):496–503, ©2014’ in the format Thesis/Dissertation via Copyright
Clearance Center.
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2.3.2 The Chemical Master Equation

An accurate stochastic framework, where the discrete nature of molecule numbers is taken
into account is the discrete Chemical Master Equation (CME). This describes the process
with a discrete-state continuous-time Markov chain and is, in fact, a Forward Kolmogorov
Equation [150]. It is characterised by a probability distribution as a function of time. The
state of the system at time t, x(t), commonly also referred to as a microstate, is the set of
molecule numbers of each species at a particular moment.
Formally, the state space of the Chemical Master Equation is represented by a detailed
amount of each of the n molecular species in the biochemical reaction network. At time t
the microstate of the system is x(t) = {x1(t),x2(t), ...,xn(t)} ∈ Nn. The overall state space is
the set X of all possible combination numbers X = {x(t)|t ∈ (0,∞)}. P(t) ∈ [0,1]|X | is the
probability landscape [108]. The positive real transition rate (propensity) from microstate x j

to xi, r (i.e. x j
r−→ xi), is represented by A(xi,x j) = r.

The Chemical Master Equation is illustrated in Eq. 2.3.1, where P(x, t) is the continuous
time probability of each discrete microstate.

dP(x, t)
dt

= ∑
x′ ̸=x

[
A(x,x

′
)P(x

′
, t)−A(x

′
,x)P(x, t)

]
(2.3.1)

The probability landscape of the CME, when the state space is finite, can also be written
in matrix-vector form, where A ∈ R|X |×|X | is called the matrix of propensities and is the
collection of all A(xi,x j).

dP(t)
dt

= AP(t) (2.3.2)

Matrix A is a zero column sum (ZCS) square matrix, as A(x,x) =− ∑

x′ ̸=x
A(x′,x). The zero

column sum principle ensures that there is conservation of probability mass in the chain.
Two very important concepts in this dissertation are those of stationary probability

distribution and multimodality. These are defined below.

Definition 2.3.1. Stationary probability distribution [67]: A stationary probability distri-
bution Ps, in the context of this dissertation, is a non-trivial (i.e. Ps ̸= 0) solution of the
condition dP(t)

dt = 0.

Definition 2.3.2. Mode [1, 24]: A mode is a local maximum of the stationary probability
distribution Ps.

Definition 2.3.3. Bimodality [24]: The phenomenon where the stationary probability distri-
bution Ps of a system has two local maxima.
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Definition 2.3.4. Multimodality [24]: The phenomenon where the stationary probability
distribution Ps of a system has multiple local maxima.

2.3.3 The stochastic methods available

For simple problems like monomolecular reaction systems, analytical solutions can be
obtained [81]. However, for most cases, the Chemical Master Equation this is not possible.
The state space created by the Chemical Master Equation expands rapidly with increasing
number of species and molecular copy numbers [86].
To approximate the solution, there are three approaches found in the literature.

2.3.3.1 Truncation of state space

The first approach approximates the Chemical Master Equation solution by solving a
truncated version of the original Markov process [149]. For this method, the truncation must
be chosen so that the number of states is large enough to retain most of the probability mass,
yet small enough to be computationally efficient. The finite state projection method [123] is
a variant of this method which, via using an absorbing state to represent the truncated states,
can provide error guarantees. Based on the same principle of state truncation, several other
variants have also been proposed in the literature. Examples include the sliding window
abstraction method [73], where consecutive windows of the state space are truncated, and the
finite buffer method [25], which limits the number of new molecules that can be synthesized
in open systems.

2.3.3.2 Kinetic Monte Carlo - Gillispie Exact Algorithm

A second approach is via simulations using kinetic Monte Carlo. The principle behind
this approach is to produce realisations, which could be either exact or approximate, of the
underlying Markov process. Given enough realizations, the relevant statistics of the process
can be obtained. The Gillispie Exact Algorithm [56], the most well-known of this class of
algorithms, producing exact realisations, is presented in Algorithm 1 [29].
Following the notation by Gillispie [57], a general molecular network is considered, with N
molecular species S1, ...,SN that react through M channels R1, ...,RM. X = (X1, ...,XN) is the
state of the molecules at time t. a j(X)dt is the probability, given state X , that one R j reaction
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occurs in the next infinitesimal time interval [t, t +dt) and ν ji is the change in the number of
Si molecules produced by one R j reaction ( j = 1, ...,M and i = 1, ...,N).

Result: Output simulation trajectory
Step 1. Initialisation: set t = 0 and fix the initial numbers of molecules X = X0

Step 2. Calculate the propensity function a j, j = 1, ...,M
Step 3. Generate two random numbers r1 and r2 in [0,1)

Step 4. Calculate ∆t = 1
a0(X) ln(

1
r1
), where a0(X) =

M
∑
j=1

a j(X)

Step 5. Calculate µ = the smallest integer satisfying
µ

∑
j′=0

a j′ > r2a0(X)

Step 6. Execute reaction µ and advance time by ∆t. If t reaches Tmax, terminate the
computation. Otherwise, go to Step 2.

Algorithm 1: Gillispie Exact Algorithm

2.3.3.3 Analytical approaches - Chemical Langevin Equation

The third approach lies on the principle that it could be beneficial to use asymptotic
approximations to trade accuracy for computational or analytical tractability. The Chemical
Langevin Equation (CLE) [57] is a method based on this principle. Starting from the
Chemical Master Equation, when the number of each species is finite yet large, the Chemical
Langevin Equation (CLE) can describe well the dynamics of cellular systems [57, 29]. To
illustrate how the Chemical Master Equation can be approximated by the Chemical Langevin
equation, a general molecular network is considered as before. For this general network, the
Chemical Master Equation is represented by [29]:

dP(X , t)
dt

=
M

∑
j=1

a j(X −ν j)P(X −ν j, t)−a j(X)P(X , t)

where ν j = (ν j1, ...,ν jN).
The Chemical Langevin equation can then be derived [57, 58] taking the form

dXi(t)
dt

=
M

∑
j=1

ν jia j(X(t))+
M

∑
j=1

ν ji

√
(a j(X(t))Γ j(t)

where Γ j(t) are temporally uncorrelated, statistically independent Gaussian white noises,
defined by

Γ j(t) = lim
dt→0+

N(0,1/dt)
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where N(m,σ2) denotes the normal random variable with mean m and variance σ2 [58].

2.3.4 Deterministic and stochastic rate constants

The rate constants used for stochastic simulations and the rate constants used for de-
terministic modelling are related, yet are not always identical. For first order reactions
(i.e. where there is only one reactant X −→), the deterministic and stochastic rate constants
are equal and expressed in sec−1. This is because the rates are independent of the volume
the reactants are in. However, for other non-monomolecular reactions (e.g. X +Y −→) the
deterministic rate constants are expressed in terms of the concentrations, measured in M
(moles per litre) (e.g. M−1sec−1), whereas the stochastic rate constants are expressed in
terms of molecules (e.g. molecule−1sec−1). Therefore, in order to convert the concentrations
to number of molecules, the volume of the container, V , needs to be known. For example, a
deterministic rate constant of 1M−1sec−1 that has been measured in a reaction volume of
1×10−15L converts to a stochastic rate constant of 1.66×10−9molecule−1sec−1 [90, 177].

2.4 Deterministic vs Stochastic tools: A gap that needs to
be bridged

The stochastic methods reviewed, although they are great computational tools, when
compared to the tools available in the deterministic framework, offer inadequate visualisation
and qualitative interpretation of the system’s behaviour through a systematic way without
explicit computation. Such techniques are numerous in the deterministic non-linear dynamics
literature and include bifurcations, phase portraits and ODE nullclines [157].
As Hiroaki Kitano mentioned in one of the most cited articles on Systems Biology [88], to
obtain a system-level understanding of a biological system one should be able to design based
on definite design principles instead of blind trial-and-error. Therefore, before analysing
complex potentially multistable systems (which we do in Chapters 6 and 7), we first need to
develop new methodological techniques to understand the underlying reasons of the discrep-
ancies observed between deterministic and stochastic analyses.
This thesis is primarily concerned with small sized systems, where the characterisation via
the Chemical Master Equation is the most appropriate [87]. For such systems, the literature
primarily focuses on two themes: the first is the computational: the ability to calculate the
solution of the Chemical Master Equation efficiently, either directly or by Monte Carlo meth-
ods (e.g. Gillespie Algorithm) [56]. In recent years there has been extensive progress in this
direction [123, 67, 159, 85]. The second theme is concerned with its biological implications:
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stochastic simulations are frequently employed either to explain experimental results that
are not predictable using classical deterministic methods or to illustrate the non-agreement
between deterministic solutions and exact stochastic simulations [136, 107, 64, 39, 100, 16].
In this context, we recognise the need to have new, easily computable as well as easily
interpretable methods that would be able to predict when discrepancies between deterministic
and stochastic analyses would occur, without the need to fully simulate or fully compute the
solution of the Chemical Master Equation.
In Chapter 3 we focus on the genetic toggle switch. We choose to start with this example, as
it is very well-studied example in the literature, where in the absence of cooperativity, the
system is predicted to have only one stable steady state [53], whereas experimental results
and exact stochastic simulations have shown that the system can exhibit bimodality instead
[39, 100, 16]. This is usually referred to as ‘noise-induced’ bimodality [39]. Understanding
this bimodality is hard, yet even harder is the prediction of when this would take place [16].
Ma et al [107], in their effort to explain their genetic toggle switch surprising experimental
results, developed a stochastic nullcline analogue. Their nullclines, however, were meant to
be explanatory and not predictive, requiring the stationary probability distribution to be firstly
calculated, either directly or via kinetic Monte Carlo. As what we really aim is a predictive
method, in Chapter 3, utilising the Markov chain tree theorem, we develop our own discrete
nullcline analogue. This can be used as a heuristic method to predict, for example, when the
stationary probability distribution will turn bimodal from monomodal, without the need to
directly calculate the stationary probability distribution a priori.
The results of Chapter 3 illustrated to us that to understand the stochastic phenomena, we also
need to have a method to understand the behaviour of a single microstate, especially when the
system under investigation is not a planar system. Despite the abundance of different compu-
tational methods of calculating the entire stationary probability distribution of the Chemical
Master Equation [67, 85], or of a general Continuous-time Markov chain [110, 156], we
noted the lack of focus on the stationary probability of a single microstate, as also noted
recently in the literature [21, 96, 95]. In Chapter 4 we extend existing computational methods
[85, 155], having the single microstate in mind, and by using results from the M-matrix
literature we find upper and lower bounds on the stationary probability of a single microstate
of the system. As our aim is to develop easily computable and easily interpretable methods,
our bounds explicitly separate the global from the local interactions of each microstate,
whereas we make sure that we present the bounds in such format that there are accurate
algorithms which do not depend on the condition number for any computation that needs to
be done on the matrices [3, 35].
Having expanded our intuition in how the stationary distribution of an ergodic continuous-



2.5 Conclusion 21

time Markov chain is formed, we also develop a new tool for constructing non-reversible
Markov chains in Chapter 5. Other than the need of having general methods that create
non-reversible Markov chains [160, 165, 171, 36, 126, 158] due to their better mixing or
asymptotic variance properties [17], we also noted that in Systems Biology there is also a
need to have a method to create Continuous-Time Markov Chains that respect both a partic-
ular topology and a particular stationary probability distribution which are not necessarily
reversible [131]. An illustrative example on how this can be done using our algorithm is also
shown in Chapter 5.
Having created this toolbox, together with the existing tools found in the literature for deter-
ministic models, we were now able to investigate the effect of having enzyme sequestration
by the substrate [112] on models of multisite protein phosphorylation [51, 163], without
restricting the analysis to be either only stochastic or only deterministic. Instead, we use the
work of the previous chapters to carry out our analysis both in the deterministic (i.e. in the
presence of large molecule numbers) as well as in the stochastic regimes (i.e. in the presence
of small molecule numbers), thus obtaining fuller insights in the abilities of such biological
mechanisms.

2.5 Conclusion

In this introductory chapter, we firstly show how biochemical networks are modelled
deterministically using ordinary differential equations, introducing important notions like
those of cooperativity and ultrasensitivity. Moreover, appreciating the finite discrete nature of
molecular species in cells, the need to also analyse these biochemical networks in a stochastic
framework is explained. The Chemical Master Equation is introduced, together with the
relevant stochastic tools deriving from it. We also recognised the need to have stochastic
tools that offer better visualisation and qualitative interpretation of the system’s behaviour
systematically without explicit accurate computation.





Chapter 3

Understanding the genetic toggle switch
phenomena - Development of a new
discrete ‘nullcline’ construct

This chapter has two aims: a) to introduce the discrepancies obtained between determin-
istic and stochastic analysis and b) to propose a new discrete ‘nullcline’ construct, used as a
graphical way of predicting the shape of the stationary probability distribution in different
parameter regimes without the need to perform steady state calculations. The system studied
is the genetic toggle switch, whose stochastic phenomena are mentioned several times in the
literature [107, 100, 16].

3.1 Introduction

3.1.1 The genetic toggle switch

Since its first appearance in 2000 [53], the synthetic genetic toggle switch has inspired a
lot of interest among both the biological as well as the engineering community, as it provides
a potential explanation of how decisions are made in biological processes. Its design includes
two competing proteins, X and Y , each repressing (inhibiting) the transcription of the other.
In Eq. 3.1.1 the standard symmetric birth and death reactions for the proteins (transcription
factors) X and Y are presented [107, 100, 130, 53], with the difference that their values are
normalised by their respective equilibrium values, x̄ and ȳ. The production of protein X is
negatively regulated by protein Y , through binding of m copies of Y to the promoter of X
(and vice versa). If m, the Hill coefficient, satisfies m > 1, then the transcription factors
are said to exhibit cooperative binding, or simply ’cooperativity’ [100, 15]. k is a constant,
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‘nullcline’ construct

associated with the inverse of the repression strength [107, 100, 16].
The traditional analysis using Ordinary Differential Equations [53] predicts two stable steady
states in the cooperative case (m > 1) and one stable steady state in the non-cooperative case
(m = 1). However, experimental results and exact stochastic simulations [107] have shown
that when the concentrations are small, then the system with cooperative binding can also
exhibit trimodality, something that is not predicted using the Chemical Langevin Equation
[57].
Furthermore, by the use of Langevin equations [16], direct use of the Chemical Master
Equations [100] or exact stochastic simulations [100] as well as experimentally [164], it
has been shown that the non-cooperative case can also exhibit bimodality in certain cases,
without this being predicted in the deterministic analysis.

x

kmx̄
km+( y

ȳ)
m

−−−−−→ x+1,x
βx−→ x−1

y
kmȳ

km+( x
x̄ )

m

−−−−−→ y+1,y
βy−→ y−1

(3.1.1)

3.1.2 Stochastic nullclines in the literature and our approach

A convenient way of characterising and understanding the behaviour of planar nonlinear
deterministic systems is the use of nullclines, as they provide an easy way of identifying the
equilibrium points of a system [157]. For example, in the following system,

dx
dt

= f (x,y)

dy
dt

= g(x,y)

the x-nullcline is the set of points where f (x,y) = 0 and y-nullcline is the set of points where
g(x,y) = 0. The points of intersection between x-nullcline and y-nullcline are the equilibrium
points. Note that along the x-nullcline the velocity vectors are vertical while along the
y-nullcline the velocity vectors are horizontal. As long as we are traveling along a nullcline
without crossing an equilibrium point, then the direction of the velocity vector must be the
same [157].
Noting the practicality of nullclines, Ma et al tried to identify the experimentally found
equilibria of the genetic toggle switch problem in the small numbers regime by developing a
stochastic ‘nullclines’ analogue [107]. However, the stochastic ‘nullclines’ presented by Ma
et al [107] were generated by a series of mean values from stationary conditional distributions,
which meant that the stationary distribution needed to be firstly calculated (e.g. by a kinetic
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Monte Carlo algorithm). As the stationary probability distribution of the system needed
prior computation, that ‘nullclines’ method lacked a very important feature of deterministic
‘nullclines’: the ability to predict the behaviour of the system without simulating it.
In this chapter, we propose a new ‘nullclines’ method, based simply on the transition rates
(propensities) of the system. As this method is based just on the transition rates already found
in the description of the problem, the calculations required are minimal. Most importantly,
though, these discrete ‘nullclines’ can provide an efficient graphical way of predicting the
shape of the stationary probability distribution in different parameter regimes without the
need to calculate or simulate the steady state distribution.
Our approach is based on the graphical representation of the Chemical Master Equation
and the well-known Markov chain tree theorem and its graph theoretic representation. The
Markov chain tree theorem relates the stationary probability of a node in a strongly-connected
graph with the sum of the weights of the directed spanning trees that are sinked (rooted) to
that node [6]. Looking at the problem directly, however, is combinatorially very challenging.
Therefore, our approach is to try to extract as much information as we can from the require-
ments that must be satisfied for a subgraph to be a directed spanning tree.
The requirements that a subgraph is a rooted directed spanning tree are that it is acyclic, the
outdegree of the rooted vertex is equal to zero and the outdegree of each other vertex is equal
to one [63].
Selecting a particular directed edge when forming the rooted directed spanning tree (arbores-
cence) places a constraint on the rest of the directed edges that can be selected in order to
satisfy the requirements that the directed subgraph created is a rooted directed spanning tree.
In fact, it is this constraint that makes the related directed spanning tree problems much
more combinatorially difficult than the corresponding undirected spanning tree problems,
as for example is the classical problem of finding the spanning tree of minimum weight
[52, 62, 83].
Heuristically, for consistently forming large weight arborescences, the location of the root
would be expected to allow the consistent selection of the most beneficial (i.e. the largest
of the two) direction for each edge. Based on this argument, we suggest that knowing the
preferential transition direction of each edge can be a useful tool that could enable inference
of the final form of the stationary probability distribution.
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3.2 The deterministic analysis provides an invariant to the
equilibrium size Jacobian

In this section, we illustrate that the usual deterministic analysis, transforming the dis-
crete problem firstly into a continuous time stochastic differential equation, can provide an
invariant Jacobian [157] at equilibrium for our choice of normalised reaction rates. This
allows us to discriminate the stochastic effects resulting from the change of equilibrium
number from any deterministic phenomena.

It is standard to approximate Eq. 3.1.1 as a pair of coupled Stochastic Differential
Equations (SDEs):

dx =

 kmx̄

km +
(

y
ȳ

)m −βx

dt +

√√√√ kmx̄

km +
(

y
ȳ

)m +βx dW1

dy =

(
kmȳ

km +
(x

x̄

)m −βy

)
dt +

√
kmȳ

km +
(x

x̄

)m +βy dW2

(3.2.1)

From Eq. 3.2.1, deterministic ODEs can be obtained by setting the noise terms to zero
(taking the large numbers limit) [169]. This results in

ẋ =
kmx̄

km +
(

y
ȳ

)m −βx

ẏ =
kmȳ

km +
(x

x̄

)m −βy

(3.2.2)

An equilibrium solution of the ODEs of Eq. 6.2.4, when km

km+1 = β , is (x,y) = (x̄, ȳ).
Linearising and then normalising about this point, letting δx = x− x̄ and δy = y− ȳ [157],

δ̇x
x̄

δ̇y
ȳ

=

(
−β − βm

km+1
− βm

km+1 −β

)
δx
x̄

δy
ȳ

 (3.2.3)

Thus the equilibrium Jacobian when there is no cooperativity (m = 1) is invariant and given
by

J =

(
−β − β

k+1
− β

k+1 −β

)
(3.2.4)
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3.3 Revisiting the Chemical Master Equation and its graph
theoretic interpretation

3.3.1 Chemical Master Equation

To investigate the stochastic effects due to the change of equilibrium size (e.g. small
number effects), it is possible to directly approximate the steady state of the Chemical Master
Equation (CME) by truncating the infinite grid into a finite one [149, 123, 159], as it was also
mentioned in Chapter 2. The microstate of the system involving, in this case, two species, x
and y, is defined as x(t) = {x(t),y(t))} ∈ N2. The general discrete Chemical Master Equation
(Eq. 2.3.1) can be represented explicitly for this system, where we represent the microstate
probability at time t, P(x, t), using its x and y components, as Px,y :

dPx,y
dt = kmx̄

km+
(

y
ȳ

)m Px−1,y +β (x+1)Px+1,y

+ kmȳ
km+( x

x̄)
m Px,y−1 +β (y+1)Px,y+1−(

kmx̄
km+

(
y
ȳ

)m +βx+ kmȳ
km+( x

x̄)
m +βy

)
Px,y,

β = km

1+km

(3.3.1)

The equation can also be written in matrix vector form, as in Eq. 2.3.2

dP(t)
dt

= AP(t) (3.3.2)

Thus, in order to approximate the stationary probability distribution across all microstates,
Ps, one can just solve Eq. 3.3.2 at equilibrium by finding the null space of A, which is unique
as this process is irreducible (since the associated graph is strongly connected [149]) and
then normalising so that the sum of probabilities of the states adds up to one. We perform
this calculation for comparison purposes, but our aim is to infer features of the stationary
distribution directly from the propensities.

3.3.2 Directed spanning trees, the Markov chain tree theorem and its
consequences

Before presenting the discrete nullcline construct, we first recall the notion of rooted
directed spanning trees (also described as arborescences in the literature).
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Fig. 3.3.1 Illustration of directed spanning tree formation [121]. Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Springer, Bulletin of Mathematical
Biology, Laplacian dynamics on general graphs, Mirzaev, I. and Gunawardena J. ©2013.

Let G = (V,E,w) be a weighted strongly connected directed graph, where w : E → R

is a weight function defined on its edges. A directed spanning tree rooted at r ∈ V with
orientation from the leaves to the root (i.e. the root vertex is in fact a sink) is a subgraph Q
of G such that the undirected version of Q is a tree, while there is a directed path from all
vertices in V to the root r [183]. This means that the outdegree (the number of edges directed
away from a vertex) of all vertices in Q is equal to 1, whereas the outdegree of r is equal
to 0 [63]. In Fig. 3.3.1, we present the directed spanning trees that can be formed from an
example graph, by using each of the four vertices of the graph in turn as the possible root.

From Eq. 3.3.3, one can see that the null space of A can be calculated by taking any one
column of the adjoint matrix, as it is known that if A is a zero column sum (ZCS) matrix,
then adj(A) has identical columns [44].

(ad j(A))A = A(ad j(A)) = (detA)I = 0 (3.3.3)

From here, moving to the well-known Markov Chain Tree Theorem for A (an n × n
matrix), presented in Theorem 3.3.1, is natural. We can observe that the elements a j,i of A
correspond to the elements wi, j of a strongly connected directed graph, where wi, j represents
the weight of the edge directed from vertex i to vertex j. The weight W (T ) of a directed
spanning tree T is given by W (T ) = ∏

edge i→ j in T
wi, j = ∏

edge i→ j in T
a j,i.

Theorem 3.3.1. [44, 6] The ith diagonal of ad j(A) is (−1)n−1 times the sum of the weights
over all directed spanning trees (arborescences) with sink i.

https://link.springer.com/journal/11538
https://link.springer.com/journal/11538
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The first consequence of this theorem is that the stationary probability of every microstate
is proportional to the sum of all the directed spanning trees rooted (sinked) on the microstate,
as mentioned several times in literature dealing with non-equilibrium dynamics [2, 54]. The
second consequence comes from the way the directed spanning trees are formed. As the
outdegree of all vertices but the root needs to be equal to one, there can be no directed
spanning tree which includes both directions of the same edge (i.e. if the edge i → j belongs
to the directed spanning tree, then the edge j → i does not).

The third consequence is indirect, yet is critical for constructing a graphical heuristic tool
to infer the formation of the stationary probability distribution. For graphs that are balanced
(as per Tutte [166] page 39, we define a balanced graph as one where for each vertex the
number of inward edges equals the number of outward edges), such as the one obtained in
this genetic toggle switch example, the number of directed spanning trees that can be formed
given a particular vertex as the root is constant [166]. Therefore the stationary probability
of each microstate is also proportional to the mean weight of the rooted directed spanning
trees. This is particularly important, as now we can consider the expected weight of a random
directed spanning tree T that can be formed given a distinguished vertex r = j .

Ps( j) ∝ E(W (T )|root = j) (3.3.4)

Therefore, if the aim is to infer which roots will have large stationary probabilities,
heuristically we need to search for the possible roots that are located in such positions in
the graph that would allow the most beneficial directions for each edge to be consistently
preferred in their corresponding random directed spanning tree.

3.3.3 Discrete ‘nullcline’ construct proposed

3.3.3.1 New type of edge-based discretisation

It is evident that in the discrete Markov process setting, the classical notion of nullclines
is not applicable, as the ODEs do not capture any effects coming from the ‘discreteness’ of
the system. In the graph formulation, traditional nullclines calculate the difference between
the ‘birth’ and ‘death’ jump given a particular node, i.e. fd = wi,i+1 −wi,i−1 [149] when the
birth and death jumps considered occur from node i to nodes i+1 and i−1 respectively. This
node-based method, however, does not generalise well with the graph representation coming
from the Markov Chain Tree Theorem, especially at the grid boundaries. One can clearly
see that at the grid boundaries, fd in the direction orthogonal to the boundary will always be
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positive, suggesting that a ‘birth’ jump is the most probable operation to take place, no matter
how strong the propensity of the ‘death’ jump towards the grid boundary is. The reason for
this problem is that the calculation in discrete space depends on two edges, therefore the
calculation is not well-defined at the boundaries, as there is no second edge to perform the
calculation.

A more appropriate calculation, given the fact that a directed spanning tree cannot include
both directions of the same edge, would be fs = log

(
wi,i+1
wi+1,i

)
, taking into consideration the

birth jump from node i to node i+1 and the death jump from node i+1 to node i instead.
That is the sign of fs provides information about the preferential (largest) transition direction
for each edge.

It is important, however, to also note that fs does not just provide a preferential direction,
but it is in itself a quantitative measure of the strength of preference of a particular direction.
This is particularly important in asymmetric examples, as we will see later.

Furthermore, note that in the 1-D case as well as in higher dimensional cases where
detailed balance is satisfied, knowing the fs value for each edge is sufficient to calculate
accurately the entire stationary probability distribution. This is a direct consequence of the
definition of detailed balance, which means that for all nodes (vertices) i, j [54],

wi, j

w j,i
=

Ps( j)
Ps(i)

(3.3.5)

It is not a coincidence that in thermodynamics literature, where detailed balance is usually
assumed, fs is used to calculate the local energy difference [139].

Furthermore, this calculation now involves only one edge every time, thus it is well-
defined near the grid boundaries as well.
From now on, fs is to be called the ‘net propensity’ of each edge. This will be calculated by
moving either across the x-axis (horizontal net propensity) or across the y-axis (vertical net
propensity).

3.3.3.2 Comparison of discretisation procedures on a given example

Fig. 3.3.2 compares the results obtained using the two discretisation methods for an
example 3× 3 graph where the magnitude of the dominant edges is equal to 2 and the
magnitude of the non-dominant edge is equal to 1. The standard node-based method
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( fd = wi,i+1 −wi,i−1 [149]) suggests that node 5 is the steady state of the system, as fd = 0
for both the vertical and horizontal directions. This is, however, inconsistent with the ac-
tual stationary probability distribution of the system, where Ps = [0.0455,0.0909,0.1818,
0.0909,0.1818,0.0909,0.1818,0.0909,0.0455]. This means that the standard node-based
approach does not correctly capture the fact that nodes 3 and 7 are also modes of the system.

Our proposed edge-based method, on the other hand, is better suited in providing quick
insights regarding the formation of directed spanning trees given a particular node as a sink.
This is because it retains the information about which direction is dominant for each edge
pair. This is very helpful, allowing us, for example, to see that no directed spanning tree
sinked at node 5 can be formed by 8 dominant edges. This is because in a directed spanning
tree all nodes must always contribute one outward edge. As such, nodes 3 and 7 can only
contribute non-dominant edges. Similarly, we see that this also applies to nodes 3 and 7, yet
this time the constraining nodes are the nodes 5 and 7 and the nodes 3 and 5 respectively.
Furthermore, we can also deduce that if we take any random directed spanning tree sinked at
nodes 3, 5 or 7, the worst case scenario is that only 4 dominant edges are selected, which is
better than the worst case scenario for the other nodes of the graph. Moreover, if we start
creating random directed spanning trees sinked at the aforementioned three nodes, the most
likely result would be a spanning tree with 5 dominant edges. This is also better than the
random directed spanning trees sinked at the other nodes. Unlike the standard node-based
discretisation method, our proposed edge-based method allows us to infer that nodes 3, 5 or
7 are the most likely modes of the system.

For comparison, in Fig. 3.3.3 we enumerate all 192 directed spanning trees that can be
formed according to their sink (root) node grouping them by the number of dominant edges
selected for each. This confirms that the directed spanning trees sinked at nodes 3, 5 and
7 consistently select the dominant edges of the graph, in turn making them the dominant
modes of the system.

3.3.3.3 ‘Nullcine’ construction

The question now is how we can compactly capture the information that some regions
primarily contribute dominant or non-dominant edges to the directed spanning trees sinked
at other regions of the graph. This is especially important for much larger than 3×3 systems.
We note, here, that in the deterministic regime, this is indeed the role of nullclines (with
respect to velocity vectors towards or away of the equilbria), yet as expected, standard
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Fig. 3.3.2 Comparison between the standard node-based and the proposed edge-based dis-
cretisation methods for creating discrete nullclines. It is seen that in the standard node-based
method of calculating the difference between the ‘birth’ and ‘death’ jump fd =wi,i+1−wi,i−1,
the direction orthogonal to the boundary is always positive, suggesting that a ‘birth’ jump
is the most probable operation to take place. Also note that fd is zero in both vertical and
horizontal directions for node 5, thus suggesting that node 5 is the steady state of the system.
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Fig. 3.3.3 Inferring the nodes with largest stationary probabilities (3,5,7) can be done by
finding the sinks whose directed spanning trees are consistently formed by the dominant
edges of the graph.
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nullclines with standard node-based discretisation are not appropriate. From Fig. 3.3.2, we
can see that the problem of node-based discretisation is that it falsely gives the perception
that there is a horizontal nullcline passing between nodes 7 and 8 as well as between nodes 2
and 3. It also gives the perception that there is a vertical nullcline passing between nodes 4
and 7 and nodes 3 and 6.

or

etc

Fig. 3.3.4 Illustration of discrete ‘nullcline’ visualisation procedure, as that is defined in p.35.
Here we present a representative sample of the cases where the conditions will be satisfied.
The direction of the arrows represent the direction of the net propensity

(
fs = log

(
wi,i+1
wi+1,i

))
.

The green squares illustrate the net horizontal propensity-reversal nodes, blue squares the net
vertical propensity-reversal nodes and yellow squares both net vertical and net horizontal
propensity-reversal nodes. Net propensity-reversals take place when the sign of the net
propensity changes (i.e.from positive to zero or negative, zero to positive or negative and
negative to zero or positive)

Therefore, a new discrete ‘nullcline’ analogue based on our proposed edge-based dis-
cretisation method needs to also allow for the non-existence of ‘nucllines’ when there is
no reversion in the direction of the dominant edges. As we are also going to see later in
the genetic toggle switch example, the knowledge of the non-existence of such ‘nullclines’
could itself be used to identify when modes are expected to be formed on the boundaries in a
similar manner to modes 3 and 7 of Fig.3.3.2.
To construct these ‘nullclines’, we find when the direction of either the net horizontal or the
net vertical propensity reverses (i.e. their sign changes from positive to zero or negative, zero
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to positive or negative and negative to zero or positive).
The procedure of creating visualised ‘nullclines’ can be done as follows:

• Let α ((p,q) ,(r,s)) ,p,q,r,s ∈ N0 represent the propensity from state (p,q) to state (r,s)
i.e. dPr,s

dt = α ((p,q) ,(r,s))Ppq + . . .

• If x > 0 and
sign

(
log α((x−1,y),(x,y))

α((x,y),(x−1,y))

)
̸= sign

(
log α((x,y),(x+1,y))

α((x+1,y),(x,y))

)
then there is a horizontal net propensity reversal. For visualisation purposes, the square
associated with state (x,y) is coloured green.

• If y > 0 and
sign

(
log α((x,y−1),(x,y))

α((x,y),(x,y−1))

)
̸= sign

(
log α((x,y),(x,y+1))

α((x,y+1),(x,y))

)
then there is a vertical net propensity reversal. For visualisation purposes, the square
associated with state (x,y) is coloured blue.

• If both conditions are satisfied then there is both a horizontal and a vertical net
propensity reversal. For visualisation purposes, the square associated with state (x,y)
is coloured yellow.

Summarising, net horizontal propensity-reversal nodes are colored green, blue squares
illustrate net vertical propensity-reversal nodes and yellow squares represent both net vertical
and net horizontal propensity-reversal. Note that it is not possible for a square at the vertical
boundary (x = 0) to be colored green (or yellow therefore). Similarly it is not possible for a
square at the horizontal boundary (y = 0) to be colored blue (or yellow). This visualisation
procedure is illustrated in Fig. 3.3.4.

As already mentioned, this ‘nullcline-like’ construct should not be confused with explana-
tory stochastic ‘nullclines’ explanations utilising already calculated stationary probability
distributions either directly or by Monte Carlo simulations, as in [107], as the construct
presented here just utilises the transition rates (propensities) coming directly from the defini-
tion of the system. There is no requirement to calculate the steady state solution first. This
graphical ‘nullcline-like’ construction is aimed to allow a very quick, without calculations,
inference of the stationary probability distribution as well as provide an insight for the
appearance of unexpected probability modes in the stationary probability distribution.
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Fig. 3.3.5 The stationary probability distributions (top) with the corresponding discrete
‘nullclines’ (bottom) in the case of cooperative binding (m=2, k=0.8). By decreasing x̄ = ȳ
(20 to 15 to 3), the normalised by the equilibrium fixed point (1,1) varies from being the
least dominant mode in the stationary probability distribution to a mode of almost equal
probability with the initial two dominant modes. Note that there is no boundary ‘nullcline’
gap formation (like the ones dotted in red) in the first two cases (x̄ = ȳ = 20 and x̄ = ȳ = 15),
and that the initial two dominant modes are not found exactly on the boundaries of the grid
in contrast with the results in Fig. 3.3.6. The stationary probability distribution when the
equilibrium size is small (and discretisation is coarse) (right) can be used to explain the
trimodality observed experimentally in [107].

3.3.4 Applying the discrete nullclines to the genetic toggle switch exam-
ple

As shown in Fig. 3.3.5, decreasing the equilibrium size x̄ = ȳ, the normalised by the
equilibrium fixed point (1,1) varies from being the least dominant mode in the stationary
probability distribution to a mode of almost equal probability with the initial two dominant
modes, while other modes are appearing as well. The stationary probability distribution of
the coarser discretised system (right) can also be used to explain trimodality as an effect of
small numbers as this is experimentally observed in [107].

The discretisation observed, inversely proportional to the equilibrium size, has an im-
mediate effect on the discrete ‘nullcline’ structure of the system, as illustrated in Fig. 3.3.5
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Fig. 3.3.6 m=2, k=0.4, x̄ = ȳ = 8. The net horizontal and net vertical propensity-reversal
nodes form a ‘nullcline’ gap on each boundary which is dotted in red, where the orthogonal
to the boundary net propensities are pointing towards the boundary.

(bottom). Firstly note that the discrete ‘nullclines’ when the equilibrium size is large (thus
the discretisation is very fine) resemble the deterministic nullclines obtained using Ordinary
Differential Equations [53]. Secondly and most importantly, note that the first two discrete
‘nullclines’ of Fig. 3.3.5 are different to the third discrete ‘nullclines’ diagram as well as to
the ‘nullclines’ of Fig. 3.3.6. In the latter two cases we observe a boundary ‘nullcline’ gap
formation, dotted in the figures in red. For the horizontal boundary, for instance, a ‘nullcline’
gap is formed when the first net horizontal propensity reversal node at the horizontal boundary
(coloured green) is to the right of all net vertical propensity reversal nodes (coloured blue or
yellow). The exact definition is provided below.
Let the x− and y−coordinates of each net horizontal propensity reversal node i be (hi

x,h
i
y)

and belong to set H. Let the x− and y−coordinates of each net vertical propensity reversal
node j be (v j

x,v
j
y) and belong to set V . Let the largest x-coordinate component found in the

elements of set V be vmax
x and the largest y-coordinate component found in the elements of set

H be hmax
y . Let hmin

x,0 be the minimum x-coordinate component of the elements (hi
x,0) of set

H and vmin
0,y be the minimum y-coordinate component of the elements (0,vy) of set V . Then,

Definition 3.3.2. A horizontal boundary ‘nullcline’ gap is defined to be formed when hmin
x,0 >

vmax
x . If that is true, then the size of the gap is equal to hmin

x,0 − vmax
x . Similarly, a vertical

boundary ‘nullcline’ gap is defined to be formed when vmin
0,y > hmax

y . If that is true, then the
size of the gap is equal to vmin

0,y −hmax
y .
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Fig. 3.3.7 The stationary distributions (top) with the corresponding discrete ‘nullclines’
(bottom) for the non-cooperative binding case (m=1). By decreasing x̄ = ȳ, the normalised by
the equilbrium fixed point (1,1) (which is always coloured yellow as it is both a net vertical
and a net horizontal propensity-reversal node) varies from being the dominant mode in the
stationary probability distribution to the least dominant mode, while two dominant modes
appear on the boundaries. At the same time boundary ‘nullcline’ gaps are formed (dotted in
red) in both the horizontal and the vertical boundaries.

This essentially means that the preferential direction of the orthogonal to the boundary
edge is towards the boundary (i.e. towards zero), whereas the preferential direction of the
parallel to the boundary edge is towards further growth. This can be interpreted by saying
that it is preferential for one species to completely vanish, while it is preferential for the other
species to continue growing.

Fig. 3.3.6 greatly resembles the examples in literature where the genetic toggle switch
with no cooperative binding exhibits bimodality [100].

For that reason, the same analysis was performed for the genetic toggle switch with no
cooperative binding (m=1), the results of which are shown in Fig.3.3.7. When discretisation
is very fine (left), the discrete ‘nullclines’ resemble what we get with deterministic nullclines,
accompanied with monomodality in the stationary distribution. Yet, as the equilibrium size
becomes smaller and therefore the discretisation becomes coarser, the discrete ‘nullclines’
reveal the gap on the grid boundaries as that observed in Fig. 3.3.6, explaining the movement
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from monomodality to an intermediate multimodality and finally to essentially bimodality
with the two modes always found on the boundaries, as in Fig. 3.3.6.
These results show that the discrete ‘nullclines’ proposed can capture the effects of the
changes in both the equilibrium size and k, associated with the inverse of the repression
strength, and provide the insight that the mechanism providing bimodality in the non-
cooperative binding case can, in certain cases, be the same mechanism providing bimodality
in the cooperative binding case (e.g. as in Fig. 3.3.6).

3.4 The comparison with Numerical Methods illustrates
that the heuristic method can provide upper-bound es-
timates

The discrete ‘nullclines’ constructed can provide a good starting point for inference of
potential stochastic effects, prior to any calculations. In this section we aim to compare
the value of k, associated with the inverse of the repression strength, obtained through
the heuristic nullcline procedure with the minimum numerically-found value of k, which
guarantees that the corresponding to the equilibrium point, (x̄, x̄), x̄= ȳ, node in the associated
graph is the global mode.

Proposition 3.4.1 provides the necessary and sufficient condition relating the equilibrium
size x̄(= ȳ) and the parameter associated with the inverse of the repression strength, k, for
the discrete ‘nullcline’ boundary gap to be formed.

Proposition 3.4.1. Consider the symmetric genetic toggle switch system presented in Eq. 3.1.1
with β = km

km+1 , x̄ = ȳ ≥ 1 and k > 0. Horizontal and vertical boundary ‘nullcline’ gaps are
formed, as defined in Definition 3.3.2, if and only if ⌈km+1

km x̄−1⌉> ⌊ m
√
(km +1) x̄m+1 − kmx̄m⌋

Proof. At point (0,0) the net vertical and the net horizontal propensities are both equal
to fs = log

(
x̄(km+1)

km

)
. For x̄ ≥ 1 and k > 0, fs > 0. Looking at the horizontal boundary,

the horizontal net propensity is given by fsH = log
(

x̄(km+1)
(x+1)km

)
, whereas the vertical net

propensity is given by fsV = log
(

ȳ(km+1)
km+( x

x̄)
m

)
. It is easily seen that as we increase x both

terms will monotonically decrease and ultimately become negative. For a fixed x, x0, the
vertical net propensities as y is increased are also monotonically decreasing as can be seen:

f y
sV = log

(
ȳ(km+1)

(y+1)(km+( x0
x̄ )

m
)

)
. Therefore we only need to find the points where the change

of sign occurs at the boundary. Balancing the horizontal propensities of the edge on the right
of (xH ,0) for x̄ = ȳ,
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Fig. 3.4.1 In the regime of small numbers and non-cooperativity (m = 1), we compare, for
different equilibrium solutions, the numerically-found minimum k for (x̄, x̄), x̄ = ȳ, to be
the global mode (i.e. the node with unique maximum stationary probability) against the
sufficient (k < 1/x̄) condition obtained for the formation of boundary ‘nullcline’ gaps.
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km

km +1
xH +1

x̄
= 1 ⇒ xH =

km +1
km x̄−1

Balancing the vertical propensities of the edge on the top of (xV ,0),

km

km +1
1
x̄
=

km

km +
(xV

x̄

)m

⇒ xV = m
√
(km +1) x̄m+1 − kmx̄m

Thus

⌈xH⌉> ⌊xV ⌋ ⇔
⌈

km +1
km x̄−1

⌉
>

⌊
m
√
(km +1) x̄m+1 − kmx̄m

⌋
Since hmin

x,0 = ⌈xH⌉ and vmax
x = ⌊xV ⌋, it follows that there exists a horizontal boundary ‘null-

cline’ gap (see Definition 3.3.2) under the same condition. The same calculation applies to
the vertical boundary due to the symmetry of the problem.

A sufficient condition for boundary ‘nullcline’ gap formations is the one presented in
Proposition 3.4.1, yet without taking the floor and ceiling operations into account. For
non-cooperative binding (m = 1), x̄ = ȳ ≥ 1, and k > 0, this sufficient condition simply
becomes k < 1/x̄ ≤ 1.
Figure 3.4.1 illustrates that, in the regime of small numbers, the sufficient value of k for
boundary ‘nullcline’ gap formations, is an upper-bound estimate of the numerically-found
minimum k for the equilibrium point (x̄, ȳ), x̄ = ȳ, to be the global mode when m = 1. The
reason the latter is calculated for integers only, is that an integer is required for the equilib-
rium point in the deterministic domain to coincide exactly with a vertex (microstate) in the
corresponding graph depicting the Markov process.

Although k in Fig. 3.4.1 can be found numerically directly by calculating the null space
of matrix A for each k, we use a formulation of ours proved in Chapter 4, extending a result
by Karim et al [85]. In our formulation A′q = b, where A′ is the principal submatrix of A
after the removal of the column corresponding to the equilibrium microstate j and any row i.
b is the jth column of A with element i deleted. q =

[
q1,q2,q3, ...,q j−1,q j+1,q j+2, ...,qn

]T
,

qk =
[

Ps(k)
Ps( j)

]
, represents the vector of ratios of stationary probabilities of all the nodes com-

pared to the stationary probability of the microstate j. Then the microstate j is the unique
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Fig. 3.5.1 The discrete ‘nullclines’ can be used to provide predictions for the stationary
probability distributions in the asymmetric genetic toggle switch example as well. For the
asymmetric case presented in Eq. 3.5.1 with m = 1, k = 0.1, x̄ = ȳ = 4, we also need to make
a further prediction regarding which of the two boundary ‘nullcline’ gaps will produce the
largest mode. To do so, we can use the value of the net propensities of the edges orthogonal to
the boundary gaps. It is observed that in the horizontal boundary, the vertical net propensity
is less negative than the horizontal net propensity at the vertical boundary. Therefore, we
expect to have the largest mode on the vertical boundary, which is exactly what we observe.

global mode if and only if ∥ q ∥∞< 1. Therefore another way to investigate this problem
numerically is by investigating ∥ q ∥∞ in the parameter space of x̄ and k.

3.5 The discrete ‘nullcline’ construct can also be used in
the asymmetric case

Even though up to now we only considered the symmetric case of the toggle switch,
as this is the one most commonly investigated in literature [108, 100], we would like to
emphasize that the discrete ‘nullclines’ we propose can be used effectively in asymmetric
cases as well. For example, Eq. 3.5.1 increases both the ‘birth’ as well as the ‘death’ rates
associated to species x, while leaving the corresponding rates for y equal to the ones shown
in Eq. 3.1.1.

x

(1.2k)mx̄

(1.2k)m+( y
ȳ)

m

−−−−−−−→ x+1,x
1.3βx−−−→ x−1

y
kmȳ

km+( x
x̄ )

m

−−−−−→ y+1,y
βy−→ y−1

(3.5.1)
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In Fig. 3.5.1 we can see that the boundary modes in the stationary probability distribution
can be predicted from the boundary gaps of the corresponding discrete ’nullclines’. As this
case is asymmetric however, we need to make a further prediction regarding which of the
two boundary gaps will produce the largest mode. To do so, we can use the value of the net
propensities (i.e. the logarithm of the ratio of the weights of the two directions of each edge)
of the edges orthogonal to the boundary gaps. It is observed that in the horizontal boundary,
the vertical net propensity is less negative than the horizontal net propensity at the vertical
boundary, while the size of the ‘nullcline’ boundary gap is also smaller. Therefore, we expect
to have the largest mode on the vertical boundary, which is exactly what we observe.

3.6 Conclusion

We have proposed a new discrete ‘nullcline’ construct, inspired by the Markov chain
tree theorem, to be used as a heuristic graphical tool for investigating stochastic phenomena,
requiring minimum calcluations. Its effectiveness was investigated through the genetic toggle
switch example, where it was illustrated that it is effective in finding parameter regimes where
different stochastic phenomena are to be expected as well as providing good inference of
the stationary probability distributions to be expected both in the symmetric and asymmetric
cases. Unlike other constructs [107], its aim is not to be explanatory but predictive, thus
requiring no previous calculation of the steady-state distribution either through direct means
[123, 149] or through Monte Carlo Simulations [107].





Chapter 4

A WCDD M-matrix reformulation of the
Chemical Master Equation and an
associated stochastic tool

In this chapter we develop another tool to be used in stochastic analysis, applicable to
larger, non-planar systems, involving more than two chemical species. To do this, we use
a Weakly Chained Diagonally Dominant M-matrix formulation of the Chemical Master
Equation. The aim of this chapter is introduce mathematical notions like that of Weakly
Chained Diagonally Dominant M-matrices as well as lay the mathematical foundation of
some of the mathematical results utilised in the following chapters.

4.1 Introduction

The previous chapter focused on the use of the Markov Chain Tree Theorem to develop
a discrete ‘nullcline’ analogue of the standard ODE nullclines starting from the Chemical
Master Equation. That tool was useful in providing an insight in the way stochastic phe-
nomena can occur in the well-studied problem of the genetic toggle switch. Nullclines,
however, are primarily a useful tool for analysing smaller planar systems, where there are
only two independent variables [76]. Therefore for larger, non-planar systems, as the ones
later considered in Chapter 6, a different approach is required.
Furthermore, as the graph obtained in the genetic toggle switch example was ‘balanced’ (as
per Tutte [166] p.39 i.e. the number of edges to and from every vertex are equal), the discrete
‘nullclines’ used the information that could be obtained by considering the local interactions
between each microstate and its neighbouring microstates. Now, instead of looking at every
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microstate as a local interacting agent, we could think of a microstate as being simultaneously
both a sink and a source of probability for the rest of the network. The stationary probability
of that microstate is consequently the global result of those interactions.
Based on that intuition, we start again from the accurate stochastic framework provided
by the Chemical Master Equation, aiming to reformulate it in such a way to separate the
‘network’ input from the ‘local’ output effects.

4.2 Development of stochastic tool

4.2.1 Reformulating the equation for finding the stationary distribu-
tion of the Chemical Master Equation

In the previous chapter we saw that the stationary probability distribution Ps of a finite
state Chemical Master Equation can be calculated by solving the following equation

APs = 0 (4.2.1)

Matrix A (an n×n matrix) contains all the information required to create the discrete
state continuous time Markov process governing the system. As we assume that the Markov
chain is irreducible (therefore its associated graph is strongly connected), instead of finding
the stationary probability distribution by computing the null space of A, this can be found by
solving a linear system of equations.
Karim et al. [85] suggested the formulation shown in Proposition 4.2.1, which is applicable
when the rank of A is equal to (n−1), as a way to translate Eq. 4.2.1 from an ill-conditioned
problem into a well-conditioned system of linear equations. The stationary probability of
microstate j, Ps( j), is here denoted as P j

s for compactness.

Proposition 4.2.1. [85] Equation Eq. 4.2.1 can be formulated into a well-conditioned system
of linear equations in the following way:
A′q =−A j where A′is the matrix A with column j removed, A j is the jth column of matrix
A and q is a column vector of size (n−1), q =

[
q1,q2,q3, ...,q j−1,q j+1,q j+2, ...,qn

]T , qk =[
Pk

s

P j
s

]
.

Although this formulation makes the system well-conditioned, the fact that the new A′

matrix is rectangular, means that the available mathematical tools for analysis are limited,
as the rectangular representation lacks the mathematical framework that is, for example,
available for square matrix representations. For example one cannot compute an inverse or
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find eigenvalues for a non-square matrix.
Extending that, we prove that given any i ∈ {1,2, ...,n}, Eq. 4.2.1 representing an irreducible
Markov process with positive transition rates between distinct states can be further formulated
into a solvable format in the following way:
AD

i, jq = −Ai
j where AD

i, j is the sub-matrix formed after deleting the ith row and jthcolumn
from matrix A and Ai

j is the the jth column of matrix A j as defined in the above proposition
of Karim et al [85] with element i deleted. Note that in this operation any row can be deleted,
due to the fact that all the simultaneous equations represented by the system are independent
due to the irreducibility condition placed on the Markov process. q represents the same
column vector as in the aforementioned proposition.

This means that now the AD
i, j matrix is square. Moreover, the matrix is invertible. A

direct corollary is that microstate j is the unique global mode (microstate with maximum
stationary probability) of the system represented by Equation 4.2.1 (representing an irre-
ducible Markov process with positive transition rates between distinct states) if and only if
∥ (AD

i, j)
−1Ai

j ∥∞< 1, for any i ∈ {1,2, ...,n}.

4.2.1.1 Subsection’s proofs

Fact 4.2.2. Matrix A′ of Proposition 4.2.1 is a rectangular n× (n− 1) matrix with rank
equal to n−1.

Lemma 4.2.3. [44] If X is a zero row sum (ZRS) matrix, then adj(X) has identical rows.

Corollary 4.2.4. If X is a zero column sum (ZCS) matrix, then adj(X) has identical columns.

Theorem 4.2.5. Given any i∈{1,2, ...,n}, Equation 4.2.1 and Proposition 4.2.1 representing
an irreducible Markov process with positive transition rates between distinct states can be
further formulated into a solvable format in the following way:
AD

i, jq = −Ai
j where AD

i, j is the sub-matrix formed after deleting the ith row and jthcolumn
from matrix A and Ai

j is the the jth column of matrix A j as defined in Proposition 4.2.1 with
element i deleted. q represents the same column vector as in Proposition 4.2.1.

Proof. From Fact 4.2.2, Theorem 4.2.5 follows if det(AD
i, j) ̸= 0 and Ai

j is not an empty
column vector. A j must have at least two non-zero elements since by definition A(x,x) =
− ∑

x′ ̸=x
A(x′,x) and the process is irreducible, thus strongly connected. Therefore Ai

j has at

least one non-zero element. A is a zero column sum (ZCS) matrix, therefore from Corollary
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4.2.4, for a given j, |det(AD
i, j)|= constant, i ∈ {1,2, ...,n}. It is also known that a column of

the adjugate matrix adj(A) is proportional to Ps [11] (from Aad j(A) = det(A) = 0 [138]).
As the probability of any microstate found in an irreducible Markov process with positive
transition rates between distinct states (which can be represented as a strongly connected
graph with positive weights on the edges connecting the different states/nodes) is finite and
greater than zero (this is obvious from the the well-known Markov Chain Tree Theorem [44],
then for a given j, |det(AD

i, j)|= constant ̸= 0 , i ∈ {1,2, ...,n}.

Corollary 4.2.6. Microstate j is the unique global mode (state with maximum stationary
probability) of the system represented by Equation 4.2.1 (representing an irreducible Markov
process with positive transition rates between distinct states) if and only if ∥ (AD

i, j)
−1Ai

j ∥∞< 1,
for any i ∈ {1,2, ...,n}.

Proof. It follows from Theorem 4.2.5, q=−(AD
i, j)

−1Ai
j =
[
q1,q2, ...,q j−1,q j+1,q j+2, ...,qn

]T ,

qk =
[

Pk
s

P j
s

]
. For state j to be the unique global mode, qk =

[
Pk

s

P j
s

]
< 1∀k ̸= j ⇐⇒

∥ q ∥∞< 1 ⇐⇒∥ (AD
i, j)

−1Ai
j ∥∞< 1

4.2.2 Weakly chained diagonally dominant (WCDD) M-matrix

Based on the formulation of the previous section, further results can be obtained with
the introduction of the notion of Weakly Chained Diagonally Dominant M-matrices. For
completeness, we provide the required definitions in this section.

Definition 4.2.7. [13] A square real matrix is said to be a Z-matrix if all of its off-diagonal
entries are nonpositive.

Definition 4.2.8. [43, 13] An n×n matrix A is called an M-matrix if there exists an n×n
nonnegative matrix B and some nonnegative real number λ such that A = λ I − B and
λ ≥ ρ(B), where I is the identity matrix and ρ(B) denotes the spectral radius of matrix B
(the largest absolute value of its eigenvalues); if λ > ρ(B), A is a nonsingular M-matrix.

There are many equivalent characterisations of nonsingular M-matrices. For example,
Plemmons [135] provides forty of such equivalent characterisations. Here we list four of
them. If A is a Z-matrix, then the following are equivalent [135, 37]:

• A is a nonsingular M-matrix;

• The real part of each eigenvalue of A is positive;
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• A is monotone; that is, Ax ≥ 0 implies x ≥ 0;

• A is inverse positive; that is A−1 exists and A−1 ≥ 0.

Definition 4.2.9. [7] Row i of a complex matrix A := (ai j) is strictly diagonally dominant
(SDD) if |aii| > ∑

i̸= j
|ai j|. Similarly, column i of a complex matrix A := (a ji) is strictly

diagonally dominant (SDD) if |aii|> ∑
i ̸= j

|a ji|. A is row/column strictly diagonally dominant

(SDD) if all its rows/columns are SDD. Weak diagonal dominance (WDD) is defined with
weak inequality instead. If not mentioned explicitly, diagonal dominance refers to weak row
diagonal dominance.

Definition 4.2.10. [7] A complex square matrix A is said to be a weakly chained diagonally
dominant (WCDD) if it satisfies:

1. A is WDD.

2. for each row r, there exists a path in the graph of A from r to an SDD row p.

4.3 Bounds of the stationary probability of a microstate

As we can select any element i in solving AD
i, jq =−Ai

j, we can let i = j. This means that
we now aim to solve AD

j, jq =−A j
j where AD

j, j.
Selecting i = j has several advantages. Firstly, Matrix Cj

T =−(AD
j, j)

T is a weakly chained
diagonally dominant (WCDD) M-matrix [7]. The proof is found in Section 4.3.1. Intuitively,
this means that the negated transpose of the matrix can be represented by a Markov chain,
where there is a path from every microstate to reach at least one flux ‘hanging’ out of the
grid, which is exactly what we observe in Fig. 4.3.1. Furthermore, this formulation separates,
as initially aimed, the output propensities of a particular microstate from the rest of the
parameters of the system, as also seen by Fig. 4.3.1.
Secondly, we can now bound the stationary probability of a particular microstate P j

s using
spectral properties of AD

j, j and the magnitude of a j j (the latter is simply the sum of the
output propensities of microstate j). Then, defining λi

(
Cj
)
and λmin

(
Cj
)

to be the ith and
the minimum eigenvalue of matrix Cj respectively and knowing that matrix Cj is an m×m

matrix (where m = n−1), P j
s ≥ λmin(Cj)

λmin(Cj)+m|a j j|
. Moreover, defining σmax

(
Cj
)

to be the max-

imum singular value of matrix Cj, P j
s ≤ σmax(Cj)

σmax(Cj)+∥b∥2
. An added benefit of the formulation

presented above lies in the fact that accurate algorithms can be developed for this class
of matrices [10] in computing the singular values [132, 35, 9], the smallest eigenvalue [3]
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and the inverse [4]. The accuracy of these algorithms is independent of any condition number.
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Fig. 4.3.1 The formulation of the Chemical Master Equation allows the separate investigation
of the input effects of the rest of the network on the microstate under investigation from its
local output propensities (a source/sink analogy)

4.3.1 Section’s proofs

Here we provide the proofs of the results mentioned in this section.
Note that all the matrix norms hereafter are taken to be induced norms.

Theorem 4.3.1. [7, 135] A non-singular WDD Z-matrix with positive diagonals is an M-
matrix.
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Theorem 4.3.2. [7] The following are equivalent:

1. A is a WCDD Z-matrix with positive diagonals.

2. A is a WDD M-matrix.

Theorem 4.3.3. Let Cj =−AD
j, j and b = A j

j, as defined in Theorem 4.2.5.

Then P j
s = 1

1+∥Cj
−1b∥1

≥ 1
1+|a j j|∥Cj

−T ∥∞

Proof. ∥ q ∥1=∥ Cj
−1b ∥1≤∥ Cj

−1 ∥1∥ b ∥1=∥ Cj
−T ∥∞∥ b ∥1. But ∥ q ∥1=

∑Pk
s

k ̸= j

P j
s

= 1−P j
s

P j
s

.

Therefore, 1−P j
s

P j
s

≤∥ Cj
−T ∥∞∥ b ∥1⇒ P j

s ≥ 1
1+∥Cj

−T ∥∞∥b∥1
= 1

1+|a j j|∥Cj
−T ∥∞

Fact 4.3.4. Matrix Cj =−AD
j, j as defined in Theorem 4.2.5 is a square Z-matrix with positive

diagonals.

Fact 4.3.5. Matrix Cj =−AD
j, j as defined in Theorem 4.2.5 is a column weakly diagonally

dominant matrix.

Theorem 4.3.6. Matrix Cj
T =−(AD

j, j)
T as defined in Theorem 4.3.3 is a weakly chained

diagonally dominant (WCDD) M-matrix.

Proof. From Facts 4.3.4 and 4.3.5, Cj
T is a (row) weakly diagonally dominant (WDD) Z-

matrix. From the proof of Theorem 4.2.5, Cj
T is nonsingular. From Theorem 4.3.1, Cj

T is
a WDD M-matrix. Therefore, from Theorem 4.3.2, Cj

T is also weakly chained diagonally
dominant (WCDD).

Definition 4.3.7. [34] A nonnegative matrix U satisfies the Complete Maximum Principle
(CMP) if for all x ∈ Rn, xi ≥ 0 implies that (Ux)i ≤ 1, then also Ux ≤ 1.

Definition 4.3.8. [34] A nonnegative matrix U is said to be a potential if it is nonsingular
and its inverse is a row diagonally dominant M-matrix.

Lemma 4.3.9. [34] Assume U is a nonnegative nonsingular matrix. Then, U−1 is a row
diagonally dominant M-matrix, that is U is a potential, if and only if U satisfies the Complete
Maximum Principle (CMP).

Lemma 4.3.10. [34] Assume U is a nonnegative matrix that satisfies the CMP. Then U is
column pointwise diagonally dominant. i.e. ∀i, j |U j j| ≥ |Ui j|.
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Theorem 4.3.11. Let Cj =−AD
j, j and b = A j

j, as defined in Theorem 4.2.5. Matrix C j

is an m×m matrix, where m = n− 1. Then P j
s ≥ 1

1+|a j j|trace(Cj
−T)

= 1
1+|a j j|∑

i
λi(Cj

−T)
=

1
1+|a j j|∑

i

1
λi(Cj)

≥ λmin(Cj)
λmin(Cj)+m|a j j|

. λi
(
Cj
)
and λmin

(
Cj
)

denote the ith and the minimum eigen-

value of matrix C j respectively.

Proof. The inverse of a nonsingular M-matrix is nonnegative [135]. From Lemmas 4.3.9
and 4.3.10 and Theorem 4.3.6, ∥ Cj

−T ∥∞≤ trace
(
Cj

−T)= ∑
i
λi
(
Cj

−T)= ∑
i

1
λi(Cj)

. The real

part of each eigenvalue of an M-matrix is positive [135]. The minimum eigenvalue of a
nonsingular M-matrix is positive real [43]. From Theorem 4.3.3, P j

s ≥ 1
1+|a j j|trace(Cj

−T)
=

1
1+|a j j|∑

i
λi(Cj

−T)
= 1

1+|a j j|∑
i

1
λi(Cj)

≥ λmin(Cj)
λmin(Cj)+m|a j j|

.

Theorem 4.3.12. Let Cj =−AD
j, j and b = A j

j, as defined in Theorem 4.2.5. Then P j
s ≤

σmax(Cj)
σmax(Cj)+∥b∥2

. σmax
(
Cj
)
denotes the maximum singular value of matrix Cj.

Proof. P j
s = 1

1+∥Cj
−1b∥1

≤ 1
1+∥Cj

−1b∥2
. As ∥ Cj

−1b ∥2≥ σmin

(
C−1

j

)
∥ b ∥2=

∥b∥2
σmax(Cj)

, ⇒

P j
s ≤ 1

1+∥Cj
−1b∥2

≤ σmax(Cj)
σmax(Cj)+∥b∥2

4.3.2 Tightness of upper and lower bounds

Although both the upper (P j
s ≤ σmax(Cj)

σmax(Cj)+∥b∥2
) and lower (P j

s ≥ λmin(Cj)
λmin(Cj)+m|a j j|

) bounds

depend only on the spectral properties of the rest of the network and the microstate’s output
propensities, they are expected to differ in tightness.
The lower bound derivation directly exploits the structure of the strongly connected Markov
chain which allows the use of the Complete Maximum Principle (CMP) on Cj

−T =−(AD
j, j)

−T .
It is the use of CMP that allows the lower bound to be based directly on the eigenvalues of
the rest of the network. If we take, for example, the system

A =

 −1 0 1
1 −1 0
0 1 −1


then we can see that the lower bounds found are Ps ≥ [1/3,1/3,1/3], which are tight as

these are equal to the actual stationary probabilities of the system. On the other hand, the
upper bound derivation is expected to be more conservative, as the first step of the proof
(P j

s = 1
1+∥Cj

−1b∥1
≤ 1

1+∥Cj
−1b∥2

) bounds the exact calculation of the microstate’s stationary
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probability by a more general result that applies to norms. Indeed, for the system A above,
the upper bound is found to be Ps ≤ [0.61803,0.61803,0.61803].
As our objective is to use these bounds for design and insights in systems biology problems,
beyond checking the tightness of these, we also need to investigate how sensitive they are to
changes in the stationary probabilities of the system’s microstates. In Fig. 4.3.2 we use the
example 3×3 system of Chapter 3 to investigate both the tightness and the sensitivity of the
bounds for that system. As we can see, the upper bound is more sensitive in absolute numbers
to the changes of stationary probability (top right graph), however, the lower bound is more
sensitive in relative terms (bottom graph). As the bottom graph of Fig. 4.3.2 illustrates, when
the bounds are normalised by their corresponding estimates of stationary probability for node
(microstate) 1 (e.g. for the lower bound, we divide all the lower bounds found with the lower
bound of microstate 1), the lower bound tracks more closely the behaviour of the exactly
calculated stationary probability distribution.
This result, in conjunction with its tighter nature, make the lower bound a better candidate
than the upper bound to be used as the basis of a heuristic tool to investigate the stochastic
phenomena arising in our systems biology problems.

4.3.3 Using the bounds obtained for the development of a tool

Observing the lower bound of the individual microstate probability,
λmin

(
CT

j

)
λmin

(
CT

j

)
+m|a j j|

, one

can use the minimum eigenvalue of CT
j (for which an accurate computational algorithm is

presented in [3]) as a means to capture the information about the input effect on the microstate
from the entire grid, whereas |a j j| is the sum of the microstate’s output propensities. The
latter could also provide a measure of the dwell time spent in a microstate. m is a constant,

therefore the ratio
λmin

(
CT

j

)
|a j j| can be used as a heuristic to investigate the effect of the different

propensities on the formation of the stationary probability distribution. This is utilised in
Chapter 6.

4.3.4 Contributions with respect to the Markov chain literature

As the Chemical Master Equation represents a Continuous-time Markov chain, this
chapter has a collection of results that apply not only on problems of Systems Biology but to
general Markov chains as well. In particular, our work builds upon the literature on direct
methods for numerically calculating the stationary probability distribution of an ergodic
Markov chain [155].
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Fig. 4.3.2 Lower and upper bounds (top right) of the 3×3 system of Chapter 3 (top left).
When the bounds are normalised by their corresponding estimate of probability of node
(microstate) 1 (bottom graph), we can see that the lower bound is tracking more closely the
behaviour of the exact stationary probability distribution.

However, unlike the general Markov chain literature [110, 156], the aim of our work is not
to find another way of calculating the entire stationary probability distribution. We focus,
instead, on the stationary probability of a single state, something that only very recently
sparked interest in the general Markov chain community, and especially in the fields of
Machine Learning and Markov Chain Monte Carlo [21, 96, 95]. Below we explain where our
computational framework and our derived bounds from that framework stand in the general
literature.

a) Theorem 4.2.5 and Corollary 4.2.6: The theorem describes a method which offers
directly as a solution a vector with the ratios of the stationary proabilities of the (n−1) states
of the system to the nth state. The corollary is a necessary and sufficient condition based on
the above theorem for a mode to be a global mode.
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Theorem 4.2.5 is a slightly more general format of a technique found in the Ergodic Markov
chain literature, used to handle the singularity of A before Gaussian elimination can be
applied [110, 91, 155]. As described in p.74 of [155] as well as in [110], the technique
partitions the matrix A into

A =

(
B d
cT f

)
where B is the (n−1)× (n−1) matrix obtained after removing the last row and last column
of matrix A (or in general the row and column with the same index). d is the last column
of matrix A with the last element removed. cT is the last row of matrix A with, f , its last
element deleted.
Then, solving the equation (

B d
cT f

)(
x̂
1

)
=

(
0
0

)
becomes equivalent to solving the Bx̂ =−d. The stationary probability vector is then found
by normalising (x̂,1).
The difference with our format is that unlike this technique, we do not have to constrain the
row and the column to be deleted to be of the same index, as we do not have a partitioning
setup in mind.
The aim of our results, however, is not to provide small extensions to existing computational
frameworks [85, 110, 155, 91] for calculating the entire stationary probability distribution;
instead, we aim for new compact ways for numerically identifying when a particular mode
becomes a global mode, something that we obtain by our extended framework and especially
by its associated corollary, finding use in our work of Chapter 3 and in our corresponding
paper [133].

b) The upper (P j
s ≤ σmax(Cj)

σmax(Cj)+∥b∥2
) and lower (P j

s ≥ λmin(Cj)
λmin(Cj)+m|a j j|

) bounds of the
stationary distribution of specific microstates: Unlike the vast literature on techniques of
calculating or estimating the entire stationary probability distribution, the literature on single
states is quite new [21, 96, 95], driven usually by the interest in computing the network
centrality of a specific agent, or a subset of agents in a network [95, 21]. However, as that
work focuses on Monte Carlo estimation algorithms, their authors’ aim was not to find
explicit lower or upper bounds on the single state’s stationary probability. Bressan et al
in a very recent publication [21] note the lack of general lower bounds for the stationary
probability of a single state, something that could be useful in estimating the number of
repeated sampling required to estimate the stationary probability of a particular state. Our
results provide such bounds with the advantage that due to the WCDD M-matrix structure
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of the matrices involved, both the lower and upper bound can be calculated by accurate
algorithms that are independent of any condition number [3, 35]. Most importantly for this
thesis, however, with these bounds we are able to develop new heuristic tools that allow us
to decouple the effect of the ‘network inputs’ from the effect that the ‘local outputs’ of a
microstate have on the stationary probability distribution. This provides us with insights in
problems of Systems Biology, as shown in Chapter 6 and our corresponding paper [134].

4.4 Conclusion

In this chapter, we develop a stochastic tool based on the principle that a microstate can
be seen as being simultaneously both as a sink and a source of probability for the rest of the
network. In this way, the effects resulting from the ‘network inputs’ and those resulting from
the ‘local outputs’ of a microstate are separated. The development of the tool was based on
an extension of a result by Karim et al [85] for the Chemical Master Equation, allowing the
stationary probability distribution of an irreducible Markov process to be found as a solution
of a system of linear equations. By introducing the notion of a Weakly Chained Diagonally
Dominant M-matrix, bounds of the stationary probability of a microstate using the spectral
properties of the rest of the network (‘network inputs’) and the sum of the output propensities
of the microstate could be found.



Chapter 5

An algorithm for constructing not
necessarily reversible Markov chains
with specified discrete-state stationary
probability distributions

The aim of this chapter is to use the theory developed in the previous chapter to enhance
our understanding of how stationary probability distributions are formed. This allowed us
to develop a new algorithm for constructing Markov chains on finite discrete spaces, both
discrete- and continuous-time, with specified discrete-state stationary probability distributions
without requiring to satisfy detailed balance.

5.1 Introduction

Since the introduction of the Metropolis algorithm [116, 30] in 1953, Markov Chain
Monte Carlo (MCMC) methods have had a profound role in fields such as statistical me-
chanics [36, 71] and Bayesian inference [18, 124], as they allowed the computation of
expectations of high-dimensional probability distributions, especially when direct sampling
is infeasible. Markov Chain Monte Carlo methods are based on the idea that an irreducible
Markov chain can be constructed, which will have as its unique stationary distribution a
desired probability distribution [71]. Then sampling from the probability distribution can be
done by simply simulating the constructed Markov chain.
As we saw in previous chapters, understanding how stationary probability distributions are
formed is also fundamental in understanding intriguing stochastic biological phenomena
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[149, 100].
The most common and familiar algorithms of constructing Markov chains with a desired in-
variant probability distribution, as for example is the classical Metropolis-Hastings, are based
on the principle of reversibility [129], which means that there is a strong local condition
on the transition rates (also called propensities). The condition is called detailed balance,
defined in Chapter 3, in Eq. 3.3.5. Being reversible and thus respecting detailed balance is
a sufficient, yet not necessary, condition for an irreducible Markov chain to have a unique
stationary distribution [172]. On this note, non-reversible Markov chains can have better
mixing or asymptotic variance properties [17]. This has been shown both experimentally
[160, 165, 171] and theoretically for specific circumstances [36, 126, 158].
In those examples, non-reversible chains are constructed based on reversible chains, either
‘lifting’ them to an expanded state space which allows the addition of a velocity component,
aiming to provide momentum through the state space or by introducing ‘vorticity’ [17, 158]
directly without the need to expand the state space. In both cases, the construction is based
on an underlying reversible chain. In this chapter, we introduce a method, which can create
directly finite state Markov chains, both reversible and non-reversible, without the need
to consider reversibility at all, as the basis of the algorithm is concerned only with the
necessary and sufficient condition of global and not detailed balance. Given the invariant
target distribution, this algorithm firstly constructs a continuous-time discrete-space Markov
chain which can then be also converted to a discrete-time discrete-space Markov chain.
The algorithm not only provides us with non-reversible Markov chains, without needing to
start with a reversible one first unlike other algorithms, but it has the extra advantage that,
based on a discrete space of n states, the transition rates and topology relating the n− 1
states can be pre-specified. This means that the transitions to and from the last nth state with
regards to the rest of the graph can be used to control the stationary probability distribution
formation. This decoupled construction of the Markov chain means that our method can
also be employed in fields like Systems Biology, where understanding of the possible effects
on the stationary probability distribution that can be obtained from a single state and its
interaction with the other states is of great interest [2].
We first revisit the Weakly Chained Diagonally Dominant (WCDD) M-matrix formulation of
the Chemical Master Equation, presented in Chapter 4. Then, we illustrate that the matrix
representing the transitions between the n−1 vertices is required to be a non-singular WCDD
M-Matrix.
Having created the transition matrix relating the n−1 states to each other, we then control
the formation of the stationary probability distribution by the last left nth state.
Lastly, a standard uniformisation procedure is followed to convert the Continuous-time
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Markov chain into a Discrete-time one. Finally, an example is provided to illustrate the
method.

5.2 Revisiting the WCDD M-matrix formulation of the CME
and the development of the algorithm

The development of the algorithm is based on the WCDD M-matrix formulation of the
Chemical Master Equation presented in the previous chapter. For this purpose it is important
to remember what the formulation of Theorem 4.2.5 allows us to do when i = j. q in a
system of n states is the (n−1)×1 vector with the ratios of the stationary probability of the
n−1 states when compared to the last distinguished nth state with index j. A j

j represents the
(n−1)×1 vector of outward transition rates (propensities) from the state of index j to all
the other n−1 states of the system. AD

j, j is now the submatrix created when the row and the
column corresponding to the state with index j are deleted.
The importance of this formulation here is that given a desired unnormalised stationary
probability distribution Ps (which only has entries greater than zero and from which q can
easily be obtained) and deciding which of the states is going to be the distinguished one
j, the problem of creating matrix A (and so the corresponding continuous-time Markov
chain) is distilled down to firstly creating a suitable AD

j, j and carrying out a matrix-vector
multiplication in obtaining A j

j. From there, the obtained negative propensities out of state j
can be converted to positive propensities into j from the corresponding states through the use
of their ratios of stationary probabilities.
The first step therefore is to understand the required properties of matrix AD

j, j.

5.2.1 The first part of the algorithm is concerned with the creation of
an irreducible weakly chained diagonally dominant M-matrix

We have proved in the previous chapter that Matrix Cj
T =−(AD

j, j)
T is a weakly chained

row diagonally dominant (WCDD) M-matrix. Consequently, M = −(AD
j, j) is a weakly

chained column diagonally dominant M-matrix. Therefore what we need is a way to create
weakly chained column diagonally dominant M-matrices.
A negated weakly chained diagonally (column) dominant M-matrix in the context of
continuous-time Markov chains corresponds to a generator matrix A of a Markov chain with
some flux from at least one of its nodes ‘hanging’ outwards from the chain, not connected to
anything. A negated strictly diagonally dominant (column) M-matrix in the same context
corresponds to a generator matrix A of a Markov chain with fluxes coming out of all the
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nodes ‘hanging’ outwards from the chain. A graphical representation is provided in Fig.
5.2.1 for better visualisation.

Therefore, one can create the matrix M =−(AD
j, j) by creating a Markov chain on n−1

nodes with generator matrix A′. A′ now has positive off-diagonals, where the diagonal
elements are equal to the negated sum of each column, thus satisfying the Zero Column
Sum (ZCS) property. Then in at least one column, a negative value is added to its negative
diagonal element, thus making the column strictly diagonally dominant. This corresponds to
the addition of flux directed from at least one node, ‘hanging’ out of the chain. Although not
strictly required at this stage, ensuring that A′ is also itself irreducible (i.e. strongly connected)
is important as it it simplifies the algorithm for creating the final irreducible Markov chain
without relying on the added distinguished state to have bidirectional transitions to all the
nodes of the grid. Note that this construction means that the graph representing the first n−1
nodes can have an arbitrary topology, as long as it is strongly connected. M can now be
obtained simply by M =−A′.

b) a) 

Fig. 5.2.1 a) A negated weakly chained diagonally (column) dominant M-matrix corresponds
to a Markov chain with flux directed from at least one node ‘hanging’ outwards from the
chain. b) A negated strictly diagonally (column) dominant M-matrix corresponds to a Markov
chain with flux directed from all nodes ‘hanging’ outwards from the chain.

Matrix M can also be generically made be by exploiting theory regarding inverse M-
matrices. Noting that strictly diagonally dominant matrices are a subset of weakly chained
diagonally dominant matrices, an old result on inverse M-matrices [179] provides us with
exactly what we want.
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Theorem 5.2.1. [179] Assume a positive n×n matrix A = (ai j) with unit diagonal elements
and off-diagonal elements which satisfy 0 < y ≤ ai j ≤ x < 1. Also define an interpolation
parameter s via x2 = sy+(1− s)y2. A−1 = M is a strictly diagonally dominant (both by rows
and by columns) M-matrix if 0 < y < x < 1 and either:

1. n = 2 or

2. n > 3 and y < x and s−l ≥ n−2 .

This theorem is particularly useful, since A > 0, A−1 = M is irreducible as well [34].

5.2.2 The second part of the algorithm is equivalent to controlling the
stationary probability distribution formation from a distinguished
state

We have so far created matrix M =−(AD
j, j), which contains the information about the

transition rates between the n−1 states relationship either directly (if for example a particular
structure regarding the Markov chain interconnections needs to be enforced) or by using
inverse M-matrices. But how can we retrieve matrix A, given a desired stationary probability
distribution Ps ? M is a column diagonally dominant matrix; the states corresponding to
each column whose sum is not zero are those states which have a transition rate ‘hanging’
outwards, which can now be directed into the distinguished state j. Those transition rates
can be retrieved by just using the fact that A must be a Zero Column Sum matrix.

As the transition rates between the n−1 states are established, the stationary probability
distribution needs to be formed by manipulating the input and outward propensities of the
distinguished state j. Having created q, as in Proposition 4.2.1, from the vector of the desired
(unnormalised) stationary probability distribution, the following multiplication can be done,
which gives the outward transition rates (propensities) of state j, d = Mq. Vector d, however,
obtained in this way, can have both positive and negative entries. A negative entry in d
represents a negative outward transition rate from state j to the corresponding state. Without
loss of generality, if the distinguished node is selected to be j = 1, then the kth entry in
d corresponds to the transition rate from state 1 to state (k+ 1). As we are interested in
the system when found at equilibrium, the negative outward transition rate d(k) from state
1 to state (k+ 1) can be converted to positive input transition rate b from state (k+ 1) to
state 1 by equalising the probability flows: −d(k)Ps(1) = bPs(k+ 1), which simplifies to
b = −d(k)Ps(1)

Ps(k+1) = −d(k)
q(k) .

These can now be added to the kth diagonal entry in M. This would mean that the outward
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transition rates from the distinguished state to those states would become zero, so if bidi-
rectionality of those connections is aimed to be maintained, a small random value can also
optionally be added to the kth diagonal entry in M. Bidirectionality of all the connections
from the distinguished to the other states is not a requirement to obtain irreducibility of the
final constructed Markov chain, as the initial Markov chain constructed on the n−1 states is
itself irreducible. The product of d̂ = Mq now gives the outward transition rates of state 1,
which are positive. A can now be reconstructed from AD

1,1 =−M, A1
1 = d̂ and the fact that A

needs to be a Zero Column Sum matrix.
This procedure is summarised in Fig. 5.2.2 and in Algorithm 2.
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Fig. 5.2.2 Graphical illustration of the methodology followed.

5.2.3 The resulting continuous time Markov chain can be converted to
a discrete time Markov chain

The resulting finite space continuous time Markov chain created can now be converted to
a discrete time Markov chain by using the technique of uniformisation [82], as illustrated in



5.2 Revisiting the WCDD M-matrix formulation of the CME and the development of the
algorithm 63

Result: Output matrix A - representing a Continuous time Markov chain with
distinguished state 1

1. Input desired unnormalised probability vector Ps;
2. Construct the (n−1)×1 vector q = [p(2)p(3)...p(n)]T/p(1);
3. Construct an irreducible (n−1)× (n−1) WCDD M-matrix M either directly or by
following Theorem 5.2.1 ;

4. Calculate d = Mq
5. for k = 1 : n−1 do

if d(k)< 0 then
M(k,k) = M(k,k)− d(k)

q(k) (+rand)
end

end
6. d̂ = Mq;
7. A(2 : n,2 : n) =−M ;
8. A(2 : n,1) = d̂;
9.for k = 1 : n do

A(1,k) =−Sum(A(:,k));
end

Algorithm 2: Continuous-time Discrete Space Markov chain

Result: Output matrix R - representing a Discrete time Markov chain with
distinguished state 1

1.Run Algorithm 2 and obtain A;
2. Select q > max(abs(A));
3. R = AT/q+ I;

Algorithm 3: Discrete-time Discrete Space Markov chain
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Algorithm 3. For a discrete time discrete space Markov chain, the stationary distribution Ps

and the matrix of transition rates (where now R(i, j) represents the transition rate from state i
to state j) obey the following relation:

PsR = Ps (5.2.1)

5.3 Example - Graph and Spectral Structure of resulting
Markov chain

b) a) 

Graph and Spectral Structure of resulting Non-reversible Markov chain 

Fig. 5.3.1 a) The resulting Discrete-time Markov chain (DTMC) is represented by a complete
digraph with self-loops b) The resulting discrete-time Markov chain transition matrix contains
complex eigenvalues, thus it is a non-reversible Markov chain.

Assume that we have a 16-state target stationary distribution Ps = [10.5513, 5.8081,
0.7836,0.3903,0.7521,0.2657,0.4890,0.7460,0.2956, 0.7651,0.9127,0.6704,0.7904,
5.7431,0.6171,0.3712]T . The distribution was formed initially by getting random numbers
between 0 and 1 and then for the target probabilities of state 1, 2 and 14 constants 10, 5
and 5 were added to those states respectively. This was done in order to create a strongly
multimodal distribution, as it is known that such distributions frequently pose difficulties for
Markov Chain Monte Carlo methods [180].
For constructing the inverse M-matrix M−1, x = 0.10 and y = 0.09, s−1 = 43.1, satisfying
the condition s−1 ≥ n− 2. The matrix M−1, apart from the unit diagonal, was filled by
parameters randomly selected between x and y.
Fig. 5.3.1 illustrates that the discrete time Markov chain obtained in this case through our
algorithm, which has the desired stationary probability distribution, is a complete digraph
(i.e. all states are connected to each other in both directions) with self-loops. For this we used
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the generic method of creating the initial irreducible Markov chain using inverse M-matrices
as well as using the optional version of the step 5 of the algorithm. It is also non-reversible,
as illustrated by the fact that it has complex eigenvalues. Note that as the methodology uses
random numbers and neither non-reversibility nor reversibility is assumed anywhere, it is
possible that in some cases, a reversible Markov chain is obtained. This method aims to
be a generic way to obtain Markov chains with a desired stationary probability distribution,
without requiring to satisfy detailed balance.

5.4 Comparison with the Reversible Markov chain obtained
from Metropolis-Hastings can show a better spectral
gap

b) a) 

Graph and Spectral Structure of Metropolis-Hastings reversible Markov chain 

Fig. 5.4.1 a) The reversible Discrete-time Markov chain (DTMC) obtained from Metropolis-
Hastings is also represented by a complete digraph with self-loops. Note that the transition
probabilities of the self-loops of the modes of the stationary distribution (e.g. state 1) are
larger than before. b) This suggests longer mixing times, as also suggested by the thin
spectral gap

As mentioned in the introduction, non-reversible Markov chains were shown to perform
better than reversible chains [126]. Does this also apply in this case? In order to verify it we
used Metropolis-Hastings, which provides us with a reversible Markov chain [20]. In order to
be able to do a fair comparison, we set up the proposal distribution of the Metropolis-Hasting
to also be represented by a complete digraph, with transition probability 1/16 for a jump to
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take place from any state to any other, including itself.

The result is shown in Fig. 5.4.1. The resulting Markov chain is also represented by a
complete digraph with self-loops, yet note that because of the reversibility condition, the
transition probabilities of the self-loops of the states with high probability are larger than
those of the non-reversible chain. This makes it expected that it will spend longer at those
states, thus also making the mixing time longer. This is also predicted by the much thinner
spectral gap (the difference between 1 and the second largest eigenvalue modulus µ).
The estimated mixing time obtained by τmix =−1/log(µ) [20], is equal to 2.3872 for the
non-reversible Markov chain obtained through our algorithm, whereas it is equal to 5.1202
for the reversible Markov chain obtained through Metropolis-Hastings.

5.5 Advantages of this algorithm

As we have seen, this algorithm can achieve both continuous-time and discrete-time non-
reversible Markov chains directly without using previously constructed reversible Markov
chains as done in the literature [17, 158].
Beyond, however, the ability to create multiple different generic non-reversible Markov
chains with the same target probability distribution (which have in general better mixing
properties than reversible ones), this methodology provides us with an extra advantage espe-
cially applicable to problems in Systems Biology, where a particular topology of the system
is often pre-specified [131].
This is possible due to the algorithm’s decomposable nature, as the system returned as
an output of the algorithm returns exactly the same topology for the n− 1 states with the
transition rates connecting the last distinguished nth state to the rest n− 1 states, as also
shown by the top left table of Fig 5.5.1. These transition rates correspond to the probability
flows (to/from the distinguished state) needed to turn the initially provided system to one
with the target stationary probability distribution.

This added transparency of how the target stationary probability is achieved allows us to
use the output of the algorithm to also ensure that a topology is also maintained.

Take for example the case where the system’s topology cannot accept a central distin-
guished state that can be directly connected to all the other states. It is now possible by using
only the output of our algorithm and the target probability distribution, together with classical
techniques, to return a system which respects the overall topology of the system and is also
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consistent with the target stationary probability distribution.

To illustrate how this can be done, take the 3× 3 example system used in Chapters
3 and 4, with the magnitude of dominant edges equal to 2 and the magnitude of non-
dominant edges equal to 1. Assume now that we would like to turn this system, by main-
taining its topology, to a continuous-time Markov chain with target probability distribution
Ps = [0.1000,0.1000,0.2000,0.1000,0.1000,0.1000,0.1000,0.1000,0.1000]. Without loss
of generality choose state 1 as the distinguished state. As Fig. 5.5.1 shows, the output of the
algorithm provides 4 probability flows along direct connections not allowed by the topology
of the system. These are: a connection from state 5 to state 1 with magnitude 4, a connection
from state 7 to state 1 with magnitude 2, a connection from state 1 to state 9 with magnitude
2 and a connection from state 1 to state 8 with magnitude 1. Using classical techniques, such
as Breadth-first search [22], we can find a path connecting each pair of states on the graph
and then superimpose the probability flows needed using the information from the target
probability distribution Ps. Fig. 5.5.1 illustrates diagrammatically how this is done, with
the resulting system that satisfies both the topology of the system and the target stationary
probability distribution.

5.6 Conclusion

In this chapter, we developed a novel algorithm for constructing continuous- and discrete-
time Markov chains with a desired stationary probability distribution on a finite discrete space.
This is achieved directly without using previously constructed reversible Markov chains as
usually done in literature. Instead, the formation of the stationary probability distribution
is controlled from a distinguished state, using the formulation for continuous-time Markov
chains and the M-matrix theory, presented in Chapter 4. Finally, for an example with a
strongly multimodal stationary probability distribution, we compared the non-reversible
Markov chain obtained from our algorithm to the reversible Markov chain obtained from the
Metropolis-Hastings algorithm, where we find that it has better spectral and thus estimated
mixing properties.
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Fig. 5.5.1 Illustration of how the output of the algorithm can be used to return a system
which respects the overall topology of the system and is consistent with the target stationary
probability distribution



Chapter 6

Enzyme Sequestration by the Substrate:
An Analysis in the Deterministic and
Stochastic Domains

The previous chapters, along with the development of new tools to facilitate stochastic
analysis of biochemical systems, have also enhanced our understanding of how probability
distributions in stochastic systems are formed. In this chapter, we use that understanding
to analyse more complex potentially multistable systems, focusing on multisite protein
phosphorylation both in the deterministic and stochastic domains. In particular, we analyse
the consequences of adding enzyme docking to these and similar models, with the resultant
Enzyme Sequestration by the Substrate they imply.

6.1 Introduction

Probably the most studied form of protein modification is protein phosphorylation, the
binding of a phosphoryl (PO−

3 ) group using a kinase enzyme [120]. This, together with
dephosphorylation by a phosphatase enzyme, contributes to the regulation of transcription
factors, thus regulating the response of a cell to changes in its environment [176]. Goldbeter
and Koshland [61] showed that ultrasensitivity can be obtained where a sigmoidal change
is observed in output for a linear change in input. This, coupled with positive feedback,
can result in bistability. Positive feedback, which can be exhibited implicitly by different
mechanisms, is required for bistability and consequently for multistability [46]. Examples
of such mechanisms are several [75, 49, 45]. In this chapter we focus on multisite protein
phosphorylation, a well studied example of such a mechanism [145, 32, 143, 168, 51, 26, 78,
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173, 12], itself belonging to the greater class of enzyme-sharing schemes (i.e. when different
substrates or substrate states share the same enzymes). This mechanism is of interest because
of its potential unlimited multistable behaviour [51, 66], which could be beneficial for using
information from environmental signals to drive internal cell processes.
In the excess substrate regime, Thomson and Gunawardena [163] showed that the number of
stable steady states that can be achieved increases linearly with the number of phosphosites
available. This is done by introducing enzyme saturation and competition between the
unphosphorylated and phosphorylated substrate forms for interaction with the free kinase
and with the free phosphatase [51, 163]. The ability of this form of competition to induce
bistability in a distributive kinetic mechanism of the two-site MAPK (Mitogen-activated
protein kinase) phosphorylation and dephosphorylation was firstly shown by Kholodenko et
al [111, 51, 50].

Nevertheless, it is increasingly being recognised that specificity in protein phosphoryla-
tion and dephosphorylation cycles can be achieved through enzyme docking: the binding
of the interaction domains on the kinase or phosphatase with one or more docking sites
on the substrate, where the latter is separate from the motif that is chemically modified
[142, 168, 140, 14, 144]. Examples of such docking interactions that have been identified
include MAPK and MAPK phosphatases [151, 8, 109], and Glycogen synthase kinase-3
[178], an important kinase for insulin and Wnt signalling [168]. This mechanism implies
that a phosphatase molecule can still bind to an unphosphorylated substrate molecule and
similarly, a kinase molecule can still bind to a fully-phosphorylated one, forming inactive
complexes, as each enzyme can always bind to their docking site [112]. The formation of
inactive complexes is graphically illustrated in Fig. 6.1.1. In the excess substrate regime,
the formation of such complexes can be thought of as a sequestration mechanism, where
the substrate sequesters away the enzymes. This is referred to in the chapter as ‘Substrate
Enzyme-Sequestration’. In the complementary regime of excess enzyme, Martins and Swain
have already shown that this type of sequestration can provide ultrasensitivity [112].

Note that this mechanism of enzyme sequestration is fundamentally different to that of
enzyme sequestration by a different protein (e.g. a scaffold protein) that does not participate
in the reaction scheme metabolically [48]. In that type of sequestration, the scaffold-bound
population is separated from the rest of the reaction network, creating two compartments.
Indeed, compartmentalisation is another mechanism able to provide enhanced ultrasensitivity,
bistability and/or multistability [26, 48, 70]. However, in Substrate Enzyme-Sequestration,
neither additional proteins nor compartments are sequestering the enzyme; this is done by the
substrate itself, as also explained by Martins and Swain [112]. As this sequestration is depen-
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P 

Substrate Phosphatase Substrate Phosphatase 

Inactive complex Active complex 

Docking site Docking site 

Fig. 6.1.1 An inactive complex can for example be formed when a phosphatase molecule
binds with a completely unphosphorylated substrate.

dent on the inherent way the substrate attaches to the enzymes, identifying it experimentally
is equivalent to identifying whether the enzyme has any means of avoiding the binding with
a substrate found in a phosphorylation state which would create an inactive complex, as for
example is the binding of a phosphatase to a completely unphosphorylated substrate.

Here we investigate the effect that this type of sequestration can have on multisite protein
phosphorylation in the excess substrate regime in the domains of both large and small
numbers of molecules, where a deterministic and a stochastic analysis are respectively more
suitable. For the stochastic analysis, we use the weakly diagonally dominant M-matrix
formulation of the Chemical Master Equation, and its associated stochastic tool developed in
Chapter 4, which allows greater insights on the formation of probability distributions, without
the necessity of continuously calculating the exact solution of the steady state distribution or
running Monte Carlo simulations.
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6.2 Models

6.2.1 A deterministic framework for the excess substrate regime [163]

Our analysis in the large molecule number domain is based on the deterministic frame-
work of Thomson and Gunawardena [163, 162] which was used to show mathematically that
unlimited multistability is possible. We first summarise their results, and then extend them to
account for Substrate Enzyme-Sequestration by including the reactions outside the red dotted
frame of Fig. 6.2.1. We will show that, irrespective of the other parameters of the system, as
the strength of sequestration is increased then the number of steady states decreases to one.

S0 KS0

PS1 S2S1 KS1

PS2 S2S2 KS2

PS3 S2S3 KS3

PS4 S4

PS0 

KS4 

0

P

0

P

K

n

K

n

Fig. 6.2.1 The original 4-site protein phosphorylation scheme is extended to include two
inactive complexes PS0 and KS4, as implied by enzyme docking.

Fig. 6.2.1 is built from of two kinds of reaction: firstly, a kinase molecule K can attach to
a substrate molecule with i phosphorylated phosphosites, Si. The new complex formed, KSi,
can then either decompose back to K and Si or phosphorylation can proceed, leading to the
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products K and Si+1.

K +Si
αK

i
⇌
β K

i

KSi
γK

i→ Si+1 +K

In addition, a phosphatase molecule P can attach to a substrate molecule with i+1 phospho-
rylated phosphosites, Si+1 with the new complex formed PSi+1 either decomposing back to
P and Si+1 or lead to a dephosphorylation reaction with products P and Si.

P+Si+1
αP

i+1
⇌
β P

i+1

PSi+1
γP

i+1→ Si +P

Note that in Fig. 6.2.1 and in subsequent schematic figures, we present only the species that
account for the total substrate concentrations. The participating enzymes (phosphatase and
kinase) are implicitly taken into account as part of the relevant reactions. For example, the
reaction

K +Sn
αK

n→ KSn

is represented in the figure as

Sn
αK

n→ KSn

Under the assumption of excess substrate, i.e. that the total concentration of substrate
[Stot]≫ [Ktot] and [Stot]≫ [Ptot], Thomson and Gunawardena [162] showed that the steady
states of a phosphorylation system can be determined by the roots of the following polynomial
(where u = [K]/[P] and w = [Ktot]

[Ptot]
),

R(u) = an+1un+1 +anun + ...+a1u+a0 (6.2.1)
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The expressions for the coefficients ai are given in [162] as

an+1 = λ0λ1...λn−2λn−1

a0 =−w

ai+1 = λ0λ1...λi−2λi−1

[
(1−λiw)+ [Stot]

(
1

kK
i
− λiw

kP
i+1

)]
,

0 ≤ i < n,λ−1 = 1

where

λi =

(
γK

i
kK

i

)(
γP

i+1

kP
i+1

)−1

, kK
i =

β K
i + γK

i
αK

i
, kP

i =
β P

i + γP
i

αP
i

(6.2.2)
For completeness, these can be derived as follows:
Using mass kinetics, the steady state concentration of KSi can be determined from the

concentrations of the free kinase, K, and of the free substrate with i full phosphosites, Si.

[KSi] =
[K][Si]

kK
i

,

Similarly for the phosphatase,

[PSi] =
[P][Si]

kP
i

,

At steady state, in each cycle the net flux into Si+1 must be equal to the net flux out of Si+1.
Consequently, taking into consideration each cycle in turn, one can express the concentration
of any substrate state, [Si+1] as a function of the concentration of the substrate with no
phosphorylated phosphosites, [S0], i.e.

[Si+1] = [S0]λ0λ1...λi

(
[K]

[P]

)
,

Using conservation of mass, we can therefore write the total substrate concentration in terms
of the individual species

[Stot] = [S0]+ ...+[Sn]+ [KS0]+ ...+[KSn−1]+ [PS1]+ ...+[PSn] (6.2.3)

= [S0] (φ1 +[K]φ2 +[P]φ3) (6.2.4)
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where

φ1=
n
∑

i=0

(
i−1
∏
j=0

λ j

)
ui

φ2 =
n−1
∑

i=0

(
i−1
∏
j=0

λ j

)
ui

kK
i

φ3 =
n
∑

i=1

(
i−1
∏
j=0

λ j

)
ui

kP
i

Note that the coefficients of the polynomials φ1, φ2, and φ3 can be written in terms of the rate
constants α , β and γ in their various subscripted and superscripted forms and, importantly,
are all positive.
The total concentrations of the kinase and phosphatase can be expressed in terms of the same
functions:

[Ktot] = [K] (1+[S0]φ2) = [K]

(
1+

[Stot]φ2

φ1 +[K]φ2 +[P]φ3

)
(6.2.5)

(using Eq. 6.2.4)

=: Ktot ([P], [K]) (6.2.6)

That is, the total concentration of the kinase is regarded as a function of free kinase and
phosphatase concentrations. Similarly,

[Ptot] = [P] (1+[S0]φ3) = [P]
(

1+
[Stot]φ3

φ1 +[K]φ2 +[P]φ3

)
(6.2.7)

=: Ptot ([P], [K]) (6.2.8)

A point ([P], [K]) that satisfies Ktot ([P], [K]) = [Ktot], Ptot ([P], [K]) = [Ptot] is a possible steady
state for the system and corresponds to an intersection of contours of Ktot and Ptot in a free
phosphatase-free kinase map. This can be shown Fig. 6.2.2, where the stable steady states
correspond to the steady states of the time courses when the system is deterministically
simulated. Different steady states result according to the starting conditions.

As φ1
φ1+[K]φ2+[P]φ3

= [Stot]−[S0][K]φ2−[S0][P]φ3
[Stot]

, [S0][K]φ2 < [Ktot] and [S0][P]φ3 < [Ptot], in the
regime of excess substrate (i.e. [Ktot]<< [Stot] and [Ptot]<< [Stot]), the expressions of [Ktot]

and [Ptot] can be written as follows [162, 163]:
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Fig. 6.2.2 Plots of total concentrations of kinase and phosphatase as functions of free kinase
and phosphatase (left) of the original tristable system presented in [163]. Intersections
correspond to steady states. The stable steady states are coloured in black, whereas the
unstable steady states are coloured in red. The stable steady states are the steady states
appearing in the time courses (right) when the system is simulated deterministically, starting
from different initial conditions.

[Ktot ] = [K]

(
1+[Stot ]

φ2

φ1

)

[Ptot ] = [P]
(

1+[Stot ]
φ3

φ1

)
Dividing the two expressions and rearranging, we obtain:

0 = (u−w)φ1 +[Stot ](uφ2 −wφ3) =: R(u)

where (w = [Ktot ]
[Ptot ]

).
As φ1, φ2, and φ3 are functions of u, the above expression can be expressed as

R(u) = an+1un+1 +anun + ...+a1u+a0
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an+1 = λ0λ1...λn−2λn−1

a0 =−w

ai+1 = λ0λ1...λi−2λi−1

[
(1−λiw)+ [Stot ]

(
1

kK
i
− λiw

kP
i+1

)]
,0 ≤ i < n,λ−1 = 1

The roots of R(u) correspond to steady state enzyme ratios. Note that these correspond to
non-equilibrium steady states of the underlying biochemical system, since each phosphoryla-
tion/dephosphorylation cycle is driven in a counter-clockwise direction by the hydrolysis of
ATP. The important point, though, is that the leading coefficient an+1 is positive, as it derives
from the leading coefficients of φ1 and φ2. Conversely, the trailing coefficient a0 is negative,
as it derives from the trailing coefficients of φ1 and φ3 multiplied by −w i.e.

an+1 > 0, a0 < 0 (6.2.9)

Thus the problem of finding the steady states of the system is transformed into a problem of
finding the roots of a univariate polynomial. This polynomial can have no more than n+1
real positive solutions, and Descartes’ rule of signs was used to show that when n is odd
there can be no more than n real positive solutions (because the reversal of sign between the
first and last coefficients limits the number of changes in sign). Thus the maximum number
of stable steady states is equal to 1+ ⌊n

2⌋ [163, 162]. Gunawardena and Thomson further
showed that it was possible to achieve this number by realistic choices of parameter values.
Note however that the extent of multistability observed experimentally is much more limited
[51], as also mentioned in their seminal paper [163].

6.2.2 Substrate-Kinase and Substrate-Phosphatase Sequestration

Enzyme docking allows the possibility that an enzyme may attach to substrate even when
the complex formed will not be active. Fig. 6.2.1 represents the reactions occurring when
the multisite protein phosphorylation is distributive and sequential as is often taken to be the
case [173, 51, 162].
In sequential (de)phosphorylation, phosphosites are (de)phosphorylated in a strict order
where (de)phosphorylation of one site depends on the phosphorylation state of another.
This is opposite to a random (de)phosphorylation scheme. Distributive (de)phosphorylation
occurs when the enzyme dissociates after each (de)phosphorylation. This is opposite to
processive (de)phosphorylation where multiple (de)phosphorylations might take place before
the enzyme dissociates from the substrate [152].



78
Enzyme Sequestration by the Substrate: An Analysis in the Deterministic and Stochastic

Domains

Most of our results generalise to the non-distributive, non-sequential case, but we start by
describing the simpler case, where the conclusions are sharper. The inactive complexes
formed after a kinase binds to a fully phosphorylated substrate and after a phosphatase
binds to an unphosphorylated substrate are shown outside the dashed area. These complexes
represent an example of substrate enzyme-sequestration. This occurs when a substrate
molecule (e.g. a fully phosphorylated substrate molecule) forms an inactive complex with
an enzyme molecule (e.g. a kinase), neither allowing the enzyme to bind to other substrate
molecules to form active complexes nor any other enzyme (e.g. a phosphatase) to bind to
itself. This effect can occur, for example, through competition of the enzymes for the same,
or partly the same, docking sites, as illustrated in the literature [77, 8].

6.2.2.1 Model extension with the addition of Substrate Enzyme Sequestration

We now extend the analysis of Gunawardena and Thomson to investigate the potential
effects of substrate enzyme-sequestration. First, the polynomials φ need to be redefined in
order to accommodate the sequestration effects, since now conservation of mass includes
two extra species, KSn and PS0:

[Stot] =[S0]+ ...+[Sn]+ [KS0]+ ...+[KSn−1]

+ [PS1]+ ...+[PSn]+ [PS0]+ [KSn]

As shown in Fig. 6.2.1, each of the two new species interacts with just one of the species
of the original system (Sn and S0). Consequently, at steady state, the flow from PS0 into the
original system via S0 has to be equal to the flow from the original system to PS0. Similarly
for Sn and KSn.

In order to take these additional species into account, the polynomials φ2 and φ3 need
to be modified to include all n substrate states in the mass conservation equations. We will
show that increasing the strength of sequestration changes only the magnitude of the leading
and trailing coefficients in the resulting polynomial R(u) which, as a further consequence of
the sign change in Eq. 6.2.9, inevitably leads to a reduction in the number of steady states –
eventually to one.

6.2.2.2 Comparison with Legewie sequestration mechanism

Before proceeding to the Results section, it is important to note the difference between
the Substrate Enzyme-Sequestration we describe in this chapter and the mechanisms where
the not fully phosphorylated substrate can inhibit the activation of its kinase, which itself gets
activated on a separate phosphorylation cascade. Legewie et al described such mechanism for



6.2 Models 79

the Raf-Mek-Erk mitogen-activated protein kinase cascade [98] which results in a positive
circuit, inducing bistability. The mechanism is illustrated in Fig. 6.2.3.

Mek0
Raf1-
Mek0

Mek1

Erk0-
Mek1

Erk0-
Mek0

Erk1-
Mek0

Erk0-
Mek1

Raf1-
Mek1

Mek2

Mek Phosphorylation Cascade with Erk-
Mek Sequestration (blue)

Erk Phosphorylation 
Cascade

Erk0

Mek2-
Erk0

Erk1

Mek2-
Erk1

Erk2

Fig. 6.2.3 Illustration of Legewie mechanism.

In the aformentioned mechanism, the not fully phosphorylated Erk (Erk0 and Erk1)
species sequester Mek into complexes that cannot be accessed by the Mek’s kinase, Raf. This
inhibits the formation of the doubly phosphorylated Mek, Mek2, which acts as Erk’s kinase.
Upon weak Ra f1 stimulation, Erk and Mek are mostly unphosphorylated, whereas stronger
Ra f1 stimulation increases Mek’s double phosphorylation, which in turn phosphorylates
the not fully phosphorylated forms of Erk (Erk0 and Erk1). This, in turn amplifies Mek
phosphorylation, creating the positive circuit which allows for bistability to be observed.
Legewie mechanism contrasts with the sequestration mechanism we describe in this chapter
in two fundamental ways. Firstly, in our case, sequestration does not inhibit the enzyme
activation as the enzymes sequestered by the substrate are already in their active form.
Secondly and most importantly, the inactive complexes arising from sequestration are formed
by species participating in the same phosphorylation cascade, which in itself is able to portray
multistability. This is different to Legewie’s mechanism where the inactive complexes
formed act as a way to couple two different sequential phosphorylation cascades, introducing
a positive feedback mechanism between the fully-phosphorylated substrate of the second
phosphorylation cascade and the activation of its kinase, which is the substrate of the first
phosphorylation cascade.
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6.3 Results and Discussion

6.3.1 Substrate Enzyme-Sequestration in the Deterministic Domain

6.3.1.1 What happens when Substrate Enzyme-Sequestration is considered?

Having extended the deterministic framework to account for substrate enzyme-sequestration
in Section 6.2.2.1, we investigated whether this additional competition for enzymes enhances
or inhibits the extent of multistability.

The resulting contours for [Ktot] and [Ptot] are shown in Fig. 6.3.1, which shows how
the original system in [163, 162], with [Ktot] = 2.8µM, [Ptot] = 2.8µM, [Stot] = 10µM and 4
available phosphosites, is affected as the strength of Substrate Enzyme-Sequestration (αK

n
β K

n

and αP
0

β P
0

) increases. Furthermore, note that the contours presented in the figures represent the

accurate non-approximated [Ktot ] and [Ptot ]. As can be seen, as the strength of sequestration
is increased the number of steady states (and stable steady states) decreases continuously
from 5 (3 of which are stable) in the original tristable system of [163, 162] to 3 (2 of which
are stable) to a single stable steady state. Note that the ratios αK

i
β K

i
for 0 ⩽ i < n and αP

i
β P

i
for

0 < i ⩽ n are approximately equal to 5×10−1 nM−1, as seen in Appendix, Section 6.6.1.7.

6.3.1.2 Sufficient Conditions for Further Limiting the Extent of Multistability

Having demonstrated the qualitative effect of Substrate Enzyme-Sequestration we now
derive quantitative conditions for the reduction in multistability.

Taking the additional species into account, as in Fig. 6.2.1, φ2 and φ3 need to just be
modified in terms of the summation indices to include all n substrate states in the mass con-
servation equations. Defining kK

n =
β K

n
αK

n
and kP

0 =
β P

0
αP

0
for the new species, the φ polynomials

become:

φ̂2 =
n
∑

i=0

(
i−1
∏
j=0

λ j

)
ui

kK
i

φ̂3 =
n
∑

i=0

(
i−1
∏
j=0

λ j

)
ui

kP
i

The updated polynomial, applicable for the regime is shown in Eq. 6.3.1. The new poly-
nomial coefficients are presented in terms of the old coefficients in order to allow for com-
parisons, providing an insight of the quantitative effect of Substrate Enzyme-Sequestration.
Note that only the first and the last coefficients are changed.

R′(u) = a′n+1un+1 +anun + ...+a1u+a′0 (6.3.1)



6.3 Results and Discussion 81

6 10

0

1 10
K p

n

K p

n

nM
 

 

    3 10

0

1 10
K p

n

K p

n

nM
 

 

    1 10

0

1 10
K p

n

K p

n

nM
 

 

   

5 SS, 3 stable SS 3 SS, 2 stable SS 1 SS, 1 stable SS 

Fig. 6.3.1 Plots of total concentrations of kinase and phosphatase as functions of free kinase
and phosphatase. Increasing the strength of both the Substrate Kinase (αK

n
β K

n
) and Substrate

Phosphatase-Sequestration (αP
0

β P
0

), the number of steady states (and stable steady states) falls
in a continuous fashion from 5 (3 stable), as in the system without any sequestration, to 3 (2
stable) to 1 (1 stable).
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where
a′n+1 = an+1

(
1+[Stot]

αK
n

β K
n

)
a′0 = a0

(
1+[Stot]

αP
0

β P
0

)
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Fig. 6.3.2 The sufficient bounds are reasonably tight for the original tristable system [163,
162] for both Substrate Kinase-Sequestration (left) and Substrate Phosphatase-Sequestration.
This tightness is portrayed in the figures by the small separation of the Ktot and Ptot contours
at the regions where there was previously an intersection.

That is, the sign difference between the leading and trailing coefficients is maintained,
and they are increased in magnitude. This limits the number of possible positive roots.
Using the Vieta formulae, which relate the coefficients of a polynomial to sums and products
of its roots [89], in conjunction with the Quadratic Mean - Arithmetic Mean [40] and the
Triangle inequalities it is possible to obtain sharp bounds. The following theorem, which is
proved in Appendix, shows that if either the leading three terms or trailing three terms fail a
discriminant like condition then the polynomial must have a pair of complex roots, in which
case the potential number of real positive roots is reduced by two and the number of stable
steady states by one:

Theorem 6.3.1. If any of the following conditions are satisfied, then the number of positive
steady states will be no more than n−1 if n is even, or n−2 if n is odd:

1. an−1 ≤ 0 and a2 ≥ 0

2. an−1 > 0 and αK
n

β K
n
[Stot]>

na2
n−2(n+1)an+1an−1
2(n+1)an+1an−1

or
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3. a2 < 0 and αP
0

β P
0
[Stot]>

na2
1−2(n+1)a0a2
2(n+1)a0a2

Thus it is always possible to choose sequestration rates such that the maximum number of
stable steady states is equal to ⌊n

2⌋. Fig. 6.3.2 illustrates that the stated bounds are reasonably
tight for the original tristable system [163, 162], as the small gaps between the contours
[Ktot] = 2.8µM and [Ptot] = 2.8µM, in the region of their previous intersections, demonstrate.
For the original system to be tristable (i.e. with five steady states) both αK

n
β K

n
≤ 4.4× 10−4

nM−1 and αP
0

β P
0
≤ 3.2× 10−3 nM−1 have to be satisfied as found in simulations. If either

condition is violated, then the system becomes bistable. If both are violated, then the system
becomes monostable. Our derived conditions are quite close to these, as we find that it is
sufficient that αK

n
β K

n
≥ 7.33×10−4 nM−1 or αP

0
β P

0
≥ 4.88×10−3 nM−1 is satisfied for tristability

to be limited to bistability.
Furthermore, based on the Pratt’s tableau test [137], which is a method of finding a less

conservative than Descartes’ rule of signs upper bound for the real positive roots of a real
polynomial, the following theorem is proved in Appendix, Section 6.6.1.3

Theorem 6.3.2. For any δ K ≥ 0 there exists δ P, directly computable from the rate constants,
such that if αK

n
β K

n
[Stot] = δK and αP

0
β P

0
[Stot] ≥ δ P then the polynomial R′(u) has precisely one

positive root, corresponding to one steady state. Similarly, for any δ P ≥ 0 there exists a δK

with the same properties.

As explained in more detail in Appendix, by setting a δ K , a δ P can be calculated
directly from an algorithm based on the Pratt tableau (which we develop and is found in
Appendix, Section 6.6.1.5) and vice-versa. In this way, we iteratively increased δ K (the
input) until δ P (the output) could not decrease anymore. This algorithm provided us with
the following condition: if αK

n
β K

n
= 6.57×10−4 nM−1 and αP

0
β P

0
≥ 6.928×10−2 nM−1, then the

original tristable system [163, 162] can only have one steady state. Again, these numbers are
reasonable when compared to the aforementioned actual values obtained via simulations.

6.3.1.3 Does direct decrease of overall substrate/enzyme numbers have the same ef-
fect as Substrate Enzyme-Sequestration?

The inclusion in the model of the inactive complexes PS0 and KSn decreases the numbers
of both unbound substrate and free enzymes. A natural question then is whether the observed
limits on multistability could be attributed simply to these lowered concentrations. In order
to investigate this, we found the concentrations of substrate and enzymes that are sequestered
away because of the complexes PS0 and KSn when αK

n
β K

n
=

αP
0

β P
0
= 3.3×10−3 nM−1 (i.e. when

the system is exhibiting a monostable behaviour). Then we checked the behaviour of the
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same system without sequestration with the corresponding lower total substrate and enzyme
concentrations. We found that substrate enzyme-sequestrations effects cannot be attributed to
a simple decrease of the numbers of enzyme and substrate, as the 4-site system still exhibited
tristability, as illustrated by Fig. 6.3.3. In fact, tristability persists even when 2799.9nM of the
2800nM total concentration of both the phosphatase and the kinase (together with 5599.8nM
of the 10000nM substrate concentration) are removed. This is shown in Fig. 6.3.4.

6.3.1.4 How does Substrate Enzyme-Sequestration limit multistability?

Having established that it is not the decrease in enzyme concentration numbers that
limits multistability we search for an intuitive understanding of what does. It is helpful
to consider the simpler two-site, bistable system described by Kholodenko et al [111, 51],
which corresponds to the bottom left of Fig. 6.2.1. Bistability there occurs because the
unphosphorylated substrate S0 inhibits the production of the fully phosphorylated substrate
S2 by competing with the singly-phosphorylated S1 for the kinase, while S2 inhibits the
production of S0 by competing with S1 for the phosphatase [51]. Thus, allowing S0 to bind
with the phosphatase has the effect that it is now inhibiting its own production as well by
competing with S1 for the phosphatase. As it is inhibiting its own production, it now becomes
a worse inhibitor for the production of S2. The same applies to S2 when the binding with
the kinase is permitted. Thus, Substrate Enzyme-Sequestration reduces the coupling which
caused bistability in the first place.
This explains our finding that no matter what the other kinetic parameters of the system
are, we can always calculate a minimum strength of sequestration which limits the extent of
multistability (Theorem 6.3.1) or even reduce it to one (Pratt tableau algorithm, Appendix,
Section 6.6.1.5). For the parameters of the model (as in Section 6.6.1.7) i.e. for equal con-
centrations of kinase and phosphatase (w = 1), Stot large and γK

0 << γP
1 , γP

2 << γK
1 ), we can

approximate condition 3) of Theorem 6.3.1 as αP
0

β P
0
[Stot]⪆ n

2(n+1)
kK

1
kK

0 kP
1

γP
1 γP

2
γK

0 γK
1
≈ 5×10−3nM−1

(Appendix, Section 6.6.1.2). The exact result, as also shown previously, is 4.88×10−3nM−1.
Here, kK

i =
β K

i +γK
i

αK
i

, kP
i =

β P
i +γP

i
αP

i
are the Michaelis-Menten constants, which are inversely

proportional to the rate constants for the production of enzyme-substrate intermediates from
free enzymes and substrates. This approximation is biologically meaningful and consistent
with the mechanism described above for the two-site case. The right-hand side of this
condition is smaller (making multistability less robust to substrate enzyme-sequestration)
when S1 forms KS1 intermediates more readily than PS1 intermediates (i.e. small kK

1 , large
kP

1 ), when S0 has a low affinity for forming KS0 intermediates (i.e. large kK
0 ), or when the

competition for the phosphatase is higher and phosphatase is less readily made available
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Fig. 6.3.3 Time courses from dynamic simulation of the system with different initial condi-
tions, satisfying total substrate and enzyme concentrations. a) The 4-site original system sim-

ulated with sufficient sequestration for monostability to occur (right) (αK
n

β K
n
=

αP
0

β P
0
= 3.3×10−3

nM−1). The steady state concentrations of PS0 and KS4 due to sequestration are deter-
mined (left). b) The same system is simulated with lowering the total substrate and enzyme
concentrations by those amounts. Tristability is not affected by that change.
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   10000 2799.9*2 , 2800 2799.9 , 2800 2799.9tot tot totS nM K nM P nM     

Fig. 6.3.4 Tristability is very robust to direct decrease of enzyme concentration numbers.
Tristability is preserved even when 2799.9nM from the 2800nM of the total concentration
of both the phosphatase and the kinase are removed directly(and therefore 5599.8nM from
the 10000nM of the substrate concentration) without the substrate enzyme-sequestration
mechanism.

from the intermediates than the kinase (i.e. low γP
1 and γP

2 , high γK
0 and γK

1 ).

6.3.1.5 Substrate Enzyme-Sequestration effects are not necessarily limited to S0 and
Sn or even to multi-site protein phosphorylation

Having identified that Substrate Enzyme-Sequestration introduces self-inhibition which
disrupts the mechanism that caused multistability, one can see that other inactive complexes
might also limit the extent of multistability. For example, if the intermediate complex KS2 is
allowed to form an inactive complex KKS2 by using an allosteric secondary site perhaps, it is
essentially competing with S2 for its own production. This effectively reduces the coupling
provided via KS2. A small sequestration strength (5×10−1nM−1 in Fig. 6.3.5) results in
monostability. Note though that not all inactive complexes would have this effect on the
system. For example, if KS2 is allowed to bind with phosphatase P to form PKS2, then this
does not have the same impact on the coupling via KS2. Indeed, in simulations, such an
inactive complex formation even with sequestration strengths of the order of 1× 103 (i.e.
2000 times stronger affinity than before) did not affect the tristability of the original system.
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Fig. 6.3.5 Sequestration of kinase by a kinase-substrate intermediate (KKS2 formation from
KS2) could also cause the system to lose its multistable behaviour, resulting to monostability.

The principle of enzyme competition when substrate is in excess is also prevalent in other
enzyme-sharing schemes, for example where two substrates compete for the same kinase and
phosphatase. To investigate this we took a one-site substrate model, which has been shown
in the literature to exhibit bistability [45]. Following the conditions derived in that paper,
we were indeed able to create bistability, which was then turned to monostability on the
addition of Substrate Enzyme-Sequestration of strength 1×10−1nM−1. This is illustrated
in Fig. 6.3.6. This can be explained along the same lines as before. For example, S0 can be
thought of as an inhibitor of Z1 through competition with Z0 for the kinase, while Z1 is an
inhibitor of S0 through competition with S1 for the phosphatase. The same applies to the pair
Z0 and S1 as well. When S0, for example, is allowed to compete for the phosphatase in order
to form the inactive complex PS0, it is self-inhibiting, gradually weakening the feedback
loop with Z1.

6.3.1.6 Generalisation to arbitrary processivity and sequentiality

Since the new sequestration species added to the system do not interfere with its internal
structure, we can in the same way extend the general framework of Thomson and Gunawar-
dena [163], with arbitrary processivity and sequentiality (i.e. multiple phosphorylations or
dephosphorylations can happen per reaction and in any order). The main conclusion, that
increasing the strength of either kinase or phosphatase sequestration ultimately reduces the
number of steady states to one, remains unchanged.
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Fig. 6.3.6 Substrate Enzyme-Sequestration can limit bistability in a different enzyme-sharing
mechanism as well, where two substrates with one phosphosite compete for the same kinase
and phosphatase [45].
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In this general framework the new three φ functions, are rational positive [163], allowing
a rational expression in u, Z(u), to be defined.

0 = (u−w)φ1 +[Stot](uφ2 −wφ3) =: Z(u)

where (w = [Ktot]
[Ptot]

).

It was shown that Z(u) can be expressed as R(u)
Q(u) , where Q(u) is an s-positive polynomial

(sum of positive monomials). Therefore the steady states of the system can just be found
by finding the roots of R(u), with N +1 now lying between n+1 and 2n depending on the
model[163].

R(u) = aN+1uN+1 +aNuN + ...+a1u+a0 (6.3.2)

As before, the leading coefficient aN+1 is positive and the trailing coefficient a0 is negative,
(Appendix, Section 6.6.1.6). When phosphatase sequestration is added, the polynomial
changes to

R′(u) = R(u)− [Stot]w
αP

0
β P

0
Q(u) (6.3.3)

Since more than one coefficient is changed it not possible to use the Pratt tableau directly
as before. However, since Q(u) is s-positive, and so can’t itself have any positive real roots
by the Descartes’ rule of signs, and its degree is less than that of R(u), it must be the case

that R′(u) will have precisely one positive real root for sufficiently large αP
0

β P
0

(Proof using root
locus is found in the Appendix).

The same argument applies to kinase sequestration, by relabelling the fully phosphory-
lated substrate as S0 and writing the polynomials in terms of u−1 = [P]/[K] instead.

6.3.2 Substrate Enzyme-Sequestration in the Stochastic Domain

6.3.2.1 The behaviour of Substrate Enzyme-Sequestration when the molecule num-
bers are small require a different analysis

So far we have proved that increasing the strength of Substrate Enzyme-Sequestration in
multi-site phosphorylation systems leads to the monotonic decrease of whatever multistability
would be possible if the inactive complex formation (PS0 and KSn) was not considered, no
matter what the kinetic parameters. Ultimately, this monotonic decrease leads to one steady
state. However, this analysis was done in the deterministic domain, which is technically only
valid in the limit of infinite molecule numbers. Therefore, to obtain a full understanding of
the effect of the studied Substrate Enzyme-Sequestration is essential that an accompanied
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analysis is done for the case when this assumption is not valid.
When molecule numbers are large but finite, bistability of the differential equations manifests
itself as bimodality of the stochastic system. The modes correspond to the stable steady states
of the system, and the system undergoes fluctuations within, and random jumps between,
the modes. To illustrate this we use the original tristable system presented in [163, 162]
(Appendix 6.6.1.7). Considering substrate-kinase and substrate-phosphatase sequestration,
with respective strengths αK

n
β K

n
= 1×10−3 nM−1 and αP

0
β P

0
= 1×10−3 nM−1, bistability (three

steady states, two stable) is obtained, as shown by the intersections of the contours for [Ktot]

and [Ptot] in Fig. 6.3.7 (left). The result of the stochastic simulation with the same numerical
parameters (including the ratios between enzymes and substrate) but with the parameters
converted to units of molecules instead of units of concentration is also shown in Fig. 6.3.7
(right). The system can be seen to jump between the modes.

300 substrate molecule system 

Fig. 6.3.7 Using the original tristable system [163, 162] investigating the effect of Substrate
Kinase Sequestration and Substrate Phosphatase Sequestration (with respective strengths
αK

n
β K

n
= 1× 10−3 nM−1 and αP

0
β P

0
= 1× 10−3 nM−1) in a system of 300 substrate molecules,

corresponding to the original system in a volume of 4.98 × 10−17 L. Bistability in the
deterministic domain (left) manifests itself as bimodality in the stochastic domain (right).
The simulation was done using the Gillispie Stochastic Simulation Algorithm (SSA) [56] .
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6.3.2.2 The same strength of Substrate Enzyme-Sequestration, sufficient for monosta-
bility, can lead to both monomodality and bimodality in the stochastic domain,
depending on the timescales of the individual sequestration parameters.

As we have already seen in Chapter 3, when molecule numbers are small, there may
be little relationship between the continuous deterministic and discrete stochastic analyses
[39, 107]. Understanding this type of ‘noise-induced’ bimodality is hard, yet even harder is
the prediction of when this would take place [16]. Therefore, as our results demonstrate that
Substrate Enzyme-Sequestration will ultimately lead to one steady state, it is imperative to
check whether this mechanism has the same effect in the stochastic domain.

In order to investigate the effect of enzyme sequestration by the substrate in this regime
we considered a 15-substrate molecule single phosphosite system, using the same parameters,
wherever applicable, as in the original tristable system (in a volume of 2.49× 10−18 L).
Four kinase and four phosphatase molecules (thus having the same substrate/enzyme ratios
as before) were selected. To examine whether the predicted monostability is obtained, we
use a strength of sequestration found in earlier sections to be sufficient for monostability
(αK

n
β K

n
=

αP
0

β P
0
= 5×10−3 nM−1). For the same sequestration strength, two different behaviours

emerged, depending on the timescale of the kinetic parameters used. This is different
to the deterministic case, where the steady states are only dependent on the ratio. For
β K

n = β P
0 = 1×10−1 s−1, the result was a monomodal probability distribution, agreeing with

the prediction from the deterministic analysis. However, when β K
n = β P

0 = 1×10−3 s−1, for
the same sequestration strength, a bimodal behaviour emerged, as illustrated in Fig. 6.3.8.
Note that, as shown in Appendix Section 6.6.1.7, β P

i and β K
i are of the order of 10−3 to 10+0.

This behaviour shows that the extra mode created is dependent on the time required to get
out of that state i.e. the dwell time. This is because the free kinase is completely depleted, as
it is trapped in intermediate complexes, leaving only free phosphatase around. In the absence
of kinase and in the presence of just phosphatase, the substrate is kept in a mode where it is
only unphosphorylated. This mechanism cannot be represented in the deterministic analysis,
as the concentration of the enzymes never becomes exactly zero.
Nevertheless, this mechanism could serve a specific function when a system requires different
behaviour when its size expands, as we are later going to see in Chapter 7. In smaller sized
systems, it could be beneficial that both unphosphorylated and phosphorylated substrate
molecules are available, triggering different cascades of reactions. When the system becomes
large however, one of the two mechanisms might be more beneficial.
Bimodality is induced when the kinase becomes extinct for a period of time, allowing the
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Fig. 6.3.8 In the stochastic domain, the same strength of sequestration can produce both
monomodal (left), and bimodal (right) behaviour, depending on the individual timescales of
the sequestration parameters. The ratio, unlike in the deterministic case, is not sufficient to
deduce behaviour.
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phosphatase without competition to completely dephosphorylate the available substrates.
This mechanism does not appear to be dependent on the number of available phosphosites,
therefore higher orders of multimodality due to this mechanism are not expected (and we
were unable to find any). Nevertheless, it is possible to induce it with only one available
phosphosite, impossible when the system is analysed deterministically , as we show in the
next section using the framework developed in Chapter 4. This provides a methodology to
characterise parameter regimes where bimodality can be expected.

6.4 Bimodality is feasible even when only one phosphosite
is available

In the previous section we noted that Substrate Enzyme-Sequestration and manipulation
of dwell times is enough to create bimodality. This intuition is tied very well with the
stochastic framework developed in Chapter 4 which can allow bimodality be investigated in
a methodological approach. Here, we use that framework to find the parameter regime where
bimodality can be induced in the presence of only one available phosphosite.
To remind ourselves, an accurate stochastic framework that does not depend on simulations
is the discrete Chemical Master Equation, represented by a discrete state continuous time
Markov process [108]. The microstate of the system involving n species is defined as x(t) =
{x1(t),x2(t), ...,xn(t)} ∈ Nn. A microstate is therefore describing a possible combination of
the different population numbers of each molecular species in the system.

We have already seen that the stationary probability distribution Ps of a finite state
Chemical Master Equation can be calculated by solving the following equation

APs = 0 (6.4.1)

The analysis of a stochastic system using the Chemical Master Equation framework
requires firstly the conversion of the reaction scheme into a microstate grid. Fig. 6.4.1
shows how this is done for a phosphorylation system in the illustrative example of just two
substrate molecules for a system with a single phosphosite. This example assumes excess
enzyme, therefore the microstates include all possible permutations, as there is no extra
constraint. When substrate is in excess (e.g. there is only one kinase molecule and two
substrate molecules), the microstates representing enzyme complexes (e.g. KS0) greater than
the total number of the corresponding enzyme (e.g. K) have to be deleted from the grid, as it
is now not possible to have two KS0 molecules.
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Fig. 6.4.1 This illustrative example with just two substrate molecules and one available
phosphorylation site shows how a reaction scheme is converted to a grid of microstates. This
example assumes excess enzyme, therefore the microstates include all possible permutations,
as there is no extra constraint.

Defining AD
j, j to be the sub-matrix formed after deleting the jth row and jthcolumn from

matrix A and Cj =−AD
j, j, in Chapter 4 we saw that we can use the ratio of

λmin

(
CT

j

)
|a j j| to

investigate the effect of the different parameters on the formation of the stationary probability
distribution. Note that as this was just derived from the lower bound, this is used as an
indication/ heuristic for stationary probability distribution design purposes. The parameters
found by this heuristic are then tested by explicitly solving the Chemical Master Equation,
to verify that the stationary probability distribution is indeed the one desired. The sum of

these ratios
λmin

(
CT

j

)
|a j j| , to be referred from now on as characterisation ratios, of the microstates

corresponding to a particular substrate state can provide a fast and relatively accurate measure
of how the stationary probability distribution for the substrate states varies with different
macroscopic parameters (reaction rates). The same 15-substrate molecule single phosphosite
system was investigated as before (in a volume of 2.49 × 10−18 L), yet with only one
phosphosite. Four kinase and four phosphatase molecules were again selected. This provides
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us, as expected from the deterministic analysis, with only one mode at (S0,S1) = (11,0).
This is illustrated in Fig 6.4.2.

Fig. 6.4.2 No sequestration leads to monomodality for a 15-substrate molecule single
phosphosite system, with four kinase and four phosphatase molecules. This is consistent the
monostability expected using the deterministic analysis.

The tool developed allows the investigation to take place without considering all the
substrate states (S0,S1) of the system. Instead, we can initially focus in just some of them. As
the original mode (S0,S1) = (11,0) is found at the boundary S1 = 0, we include the boundary
states (S0,S1) = (6,0)− (11,0), in our analysis. As we aim for bimodality, we also include
their reciprocal states on the other boundary S0 = 0, (S0,S1) = (0,6)− (0,11). Finally, we
also include some states in between to establish that they do not become more dominant than
the ones on the boundaries, e.g. (S0,S1) = (4,3) or (3,4).

The first step is to set all the parameters of the reaction scheme, as shown in Appendix,
Section 6.6.1.7, letting only the sequestration parameter under investigation to be variable.
This is α , as shown in the reaction scheme of Fig. 6.4.3. Note that we vary this parameter
(which captures the dwell time of the extra mode) instead of the ratio of sequestration strength,
following the observation of Fig. 6.3.8. The non-sequestration parameters are the same as
the ones in the multisite protein phosphorylation system by Thomson and Gunawardena
[163, 162].
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Fig. 6.4.3 One phosphosite reaction scheme with inactive complexes PS0 and KS1 added

The next step is to create a design table (bottom left of Fig 6.4.4) using the sum the

characterisation ratios
λmin

(
CT

j

)
|a j j| for the M microstates corresponding to each substrate state

as we vary α . The design table allows us to estimate the region of values of α that can allow
bimodality. The result is shown in Fig 6.4.4, where it is found that at α = 10−2, bimodality
can be obtained, as verified by explicitly finding the stationary probability distribution (by
solving the Chemical Master Equation), creating modes at (S0,S1) = (8,0),(0,7) (bottom
right). As mentioned before, the numerator of the characterisation ratio, which is the
minimum eigenvalue of the developed WCDD M-matrix, provides a network input metric,
whereas the denominator, |a j j| represents the local output propensities of the particular
microstate. The top left and top right design tables illustrate the sum of the numerators and
the sum of the inverse of the denominators of the characterisation ratios respectively. From
these we can see that the main driver making (S0,S1) = (8,0) a mode is the effect of the
inputs on the network-level, whereas the main driver making (S0,S1) = (0,7) a mode is the
low local output propensities of its corresponding microstates.

6.5 Conclusion

In this chapter we first identified the effect of enzyme docking, and the Substrate Enzyme-
Sequestration it implies, in the presence of excess substrate and in the regime of large
molecule numbers, proving that increasing the strength of sequestration the extent of multista-
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Fig. 6.4.4 The sum of the characterisation ratios corresponding to the microstates of different
substrate states under investigation (bottom left) can be used to investigate the parameter
regime of α for bimodality to occur. The top left and top right graphs illustrate the network
input and local output effects, allowing for greater insights behind the creation of the two
modes. The main driver making (S0,S1) = (8,0) a mode is the effect of the inputs on the
network-level, whereas the main driver making (S0,S1) = (0,7) a mode is the low local
output propensities of its corresponding microstates.
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bility is limited and ultimately reduced down to one steady state. Secondly, we explored the
mechanism’s effect in the presence of small molecule numbers. For the latter, the analysis was
naturally placed in the stochastic domain. For that, we note that the sequestration strength,
represented as a ratio, cannot provide acccurate predictions by itself of the behaviour of the
system. We found that the individual dwell times as compared to the spectral properties of
the rest of the network need to be considered to identify the behaviour of sequestration. This
observation is formalised by the mathematical framework presented in Chapter 4, allowing
for a methodology in identifying when bimodality is feasible in the small numbers regime,
even when bistability is even deemed as impossible using deterministic analysis.
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6.6 Appendix

6.6.1 Deterministic Framework

6.6.1.1 Theoretical development of the conditions on limiting the extent of multista-
bility

Lemma 6.6.1. If 1

1+αKn
βKn

[Stot]
< 2(n+1)an+1an−1

na2
n

or 1

1+
αP

0
βP

0
[Stot]

< 2(n+1)a0a2
na2

1
then the number of real

steady states is less than or equal to n-1.

Proof. Suppose that 1

1+αKn
βKn

[Stot]
< 2(n+1)an+1an−1

na2
n

and that all n+1 roots of Eq 6.3.1 are real.

Let xi represent the ith root of Eq. 6.3.1. Then by the Vieta Formulae [59],(
a′n

a′n+1

)2
=

(
∑
i

xi

)2

=∑
i

x2
i +2 ∑

i< j
xix j

⇒∑
i

x2
i =

(
a′n

a′n+1

)2
−2 ∑

i< j
xix j

⇒∑
i

x2
i =

(
a′n

a′n+1

)2
−2a′n−1

a′n+1

Then by the Quadratic Mean - Arithmetic Mean and the Triangle Inequalities,√
∑
i
x2

i

n+1 ≥
∑
i
|xi|

n+1 ≥
|∑

i
xi|

n+1
⇒n

2 ∑
i

x2
i ≥∑

i< j
xix j

Using the obtained Vieta Formulae,
n
2

[(
a′n

a′n+1

)2
−2a′n−1

a′n+1

]
≥ a′n−1

a′n+1

⇒a2
n ≥ 2a′n+1an−1

(n+1
n

)
Expressing it in terms of the old coefficients,
a2

n ≥ 2an+1an−1

(
1+[Stot]

αK
n

β K
n

)(n+1
n

)
⇒ 1

1+αKn
βKn

[Stot]
≥ 2(n+1)an+1an−1

na2
n

which is a contradiction. Therefore the roots xi cannot all

be real. Thus, due to the expectation of at least one conjugate pair of complex roots, the
maximum possible number of positive real roots is less than or equal to n−1.
Similarly, 1

1+
αP

0
βP

0
[Stot]

< 2(n+1)a0a2
na2

1
is proved by considering the real roots of P(v), v = 1

u ,

P(v) = a′n+1 +anv+ ...+a1vn +a′0vn+1.

Note that instead of using the Vieta formulae, one could also use a general result proved
using differential calculus in Section 4.3 of Hardy’s ‘Inequalities’ book [69].
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Theorem 6.6.2. If any of the following conditions are satisfied, then the number of positive
steady states will be no more than n−1 if n is even, or n−2 if n is odd:

1. an−1 ≤ 0 and a2 ≥ 0

2. an−1 > 0 and αK
n

β K
n
[Stot]>

na2
n−2(n+1)an+1an−1
2(n+1)an+1an−1

or

3. a2 < 0 and αP
0

β P
0
[Stot]>

na2
1−2(n+1)a0a2
2(n+1)a0a2

Proof. From Eq. 6.3.1, an+1 > 0 and a0 < 0.
For even n, there is a maximum of an even number (n+ 2) of coefficients, therefore a
maximum of n+ 1 sign changes is possible. As a0 < 0, then if a2 ≥ 0 then the last three
coefficients, a0, a1 and a2, can exhibit a maximum of one sign change. Knowing that there
are a maximum of n coefficients from an+1 to a2, n being even and an+1 > 0, a2 ≥ 0, then
they can exhibit a maximum of n− 2 sign changes. Therefore the total number of sign
changes that can be exhibited is equal to n−1. From the Descartes’ rule of signs [174] the
result follows immediately. Similarly for an−1 ≤ 0.

For odd n, there is a maximum of an odd number (n+2) of coefficients, and as an+1 > 0
and a0 < 0, a maximum of n sign changes is possible. As a0 < 0, then if a2 ≥ 0 then the last
three coefficients, a0, a1 and a2, can exhibit a maximum of one sign change. Similarly for
the first three coefficients, an+1 > 0, an and an−1, for an−1 ≤ 0. Knowing that there are a
maximum of n−2 coefficients from an−1 to a2, n being odd, and an−1 ≤ 0, a2 ≥ 0, then they
can exhibit a maximum of n−4 sign changes. Therefore the total number of sign changes
that can be exhibited is equal to n−2. From the Descartes’ rule of signs the result follows
immediately.

The last two parts of the Theorem are directly derived from Lemma 6.6.1. For odd n, as
an+1 > 0 and a0 < 0, there can be a maximum of n sign changes. The next number of sign
changes possible is n−2. Therefore, from the Descartes’ rule of signs it is not possible to
have n−1 positive roots, as the parity of positive real roots and number of sign changes must
be the same. The maximum therefore number of positive roots drops to n−2.

6.6.1.2 Representing the derived conditions for limitation of multistability with ki-
netic parameters

To obtain a better intuition of the conditions derived in the previous section, we expand
one of them in its corresponding kinetic parameters. Then we try to approximate the
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expression until we obtain a meaningful simple form. The approximation is valid for the
parameters of the model (as in Section 6.6.1.7) i.e for equal concentrations of kinase and
phosphatase (w = 1), Stot being large and γK

0 << γP
1 , γP

2 << γK
1 ). The condition we use

here s the one associated with the inactive complex PS0. The condition for the limitation of
multistability in that case is that a2 < 0 and αP

0
β P

0
>

na2
1−2(n+1)a0a2

2(n+1)a0a2[Stot]
.

a2
1

a0a2
=

αP
2 γP

2 (β
K
1 +γK

1 )(αP
1 γP

1 (β
K
0 +γK

0 +aK
0 [Stot ])−wαK

0 γK
0 (β P

1 +γP
1 +aP

1 [Stot ]))
2

wαK
0 αP

1 γK
0 γP

1 (β
K
0 +γK

0 )(β K
1 +γP

1 )(−αP
2 γP

2 (β
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=
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2
γK

0 γK
1
≈ 5×10−3nM−1

The exact result is 4.88×10−3nM−1.

6.6.1.3 Results based on the Pratt’s tableau

Given any real polynomial, P(x) = ∑
n
j=0 c jx j, a family of upper bounds on the number of

roots in (0,∞) can be obtained using a Pratt tableau [137]. This can be created as follows:
Start with

cn+1− j, j = c j, 0 ≤ j ≤ n
ci,0 = c0 for all i
and c0, j = 0 for j > n
Then by successive additions,

ci, j = ci, j−1 + ci−1, j for i ≥ 1, j ≥ 1, i+ j > n+1

Definition 6.6.3. [137] An allowed path is any path through the tableau of the ci, j going
from any ci,0 to any c1, j with j ≥ n by horizontal, vertical and diagonal steps.
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Theorem 6.6.4. [137] The number of changes of sign (ignoring 0’s) along any allowed path
through the tableau generated by the coefficients of P(x) is an upper bound on the number of
roots of P(x) in the relevant domain (0,∞), including multiplicities.

Fact 6.6.5. In the Pratt’s tableau of any real polynomial, P(x) = ∑
n
j=0 c jx j, the coefficient

of c j in the summation required for any entry k in the column j of the tableau is equal to 1.

Theorem 6.6.6. Let row m be the first row in which all elements of columns 0 to n− 1 of
the Pratt tableau of any real polynomial P(x) = ∑

n
j=0 c jx j with c0 > 0 and cn < 0 become

positive. Let y be the nth column of the tableau considering the first (m−1) rows. Then if
δ ≥ −max(y)

cn
, then the real polynomial P(x)+cnδ has fewer than 2 roots in the (0,∞) domain.

Proof. Using the Pratt’s tableau, if c0 > 0, all rows will eventually become positive due to
the successive additions ci, j = ci, j−1 + ci−1, j,i ≥ 1, j ≥ 1. Let the mth row denote the row
in which all elements of columns 0 to n− 1 become positive. If there is no sign change
change in the nth column up to the (m−1)th row, then the upper bound obtained by Theorem
6.6.4, is equal to one, as there will be no sign change across the mth row from cm,0 to cm,n−1

before having one sign change moving from cm,n−1 to c1,n. Creating an initial Pratt tableau
of P(x) = ∑

n
j=0 c jx j with c0 > 0 and cn < 0 and letting y be the tableau’s nth column up to

the (m−1)th row, then
From Fact 6.6.5,

max(nthcolumn) = max(y) = cn +V , where V ∈ R

For the nth column up to the (m− 1)th row of the Pratt tableau of the real polynomial
P(x)+ cnδ to always be negative or zero,

cn(1+δ )+V ≤ 0,
cn(1+δ )≤−V
cn(1+δ )≤ cn −max(y)
⇒ δ ≥ −max(y)

cn
, as cn < 0.

Corollary 6.6.7. Let row m be the first row in which all elements of columns 0 to n−1 of
the Pratt tableau of any real polynomial P(x) = ∑

n
j=0 c jx j with c0 < 0 and cn > 0 become

negative. Let y be the nth column of the tableau considering the first (m−1) rows. Then if
δ ≥ −min(y)

cn
, then the real polynomial P(x)+cnδ has fewer than 2 roots in the (0,∞) domain.

Proof. Considering the real roots of −P(x), the result follows directly from Theorem 6.6.6.
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Corollary 6.6.8. Let row m be the first row in which all elements of columns 0 to n−1 of
the Pratt tableau of any real polynomial P′(x) = ∑

n
j=0 cn− jx j with cn > 0 and c0 < 0 become

positive. Let y be the nth column of the tableau, considering the first (m−1) rows. Then if
δ ≥ −max(y)

c0
, then the real polynomial P(x) = ∑

n
j=0 c jx j + c0δ has fewer than 2 roots in the

(0,∞) domain.

Proof. As the relevant domain of roots is (0,∞), considering the real roots of P′(v), v = 1
x

the result follows directly from Theorem 6.6.6.

Theorem 6.6.9. For any δ K ≥ 0 there exists δ P, directly computable from the rate constants,
such that if αK

n
β K

n
[Stot] = δK and αP

0
β P

0
[Stot] ≥ δ P then the polynomial R′(u) has precisely one

positive root, corresponding to one steady state. Similarly, for any δ P ≥ 0 there exist a δK

with the same properties.

Proof. Comparing Corollary 6.6.8 with Eq. 6.3.1, cn = an+1

(
1+[Stot]

αK
n

β K
n

)
. Setting δ K =

[Stot]
αK

n
β K

n
≥ 0, then cn > 0.

Let c0 = a0. Then R′(u) in Eq. 6.3.1 can be expressed as R(u)+ c0δ P, where c0 < 0.

Then it follows directly from Corollary 6.6.8 that a δ P = [Stot]
αP

0
β P

0
≥ −max(y)

c0
can be calculated

with finite summations from the Pratt tableau, which guarantees that there is at most one real
positive root.
In a real polynomial P(x) = ∑

n
j=0 c jx j with cn > 0 and c0 < 0, the number of sign changes

has to be odd. From the Descartes’ rule of signs the parity of positive real roots and the
number of sign changes must be the same. The minimum therefore number of positive roots
is 1. Therefore, if the conditions are satisfied there is precisely one positive real root.
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6.6.1.4 Algorithm for finding δ K using the Pratt tableau

Result: Output δ K

Input real polynomial P(x) = ∑
n
j=0 c jx j with c0 < 0 and cn > 0;

Multiply all coefficients c j by -1;
cn+1− j, j = c j, 0 ≤ j ≤ n;
k = 1;
while (any ck−1,1:n−1 < 0) OR (k−1 < n) do

if (k > n) then
ck,0 = c0 ;

end
for j = 1 : n do

if (k+ j)> n+1 then
ck, j = ck, j−1 + ck−1, j

end

end
k = k+1;

end
m= max j such that c j,n−1 < 0;
y = c1:m,n;

δ K = −max(y)
cn

;
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6.6.1.5 Algorithm for finding δ P using the Pratt tableau

Result: Output δ P

Input real polynomial P(x) = ∑
n
j=0 a jx j with a0 < 0 and an > 0;

Flip coefficients such that cn− j = a j;
cn+1− j, j = c j, 0 ≤ j ≤ n;
k = 1;
while (any ck−1,1:n−1 < 0) OR (k−1 < n) do

if (k > n) then
ck,0 = c0 ;

end
for j = 1 : n do

if (k+ j)> n+1 then
ck, j = ck, j−1 + ck−1, j

end

end
k = k+1;

end
m= max j such that c j,n−1 < 0;
y = c1:m,n;

δ P = −max(y)
a0

;

6.6.1.6 Generalisation of results

In the general framework of arbitrary processivity and sequentiality, [Si] = [S0]ri(u) [163].
ri(u) is a rational function of u which was proved to always be well defined and positive in
the s-positive sense. A polynomial is said to be sum positive (s-positive) if it is a sum of
of positive monomials [163]. A rational function is s-positive if it can be represented as a
fraction of two s-positive polynomials.

In this general framework, the three φ (u) functions, all being s-positive, are defined as:

φ1(u) =
n
∑

i=0
ri(u)

φ2(u) =
n−1
∑

i=0

ri(u)
kK

i

φ3(u) =
n
∑

i=1

ri(u)
kP

i

(6.6.1)
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Therefore, a rational expression in u, Z(u), can be defined, where Z(u) = R(u)
Q(u) . Q(u) is

also s-positive.

0 = (u−w)φ1(u)+ [Stot](uφ2(u)−wφ3(u)) =: Z(u) (6.6.2)

where (w = [Ktot]
[Ptot]

).
From Eq. 6.6.1, if all three φ (u) functions are expressed with the same least common

denominator, which is equal to Q(u), then

φ1(u) =
R1(u)
Q(u)

φ2(u) =
R2(u)
Q(u)

φ3 =
R3(u)
Q(u)

(6.6.3)

Therefore R(u) can be expressed as:

0 = (u−w)R1(u)+ [Stot](uR2(u)−wR3(u)) =: R(u) (6.6.4)

Thus, R(u) can be expressed as:

R(u) = aN+1uN+1 +aNuN + ...+a1u+a0 (6.6.5)

It is clear from Eq. 6.6.1 that order(R1(u)) ≥ order(R2(u)). Similarly, the degree of R1(u)
is no less than the degree of R3(u). From Eq. 6.6.4, it is evident that aN+1 > 0. Conversely,
a0 < 0.

Extending Eq. 6.6.5 to include sequestration of the phosphatase by S0 simply requires
adding r0

kP
0

to φ3 or, equivalently, as r0 = 1 from [Si] = [S0]ri(u), 1
kP

0
Q(u) to R3 in Eq. 6.6.4.

Thus, R′(u) = R(u)− [Stot]w
αP

0
β P

0
Q(u) with the degree of Q less than that of R. As αP

0
β P

0
is

increased, deg(Q) roots of R′(u) tend to the roots of Q(u), none of which are real and positive
(since Q has all positive coefficients). The remaining m roots (where m = deg(R)−deg(Q))
tend to infinity at angles which are multiples of 2π

m by a standard root locus argument [42].

Thus, for sufficiently large αP
0

β P
0

, there will be just one root on the positive real axis.



6.6 Appendix 107

6.6.1.7 Parameters of multisite protein phosphorylation systems under investigation

i = 0 i = 1 i = 2 i = 3
αK

i (nM−1sec−1) 8.12×10−3 1.02×10−1 8.12×10−3 1.02×10−1

β K
i (sec−1) 1.60×10−2 2.04×10−1 1.60×10−2 2.04×10−1

γK
i,i+1(sec−1) 1.00×10−1 1.00×10+1 1.00×10−1 1.00×10+1

αP
i+1(nM−1sec−1) 1.12×10−1 2.64×10−3 6.51×10−1 2.85×10−3

β P
ι+1(sec−1) 2.24×10−1 5.00×10−3 1.30×10+0 6.00×10−3

γP
i+1,i(sec−1) 1.10×10+1 1.70×10−2 6.39×10+1 1.36×10−1

kK
i (nM) 1.43×10+1 1.00×10+2 1.43×10+1 1.00×10+2

kP
i+1(nM) 1.00×10+2 8.33×10+0 1.00×10+2 5.00×10+1

λι 6.38×10−2 5.05×10+1 1.01×10−2 3.67×10+1

[Stot](nM) 1.00×10+4

[Ktot](nM) 2.80×10+3

[Ptot](nM) 2.80×10+3

Table 6.1 The parameters of the original multisite protein phosphorylation system by Thom-
son and Gunawardena [163, 162], also used in our analysis

Stochastic Parameter Stochastic Value Equivalent Deterministic Parameter Deterministic Value
Sequestration parameters

α(sec−1) 1.0×10−2 β P
0 (sec−1) 1.0×10−2

β (molecule−1sec−1) 1.6×10−2 αP
0 (nM−1sec−1) 2.4×10−5

κ(molecule−1sec−1) 1.0×10−1 αK
1 (nM−1sec−1) 1.5×10−4

λ (sec−1) 1.0×10−1 β K
1 (sec−1) 1.0×10−1

Non-sequestration parameters
γ(molecule−1sec−1) 5.4133×100 αK

0 (nM−1sec−1) 8.12×10−3

δ (sec−1) 1.6×10−2 β K
0 (sec−1) 1.6×10−2

ε(sec−1) 1.0×10−1 γK
0,1(sec−1) 1.0×10−1

η(molecule−1sec−1) 7.47×10+1 αP
1 (nM−1sec−1) 1.12×10−1

θ(sec−1) 2.24×10−1 β P
1 (sec−1) 2.24×10−1

ζ (sec−1) 1.1×10+1 γP
1,0(sec−1) 1.1×10+1

Table 6.2 The stochastic parameters used in the single phosphosite system (for a Volume =
2.49×10−18 L). The non-sequestration parameters are the same as the ones in the multisite
protein phosphorylation system by Thomson and Gunawardena [163, 162]
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6.6.1.8 Enzyme-sharing scheme parameters

Parameter Value Parameter Value
γs(nM−1sec−1) 1×10−5 γz(nM−1sec−1) 1×10−3

δs(sec−1) 1×10−3 δz(sec−1) 1×10−4

εs(sec−1) 5×10−2 εz(sec−1) 1×10−2

ηs(nM−1sec−1) 1×10−2 ηz(nM−1sec−1) 1×10−1

θs(sec−1) 1×10−3 θz(sec−1) 1×10−1

ζs(sec−1) 5×10−5 ζz(sec−1) 2×10−4

[Stot ](nM) 2×104 [Ptot ](nM) 3×102

[Ztot ](nM) 1.8×104 [Ktot ](nM) 1×102

Table 6.3 The parameters for the enzyme sharing scheme of Fig. 6.3.6



Chapter 7

Substrate Enzyme-Sequestration
adapted for CaMKII and a potential role
in synaptic plasticity

In Chapter 6, we noted that enzyme docking and the consequent Substrate-Enzyme
Sequestration can induce bimodality, depending on the system size. In this chapter, we
adapt that framework for the particular characteristics of Ca2+/calmodulin-dependent protein
kinase II (CaMKII), a key kinase involved in synaptic plasticity, whose mechanisms remain
elusive, speculating that such a mechanism could potentially explain some of the experimental
findings.

7.1 Introduction

The mechanisms that underlie how cognitive information is encoded in the brain are
still a mystery [113]. In 1949, Hebb suggested that the connections between two neurons
might be strengthened if the neurons fire simultaneously [72]. The ability of synapses to
strengthen or weaken over time is called synaptic plasticity. It is initiated by changes in
dendritic spine Ca2+ concentration driven by presynaptic and postsynaptic neuronal activity.
The Ca2+ signals are detected, triggering a biochemical cascade that leads to potentiation or
depression of synaptic efficacy [128].
Dendritic spine size is correlated with the strength of the synapse it hosts [114] and small
spines exhibit greater [Ca2+] changes during synaptic activation than large spines [181,
127, 153]. Furthermore, Matsuzaki et al [115] found that spine size is regulated during
synaptic plasticity as well as that small spines are preferential sites for long-term potentiation
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induction.
In these mechanisms, the presence of Ca2+/calmodulin-dependent protein kinase II (CaMKII)
is found to be critical [55].
CaMKII is a serine/threonine kinase holoenzyme, consisting of 12 subunits, being the most
abundant protein in the post-synaptic density (PSD), a structure that defines a neuronal
subcompartment critical for plasticity. Once activated by calcium/calmodulin, the enzyme
can be autophosphorylated, making the CaMKII activity persist even after the calcium
concentration falls to baseline levels [101]. In fact, since the introduction of the idea that a
kinase with the ability of phosphorylation coupled with a phosphatase can act as a molecular
switch [102] and the subsequent discovery of such a kinase in abundance in neurons [119],
CaMKII became a likely candidate for being the ‘memory molecule’. In particular, CaMKII
is strongly associated with long-term potentiation (LTP) (the long-lasting increase in the
efficiency of glutamatergic synaptic transmission) leading to synaptic plasticity [74].

The findings from single-molecule tracking studies illustrate that CaMKII is generally
found in subpopulations [105], interacting with several proteins dependent on its particular
location. Estimates have shown that in the entire average spine PSD there are only 90 to
240 holoenzymes [47]. Therefore, subpopulations of CaMKII can even be in the orders of
tens of holoenzymes, placing any potential analysis of the system into the stochastic regime.
This, along with the finding that its associated phosphatase, phosphatase-1 (PP1), can act on
several phosphorylation sites of CaMKII and not just the autophosphorylating one (T286)
[122], motivates us to investigate whether enzyme docking, as presented in Chapter 6, could
provide an explanation of the experimental findings regarding CaMKII activity.

7.2 Bistable models of CaMKII in literature

Initial models of CaMKII suggested that CaMKII autonomous activity could be stable
enough to maintain long-term potentiation and memories for a lifetime [103, 182, 104], while
a later model suggested that CaMKII could be active as a consequence of T286 phosphory-
lation for years [118]. The model by Lisman and Zhabotinsky [182, 104] considered many
key biochemical properties of CaMKII holoenzymes and the phosphatase-1 (PP1) enzymes
that dephosphorylate them. It was shown that an interplay between autophosphorylation
of CaMKII holoenzymes and dephosphorylation by PP1 molecules can give rise to two
stable states of phosphorylation at basal levels of free [Ca2+]. This bistability has recently
been criticised, even being described as ‘delicate’ [117]. It has been suggested that the
binding of CaMKII to the NR2B subunit of N-methyl-D-aspartate receptors (NMDARs)
may help CaMKII maintain their activity due to blocking PP1 from reaching CaMKII’s
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autophosphorylated site [122], yet there is more CaMKII than NMDARs in the PSD. In
fact, Yasuda et al, using fluorescence resonance energy transfer (FRET) technology, found
that LTP induction leads only to transient increase of CaMKII activity, by about 1 min
[97, 27], further suggesting that CaMKII activation is required for LTP induction, but not
LTP maintenance. This timescale is also constistent with the time found for the volume size
of the spine to reach maximum size [97].

7.3 Can Substrate Enzyme-Sequestration models be adapted
to incorporate the particular characteristics of CaMKII?

With many models of CaMKII published, others being more detailed [182, 38, 106], than
others [117], we can easily see that we are far from consensus on the mechanisms guiding
CaMKII bistability and how this could be consistent with the experimental findings. What
captured our attention, especially in the light of the results of Chapter 6, are the findings that
the timescale of spine volume size is of similar order to that of CaMKII activation and that
small spines are preferential sites for long-term potentiation induction.
Therefore a mechanism which would simultaneously account for CaMKII activity and for the
spine volume size could be possible. As we have described in the previous chapter, Substrate
Enzyme-Sequestration is a mechanism able to induce bistability/bimodality and is indeed
dependent on the system size.
CaMKII, however, acts both as the kinase and as the substrate by autophosphorylating
itself. This requires a different model than the one presented in Chapter 6. Considering PP1
to be the phosphatase acting on the autophosphorylated active autonomous CaMKII*, we
develop a simplified model, presented in Fig 7.3.1. The inactive complex due to enzyme
docking is CaMKII.PP1. This inactive complex could be formed while PP1 is acting on other
phosphorylated sites of CaMKII, something that has been shown experimentally [79, 33].

7.4 Substrate Enzyme-Sequestration can induce bimodal-
ity and consequently activation of CaMKII, which be-
comes more difficult as system size expands

In order to identify whether bimodality can be induced by this adaptation of Substrate
Enzyme-Sequestration, the model was stochastically simulated (by the Gillispie Exact
Algorithm), using, wherever possible, parameters of the same order of magnitude as those
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CaMKII CaMKII* 

CaMKII.PP1 

CaMKII*.PP1 



 

 



Fig. 7.3.1 Substrate Enzyme-Sequestration model adapted for CaMKII
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used in the literature [118, 117]. The parameters used are found in the Appendix. The model
assumes that CaMKII is found in excess of the phosphatase, PP1, as in [118].

For a system comprised by 20 CaMKII molecules and 6 PP1 enzymes, we performed
exact stochastic simulations using the Gillispie Exact Algorithm. In Fig. 7.4.1, we can
see that indeed bimodality can be induced by this adapted version of Substrate Enzyme-
Sequestration. The dominant mode is (CaMKII, CaMKII*) = (0,14). Furthermore, as we can
also see from Fig. 7.4.1, the dwell times at this modal state are approximately exponentially
distributed with a mean of 55 seconds. This is of the same timescale as the experimentally
found activation time of approximately 1 minute [97, 27].

Nevertheless, as we can also see from Fig. 7.4.1, when CaMKII is allowed to autophos-
phorylate (which happens after a calcium influx) and is found in the low molecule number
regime, the system tends to move to the modal active state. This could add robustness to the
system, as it would mean that the system would actually get deactivated only when the spine
reaches the aimed size (while approaching the deterministic regime) and it would not be so
dependent on the actual dwell time spent at a particular state. Therefore, it is possible that
the experimentally found activation time is due to the time required for the enlargement of
the spine.

In Chapter 6 we saw that bimodality is induced in these systems because of an extinction
of a species. Bimodality in this case is induced because all of the phosphatase, PP1, is used in
intermediate complexes. When the number of free phosphatase PP1 molecules becomes zero,
the transition rates which are directly proportional to the number of phosphatase molecules
(as they are based on mass kinetic principles) become zero, as illustrated graphically in Fig.
7.4.2.
As the system size expands, the system approaches monomodality that is expected to seen
via deterministic analysis.
Note that this is type of noise-induced temporary extinction of one species due to enzyme
sequestration by the substrate, is very different to the boundary bistability that can be de-
scribed by deterministic analysis [170, 125]. In deterministic models showing boundary
bistability [170], a saddle-node bifurcation is present, with population going extinct if certain
parameters fall below a particular threshold. Unlike noise-induced extinction phenomena,
this extinction will persist. Furthermore, the deterministic prediction, as it is only valid in the
regime of large molecule numbers [57], only depends on the kinetic parameters as well as on
the concentrations of the relevant species. This means that deterministic analysis will always
provide us with the same prediction, regardless of the system size. For example, in the model
of CaMKII described in this chapter, deterministic analysis always predicts one stable steady
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a) 

b) c) 

Fig. 7.4.1 a) Time-series illustrating the bimodality achieved due to the PP1 Sequestration by
CaMKII. b) The state with 14 active and zero inactive CaMKII molecules is the dominant
mode of the corresponding probability distribution. c) The dwell times at the modal state are
approximately exponentially distributed with a mean of 55 seconds.
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PP1 = 0 
CaMKII CaMKII* 
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Fig. 7.4.2 As in Chapter 6, the induced bimodality occurs due to the extinction of a species.
This species here is PP1.

a) b) 

Fig. 7.4.3 a) For an expanded system with 1000 CaMKII and 300 PP1 molecules, monomodal-
ity is instead obtained. b) As the system size expands and bimodality is lost, the ratio of
CaMKII*/(Total CaMKII) drops, as expected.
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state, which we only achieve when we reach the regime of large molecule numbers.
This is shown in Fig. 7.4.3, where the system is simulated with 1000 CaMKII and 300 PP1
molecules, keeping the same ratio. The stochastic parameters are also updated, assuming the
same concentrations of CaMKII and PP1 are found in a greater volume (i.e. the deterministic
rate constant is kept constant). It can be seen that now the system exhibits monomodality,
with the amount of inactive CaMKII being greater than that of active CaMKII*. In Fig. 7.4.3
(b), we can indeed see that as the system size expands and bimodality is lost, the ratio of
CaMKII*/Total CaMKII drops, as expected. This is consistent with the experimental finding
that small spines are more easily LTP induced [181, 127, 153]. In the case that CaMKII
indeed functions in this way, this could be an example of what we hinted in Chapter 6, i.e.
that Substrate Enzyme-Sequestration could serve a specific function when a system requires
different behaviour when its size expands. This is summarised in Fig. 7.5.1, where the
suggested mechanism is illustrated. The CaMKII system could be brought to the active mode
via an external signal (e.g. a calcium influx), thus promoting spine enlargement, the size
of which, Ω, would act as negative feedback on the activation of CaMKII. Interestingly,
this type of negative feedback is obtained due to the transition from the stochastic to the
deterministic regime as the system size expands.

7.5 What can we learn from this model?

Regardless of whether this model accurately describes the process of CaMKII activation
or not, recognising that such simple mechanisms can exhibit the experimentally observed
characteristics of CaMKII is important on its own right for two reasons. Firstly, its great
simplicity contrasts with the well-known and established deterministic bistable model by
Lisman and Zhabotinsky [182, 104, 147], which is essentially a multisite phosphorylation
model (the general form of which we investigated in Chapter 6) with 10 available phospho-
sites [147]. In that model, it is the multisite protein phosphorylation mechanism that creates
the deterministically necessary positive feedback for bistability to occur, whereas we show
that when the system is analysed stochastically, noise-induced temporary sequestration of
the enzyme can induce bimodality even with one available phosphosite.
Secondly and most importantly, however, we illustrate the ability of such simple stochastic
systems to leverage the system expansion as a feedback mechanism. We show that the
transition of the CaMKII activation regime can occur without complex feedback cascades,
but rather because of the transition from the stochastic to the deterministic regime as the
system size expands.
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Fig. 7.5.1 Overview of the scheme with negative feedback obtained via changing the system
size, moving from the stochastic to the deterministic regime

This becomes even more relevant when recent experimental findings contradict the main
premise of the established deterministic models showing bistability of CaMKII. These models
are based on the assumption that CaMKII molecules are "activated during LTP induction and
remain active" [104]. This is inconsistent with the experimental findings that LTP induction
leads only to transient increase of CaMKII activity for only about 1 minute [27] as well as
with the finding that this activation time is consistent with the time required for the spine to
reach its maximum size [97].

7.6 Conclusion

In this chapter, we show that Substrate Enzyme-Sequestration can induce bimodality
in the stochastic domain even when the substrate is both the kinase and the substrate, by
autophosphorylating itself. We speculate that this could be applied to CaMKII, an autophos-
phorylating kinase found to play a dominant role in synaptic plasticity. The dependence
of this type of induced bimodality to the system size could provide an explanation of the
experimental findings that the LTP induction is preferentially happening in smaller spines
and that the timescales of CaMKII activation are similar to the timescales governing spine
volume expansion.
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7.7 Appendix - Parameters used for the simulations of Chap-
ter 7

Parameter Value
γ(sec−1) 1×10−1

η(molecule−1sec−1) 1
ζ (sec−1) 1×10−1

µ(sec−1) 10
δ (sec−1) 1×10−2

ε(molecule−1sec−1) 3×10−3

Table 7.1 The stochastic parameters used in the CaMKII simulations for a system of 20
CaMKII.CaM and 6 PP1 molecules



Chapter 8

Conclusions

8.1 Key findings

In this dissertation we have provided a quantitative analysis of the effect that enzyme
docking and the consequent phosphatase and kinase sequestration by the fully unphospho-
rylated and the fully phosphorylated substrates respectively have on a system of multisite
protein phosphorylation and similar models. The analysis was done both in the deterministic
and the stochastic domains for large and small molecule numbers respectively. We have
proved, that in the deterministic domain substrate enzyme-sequestration limits the extent
of multistability ultimately to one steady state, even for systems with arbitrary processivity
or sequentiality. In this context, we also developed algorithms that can calculate, directly
from reaction rates, the sufficient strengths of enzyme sequestration that would lead to
different orders of multistability. In the stochastic domain, we have shown that substrate
enzyme-sequestration can provide bimodality, even when bistability is not possible for large
molecule numbers.
We have also extended our results to autophosphorylating kinases, as for example is the
Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme with a pivotal role in
synaptic plasticity, speculating an explanation of the experimental findings that smaller
spines are preferentially chosen for Long-term Potentiation (LTP) induction and that CaMKII
activation’s timescale is similar to that of spine volume expansion.
These findings were underpinned by the development of several tools. Firstly, we developed a
discrete ‘nullcline’ construct to be used in stochastic analysis, analogue to the ODE nullclines
in deterministic analysis, based on the Markov chain tree theorem. This efficient graphical
heuristic tool allowed us to obtain a better understanding of the discrepancies reported be-
tween deterministic and stochastic moles of the well-studied genetic toggle switch problem.
Furthermore, we have developed a weakly chained diagonally dominant M-matrix formula-
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tion of the Chemical Master Equation, along with an accompanying tool, allowing greater
insights in the way particular mechanisms, like enzyme sequestration, can shape probability
distributions and therefore exhibit different behaviour across different regimes.
That formulation was also used to develop an algorithm for constructing not necessarily
reversible Markov chains with specified discrete-state stationary probability distributions,
enhancing our understanding of how one could control the stationary probability distribution
formation, without relying on the establishment of detailed balance.

8.2 Further research

There is much scope for further research, regarding both the biology and the mathematical
tools proposed. Firstly, the biological findings of this dissertation could be used to guide
further experimental research, especially regarding enzyme docking and the formation
of inactive enzyme-substrate substrates. The non-consideration of enzyme docking in
many models might have overestimated the potential extent of multistability in particular
mechanisms, whereas the non-consideration of the low numbers stochastic effects, might
have led the development of complex models to explain an observed bistable behaviour, or
even to the conclusion that bistability is not a behaviour exhibited by a system. Particularly in
fields where experimental evidence is contradicting, as for example is the case with CaMKII,
these considerations should be taken into account.
As far as the mathematical tools proposed are concerned, further research could be done
by expanding the discrete ‘nullclines’ concept to higher-dimensional non-planar graphs.
Furthermore, more research could be done in improving the bounds obtained for the stationary
probability of a microstate, by utilising, for example, the WCDD M-matrix formulation of
the Chemical Master Equation.
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