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ABSTRACT

We provide an introduction to Gaussian process regression (GPR) machine-learning methods in
computational materials science and chemistry. The focus of the present review is on the regression
of atomistic properties: in particular, on the construction of interatomic potentials, or force fields,
in the Gaussian Approximation Potential (GAP) framework; beyond this, we also discuss the fitting
of arbitrary scalar, vectorial, and tensorial quantities. Methodological aspects of reference data
generation, representation and regression, as well as the question how a data-driven model may be
validated, are reviewed and critically discussed. A survey of applications to a variety of research
questions in chemistry and materials science illustrates the rapid growth in the field. A vision is
outlined for the development of the methodology in the years to come.
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1. INTRODUCTION

At the heart of chemistry is the need to understand
the nature, transformations, and macroscopic effects of
atomistic structure. This is true for materials – crys-
tals, glasses, nanostructures, composites – as well as for
molecules, from the simplest industrial feedstocks to en-
tire proteins. And with the often-quoted role of chem-
istry as the “central science”,1,2 its emphasis on atom-
istic understanding has a bearing on many neighboring
disciplines: candidate drug molecules are made by syn-
thetic chemists based on an atomic-level knowledge of
reaction mechanisms; functional materials for technolog-
ical applications are characterized on a range of length
scales, which begins with increasingly accurate informa-
tion about where exactly the atoms are located in three-
dimensional space.

Research progress in structural chemistry has largely
been driven by advances in experimental characterization
techniques, from landmark studies in X-ray and neutron
crystallography to novel electron microscopy techniques
which make it possible to visualize individual atoms
directly. Complementing these new developments, de-
tailed and realistic structural insight is also increasingly
gained from computer simulations. Today, chemists (to-
gether with materials scientists) are heavy users of large-
scale supercomputing facilities, and the computationally
guided discovery of previously unknown molecules and
materials has come within reach.3–8

Computations based on the quantum mechanics of
electronic structure, currently most commonly within
the framework of density-functional theory (DFT), are
widely used to study structures of molecules and materi-
als and to predict a range of atomic-scale properties.9–11

Two approaches are of note here. One is the prediction
of atomically resolved physical quantities, e.g., isotropic
chemical shifts, δiso, that can be used to simulate NMR
spectra with a large degree of realism12 – thereby mak-
ing it possible to corroborate or falsify a candidate struc-
tural model, or to de-convolute experimentally measured
spectra. The other central task is the determination
of atomistic structure itself, achieved through molecular
dynamics, structural optimization, and other quantum-
mechanically driven techniques. Many implementations
of DFT exist and are widely used, and their consistency
has been demonstrated in a comprehensive community-
wide exercise.13

Electronic-structure computations are expensive, both
in terms of their absolute resource requirements and their
scaling behavior with the number of atoms, N . For DFT,
the scaling is typically O(N3) in the most common imple-

mentations; see ref 14 for the current status of a linear-
scaling implementation. Routine use is therefore limited
to a few thousand atoms at most for DFT single-point
evaluations, to a few hundred atoms for DFT-driven “ab
initio” MD, and to even fewer for high-level wavefunc-
tion theory methods such as coupled cluster (CC) the-
ory or quantum Monte Carlo (QMC). The latter tech-
niques offer an accuracy far beyond standard DFT, and
they are beginning to become accessible not only for iso-
lated molecules but also for condensed phases. However,
running MD with these methods requires substantial ef-
fort and is currently largely limited to proof-of-principle
simulations.15–17 For studies that predict atomistic prop-
erties, such as NMR shifts, derived from the wavefunc-
tion, a new electronic-structure computation has to be
carried out every time a new structure is considered,
again incurring large computational expense.

In the last decade, machine learning (ML) techniques
have become a popular alternative, aiming to make the
same type of predictions using an approximate or surro-
gate model, whilst requiring only a small fraction of the
computational costs. There is practical interest in being
able to access much more realistic descriptions of struc-
turally complex systems (e.g., disordered and amorphous
phases) than currently feasible, as well as a wider chemi-
cal space (e.g., scanning large databases of candidate ma-
terials rather than just a few selected ones). There is also
a fundamental interest in the question of how one might
“teach” chemical and physical properties to a computer
algorithm which is inherently chemically agnostic, and
in the relationship of established chemical rules with the
outcome of purely data-driven techniques.19 We may di-
rect the reader to high-level overviews of ML methods in
the physical sciences by Butler et al.,20 Himanen et al.,21

and Batra et al.,22 to more detailed discussions of various
technical aspects,23–26 and to a physics-oriented review
that places materials science in the context of many other
topics for which ML is currently being used.27

The use of ML in computational chemistry, materi-
als science, and also condensed-matter physics is often
focused on the regression (fitting) of atomic properties,
that is, the functional dependence of a given quantity on
the local structural environment. For the case of force
fields and interatomic potentials, there are a number
of general overview articles28–31 and examples of recent
benchmark studies.32,33 There are also more specialized
articles that offer more detailed introductions.34–38

In the present work, we review the application of
Gaussian process regression (GPR) to computational
chemistry, with an emphasis on the development of the
methodology over the last decade. Figure 1 provides
an overview of the central concepts. Given early suc-
cesses, there is significant emphasis on the construction
of accurate, linear-scaling force field models and the new
chemical and physical insight that can be gained by using
them. We also survey, more broadly, methodology and
emerging applications concerning the “learning” of gen-
eral atomistic properties that are of interest for chemical
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FIG. 1. Overview of central concepts in Gaussian Process Regression (GPR) machine-learning models of atomistic properties.
Left: The models discussed in the present review are based on atomistic structure, and therefore they require a suitable
representation of atomic environments up to a cutoff. The neighborhood is “encoded” using a descriptor vector, ξ, and a kernel
function, k, which is used to evaluate the similarity of two atomic environments. Center: In the regression task, the goal is to
infer an unknown function from a limited number of observations, or input data (Section 2). The result, in GPR, is a function
with quantifiable uncertainty. Right: Applications of GPR. There are two main classes within the scope of the present review.
The first class of applications is the fitting of atomic properties (Section 3): these can be scalar, such as the isotropic chemical
shift in NMR, δiso, or vectors or higher-order tensors, such as the polarizability, α. The second class of applications is the
construction of interatomic potentials, or force fields (Section 4), which describe atomic energies, εi, as well as interatomic
forces, Fi. All these properties are fitted as functions of the descriptor, ξ. The drawings on the left are adapted from ref 18 –
Adapted by permission of The Royal Society of Chemistry. Copyright 2020 The Royal Society of Chemistry.

and materials research. Quantum-mechanical properties,
including the eletronic energy, are inherently nonlocal,
but the degree to which local approximations, taking ac-
count of the immediate neighborhood of an atom, can be
used will be of central importance. It is hoped that the
present work – indeed the entire Special Issue in which
it appears – will provide guidance and inspiration for re-
search in this quickly evolving field, and that it will help
advance the transition of the methodology from relatively
specialized to much more widely used.

2. GAUSSIAN PROCESS REGRESSION

We begin this review article with a brief general in-
troduction to the basic principles of GPR. The present
section is not yet concerned with applications, but rather
provides a discussion of the underlying mathematical
concepts and motivates them for modeling functions in
the context of chemistry and physics, as a preparation
for subsequent sections of this review. A glossary of the
most important terms is provided in Table 1.

From the practitioner’s point of view, GPR is a non-
linear, non-parametric regression tool, useful for in-
terpolating between data points scattered in a high-
dimensional input space. It is based on Bayesian prob-
ability theory and has very close connections to other
regression techniques, such as kernel ridge regression
(KRR) and linear regression with radial basis functions.
In the following, we will discuss how these methods are
related.

Non-parametric regression does not assume an ansatz,
or a closed functional form, nor does it try to explain the
process underlying the data using theoretical considera-
tions. Instead, we rely on a large amount of data to fit
a flexible function with which predictions can be made;
this is what we call “machine learning”.

Inferring a continuous function from a set of individual
(observed or computed) data points is a common task in
scientific research. Depending on the prior knowledge of
the process that underlies the observations, a wide range
of approaches are available. If there exists a plausible
model that can be translated to a closed functional for-
mula, parametric fitting is most suitable, as limited data
are often sufficient to estimate the unknown parameters.
Examples include the interaction of real (non-ideal) gas
particles, the Arrhenius equation, or, closer to the topic
of the present review, the r−6 decay of the long-range
tail of the van der Waals dispersion interaction.

In practice, not all processes can be modeled well by
simple expressions. Structure–property relations, kinet-
ics of biomolecular reactions, and quantum many-body
interactions are examples of observable outcomes that
depend on input variables in a complex, not easily sep-
arable way, because of the presence of hidden variables.
Instead of trying to understand this dependence analyt-
ically, one may set out to describe it purely based on
existing data and observations. Interpolation and regres-
sion techniques provide tools to fill in the space between
data points, resulting in a continuous function represen-
tation which, once established, can be used in further
work. Linear interpolation and cubic splines are widely
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TABLE 1. A glossary of technical terms and concepts relevant to GPR. These definitions do not yet refer to physical properties,
but they will be used in subsequent sections. For a comprehensive introduction to GPR, we refer the reader to ref 39.

Covariance A measure for the strength of statistical correlation between two data values, y(x) and y(x′), usually
expressed as a function of the distance between x and x′. Uncorrelated data lead to zero covariance.

Descriptor In the context of regression, descriptors (sometimes called “features”) encode the independent variables
into a vector, x, on which the modelled variable, y, depends.

Hyperparameter A global parameter of an ML model that controls the behavior of the fit. Distinct from the potentially
very large number of “free parameters” that are determined when the model is fitted to the data.
Hyperparameters are estimated from experience or iteratively optimized using data.

Kernel A similarity measure between two data points, normally denoted k(x,x′). Used to construct models of
covariance.

Overfitting A fit that is accurate for the input data but has uncontrolled errors elsewhere (typically because it has
not been regularized appropriately).

Prior A formal quantification, as a probability distribution, of our initial knowledge or assumption about the
behavior of the model, before the model is fitted to any data.

Regularity Here, we take a function to be regular if all of its derivatives are bounded by moderate bounds. Loosely
interchangeable with “degree of smoothness”.

Regularization Techniques to enforce the regularity of fitted functions. In the context of GPR, this is achieved by
penalizing solutions which have large basis coefficient values. The magnitude of the regularization may
be taken to correspond to the “expected error” of the fit.

Sparsity In the context of GPR, a sparse model is one in which there are far fewer kernel basis functions than
input data points, and the locations of these basis functions (which we call the representative set) need
not coincide with the input data locations.

Underfitting A fit that does not reach the accuracy, on neither the training nor the test data, that would be possible
to achieve by a better choice of hyperparameters.

used examples of these methods, but they are limited to
low-dimensional data, and cases where there is little noise
in the observations. With more than a few variables, it
becomes exponentially more difficult to collect sufficient
data for the uniform coverage that is required by these
methods. As interpolation techniques are inherently lo-
cal, noise in observations is not averaged out over a larger
domain, meaning that these approaches tend to be less
tolerant to uncertainty in the data.

GPR provides a solution to the modelling problem such
that the locality of the interpolation may be explicitly
and quantitatively controlled, by encoding it in the a pri-
ori assumption of smoothness of the underlying function.
To introduce GPR, we consider a smooth, regular func-
tion, y(x), which takes a d-dimensional vector as input
and maps it onto a single scalar value:

y : Rd → R. (1)

We do not know the functional form of y, but we have
made N independent observations, yn, of its value at the
locations xn, resulting in a dataset,

D = {xn; yn}Nn=1. (2)

We can consider the observations, yn to be samples of
y(x) at the given location, which may contain observation
noise. The goal is now to use these data values to create
an estimator that can predict the continuous function
y(x) at arbitrary locations x, and also to quantify the
uncertainty (“expected error”) of this prediction.

There are two equivalent approaches to deriving the
GPR framework: the weight-space and the function-space

views, each highlighting somewhat different aspects of
the fitting process.39 We provide both derivations in the
following.

2.1. The Weight-Space View of GPR

In the weight-space view of GPR, which is also the one
most closely aligned with the usual exposition of kernel
ridge regression, we approximate y(x) by ỹ(x), defined
as a linear combination of M basis functions (Figure 2):

ỹ(x) =

M∑
m=1

cmk(x,xm), (3)

where the basis functions, k, are placed at arbitrary loca-
tions in the input space, xm, comprising what we refer to
as the representative set, {xm}Mm=1 (sometimes also called
the “active”, or “sparse” set), and cm are coefficients or
weights. At this stage, we do not need to specify the
actual functional form of k; we only need to know that
k : Rd × Rd → R describes the similarity between the
function at two arbitrary locations, x,x′ ∈ Rd, that the
function is symmetric to swapping its arguments, viz.
k(x,x′) = k(x′,x), and that it is positive semidefinite.
The kernel function is positive semidefinite when, given
an arbitrary set of inputs {xi}, the matrix built from
k(xi,xi′) is positive semidefinite.

Although the form of the kernel function does not mat-
ter in principle, the practical success or failure of a GPR
model will depend to a large extent on choosing the ap-
propriate kernel. Figure 3a demonstrates this using the
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FIG. 2. Basic elements of GPR as discussed in the present
section: (1) observations of an unknown function at a number
of locations; (2) basis functions (only one of them shown for
clarity), centered at the data locations; (3) an estimation, ỹ,
defined by the set of coefficients, cm, and the corresponding
basis functions; this is the prediction of the GPR model.

example of the Gaussian kernel which includes a length
scale hyperparameter, σlength (defined in Figure 2). In
fact, this kernel is a universal approximator for any set-
ting of the length scale, but choosing an inappropriate
length scale will result in very slow convergence as func-
tion of the number of training data points.

The fitting of the GPR model to the data is accom-
plished by finding the coefficients c = (c1, ..., cM ) that
minimize the loss function,

` =

N∑
n=1

[yn − ỹ(xn)]2

σ2
n

+R, (4)

where R is a regularization term, and the relative im-
portance of individual data points is controlled by the
parameters σn. In GPR, the Tikhonov regularization is
used, defined as

R =

M∑
m,m′

cmk (xm,xm′) cm′ . (5)

Two objectives are included in the loss function that is
defined in eq 4. The first term is designed to achieve a
close fit to the data points. However, this term alone
would lead to overfitting because of the large flexibility
of the functional form, and it is therefore controlled by
the second term, the regularization, which forces the co-
efficients to remain small. The collection of parameters
{σn}Nn=1 (together with the length scale hyperparame-
ter) adjusts the balance between accurately reproducing
the fitting data points and the overall smoothness of the
estimator.

FIG. 3. Effect of the kernel length scale on the GPR fit for
different types of input data. (a) Learning from function value
observations. We illustrate the effect of using a small (left) or
larger (right) hyperparameter associated with the correlation
length scale (represented by a solid bar in each panel) on the
GPR models (solid black line). Basis functions (blue dashed
lines – one is highlighted as solid for clarity), centered on data
points (red circles) sampled from the target function (black
dashed line), are also shown. (b) Learning from derivative
values (Section 2.4). Data points are represented by red points
and derivatives by red sticks: in this example, in panel (c), the
data values themselves, i.e. the {yn}, are not included in the
fits. For all fits in this figure, the regularizer was very small,
just large enough to ensure that a stable numerical solution
to the linear least-squares problem can be obtained.

Crucially, the coefficients in this regularization term
are also weighted by the corresponding kernel elements,
a relation that can be understood when formally deriv-
ing GPR from the properties of the Reproducing Ker-
nel Hilbert Space (RKHS), which we discuss below.39,40

Equation (4) is often written as

` =

N∑
n=1

[yn − ỹ(xn)]2 + σ2
M∑

m,m′=1

cmk(xm,xm′)cm′ , (6)

using a uniform σn = σ parameter for all data points,
but we later exploit the ability to express the reliability
of each data points individually. Because in this form,
σ multiplies the Tikhonov regulariser, most practitioners
identify σ with the regularization “strength” or “mag-
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FIG. 4. Visualization of the matrix equations that define the fitting of full (eq 14) and sparse (eq 11) GPR models, and the
way they are used for prediction. (a) The reference database consists of entries {xn; yn}; the data labels y1 to yn are collected
in the vector y (light green); the data locations x1 to xN are used to construct the kernel matrix, K, of size N × N (teal).
The regularizer, Σ, is shown as a light gray diagonal matrix. By solving the linear problem, the coefficient vector c (blue) is
computed, and this can be used to make a prediction at a new location, ỹ(x) (eq 12), the cost of which scales with the number
of data locations, N . (b) In sparse GPR, the full data vector y is used as well, but now M representative (“sparse”) locations
are chosen, with M � N . The coefficient vector is therefore of length M , and the cost of prediction is now independent of N .

nitude”. Using this definition, we can re-write the loss
function in matrix form:

` = (y −KNMc)>Σ−1(y −KNMc) + c>KMMc, (7)

where the matrix elements are defined as

[KNM ]nm = k(xn,xm) (8)

and y = (y1, ..., yN ). Recall that N indicates the num-
ber of data points in D, and M indicates the number of
representative points, respectively. Our notation empha-
sizes the dimensions of the various kernel matrices in the
subscript, and implies that K>NM ≡ KMN because the
kernel function is symmetric. In eq (7), Σ is a diago-
nal matrix of size N , collecting all the σn values, with
Σnn = σ2

n. To minimize `, we differentiate eq (7) with
respect to cm for all m, and then search for solutions that
satisfy

∇c>` = 0, (9)

and we obtain

−KMNΣ−1y + KMNΣ−1KNMc + KMMc = 0. (10)

Rearranging gives an analytical expression for the coeffi-
cients,

c = (KMM + KMNΣ−1KNM )−1KMNΣ−1y, (11)

and once these coefficients have been determined, the
prediction at a new location x is evaluated using eq 3,
which in matrix notation is

ỹ(x) = c>k(x), (12)

where a shorthand notation k(x) is introduced for the
vector of kernel values at the prediction location (x) and
the set of representative points ({xm}),

[k(x)]m = k(x,xm). (13)

When the number and locations of the representative
points are set to coincide with the input data points, a
case to which we refer as “full GPR”, we have M = N ,
and the expression for the coefficients simplifies to

c = (KNN + Σ)−1y. (14)

We note that the expression in eq (14), together with
eq (3), is formally equivalent to Kernel Ridge Regres-
sion (KRR), which is also based on the solution of the
least-squares problem using Tikhonov regularization.41

Full GPR becomes expensive for large datasets, because
the computational time required to generate the approx-
imation scales with the cube of the dataset size, O(N3),
and the memory requirement scales as O(N2), at least
when direct dense linear algebra is used to solve eq (14).
While iterative solvers, which are ubiquitous in ML gen-
erally, might reduce this scaling, they are not widely em-
ployed in the context of GPR/KRR. In our applications,
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detailed in the rest of this review, we use relatively few
representative points, i.e. M � N , and we refer to this
regime as “sparse GPR”, following the Gaussian process
literature.42,43 The matrix equations that specify both
the full and the sparse GPR fits are visualized in Fig-
ure 4. More details on how we select representative points
in practice will be given in Section 4.3.

2.2. The Function-Space View of GPR

The function-space view is an alternative way of de-
riving, defining, and understanding GPR/KRR. Again,
we aim to estimate an unknown function which we can
sample at specified locations, resulting in the dataset D,
and we consider estimators of the form

ỹ(x) =

H∑
h

whφh(x), (15)

where φ are fixed, and for-now unspecified, basis func-
tions. It is important to emphasize that even though
equations (3) and (15) are formally similar, the basis
functions φh are not equivalent to the kernel function
k (their relationship is shown below), nor are the coef-
ficients c equivalent to w. Whereas in the weight-space
view, the kernel basis functions are placed on the repre-
sentative set of points xm, which typically (but not neces-
sarily) coincide with data points, the fixed basis functions
here are independent of the data and serve purely as a
framework to define a probability distribution of func-
tions.

The function ỹ is determined by the coefficients, w =
(w1, w2, . . .), which are drawn from independent, identi-
cally distributed Gaussian probability distributions,

P (wh) ∼ N (0, σ2
w), (16)

leading not to a single estimate of ỹ but to a distribution
of estimators, which corresponds to a Gaussian prior, and
is commonly called a Gaussian process (GP). For these
generalized estimators, the covariance of two estimator
values at the locations x and x′ is

〈ỹ(x)ỹ(x′)〉 =

∫
dwP (w)

H∑
h

whφh(x)

H∑
h′

wh′φh′(x
′)

=
∑
h,h′

φh(x)φh′(x
′)

∫
dwP (w)whwh′ . (17)

With the information from eq (16), the integral evaluates
to σ2

wδhh′ , and then we have∑
h,h′

σ2
wδhh′φh(x)φh′(x

′) = σ2
w

∑
h

φh(x)φh(x′). (18)

The sum over the basis functions in the last expression
is used to define a kernel function, k, as

k(x,x′) ≡ σ2
w

∑
h

φh(x)φh(x′). (19)

This definition makes it clear why the kernel function
needs to be positive semidefinite: it has the structure
of a Gram matrix, i.e. a matrix of scalar products. For
coinciding arguments (x = x′), the value of the kernel
function corresponds to a variance.

Each function value in the dataset is taken to incor-
porate observation noise, yn = y(xn) + ε, where ε is a
random variable, independent for each data point and
identically distributed, drawn from a Gaussian distribu-
tion with zero mean and variance σ2. It follows that the
covariance of any two actual function observations in the
dataset is given by

〈ynyn′〉 = k(xn,xn′) + σ2δnn′ . (20)

The probability distribution of all the observations y =
(y1, . . . , yN ) is therefore a multivariate Gaussian with
zero mean and covariance of KNN + σ2I, written as

P (y) ∝ exp

[
−1

2
y>(KNN + σ2I)−1y

]
. (21)

Note that, for convenience in the derivation, we assume
that the mean of the prior distribution of functions is
zero, but very often there is a good prior guess for the
mean of the function, in which case it is straightforward
to modify the distribution – or simply to subtract the
prior mean from the observed function values before fit-
ting, to be added back on after prediction.

Function estimation based on the data now proceeds
by fixing the N data locations and values, and con-
sidering the probability distribution of a new function
value, yN+1, observed at a new location, xN+1. Bayes’
rule gives this distribution as a conditional probability
in terms of the old (previous) observations and the joint
distribution of the old and new observations,

P (yN+1|y) =
P (y1, y2, . . . , yN , yN+1)

P (y)
. (22)

After substituting eq (21) into eq (22) (using it for
both the numerator and denominator appropriately), and
some algebraic manipulation,44 we find that the distribu-
tion of y(xN+1) is also Gaussian, and we can express its
mean and variance as

yN+1 = k>(KNN + σ2I)−1y and (23)

var(yN+1) = k(xN+1,xN+1) + σ2 − k>(KNN + σ2I)−1k,
(24)

where we again use k for the vector of covariances (kernel
values) evaluated between the new data location and the
set of N previous ones,

[k]n = k(xN+1,xn). (25)

It is interesting to note that the GP variance estimate
is formally independent of the training function values:
the expression in eq (24) depends solely on the location
of data points, but not on the data values y. However, if
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the model hyperparameters are optimized either by maxi-
mizing the marginal likelihood or by cross-validation (see
below), then the variance estimates do implicitly depend
on training function values through this optimization.

The fact that both the estimators in equations (23)
and (24) only depend explicitly on the kernel function,
k, and not on the basis functions, φh, shows that a GP
may be defined by its kernel, without ever specifying the
underlying basis set (although it is possible to determine
the corresponding basis set from any given kernel). Re-
call that the meaning of the kernel function is the co-
variance of data values (eq (19)), and is thus regarded as
a measure of similarity between data points. This route
to specifying a basis for modeling nonlinear functions is
often referred to as the “kernel trick”.

Note that the combination of equations (3) and (14)
defining GPR in the weight-space view are equivalent to
the result of the function-space view in eq (23). This
equivalence reveals that the magnitude of the regular-
ization term in the weight-space view, σ2 in eq (6), is
the same as the variance of the Gaussian noise model on
the function observations (cf. eq (20)). We can use this
to understand regularization from a new perspective: it
is the expression of uncertainty of our observations, and
naturally leads to a model with an imperfect fit to the
data.

Notable kernels include the Gaussian, or squared ex-
ponential, kernel (the latter name is in common use to
emphasize the distinction between the form of the ker-
nel function and the multivariate Gaussian distributions
that underlie the entire GPR framework),

k(x,x′) = exp

(
−|x− x′|2

2σ2
length

)
(26)

parametrized by the spatial length scale, σlength.44 The
linear, or dot-product, kernel is defined as

k(x,x′) = x · x′ =

d∑
a=1

xax
′
a (27)

where xa = [x]a are the elements of the d-dimensional
input vector x. Substituting this kernel definition into
eq (3) gives the prediction formula,

ỹ(x) =

M∑
m=1

cm

d∑
a=1

xa[xm]a =

d∑
a=1

βaxa, (28)

which shows that using the linear kernel in GPR is equiv-
alent to performing regularized linear regression, with co-
efficients given by

βa =

M∑
m=1

cm[xm]a. (29)

It follows that the basis functions corresponding to the
dot-product kernel are simply M functions that each pick

out one element of the data vector {xm}Mm=1. Finally, the
polynomial kernel is

k(x,x′) = (x · x′)ζ , (30)

and expressing the prediction formula explicitly reveals
that the basis functions are outer products of the ele-
ments of the data vectors. For ζ = 2, for example, we
obtain the expression

ỹ(x) =

M∑
m=1

cm

d∑
a,b=1

xaxb[xm]a[xm]b =

d∑
a,b=1

βabxaxb,

(31)
that corresponds to a polynomial basis with a degree of
ζ = 2.45

2.3. Explicit Construction of the Reproducing
Kernel Hilbert Space

It is instructive to see how the function-space view of
GPR arises from an explicit construction of an approxi-
mation of the RKHS.46 Consider the kernel matrix that is
computed for the representative set of data points, KMM ,
and its eigenvalue decomposition which is given by

KMM = UMMΛMU>MM . (32)

Because the kernel is positive semidefinite, the eigenval-
ues, Λi, are greater than zero, and it is possible to com-
pute the feature matrix,

ΦMM = UMMΛ
1/2
M = KMMUMMΛ

−1/2
M , (33)

such that

ΦMMΦ>MM = KMMUMMΛ−1
M U>MMKMM

= KMM . (34)

The definition in eq (33) corresponds to performing a
kernel principal component analysis (KPCA)47 without
discarding any of the resulting components, and is con-
sistent with the introduction of an explicit function-space
model, as follows. The elements of a feature vector, φ,
associated with an arbitrary input point, x, are given by

[φ]j(x) ≡ φj(x) =

M∑
m=1

k(x,xm)UmjΛ
−1/2
j , (35)

where the sum runs over all M representative points, and
the number of features is the same; that is, the index j
takes values from 1 to M . For any pair of locations within
the representative set, we have

φ(xm) · φ(xm′) = k(xm,xm′), (36)

which corresponds to the definition of the kernel in terms
of a scalar product in the RKHS, as given in eq (19).
For arbitrary pairs of locations that are not included in
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the representative set, the above expression is only an
approximation of the kernel, which can be improved by
enlarging M .

This point of view also makes it possible to directly de-
rive the Nyström form of sparse GPR,48 by considering
it as ridge regression in the RKHS defined by the rep-
resentative points. The feature matrix associated with

a set of N points is ΦNM = KNMUMMΛ
−1/2
M . This

expression may be regarded as an approximate decompo-
sition of the full kernel matrix KNN ≈ ΦNMΦ>NM . The
resulting regularized linear regression weights are

wM = (Φ>NMΣ−1ΦNM + 1)−1Φ>NMΣ−1yN (37)

and the predictions are given by φ(x) · wM . By sub-
stituting for the features, φ, the definition in terms of
the eigendecomposition of KMM (eq (35)), we obtain the
model predictions,

φ(x) ·wM = k>UMMΛ
−1/2
M ×(

U>MMΛ
−1/2
M K>NMΣ−1KNMUMMΛ

−1/2
M + 1

)−1

×

U>MMΛ
−1/2
M K>NMΣ−1yN =

k>(K>NMΣ−1KNM + KMM )−1K>NMΣ−1yN . (38)

This is the same as eq (11), revealing how the abstract
function-space derivation can be formulated as a matrix
approximation problem, and more generally how kernel
methods can be seen as simultaneously addressing the
problem of building a data-adapted feature space and
performing linear regression in it.

2.4. GPR Based on Linear Functional Observations

In later sections, we will need to use the GPR formal-
ism to estimate functions whose value cannot be directly
observed. This is the case for fitting an atomic energy
function (using the neighbor environment of an atom as
the input) to data from quantum-mechanical electronic-
structure computations, which yield the system’s total
energy, not individual atomic energies, and atomic forces
and stresses, which are derivatives of this total energy
with respect to the atomic positions and the lattice de-
formation, respectively. It is therefore useful to consider
this problem in the abstract: estimating a function when
it is not possible to directly observe values of a function,
but we have access to derived properties. The formalism
that follows was introduced in ref 49 for modeling mate-
rials, which itself builds on ref 50 that discusses learning
a function from its derivatives using GPR.

As a simple example, assume that we observe data
values Y at data locations X, but we wish to model the
estimator as a sum of values of the elementary estimator
function ỹ,

Ỹ (X) = ỹ(x) + ỹ(x′), (39)

where x and x′ are subsets of the degrees of freedom in
X,

X = x⊕ x′ ≡ [x,x′], (40)

using a kernel function that is defined between points in
the smaller space, k(x,x′). In the spirit of the function-
space view of GPR, it follows that the covariance of two
such observations Y1 and Y2 (taken at X1 = x1⊕x′1 and
X2 = x2⊕x′2, respectively) is given by the sum of kernels,

〈Ỹ (X1) Ỹ (X2)〉 = k(X1,X2) ≡
≡ k(x1,x2) + k(x1,x

′
2) + k(x′1,x2) + k(x′1,x

′
2),

and the rest of the regularized kernel regression formalism
follows using this definition of the kernel. When build-
ing a sparse GPR model, we have the choice of picking
representative points such as x from the smaller space,
or X from the larger space. In either case, kernels can be
computed between the observed data locations and rep-
resentative points, e.g. k(X1,x) = k(x1,x) + k(x′1,x).

It is straightforward to generalize this construction to
any linear functional observation, and the resulting ker-
nel model becomes a linear functional of the correspond-
ing kernel functions. To formalize this, we model the
observations as

Y (X) = Y

(⊕
i

xi

)
=
∑
i

L̂iy(xi) (41)

where L̂i is a linear operator applied on the elementary
model function y. In the previous example, L̂ was simply
the identity operator, but it can also include differentia-
tion, scaling, or any other linear operation. To illustrate
how fitting based on derivative observations can be per-
formed, we consider the derivative of the estimator func-
tion defined in eq (15) with respect to the α component
of the input vector, x, viz.

∇αỹ(x) =

H∑
h

wh∇αφh(x). (42)

We obtain the covariance of two such derivative observa-
tions as

〈∇αỹ(x)∇β ỹ(x′)〉 =

∫
dwP (w)

H∑
h,h′

wh∇αφh(x)×

×
H∑
h′

wh′∇βφh′(x′) =

∑
h,h′

∇αφh(x)∇βφh′(x′)
∫

dwP (w)whwh′ =

∑
h,h′

σ2
wδh,h′∇αφh(x)∇βφh′(x′) =

σ2
w

∑
h

∇αφh(x)∇βφh(x′), (43)
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FIG. 5. Sparse GPR fitting based on different types of input data (eq 47). In this example, two types of data are present in the
reference database: function values (corresponding to the identity operator, I) and derivatives (corresponding to the differential
operator, ∇). All these observations are combined into a single vector, y, which has D entries. The fit itself proceeds as shown

in Figure 4b, but now includes the use of a matrix of operators, L̂. Some sizes of vectors and matrices (M , N , or D) are
indicated. The regularization, Σ, is indicated as a block diagonal matrix (one block corresponding to function values, one to
derivatives); more individual settings are also possible. Once c is determined, it is used for sparse GPR prediction in the same
way as shown in Figure 4.

from which it follows, using eq (19), that the kernel for
derivative observations is the double derivative of the
original kernel:

σ2
w

∑
h

∇αφh(x)∇βφh(x′) =
∂

∂xα

∂

∂x′β
k(x,x′). (44)

In a similar manner, the covariance between a function
value and a derivative observation can be found as

〈∇αỹ(x)ỹ(x′)〉 =
∂

∂xα
k(x,x′), (45)

allowing a covariance matrix to be built for arbitrary
observations that are linear functionals of an underlying
function. For example, the block of the covariance matrix
corresponding to the data vector [y,∇1y], collected at the
points [x,x′], is given by[

k(x,x) ∂
∂x′1

k(x,x′)

∂
∂x′1

k(x′,x) ∂2

∂x1∂x′1
k(x,x′)

∣∣∣
x=x′

]
. (46)

For a general linear operator, L̂, the coefficients in
eq (11) that constitute the regularized solution of the
regression problem then become

c = [KMM + (L̂KNM )>Σ−1L̂KNM ]−1(L̂KNM )>Σ−1y,
(47)

where y, of length D, contains all the training data. This
matrix equation is visualized in Figure 5. When imple-
menting this in code, the operator L̂ is applied to the ker-
nel matrix KNM which results in a matrix of size M×D,
that we label (L̂K), or alternatively LK.

Figure 3 illustrates these concepts for a simple one-
dimensional function (dashed lines) for which GPR es-
timates are made (solid lines). The examples presented
here show “full GPR” fits (i.e. when the set of repre-
sentative points associated with the basis functions is ex-
actly the same as the set of input data points) in the two
cases when either function values (Figure 3a) or deriva-
tive values (Figure 3b) are used in the regression. In
each case, we show two choices for the length scale of the
squared exponential kernel, σlength, namely a value that
is too small, and also a larger (near optimal) value. If the
length scale is chosen too small (left panels in Fig. 3), the
result is a terrible overfit in both cases, but showing dif-
ferent behavior. When fitting to function observations,
the fit matches the data exactly near the data points
(red points), and reverts to near zero away from the data
points. When fitting to derivatives, the estimate has the
correct derivatives locally, but overall is nearly zero ev-
erywhere. For the near optimal value of the length scale
(right panels in Figure 3), fitting to function observations
results in an excellent fit near the right-hand side mini-
mum where there are a lot of data, and a rather poor fit
elsewhere. Fitting to derivatives reproduces the shape of
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FIG. 6. Effects of different types of data and basis functions on GPR fits. These are illustrated using the same example
function as in Figure 2 (black dashed lines), showing the predicted mean (black solid lines) and variance (light blue shaded
area) of the fit. Observations are indicated by the red points for values and short red line segments for derivatives. The
fitting data included only function values in the first row, only derivative values in the second row, and both function and
derivative values in the bottom row. Full GPR was used for the data shown in the first column, and sparse GPR for those in
the others. Representative point locations (vertical dotted lines) coincide with the data point locations for the first and second
column, whereas they were placed at regular intervals for the third column. In the fourth column, the number and location of
representative points were optimized to maximize the marginal likelihood. The regularization hyperparameter σ as well as the
length-scale hyperparameter σlength were independently optimized for each panel to maximize the marginal likelihood. Insets
show the kernel basis functions used in the fit (solid for Gaussians; dashed for Gaussian derivatives); scale bars represent the
optimized values of σlength.

both minima, and the maximum in between qualitatively
too, despite there being no data points there. However,
the relative depths of the two minima are not well cap-
tured.

In Figure 6, we show the fit quality for the same sim-
ple one-dimensional function, but this time using sparse
GPR and exploring different ways of constructing the
representative set and the corresponding basis set. In
the first row, only function values are used in the fit,
in the second row only derivatives are used, and in the
third row, function values and derivatives are combined
to form the dataset. The first column shows full GPR
(as in Figure 2), using square kernel matrices and plac-
ing a basis function on each data point, with the basis
function type corresponding to the data type: function

value observations induce Gaussian basis functions, and
derivative value observations induce Gaussian-derivative
basis functions (cf. eq 45). Therefore, in the first column
of Figure 6, the top panel shows a fit to the function val-
ues and uses 8 Gaussian basis functions, the middle panel
shows a fit to only derivative values and uses 8 Gaussian-
derivatives, and the bottom panel shows a fit to all the
available data and uses both types of basis functions (16
altogether). The improvement in the fit from top to bot-
tom is steep, with the bottom panel showing an almost
perfect fit.

The second, third, and fourth columns of Figure 6 all
use sparse GPR fits, but with Gaussian basis functions
irrespective of what the type of the data is (that is, even
if only derivative values are used). In the second column,
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the 8 basis functions are simply placed at the input data
locations (and thus the first two panels of the first row are
identical!). In the third column, again we use 8 Gaussian
basis functions but they are centered on a regular grid.
This has little effect when the fitting data consist of func-
tion values, but it shows a considerable improvement in
rows two and three, when derivative data are used. In the
fourth column, the locations of the representative set are
optimized (by maximizing the marginal likelihood; see
below). Note that fewer than 8 basis functions are used,
because some of the basis function centers have merged
during the optimization. We observe some improvement
in the first row, and an improved estimation of the maxi-
mum in the second row, albeit with a poor description of
the relative depths of the minima. In the last row, when
both the function value and derivative information are
provided, the fit is as good as using a regular grid, and
almost as good as with full GPR (first column).

Studying such simple toy models can be very instruc-
tive in understanding GPR, but of course one has to be
careful in drawing conclusions and applying them to the
high-dimensional problems of materials and molecular
data. Nevertheless, it is clear that full GPR does not
scale to large datasets, and that high dimensionality pre-
cludes the use of regular grids when setting up basis sets
– indeed the fundamental reason why GPR is efficient
even in many dimensions is because the basis set can
adapt to the data locations. In the Gaussian Approxima-
tion Potential (GAP) scheme, detailed in Section 4, the
construction is most similar to column-four-row-three of
Figure 6, because both total energy and derivative data
are used, and the representative set is selected as the
optimized subset of the very large number of atomic en-
vironments that are present in the input dataset.

The general formulation in eq (41) for modeling ar-
bitrary linear observations in the framework of sparse
GPR allows for the complete separation of the basis func-
tions of the representative set and the training data. This
greatly simplifies the application of GPR for force-field
development, where a large proportion of the training
data are in the form of atomic forces. This is because each
structure contributes three times the number of atoms
as Cartesian force components and just one total energy
value. Attempting to use full GPR would result in square
kernel matrices with row and column sizes equal to the
number of input data values, which in turn would limit
the models to rather small datasets. Therefore, in the
context of interatomic potentials, where the fitting data
correspond to total energies (sums of many atomic en-
ergies), forces and stresses (sums of partial derivatives
of many atomic energies), we model the atomic energy
as the elementary function and use representative points
that are individual atomic environments and correspond-
ing kernel (rather than kernel derivative) basis functions.

2.5. Regularization

Regularization can be regarded as a mechanism to deal
with noisy and incomplete data, which balances the re-
quirements of a smooth estimator and a close fit to the
data. We introduced the Tikhonov regularization term
when we described the weight-space view of GPR in Sec-
tion 2.1, and made the connection with the noise model
assumed for function observations in Section 2.2 in the
function-space view of GPR. From a Bayesian point of
view, a noise parameter that is significantly larger than
the covariance of function values, σ2 � k(x,x′), favors
the prior assumption on the function space, which is
smoothness, and ultimately leads to the trivial solution
of the constant function y(x) = 0 as σ → ∞ (assuming
that the mean of the GP prior is zero). Equivalently, the
loss function in eq (4) is dominated by the regularization
term for the choice of large σ and leads to the trivial so-
lution of c = 0 in the σ → ∞ limit. Conversely, small
σ values force the estimator to follow the data points as
closely as possible, at the price of potentially significant
overfitting. The extreme case of σ = 0 reduces eq (4) to
the unregularized least-squares fit.

Apart from these considerations, regularization is of
practical relevance from the point of view of numerical
stability: it conditions the kernel matrix by adding a di-
agonal matrix with positive values. In the case of the
location of some data points coinciding, the determinant
of the kernel matrix KNN would otherwise become zero,
and the inverse K−1

NN would become undefined without
conditioning the diagonal values. Of course, it would
be possible to remove exactly duplicate data points, but
even close data points would cause numerical instabilities
in practice, which are less trivial to eliminate. Further-
more, it may actually be desirable to have multiple data
points at the same or similar locations if the observations
do genuinely contain noise, as the observed function val-
ues would sample the function, and GPR would effec-
tively and automatically perform averaging. Note that
noise in the observations does not have to be of stochas-
tic nature: even in the case of deterministic observations,
model error can give rise to deviations that appear as
noise, as we will discuss in Section 4.

2.6. Hyperparameters

A particularly appealing feature of GPR is that it
is parameter-free, in the sense that once the prior as-
sumptions (i.e. the kernel and the observation noise) are
specified, the function estimator follows. In some cases
(particularly when working in the well-established field
of atomic-scale modeling), the appropriate kernel and
the observation noise might be known. For example,
we might have a very good idea of how smoothly the
atomic forces vary with atomic position (corresponding
to the length scale hyperparameter, σlength, introduced
above), or how much error we expect in observed val-



13

ues (corresponding to σ) due to a lack of convergence in
the electronic-structure computations that provide the
fitting data. But often, the hyperparameters describing
the problem are not available. In Section 6 below, we will
describe strategies to set these for material models that
we found effective. Formally, when using sparse GPR, the
locations of the basis functions are also hyperparameters,
and their choice can dramatically influence the accuracy
of the fit (cf. Figure 6).

In the Bayesian interpretation of GPR, we have al-
ready made use of the marginal likelihood44 (or evidence;
eq (21)), which can also be understood as a conditional
probability over the hyperparameters,

P (y|{xm}, σlength,Σ) =

1√
(2π)N det(KNN + Σ)

exp
[
−1

2
y>(KNN + Σ)−1y

]
.

(48)

This provides a route to eliminating all of the unknown
hyperparameters, because Bayes’ formula allows one to
integrate the likelihood over all possible hyperparame-
ter values when making a prediction. This is essentially
an encapsulation of the Bayesian principle of “Occam’s
razor”: we are not just interested in hyperparameter set-
tings that lead to small fitting error, but in solutions that
are also robust, in the sense that parameters in a large
volume of parameter space near the optimum all lead to
small fitting error. This turns out to be a good predictor
of performance on any future test set, without having to
explicitly do the test.

However, integrating the likelihood is often not a prac-
tical proposition for large models, because the integral
cannot be evaluated analytically. Instead, the hyper-
parameters corresponding to the highest marginal like-
lihood are often selected, and these can be obtained in a
straightforward way by maximizing the logarithm of the
marginal likelihood,

logP = −1

2
y>(KNN + Σ)−1y−

1

2
log det(KNN + Σ)− N

2
log 2π, (49)

for which the derivatives with respect to hyperparameters
may also be computed.

Another route for hyperparameter optimization, more
often used in the context of KRR, is cross-validation.
There are many variations to this approach, but com-
monly the available data are divided into a “training”
and a “test” set. The training set is used for the re-
gression, with the predictions evaluated on the test set.
The hyperparameters are then adjusted to achieve the
lowest possible error on the test set. There are more
sophisticated versions, where multiple splits are created
(so-called “k-fold cross validation”).
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3. LEARNING ATOMISTIC PROPERTIES

Let us now show how the general GPR framework
translates into a scheme to model the atomic-scale prop-
erties of molecules and materials. First, we discuss how
the Cartesian coordinates and the atomic numbers that
determine the specific configuration of the system should
be represented to obtain a description that is suitable
for atomistic ML. This is one of the central problems in
the field, and we refer the reader to a dedicated review51

in the present Special Issue for a more detailed discus-
sion. Here, we limit ourselves to a family of approaches
which covers most of the example applications that are
discussed in what follows. We then present a “hands-on”
example: the construction of a GPR model of the en-
ergy and dipole moment of an isolated water molecule.
We use this example to introduce the relevant concepts
and show them “in action”; for more details, the reader
is referred to subsequent sections. We provide Python
(Jupyter) notebooks that reproduce the results shown in
the present section, and we report code snippets to show
the connection between general expressions and the prac-
tical implementation for an atomistic problem.

3.1. Representing Atomic Structures

The chemical structure of molecules and materials is
defined most directly by the Cartesian positions, {ri},
of the constituent atoms. Interatomic potential mod-
els do not typically use these positions as input directly,
but rather transform them into a different mathemat-
ical representation. This way, the resulting potential
can automatically gain some desirable properties, par-
ticularly symmetries of the potential energy with respect
to translation, rotation, and permutation (swapping) of
atoms of the same element. Furthermore, the represen-
tation should reflect other physical requirements, such as
smoothness of the mapping, additivity when applied to
the learning of extensive properties, as well as correct lim-
iting behaviors, e.g., that the atomization energy is zero
(by definition) when atoms are at infinite separation.

The classic example of such a transformation is to rep-
resent the relative positions of two atoms i and j by their
mutual distance (Figure 7a),

rij = |ri − rj |. (50)

If, in addition, the potential energy is written as a sepa-
rable sum of functions of these distances, the result is a
pair potential,

E =
∑
i,j

V2(rij), (51)

where V2 is a one-dimensional function. The simplicity
of the above form obscures its implications as the basis
of a regression model for atomic-scale properties. The
fact that the interatomic distances are independent of

FIG. 7. Descriptors for atomistic structure. (a) Conven-
tional 2-body and 3-body terms, viz. distances and angles
between atoms, as typically used in empirical force fields.
Adapted from ref 29 with permission. Copyright 2019 Wiley-
VCH. (b) A general descriptor for 3-body terms: the three
distances, d, between the atoms, specify the relative geom-
etry of the three atoms completely. (c) Schematic of the
Smooth Overlap of Atomic Positions (SOAP) descriptor.52

The neighbor density ρ is permutationally invariant; expand-
ing it in a local basis of radial functions and spherical har-
monics, Ylm, and then summing up the square modulus of
the expansion coefficients cnlm over the index m ensures ro-
tational invariance of the power spectrum p (eq 56). Adapted
from ref 53. Original figure published under the CC BY 4.0
license (https://creativecommons.org/licenses/by/4.0/). (d)
An illustration why the power-spectrum vector, p, is a 3-body
descriptor (here shown without element indices for clarity);
the consequences of this are discussed in the text.
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an absolute coordinate reference frame guarantees that
the potential is invariant with respect to translation and
rotation. Since the true potential energy obeys these in-
variances exactly, this is universally agreed to be a good
thing. The true potential is also invariant to permuta-
tion of like atoms, and the separable form and the sum
over each pair of atoms guarantees this invariance but at
the cost of a drastic approximation: the true quantum-
mechanical energy is not separable into a sum of pair-
wise terms. Whether this approximation still results in a
usable potential depends on the system: the Lennard–
Jones pair potential is an excellent approximation for
noble gases, and similar models give qualitatively decent
models of simple fcc metals54 and simple ionic halides55

and some oxides.56 For covalently bonded systems, pair
potentials that reflect the connectivity of the system can
provide reasonably accurate descriptions of small dis-
placements, e.g., vibrational dynamics, but fail to give
a natural description of chemical reactivity, and are ba-
sically unusable as general-purpose models.

The traditional route to improving the potential is to
add a correction in the same spirit, but at a higher body
order, i.e. a term that explicitly depends on the positions
of three atoms (Figure 7b), and is summed up over all
atom triplets in the system to preserve permutational
symmetry:

E =
∑
i,j

V2(rij) +
∑
i,j,k

V3(rij , rik, rkj). (52)

The three-body term is sometimes approximated to ex-
plicitly depend only on the angle between the three atoms
(cf. Figure 7a), rather than their individual distances,
thereby reducing the number of adjustable parameters.
Interestingly, as a result of recent developments in high-
dimensional fitting using many parameters, it has become
apparent that a lot can be accomplished with just three-
body but fully flexible potentials.57–62 In principle, one
could continue along this direction, and add even higher-
order, viz. general four-body terms. Because of the com-
plexity of managing the increasing number of parame-
ters while still maintaining the permutation symmetry
exactly (which involves summing over all atom tuples of
increasing in size), this has only been done systemati-
cally for small molecules,63 and is only now beginning to
be explored for larger systems64 and materials.65

An alternative approach is to not make the approxi-
mation of separability in body order in the first place,
but instead to write the total energy of the system as a
sum of atomic (“local” or “site”) energies that depend on
many-body descriptions of atomic environments. This,
however, requires a representation that itself is invari-
ant to permutation of like atoms, and also incorporates
the approximation that interactions are of finite range.
The foundational works of Behler and Parrinello66 and
Bartók et al.49 precisely hinged on such innovations: the
former, on atom-centered symmetry functions; the latter,
on spherical harmonic spectra, originally the bispectrum
and later the power spectrum,52 also called the Smooth

Overlap of Atomic Positions (SOAP; Figure 7c). Cou-
pled with nonlinear regression models, the remaining sig-
nificant approximations are controlled by the number of
training data points and the interaction range. All of
our examples in Sections 5 and 6 will use the SOAP rep-
resentation, and so we give a brief definition here for
completeness.

To obtain the SOAP representation of the neighbor-
hood of a given atom i, we first build a set of neighbor
densities, one for each chemical element in the set that
is relevant for the system at hand:52

ρi,a(r) =
∑
j

δaaj exp

[
−|r− rij |2

2σ2
a

]
fcut(rij) (53)

where the sum is over neighbors j of element a that are
within the cutoff rcut, and fcut(r) is a cutoff function
that smoothly goes to zero at rcut. The hyperparame-
ter σa has units of length and determines the regularity
(smoothness) of the representation. The above neighbor
density is thus a mollified version of a neighbor distribu-
tion where each atom would be represented by a Dirac
delta function. It is tempting to associate the Gaussian
mollifier with an atomic electron density or a smeared nu-
clear charge, but the correspondence is not so direct. The
direct effect of the mollification in the density is only to
ensure that the interatomic potential constructed using
the SOAP representation is regular, and it would be rea-
sonable to construct a SOAP representation from Dirac
delta densities, given that the regularity of the potential
is ensured in some other way. For example, the moment
tensor potentials (MTP)67 and the atomic cluster expan-
sion (ACE)68 do exactly that.

In the following, for each expression, we will give both
the notation that was introduced in ref 52, and (high-
lighted in blue) a recently-proposed69 bra-ket notation
of the form 〈q|A〉 that uses q to describe the indices enu-
merating the entries of a feature vector, and A to indicate
the nature of the representation. Note that the expres-
sions typeset in blue are here to make the connection to
ref 51 explicit, and are not needed to follow most of the
exposition in the present review. Using this notation, for
example, the equivalent expression corresponding to eq
(53) reads:

ρi,a(r) ≡ 〈ar|ρi〉. (54)

It is important to emphasize that for each atom i,
irrespective of what element it is, the full set of ele-
mental neighbor densities is constructed. Each elemen-
tal neighbor density is invariant to permutations of that
element. To achieve rotational invariance, we first ex-
pand the neighbor density in a basis of orthogonal ra-
dial functions, Rn(r) ≡ 〈r|n〉, and spherical harmonics,
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Y ml (r̂) ≡ 〈r̂|lm〉,

ρi,a(r) =
∑
nlm

ci,anlmRn(r)Y ml (r̂)

ci,anlm =

∫
drRn(r)∗Y ml (r̂)∗ρi,a(r),

or equivalently,

ci,anlm ≡ 〈anlm|ρi〉 =

∫
dr 〈n|r〉 〈lm|r̂〉 〈ar|ρi〉,

(55)

where the expansion coefficients are labeled ci,anlm for con-
sistency with earlier publications34,52 and are not to be
confused with the coefficients of the kernel regression
model that have been introduced in Section 2. Note
the similarity with how atom-centered orbitals, contain-
ing radial and angular parts, are constructed in quan-
tum chemistry. As emphasized by the bra-ket notation,
the expansion in spherical harmonics just amounts to a
change of basis, and these coefficients are not rotation-
ally invariant. A symmetrized combination of these co-
efficients yields the power spectrum,

pi,aa
′

nn′l =
1√

2l + 1

∑
m

(ci,anlm)∗ci,a
′

n′lm ≡

〈an; a′n′; l|ρ⊗2
i 〉 =

1√
2l + 1

∑
m

〈ρi|anlm〉 〈a′n′lm|ρi〉,

(56)

where the notation ρ⊗2
i hints at the fact that the SOAP

power spectrum is obtained by averaging a two-point ten-
sor product of the atom density over rotations – which,
in the spherical harmonic basis, is equivalent to summing
over m. The l-dependent prefactor in the definition of the
power spectrum is necessary to make a connection to the
overlap of densities (see below). Note that various other
constant numerical factors have appeared in the defini-
tion in the past,34,52 but none of them are consequential,
because the power spectrum is typically normalized to
yield a unit length vector. The descriptor for each atomic
environment now has five indices: two for the neighbor-
element channels (a, a′), two radial channels (n, n′), and
an angular channel (l). This power spectrum, also com-
monly referred to as the SOAP descriptor, or SOAP vec-
tor, is a concise representation of atomic neighbor envi-
ronments. It is smooth and continuous with respect to
atomic displacements, invariant with respect to physical
symmetries, and its only free parameters, the cutoff and
the length scale, σa, are physically intuitive.

An important question in the context of building atom-
istic regression models based on any structural descrip-
tor is whether the descriptor is complete, in the sense
that two atomic environments that are not related by
symmetry should map to different descriptors (that is,
whether the functional definition of the descriptor is
injective). If this were not the case, the accuracy of
any ML model based on the descriptor would be ulti-
mately limited by the corresponding loss of information.

Since their introduction, it was believed or implied70

that SOAP and all related descriptors (i.e. those that are
based on three-body correlations, such as the Atom Cen-
tered Symmetry Functions of Behler and Parrinello66)
are complete. Recently, however, it was discovered that
neither SOAP nor the other equivalent descriptors are
complete, and counter-examples were shown also for the
higher order bispectrum (which corresponds to four-body
correlations).71 Therefore, SOAP-based models cannot
describe an atomic energy function of its neighborhood to
arbitrary precision, although practical successes suggest
that the corresponding errors are on the same order or
smaller than other systematic errors that are due to local-
ity and k-point sampling (see below for a more detailed
discussion of these). Yet, it may well be possible that
complete descriptors can lead to more efficient learning;
see ref 51 for more details.

The full SOAP descriptor for each atom i contains all

entries of pi,aa
′

nn′l , resulting in a vector whose length scales
with the square of the number of elements (due to the
presence of the two element indices, a and a′), the square
of the radial basis expansion limit (due to the two indices
n and n′), and linearly with the angular basis expansion
limit (due to the index l). This vector has hundreds
of components (thousands, for systems with several ele-
ments) when the basis expansion of the neighbor density
is truncated in n and l such that these truncations do
not give rise to noticeable inaccuracy. It is therefore nat-
ural to think about suitable subsets of the SOAP vector
components that could be used without compromising
accuracy. There is a highly abstract question here: given
the dimensionality of the Cartesian positions, most of the
SOAP components must be algebraically related to one
another. Knowing such relationships would be useful in
reducing the number of components to the independent
ones, although it is quite likely that a regression model
might work significantly better with more inputs, even
if many of those are not independent, because the func-
tional relationship being modeled might be simpler. We
are not aware of any theoretical results in this area. On
the practical side, however, given datasets and specific
regression models, one can numerically experiment with
choosing subsets of the SOAP components, and consid-
erable compression is possible.72–74

While such atomic environment descriptors can be
used as the basis of any kind of regression scheme, to use
them in GPR (which is the focus of the present review),
we need to define a kernel that allows us to compare two
atomic environments, denoted A and A′. While a stan-
dard Gaussian kernel is certainly an option, applications
to date have used low-order polynomial kernels, viz.

k(A,A′) = (ξ · ξ′)ζ (57)

where ξ and ξ′ indicate the feature vectors corresponding
to the normalized power spectrum vectors, ξ = p/|p|,
associated with the two environments – with the power
spectrum vector associated with an atom i being built



17

from the components that are defined in eq (56), viz.

pi = {pi,aa
′

nn′l }. (58)

Considering the linear kernel (ζ = 1) explains the origin
of the SOAP name (cf. “smooth overlap of atomic posi-
tions”), because the dot product of the power spectra is
equivalent to the rotationally integrated squared overlap
of the corresponding neighbor densities of two atoms,52

pi · pi′ ∝
∑
aa′

∫
R̂∈O3

dR̂

∣∣∣∣∫ drρi,a(r)ρi
′,a′(R̂r)

∣∣∣∣2 , (59)

where R̂ is a 3D rotation. A kernel model made using
this linear kernel results in a three-body model, i.e. one
in which the model can be written as a sum, over triplets
of atoms, of a function which only depends on the Carte-
sian coordinates of the triplet.58 This is not obvious, but
it follows from the fact that the SOAP vector itself is
a three-body representation of the atomic environment,
which is not obvious either, but which we show as follows
(and have illustrated in Figure 7d).

Let us separate out the contribution of each neighbor
j to the neighborhood density of atom i,

ρij(r) = exp

[
−|r− rij |2

2σ2
a

]
fcut(rij), (60)

so that the neighbor density for element a is simply

ρi,a(r) =
∑
j

δaajρ
i
j(r). (61)

We then form the two-point correlation of this density,

ρ̂i,aa
′
(r, r′) =

∑
jj′

δaajδa′aj′ρ
i
j(r)ρij′(r

′), (62)

and compute the SOAP vector by transforming it into
the spherical harmonic basis in both arguments and then
summing over m to ensure rotational invariance:

pi,aa
′

nn′l ∝
∑
m

∫
drdr′Rn(r)Y ml (r̂)Rn′(r

′)Y ml (r̂′)ρ̂i,aa
′
(r, r′)

(63)

∝
∑
jj′

δaajδa′aj′
∑
m

∫
drdr′Rn(r)Y ml (r̂)ρij(r)×

×Rn′(r′)Y ml (r̂′)ρij′(r
′) (64)

∝ δaajδa′aj′
∑
jj′

∫
drdr′Rn(r)R′n(r′)Pl(r̂ · r̂′)×

× ρij(r)ρij′(r
′), (65)

where Pl are the Legendre polynomials. Thus, the SOAP
vector elements can be written explicitly as sums over
pairs of neighbors. In all software implementations, eq 56
is used to compute the SOAP vectors, because that makes

the calculation independent of the number of neighbors
– this is commonly referred to as the “density trick”, and
is essentially the swapping of the sum and the integral in
the last expression.

Using ζ = 2, i.e. raising the scalar product to the power
of 2, results in dependence on 4 neighbors, and together
with the central atom yields 5-body terms; in general, the
body order of the model is 2ζ + 1. Quantum mechanics
is a fundamentally many-body theory, and although it
is clear that for many properties an expansion in atomic
body order is a good idea, formally all body orders are
necessary for convergence. In the kernel framework, there
is no extra computational cost to increasing the body or-
der in this way, because there is no explicit sum over
atom tuples: the SOAP components are computed just
once, and the body order is set when the kernel is evalu-
ated between environments. Yet, it is likely a good idea
to not choose the body order higher than necessary for
achieving the target accuracy: a model with lower body
order, and therefore with lower dimensionality, will con-
verge more quickly to its ultimate accuracy as the amount
of input data is increased. Many successful SOAP-GAP
interatomic potentials for materials have been built with
ζ = 2 and ζ = 4, and such potentials and their applica-
tions are discussed in Section 6.

We note that this link between the body order of the
model and the quadratic nature of the power spectrum
features (and the fact that the bispectrum features cor-
respond to the next body order) leads naturally to body
ordered linear models, that are three-body potentials if
they use the power spectrum,58,75–77 and four-body when
using the bispectrum (because its terms are cubic in the
neighbor density coefficients), as is the case for the Spec-
tral Neighbor Analysis Potential (SNAP).78 One can go
further in body order explicitly while continuing to keep
the regression linear.64,65,67,68,73,79

3.2. Symmetry-Adapted Representation

In contrast to scalar properties such as the potential
energy, which are invariant under rotations of a system,
tensorial properties such as molecular dipole moments
and material polarizations transform covariantly when
the system is rotated. A natural way to account for
this covariance is to build it into the training and pre-
diction processes. The procedure for doing so was first
discussed by Glielmo et al. in the context of learning
Cartesian vectors.80 They noted that the GPR interpre-
tation of a kernel function as a covariance naturally dic-
tates the symmetry properties of kernels for predicting
vectors, requiring the kernel function k(ξi,ξi′) to be re-
placed by a matrix-valued function k(ξi,ξi′). In this
function, the block kαα′(ξi,ξi′) represents the coupling
between the Cartesian component α of a coordinate sys-
tem centered on the i-th atom, and the coordinate α′ of a
reference system centered on the i′-th atom. A number of
symmetry-adapted methods for predicting tensors have
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appeared in recent years, generally relying on the use of
reference frames based on the internal molecular coordi-
nates. These have been successfully applied to generate
ML models for the multipole moments of small organic
molecules81,82 and the hyperpolarizability of water,83 as
well as being used to predict vibrational spectra, includ-
ing infrared spectra of organic molecules84,85 and the Ra-
man spectrum of liquid water.86 It has become clear in
the last few years that both linear73,79,87 and fully non-
linear88–90 models can be built using covariant represen-
tations.

It is possible to generalize the approach of ref 80 to
arbitrary orders of tensor by applying analogous sym-
metry arguments,91,92 and we refer to the resulting
method as symmetry-adapted GPR (SA-GPR). Rather
than working with Cartesian tensors, it is more conve-
nient to decompose them into their irreducible spherical
components,93 which are more naturally related to the
transformation properties of the rotation group, and af-
ford a more concise description of the problem. For in-
stance, the polarizability (a symmetric 3× 3 tensor with
6 independent components) can be decomposed into its
trace, which transforms as a scalar, and a 5-vector that
transforms as a λ = 2 spherical harmonic. (Note that
we use λ to indicate the angular momentum symmetry
of the fitting target, rather than l, to distinguish it from
the analogous angular momentum index that appears in
the density expansion.) Given that a covariant kernel
must describe the correlations between the entries of the
tensors associated with two environments, this transfor-
mation allows us to work with a 1× 1 and a 5× 5 kernel,
rather than one with 6 × 6 entries. The transformation
between Cartesian and spherical tensors is not entirely
trivial for λ > 1, but it is well-established93 and neces-
sary for separating the Cartesian tensor into components
according to how they transform under rotation. The
basic form of a kernel that is suitable for fitting spherical
tensors of order λ is a generalization of the SOAP kernel
of eq (59):

kλ(Ai, A
′
i′) =

∑
a,a′

∫
Dλ(R̂)

∣∣∣∣∫ ρi,a(r)ρi
′,a′(R̂r) dr

∣∣∣∣2 dR̂,

(66)

where Dλ(R̂) is the Wigner D matrix of order λ. These
kernel matrices encode information on the relative orien-
tation of the two environments, as well as their similarity,
and are referred to as λ-SOAP kernels. A kernel built us-
ing eq (66) satisfies the two properties that are necessary
for learning a tensorial quantity: namely, that the pre-
dictions of a SA-GPR model are invariant to a rotation
of any member of the training set, and that when a rota-
tion is applied to a test structure, the predictions of the
model transform covariantly with this rotation.

For λ = 0, which has D0(R̂) ∝ 1, eq (66) reduces to
the expression for the scalar SOAP kernel. For the gen-
eral spherical case, the integral of eq (66) can be carried
out analytically.91 In practice, the kernel can be com-
puted from an equivariant generalization of the power

spectrum,

〈a1n1l1; a2n2l2|A; ρ⊗2
i ;λµ〉 =

∑
m

〈a1n1l1(−µ)|ρi〉

〈a2n2l2(µ−m)|ρi〉 〈l1m; l2(µ−m)|λµ〉 , (67)

where 〈l1m1; l2m2|λµ〉 is a Clebsch–Gordan coefficient,
〈anlm|ρi〉 is a density expansion coefficient (55), and the

notation |A; ρ⊗2
i ;λµ〉 alludes to the fact that these are

features obtained from the symmetrized average of a two-
point density correlation (akin to SOAP) that transforms
under rotation as a spherical harmonic Y µλ . The λ-SOAP
kernel (eq (66)) can be obtained by summing over the
feature indices,

kλµµ′(Ai, A
′
i′) =

∑
q

〈A; ρ⊗2
i ;λµ|q〉 〈q|A′; ρ⊗2

i′ ;λµ′〉, (68)

where we use 〈q| as a shorthand notation for the full set
of indices 〈a1n1l1; a2n2l2|.

3.3. H2O Potential Energy: A Hands-On Example

The dataset. We consider as a toy model the predic-
tion of the energy of a water molecule, deformed along
the bending coordinate ω and the asymmetric stretch
coordinate ν′ = dOH(1) − dOH(2) , with fixed symmetric
stretch coordinate 1

2 (dOH(1) + dOH(2)) = 0.95 Å (Fig-
ure 8). The dataset is a collection of 121 configurations,
equally spaced along the two directions in an 11 × 11
grid, which we use below to select training and repre-
sentative set configurations. For each configuration we
evaluate the energy, E, and the dipole moment, µ, using
the Partridge–Schwenke model94, which constitute the
targets for regression. These structures are highly dis-
torted, with energies in the eV range relative to the most
stable configuration. Note that we choose one of the co-
ordinates to be the asymmetric stretching coordinate, ν′,
so that the manifold is symmetric with respect to reflec-
tion relative to ν′ = 0, corresponding to a swap of the
labels of the two hydrogen atoms.

Computing features. The structure of the molecule is
uniquely determined by just the two O–H distances and
the H–O–H angle. However, for the purposes of this
example, we parametrize the GPR model in terms of
the SOAP power spectrum features pnn′l (equivalently

〈n1n2l|ρ⊗2
i 〉) centered on the O atom with σa = 0.5 Å.

Using the SOAP implementation of the librascal
package,95,96 as illustrated in the Python notebook that
is provided to accompany the present paper, we compute
the feature matrix using the following code:

from rascal.representations import

SphericalInvariants

# hypers is a dictionary describing the parameters

# of the representation calculation

soap = SphericalInvariants(**hypers)

# returns a n_environments*n_features numpy array

X = soap.transform(structures).get_features(soap)
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FIG. 8. A hands-on example for atomistic GPR: learning
the potential-energy surface of a single water molecule. (a)
The structures in the dataset are defined by two coordinates:
the asymmetric stretch coordinate ν′ and the bending coor-
dinate ω; the sum of both bond lengths is fixed to 2 × 0.95
Å. (b) The target property to be represented by the model,
spanning several eV because a very large range of distortions
has been chosen for this toy example. (c) Error in the GPR-
predicted molecular energy as a function of (ν′, ω). Stars in-
dicate structures used for training; crosses indicate structures
used as representative points of the sparse GPR model.

In this code extract, the structures are loaded and
stored in the variable structures (in the Atoms format
of the Atomic Simulation Environment, ASE,97 to which
librascal,95,96 QUIP,98 and some other SOAP implemen-
tations are coupled). The hyperparameters (hypers) de-
scribe the extent and shape of the cutoff function delimit-

ing the atomic environment, the spread of the atom den-
sity, the parameters of the radial and angular expansion,
and how the feature vectors should be treated after be-
ing calculated. These parameters could be optimized by
cross-validation, but often can be chosen by hand, taking
into account the specifics of the modeling problem.

Data splitting. We split the dataset into a training set
(which we indicate with the letter N , and which is used to
determine the model parameters) and test points, which
we indicate as T , that are used to assess the accuracy of
the predictions. This is common practice, as discussed in
Section 2. The corresponding indices within the overall
dataset are stored in the variables itrain and itest. We
also select representative points that are used as basis
functions to expand the sparse GPR ansatz. We indicate
the representative set as M , and store the indices in the
variable irep. It is worth stressing that, even though it
is customary to take the representative points to be a
subset of the training set, this need not be the case, and
methods exist that optimize the feature vectors of the
representative points so that they do not even correspond
to an actual structure.

Kernel matrices and regression. As discussed in Sec-
tion 2, the kernel matrix can be built by evaluating a
positive-definite kernel function, k(ξi,ξj), over all pairs
of training configurations. The elements of the power
spectrum feature vectors for all the structures in the
dataset are collected into a feature matrix Ξ, in which
each row is associated with one O-centered environment.
The linear kernel matrix is obtained as

KNN = ΞNΞ>N , (69)

where each element is a scalar product between the cor-
responding feature vectors, leading to a model which is
equivalent to linear regression. The true advantage of
GPR, however, comes when we use the kernel to in-
corporate an element of non-linearity into the model.
This could take the form of a polynomial kernel (e.g.,
taking k(ξi,ξj) = (ξi · ξj)ζ), or of a Gaussian kernel,

k(ξi,ξj) = exp
(
−|ξi − ξj |2/2θ2

)
. The latter allows for

the approximation of any sufficiently regular function de-
fined on the chosen feature space.39 Here we implement a
sparse GPR model, which corresponds to the minimiza-
tion of a loss analogous to eq (7), and so we compute
kernel matrices within the representative set (KMM ) and
between training and representative set (KNM ), using a
polynomial kernel with exponent ζ = 2, as follows:

KNM = (X[itrain] @ X[irep].T)**2

KMM = (X[irep] @ X[irep].T)**2

The GPR weights are determined by eq (11) which,
using a single value σ for the regularizer, takes the form

c =
[
K>NMKNM + σ2KMM

]−1
K>NMyN , (70)

and can be easily implemented using linear algebra li-
brary functions, for example, with a least-square solver:

c = np.linalg.lstsq( KNM.T @ KNM + 1e-8*KMM,

KNM.T @ targets[itrain], rcond=None)[0]
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The predictions for the test set, or indeed for any new
structure, can be easily computed as yT = KTMc, i.e.

KTM = (X[itest] @ X[irep].T)**2

ytest = KTM @ c

As shown in Figure 8, using only 12 training points and 8
representative points, the model achieves an error below
15 meV, which is less than 2% of the intrinsic spread of
energies in the dataset. An important observation is that
the errors are exactly symmetric with respect to ν′ = 0:
the use of an invariant representation guarantees that
molecular symmetries are automatically enforced, which
improves the accuracy of predictions even if we do not
exploit them explicitly in the selection of the training
set.

Even for this simple problem, the performance of a
GPR model depends on the choice of the structure and
hyperparameters of the model. The choice of the kernel
itself can have a very substantial effect on the accuracy
of the predictions, and on its ability to fit (and overfit!)
the targets. Figure 9a compares the error one incurs
when using three different kernels. For simplicity, and to
avoid confounding effects, for this figure we use a full (i.e.,
not sparse) kernel model, even though this is rarely the
most effective choice in computational practice. For this
simple system, linear regression based on SOAP features
has an accuracy comparable to that of the non-linear,
square kernel. The Gaussian kernel, instead, leads to
clear overfitting for a small length scale hyperparameter:
the training points have zero error, but structures away
from the data points in the (ω, ν′) space of Figure 9a
exhibit a very large discrepancy (up to 1 eV) between
reference values and model predictions. With a larger
length scale hyperparameter, the fit accuracy is similar
to those with the linear and quadratic kernels.

The effect of the changing the hyperparameters for this
dataset is shown in Figure 9b. The strongest dependence
is on the width parameter of the kernel function used to
define the GPR model covariance (here denoted by θ, to
distinguish it from a spatial length scale, since the de-
scriptors are the SOAP features). The optimal value is
around 1, which is large compared to the typical distance
between data points in the space of SOAP features, which
is approximately 0.03 for this dataset. In this example,
the Gaussian kernel performs well using a hyperparam-
eter for which it is dominated by the first term in the
Taylor expansion of the exponential, and therefore in ef-
fect becomes very close to a linear kernel.

For this simple dataset, which has a low intrinsic di-
mensionality, the effect of regularization is minor, but one
can still see that if the basis functions are wide enough
(θ > 1), there is an improvement of the test-set accu-
racy for finite, nonzero regularization compared to the
non-regularized (σ = 0) case. In more realistic scenarios,
and particularly in the high dimensional, data-poor, or
the extrapolative regime, a careful choice of σ can sub-
stantially improve the robustness of a model. Practical
aspects of regularization in GAP models are discussed
below (Section 4.6), as are heuristics for setting other

FIG. 9. Effect of different kernels and hyperparameters for
the H2O example. (a) Error in predicting the energy for the
distorted H2O molecule using different kernels as noted in
the legends. Stars denote the training point locations. For
all kernels, the features, ξ, are the SOAP power spectrum
components, centered on the oxygen atom, with σa = 0.5 Å
and regularization σ2 = 10−8. (b) Test-set RMSE for the
H2O energy model based on a Gaussian kernel, as a function
of the regularization σ and the kernel length scale θ. The two
blue crosses correspond to the hyperparameters used in the
lower two graphs in panel (a).

hyperparameters that influence the representation: the
SOAP density smearing length scale (σa), the cutoff ra-
dius, and others.

3.4. Symmetry-Adapted GPR

We now give an example of the construction of a
regression model for a tensorial property, namely, the
dipole moment of the water molecules, computed for the
same set of distorted structures. Functionally, symmetry-
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FIG. 10. SA-GPR predictions of the dipole moment for the
water molecule. The training data were generated using the
Partridge–Schwenke model; the definition of the coordinates
ν′ and ω, as well as the molecular structures, are same as
in Figure 8. Blue crosses and black stars indicate the repre-
sentative and training point locations, respectively. Arrows
indicate the magnitude and direction of the predicted dipole
moment for each structure (the y axis corresponds to the C2

axis of the ideal molecule) and the background color scale in-
dicates the magnitude of the model error. For reference, the
typical scale of the dipole moment of a water molecule is 1.8 D
(corresponding to the size of the gray arrow in the inset), and
so the fitting errors are on the order of a few percent.

adapted GPR is very similar to standard GPR, with
eq (3) for the estimator replaced by

yµ(x) =

N∑
i=1

∑
µ′

ciµ′k
λ
µµ′(x,xi), (71)

for the µ component of the spherical tensor y(x). Given
that the dipole moment is just a vector, and that
(real-valued) l = 1 spherical harmonics correspond to
(y/r, z/r, x/r), we build the kernel using just the Carte-
sian components. Hence, the variable yl holds the N × 3
components of the dipole moments in the overall dataset.

To compute λ-SOAP kernels, we first compute the

corresponding equivariant feature vectors, 〈q|A; ρ⊗2
i ; 1µ〉,

implemented in the code as follows:

from rascal.representations import

SphericalCovariants

hypers[’soap_type’] = ’LambdaSpectrum’

hypers[’inversion_symmetry’] = True

hypers[’covariant_lambda’] = 1

lsoap = SphericalCovariants(**hypers)

# returns a n_environments*n_features*3 numpy array

Xl = lsoap.transform(structures).get_features(lsoap)

# ... which we rearrange so that the index order

# is environment, mu, feature. For this example, we

# also convert the lambda=1 equivariants to their

# Cartesian form, so we can learn the dipole

# components directly.

Xl = to_cartesian(Xl)

The hyperparameters are the same as for the invariant
SOAP, except for covariant_lambda that identifies the re-
quired equivariant channel, and inversion_symmetry that
retains only components with the appropriate behavior
with respect to inversion.

Kernels are composed of 3× 3 blocks, computed using
eq (68). This requires some careful indexing:

# v2f and f2v are helper functions that respectively

# flatten or partition the environment*mu indices.

lKNM = f2v( v2f(Xl[itrain]) @ v2f(Xl[irep]).T )

lKMM = f2v( v2f(Xl[irep]) @ v2f(Xl[irep]).T )

# lKNM.shape is now (ntrain, 3, nrep, 3)

The tensorial expression for the GPR weights is

ciµ =
∑
jµ′

(
Kλ + σ2I

)−1

iµ,jµ′
yjµ′ . (72)

Hence, in SA-GPR we are solving fundamentally the
same problem – that of matrix inversion – as in standard
GPR, but we now incorporate the intrinsic geometric cor-
relations between the components of the target properties
through the form of the covariance matrix. In terms of
implementation, this also requires some bookkeeping:

lc = f2v( np.linalg.lstsq(

v2f(lKNM).T @ v2f(lKNM) + 1e-8*v2f(lKMM),

v2f(lKNM.T) @ v2f(yl[itrain]),

rcond=None )[0] )

# lc.shape is now (nrep, 3)

Afterwards, it is possible to perform tensorial predictions
by just applying eq (71):

lKTM = f2v( v2f(Xl[itest]) @ v2f(Xl[irep]).T )

ly_test = f2v( v2f(lKM) @ v2f(lc) )

Figure 10 demonstrates the accuracy of the SA-GPR
model. The predictions are symmetric across ν′ = 0,
consistent with the geometry of the problem and a con-
sequence of the equivariant framework. Note that the
kernel we use here has a scalar-product form, and so is
equivalent to a linear ridge regression model built on the

〈q|ρ⊗2
i ;λµ〉 features. As discussed in ref 99, non-linear

tensorial kernels cannot be built by manipulating the λ-
SOAP block elementwise, but should be constructed by
combining a non-linear scalar kernel with a linear tenso-
rial part, e.g.

kλ,ζµµ′(Ai, A
′
i′) = kλµµ′(Ai, A

′
i′)[k

λ=0(Ai, A
′
i′)]

ζ−1 (73)

for a polynomial kernel. (Note that kλ=0 corresponds to
the original, scalar SOAP kernel defined in eq (57).)
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4. THE GAUSSIAN APPROXIMATION
POTENTIAL (GAP) FRAMEWORK

The introduction of ML methods for modeling the
Born–Oppenheimer potential energy function using suit-
able descriptors of atomic environments49,66 has opened
up a new research field in materials science and chem-
istry. Although there was important early work using
ML models (e.g., for the low-dimensional PES of small
molecules100–102 even near surfaces103), the key advance
was the systematic description of the many-body envi-
ronment of atoms, coupled with high-dimensional fitting
techniques (neural networks66 and kernel methods49).
The descriptors of Behler and Parrinello and the Smooth
Overlap of Atomic Positions (SOAP) kernel52 obey all
physical symmetries (translations, rotations, and permu-
tation of like atoms) and represent the local environment
with a high degree of completeness,71 while remaining
smooth and continuous with respect to the movement
of atoms.51 When combined with appropriate databases
of quantum-mechanical reference data, these ML frame-
works were demonstrated to be capable of providing
highly accurate interatomic potential models for mate-
rials and molecules.

In the present section, we review the Gaussian Approx-
imation Potential (GAP) framework, one of the schemes
for generating ML-based interatomic potentials that have
recently found widespread use. The software implemen-
tation is part of the QUIP code.98 Formally, GAP is an
application of GPR to infer a decomposition of the to-
tal energy of an atomistic system into atomic (“local”)
energies, from input data that can comprise total ener-
gies and their derivatives (forces and stresses). As with
other ML potential fitting frameworks, the three compo-
nents of GAP modeling are the reference database, the
representation of atomic environments using suitable de-
scriptors (including, but not limited to, SOAP), and the
regression task itself which is here carried out in the GPR
framework (Figure 11). We discuss at some length the
methodological choices that we have made in developing
and defining this framework, and we explain the reason-
ing that leads to them.

The following principles guide the construction of GAP
models:

• All available data are used: total energy, forces and
stresses (for periodic systems), combined into a sin-
gle ML fit. The design of the input database is crit-
ical to the success of the model, and has been a cor-
nerstone of all presently available general-purpose
GAPs. The selection of reference data is as much
an area of ongoing methods development as is that
of representation and regression (Section 4.1).

• The choice and specification of structural descrip-
tors (representation) is tightly coupled with the
choice of kernels, and both are an essential part of
the user input. They incorporate prior knowledge
about the nature of the potential-energy function

– specifically, its regularity. Commonly used ex-
amples are distances and angles between atoms to-
gether with a squared exponential (Gaussian) ker-
nel, or the many-body SOAP representation with a
polynomial kernel. These are not mutually exclu-
sive: low dimensional kernel models can be fitted
together with many-body ones, with appropriate
weighting between them. All representations and
kernels in GAP have finite distance cut-offs, typi-
cally about 5–6 Å, and therefore they represent the
local environments of the atoms (Section 4.2).

• Baseline models, determined a priori, are used
where possible. The baseline could be a certain
level of electronic structure (say, we fit the dif-
ference between DFT and coupled-cluster poten-
tial energies), or an analytical long-range potential,
e.g., an electrostatic or dispersion model, or in fact
any fast force field or even just a purely repulsive
interaction. Hierarchical models, in which multiple
fitted potentials are added together, are discussed
in Section 4.2.

• The atomic energy is written as a sum of a fixed
number and type of kernel basis functions, irre-
spective of the type and exact amount of input
data, making the model a sparse Gaussian pro-
cess. Decoupling the amount of input data, D,
from the number of basis functions (“representative
points”), M , makes the prediction cost formally in-
dependent of the amount of input data (although
in practice a larger M may be needed to repre-
sent a larger, more diverse training set). There-
fore, the storage and cost requirements of using a
GAP model scale with the number of representative
points, not with the size of its reference database
(Section 4.3).

• Hyperparameters of the GAP model are chosen and
fixed a priori as much as possible, and optimized
only where required. The main hyperparameters
are (i) the relevant length scales, which defines the
cut-off radius and the smoothness of the kernel, and
(ii) the expected errors (arising both from noise in
the input data and limitations of the model, e.g.,
due to the necessarily finite cut-off radius; Section
4.4), which determine the regularization of the fit
(Section 4.6). Practical choices for hyperparame-
ters are discussed in Section 4.5.

While the rest of the present section will expand on
the details of GAP, we note here briefly that over the
past decade, numerous other works have proposed many-
parameter fitting schemes inspired by a variety of ML
methodologies, blending them with a range of materi-
als modeling approaches. Following the foundational
work of Behler and Parrinello,66 feed-forward neural net-
works with a handful of layers are used in the ANI se-
ries of force fields for organic molecules,104,105 as well
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FIG. 11. The three main components for GAP: (1) a reference database of quantum-mechanical data for suitably chosen struc-
tural models, (2) a representation of the atomic environments (typically using combinations of 2-body and SOAP descriptors;
Section 4.2), and (3) the GP regression itself. Adapted from ref 29 with permission. Copyright 2019 WILEY-VCH.

as the ænet,106 Amp,107 DeepMD,108 and Panna109 im-
plementations, and have even been coupled with charge
equilibration schemes.110 For more details, ref 111 pro-
vides a review in the present Special Issue. Indepen-
dent implementations of GPR/KRR were also used with
SOAP-like features for tests in bulk vanadium hydride,112

zirconium,113 and also to directly predict force vectors
rather than the potential energy.114,115

4.1. Reference Data

The quality of any ML model hinges on the quality
of its input data, and interatomic potentials including
GAP are no exception. The choice of reference data is
particularly important because ML potentials are non-
parametric: they lack a physically justified functional
form, and thus they have enormous variational freedom
that must be constrained by the input data.

A range of approaches have been developed for the
construction of reference databases. These are pri-
marily guided by the intended purpose of the poten-
tial. “General-purpose” potentials are intended to accu-
rately represent a material under a wide range of con-
ditions, whereas others might be fitted for a specific
purpose, e.g., to study the transition between specific
crystalline phases116,117 or the Li-ion mobility of a given
compound.118–120 In the following, we show some exam-
ples of the development of different strategies for building
databases, from hand-selecting configurations to almost
fully automated protocols. In keeping with the scope of
the present review, we discuss these strategies in the con-
text of GAP, although many ideas and methodological
approaches are transferable to other fitting frameworks.

4.1.1. Hand-Built Databases

Early GAP fitting databases were developed by hand,
using physical intuition to select relevant configurations.
Among the first examples was a GAP for elemental tung-
sten, which was designed to describe the material in its
ambient body-centered cubic (bcc) crystal structure with
relevant low-energy defects, including vacancies, surfaces,
generalized stacking faults, and dislocations.121 The fit-
ting proceeded in stages, starting from a narrow range
of configurations and gradually adding more structurally
diverse ones (Figure 12). Initially, the GAP was fit only
to snapshots representing the bulk bcc phase with small
perturbations, and consequently it was accurate only for
properties that depend exclusively on such geometries,
such as elastic constants and phonon frequencies. Con-
figurations with very different atomic environments, such
as defects, had much larger errors in predicted energy
because they had not been “shown” to the fit. As in-
creasingly diverse configurations were added to the fit-
ting database, the applicability range expanded: at each
stage, adding configurations representing various defects
improved the model prediction results for that defect
type, without appreciably worsening its accuracy for the
configurations considered at a previous stage. This desir-
able behavior is a reflection of the variational freedom of
GAP, its locality in atomic-environment space, and the
stability of GPR: fitting in additional regions of configu-
rational space does not necessarily change the behavior
for previously fit regions. Some care has to be taken to
achieve this, e.g. the number of representative configu-
rations might need to be increased.

The design of a fitting database for a GAP must take
into account the risk of unphysical predictions for struc-
tures that are far from the fitting configurations, due to
its large variational freedom and the lack of constraints
from built-in physics beyond symmetries and smooth-
ness. A potential with only low-energy configurations in
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FIG. 12. Accuracy of GAP models for tungsten fitted to
a series of progressively more comprehensive, manually con-
structed databases (labeled as “GAP 1” through “GAP 4”).
Numerical errors for four different properties are given: if the
corresponding type of configuration has been included in the
database, the GAP performs well in predicting this property
(indicated in green). Figure drawn with data from ref 121
and adopting the color scheme from that work.

the fitting database may not correctly predict the true in-
crease in energy at the boundary that separates the phys-
ically reasonable regions from inaccessible, high energy
configurations. Using such a potential in a configuration-
sampling method, such as MD, may therefore cause the
system to evolve into unphysical regions of configuration
space. Thus, in order to obtain a usable potential, it is
essential to fit not only the configuration-space region of
ultimate interest, but also its “boundary”. Note that the
dimensionality of configuration space could make this a
challenging task – even when the n-dimensional volume
of interest can be adequately sampled, if the required
boundary has comparable length scale, its volume would
be of order 2n times larger.

A practical way to address the requirement to fit the
boundary is to make the fitting process iterative. A pro-
posed potential is used in an MD or Monte Carlo sam-
pling of configurations at conditions that are more ex-
treme than those of interest (e.g., higher temperatures
or a wider range of pressures). Configurations that will
improve the fit must be identified and evaluated with the
reference method for inclusion in the fitting database.

The GAP is re-fit with the additional configurations, and
the process is repeated until no more unphysical behav-
ior is seen.122 Variance prediction can provide a useful
tool to identify poorly predicted configurations for fit-
ting (Sections 4.1.2 and 5.2), although it has not been
widely used for GAP model development so far.

4.1.2. Iterative and Active Learning

One important contrast that we would like to draw is
between what we describe above as iterative fitting, and
what is often referred to as “active learning” in the ML
community. In iterative fitting, we add more fitting data
points at each iteration, and convergence is determined
by the performance of the model on some independent
and physically meaningful property. The challenge is
then to select the best (most informative) fitting data
to add at each iteration, and to develop a convergence
test that ensures that the resulting model is sufficiently
accurate and robust for future application. The goal is
to approach a stable, “converged” potential, which can
then be used in practice without having to continually
refine it further. In the next subsection, we give an ex-
ample of such a procedure with configurations generated
by random-structure search.

Active learning, on the other hand, depends on the
ability to efficiently predict the accuracy of the model
for each configuration as it is generated during a sim-
ulation, for example using the predicted variance for a
GP,61,123–125 D-optimality for a moment tensor potential
(MTP),126,127 or model ensemble variation for a neural
network.128,129 Details on how to obtain such error esti-
mates are given in Section 5.2.

When configurations that are expected to be poorly
described by the existing model are encountered, they
are evaluated using the reference method, added to the
training set, and the model is re-fit. In practice, active
learning is often used without the goal of developing a
single general-purpose potential that describes the ma-
terial under all conditions, but rather one that ends up
being tailored for a specific simulation (material, crystal
structure, temperature range, etc.).124 The process con-
verges when a particular simulation stops producing con-
figurations that are considered novel enough to be added
to the training set – this may or may not be reached in
practice.

Active learning was first proposed for interatomic po-
tentials in the context of neural networks,128 where it
was successfully applied to MD simulations of Cu bulk
and surfaces. It it still being used in neural-network
models with more complex architectures, for example
in the development of “Deep Potential” models for Al–
Mg alloys.129 In that work, the active learning loop was
added to MD simulations of temperature ramps start-
ing from known crystal structures at low temperatures
and increasing to values above the melting point. The
resulting models reproduce not only the PES sampled
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by the simulation, but also structural properties such as
the liquid radial distribution function, as well as energies
of configurations that are unlikely to be represented in
the MD trajectories such as free surfaces. Active learn-
ing in the context of reference-data selection for GAP
was demonstrated for liquid and amorphous phases of
hafnium dioxide130 and very recently coupled with ex-
perimental observations into a fitting workflow for this
material.131

The developers of the VASP first-principles simulation
software132 integrated an automated GPR-based poten-
tial using active learning as a technique for accelerat-
ing their simulations.123–125 Using SOAP descriptors but
slightly different expressions for regression than GAP,
and using the GP to predict variances of forces and
stresses as well as energies, they showed that predicted
variances are good proxies for actual error, as shown in
Figure 13a. Although a rescaling was required to bring
them into quantitative agreement with the actual error,
the predicted variances were effective for use in select-
ing fitting configurations for active learning. The au-
thors applied their methodology to a wide range of sys-
tems, including metals, AB2 Laves phases, and hybrid
perovskites: for example, Figure 13b shows the evolu-
tion of the lattice parameters of methylammonium lead
iodide (MAPI, CH3NH3PbI3), during the orthorhombic
to tetragonal to cubic transitions, as compared to exper-
imental results. The latter system has been widely stud-
ied with DFT.133 Tong et al. used a similar predicted-
variance criterion for active learning of configurations
during the search for low energy structures of large boron
clusters134, culminating in the prediction of a new ground
state structure for B84. The VASP code with this built-
in SOAP-GPR based acceleration technique has since
been used by other groups, e.g., to study the atomic-to-
electride liquid-liquid phase transition of potassium.135

Vandermause et al. employed GPR variance prediction
to drive an active learning procedure for an interatomic
potential, although they used two and three body de-
scriptors, rather than SOAP.61 While this choice of de-
scriptors led to a somewhat higher error relative to their
reference data, the authors were able to map the resulting
potential to a spline form for greatly increased compu-
tational speed. The method was applied to melting and
point defect diffusion in aluminum, as well as a wider
range of materials (metals, semiconductors, metal oxides)
at a narrower range of temperatures (and therefore of ge-
ometries). In this case, the hyperparameters of the GP
were optimized by maximizing the marginal likelihood,
and it is likely that this is a key component of accurate
error predictions. In fact, the dependence of the vari-
ance prediction on the fitting data values (not just fitting
data locations, i.e. the geometry of the configurations) is
only through this optimization – the predicted variance
expressions themselves are only explicitly dependent on
kernels between input configurations.

Finally, MTPs have been presented as part of an
active learning loop explicitly based only on the vol-

FIG. 13. Fitting of a GPR-based ML potential as fully inte-
grated with ab initio molecular dynamics. (a) Time evolution
of measured and predicted force errors in an on-the-fly fit-
ted GPR model of the methylammonium lead iodide (MAPI,
CH3NH3PbI3) hybrid perovskite during an MD simulation.
(b) Lattice parameters of MAPI as a function of simulation
temperature for GPR model (MLFF), as compared to exper-
iment (EXP), showing structural phase transformations as
indicated by the orange and yellow vertical bars. Reprinted
figure with permission from ref 123. Copyright 2019 by the
American Physical Society.

ume of the input data space spanned by the training
dataset, rather than explicitly predicting the error in
the output,126,127 although these are related through
the idea of D-optimality. The procedure was first ap-
plied to simple metals in the solid and liquid phase, and
later showed success in the much more complex and geo-
metrically diverse process of structure search in a wider
range of materials, including metals, semiconductors, and
insulators.127 Several other applications of active learn-
ing to other types of interatomic potentials are listed in
a recent overview.125
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4.1.3. GAP-RSS

The majority of ML potentials has been developed
based on a knowledge of the relevant atomistic struc-
tures: crystalline phases added to the reference database
by hand; liquid and amorphous structures taken from
first-principles MD simulations; specified structures that
serve as the starting point for “on-the-fly” potential fit-
ting. These potentials are accurate in the sense that they
reproduce energetics of crystalline phases to within a few
meV per atom, and often a range of other relevant prop-
erties (Figure 12). They can also be flexible enough to
drive a global search for crystal structures that would
normally be carried out with DFT – for example, in
the widely used Ab Initio Random Structure Searching
(AIRSS) approach by Pickard and Needs.136,137 In the
context of GAP, the ability to carry out structure search-
ing successfully has been demonstrated for carbon138 and
silicon,139 identifying low-enthalpy minima and describ-
ing the density distribution of energies in good agreement
with DFT.

In the present section, we review a method for the
de novo exploration and fitting of potential-energy sur-
faces without the prior inclusion of any known structures.
Starting from randomized configurations, a GAP is fit-
ted and used to carry out structure searching; the re-
sulting minima are labeled with DFT and fed back into
the training; the process is then repeated until conver-
gence. We refer to this method, combining GAP fitting
and random structure search, as “GAP-RSS”,140 in anal-
ogy to AIRSS. Here, we focus the presentation on GAP,
in keeping with the scope of the present review article,
but we note that other ML fitting schemes have also been
successfully combined with different structure-searching
techniques.126,134,141

Whether such a de novo approach would work at all is
not obvious: in fact, AIRSS and related methods start
from randomized structures that are highly dissimilar
from experimentally known phases, and therefore the ex-
ploration especially of the higher-energy regions of the
PES requires sufficiently accurate energy and force eval-
uations, normally afforded by DFT. Why, then, would an
ML potential find new lower-energy structures to which
it has not been fitted, and which it therefore describes
rather poorly? The key is that the potential does not
have to be accurate for a low-energy structure in order
to find it: the combination of large structural diversity
generated by the random-search algorithm and sufficient
smoothness (of both the DFT potential energy surface,
and the GAP fit) allow the potential to explore lower-
energy regions in subsequent iterations, eventually con-
verging to a good description of the PES.

The central idea behind GAP-RSS, namely that of
starting with randomized atomic configurations and cou-
pling fitting and exploration, was introduced in ref 140.
The test case in that work was elemental boron, which
is challenging because multiple structurally complex al-
lotropes exist and need to be correctly described by the

method, and even the simple α-rhombohedral structure
is based on B12 icosahedra (see Section 6.2 below). The
search started from random configurations, created using
the buildcell functionality of the AIRSS code,137 for
which DFT reference data were computed and an initial
GAP was fit. From searches (that is, structural relax-
ations) using this initial potential, structures were taken
after five and 200 relaxation steps, corresponding to RSS
“intermediates” and configurations closer to local min-
ima, respectively. Iterative DFT computations, potential
fits, and searches with the next potential version led to
progressively improved GAP models, quantified using the
energy error for the bulk allotropes which the potential
had not initially “seen”. Of course, once the bulk struc-
tures were added, their description was improved much
further. This initial work also explored the role of GAP
atomic energies, showing that for a supercell model of β-
rhombohedral boron with the relevant crystallographic
sites all fully occupied, high (unfavorable) atomic ener-
gies are predicted for the B13 site that experimentally
show a partial occupation; see ref 140 for details.

The approach was then expanded by a selection step
in subsequent work, which focused on phosphorus as a
test case:142 rather than feeding back all configurations
in a given iteration, only the most favorable ones were
selected. In this case, the criterion was that all atoms in
a given structure needed to be threefold-connected,142 in
accord with the crystalline allotropes of phosphorus and
its location in the fifth main group of the Periodic Table.
Indeed, in this study, the orthorhombic structure of black
phosphorus was “discovered” after a few iterations, and
once the corresponding snapshot had been fed back into
the database, the energy–volume curve was brought into
good agreement with DFT.142 The work furthermore ex-
plored GAP-RSS searches at high pressure, in this case
showing how the As-type and simple-cubic allotropes can
be recovered.142

Subsequently, for elemental systems, this process has
been automated using general heuristics for the hyperpa-
rameters, RSS process, and structure selection criteria, so
that only the chemical element needs to be specified.143

In this case, a length scale is set from a tabulated char-
acteristic elemental radius (metallic or covalent), and a
volume scale that is derived from this length scale and
the geometry of typical open-network (covalent) or close-
packed (metallic) structures. The length and volume
scales are used to set all spatial hyperparameters, in-
cluding the potential cutoff distance, SOAP smoothness
σa, and RSS initial structure density and minimum inter-
atomic distance. In the initial step, a set of 104 random
structures is generated and 100 are selected for maxi-
mum diversity using leverage-score CUR,144 similar to
that used for the selection of representative atomic envi-
ronments in GAP fitting (Section 4.3). In this case, the
CUR algorithm is applied to the “average SOAP descrip-
tors” that describe an entire structure by a single power-
spectrum vector, built from coefficients corresponding to
the local environments.145
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FIG. 14. Exploring and fitting structural space from scratch
with the GAP-RSS methodology.140,143 The example shown
here illustrates how the structure of α-rhombohedral boron
is discovered within a few iterations of GAP fitting and iter-
ative random structure searching. Reprinted from ref 143.
Original figure published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

As in ref 140, an initial GAP is then fit to DFT refer-
ence value energies, forces, and stresses for the selected
configurations. In the methodology of ref 53, for each
subsequent iteration, the GAP from the previous iter-
ation is used to find RSS minima from 104 initial ran-
dom configurations, with the minimization of enthalpy
under a random pressure from a user-defined distribu-
tion. First, a set of relevant minima is selected with
a two-step process. A Boltzmann-biased flat histogram
in enthalpy is used to select a few thousand minima, to
ensure that the set is independent of the probability den-
sity of the RSS minima population (through the use of
the flat histogram) and biased toward low enthalpy con-
figurations (through the Boltzmann weight). A diverse
subset of these minima is selected using CUR, as in the
initial step, and the entire set of minimization trajectory
configurations leading to these minima is used as a pool

for the fitting configuration selection. From this set, 100
configurations are selected using the same flat-histogram
and CUR process, evaluated with DFT, and added to the
fitting database. This process ensures that the fitting
database focuses on a wide range of diverse local min-
ima as well as higher energy configurations that might
be encountered during a simulation; it retains the advan-
tage of selection by CUR on the kernel matrix (purple
in Figure 14), and avoids the computationally expensive
task of computing the kernel matrix on the entire large
set of configurations generated by the RSS minimization
process (104 trajectories with about 100 steps each).

The evolution of the GAP-RSS process is shown in
Figure 14. With each iteration, the accuracy of the GAP
prediction (compared to the reference DFT value) for the
DFT minimum α-B12 structure improves, with the best
convergence seen with the use of CUR on the descrip-
tor kernel matrix. The evolution of the corresponding
RSS itself is shown in the bottom panel of the figure,
in the form of visualizations of the lowest GAP-energy
structure found. Even the 4th iteration finds a structure
with many three-membered rings, which are important
in several low-energy B crystal structures. Subsequent
iterations (the 5th and 25th one are shown) find struc-
tures that become increasingly close to the nearly ideal
icosahedra in the DFT minimum energy structure.

The iterative combination of structure search and fit-
ting has not been restricted to AIRSS and GAP: in fact
it can be done with any combination of methods, in prin-
ciple, as noted in ref 138. An evolutionary structure
searching approach, implemented in the USPEX code,146

was combined with moment-tensor potentials (MTP) to
accelerate the structure search process for a number of
elements.127 Described as a way of accelerating the dis-
covery of new crystal structures, the combination was
successfully applied to C, Na under pressure, and B. The
structure-search algorithm combined with the computa-
tional efficiency of the moment tensor potentials (MTP)
enabled the construction of several 105–108 atom approx-
imants of the β-B structure, which is highly complex with
many partly occupied sites. In terms of nanostructures,
it was shown, for example, how the fitting of a neural-
network potential can accelerate evolutionary searches
for the structures of nanoparticles on surfaces.147

Another algorithm, viz. crystal-structure searching by
particle-swarm optimization148 as implemented in the
CALYPSO software,149 was combined with a GAP model
(using atom-centered symmetry functions rather than
SOAP descriptors) to iteratively search for structures and
refine the GAP.134 In one variation active learning was
used, selecting configurations to be added to the fitting
database based on predicted error from the variance of an
ensemble of GAP models. The generated GAP models
were shown to be effective for CALYPSO searches, and
they were used to predict a new ground-state structure
for the B84 cluster; examples of this search and others
will be discussed in Section 6.2 below. As stated above,
presumably any ML potential could benefit from similar
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approaches, as long as the potential can take advantage
of smoothness or other physical properties of the PES to
have sufficient transferability to reproduce (at least semi-
quantitatively) the diverse range of configuration that
appear in a random structure search.

4.1.4. Automatic Training Set Selection

A common problem one encounters is that of extract-
ing from a large set of configurations – for instance ob-
tained from exploratory ab initio molecular dynamics, or
from simulations performed at a lower level of theory or
with an empirical force field – a smaller set of configura-
tions that exhibit maximum diversity, to be recomputed
with a more accurate method, or just to discard redun-
dant configurations to accelerate the fitting procedure.
Both farthest-point sampling150 (FPS, a greedy algo-
rithm that select at each stage the structure that is most
different from those that have been selected already) and
CUR decomposition (a factorization that uses columns
and rows of a matrix to approximate it) have been used
for this task.72,143,151,152 Whenever the regression target,
or an inexpensive approximation of it, is available for the
large dataset, it is possible to use it to improve the qual-
ity of the selection, either with genetic algorithms153 or
with extensions of FPS and CUR techniques154 inspired
by principal covariate regressions.155

4.1.5. General-Purpose Databases

General-purpose ML potentials aim to describe a mate-
rial under all reasonable conditions, including a diversity
of phases, surfaces, relevant defects, etc. They require
general-purpose databases that cover all this wide vari-
ety of local environments. The defining attribute of such
a potential is that it can be used by other researchers,
not involved in its construction, sometimes for new pur-
poses that were not envisaged when the fitting database
was assembled. The first such database was painstak-
ingly built by hand using a combination of chemical in-
tuition and “trial and error” for silicon,139 leading to
a database that contains over 170,000 atomic environ-
ments. The GAP model fitted to this database provided
near first-principles accuracy for a wide variety of prop-
erties. This is illustrated by the bar chart in Figure 15,
showing the percentage errors with respect to DFT for a
number of simple material properties, in comparison to
several empirical potentials available for silicon. Beyond
these, the GAP gives an accurate description of vibra-
tional modes, thermal expansion, dislocations and crack
tips, and complex surface reconstructions for diamond-
type silicon, the equations of state for various relevant
crystalline phases, and the structure of amorphous and
liquid silicon.139,151 It has recently been used in a large-
scale simulation to shed light on the behavior of amor-
phous silicon under high pressure, which we discuss at

FIG. 15. Accuracy of the general-purpose silicon GAP.139

The bar chart shows the percentage error of some basic mate-
rial properties and the formation energy of selected defects
with respect to DFT: elastic constants (B, c11, c12, c44);
surface energies for the (111), (110) and (100) surfaces; va-
cancy (“vac”) and interstitial (“int”) formation energies in
the hexagonal (“hex”), tetrahedral (“tetr”) and dumbbell
(“db”) configurations. While the local environments relevant
to the properties on the left side of the figure are well rep-
resented in the database, the (112)Σ3 symmetric tilt grain
boundary and unstable stacking fault energies on the shuf-
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us ) planes, on the right of the figure

are not, and therefore indicate a degree of transferability
to new, unseen properties. Also shown are the errors of a
number of empirical potentials: EDIP,156 Tersoff,157 Purja
Pun,158 MEAM,159 SW,160 ReaxFF,161 and DFTB.162 Al-
though some of these have not been fitted to DFT data for
the relevant configurations, and sometimes not to any DFT
at all, the variance between values obtained with different fla-
vors of DFT (and even with experiments) for the properties
shown are typically less than the errors of the empirical po-
tentials. Reprinted from ref 139 under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

the end of this review.164

The amount of manual work that was required to as-
semble the silicon database is clearly not sustainable if
similar general-purpose potentials are to be developed
for a wider variety of materials. Figure 16 combines sev-
eral of the ideas discussed in the present section into a
blueprint for making general-purpose potentials. The ex-
ample case, shown at the center of the figure, is elemental
phosphorus, a structurally highly complex system with
multiple low-energy crystalline polymorphs: see, for ex-
ample, ref 165 for the synthesis and characterization of
monoclinic “fibrous” red P, and ref 166 for a computa-
tional survey of the different allotropes. Phosphorus is
also of application interest in terms of monolayers (“phos-
phorene”; ref 167) and, more recently, nanoribbons168

derived from the layered structure of black P. This struc-
tural diversity, together with the need to describe certain
regions of the PES highly accurately (in this case, for
example, the exfoliation curve of phosphorene), places
demands on the construction of the reference database
that is used in the potential fit. The database devel-
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FIG. 16. Different strategies for constructing reference databases for ML potentials, indicated by cartoons in the boxes.
The center of the figures shows a database of phosphorus configurations used to fit a general-purpose GAP for this element.
The structural map, visualizing the (dis-) similarity between different configurations, illustrates the connection between random
structure search (gray), exploration with the potential using MD (orange), and manual database building (blue, green). Adapted
from ref 163. Original figure published under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

oped in ref 163, for which a SOAP-based structure map
is shown in the center of Figure 16, aims to achieve this
goal. On the one hand, it enhances transferability by in-
cluding a highly diverse set of structures from an earlier
GAP-RSS search,142 and on the other hand it ensures
application relevance by including carefully chosen con-
figurations that are relevant to specific physical problems
that might be studied: here, for example, the description
of phosphorene nanoribbons, which have been synthe-
sized recently.168

4.2. Hierarchical Models

Having discussed the development of reference
databases in some detail, we turn now to the other as-
pects of the GAP methodology which are concerned with
the fit itself. While it is certainly possible to fit an in-
teratomic potential using GPR and a many-body kernel
such as the SOAP (eq (57)) on its own, we suggest that
this is almost always a bad idea. The reason is that
there are at least two distinct energy and length scales in
potential energy surfaces: the attractive regime of inter-
atomic bond formation on the length scale of Ångströms
and energy scale of electronvolts (hundreds of kJ mol−1),
and the repulsive regime between nuclei (including elec-
tronic exchange repulsion) on the length scale of tenths of
Ångströms and energy scale of tens of electronvolts and
higher. In most applications, we are interested in a de-
tailed and accurate description of the former, and just a
rough approximation of the latter (one exception to this

is the study of high-energy impact events, which will be
reviewed in Section 6 below).

We can augment the many-body model with low body
order terms (as in eq (52)), which are themselves fitted
at the same time as the many-body model. It is conve-
nient to retain the linear algebra framework of the kernel
regression method, and this can be done if all the terms
which we wish to fit are expressed as GPR models. All
we need to do to achieve this is to define suitable de-
scriptors and kernels for each term, and use them in the
“linear functional observations” framework introduced in
Section 2.4. For the pair potential, the distance between
two atoms is the canonical choice. For the three-body
term, either two distances and an angle, or three dis-
tances are equally suitable. In both cases, permutational
symmetry must be enforced, either by symmetrizing the
descriptor or by summing the potential term over the
permutation group of three particles (depending on the
three element identities). The total energy expression
of a combined two-body and many-body model, using
Gaussian kernels for the two-body terms, is then

E =
∑
ij

(δ2)
2
M2∑
m=1

c2,m exp

[
− |rij − rm|

2

2θ2

]

+
∑
i

(δMB)
2
MMB∑
m=1

cMB,m k(ξi,ξm)

(74)

where we have introduced weights δ2 and δMB for the
two terms, which scale the relative contributions of the
different terms, and have units of energy. (Because ker-
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nels are unitless and the coefficients c have units of in-
verse energy, each term on the right-hand side has ap-
propriate energy units.) The two-body term is a one-
dimensional sparse GP with M2 representative points lo-
cated at the interparticle distances rm, which in practice
we often take to be a regular grid up to some cutoff.
In this formulation, the different terms are not indepen-
dent: a general many-body term of course can describe
any two-body interaction too, but not efficiently, since it
is intrinsically high-dimensional. So it is only in combi-
nation with the regularization of the fitting coefficients
and specifying different weights, by using different δ pref-
actors, that we obtain the benefit of separating out these
terms. (Note that it is actually possible to separate out
the two-body contributions from the many-body SOAP
descriptor explicitly.169)

Figure 17 illustrates the trade-off between robustness,
flexibility, and overall quality that is linked to the choice
of descriptors or combinations thereof, here shown for the
example of carbon.122 Increasingly complex models, viz.
2-body, 3-body, and many-body (SOAP) terms capture
the potential energy increasingly well, albeit requiring
higher computational cost. A pure SOAP model (dashed
black line) reproduces well the region where data are
available, but fails notably at very small interatomic dis-
tances. In contrast, the combined 2b+3b+SOAP model
(red line) correctly captures the repulsion at very small
interatomic distances, and therefore is robust even in MD
simulations of liquid carbon at 9,000 K (details may be
found in ref 122).

An alternative way to describe core repulsion is to em-
ploy a simple analytic pair potential, V2(r), as a baseline
that is constructed to be repulsive.139 This is data ef-
ficient, because less effort is spent collecting data and
fitting configurations where only two atoms in a large
structure are close to each other. There are other cases
too in which a simple baseline model outside the GPR
framework looks very advantageous, e.g., adding a fixed-
charge electrostatic model,170,171 or a 1/r6 pair poten-
tial to describe the long-range part of (van der Waals or
London) dispersion.152,163,172 The energy expression to
be fitted is then the sum of the fixed pair potential and
the many-body term that depends on the many-body de-
scriptor for each atom, ξi,

E =
∑
ij

V2(rij) +
∑
i

VMB(ξi). (75)

The training of such a hybrid model is identical to that of
a pure many-body model – except that the energy, forces
and stresses of the pair potential are first subtracted from
the input data, and the difference is then fitted by the ML
model, rather than the total potential. The central idea is
sketched in Figure 18a, with the baseline model denoted
by the letter A and the ultimate target of the potential by
the letter B. The baseline does not have to be as simple
as a pair potential. Using a polarizable electrostatic force
field as a baseline to augment a short-range many-body
ML model also fits into this category.173

FIG. 17. Hierarchical combination of different descriptors in
GAP fitting. The figure shows a potential-energy scan for a
carbon dimer in the gas phase, evaluated with different GAP
models that have been fitted to a large database of bulk, sur-
face, and dimer configurations (lines).122 DFT-LDA data for
the dimer are shown as reference (blue circles). A model with
just a many-body SOAP term (black dashed) matches the
DFT dimer data well, but has an unphysical local maximum
at around 0.6 Å, whereas the 2-body (2b, light grey), com-
bined 2-body and 3-body (2b+3b, dark grey) and a model
with 2-body, 3-body and a SOAP term (red) all extrapolate
to high energies for small distances, with the last one also ac-
curately reproducing the data. Reprinted figure with permis-
sion from ref 122. Copyright 2017 by the American Physical
Society.

The baseline could be even more complex, e.g., when
the target of the fit is the energy difference between two
different electronic structure methods. These can differ in
their treatment of electron correlation (e.g., DFT versus
wavefunction methods), or basis set (e.g., the minimal
basis set of tight-binding or LCAO methods versus the
complete basis set limit). Although formally this type
of modeling does not differ from using a simple analytic
baseline, in practice the hyperparameter choices for the
fitting can be rather different. This is because the simple
analytic potentials are used as a crude estimate of the
energy for configurations that are not well covered by
the dataset, or interactions that are not described by the
finite-range many-body model. In contrast, even approx-
imate electronic-structure methods are expected to give
a rather good description of the total energy (in an abso-
lute sense) for all configurations. The ML model which
is added on top is used to capture delicate details of the
potential, fractionally much smaller than the binding en-
ergy, perhaps also varying on a longer length scale than
the typical Ångstrom scale of covalent bonding. These
differences in turn affect how one chooses the descriptors
and hyperparameters of the ML model.

The use of an electronic-structure method as a base-
line can lead to a combined model whose total computa-
tional cost is dominated by that of evaluating the base-
line. Such models are not force fields, but can be thought
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FIG. 18. Overview of different approaches to the hierarchical fitting of potential-energy surface (PES) models. In this figure,

the actual PES are labeled E; fitted models are labeled Ẽ; the indices A and B refer to different types of PES. Drawings
are based on the presentation in ref 164. (a) Using a lower-level baseline model, which might be a simple analytical term
that only describes certain aspects of the PES (e.g., pair repulsion, fixed-charge electrostatics, or London dispersion), or a fast
semi-empirical method. The baseline model is subtracted from the reference data before the fit, resulting in a difference model,
ẼB−A, to which the baseline model EA is then added back when predictions are made. (b) Fitting a higher-level target: for
a suitably chosen baseline, the difference fitting target is smoother (e.g., the range of input data is smaller, or the difference

target varies on a larger length scale), and therefore fewer reference points are required. Here, Ã in the subscript of ẼB−Ã

indicates that the fit was made to a potential-energy difference where the fitting target was obtained by subtracting a fitted
model of PES A from the actual PES B. (c) A more complex setup in which convergence (e.g., with basis set or system size)
can be achieved for level A but not for B, which might be because B uses a higher level of treatment for electron correlation
and therefore is more computationally costly.

of as “corrected” or “enhanced” versions of electronic-
structure methods, and depending on the application,
such models can be highly effective. An early example
of such an ML correction was used to obtain an accu-
rate description of bulk liquid water (with respect to the
experimental oxygen radial distribution function and the
diffusivity), based on a DFT baseline, corrected with a
GAP model for each pair of water molecules fitted to the
difference between DFT and CCSD(T).174 See also Sec-
tion 6.6 for a more recent example, fitting the difference
between DFTB and DFT for organic crystal-structure
prediction.175 (A completely different way of using refer-
ence data on multiple levels of electronic structure theory
is in ref 176 where the electron density is used as an in-
termediate “descriptor” in improving DFT energies to
CCSD(T) level.)

A variation on the difference fitting approach is illus-
trated in Figure 18b. Here, the baseline model A is also
fitted by an ML model, perhaps using a much larger
dataset afforded by the lower cost of evaluating model
A in comparison with B. When the database for the
difference fit is constructed, Ã, i.e. the fitted model for
A, is subtracted from B. A more systematic study of

many “difference models” on top of each other, captur-
ing each intricate term (with cm−1 or 0.1 meV accuracy)
separately in a perturbative wavefunction approach, was
used to significantly reduce the total cost of building the
reference database of electronic-structure calculations for
the CH3Cl molecule.177

Figure 18c illustrates a more complicated setup, in
which again two levels of theory are used for reference
calculations (e.g., with different treatment of electron
correlation), but also some other aspect of these calcula-
tions needs to be converged (e.g., the basis set employed).
Here, a database and a corresponding ML model is cre-
ated with the lower level of theory, A, and a high level of
basis convergence. To this, a second ML model is added,
which is fitted to the difference between method A and
B calculated at a low level of basis convergence – because
a high level of convergence is unfeasible using the more
expensive method, B. This approach was used in ref 174
for modeling water dimers, the two levels of theory being
MP2 and CCSD(T), and also in ref 164 for silicon where
the two levels of theory were DFT and RPA.

The latter case is an example from materials modeling,
where the limitation due to computational costs associ-
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FIG. 19. Hierarchical descriptors and fitting at the example
of a general-purpose GAP for phosphorus.163 (a) Combination
of 2-body and SOAP terms constitute the short-range GAP
model – both terms being fitted simultaneously, with appro-
priate scaling factors, as in ref 122. In addition, a 1/r6 (or
“R6”) term is used, with a much longer cutoff. (b) Illustration
of how these terms are smoothly brought to zero in the region
up to the cutoff. (c) VR6 term for longer-range interactions.
Descriptors for medium- and longer-range environments for
a GAP model for phosphorus. (d) Phosphorene exfoliation
curve, showing the performance of the combined “GAP+R6”
model (red) compared to a short-range GAP (gray dashed
line), the DFT+MBD reference (black dashed line), and high-
level quantum chemistry benchmark data (blue and green
markers). Reprinted from ref 163, where more detail may
be found. Original figure published under the CC-BY 4.0
license (https://creativecommons.org/licenses/by/4.0/).

ated with model B was not the basis set employed, but
rather the system size. Large amorphous silicon struc-
tures were described at the DFT level (A) based on ref-
erence configurations of up to 216 atoms per unit cell,
whereas the structures used for constructing the correc-
tion up to the RPA level (B) contained only 16 atoms
per cell at most. The latter structures would not have
been sufficient on their own to create a stand-alone fitting
database capable of accurately describing amorphous sil-
icon; however, they suffice for constructing the difference

model. The small structures were taken from a GAP-
RSS database (ref 143), thus illustrating the usefulness
of random structure search for generating structurally di-
verse yet computationally feasible reference data for ML
potential fitting in a variety of contexts.

Figure 19 illustrates several of the concepts discussed
in the context of hierarchical GAP fitting, using as exam-
ple the general-purpose phosphorus potential of ref 163.
Here, both aspects discussed in the preceding paragraphs
are now relevant: the combined 2-body and many-body
GAP fitting (which are both used to describe the atomic
neighbor environments up to 5 Å) and the use of an
additional, longer-range empirical baseline. The rea-
son for the latter is the importance of van der Waals
(vdW) dispersion in various phases of phosphorus: this
includes interactions between P4 molecules, phosphorene
sheets, or tubular motifs, and even an accurate energy
ranking of the bulk allotropes that requires vdW ef-
fects to be included in the computational treatment.166

A benchmark study illustrated how the interlayer spac-
ing and exfoliation energy in the structurally compara-
tively simple black phosphorus is described in very dif-
ferent ways by a range of computational methods, and
sophisticated approaches are required to achieve even sat-
isfactory behavior.178

4.3. Sparse GPR

All GAP models are sparse kernel models (see Section 2
for a detailed exposition of the distinction between full
and sparse GPR), which means that the basis functions
for the linear expansion of the atomic energy do not di-
rectly correspond to the set of input data to which the
model is fitted. This is rather natural for fitting a model
of atomic energies, since that is not a quantum mechan-
ically defined observable; only the total energy is. The
total energy, as well as many other microscopic observ-
ables to which we wish to fit, are linear functionals of
the atomic energy – e.g., the Hellmann–Feynman forces
are derivatives of the total energy with respect to atomic
positions, and therefore also sums of derivatives of the
atomic energy function, and so are stresses.

For the case of a single and fixed system size, one could
develop a non-sparse (full) GP model, in which the to-
tal energy that we ultimately want to predict is writ-
ten using a linear combination of basis functions each of
which precisely corresponds to an observed data point
(irrespective of whether it is an energy or a force compo-
nent), the linear algebra (as outlined in Section 2, both
in the kernel learning framework and the GP framework)
is straightforward, and indeed the sGDML model179–181

does exactly this, very successfully, to obtain potential-
energy surface models of specific molecules using a few
thousand input data values. However, such a model is
not applicable to a different sized system (even one com-
posed of copies of exactly the same set of atoms). For
most materials modeling applications, transferability to
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different system sizes (in fact exact size extensivity) is
a fundamental requirement. Furthermore, it is empiri-
cally the case that vastly fewer (≈ 104) basis functions
than observed data values (≈ 105) are sufficient for the
construction of very accurate interatomic potentials for
materials. Since solving the linear algebra problem of fit-
ting a sparse GP scales with the square of the number
of basis functions and linearly with the number of data
points, using the sparse model results in an enormous
saving compared to a full GP. In the GAP framework, we
choose individual atomic environments as the elements of
the representative set, and the corresponding kernel basis
functions are used to expand the atomic energy.

Given a fixed training dataset, we consider the number
of basis functions (or equivalently the size of the repre-
sentative set) to be a convergence parameter. In practice,
it is clear that for small basis set sizes, the accuracy of
the model improves dramatically when the basis set is in-
creased, but eventually levels off: the remaining error is
dominated by a combination of locality error (see below)
and lack of input data diversity. As well as the total num-
ber of entries, the critical point is that the representative
set needs to encompass the diversity of the training set.
One could just pick the representative set randomly from
the available training configurations. The disadvantage
of uniform random selection is that the chosen basis set
is heavily influenced by the way the training set is put
together. For example, we would like it to be the case
that putting more data of a particular phase or a partic-
ular type of molecule should not make the fit worse for
other unrelated types of configurations. By skewing the
distribution of the basis set, uniform random selection
can easily result in some types of configurations to not
make it into the basis set at all and thus reducing the di-
versity of the representative set, leading to a significantly
worse model performance for the corresponding types of
configurations.

To ensure diversity in the representative set, we experi-
mented with a number of strategies. For low-dimensional
descriptors, such as 2-body terms, it is sufficient to en-
sure that all interatomic distances (within the cutoff)
are well represented, and therefore a uniform grid in the
one-dimensional space of the descriptor is chosen. Such
a strategy is not efficient for the high-dimensional rep-
resentations such as SOAP, so here we recommend the
leverage-score CUR algorithm,144 which maximizes the
span of the basis set in a linear sense in the high singu-
lar value subspace of the full training set. Note that
leverage-score CUR was designed as an alternative to
PCA that guaranteed that the selected points were in
fact real data points, which is not actually required for
sparse GPR models. Nevertheless, we have empirically
found it to be a good algorithm for use in constructing
SOAP-GAP models. Whether basis functions are cen-
tered on data points or not can, in principle, have some
effect on the quality of the fit (especially for derivative
observations), as seen in Figure 6 – but for the SOAP
hyperparameters we recommend here, we do not expect

FIG. 20. Locality of forces in case of atom-centered three-
or higher body order potential terms. The displacement of
atom A affects the local atomic energy of atom B, which in
turn affects the force on atom C. Both atoms A and C are
just within the cutoff radius of atom B, and thus the locality
of the forces in the model is twice the cutoff radius.

that to be the case. In a loose sense, selecting represen-
tative points using CUR from a much larger set can be
viewed as a cheap proxy for optimising their location.

4.4. Locality

In general, atomic interactions are expected to be long-
ranged, due to electrostatics, charge transfer, and dis-
persion. Despite this, interatomic potentials with finite
cutoff radius have been successful in describing many ma-
terials, due to the effects of screening. Formally, for an
interatomic potential model with three- or higher-body
interaction, displacing an atom affects the force on other
atoms in a range of up to twice the cutoff radius of the
model, as illustrated in Figure 20.

This assumption of locality imposes an inherent lim-
itation on the accuracy of the interatomic model: any
long-range effect that would otherwise be observable from
the quantum-mechanical description of an atomic system
will not be captured by the model. In the context of ML
potential fitting, this non-representable contribution to
the interactions between far-away atoms is manifested
as noise, or uncertainty, in the input data because two
atoms with locally identical configurations might still ex-
perience different forces. Knowing the magnitude of this
uncertainty for a material is useful: it corresponds to
the smallest attainable error of a potential model with
a given cutoff radius, entirely independently of what de-
scriptor or fitting method is used to make the potential.
In other words, no finite-range potential can be more
accurate, regardless of the amount of training data or
degree of model complexity.

One can quantify the degree of locality in a material
directly using quantum-mechanical calculations. The fol-
lowing procedure provides an estimate of the lower bound
of the force localization. Given an atomic configuration
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FIG. 21. Protocols for quantifying force locality. (a) Schematics of three approaches that make increasingly drastic changes
to the structure up to a characteristic radius, rloc – drawn following ref 122, with the left panel adapted from that work.
From left to right: (i) distortions of atoms outside rloc around a central atom, estimating locality by measuring the standard
deviation (SD) of the force on this atom as a function of rloc; (ii) insertion of a guest atom, estimating locality by measuring the
change in the forces on all atoms depending on their distance from the guest atom, taken to be rloc; (iii) isolation of a cluster
fragment with radius rloc, estimating locality by determining the force difference for the central atom between the cluster and
the original system. (b) Results of locality tests for diamond and graphite, highlighting qualitatively different behavior: in
diamond, the interactions decay quickly, and perturbing atoms more than 5.5 Å away from the center does not substantially
influence the force on the central atom. In graphite, on the other hand, there is a high degree of non-locality. Reprinted
figure with permission from ref 122. Copyright 2017 by the American Physical Society. (c) Same for β-Ga2O3. Two different
strategies were used: random distortions, as in the panels above, or MD-induced distortions. Adapted from ref 182. Copyright
2020 AIP Publishing. (d) Force locality in graphitic and other carbon structures, where the perturbation is the addition of a
Li atom. Adapted from ref 119. Copyright 2018 AIP Publishing. (e) Force locality in bulk silicon configurations, estimated
via the force component differences on the respective central atom between clusters of different radii and the corresponding
original structure.183 Republished with permission of IOP Publishing, from ref 183; permission conveyed through Copyright
Clearance Center, Inc. c© 2005 IOP Publishing. Reproduced with permission. All rights reserved.

A, the environment Ai around atom i is fixed, and the
positions of the remaining atoms in A are perturbed, re-
sulting in configurations A′. The standard deviation of
the quantum mechanical force FA

′

i , measured on atom i
as embedded in different configurations A′, provides the
lower bound on the force locality. This procedure is il-
lustrated in Figure 21a.

The magnitude of this standard deviation will, in prac-

tice, depend on the magnitude and type of perturbation
of the other atoms outside the environment Ai. The en-
semble of perturbations may be motivated by the physics
of the system and the configuration space intended to
be studied. For example, the locality of forces in di-
amond and graphite were determined by applying uni-
formly random perturbations or MD simulations that se-
lectively moved atoms outside the fixed radius. Figure
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21b presents the measured locality of quantum mechani-
cal forces at the DFT-LDA level, for different radii of the
fixed environments in diamond and graphite.122 These
results show that locality can be highly structure depen-
dent, and materials of the same composition can display
a large disparity in the locality of the atomic interactions
for different phases. Indeed, given the lack of significant
charge transfer (and hence no long-range electrostatic in-
teractions) in these systems, the main qualitative differ-
ence is in the nature of the electronic structure, diamond
being an insulator and graphite a semi-metal.184

Forces due to uniformly random perturbations of a
crystalline structure convey essentially the same informa-
tion as the orientation-averaged force-constant matrix,
but in a disordered system a different ensemble of per-
turbed configurations conveys more relevant information
on the locality. For instance, in a liquid, a much larger
configuration space is available for the atoms outside the
fixed environment Ai, which can be conveniently sampled
by molecular dynamics. Figure 21c shows the results of
using uniform random distortions as well as MD for the
case of crystalline β-Ga2O3.182 The absolute magnitudes
are dependent on the size of the distortions, and MD will
sample the Boltzmann distribution and therefore gener-
ally shows smaller force deviations than uniform random
distortions. For any given application, the ensemble of
perturbations should be chosen bearing in mind what
kind of distribution will be sampled once the potential is
being used for making predictions.

Other than moving atoms outside the atomic environ-
ment Ai, it is possible to perturb the configuration by
adding atoms to the configuration. It is expected that the
addition of an atom affects those closest, and the effect
decays with increasing distance. Fujikake et al. studied
the intercalation of Li in carbon structures and quanti-
fied the localization error of forces on carbon atoms due
to the presence of a Li atom.119 Quantum=mechanical
force components computed at the DFT-LDA level were
compared on the same structures with and without an
interstitial Li atom, respectively, and the deviations are
shown in Figure 21c as the function of distance from the
Li site.

A much more drastic perturbation is to isolate a finite
cluster corresponding to the fixed environment Ai and
comparing the quantum-mechanical forces obtained on
atom i in the cluster with open boundary condition to
that of the periodic reference calculation. Such a study
was performed on bulk silicon with a defect.183 To mini-
mize the effect of metallic states due to the surface atoms
on the clusters, they were terminated by hydrogen atoms.
The locality of the forces improves suddenly for a cutoff
beyond 6 Å, as seen from the results in Figure 21e, sug-
gesting that this is the length scale of electronic locality
in this material.

Overall, such tests objectively inform the developer
of a potential what force accuracy is achievable using a
given cutoff radius. However, it is important to note that
different body-order interactions may have significantly

different locality properties, and these tests only present
the locality in terms of fixed many-body environments,
the worst-case scenario. It is often feasible to use differ-
ent cutoff radii for different body-order terms as dictated
by the locality of the specific interactions.

We only considered the locality in covalently bonded
systems, but similar questions are worth asking about
other materials. Interestingly, although electrons are
highly delocalized in metals, the very short screening
lengths give rise to favorable locality properties, which is
evidenced by the long history of useful short-range empir-
ical potentials and also successful GAP models (see Sec-
tion 6.1 below). When modeling liquids that are strongly
ionic or polar, the traditional wisdom is that the explicit
treatment of long-range electrostatic interactions is es-
sential – nevertheless, successful potentials have been
made using short-range cutoffs for water185 and even
ionic melts such as LiCl186 and HfO2.130 The rising level
of interest in short-range many-body ML potentials has
led to a dedicated study of locality for water.187

Finally, the locality test described above is not only
useful when assessing the limitations of a short-range
model. When the long-range interactions in a material
need to be included explicitly, these are often described
by an analytic baseline model (see above in Section 4.2).
Once such a baseline model is chosen, the locality of the
original target potential with baseline subtracted can be
measured, since this is the difference potential that will
be fitted with the short-range ML model. The logic can
be reversed too: the optimal baseline model for the pur-
poses of hierarchical ML fitting is the one which, after
subtracting it from the original target, leads to the best
force locality.

4.5. Practical Choices for Hyperparameters

Many hyperparameters are required to specify the re-
gression problem precisely – this is a common feature of
all non-parametric modeling approaches. It is common
to treat these degrees of freedom by optimization. While
naively it might seem that simply minimizing the fitting
error on the training set is how one should proceed, this
is not the case. (This is in fact the reason for the notion
of hyper parameters as opposed to regular parameters.)
The issue is that the total number of degrees of freedom
is so large (in the GPR framework, the coefficients of the
representative points; in neural network fits, the connec-
tion weights and biases) that there is always a danger
of overfitting to the training set – yielding a model that
is useless because it would give uncontrollably large er-
rors on any test data that have not been included in the
training set. This is most easily demonstrated for simple
GPR with the Gaussian kernel: if the length scale of the
Gaussian is chosen to be very small, the kernel matrix
becomes diagonal. In this case, the fitted function is a
sum of extremely narrow Gaussians, each with a magni-
tude equal to its corresponding training data point, and
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therefore giving nearly zero value away from any train-
ing point. See Figures 3 and 9a for two examples of this
overfitting behavior.

The two most common ways to optimize hyperparam-
eters while avoiding overfitting are cross-validation and
marginal-likelihood maximization (Section 2.6). While
these techniques are very general and often work well,
in the specific case of fitting interatomic potentials, we
can usually do without them. Good values can be cho-
sen a priori using physical and chemical principles and
specific knowledge about the target functions. There are
several advantages to doing this, beyond the obvious one
of saving computational effort. Firstly, our choices are
not contingent on having a sufficiently large training set
or a sufficiently diverse test set, which are needed for the
general methods to work effectively. Secondly, the above
methods only make sense when the complete dataset with
which we work is fixed (prior to splitting it into training
and test sets). But in our case, this is not so: we can
and should consider the composition of the dataset to be
open to optimization too! So the problem is turned up-
side down: instead of finding the best hyperparameters
for our training set, we choose the hyperparameters that
express our prior knowledge on the nature of the function
we are fitting, together with a target accuracy (which is
intimately related to some of the hyperparameters, see
below), and then build our dataset in such a way that
our accuracy goal is achieved.

In the context of GAP, we distinguish two classes of
hyperparameters. On the one hand, there are those of
the kernel itself, whose choice is driven by the under-
lying physical modeling assumptions such as the cutoff
radius, and the basis truncation coupled with the length
scale of the mollification of the neighbor density that to-
gether control the smoothness of the kernel. On the other
hand, other hyperparameters have more to do with the
composition and nature of the dataset itself, such as the
selection of representative atomic environments that cor-
respond to the basis functions in the sparse kernel regres-
sion model, and the regularization parameters that act
like weights on the different parts of the dataset.

4.5.1. Cutoff Radius

We discuss the kernel hyperparameters first. The most
important parameter, which appears in every short-range
interatomic potential, is the radial cutoff distance. This
applies not only to interatomic potentials, but to any
atomistic model that is describing how a property of an
atom depends on its neighborhood, e.g., a model of NMR
chemical shifts or atomic polarisability. It does not how-
ever apply to models that are not explicitly range re-
stricted, e.g., models of the intramolecular energy of iso-
lated molecules or clusters that are built based on a rep-
resentation of the entire system. Examples are the PIP
models of Bowman and Braams63 and Paesani188, many
other expansions of molecular potential-energy surfaces

(see references in Section 5.4), and also the GDML mod-
els of Chmiela et al.179

Every finite-range potential can be cast in the form
of a sum over site energies or atomic energies, and the
cut-off radius defines the range of this local term. The ac-
tual interaction range is twice the cut-off radius, because
atoms up to this distance can potentially interact with
one another via a many-body term centered on an atom
in between them (Figure 20). As detailed in section 4.4,
when we approximate a quantum-mechanical potential
energy (which is not formally local) using a local atomic
energy with cutoff radius rcut, the error we necessarily in-
cur can be characterized in the form of a force variance.
In Section 4.4, we had therefore described direct tests
to measure the possible accuracy of a local model122,183

– irrespective of the representation, regression, or other
aspects of the model. We propose to use the measured
force variance, which we call the “locality error” for a
given cutoff, as a benchmark against which the ML model
(or indeed any model with that cutoff) should be tested.
Once this accuracy has been reached, the model can be
considered fully trained, and the only way to make it
better is to increase the cutoff radius.

In practice, this concept of the locality error is of-
ten used in reverse. We set a target prediction accu-
racy before the model is created (e.g., we wish to achieve
0.1 eV/Å accuracy on the force components), and deter-
mine the required cutoff distance that results in a locality
error below our target. We are not aware of successful
fits with cutoffs much beyond 6–8 Å with descriptors that
have full atomic resolution and aim to retain all geomet-
ric information. Thus, if the locality error suggests that
larger cutoffs are necessary, then either the accuracy tar-
get needs to be revised, or multiple hierarchical models
need to be used that, with some range separation, de-
scribe long- and short-range interactions (Section 4.2).

4.5.2. Kernel Regularity

Part of the success of kernel fitting can be attributed
to the fact that well-chosen kernels impose regularity
on the model, complementing the usual regularization
practice (which will be discussed in Section 4.6 below).
Having fixed the cutoff, and therefore the local atomic
neighborhood that constitutes the input to the poten-
tial, the next set of hyperparameters to think about are
the ones defining the spatial resolution, or equivalently,
the regularity (smoothness) of the representation. For
two-body and three-body kernels, this might be the spa-
tial length scale of the basis functions (e.g., Gaussians)
that are used to expand the model or, in the case of the
SOAP representation, the length scale of the Gaussian
that is used to mollify the neighbor density, σa. A larger
length scale will smear the density more, and result in
a smoother potential (for a fixed number of representa-
tive points in the GP) but at the cost of reduced ac-
curacy, perhaps compensated by reduced overfitting.140
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FIG. 22. Performance of a SOAP-GAP fit to a database of
carbon configurations, as a function of the number of max-
imum radial (n) and angular (l) components in the SOAP
kernel.152 The color map indicates the force error. Here, the
black contour lines approximately indicate parameter choices
resulting in equal length SOAP descriptor vectors, corre-
sponding to roughly equal computational cost of prediction.
Schematic drawings illustrate the role of the different func-
tions that are affected by the lmax (angular functions) and
nmax (radial functions) convergence parameters, respectively;
the equidistant Gaussians that are shown in the lower part of
the figure are subsequently orthogonalized in the construction
of the SOAP kernel.52 Drawn with data from ref 152.

In practice, for fitting interatomic potentials to quantum-
mechanical potential energy data, the appropriate length
scale is about σa = 0.3 Å in the presence of hydrogen
atoms, and σa = 0.5 Å for atoms up to the third row in
the Periodic Table (with no hydrogen present). Larger
length scales could be used when fitting potentials for
structures solely containing elements with large atomic
radii. A larger SOAP-kernel length scale – that is, a
smoother description of the structure – was found to be
important in the initial work on GAP-RSS: boron, de-
spite its small atomic radius, was described with a set-
ting of σa = 0.75 Å, enabling iterative exploration of the
potential-energy surface from randomized configurations
only (Section 4.1.3).140

SOAP uses an expansion of the neighbor density in
spherical harmonics and a radial basis, and once the den-
sity has been mollified, it makes sense to truncate this
expansion, which is achieved using the band limits nmax

in the radial direction and lmax for the angular part. In
contrast to the density mollification length scale, these
band limits are not true hyperparameters, but conver-
gence parameters, because higher band limits will always
result in a more accurate representation of the mollified
density.

The convergence of the accuracy of potentials in terms

of the band limits for a fixed cutoff and mollification
length scale is shown in Figure 22. The important result
is not so much the absolute value but the relative accu-
racy. While many early GAP fits used equal values for
nmax and lmax for simplicity, e.g., (nmax, lmax) = (8, 8) for
C-GAP-17,122 the figure shows that whilst giving reason-
able force errors, this choice is clearly not optimal: higher
radial band limits (nmax > lmax) give better accuracy at
the same total cost. In this case, for example, a lower
error would be expected for (nmax, lmax) = (12, 3) – note
that the contour lines in Figure 22 provide an estimate
for the computational cost of the prediction. Generally,
a setting of (6, 2) would correspond to a low accuracy po-
tential with a short descriptor vector, while (12, 6) would
lead to a very accurate potential. These numerical re-
sults, shown here for the implementation of SOAP in
the GAP code, depend strongly on the particular choice
of radial basis functions, and might well be different in
other implementations of SOAP, such as in Dscribe,189

librascal,95,96 soap++,190 TurboSOAP,191 and the imple-
mentation in VASP.123

4.6. Regularization in GAPs

The regularization of the linear expansion coefficients
is a key part of successful kernel ML models. Purely in
the linear algebra context, it is simply considered a trick
to help with the ill-conditioning arising from the near-
linear dependence of the basis functions; this does not
offer any guidance on what the size of the regularization
term should be. In the formally equivalent GPR view,
the same role is played by the hyperparameters corre-
sponding to the variance of the stochastic noise that we
assume to be present in the input data. This view sug-
gests that if we use a Tikhonov regularizer (eq (5) in
Section 2.1) of a given value, we are assuming noise in
the input data of about the same size, and we should not
expect an accuracy better than this level. Indeed, if our
model appears to be more accurate, that is an almost sure
indicator of overfitting, an inadequate test set, or some
other shortcoming of the procedure. Therefore, if we can
estimate the actual level of noise in our data, the theory
of GPR suggests using that value as the regularization
hyperparameter – and to add data to the model until the
corresponding level of accuracy is reached.

4.6.1. Noise in the Input

Is there noise in the electronic structure calculations
that describe potential-energy surfaces? The answer is
subtle and somewhat surprising. Once the parameters of
a quantum chemistry or plane-wave DFT calculation are
specified, including perhaps the pseudo-random number
that initializes the computation, we consider the ground-
state energy and its derivatives (forces, stresses) to be
deterministic functions of the inputs, and therefore free
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of noise. There are three reasons why this is a misleading
view in the context of fitting interatomic potentials.

The first reason is the locality error to which we have
alluded above: our model uses a finite cutoff to describe
atomic properties, assuming “near-sightedness” and suf-
ficient screening, and the extent to which this is not ac-
curate is an indeterminacy of the target function (the
atomic energy) in terms of its inputs (i.e. the local en-
vironment). In the case of GAPs, and in fact any inter-
atomic potential with a finite cutoff, the reference (typ-
ically DFT-computed) force on an atom is not exactly
determined by the positions of the neighboring atoms
within the cutoff, and so when it is modeled as such, it
appears to have some component of noise.

The second reason is to do with inconsistency between
different pieces of data. Typically we fit potentials to
both energies and forces, and the extent to which the
calculated forces are the true derivatives of the energy
(or indeed, if we do not explicitly fit to energies, then the
extent to which the forces are curl-less, i.e. the direc-
tional derivative of a well-defined scalar function) hinges
on numerical approximations. The details depend on the
particular electronic-structure method, and can often be
adjusted by choosing convergence parameters. The level
of this noise, understood as the difference between the
observed data and the true values that would correspond
to perfect data consistency, can be measured by numeri-
cal experiments. We find that input data for fitting po-
tentials must be significantly more stringently converged
than what is typically used for direct studies of electronic
structure, because the latter often benefit from error can-
cellations.

One aspect of this convergence requirement, namely k-
point sampling in periodic calculations, requires special
attention, because the corresponding errors are often un-
derestimated. As the cell parameters and lattice vectors
are varied (as is typically the case in databases for materi-
als; Section 4.1), the k-points at which the Brillouin zone
is sampled also move around, and two slightly different
simulation cells might end up having dissimilar k-point
grids. The resulting data inconsistency is of the same or-
der of magnitude as the overall convergence error of the
finite k-point grid; it depends on the particular scheme to
generate the grid, and on the symmetry and shape of the
cell. Morgan et al. recently characterized this error192

and found that a linear k-point spacing of 0.1 Å−1 is
needed to reliably converge the error below 1 meV per
atom; this corresponds to about 1000 irreducible k-points
per Å−3. (These are spacing and density units of VASP,
and may be divided by 2π to obtain the corresponding
values for Castep.) Such high k-point densities are rarely
affordable, especially when larger unit cells are involved.
Using a variety of different cell sizes and therefore differ-
ent k grids is often required in practice. The resulting
inconsistency appears as noise from the model’s point of
view, since the exact same local environment, when part
of different periodic unit cells with different k-point grids,
will appear to have different energies and forces. Even

with highly converged grids, depending on the system,
the corresponding error may exceed that due to locality,
and therefore should inform the choice of regularization.

4.6.2. Dealing with Inhomogeneous Data

All the above considerations help to quantify the low-
est achievable error, and can therefore be used to set the
minimum values of the regularizers for energy, force, and
virial stress data. But the actual values we set might
very well be larger. Apart from the simplest cases, the
datasets to which we fit are not homogeneous: they
include samples from multiple phases (say, liquid and
solid), and may in fact range from nearly random (e.g., in
GAP-RSS; Section 4.1) to further relaxed configurations
that are much closer to low-enthalpy crystalline struc-
tures. It is not practical, or indeed desirable, for our
potential to aim to have the same accuracy for all these
disparate configurations. This is because we care about
accuracy for properties more than the pointwise accu-
racy of the potential energy for each configuration (the
rather intricate question of what makes the whole GAP
model “accurate” will be discussed in the following sec-
tion). The elements of the regularizer, Σ, control how
closely the fitted potential is constrained by the corre-
sponding data. Again, consider the GPR view of the
regularizer: all else being the same, a larger regularizer
corresponds to assuming a larger observation noise vari-
ance, and hence it loosens the fit to that data item.

The relationship between the accuracy of the fit to the
PES for a group of configurations and the accuracy of ob-
servables that depend “mostly” on those configurations is
complicated (and largely unexplored, both theoretically
and computationally). Nevertheless, it is easy to make
qualitative statements. For example, we would like to
have lower absolute error for solid configurations (close
to local minima of the potential) than for liquid con-
figurations, where the interest is in radial and angular
distributions or diffusivities, which are statistical prop-
erties that are empirically observed to be well converged
already while the pointwise errors on energies and forces
remain larger. We express such empirical knowledge by
setting larger regularizers for groups of data expected to
tolerate larger errors without compromising the accuracy
of observables. In turn, this will allow the fit to use its
flexibility to achieve lower error for configurations where
that is needed. Typical values that have worked well are
(σE = 0.001, σF = 0.05, σV = 0.05) for a crystal, and
(σE = 0.03, σF = 0.2, σV = 0.2) for a liquid configura-
tion, with units of eV/atom for energies (σE) and virial
stresses (σV), and eV/Å for force components (σF). A
loose approximate heuristic for solid configurations with
well defined local minima (valid when using units of eV
and Å) is that the target accuracy on energies (which
scale with the square of the displacement) is the square
of the target accuracy on force and virial stress compo-
nents (which scale linearly with displacement).
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The above argument underscores why the regularizers
of GAPs that are fit to diverse datasets are not set us-
ing conventional cross-validation procedures by measur-
ing the RMSE on a small test set: the actual errors that
we wish to minimize are very costly to evaluate, perhaps
requiring large-scale MD. In principle, it might be pos-
sible to set up an automated procedure that computes
the complex observables and adjusts the regularizers ac-
cordingly, thereby improving the model further. In the
absence of such a procedure, we have found that sim-
ple heuristics work effectively and produce very accurate
potentials. Examples (with the quality measure being,
say, the accurate description of an amorphous structure
as validated against experimental observables193) will be
given in one of the following sections.

4.6.3. Implementation

Once the appropriate regularizers are chosen for each
energy (E), force (F) and virial stress (V) data item in
each group of configurations in the reference database,
their values, σ2, are collected into the diagonal matrix Σ
that scales the Tikhonov regularization term (eq (5)),

Σ =

ΣE

ΣF

ΣV


where ΣE, ΣF and ΣV are themselves diagonal matri-
ces, and correspond to total energy, force and virial data
components. For simplicity of presentation, we assumed
here that the data items are sorted in such a way that
all total energies come first, then all forces, and finally
all virial stresses. The matrix corresponding to N total-
energy data points is then

ΣE =

n1σ
2
E

. . .

nNσ
2
E


where ni refers to the number of atoms in each of the
N structures, which are not necessarily all of the same
size, i.e. we scale the energy (and similarly virial stress)
terms by ni. To understand this scaling, recall that these
regularization terms represent the expected deviation of
our fitted function from the data due to all of the effects
discussed previously. The total energy and total virial
stress are extensive quantities, so all else being equal,
they will scale linearly with system size, i.e. the number
of atoms, n. If all atomic environments in a structure
were the same, the variance of the total energy (which
in this case would be just n times the atomic energy)
would be n2 times the variance of the atomic energy.
We scale the regularizer by n and not n2 because most
of our configurations are far from equilibrium, so each
atom that contributes to the energy and virial stress has
a different local environment, and we expect some error

FIG. 23. Atom-wise force regularization leads to high ac-
curacy for phonon computations in silicon.194 The general-
purpose GAP-18 model already predicts accurate phonon
frequencies for diamond-type silicon (“mp-149” identifier in
the Materials Project database;195 < 0.2 THz RMS er-
ror), but performs substantially worse for other allotropes,
because it has not been fitted for those. The aster-
isk (∗) indicates a structure which is erroneously pre-
dicted to be dynamically unstable. The extended GAP-
18C model, which added specifically selected crystalline con-
figurations, including supercells describing individual dis-
placements with atom-wise force regularization, shows accu-
rate phonon predictions throughout. Adapted from ref 194.
Original work published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

cancellation when their contributions are added up. A
more precise implementation could indicate whether the
individual atomic environments in an input structure are
expected to be correlated or not, and adjust the scaling
with system size accordingly to either n2 or n, respec-
tively. This could even be determined automatically by
considering the diversity of descriptor values in each con-
figuration.

We can go further and have even finer control over the
fitting weights. Rather than grouping configurations to-
gether depending on how they were generated or what
structure they represent, we can set the regularization
of each force component datum on each atom propor-
tional to the size of the force on that atom. The result
is a small regularization value (and corresponding large
weight in the solution of the linear least-squares system)
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for atoms with small forces on them and a loose regular-
ization (small weight) on atoms with large forces. This
idea has been used in ref 196, and explored in a system-
atic fashion in ref 194. In the latter work, the aim was
to extend an existing general-purpose potential (denoted
“GAP-18” in ref 139) with accurate phonon data, which
is done by adding supercell configurations with small
random displacements of atoms out of equilibrium.194

Such reference structures correspond to what would nor-
mally be used for finite-displacement phonon computa-
tions with DFT, and in fact the structures were generated
using the widely used phonopy code.197 For this part of
the extended database, we set the regularization for the

force components on the ith atom, σ
(i)
F , according to194

σ
(i)
F =

{
f × |Fi| , if |Fi| > Fmin;

f × Fmin, otherwise.
(76)

Using numerical experiments, we found f = 0.01 and
Fmin = 0.01 eV/Å to give good results; the regularization
for these “small displacement” configurations is therefore
much smaller than what has been used in typical poten-
tials that use a single value for the force regularizer. This
approach was shown to lead to potentials which can very
accurately predict phonons in a wide range of silicon al-
lotropes, with an RMS phonon frequency error of about
0.1–0.2 THz for the different structures (Figure 23). It
was also demonstrated that too small a value (f = 0.001)
leads to unstable potentials, as tested by a diagnostic
MD simulation: this is an example of “overfitting”, be-
cause the potential now has been made to very accurately
reproduce the forces in the reference data but exhibits
uncontrolled errors for other configurations.194 Further
studies of the role of such atom-wise regularization in
GAP fitting are expected to be worthwhile.
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5. VALIDATION AND ACCURACY

Once an interatomic potential model has been fitted, it
must be validated before it can be broadly applied. This
is particularly important in the case of ML potentials
where there is no inherent physically motivated func-
tional form. As a consequence, validation is a critical
and highly non-trivial part of atomistic ML model devel-
opment, and particularly for the case of ML interatomic
potentials. The items reviewed here are rather specific
to GAP models, but many ideas are expected to be ap-
plicable more generally.

5.1. Physical Behavior versus Numerical Errors

There are two related but distinct issues when eval-
uating the accuracy of GAPs (or in fact any ML-based
interatomic potential). The more obvious one is that of
goodness of fit, including numerical prediction error on
the available test data. However, in practice the more
serious concern is whether an MD or Monte Carlo sim-
ulation using the potential generates the correct proba-
bility distribution over configuration space – and there-
fore, whether they lead to a physically and chemically
correct result. The highly flexible form of a data-driven
potential means that in such a simulation many of the
explored configurations are inevitably in the extrapola-
tive regime. While prior assumptions such as smoothness
help, they are not sufficient to fully control the behavior
of the model outside the region represented by the fitting
data, and energy errors of either sign can occur, leading
to incorrect over- or undersampling in a simulation of
thermal equilibrium.

It is neither practical nor necessary to achieve a uni-
form data coverage either in the training or the test
dataset. This is only partially due to the high dimen-
sionality of atomic configurational space, which would
require extremely large quantities of data to place data
points uniformly. The other reason for data sparsity is
the fact that large regions of configurational space might
not be relevant, if the corresponding potential energy is
so high that an equilibrium simulation at reasonable tem-
perature will not visit them with appreciable probability.
For example, a configuration in which at least two atoms
are very close to one another, the energy is dominated
by repulsion due to the Pauli exclusion principle. While
such a configuration is not relevant, and therefore one
might conclude that the accuracy of the model is not im-
portant here, this is not entirely true. If the prediction of
the potential energy is unphysically too low, a simulation
using the potential with such a “hole” will visit this re-
gion, leading to unphysical configurations with very small
interatomic distances. In a simulation with the poten-
tial, the likelihood of the system finding such unrealistic
regions (if they exist) monotonically increases with the
length of the simulation.

If the configurations for the fitting database are gener-

ated by sampling the target potential energy (e.g., finite-
temperature ab initio MD), which is naturally biased
away from such configurations, it will be hard to gener-
ate sufficient data to avoid having holes in the potential.
The effect of inadequate data coverage of repulsive con-
figurations in the training set can be mitigated by adding
a baseline model to the ML potential,139 as described in
Section 4. Such a baseline potential can be very short-
ranged, serving only the purpose of imposing a sufficient
repulsive interaction to prevent the system exploring un-
physically low interatomic distances.

A similar sampling problem leading to errors of the
opposite type can also occur. The method used to gen-
erate fitting configurations can fail to explore important
basins in the PES, for example due to energy barriers
with a low transition probability in a finite simulation.
This can happen if the simulation generating the fitting
data is very short, or if it uses a potential that overesti-
mates the barrier (or even qualitatively fails to reproduce
the existence of the missed local minimum). Since those
regions would not be represented in the fitting database,
the model may predict erroneously too high energies. Po-
tential energy errors of this type would lead GAP-driven
simulations to also fail to sample the same regions, even
during much longer simulations than those used to gen-
erate the fitting data.

Figure 24 shows a situation in which the GAP model
is accurate to within 10 meV/atom, but fails to capture
a important subtlety of the DFT potential-energy sur-
face. If the practitioner was unaware of the existence
of the local minimum corresponding to the four-fold de-
fect in diamond structure silicon, its existence will not be
revealed by simulations using this specific GAP model.

Exacerbating the problems of both falsely identified
and falsely missed minima is the common practice of us-
ing a single dataset, generated by sampling a particular
region of configuration space using a particular method,
that is then partitioned into training and testing sets ran-
domly, which therefore represent the same single region
and correspondingly fail to include configurations from
regions not represented by the original dataset. Achiev-
ing a low error on such a test set appears to indicate
that the quality of the model is sufficient, but its trans-
ferability can be poor. As a result, rather than merely
inspecting energy and force errors, a more reliable way to
assess transferability of ML potentials is by performing
extensive and wide-ranging explorations of atomistic con-
figurations, such as random structure searches,139 MD
simulations at high temperatures,122 or transition path
calculations.198

Even the apparently more straightforward question of
prediction error on available data is, in fact, also affected
by sampling issues. In line with the standard procedures
of broader ML research and applications, the most basic
validation test of machine-learned potentials is the com-
parison of directly predicted properties, such as total en-
ergies and forces, to those obtained from ab initio calcu-
lations, on a test set of configurations not used in the fit.
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FIG. 24. Predicted errors of a GAP model. The fig-
ure shows the energetics of the pathway leading from per-
fect diamond-type silicon (left) to the formation of a four-
fold defect (right); the color of the curve corresponds to
the largest predicted atomic energy error in the simulation
cell, given by the Bayesian error estimate. For small dis-
tortions, the GAP prediction is in practically quantitative
agreement with a DFT reference (show as thin black line);
for larger distortions, roughly to the right of the dashed line,
the prediction deviates from the DFT result, and concomi-
tantly the predicted error rises notably. Note that DFT
predicts the fourfold defect as a local minimum (highlighted
by an arrow), whereas the GAP does not. Adapted from
ref 139, where details, as well as other example cases, may be
found. Original figure published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

However, benchmark results such as the RMSE depend
on the circumstances of the sampling from which the
testing configurations were obtained. Tamura et al.199

computed the MAE of the force errors of ML poten-
tials of Si and Ge on configurations sampled at differ-
ent temperatures. As different parts of the configuration
space are sampled, the variation of the absolute values
of the forces is significantly different at different tem-
peratures, and as a consequence the magnitude of the
MAE increases with the temperature. A conceptually
similar result is shown in Figure 25, where tests have
been done separately for various types of configurations
of very different structural nature, ranging from highly
random (GAP-RSS) configurations to snapshots of phos-
phorene and bulk crystalline allotropes, all covered by a
general-purpose GAP for phosphorus (cf. Figure 16).163

The different aims of the potential are reflected in the
qualitatively different distributions in panels (a) and (b)
of Figure 25. In the former case, the GAP-RSS snap-
shots serve to construct a flexible model, at the cost of
a substantial residual numerical error, even for the fur-
ther relaxed structural snapshots (purple). In the latter
case, structures have been added by hand, and the overall
magnitude of the force-component errors is about half of

FIG. 25. Force errors for the general-purpose phos-
phorus GAP of ref 163. Measuring the error in differ-
ent types of configurations illustrates two aspects: the dif-
ferent spread of data for randomized and progressively re-
laxed configurations in random structure search (RSS) (panel
a), and larger error for liquid than for crystalline con-
figurations (panel b), associated presumably with a larger
structural diversity in the liquid. Adapted from ref 163.
Original figure published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

that in panel (a). That said, the range of absolute force
components is substantial for the crystalline phases as
well, because distorted copies of the respective unit cells
at various volumes have been included; the errors show
a clearer trend with the degree of structural complexity,
and both are largest in the network liquid (with highly
diverse bonding environments), and smallest for the crys-
talline phases. Studying such variation is a necessary but
not a sufficient test for the validity of any new ML po-
tential, as discussed above.

Based on the preceding discussion, we argue that the
validation of GAP and similar ML potential models needs
to go beyond simple out-of-sample testing, and proto-
cols should involve testing on “self-consistently” gener-
ated configurations, i.e. sampled using the potential it-
self. In practice, the potential can then be improved iter-
atively, by adding newly generated configurations using
the current version of the potential to define a new po-
tential, until it is accurate on the samples generated by
itself. This design helps to eliminate “false positive” re-
gions (overly stable or fictitious local minima), but “false
negative” regions, or missed minima, are even more chal-



43

FIG. 26. Relationship between true and predicted errors for
low-dimensional GPR models. (a) GP model errors for bulk
fcc aluminum for a 2-body (“2b”) and a combined 2b+3b
model, as a function of the cutoff radius of the model. (b)
True versus predicted model error (for a 2b+3b model) for
atomic configurations near a vacancy, with the distance of
each individual atom from the vacancy indicated by color.
Drawn with data from ref 61.

lenging to detect. Various approaches to using iterative
fitting to build up the reference database are discussed
in Section 4.

5.2. Predicted Errors in GPR

Gaussian Process Regression is a statistical learning
technique which generates an ensemble of functions,
based on a priori assumptions. The prior distribution
of these functions is modified by the reference dataset,
resulting in a posterior distribution of functions. The
mean of these functions is the GPR prediction, but it is
also straightforward to compute the variance, providing
an error estimate in addition to the function value. As
introduced in Section 2, the posterior distribution of the
prediction, given a dataset D, is

P (y(x)|D) = N (y(x), var(y(x))) (77)

where the mean and the variance are obtained from the
analytical expressions

y(x) = k(x)>(KNN + σ2I)−1y and (78)

var(y(x)) = k(x,x) + σ2 − k(x)>(KNN + σ2I)−1k(x);
(79)

where we have shown for emphasis the explicit depen-
dence on the predicted values on the location x. Note
that while the predicted mean can be calculated in time
and memory that scales as the number of data points, the
computational cost of the predicted variance scales as the
square of this number. Using sparse GP will reduce this
scaling, and analogous expressions for the predicted vari-
ance are derived in 43. In practice, we often use eq 79
but with the kernel matrix evaluated only on the rep-
resentative set, KMM . The expression for the variance
in eq 79 does not explicitly depend on the observations,
only on the set of data locations, but it does depend
on the hyperparameters (σ and also those in the kernel
function). If the hyperparameters are optimized based
on observations, then that brings an implicit dependence
of the predicted variance on the observations.

GAP models for materials based the SOAP represen-
tation that we presented earlier essentially inevitably re-
quire the use of a sparse GP, and have not been shown,
in general, to lead to a quantitative prediction of the en-
ergy error. Nevertheless, for well-converged models such
as the general-purpose silicon GAP in ref 139, the pre-
dicted variance was a good indicator of large actual er-
rors. As the example in Figure 24 shows, configurations
near the peak of the atom exchange pathway have large
predicted error since they were not represented in the fit-
ting database, and the corresponding actual error is also
(relatively) large. In that paper, similar results were also
shown for generalized stacking faults, vacancy migration,
and brittle-crack tip configurations.139 Recently, the pre-
dicted error has been used as a tool for assessing the
quality of the prediction for various regions in a large and
realistic amorphous carbon film deposition simulation:200

it was shown that the surface regions, whilst being struc-
turally highly disordered, are described by C-GAP-17
with low predicted error, because small-scale structures
that are representative of disordered surfaces had been
included in the construction of the reference database.122

Some work on GP-based potentials used error pre-
dictions in quantitative ways. As already discussed in
Sec. 4.1.2, a recent study in ref 61 showed good agree-
ment between predicted and actual force errors and this
was used for active learning. In this case, the number
of descriptors was small, and consequently the model
needed only a small number of fitting configurations
which enabled the use of full GPR. Figure 26a shows
the results for GPR models with low body order descrip-
tors for bulk aluminum, emphasizing how the true errors
(dashed lines) and predicted errors (solid lines) follow
similar trends, with models using only 2-body descrip-
tors showing higher overall error than those that com-
bine 2- and 3-body terms. The figure suggests that the
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GP error tends to overpredict the true error, and this
is mirrored by the results in Figure 26b: in this case,
atomic environments near a vacancy defect were studied,
and the GP model showed an overprediction for practi-
cally all environments, irrespective of their distance from
the vacancy. The figure also illustrates how atoms near
the vacancy (red) tend to have higher absolute force er-
rors than those that are further away, and therefore more
bulk-like (blue). A more qualitative relation for pre-
dicted and actual force error has been shown for SOAP-
like descriptors,123–125 enabling a different active learn-
ing method (Figure 13). In this case, the descriptor space
was much larger, but the intended range of applicability
was narrow, again making it practical to use a full GP
based on a relatively small number of samples.

A more general study (including GPR as well as other
types of ML methods) of uncertainty quantification with
relevance to physical sciences was reported in ref 201.
This study also includes a didactic overview of uncer-
tainty quantification methods.

5.3. Committee Models and Uncertainty
Propagation

Another approach to the determination of the uncer-
tainty of a ML prediction involves the generation of a
committee model,205 i.e. a collection of models that differ
in the choice of hyperparameters,206 in the initialization
of the fitting procedure,129,207 or in different subsampling
of the training set.202,208 The gist of the idea is that the
spread in the predictions can be linked to the reliabil-
ity of the predictions: if changing details in the model
leads to large changes in the predictions for a configu-
ration, then this model is likely not trustworthy for this
configuration.

If the different models are created by resampling the
original dataset, there is considerable freedom in how
that is done. One approach, commonly referred to as
bootstrapping,209 keeps the size of each dataset the same
as that of the original set, by randomly drawing data
points from D while allowing replacement. The subsam-
pling technique,210 on the other hand, creates datasets
that are smaller than the original set and does not include
replacement. It should be noted that bootstrapping in-
troduces duplicate data points to the samples, thereby al-
tering the distribution of the data points, whereas in sub-
sampling individual predictions have larger uncertainty
due to the smaller size of individual data subsets.

These ideas have been used for some time in
the context of neural-network potentials,128 but can
also be shown to provide a rigorous estimate of the
uncertainty,211 in a similar probabilistic sense as that
given by the GPR variance. In fact, committee models
are appealing for use in a GPR framework, particularly
in combination with a sparse GPR model: evaluating
the uncertainty entails a small overhead over a straight-
forward model evaluation, and it is simple to propagate

uncertainty from the quantity that is directly predicted
by the model to derived quantities that can be arbitrarily
complicated combinations of predictions.

Here, we discuss a simplified version of the uncertainty
quantification framework discussed in ref 202, which is il-
lustrated in Figure 27. Given an overall training set con-
taining N configurations, and a representative set con-
taining M reference environments, we perform nc fits,
keeping the representative set fixed, but extracting in
each case a different random subset of the full training
data to be used in each fit. This yields a collection of
regression weights, {cj}. When a prediction is made for
a new structure, one needs to compute a vector of ker-
nels, k, between the new structure and the representative
set. This is usually the time-consuming step, whereas
the evaluation of nc different predictions ỹj = c>j k is in-
expensive. The possibility of computing all predictions
with a single set of kernel evaluation makes the choice of
building the committee by randomizing the training set
much more efficient than the alternative option of ran-
domizing the choice of representative points, which would
be more directly analogous to randomizing the topology
of a neural network (e.g. dropout), or by varying other
hyperparameters.

The set {ỹj} constitutes the ensemble of predictions,
and its distribution reflects the behavior of the model
with respect to changes in the training set. For any
atomic configuration, A, the mean and the variance of
the ensemble

ȳ(A) =
1

nc

∑
j

ỹj(A)

σ2(A) =
1

nc − 1

∑
j

[ỹj(A)− ȳ(A)]
2

(80)

can be taken to represent the best estimate and uncer-
tainty. In practice one often finds that, similarly to the
GP variance, this uncertainty estimate is qualitatively
informative – small values being associated with good
predictions, and large values being associated with unre-
liable predictions – but not quantitatively accurate. In
particular, there is a bias of the variance estimator for
small nc. This bias can be reduced by introducing a scal-
ing factor α, that can be computed by maximizing the
log-likelihood of the model over a test set, {A}, which
yields204

α2 = − 1

nc
+
nc − 3

nc − 1

1

nc

∑
A

(ȳ(A)− yref(A))2

σ2(A)
. (81)

The corrected ensemble variance is then obtained by
re-defining σ2 ← α2σ2. Furthermore, one can define
“calibrated” committee models whose predictions are
ŷj ← ȳ + α(ỹj − ȳ), which have the same mean as the
initial committee, and an appropriately-scaled variance.
The advantage of this second approach is that one can
then easily perform uncertainty propagation by comput-
ing a derived property, F , that depends on the model in
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FIG. 27. Schematic of the construction and use of a committee model for uncertainty estimation in sparse GP models, as
described in ref 202. Similar graphical representations are used as in Figures 4 and 5: here, multiple models are trained using
the same representative set, but different random subselections of the training set, yj . The cost of training scales linearly with
the number of committee members, nc, and each training yields a different weight vector, cj . When performing a prediction,
a single vector of kernels, k, needs to be evaluated (which is usually the computationally intensive task for prediction), and
multiple predictions, ỹj , can be obtained cheaply by taking scalar products of k with the individual weight vectors corresponding
to the members of the committee. Example applications of this methodology are shown in Figure 28 below.

arbitrary ways, by evaluating it on the calibrated model,
Fj = F (ŷj). This approach has been applied, for in-
stance, to the prediction of Raman spectra together with
the associated uncertainty (Figure 28a). These spectra
are computed as the Fourier transform of the polarizabil-
ity of the simulation box evaluated along the course of an
MD trajectory.203 Another application has been the pre-
diction of the electronic density of states (DOS) in amor-
phous silicon;164,212 details of this “ML-DOS” methodol-
ogy are provided in Section 7.4 below.

More recently, this inexpensive approach to obtain pre-
diction errors has been put to use in practical applica-
tions to MD simulations. A common scenario entails the
use of a baseline potential Vb (e.g., an empirical force
field, or an approximate electronic-structure method),
which is corrected using an ML model Vδ(A) to define an
overall energy E(A) = Vb(A) + V̄δ(A) that achieves the
accuracy of more sophisticated, and expensive, electronic
structure calculations (cf. Figure 18a). In this case, one
can use the committee error, σ(A), and an estimate of
the RMSE σb of the baseline (relative to the accurate
method), to define a weighted baseline potential

E(A) = Vb(A) +
σ2
b

σ2
b + σ2(A)

V̄δ(A), (82)

that smoothly interpolates between the corrected poten-
tial Vb(A)+Vδ(A) when the ML model is predicted to be
accurate and the bare baseline Vb(A) when the predicted
error is large.204 This improves stability of simulations
based on ML potentials, and simplifies the iterative re-
finement of the model in all cases in which unexpected
chemical reactions can occur, leading to structures that
are not represented in the training set.

A second application involves the determination of the

effect that uncertainties in the prediction of the ML
potential have on thermodynamic properties that de-
pend on the sampling of configurations, that is controlled
by the potential energy-dependent Boltzmann weight,
e−βE(A). An example application which employs on-the-
fly reweighting213,214 of a single trajectory sampled ac-
cording to the committee mean Ē(A) is shown in Figure
28b. The spread in the prediction of the energy by the
committee members translates into predictions of uncer-
tainty in the ultimate property of interest – in this case
the melting point of water. The conventional reweight-
ing approach works by weighting the configurations in
the trajectory driven by the committee average Ē(A) by

a factor e(Ē(A)−Ẽj(A))/kBT , which makes it possible to
compute averages as if the trajectory had been driven by
Ẽj(A). This scheme works well only when the spread in
the predicted energies of the committee is comparable to
kBT throughout the trajectory. A more stable (albeit
approximate) estimate of the error can be obtained with
a cumulant expansion approximation,214 in which the
averages 〈ȳ〉 computed using Ē(A) are corrected based
on the correlation between ȳ and the logarithm of the
weights, (Ē(A)− Ẽj(A))/kBT . This reweighting scheme
cannot be used to assess the error on dynamical proper-
ties, that are often computed from correlation functions
of the trajectory generated by MD. To the best of our
knowledge, the problem of error propagation to such ob-
servables has not been addressed, and the only possible,
and rather time-consuming, strategy would be to gener-
ate separate trajectories using each individual member of
the calibrated committee.
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FIG. 28. Applications of committee models for GPR pre-
dictions. Two examples are shown: (a) the prediction of the
Raman spectrum of paracetamol form I;203 (b) the prediction
of the melting point of water204 by determining the difference
in chemical potential, µ, of hexagonal ice (“Ih”) and the liquid
phase (“L”), and defining the zero intersect as corresponding
to the melting temperature. Panel (a) is adapted from ref 203,
where the original figure is published under the CC BY 3.0 li-
cense (https://creativecommons.org/licenses/by/3.0/); panel
(b) is adapted from ref 204. Copyright 2021 AIP Publishing.
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5.4. GPR Models for Isolated Molecules

Both in the present section and in the previous one,
we have focused on ML models of strongly bonded, ex-
tended materials. This is where they had the largest im-
pact early on, because empirical interatomic potentials
for materials are in many respects rather poor models
of the potential energy surface. It is almost needless to
say that molecular potential-energy surfaces are also an
important area of application. The goal of the “first-
principles” approach to making molecular force fields has
always been the faithful reproduction of the potential
energy surface, assessed, e.g., by the accuracy of the vi-
brational spectrum or torsional “scan” around rotatable
single bonds. For much of the long history of molecular
modeling, the covalent bonding topology of a molecule
has played a central role, giving rise to two constraints
on the model:

(i) identification of the set of atoms that are bonded
together and constitute the molecule;

(ii) the fixed network of covalent bonds used to de-
fine coordinates of the model (bond lengths, angles,
etc.), and also to identify and differentiate between
atoms according to the functional groups of which
they are part (cf. “atom types”).

On the one hand, the formalism and approach that we
introduced thus far in Sections 2–4 can in principle be ap-
plied to molecules directly and lead to entirely topology-
free models, and indeed this has been done and is par-
ticularly fruitful for molecular materials—we defer their
discussion to Section 6.6. On the other hand, there is
a large body of modeling work that lifts the topological
constraints of (ii), but keeps (i). In this case, an isolated
molecule (or indeed a small cluster of molecules) with its
constituent atoms is specified, but the model makes no
further assumptions about the way in which the atoms
are bonded together. The geometry is typically repre-
sented by the set of interatomic distances. A compre-
hensive and historical review is outside our scope here,
but we note in passing the foundational works of Bow-
man and Braams223 that introduced permutationally in-
variant polynomials of the interatomic distances and the
highly successful water model of Paesani and coworkers
based on this formalism.173,188,224,225 A recent review of
neural network models applied to the same problem is
given in ref 226.

Recently, GPR has been employed for the same task
by a variety of authors, fitting either the potential-energy
surfaces directly, or the difference between different levels
of theory. We summarize recent works in Table 2, show-
ing the system under study, the fitting target, the dimen-
sionality of the potential energy surface, and the efficacy;
the last is indicated by a combination of the number of
training configurations and the ratio of the energy RMSE
to the range of energies in the dataset. The aim of the
table is to give a sense of the complexity of these mod-
els, rather than to compare the works of different groups

with one another directly. The modeling goals and the
type of input data in each work was quite different, and
the complexity of the task of fitting the potential-energy
surface of different molecules, even if the dimensionality
is comparable, can be quite different. Recent reviews of
this topic are in refs 227 and 228.

There is yet more GPR work on molecular poten-
tial energy surfaces that did not quite fit into the ta-
ble. Gradients can be fitted directly to aid geometry
optimization.229 If the ordered matrix of interatomic dis-
tances is used as the representation, although constraint
(ii) does not apply formally, the lack of permutation sym-
metry in the representation in practice limits the model
to fixed bonding topology. Nevertheless, for this spe-
cial case, highly efficient and accurate models can be
created, e.g., to fit a dispersion correction,230 or more
generally the potential energy surface directly, as is done
by Müller and coworkers, also reviewed in the present
Special Issue.231

Finally, a modeling task entirely different from ap-
proximating potential energy surfaces as a function of
continuous atomic position is to predict static proper-
ties of new molecules with distinct bonding topologies.
This is useful in high throughput screening applications,
e.g., in the pharmaceutical and organic semiconductor
fields. A widely used benchmark to assess the efficacy
of molecular representations and regression methods is
the QM9 dataset of small molecules.232 In Figure 29,
we show a recent set of results that includes a variety
of GPR/KRR and neural-network models. Note that
the quantity predicted in this benchmark is the DFT-
calculated atomization energy of the molecules in their
equilibrium geometry (as obtained using DFT), so none
of these models in and of themselves are useful or prac-
tical for high-throughput screening, because the model
input requires a DFT calculation (a full geometry opti-
mization in fact) that already yields the target quantity.
Nevertheless, the power of the density-based represen-
tations (FCHL and SOAP) combined with KRR/GPR is
evident, and suggests that it may be able to achieve other
useful goals such as the fitting of correlated wavefunc-
tion theory based energy as a function of DFT-relaxed
geometry.151 It is certainly the case that the QM9 bench-
mark has been very useful over the past years in refin-
ing descriptors and regression protocols, and the current
crop of models perform significantly better than those
from the same groups in earlier years.

One of the promises of ML force fields for molecules is
that they will enable the accurate and routine construc-
tion of general reactive molecular force fields. There is
scant research on this as yet, and Figure 29b shows that
in comparison with closed shell molecules (such as those
in QM9), describing open-shell radicals is much harder:
the errors of the SOAP-based kernel model is three times
larger on the Rad-6 dataset, which consists of all closed-
and open-shell molecules containing C, H, O with up to
6 non-hydrogen atoms.
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TABLE 2. Overview of recent GPR models of the complete potential energy surfaces for isolated molecules and small molecule
clusters. The last column shows the (rounded) ratio of the energy RMSE and the range of energies in the training dataset.

Year System Target Dimensions
Training
set size

RMSE ratio

2013 2 H2O174 ∆MP2 12 9000 0.01
2013 2 H2O174 ∆CCSD(T) 12 1000 0.05
2016 N4

215 CASPT2 6 1800 0.03
2016 CO2N2

216 MP2 9 200 0.005
2017 H2S217 CCSD(T) 3 3700 0.0007
2017 2 HF218 MP2 6 300 0.001
2017 CH3Cl219 CCSD(T) 9 11000 0.0001
2018 H2CO2

32 analytic 9 2500 0.00005
2018 H3O+220 CCSD(T) 6 10000 0.0002
2018 OCHCO+220 CCSD(T) 9 2600 0.0004
2018 H2CO220 MRCI 9 17000 0.0002
2018 (HCOOH)2

220 CCSD(T) 24 9000 0.002
2020 H2CO221 CCSD(T) 9 3200 0.0001
2020 CH3Cl177 ∆CCSD(T) 9 2000 0.05
2020 C6N4H9

+222 MP2 51 5000 0.003

FIG. 29. Performance of ML models for atomization energies of small organic molecules and radicals. (a) Learning curves for the
QM9 dataset,232 using a variety of representations and regression methods. For each value of the training set size, we show the
mean absolute error (MAE) evaluated on the test set which consists of the remaining structures from the full dataset. Models
based on FCHL (2018),233 SOAP (2018),69 aSLATM,234 Coulomb Matrix (CM),235 and Bag-of-bonds (BOB)236 representations
use Gaussian process/kernel ridge regression, whereas NICE73 and MTP67 use linear ridge regression, and SchNet237 and
PhysNet238 are graph neural networks. GM-sNN uses a representation similar in spirit to MTP but based on a Gaussian radial
basis set and a feed-forward neural network for regression.239 (b) Learning curve for the Rad-6 dataset.240 Example species are
shown including a radical species, which actually account for over 90% of the total dataset (reprinted from ref 240; original
work published under the CC BY 4.0 license; https://creativecommons.org/licenses/by/4.0/).
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6. APPLICATIONS (I): FORCE FIELDS

The GAP framework is beginning to be applied to a
variety of research questions in chemistry and materials
science. The aim of the present section is to illustrate the
step from the methodology (Section 4) and its validation
(Section 5) to applications to practical problems, which
are now beginning to emerge. The cases discussed below
are therefore built on the premise that an accurate rep-
resentation of a given potential-energy surface has been
obtained and appropriately validated, and they highlight
selected examples of what has been done with GAP mod-
els to date.

6.1. Transition Metals

Materials with crystalline order have long been suc-
cessfully described with DFT, and larger-scale materials
modeling frequently relies on computationally highly effi-
cient empirically fitted potential models. There are cases,
however, when neither of those options is practical: when
the empirical potentials are too inaccurate to describe the
specific (atomistic) materials-science problem that is be-
ing studied, yet DFT cannot reach far enough in terms
of system sizes. ML-based interatomic potentials have
emerged as suitable alternatives over the last decade –
with applications to metals ranging from an early study
of a structurally complex copper surface128 to simulations
of compositionally complex high-entropy alloys.243

Tungsten was the first metal to be described by a ded-
icated multi-purpose GAP.121 Owing to the applications
of this metal in engineering, there are several important
properties, ranging from the elastic constants and the
formation energy of isolated vacancy defects to the deli-
cate core structure of its screw dislocations.244,245 Whilst
properties such as the elastic constants can be derived
from computations in small unit cells, and are therefore
routinely obtained from DFT, other structural problems
require thousands of atoms (and more) in the simulation
cell. The GAP model introduced in ref 121 correctly
describes the aforementioned core structure and can be
used to study extended defects and their interaction us-
ing many thousands of atoms. This work has also been
a prototype for how reference databases are constructed
manually, guided by intuition and with specific applica-
tions in mind – adding, for example, vacancy or surface
configurations and gradually improving the application
scope of the resulting potentials (Figure 12).

The atomistic modeling of iron is notoriously diffi-
cult, partly owing to the magnetic nature of the ambient
bcc phase. A GAP model fitted to ferromagnetic spin-
polarized DFT calculations was shown to recover the
energetic and temperature-dependent mechanical prop-
erties with high accuracy:241 a simple example is the
Bain path (the tetragonal distortion of the body-centered
unit cell, with c/a = 1 corresponding to the ground-

state bcc structure, and c/a =
√

2 to cubic close pack-

ing), for which results from DFT and GAP are shown
in Figure 30a. Later, the same potential was used in a
study of the migration of the screw dislocation, in which
the stress dependence of the Peierls barrier (double-kink
nucleation barrier in this case) was calculated using a
50,000-atom system (Figure 30b–c).242 Furthermore, a
software was developed for studying Fe grain boundaries
and connected with the GAP model.246 We note that
this potential is accurate for ferromagnetic iron at ambi-
ent temperatures, but it cannot simultaneously describe
spin fluctuations and different magnetization states: that
requires the incorporation of new, magnetic degrees of
freedom.247 In other words, among the different DFT
datasets shown in Figure 30a, only that for the ground-
state ferromagnetic state has a corresponding GAP de-
scription.

As an example of an application at the other extreme of
the temperature and pressure scale (where magnetism is
suppressed), a GAP was developed to study liquid iron
and sulfur under conditions corresponding to those at
the Earth’s core: temperatures ranging from 4000 K to
7000 K and pressures between 110 GPa and 430 GPa.248

One of the objectives of that work was to study the par-
tition coefficient of sulfur between solid and liquid iron.
The GAP model reproduced the radial distribution func-
tions of Fe, S, and Fe–S with high fidelity with respect
to a DFT reference, as well as the melting curve of Fe.
Having an accurate interatomic potential made it possi-
ble to carry out the large number of independent simu-
lations (altogether comprising 10M force evaluations on
180-atom unit cells) that were necessary for determining
free energies at various compositions. In this applica-
tion, the electronic entropy and its contribution to the
free energy is significant, due to the high temperature.
This required the construction of separate GAP models
at each temperature point (in steps of 1000 K), fitted
to DFT calculations which used the corresponding elec-
tronic temperature to determine the electronic free en-
ergy and Hellmann–Feynman forces. In the future, it
would be desirable to incorporate the electronic temper-
ature into the ML model itself explicitly, so that a single
model would be able to predict properties corresponding
to different electronic temperatures.

6.2. Complex Allotropy and Crystal-Structure
Prediction

Whilst most elements, particularly metals, have rather
simple crystal structures, there are others which are much
more complex: carbon, boron, or phosphorus are text-
book examples. Such systems, even if comprising “only”
a single elemental species, may pose outstanding chal-
lenges for force-field development, especially when mul-
tiple different allotropes are to be described at the same
time. In return, elements with complex structures have
turned out to be rewarding targets for the development of
GAPs and other ML potentials, where the cost increase
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FIG. 30. Applications of GAP to α-iron, from small unit cells (left) to large-scale simulations (right). (a) Energy for the
Bain path, corresponding to the distortion of a body-centered cubic (bcc) unit cell to give tetragonal cells including one
corresponding to a face-centered cubic (fcc) structure, as indicated. The results of spin-polarized DFT calculations for different
magnetizations are shown, together with the prediction of a GAP model fitted to data corresponding to the ferromagnetic
state. The GAP predicted error, indicated by shading, is mostly smaller than the line width, except around the c/a =

√
2

ratio corresponding to an fcc structure. Reprinted figure with permission from ref 241. Copyright 2017 by the American
Physical Society. (b) Simulation setup for the computation of the double-kink nucleation barrier of a screw dislocation in a
large periodic supercell model; details are given in ref 242. Adapted from ref 242, originally published under the CC BY 4.0
license (https://creativecommons.org/licenses/by/4.0/). (c) Minimum energy paths for the double-kink nucleation, drawn with
data from ref 242: enthalpy change, ∆H, as a function of both shear stress, τ , and reaction coordinate.

compared to empirical force fields may be justified by the
gain in accuracy. For example, early ML-driven atomistic
simulation studies of carbon allotropes were concerned
with the description of the graphite–diamond coexistence
line116 and, subsequently, with the nucleation mecha-
nism of diamond in graphite under compression.117 These
studies have been carried out with a neural-network po-
tential following ref 66.

In cases where the structural diversity is large, and es-
pecially where previously unknown structures are to be
explored, the requirements for ML potential development
are shifted: rather than meV accuracy, one is primarily
interested in having a robust potential that does not lead
to unphysical behavior in simulations – only once that
type of robustness is achieved, one will “focus in” on
the structures of greatest interest. For example, a GAP
for elemental carbon has been developed with a focus on
amorphous phases, and therefore describes a wide variety
of structures including the coexistence of sp-, sp2-, and
sp3-like carbon atoms over a wide range of densities122

(this model is referred to as “C-GAP-17” in the follow-
ing). In contrast, a GAP for pristine graphene describes
a much more limited configuration space, but at much
higher accuracy.249 The tests for the latter potential in-
cluded phonon dispersions at zero Kelvin as well as at
elevated temperature,249 which provide an intuitive mea-
sure for the force accuracy of the fit. Numerical errors,
given for in-plane force errors, are also instructive here:
the graphene-specific GAP arrives at an RMSE of 0.028
eV Å−1 for its test set; C-GAP-17, a more widely appli-
cable potential, shows a notably larger error in this test,
viz. 0.27 eV Å−1, yet still outperforms all empirical po-
tentials in terms of the same error measure (see details
in ref 249). A subsequent general-purpose carbon po-
tential, “C-GAP-20”, extended the C-GAP-17 database
with a large ensemble of manually constructed simulation
cells representing defects in graphene, nanotubes, and
other more complex structures.152 This potential was fit-
ted to data computed at a higher DFT level than used for
GAP-17, now including dispersion interactions which are
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FIG. 31. GAP-driven structure searching. Selected examples are shown for (a) hypothetical, crystalline carbon allotropes,138

(b) phosphorus nanowires,142 and (c) gas-phase boron clusters.134 GAP-driven modeling can speed up the global exploration
of structural space by several orders of magnitude compared to purely DFT-driven computations, and has been combined
with existing approaches for structure search (panel b, AIRSS137; panel c, CALYPSO,149). Panel (a) adapted from ref 138,
originally published under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). Panel (b) adapted from ref
142, originally published under the CC BY 3.0 license (https://creativecommons.org/licenses/by/3.0/). Panel (c) republished
with permission of The Royal Society of Chemistry, from ref 134; permission conveyed through Copyright Clearance Center,
Inc.

important particularly in low-dimensional and sp2-rich
carbon nanostructures. Tests in the initial work, as well
as a separate, comprehensive benchmark study,250 con-
firmed the overall high accuracy that is afforded by this
model. We note in passing that a similar approach has
been applied recently to the isoelectronic and isostruc-
tural analogue of graphene, hexagonal boron nitride, and
used for simulations of thermal rippling in large cells.251

GAP-RSS has been discussed in Section 4.1.3 as an
efficient way of exploring potential-energy surfaces, and
in Section 4.1.5 as a proposed component in the develop-
ment of “general-purpose” reference databases.163 There
is, of course, now the question of how GAP-RSS may
be applied in the next step, in a way similar to how
AIRSS and related DFT-based structure-searching tech-
niques have been used with great success to discover pre-
viously unknown structures and compounds.4,137

Figure 31 illustrates three cases of structurally com-
plex elemental systems that have been studied with GAP-
driven structure searching in various implementations; it
comprises bulk crystalline phases (Figure 31a),138 struc-
tures with low dimensionality (Figure 31b),142 and gas-

phase clusters (Figure 31c).134 We focus on GAP be-
low, but we note that more generally, the ways in
which crystal structure prediction can be accelerated us-
ing machine-learned force fields (including various fitting
schemes and their applications) have been reviewed in a
recent perspective article.141

Early work was concerned with carbon, for which the
prediction of hypothetical allotropes is a very active re-
search area: see ref 252 and references therein. In 2017,
it was shown how a GAP can be used to drive crystal-
structure searching138 – employing an approach similar
to Ab Initio Random Structure Searching (AIRSS)136,137

to generate a large ensemble of input structures, and sub-
sequently relaxing these random structures, now using
GAP. In this early study, the search was run by a po-
tential that had not been fitted for any crystalline phase,
instead including liquid and amorphous configurations
in the reference database (which, of course, do cover di-
verse local structural environments). The work focused
on all-“sp3” carbon allotropes by filtering the output of
the search to only include those structures in which all
atoms are fourfold connected, and it allowed for the iden-
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tification of multiple hypothetical structures that had
not yet been included in the Samara Carbon Allotropes
Database (SACADA)252 at that time. Two previously
described hypothetical carbon allotropes (including the
“chiral framework structure”, CFS,253 with unj topol-
ogy), that were recovered in the GAP-driven search as
well are shown in Figure 31a. Below them, two related
structures are shown that were identified by the GAP-
driven search (indicated by the label “G” and a running
index in Figure 31a).

For boron, there exist multiple crystalline
allotropes,254 some of which are crystallographi-
cally disordered – most prominently rhombohedral β-B,
which contains 105–108 atoms in the primitive unit cell,
depending on how the structure has been described and
refined (see ref 255 and references therein). The work
in ref 140, which introduced the GAP-RSS method, led
to a potential that could describe a variety of boron al-
lotropes with close to DFT accuracy, including multiple
supercell models of β-B with statistically distributed
atoms on sites with mixed occupations.140 We note
that a Moment Tensor Potential was also developed for
the boron allotropes by iterative structure searching
and fitting, and that work identified further candidate
structures for β-B.127

A related strategy, again using GAP fits and itera-
tive exploration of the potential-energy surface, has been
coupled to the CALYPSO particle-swarm optimization
software for structure searching148,149 and has been ap-
plied to gas-phase boron clusters.134 Figure 31c shows
representative structures obtained in the process, includ-
ing a cage-like cluster and a more stable quasi-planar
structure. Very recently, an application of GAP- and
CALYPSO-based structure searching to bulk phases of
elemental boron was reported as well: the authors iden-
tified a possible metastable cubic B24 phase with an oc-
tahedral B6 unit as an additional structural feature.256

Phosphorus is similarly a case where a diversity of
structural environments creates challenges for atomistic
simulation. The most common forms are “white” (P4

molecular), “red” (amorphous), and “black” (puckered
layers) phosphorus. But there also exists a range of other
phosphorus allotropes based on cage-like fragments, and
an even larger variety of such fragments that has been
studied in early computational work.257 Due to this
structural diversity, new forms of phosphorus continue
to be discovered: for example, nanotubular structures
were described by Pfitzner and coworkers.258

An early GAP-RSS study dealt with phosphorus,
showing how the structure of black phosphorus can be
“discovered” and added to the reference database within
a few iterations. It also included a proof-of-concept for
the search for more complex, tubular structures, using
an idea put forward by Ahnert et al.:259 rather than
initializing the search with individual atoms, one would
use entire fragments as the seed – in this case, phos-
phorus cages obtained from an information-theory-based
decomposition of the structure.259 Based on this type

of approach, the authors highlighted some candidate 1D
and 3D structures (Figure 31b).142 A later study led to
the prediction of a range of hypothetical, hierarchically
structured phosphorus allotropes based on the simple P8

cage as a structural building block, including single- and
double-helix forms.260

Phosphorus monolayers highlight again the importance
of 2D structures, and several empirical force fields were
developed specifically for phosphorene. Further, struc-
turally more complex 2D materials include Hittorf’s
(“hittorfene”), first predicted261 and recently experimen-
tally realized;262 such structures may require more accu-
rate computational treatment than fast empirical force
fields can provide. Indeed, the GAP model of ref 163 is
able to describe the exfoliation of hittorfene with high ac-
curacy compared to DFT+MBD reference data. We also
mention briefly the synthesis of nanostructures such as
phosphorene nanoribbons,168 for which structural mod-
els are included in the reference database of that potential
(cf. Figure 16).163

6.3. Structure of Amorphous Materials

Beyond the crystalline structures discussed so far,
amorphous materials (i.e., those without long-range or-
der) are natural targets for ML potentials, because
they require highly accurate simulations over extended
timescales and the use of large simulation systems – a
requirement that cannot be met by established quantum-
mechanical methods. In the following, GAP-driven sim-
ulations of amorphous solids will be briefly reviewed.

6.3.1. Carbon Nanostructures

The structural and chemical diversity of elemental car-
bon is largely due to its ability to form two-, three-,
and fourfold-bonded environments (typically referred to
as “sp”, “sp2”, and “sp3”, respectively, in a simplified
notation). In amorphous carbon, these structural envi-
ronments often coexist and their presence and relative
abundance is controlled by external factors, such as the
sample density.264 Among the many examples which re-
quire a more diverse description, we mention a compu-
tational study of the reversible graphitization in cold-
compressed glassy carbon265 that used a state-of-the-art
empirical potential model.266 The large structural diver-
sity of amorphous carbon had motivated the development
of the GAP-17 model for this element, and the initial
work included tests for surface energies and the annealing
of surface slabs (inducing graphitization at the surface at
high temperature).122

In 2018, the usefulness of GAP-driven simulations was
demonstrated for deposition simulations of tetrahedral
amorphous carbon (ta-C) films (Figure 32).263 Starting
with a diamond-structured template, carbon atoms were
accelerated toward the surface one after the other, with



53

FIG. 32. GAP-driven deposition simulations describing the
growth of amorphous carbon films.200,263 (a) Example of an
impact event: a carbon atom is placed at 3 Å above the sur-
face and given high velocity (corresponding to a kinetic energy
of 60 eV). Within 10 fs, the atom impinges on the surface (cor-
responding to a spike in the energy of this atom; blue) and
then comes to rest such that its nearest-neighbor distance is
about 1.5 Å. (b,c) Schematic drawings of the proposed growth
mechanisms at low and high impact energies, respectively,
that are consistent with density changes over time observed
in the GAP-MD simulations. Details, as well as quantitative
data supporting these drawings, are given in ref 200. (d,e) Re-
sults of deposition simulations at two representative impact
energies. The structure in (d) is a low-density, sp2-rich phase;
that in (e) is a high-density, sp3-rich phase, in which only the
surface region has substantial sp2 character (as determined
by SOAP-based similarity and indicated by color coding).
Reprinted figures with permission from ref 200. Copyright
2020 by the American Physical Society.

a kinetic energy corresponding to the energy of ions in
deposition experiments (e.g., 60 eV). This type of de-
position simulation is common in the carbon commu-
nity but had previously fallen short of the experimen-
tally observed sp3 count in ta-C (the latter reaching up
to 90% in highly dense samples; see ref 264 and refer-
ences therein). In contrast, the GAP-driven study recov-
ered the experimental value.263 Furthermore, ML-driven
atomistic simulations can not only create accurate struc-
tural models but also give insight into the mechanisms by
which these structures form. In the case of carbon, there
had been an ongoing debate in the literature as to which
of several competing growth mechanisms is responsible
for the formation of highly sp3-rich ta-C films (see refer-
ences in ref 263). GAP-driven simulations led to density
profiles (averaged over many individual impact events)
which are consistent with the “peening” mechanism pro-
posed earlier by Marks267 based on simulations with the
environment-dependent interaction potential for carbon
(C-EDIP):266 a high-energy atom displaces atoms from
the impact region and leads to a net depletion of sp3

density directly at the impact site; in contrast, the film
grows laterally, around the impact site, where the sp3

count increases. The study was subsequently extended
to cover a wide range of impact energies, demonstrating
that a diverse types of film structures can be obtained
as dependent on the impact energy (two examples are
shown in Figure 32d–e).200

Deposition simulations are computationally demand-
ing, and the more common way to obtain atomistic struc-
tural models of a-C (and ta-C) is given by rapid simu-
lated quenches from the liquid state. A detailed study
of structural and elastic properties of different a-C net-
works, obtained by slow quenching, was carried out by
Jana et al. who compared simulations using an existing
empirical potential with simulations using the C-GAP-17
model.268 Another study included the generation of many
individual a-C model structures by GAP-driven quench-
ing and a subsequent link to experimental properties.269

A computational study of plasticity in large structural
models of a-C, again using a combination of GAP and a
faster empirical potential, was reported in ref 270.

Another direction in the atomistic modeling of carbon
materials is the thermal annealing of more disordered
structures to gradually generate more ordered ones, fol-
lowing an early study in 2009 that used C-EDIP.271 There
is a recent benchmark study of various interatomic po-
tential models for carbon272 which used such annealing
simulations for a series of tests, including C-GAP-17 and
C-EDIP, and demonstrating good performance of both
potentials (for example, in terms of the description of
the graphitization process) compared to other, often sim-
pler empirical interatomic potentials. Simulations of this
kind have given rise to structural models of carbonaceous
energy-storage materials,273,274 which will be discussed
further below.
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FIG. 33. Machine-learned atomic energies in amorphous
silicon (a-Si) as obtained from GAP regression models. (a)
Example snapshot from an a-Si structure obtained by GAP-
driven melt–quench simulations (see ref 275 for details).
Atoms are color-coded according to atomic energies, refer-
enced to crystalline silicon (c-Si). (b) Distributions of atomic
energies in two a-Si systems obtained by quenching at a very
fast (left) and slower (right) rate. (c) Two-dimensional plot of
structural similarity to c-Si (horizontal axis) and atomic en-
ergy (vertical axis) for atoms in an ensemble of a-Si structures.
The plot focuses on atoms with N = 3 and N = 5 neighbors,
for which data are shown by larger symbols. Adapted from
ref 53. Original figure published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

6.3.2. Amorphous Silicon

Silicon is perhaps the most canonical covalent amor-
phous system, and its structure has often been approxi-
mated as an ideal tetrahedral random network in which
all atoms have a coordination number, N , of four.276,277

However, defects (commonly defined as atoms with either
N = 3, “dangling bonds”, or N = 5, “floating bonds”)

are important as well,278 and the description of these de-
fects can be challenging. An early work dealt with GPR
models for energetics in silicon.279

In 2018, GAP-driven MD simulations were reported
that generated amorphous silicon (a-Si) structures by
quenching from the melt,193 varying the quench rate
over a wide range. A main advantage of the ML-driven
methodology is not only in the accessible system sizes,
but also the accessible time scales, because the slow
quenching and optimization of a-Si structures can be
computationally demanding (see ref 280 for the recent
DFT-based generation of a highly relaxed a-Si struc-
ture). The enthalpy of the amorphous network with re-
spect to the more stable diamond-type crystalline phase,
experimentally measured by calorimetry, is directly re-
lated to how ordered (that is, how well annealed) a
given sample is, and the excess energies of simulated
quenched a-Si samples obtained with quench rates be-
tween 1013 and 1011 K/s are consistent with experimen-
tally reported excess enthalpies. These findings were
later independently corroborated by a study with neural-
network potentials.281 Using a series of progressively
slower quenches for 512-atom a-Si systems, it was shown
subsequently that slower quenching (1010 K/s in the rel-
evant part of the simulation) does not seem to further
lower the overall potential energy compared to a 1011 K/s
quench – but it still increases the medium-range order, as
measured by the count of six-membered rings.53 Concern-
ing the question of how structural models of amorphous
materials may be validated, which is a highly non-trivial
task, ref 193 also included comparison with previously
reported experimental data for 29Si NMR chemical shifts
and structure factors from diffraction (see ref 193 and
references therein).

The local atomic environments in a-Si were studied
in terms of their energetics, as derived from GAP re-
gression models, as well as structural properties (Figure
33).53 This study demonstrated that to some extent, the
atomic energies from GAP can be interpreted in a chem-
ical way (we note that a counterpoint for neural net-
work potentials has been made in ref 282). Secondly,
it provides an explanation for the initially rather coun-
terintuitive finding that defective a-Si networks can be
energetically slightly favorable compared to those gen-
erated by the WWW algorithm276 leading to a “per-
fect” random network and subsequent DFT relaxation
of both structures.53 The key finding is that whilst the
3-coordinated atoms are generally strongly unfavorable
energetically, there exist 5-coordinated atoms which are
more favorable than highly strained 4-coordinated atoms.
This is another manifestation of the limitations of assign-
ing atomic environments based on coordination numbers
only (see ref 283 for a discussion in the context of ta-C
and SOAP analysis). The energetic analysis was corrob-
orated by studies of the electronic structure, particularly
the local density of states resolved according to different
N -coordinated atoms, revealing a fundamentally differ-
ent character of the different local environments.53
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In the context of atomic energies from GAP mod-
els, as characterized in Figure 33, it is worth noting a
recent study in which those local energies were corre-
lated with structural aspects of local distortions (“dis-
tortion scores”), with higher local energies correspond-
ing to larger distortion scores.284 It was also suggested
to combine the GAP atomic energies with a pressure-
dependent term to arrive at an atomic enthalpy; see ref
164. Further investigations of the information that can
be extracted from such atomic energies and enthalpies
would seem worthwhile.

6.3.3. Ge–Sb–Te Phase-Change Materials

Ge–Sb–Te phase change materials (PCMs) are im-
portant components of data storage and processing
technologies287 and also relevant for emerging applica-
tions in photonics.288 The reason for this importance
is a pronounced property contrast between crystalline
and amorphous phases, which needs to be understood
on the atomistic scale. DFT-based simulations have
been a key technique in understanding and optimiz-
ing PCMs,5,289,290 but such simulations have only been
able to address relatively small system sizes. Indeed,
among the most extensive ones are a DFT-based sim-
ulation comprising 900 atoms,291 and a report of simu-
lations spanning over 8 nanoseconds but using smaller
systems.292 Consequently, ML potentials are playing
an increasingly important role in the field. Founda-
tional early studies have been carried out for GeTe as
a prototypical phase-change material, for which artificial
neural-network models have been developed and applied
by Sosso, Bernasconi, and colleagues.293–297 For exam-
ple, the authors studied the thermal transport in the
material294 and described the crystallization behavior of
bulk295 and nanowire296 structures.

In 2018, Mocanu et al. reported a GAP model for
Ge2Sb2Te5, fitted to liquid and amorphous configura-
tions of the ternary compound as well as structures of the
constituent crystalline phases.285 Comparison of GAP-
MD with DFT-MD data as well as experimental reference
data indicated a good performance for liquid and amor-
phous Ge2Sb2Te5, assessed, for example, in terms of the
description of the structure factor, and the potential was
demonstrated to describe the formation of ordered, crys-
talline regions from an amorphous structure upon anneal-
ing (Figure 34a). This potential was furthermore used to
generate multiple relatively small structures in parallel,
which were then analyzed using first-principles DFT in
regard to their bonding properties.285 Initial simulations
for a 7,200-atom system were also reported – thereby
demonstrating how Ge2Sb2Te5 may now be studied in
much larger simulation cells than would be accessible to
DFT-MD.285 Subsequently, simulations with simulation-
cell sizes up to 24,300 atoms were carried out using the
same potential, systematically addressing the role of the
simulation-cell size as well as that of the quench rate on

FIG. 34. GAP-driven modeling of the Ge2Sb2Te5 phase-
change memory material. (a) Partial crystallization of amor-
phous Ge2Sb2Te5. The upper panel traces the increas-
ing structural order, quantified using the number of four-
membered rings with “ABAB” alternation (as in the rocksalt-
type structure). Representative structural fragments are
shown and illustrate the transition from a disordered amor-
phous (left) to a partially crystallized (right) structure. The
lower panel shows the potential energy of the system (as
obtained from the GAP model), which indicates a stabi-
lization during crystallization, as expected. Reprinted with
permission from ref 285. Copyright 2018 American Chem-
ical Society. (b) Electronic structure of a 900-atom struc-
tural model of amorphous Ge2Sb2Te5,286 obtained from a
GAP-MD simulation, illustrating the synergy between large-
scale GAP-MD and single-point electronic-structure compu-
tations. The inset shows a structural fragment and visu-
alizes the electronic structure of the midgap state associ-
ated with it. Isosurfaces of the wavefunction amplitude
are shown at an isovalue of ±0.015. Adapted from ref
286. Original figures published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).
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the resulting structures.298

In 2019, Konstantinou et al. described a study of the
role of mid-gap states in amorphous Ge2Sb2Te5, which
further emphasized the usefulness of combined GAP-
driven modeling and electronic-structure analyses.286 In
this case, hybrid-DFT level computations were used
to study the nature of midgap states in amorphous
Ge2Sb2Te5, which are of central importance to the elec-
tronic properties of the amorphous “zero bits”. The
availability of the computationally efficient GAP model
allowed the authors to generate a large ensemble of
structural models to serve as input for the subsequent
electronic-structure analysis. An electronic DOS analy-
sis of such a (GAP-generated) structure is highlighted in
Figure 34b,286 and a detailed discussion may be found in
the original work in ref 286.

Recent studies were concerned with the supercooled
liquid phase as described by GAP-driven MD,299 assessed
by comparison with experimental data from ref 300, and
with the application of the Ge2Sb2Te5 model to the end
member of the quasi-binary line, Sb2Te3.301 The latter
work is a case study in transferability: studying liquid
and amorphous Sb2Te3 takes the potential away from the
region of configuration space for which it was initially fit-
ted. It is emphasized that the reference database for the
potential contained liquid and amorphous Ge2Sb2Te5, in
which the local environments of Sb atoms are expected to
partially resemble those in Sb2Te3 because of the chem-
ical relationship between the phases, but they will be
different in detail (especially beyond the first neighbor
shell).

Ge–Sb–Te materials are an excellent example for how
the structural properties are directly linked to practical
applications; more details of this are given in a subsec-
tion below. It is worth mentioning at this stage, however,
that thermal properties of PCMs are likely to be of in-
terest in the future, following early work on binary GeTe
that used a neural-network potential.294 Indeed, a recent
study used a GAP to simulate temperature-dependent
vibrational properties in GeTe based on long timescale
MD simulations.302

6.4. Surface Chemistry

Real materials are not infinitely extended, and the
study of material surfaces opens up a further degree of
structural complexity. Take diamond-type silicon as an
example: the bulk crystal has a simple diamond-type
structure, whereas the most stable (111) surface struc-
ture is a complex (7 × 7) reconstruction – and its de-
scription by DFT computations has been an important
milestone.303 Similarly, the silicon (111) surfaces and
their reconstructions have served as a testing ground for
GAP models.139,151

Even more complex structures are found at the sur-
faces of amorphous materials. For example, surfaces of
amorphous carbon have been studied in light of its ap-

plications in coatings and chemical sensing; an overview
of applications of those materials in biosensing was given
in ref 304. Recent work in ref 275 introduced a library of
surface slab models, generated by cleaving from bulk ta-
C samples and subsequent thermal annealing to “heal”
dangling bonds at the surfaces. A systematic study was
carried out of the structural properties as dependent on
the system size, assessing the question of what size of
simulation cell would be required to reliably describe
ta-C surfaces. A system size of 216 carbon atoms per
cell was found to be a reasonable choice. Because the
carbon GAP in this case was fitted only for bulk ele-
mental carbon,122 the authors showed how its simula-
tion outcomes (here, the annealed ta-C slabs) can be
further coupled to density-functional based modeling to
access a larger chemical space (here, that of hydrogen-
and oxygen-based functionalization which is relevant for
practical applications). Specifically, the hydrogenation
of slabs was described by grand canonical Monte Carlo
simulations using density-functional tight-binding mod-
els, which require less computational effort than DFT
and therefore allow for the evaluation of many individ-
ual configurations – up to reaching a hydrogen content
of about 30%, consistent with experimental samples. On
the other hand, oxygenation involves much more com-
plex surface reactions and an interplay between, for ex-
ample, epoxy and carbonyl groups; simulations of this
type (again starting from the GAP-generated ta-C slabs)
were therefore carried out using DFT-based ab initio MD
simulations.275

Further analysis of the surface structures was carried
out in a companion paper.283 The use of “sp2” and sim-
ilar labels was compared with the outcome of a SOAP-
based clustering technique. The latter identified a num-
ber of typical environments that are taken to be rep-
resentative of different types of bonding in a-C materi-
als: for example, an atom with N = 2 nearest neighbors
might be either in a linear (–C≡C–) or in a defective
sp2-like environment, and the SOAP-based analysis sep-
arates these two types of environments to a good degree.
The work also exemplified the ability to include proper-
ties beyond the atomistic structure in the construction of
kernel-based models. Specifically, the authors “encoded”
electronic-structure fingerprints through the moments of
the local density of states, and used those to construct
a second kernel that separates environments based solely
on their electronic (and thereby, bonding) nature. Com-
bining this kernel with a SOAP term to include the atom-
istic structure, Caro et al. demonstrated an improvement
in the prediction of hydrogen adsorption energies (as a
simple proxy for chemical reactivity) as compared to a
pure SOAP-GPR model.283

Aarva et al. proposed to predict X-ray photoelec-
tron spectroscopy (XPS) and X-ray absorption spec-
troscpy (XAS) fingerprints based on GAP-generated and
DFT-functionalized structural models,305,306 in another
demonstration of how one may interface atomistic struc-
ture to high-level computations. Because the reference
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FIG. 35. Modeling oxide surfaces with GAP. (a) Surface com-
plexions for the (111) surface of IrO2, showing the initial
structure, a snapshot at 1000 K, and the final equilibrium
structure after simulated annealing. Reprinted figure with
permission from ref 308. Copyright 2020 by the American
Physical Society. (b) Surface free energies γ as a function of
oxygen chemical potential, ∆µO (solid lines), for three differ-
ent surfaces. Dashed lines indicate the surface free energies
obtained without complexions. Adapted from ref 308. Origi-
nal work copyright 2020 by the American Physical Society.

computations that predict the spectra are computation-
ally expensive, it is crucial to carefully select those (rela-
tively few) configurations for which computations are to
be done – this was achieved using SOAP-based clustering,
similar to ref 283. This methodology is beginning to be
used to fit experimental X-ray spectra, as demonstrated
in ref 307.

Returning to crystalline phases, a recent study re-
ported on IrO2 surfaces including various complexions,
described by a GAP model.308 Figure 35 shows the newly
discovered metal-rich surface complexions, obtained us-
ing simulated annealing, and their corresponding sur-
face free energies. ML-potential-based simulations of this
type extend upon DFT-based ab initio surface studies
which are firmly established in the field.309 With greatly
improved computational speed, one may now envision
pushing the limits of such methodology even further: for
example, to the exploration of much larger possible sur-
face reconstructions (just like the (111)-(7 × 7) recon-
struction of silicon, which searches in smaller unit cells

would not have found, but a recent study did using an
ML potential310), and to the prediction of the equilibrium
shape of nanoparticles (based on Gibbs–Wulff construc-
tions) with complex compositions at finite temperatures.
Finally, with improved information about which specific
surface is expected to form, one may extend the simu-
lation study from a free surface to one with a molecule
attached, or to an entire catalytic reaction system.311

6.5. Functional Properties

A next step in the application of ML potentials, in-
cluding GAP, is to move from structure to functionality,
i.e. to material properties which are directly related to
a practical application. A very recent example is given
by amorphous silicon, for which structural studies were
mentioned in Section 6.3.2: Wang et al. experimentally
investigated the behavior of a-Si samples under tension
and compression, finding a much stronger tensile than
compressive strength, and corroborated their mechani-
cal measurements with atomistic simulations including
GAP-18.312

The transition between different solid phases is an in-
teresting challenge for ML-driven modeling, especially
when the process involves very diverse local environ-
ments. The previously mentioned PCMs are a typ-
ical example of this, and crystallization simulations
have initially been carried out with the GST-GAP-18
model. Figure 34a illustrates the partial crystallization
of Ge2Sb2Te5 using the count of four-fold rings as a mea-
sure for crystallinity:313 this value is expected to be unity
in a perfect rocksalt-type structure. The energy of the
system, accordingly, is lowered notably during the crys-
tallization, by almost 0.1 eV per atom. In terms of PCM
applications, this simulation mirrors the SET process
(amorphous −→ crystalline transition; see ref 5).

The transport of heat in a crystalline or non-crystalline
system is the central functional property in thermoelec-
tric waste-heat recovery. In principle, ML potentials are
well suited to speed up predictions of such properties, be-
cause the latter are again derived directly from the PES;
applications of ML potentials to the thermal properties of
amorphous phases have been reviewed.314 The prediction
of thermal properties for crystals in the GAP framework
was exemplified for zirconium.315 Two separate studies
discussed the thermal properties of crystalline, diamond-
type silicon.196,316 A separate potential was fitted to de-
scribe the thermal conductivity in silicene.317 Finally,
a GAP model was developed for the β polymorph of
Ga2O3, specifically with a view to describing the vibra-
tional and thermal properties.182

Materials under irradiation are exposed to extreme
conditions, and accordingly the resulting atomistic struc-
tures are often very far from equilibrium. Until now, the
interatomic repulsion at short distances has mainly been
discussed as a qualitative feature of the PES that needs
to be taken care of but is not the main subject of study.
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FIG. 36. Simulations of matter under extreme conditions us-
ing GAP: here, exemplified by radiation damage. Panel (a)
shows the construction of a GAP for tungsten with a repulsive
term at very short interatomic distances, for which reference
data are computed using DMol rather than the standard DFT
method;318 note the energy scale reaching up to MeV ener-
gies. Reprinted figure with permission from ref 318. Copy-
right 2019 by the American Physical Society. Panel (b) is a
selected example of a single impact event in silicon, simulated
by an empirical interatomic potential (left-hand side) and a
GAP (right-hand side).319 Only defect atoms are shown, with
the color corresponding to the time the defect was generated,
referenced to the primary impact event. Panel (c) shows the
sputtering yield obtained in simulations with various force
fields compared to experimental data (gray). The GAP model
containing a pair potential term that is repulsive up to MeV
energies (red) predicts a notably higher sputtering yield than
the other force field models. Reproduced (adapted) from ref
319; original figures published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

In radiation damage studies, however, a quantitatively ac-
curate description of interatomic repulsion down to very
small interatomic distances is required, because it is there
that the relevant microscopic processes are taking place.
Accordingly, the energies of the repulsive potential range
to the MeV region (millions of times more than a typ-
ical covalent bond energy). A recently developed GAP
model for tungsten318 recovers this behavior accurately
because it has been specifically extended to describe such
small interatomic distances (Figure 36a) – similar GAP
models were later developed for a range of refractory
metals.320 Figure 36b provides a comparison of two se-
lected high-energy events as described by an empirical
(Tersoff-III, “T3”) potential321 and the authors’ GAP
for Si.319 Whilst they both focus on one individual event
out of a presumably wide distribution (and different em-
pirical potentials will again differ from one to another;
ref 319), the authors’ results clearly suggest that the pro-
cesses described in these simulations are qualitatively dif-
ferent. The absence of physical constraints on the shape
of the interatomic interactions allows the atoms to travel
highly complex pathways in the case of the GAP-based
simulation, characterized on the right-hand side of Fig-
ure 36b. The same groups recently published a study of
such high energy collision events in molybdenum.322

Figure 36c includes a comparison with GAP-18 (la-
beled there as “Primary GAP”), which performs worse
than the tailor-made potential, yet still on par with a
range of traditionally used empirical force fields. This
may be an important guiding point for the future con-
struction of general-purpose GAPs: even in extreme situ-
ations, one would like them to revert at least to the physi-
cal behavior of empirical force fields. The methodological
steps required for this relate to all three key components
of GAP model fitting (cf. Figure 11): (i) the develop-
ment of appropriate reference databases which must in-
clude relevant environments in small simulation cells (as
does, for example, the C-GAP-17 model for carbon which
contains the results of small-scale surface simulations at
very high temperature122); (ii) the construction of suit-
able atomistic descriptors which may include 2-body and
other terms in a hierarchical way (cf. Section 4.2); and
(iii) the appropriate control of input (regularization) and
output (uncertainty quantification) in the GPR model,
both at the fitting stage and at the stage when the sim-
ulations themselves are being carried out.

Machine-learned force fields are an emerging class
of simulation tools in the area of battery materials
research,323–326 and this has included initial applications
of GAP models (Figure 37). A long-term goal of such
research would be to compute voltage curves that cor-
respond to the experimental charging and discharging
process. In 2018, it was proposed to use GAP-driven
MD to generate relatively small-scale structural mod-
els of porous and other disordered carbon structures273

which find application in supercapacitors327 and bat-
tery anodes. The reason for focusing on system sizes
of about 200 atoms per cell was the fact that those can
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FIG. 37. Early examples of how the GAP framework may
be used for battery materials modeling. (a) Snapshot from
an MD simulation driven by a hierarchical GAP model for
Li in carbon structures (ref 119), extending the pure carbon
GAP-17 potential122 by adding a difference term; positions of
Li atoms are shown in purple; those of carbon atoms are for
a single snapshot only. Reprinted from ref 119, with the per-
mission of AIP Publishing. Copyright 2018 AIP Publishing.
(b) Synergies between GAP and DFT modeling in studying
energetic and electronic effects of alkali-metal intercalation
in disordered carbon structures. In this case, disordered and
partly graphitized carbon structures were generated in GAP-
MD simulations, and several randomized cells with varied Li
content (x) were used as input for subsequent DFT compu-
tations, yielding total energies which may be converted into
voltages. Adapted from ref 274 – Reproduced by permission
of The Royal Society of Chemistry. Copyright 2019 The Royal
Society of Chemistry.

then serve as input for DFT analyses, as discussed for
ta-C films above. Accordingly, the study in ref 273 in-
cluded initial DFT computations on the intercalation of
Na in “hard” carbon materials, focusing on the evolu-
tion of atomic charges with increasing filling, which may
be linked to previous operando NMR studies in ref 328.

Subsequent work by Huang et al. systematically com-
pared the insertion of Li, Na, and K ions in various disor-
dered carbon structures generated, again, in GAP-driven
simulations.274

Whilst the previous studies had described the elec-
trode material with GAP and then subsequently modeled
the metal intercalation using DFT, it is ultimately more
desirable to describe the entirety of the system using a
machine-learned force field, bypassing the requirement
for DFT altogether. Fujikake et al. reported a methodol-
ogy based on the fitting of energy and force differences,
treating the addition of Li to a disordered carbon struc-
ture as a “perturbation” of the ideal system (which, in
turn, can be fully described by GAP models).119 Here we
note the development of neural-network potential models
for the Li–Si system, which is similarly of large impor-
tance for battery anodes.329,330 For electrochemically ac-
tive systems, especially for strongly ionic (e.g., transition-
metal oxide cathode) materials, an explicit treatment
of the electrostatic interactions may be required. In-
deed, ML potential models for systems in which charge
transfer is important have been proposed, for example,
by Goedecker and colleagues, in the form of charge-
equilibration schemes110 which were recently incorpo-
rated in general “fourth-generation” neural-network po-
tential models.111,331,332

Existing GAP-generated structures can be reused for
new simulations with other methods, which has been ex-
emplified for supercapacitors333 and catalysts.334 In the
first case, pore size effects were studied with empirical-
potential simulations that built on existing GAP-based
structures; in the second case, a large-scale screening of
chemical functionalization was carried out using DFT.
Another recent demonstration was the use of existing a-
C surface structure models to describe the absorption of
biomolecules – seamlessly combined with simpler struc-
ture models of graphene or nanotubes.335 An even ear-
lier study used the B-GAP fitting database from ref 140
for other types of structural analyses336 – fully indepen-
dent from the potential model, but making use of the
structural diversity that is explored by GAP-RSS. These
examples emphasize the usefulness of openly available
databases of structural data, which might find use in a
variety of future applications.

6.6. Molecular Materials

Modeling molecules and materials are fields that of-
ten appear distinct, pursued by scientific communities
with little overlap, and even the term used for the result-
ing model is different: “force fields” or potential-energy
surfaces for molecules, and “interatomic potentials” for
materials. We have briefly touched upon models for iso-
lated molecules in Section 5.4, and now we discuss some
applications to “molecular materials”. Either liquids or
crystals, they consist of strongly bonded molecular units
that form extended systems held together by weak inter-
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FIG. 38. Hierarchical GAP model for fluid methane (CH4). (a) Different terms in the interaction energy of a pair of methane
molecules (geometries obtained from the condensed phase), with the top panel showing the PBE0 and MBD energy as well as
the TS correction using a fixed Hirshfeld volume (denoted TS*). The bottom panel shows the MBD energy on a logarithmic
scale as well as the difference between MBD and TS*. (b) Two SOAP-GAP models are fitted separately to reproduce the
PBE0 interaction energy and the MBD-TS* difference. The panels show the validation of the interaction models against their
respective references. Numerical errors are given in the legends. (c) Prediction of physical properties, here shown for the
density–pressure isotherms, comparing the performance of the GAP (magenta without, yellow with path-integral MD to model
quantum nuclear effects) with experimental data (cyan); the results of various empirical force fields are indicated by grey
lines; the black bars indicate the size of statistical error. Details are given in ref 172. Adapted with permission from ref 172.
Copyright 2019 American Chemical Society.

actions, e.g., van der Waals dispersion or dipolar electro-
statics. This presents an immediate problem for model-
ing, because these weak interactions are typically longer-
ranged than the covalent interactions, and their length
scale of variation is much larger than for covalent bonds.
For example, the energy of a covalent bond has signifi-
cant variation when the bond is stretched or compressed
by a distance on the order of 0.1 Å; in contrast, inter-
molecular electrostatic and dispersion interactions vary
significantly only on the length scale of 1 Å or greater.

There are essentially two approaches: the first is to
use a molecular body order expansion in which the to-
tal energy is split up into contributions of each isolated
monomer, the interaction energy of each dimer, each
trimer, and so on. In this case, each of these terms cor-
responds to just isolated molecules or small clusters of
molecules, and we are back to that modeling problem.
Alternatively, we can consider the entire loosely bound
collection of molecules as an extended material. In this
case, we can use exactly the same descriptors and fitting
methodology as for material systems. The input data
also need to be similar: electronic-structure total energy

calculations in the condensed phase, almost invariably us-
ing periodic boundary conditions. In practice, this limits
us to using DFT, rather than the more accurate corre-
lated wavefunction theory that one would be able to use
for isolated molecules and clusters.

Neural networks for water170,185,337,338 were among the
first models of a molecular material that did not explicitly
rely on prescribing the fixed topology of the molecules.
Water is somewhat of a special case, where the “weak”
intermolecular interactions are relatively strong hydrogen
bonds, and so this “material treatment” can be expected
to be more successful. The great flexibility of the neural
network functional form helps to simultaneously describe
the short-range covalent bonds and the intermolecular in-
teractions. Using GPR would be more difficult, because
one of the key ingredients of those models is an opti-
mized length scale for the kernel function that generates
the basis. One way to deal with these different interac-
tions is to focus the ML effort on the short-range part,
and to describe the long-range interactions using an ana-
lytical baseline model, as detailed in Section 4. This has
been done using a long-range pair potential for disper-
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sion interactions for a phosphorus model that included
the low-density molecular liquid phase,163 and earlier for
carbon to deal with the weak dispersion that holds lay-
ers of graphite together.152 Another possibility is to build
models that describe the long-range nature of the inter-
actions at the level of descriptors, such as models based
on long-distance equivariants339 (LODE) that combine
atomic neighbourhood density features similar to SOAP
with an artificial “far field atom-density potential” that
captures long-range interactions.340

Another example of a purely “material-type” model
is the application to the prototypical hybrid perovskite,
methylammonium lead iodide, which we discussed in
connection with active learning (cf. Figure 13).123 The
methylammonium cation did not need to be defined as a
separate topological unit, nor did its connectivity need to
be fixed. All that enters the fit is a collection of atomic
coordinates and associated energies, forces, and virial
stresses. It may be expected that other hybrid materials,
containing perhaps very complex organic molecules, will
provide rewarding targets for investigations with similar
machine-learned potentials; similar work was done (us-
ing a neural-network model) for one of the prototypical
metal-organic frameworks, MOF-5.282

One very effective way to use GPR for describing
molecular materials with high accuracy is to combine
the above-mentioned two approaches as follows. The to-
tal energy is separated into intramolecular (“monomer”)
and intermolecular terms as usual, but the intermolecular
part (the “interaction energy”) is not treated by a fur-
ther molecular body order expansion, but rather by the
material model framework using SOAP as atom-centered
descriptors and GAP for regression. This solves the prob-
lem of disparate length scales.

We present two examples of this approach, both using
hierarchical modeling in several different ways. In the
first one, the total energy of fluid methane was broken
up into the following terms:172

Etot = Emonomer + EGAP−short + EGAP−MBD + ETS∗ ,
(83)

with the last three constituting the intermolecular terms.
The monomer term was a simple force field with two-
and three-body terms fitted to CCSD(T) data on iso-
lated methane molecules. The “GAP-short” term repre-
sents the short-range part of the interaction energy and
was fitted to interaction energies computed using DFT-
PBE0341 – and since there is no dispersion in this DFT
method, the resulting interaction is mostly repulsive, and
can be adequately captured with a finite-range potential.
The last two terms together account for dispersion. Of
these, “TS*” is a pair potential along the lines of the
Tkatchenko–Scheffler342 scheme using a fixed C6 coeffi-
cient (obtained by averaging it over methane conforma-
tions), and the “GAP-MBD” term is the difference be-
tween the many-body dispersion energy343 and the TS*
baseline. Having subtracted TS*, the remainder of the
MBD energy could be described by a SOAP-GAP model
with 5 Å cutoff with an error of less than 1 meV per

molecule. Both GAP models used condensed-phase data
with 27 methane molecules in the unit cell. Figure 38
shows the validation of the two separate intermolecular
fits (a-b) and the successful prediction of the density as
a function of temperature and pressure (c), once path in-
tegral molecular dynamics (PIMD)344 was applied to the
combined potential. Note that applying PIMD results
in up to a 10% shift in the predicted mass density. The
grey lines in Figure 38c represent results from a variety
of empirical force fields, some of which have been directly
parametrized to reproduce the density – so they do this
successfully, but not for the right reason, in the sense
that they do not represent the correct potential-energy
surface.

The second example is molecular crystal-structure
prediction,175 using a double-hierarchical model in which
the both the molecular monomers and their interac-
tion energy are described, separately, by respective
SOAP-GAP fits – each using the semi-empirical DFTB
model345 with the TS correction342 as baseline model,
and DFT+MBD343 as its ultimate target. The in-
tramolecular GAP model is fitted to the following dif-
ference,

Eintra
GAP ≈ EDFT+MBD − EDFTB+TS, (84)

and is trained on isolated molecules with geometries ob-
tained from the crystal, illustrated in Figure 39a. The
GAP interaction energy is fitted to the difference of dif-
ferences,

Einter
GAP ≈ [EDFT+MBD(system)− EDFT+MBD(monomers)]−

[EDFTB+TS(system)− EDFTB+TS(monomers)] ,
(85)

and is trained on clusters (referred to as “X-mers” in the
original paper), again carved from crystal configurations
obtained by simulations using the baseline model. The
GAP corrections were shown to significantly improve on
the energy prediction of the baseline model both in an
absolute sense and in ranking low-energy crystal poly-
morphs (Figure 39b and c), with savings in computa-
tional cost of over a factor of 300 for a full crystal-
structure search. Note that the computational cost of
evaluating the combined model was shown to be dom-
inated by the semi-empirical baseline, with the GAP
model taking less than 2% of the total time.175

When modeling molecular materials nowadays, one is
almost always looking out for ways to go beyond stan-
dard DFT. Since this is now routine for the ML modeling
of isolated molecules (see, e.g., ref 180), even considering
excited states,347–349 it is natural to use the techniques il-
lustrated here to carry over this high level of accuracy to
periodic systems. Reference electronic-structure meth-
ods and training databases have to be chosen carefully,
but it is now within reach to train intermolecular po-
tentials using symmetry adapted perturbation theory,350

random phase approximation,164 or even quantum Monte
Carlo351 data.
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FIG. 39. GAP models for molecular crystal-structure
prediction. (a) Illustration of the hierarchical construc-
tion of the ML model. Intramolecular and intermolec-
ular terms are fitted independently, and both are differ-
ence models with DFT at the PBE+MBD level being the
higher level of theory and the semi-empirical DFTB+TS
serving as the lower level baseline (cf. Figure 18a). The
database of the intramolecular model consisted of isolated
molecules, whereas that of the intermolecular model con-
tained small clusters obtained from DFTB relaxations of
crystals. The molecule shown is tricyano-1,4-dithiino[c]-
isothiazole, which was target XXII in the sixth blind test of
organic crystal-structure prediction346. Results of indepen-
dent crystal structure searches performed with the DFTB+TS
baseline (panel b) and the DFTB+TS+GAP model (panel
c) on lattice energies (left) and rank order (right), with re-
spect to the PBE+MBD reference (computed without fur-
ther relaxation). The red dot indicates the experimen-
tally found crystal structure. The large overall shift in
the DFTB+TS energies is due to the incorrect monomer
geometry of the baseline model. Reprinted from ref 175;
original figures published under the CC BY-NC 3.0 license
(https://creativecommons.org/licenses/by-nc/3.0/).
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7. APPLICATIONS (II): BEYOND FORCE
FIELDS

Even though the bulk of this review focuses on the
central problem of fitting interatomic potentials, GPR
is applicable to a wide range of atomic-scale properties.
Early work on molecular ML used descriptors for the
molecular structure such as Coulomb matrices – in com-
bination with GPR/KRR – to model a couple of dozens
of properties of small organic molecules.232,235,352,353 In
a systematic comparison including different descriptors
and regression techniques, kernel methods were shown
to match, and often outperform, non-linear techniques
including graph convolutional networks354 (see also Sec-
tion 5.4).

Several of the efforts aimed at learning properties other
than the potential energy link back to the problem of
constructing force fields. This is the case, for example,
for the prediction of atomic charges,355,356 and molecu-
lar multipoles81,357,358 that are then used to define an
electrostatic baseline to model long-range interactions.
Other examples are the direct prediction of the lattice en-
ergy of molecular crystals, using as training and as inputs
only the geometries optimized with an empirical force
field359 (which is a simpler learning task than training
a fully general potential for the same class of systems),
and the estimation of free-energy surfaces,360 that in-
volve finite-temperature sampling with a (traditional or
machine-learning) force field. Although the present re-
view focuses on fully atomistic models, the construction
of ML-based coarse-grained force fields is a burgeoning
research field where initial progress has been made with
GPR-based and other ML methods.361–365

It is also possible to use GPR for Bayesian optimiza-
tion (BO),366 which attempts to find the global PES min-
imum by using the predicted value and predicted vari-
ance to optimize the choice of sampling points. ML
schemes have been applied to accelerate the search of
the most stable configurations367,368 and of saddle-point
structures, associated with an activated transition.369–372

In this case, a GP model of a PES is iteratively generated,
but it is generally considered to be only an aid for find-
ing the global minimum. This approach has been used
for finding minimum-energy crystal structures373,374 by
iteratively proposing structures that maximize the likely
energy gain, relaxing them with DFT, and adding the
resulting structures and energies to the fitting database
for the PES model of the next iteration. After the
first iteration, the potential is only fit to DFT local
minima. BO approaches have been used for ionic dif-
fusion paths:375 for this application, the PES was ex-
pressed as a function of the position of a single diffusing
atom; the fitted energies were computed after relaxing
all other atomic positions with DFT, and BO was used
to simultaneously optimize the positions of the migra-
tion path endpoints (local minima) and the energy bar-
riers along the path (saddle points). GPR and the pre-
dicted uncertainty were used in constructing a surrogate

model for nudged-elastic-band computations.376 Hammer
and co-workers combined structure optimization with a
GPR model,368 and showed how their atomistic struc-
ture learning (ASLA) technique377 can be coupled with
a GPR-based potential model fit to accelerate the global
search for stable structures.378

In the remainder of this section, we provide an
overview of several applications of GPR to properties
that are different from potential-energy surfaces. We
have selected these applications to highlight how atom-
istic ML based on local representations can provide sur-
rogate models for any atomic-scale property that can be
computed by electronic-structure methods – including
atom-centered scalar properties (NMR chemical shield-
ings), tensorial properties (dipole moments and polariz-
abilities), scalar fields (the electron density), and energy-
dependent properties (the density of states). The main
take-home message is that even though the overall GPR
scheme presented in the previous sections is general
enough to underpin ML predictions of arbitrary prop-
erties, their specific nature requires careful consideration
of the structure of the model, which needs to mirror the
symmetry properties and physical behavior of the target.

7.1. NMR Chemical Shieldings

The vast majority of the models we discuss in this re-
view rely on an atom-centered decomposition of the tar-
get property. As a consequence, they can be applied in
the most straightforward way to the prediction of prop-
erties that are inherently atom-centered,379 such as the
chemical shieldings of nuclei that determines the char-
acteristic signature of a material or a molecule in nu-
clear magnetic resonance experiments. NMR measure-
ments usually determine chemical shifts, i.e. differences
between the NMR shieldings of the sample and of a refer-
ence. Even though they are exquisitely sensitive probes
of the chemical environment of nuclei, the small changes
in shieldings/shifts that are necessary e.g. to distinguish
different polymorphs of the same molecular crystal can-
not be interpreted on a qualitative level, and theoretical
predictions are invaluable to assist the analysis of experi-
ments. Models for the prediction of chemical shieldings in
solution380 and for polypeptides381,382 have been among
the first applications of artificial neural networks in chem-
istry. With the development of frameworks to compute
the magnetic shieldings of nuclei using DFT,383,384 such
as the Gauge Including Projector Augmented Waves (GI-
PAW) method, it has become possible to construct re-
gression models that are based on a first principles com-
putational framework.

The fact that electronic structure calculations provide
chemical shieldings for a specific nuclear configuration,
rather than the average over molecular fluctuations that
is probed experimentally, makes a DFT-based ML model
particularly useful for solid-state NMR, in which fluc-
tuations around equilibrium configurations are less pro-
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FIG. 40. NMR chemical shift prediction. The figure shows
a comparison between the 1H chemical shifts for the a set
of hypothetical polymorphs structures of cocaine, obtained
using a crystal structure prediction algorithm, and those
of the most stable polymorph, determined experimentally.
For each candidate structure an aggregate RMSD is shown
between experimentally measured shifts and shifts calcu-
lated using either GIPAW-DFT (blue) or ShiftML (red).
The gray zone represents the confidence intervals of the
GIPAW-DFT 1H chemical shift RMSD. Candidates that
have RMSDs within this range would be determined as cor-
rect crystal structures using a chemical shift-driven solid-
state NMR crystallography protocol. Adapted from ref 386.
Original figure published under the CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0/).

nounced. Early models based on a neural network for
17O and 29Si shieldings in silica385 were recently com-
plemented by a framework enabling predictions of 1H,
13C, 15N and 17O in molecular crystals,386 which relies
on a GPR model using SOAP kernels that incorporates
many of the techniques discussed in the present review,
including multi-scale kernels and sparse models. This
“ShiftML” model387 achieves an accuracy comparable to
the reference DFT calculations, and can be combined
with experimentally-determined shifts to assign the crys-
tal structure of a sample to the most compatible poly-
morph among a set of candidates (Figure 40). In combi-
nation with model error estimation, it is also possible to
establish, in a quantitative manner, the reliability of such
assignment,388 and to use the ML prediction to interpret
solid-state NMR experiments.389

7.2. Dielectric Response Properties

The response of the energy of a system, U , to an ap-
plied electric field, E, gives rise to a hierarchy of dielec-
tric response properties, ∂nU/∂En – these include the
polarization, µ, the polarizability, α, and higher-order
responses such as the hyperpolarizability, β. These quan-
tities are inherently tensorial, and so they require regres-
sion models that incorporate the covariance of the tensor

with respect to rigid rotations of the system. As antic-
ipated in Section 3.4, many early attempts to build re-
gressors for dielectric properties, as well as multipole mo-
ments, relied on the definition of a local reference frame
attached to the molecular building blocks.81,83 Another
approach, reflecting well-established practices in the con-
struction of molecular dipole moment surfaces,390,391 in-
volves associating formal charges to each atom and com-
bining them with the atomic position to compute a for-
mal polarization vector – this approach is also readily ap-
plicable to neural-network models.84,238 Fully symmetry-
adapted models, instead, define a kernel or feature basis
that reflects the covariant properties of the target prop-
erties. Early proponents of the application of covariant
models to the prediction of tensorial properties relied on
the kernel framework80,91 described in Section 3.4, as well
as on an alternative formulation that uses formal atomic
charges to determine an atom-centered reference frame –
which can be elegantly expressed in terms of an “operator
ML” formalism.82

The earliest applications of the SA-GPR approach on
which we focus in this review tackled the problem of mod-
eling the dielectric response series of water oligomers up
to the third order, and the electronic dielectric constant
of bulk water.91 These benchmarks highlighted the suc-
cess of SA-GPR across a range of orders of tensor, and
its ability to handle systems that cannot be split into
well-defined molecular units. However, it is with the Al-
phaML model of molecular polarizability99,393 of organic
molecules that SA-GPR proved its ability to achieve an
accuracy at least as good as that of DFT. This accuracy
was achieved for both the scalar and the tensorial part
of α across large swathes of chemical space, even when
extrapolating to much larger and more complex models
than those included in the training set – a reflection of the
transferability afforded by atom-centered decomposition
of the targets. The fact that SA-GPR is an extension of
scalar GPR means that developments designed originally
for scalar learning can be transferred straightforwardly to
tensor learning; for example, the use of multi-scale ker-
nels that combine several length scales with optimized
weights improve the model performance over individual
models (Figure 41, right panel). The standard result that
[k(A,A′)]ζ is also a valid invariant kernel, used to intro-
duce non-linearity in SOAP GPR models, cannot be used
directly to predict covariant properties, since a spherical
harmonic raised to a power greater than one is a sum of
spherical harmonics of different orders. One simple way
to incorporate non-linear models in SA-GPR involves us-
ing products of covariant and invariant kernels,

kλ(A,A′)[k(A,A′)]ζ−1, (86)

which is still a covariant kernel of order λ. In the case of
polarizability learning, this combination of spherical and
scalar kernels was found to improve the performance of
the models by a factor of 2–3 (Figure 41, left panel).

The prediction of molecular dipole moments is par-
ticularly interesting. Being the simplest possible di-
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FIG. 41. Learning tensorial properties. The figure shows learning curves for the λ = 0 (top) and λ = 2 (bottom) components
of the per-atom polarizability for the QM7b dataset352. Polarizabilities were calculated using CCSD, and the test set in all
cases consists of 1811 molecules. (a,b) Effect of the kernel exponent. Nonlinear (ζ = 2, 4) SA-GPR SOAP kernels yield much
better asymptotic learning performance than the linear (ζ = 1) form. A radial cutoff of rc = 4 Å is used throughout. (c,d)
Effect of the environment cutoff radius. Polarizability is a property that depends strongly on long-range correlations, and so a
large cutoff distance is usually beneficial. However, a multiscale kernel built by combining kernels with different cutoffs, with
weights that are optimized by cross-validation, yields a small but consistent improvement over each of the individual models.
Adapted from ref 99.

FIG. 42. Learning dipole moments. The figure shows atom-centered contributions to the dipole moment of different polyglycine
molecules from the monomer to the 7-mer. (a) Results of a “vector” (λ = 1) SA-GPR model in which the predicted dipole is
made up of atom-centered dipoles (gray vectors). (b) Results of a scalar (λ = 0) GPR model, where atom-centered charges
(whose magnitude is indicated by the green/purple color scale) are predicted instead and used to calculate the molecular dipole
moment. For this model, the green vectors show the predicted charges multiplied by the atomic displacements. (c) Results of
a model in which scalar and vector SA-GPR are combined, and the prediction is a combination of atom-centered dipoles and
charges (red vectors give the weighted sum of the two contributions). Below each molecule, the black vector gives the molecular
dipole moment calculated using the reference electronic-structure method (B3LYP-DFT), and the gray, green, or red vector
gives the total GPR prediction. Adapted from ref 392.
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electric response, and the simplest non-trivial multipole,
dipoles have been used as benchmarks for many differ-
ent methods, including “operator ML”,82 learning the
position of Wannier centers,394 as well as learning of
atomic charges.84,238,390,391 As discussed in ref 392, dif-
ferent approaches can be linked to a different physical
model of the origin of the polarization. A λ-SOAP
model describes a combination of atom-centered dipoles,
which is most effective to describe local polarization ef-
fects, while a model based on atomic charges is more
suitable to describe the presence of charged groups, or
long-range charge transfer. Figure 42 illustrates predic-
tions of molecular dipole moments at the B3LYP-DFT
level that combine a λ-SOAP model for atom-centered
dipoles and a scalar SOAP model for atomic partial
charges. In general, the combination of the two mod-
els gives predictions that are better than either model
by itself. In particular, a substantial contribution from
the scalar part of the model improves significantly the
transferability of this “MuML” model, which is trained
on small organic compounds from the QM7b dataset,352

to larger molecules and to compounds with substan-
tial charge transfer. This more flexible model achieves
an error for the out-of-sample predictions on the QM9
dataset232 that is smaller than that of an “operator ML”
model trained on the larger molecules. A comparable
“in-sample” MuML model reduces the error further by a
factor of three.

In combination with ML potentials, the possibility
of computing the dielectric response of molecules and
condensed-phase systems makes it possible to inexpen-
sively evaluate spectroscopic observables. For instance,
the infrared (IR) spectrum can be obtained by Fourier-
transforming the dipole moment correlation function,
〈µ(t)µ(0)〉, along an MD trajectory;395 a similar expres-
sion for the polarizability, α, yields the Raman spec-
trum, and a combination of the two can be used to cal-
culate the sum-frequency generation (SFG) spectrum.
The theoretical calculation of light scattering also re-
quires tensor properties; for example, second-harmonic
scattering (SHS) is determined by the first hyperpolariz-
ability tensor, β.83,396 This strategy has been applied to
the IR and Raman spectra of molecules84 and condensed
phases,86,203,394 and even to incorporate the effects of the
quantum mechanical behavior of light nuclei on the spec-
troscopic properties of complex molecules and condensed
phases85,397 – a remarkable feat that would have been all
but impossible without ML models that are capable to
accurately reproduce all of the properties that are acces-
sible to electronic structure calculations.

7.3. Electron Density

The electron density, ρ̃(r), of a molecule or material
provides all of its ground-state properties in principle,
and as such it presents a natural target for ML models.
Many techniques have been proposed in recent years, dif-

FIG. 43. A GPR model for the electron density. (a)
Chemical structure of the enkephalin pentapeptide studied
here. (b) Electron density prediction for the same molecule,
using a model trained on dipeptides. Three isosurfaces of
the predicted density are shown (0.5, 0.1 and 0.001 electrons
bohr−3). (c) Difference between the predicted and calcu-
lated electron densities (showing isosurfaces of ± 0.01 elec-
trons bohr−3, with positive deviations in yellow and neg-
ative deviations in blue). Figure adapted from ref 398.
Original figure published under the CC BY-NC 3.0 license
(https://creativecommons.org/licenses/by-nc/3.0/).

fering not only by the structural representation or the
regression algorithm, but also by the way the density is
discretized. Early efforts, most notably the foundational
work of ref 399, used the coefficients of an expansion in
plane waves. Being global, and dependent on transla-
tions and rotations of the atoms, this approach suffers
from poor transferability. Another method, first intro-
duced in ref 400, is based on the separate prediction of
the density at each point, r, in terms of a description
of an atomic environment centered at r. This is usually
combined with neural-network models401–403 that must
allow for very fast training and estimation, because for
each configuration millions of grid points have to be in-
dividually learned and predicted.

An alternative approach, which combines the transfer-
ability of a local model with a relatively small number of
prediction targets, relies on a decomposition of the total
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electron density into atom-centered terms of the form

ρ̃(r) =
∑
i∈A

ρ̃(Ai, r), (87)

where each of these atom-centered terms is given by

ρ̃(Ai, r) =
∑
nλµ

c̃nλµ(Ai)Rn(|r− ri|)Y µλ

(
r− ri
|r− ri|

)
, (88)

using a basis of radial functions Rn(r) and spherical har-
monic Y µλ (r̂), and emphasizing that the expansion coeffi-
cients are taken to be a function of the local atomic envi-
ronment Ai. Although for simplicity, we do not indicate
it here, the basis functions and the coefficients usually
depend on the chemical nature of the central atom. For
each value of n and λ, the c̃nλµ(Ai) transform as spheri-
cal harmonics, making them amenable to learning by SA-
GPR404. One subtlety, which can be readily resolved in
the case of GPR models, involves the non-orthogonality
of basis functions centered on different atoms. The den-
sity expansion coefficients c̃ cannot be computed directly
by projecting the density on the basis functions. Such a
projection, instead, yields a set of weights,

w̃nlm(Ai) =

∫
ρ̃(r)Rn(|r− ri|)Y ml

(
r− ri
|r− ri|

)
dr, (89)

that are related to the expansion coefficients by Sc̃ = w̃,
where S indicates the overlap matrix between basis func-
tions. However, it was found that – because the overlap
matrix is often ill-conditioned – determining the coeffi-
cients and learning them independently leads to inaccu-
rate models; instead, one has to build a GPR framework
in which the entire decomposition is learned at once.

The loss function to be minimized, L(A), for each
training structure, A, is given by

L(A) = σ2 |c|2 +

∫ ∣∣∣∣ρ̃(r)−

−
∑
i∈A

∑
nλµ

c̃nλµ(Ai)Rn(r− ri)Y
µ
λ

(
r− ri
|r− ri|

)∣∣∣∣∣∣
2

dr, (90)

that depends on the SA-GPR coefficients through

c̃nλµ(Ai) =
∑
j∈M

∑
µ′

kλµµ′(Ai,Mj)cnλµ(Mj), (91)

where M indicates a set of representative environments
(that could in principle be different depending on the
nature of the central atom and the density basis function
associated with the coefficient).

The final expression for the regression weights,

c =
(
KTSK + σ2I

)−1
KT w̃, (92)

shows how the non-orthogonal nature of the targets leads
to the coupling of kernel blocks that are associated with

different centers and basis functions. By learning the en-
tire decomposition at the same time, it was possible to
predict the electron density for a set of hydrocarbons with
the minimum error possible given the decomposition.404

The models are transferable due to the local nature of
the decomposition, and are straightforwardly extrapo-
lated to larger molecules. In fact, the accuracy of the
local density expansion plays a crucial role in determin-
ing the prediction accuracy for ρ̃(r), which was addressed
in subsequent work398,405 by using resolution of the iden-
tity basis sets.406 Figure 43 shows the accuracy that can
be obtained for an enkephalin molecule using a model
trained only on dimers of small organic fragments.398

The error is concentrated on the oligopeptide backbone,
a chemical motif that is not present in the training set.
The availability of an accurate, transferable prediction
of the electron charge density opens up the way to ob-
tain ML models of similar quantities, such as the on-top
density407 or the local spin density.

7.4. Density of States

The electronic density of states (DOS) is a funda-
mental fingerprint of the electronic structure of a mate-
rial, and DOS plots derived from DFT computations are
found in countless publications and probed for chemical
insight.408 We discuss here a recently developed approach
to machine-learn aspects of the electronic DOS for atom-
istic systems using GPR. This is motivated in two ways:
first, if successful, it would allow for an inexpensive pre-
diction of the electronic DOS for much larger systems
that are accessible to direct DFT evaluation; second, it
would allow one to compute derived properties, such as
the band width.

Once an electronic-structure computation for a given
atomistic system has been carried out, the DOS is con-
ventionally obtained as

DOS(E) =
2

Nk

bands∑
n

∑
k

δ(E − εn(k)), (93)

where the sum runs over the bands and the k-point sam-
pling of the Brillouin zone, and εn(k) are the single-
particle eigenvalues of the electronic Hamiltonian.

Following the notation of Section 2, we denote a global
property by the capital letter, Y , and the approximation
of this property by the GPR model by Ỹ . In line with
the general linear structure of GPR models discussed ear-
lier, a transferable prediction of properties of the entire
stucture can be obtained in terms of a sum of local, atom-
centered contributions, ỹi, viz.

Ỹ =

atoms∑
i

ỹi, (94)

where the sum runs over all atoms in the structure, and
each local term is a GPR model that depends on a repre-
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sentation of the environment (e.g., based on SOAP). Fig-
ure 44a shows this generic construction in the red panel,
for directly regressing different quantitites that are all
derived from the DOS: the Fermi energy εF , the DOS
value at the Fermi level DOS(εF ), and the “band energy”,
Eband (the integrated DOS over the filled bands, not to
be confused with the individual eigenvalues, εn(k)).

Furthermore, one can fit models for the DOS itself.
This is useful because one may be interested in predicting
the DOS and comparing it to experimental observations,
and also because predictions for above derived quanti-
ties can be made from the predicted DOS. Naively, one
might represent the (continuous) DOS by discretizing the
energy into a grid of values Ej , with j being a running
index and the step size denoted δE, and model the DOS
value at each energy level independently,

Y DOS
j = DOS(Ej) Ej = E0 + jδE. (95)

Just as before, we model each global quantity as a sum
of local atomic contributions,

Ỹ DOS
j =

atoms∑
i

ỹDOS
j,i . (96)

Alternatively, instead of modeling the DOS, one can
work with the integrated DOS (IDOS) up to a given en-
ergy value, Ej ,

IDOS(Ej) =

∫ Ej

−∞
dEDOS(E). (97)

The discretized representation of the IDOS, to which we
refer here as the cumulative distribution function (CDF),
is

Y CDF
j =

j∑
j′=1

yj′ (98)

which again can be fitted as a sum over local contribu-
tions,

Ỹ CDF
j =

atoms∑
i

ỹCDF
j,i , (99)

and it was found in ref 212, and is shown in Figure 44b,
that fitting the CDF consistently improves the accuracy
of is property predictions over learning the DOS itself
(and also over fitting properties directly). This improve-
ment can be understood in terms of the link between the
Euclidean distance between CDFs and the Wasserstein
distance between the underlying distributions409 – the
latter being a better notion of similarity between spectra
that often differ by small shifts in the positions of sharp
peaks. Once the CDF is known, differentiation yields the
DOS. Note that the kind of local model in ref 212 differs
from previous work that instead learned simultaneously
the charge density and the DOS using a regular 3D grid
of points extending throughout the simulation box.401

The fact the fitting the DOS is better than fitting de-
rived properties directly is a consequence of the local-
ity properties of the DOS (in fact, the local density of
states is computed regularly by many electronic struc-
ture packages by projecting electronic states onto atom-
centered basis functions). In constrast, the Fermi energy
is determined by a global charge neutrality constraint
that depends on the overall distribution of energy lev-
els throughout the sample. These observations highlight
the interplay between the physical nature of the target
quantities and the structure of the regression model.

Work on learning densities of states is at an early stage,
but efforts are also underway using different methodolo-
gies including neural networks,410–413 with ref 411 also
employing atom-centred descriptors, and KRR.414 We
note that if the structures in the database (for which
the DOS computation with the reference method is car-
ried out) are sufficiently small, the reference DOS can be
evaluated with more accurate and computationally ex-
pensive methods – specifically, hybrid DFT, which was
recently demonstrated for silicon;164 the latter work will
be discussed below. In all these cases, an accurate and
inexpensive ML model of the DOS provides a simple yet
useful probe into the electronic properties of materials
simulated by ML potentials – allowing one, for exam-
ple, to estimate the role played by electronic excitations
on the thermophysical properties of materials, or to per-
form simulations that directly incorporate the role of fi-
nite electronic temperature.415,416
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FIG. 44. (a) Machine learning the electronic density of
states (DOS) in the framework of GPR. Three approaches
for estimating properties Y are shown in a highly schematic
way: these properties could be scalar properties derived from
the DOS (red), values of the DOS itself on a discrete grid of
energy values (blue), or values of the cumulative distribution
function (CDF; green); see text for details. (b) Average errors
for the prediction of quantities that can be computed from the
electronic DOS in amorphous silicon,212 either directly (red),
or using two different representations of the DOS curves: the
pointwise approach (blue), and that obtained by differentiat-
ing the CDF (green). The error bars represent the standard
error of the mean. Errors are expressed as percentage of the
intrinsic variability within the dataset. Drawn with data from
ref 212.
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8. CONCLUSIONS AND OUTLOOK

Machine learning methods have arrived in theoretical
and computational chemistry, and they are here to stay.
In the present work, we have reviewed Gaussian process
regression (GPR), one of the approaches to “learning”
(fitting, regressing) atomic properties – scalars, vectors,
and higher-order tensors. The applications of GPR are
diverse, ranging from the prediction of local atomic prop-
erties such as NMR chemical shifts and dipole moments
to the construction of accurate interatomic potentials,
or force fields, in the Gaussian Approximation Potential
(GAP) framework. Having been considered a highly spe-
cialized technique that requires expert knowledge until
recently, ML methods are now poised to achieve more
widespread use in chemistry. Methodological develop-
ments and extensive tests for numerical accuracy have
been done, and there is no doubt that further optimiza-
tions are possible and important. Furthermore, it is also
timely to implement protocols in a widely accessible fash-
ion, enabling researchers to apply these methods to an-
swer pressing scientific questions. We summarize how we
see the field at present, and where we envision it going
in the coming years.

The title of the present work refers to “materials and
molecules”, and this wording reflects a separation that
has widely been made in theory and computational mod-
eling. Individual molecules are considered to be isolated
systems, and indeed are often experimentally studied
as such (e.g., in gas-phase spectroscopic measurements);
even in a condensed-phase molecular system, there is a
clear separation into strong covalent interactions within
a molecule, and much weaker ones that couple molecules.
In contrast, materials are extended systems where such a
separation is not normally well defined. This distinction
has been reflected in the scope of most atomistic ML-
based models reported to date being focused either on
materials or on isolated molecules. In both cases, these
new methods have achieved a step change in the system
size that can be treated with first-principles accuracy and
predictive power.

We envision that in the future, the conceptual separa-
tion between materials and molecules will be less distinct
and ultimately cease to exist, because there is no fun-
damental requirement for it. Topology-free potentials,
which do not depend on any fixed definition of bonds,
have become more flexible and accurate by using ML
methods, and are increasingly able to match the accu-
racy of traditional bonded force fields. They can there-
fore reproduce the part of the configuration space that
does not involve changes in bonding topology, while si-
multaneously describing more general configurations, in-
cluding bond breaking and formation, more accurately
than traditional reactive potentials.

In the interest of making atomistic ML models, such
as GPR, broadly useful to various communities, further
work is needed in terms of protocols and workflows – such
that the construction of a new model no longer requires

the user to have detailed knowledge of the ML methodol-
ogy itself. In one extreme, this could be achieved by the
on-the-fly fitting schemes that aim to accelerate ab initio
MD. It may be expected that in the medium term, any
such simulation that can generate sufficient data, i.e. a
few hundred or a thousand configurations of the full simu-
lated system, with the reference method will benefit from
GAP or similar acceleration, as long as it is dependent on
reaching long time rather than large length scales. A crit-
ical prerequisite for this is a good understanding of the
predicted error or other uncertainty quantification meth-
ods, which constitute an active field of research in GPR
modeling and in ML more generally. At the other ex-
treme, we envision the use of highly general and flexible
GAP models which we call “general-purpose”, in which
the development of reference databases becomes a cen-
trally important methodological aspect. We have intro-
duced such models for a number of challenging elemen-
tal systems (C, Si, P) – although constructing suitable
databases and ML potentials of the same scope for gen-
eral multicomponent systems with complex phase behav-
ior will be an even larger challenge.

Most GAP models in current use rely on the combi-
nation of low body-order descriptors and SOAP descrip-
tors, with appropriate scaling factors, as described in ref
122. There is active development going on in terms of
SOAP and related many-body representations,51 which
are typically different from the ways that chemists think
in terms of bond distances and angles. In particular, the
Atomic Cluster Expansion (ACE)68,417 is a generaliza-
tion of SOAP which explicitly keeps the low body order
terms, which have been so successful in classical force
fields – while also remaining computationally efficient up
to high body order.

In terms of computational cost, GPR models consti-
tute a middle ground between mathematically simpler
(less flexible, cheaper) and more complex and flexible re-
gression methods that are more demanding at least at
the fitting stage. Examples of the former are fast lin-
ear models such as MTP, SNAP, and the aforementioned
ACE, and these are well suited for very large-scale sim-
ulations. Regarding the latter, it is envisioned that with
sufficient amounts of data, in the future one will be able
to construct even “deeper” neural networks, not just of
the feed-forward type but including message passing net-
works, that can capture increasingly subtle features of
the target function. It is likely that a range of regres-
sion methods will continue to be used, each suited to a
particular purpose.

Being a Bayesian method, GPR relies on the specifica-
tion of a prior, which can be regarded as a bias that we
place on the functional space, based on our prior knowl-
edge of the fitting problem. In the case of GAPs, the
prior imposes locality and ensures the smoothness of the
potential, but is otherwise rather “permissive” and does
not impart to the model further physical knowledge of
specific atomic interactions. Incorporating physics into
the form of the potential (whilst retaining sufficient flex-
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FIG. 45. GPR models provide a unified view into structural and electronic properties of complex systems – here exemplified
for dense disordered silicon, simulated using a system containing 100,000 atoms. The upper panels show atomic structures,
obtained from a GAP-driven molecular-dynamics simulation in which an a-Si sample was compressed from ambient pressure
to 20 GPa. The simulation revealed a series of structural transitions, from a low-density amorphous (LDA) / high-density
amorphous (HDA) phase persisting up to about 11 GPa, through a distinct very-high-density amorphous (VHDA) phase with
much higher coordination numbers at about 13 GPa, to the eventual formation of a polycrystalline structure with simple
hexagonal grains. The lower panels show the corresponding electronic structures as described by the machine-learned densities
of states (ML-DOS), which were also obtained in a GPR framework. Adapted from ref 164, where more details may be found.

ibility) is a development direction which has the poten-
tial to reduce the amount data required in the fitting
and improve transferability of GAPs. A concrete exam-
ple is given by the construction of atomistic regression
models for ionic charges based on local environments,
and the direct inclusion of such properties (which may
also include higher-order multipoles) into the fitting of a
more accurate force field that explicitly treats long-range
electrostatic interactions. Conceptual steps in this di-
rection have been made, early on, using neural-network
models356 and also more recently.331 One may further-
more think of the on-the-fly learning of other parame-
ters, such as those required for the explicit construction
of many-body dispersion corrections rather than learning
the latter only implicitly through the data from the refer-
ence method.163 Such an approach would enable straight-
forward and routine applications of ab initio MD at lev-
els of theory which so far have been out of reach, even
in cases where “only” the many-body dispersion param-
eters or another part of the computation, instead of the
full potential-energy surface, need to be machine-learned.

Will ML models replace electronic structure calcula-
tions and empirical force fields? We do not think so.
The former will always be required to create reference
data, while empirical force fields, being orders of mag-
nitude faster than ML models, will continue to be used.
Hence, rather than being a replacement, ML models can

serve as the necessary “glue” that ties together model-
ing on different length scales in a systematic manner,
thus enabling the program of first-principles modeling to
be carried beyond electronic structure calculations. We
are now in the position to create models which combine
very large-scale (10-nm and beyond) simulation with the
accurate prediction of relevant atomistic properties. Re-
cent work exemplified this synergy, combining the pre-
diction of atomic forces (giving access to MD simulations
for a 100,000-atom system, see Figure 45) with an ML
model for the electronic density of states, together afford-
ing insight into the structural and electronic transitions
in pressurized disordered silicon.164 Accurate prediction
of ground-state energetics together with those of proper-
ties related to electronic, optical, or magnetic excitations
is set to remove a critical roadblock.

In conclusion, data-driven techniques are poised to be-
come an integral part of the molecular and materials
modeling toolkit, helping to solve challenging scientific
problems in years to come. We look forward to the time
when machine-learning methods will have truly arrived
in the community, and their use in the context of atomic-
scale simulation will be so natural and ubiquitous that it
does not even merit special emphasis.
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then moved to the École Polytechnique Fédérale de Lau-
sanne for postdoctoral work in the group of Michele Ce-
riotti, before starting his current position in May 2020.
His research is focused on developing and applying com-
putational methods to understand water and aqueous in-
terfaces.

Michele Ceriotti is Associate Professor at the Insti-
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Gábor Csányi is Professor of Molecular Modeling
at the University of Cambridge. He obtained his doc-
torate in computational physics (2001) from the Mas-
sachusetts Institute of Technology, having worked on
electronic structure problems. He was in the group of
Mike Payne in the Cavendish Laboratory before joining
the faculty of the Engineering Laboratory at Cambridge.
He is developing algorithms and data driven numerical
methods for atomic scale problems in materials science
and chemistry.



73

REFERENCES

1 Brown, T. E.; LeMay, H. E.; Bursten, B. E.; Murphy, C.;
Woodward, P.; Stoltzfus, M. E. Chemistry: The Central
Science, 14th ed.; Pearson: New York, 2018.

2 Bertozzi, C. R. The Centrality of Chemistry. ACS Cent.
Sci. 2015, 1, 1–2.

3 Alberi, K. et al. The 2019 Materials by Design Roadmap.
J. Phys. D: Appl. Phys. 2018, 52, 013001.

4 Oganov, A. R.; Pickard, C. J.; Zhu, Q.; Needs, R. J. Struc-
ture Prediction Drives Materials Discovery. Nat. Rev.
Mater. 2019, 4, 331–348.

5 Zhang, W.; Mazzarello, R.; Wuttig, M.; Ma, E. Design-
ing Crystallization in Phase-Change Materials for Uni-
versal Memory and Neuro-Inspired Computing. Nat. Rev.
Mater. 2019, 4, 150–168.

6 Tabor, D. P.; Roch, L. M.; Saikin, S. K.; Kreis-
beck, C.; Sheberla, D.; Montoya, J. H.; Dwaraknath, S.;
Aykol, M.; Ortiz, C.; Tribukait, H.; Amador-Bedolla, C.;
Brabec, B., C. J. Maruyama; Persson, K. A.; Aspuru-
Guzik, A. Accelerating the Discovery of Materials for
Clean Energy in the Era of Smart Automation. Nat. Rev.
Mater. 2021, 3, 5–20.

7 Louie, S. G.; Chan, Y.-H.; da Jornada, F. H.; Li, Z.;
Qiu, D. Y. Discovering and Understanding Materials
Through Computation . Nat. Mater. 2021, 20, 728–735.

8 Marzari, N.; Ferretti, A.; Wolverton, C. Electronic-
Structure Methods for Materials Design . Nat. Mater.
2021, 20, 736–749.

9 Burke, K. Perspective on Density Functional Theory. J.
Chem. Phys. 2012, 136, 150901.

10 Jones, R. O. Density Functional Theory: Its Origins, Rise
to Prominence, and Future. Rev. Mod. Phys. 2015, 87,
897–923.

11 Maurer, R. J.; Freysoldt, C.; Reilly, A. M.; Branden-
burg, J. G.; Hofmann, O. T.; Björkman, T.; Lebègue, S.;
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ing Interatomic Potentials as Emerging Tools for Materi-
als Science. Adv. Mater. 2019, 31, 1902765.
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liott, S. R.; Csányi, G. Gaussian Approximation Potential
Modeling of Lithium Intercalation in Carbon Nanostruc-
tures. J. Chem. Phys. 2018, 148, 241714.

120 Wang, X.; Tan, J.; Han, C.; Wang, J.-J.; Lu, L.; Du, H.;
Jia, C.-L.; Deringer, V. L.; Zhou, J.; Zhang, W. Sub-
Angstrom Characterization of the Structural Origin for
High In-Plane Anisotropy in 2D GeS2. ACS Nano 2020,
14, 4456–4462.
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Machine-Learning Approach for One- and Two-Body Cor-
rections to Density Functional Theory: Applications to
Molecular and Condensed Water. Phys. Rev. B 2013, 88,
054104.
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183 Csányi, G.; Albaret, T.; Moras, G.; Payne, M. C.;
De Vita, A. Multiscale Hybrid Simulation Methods for
Material Systems. J. Phys. Condens. Matter 2005, 17,
R691–R703.

184 Partoens, B.; Peeters, F. M. From Graphene to Graphite:
Electronic Structure around the K Point. Phys. Rev. B
2006, 74, 075404.

185 Morawietz, T.; Singraber, A.; Dellago, C.; Behler, J. How
van Der Waals Interactions Determine the Unique Prop-
erties of Water. Proc. Natl. Acad. Sci. U. S. A. 2016, 113,
8368–8373.

186 Sivaraman, G.; Guo, J.; Ward, L.; Hoyt, N.;
Williamson, M.; Foster, I.; Benmore, C.; Jackson, N. Au-
tomated Development of Molten Salt Machine Learning
Potentials: Application to LiCl. The Journal of Physical
Chemistry Letters 2021, 4278–4285.

187 Yue, S.; Muniz, M. C.; Calegari Andrade, M. F.;
Zhang, L.; Car, R.; Panagiotopoulos, A. Z. When do
short-range atomistic machine-learning models fall short?
The Journal of Chemical Physics 2021, 154, 034111.

188 Medders, G. R.; Babin, V.; Paesani, F. Development
of a ”First-Principles” Water Potential with Flexible
Monomers. III. Liquid Phase Properties. J. Chem. Theory
Comput. 2014, 10, 2906–2910.
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257 Böcker, S.; Häser, M. Covalent Structures of Phospho-
rus: A Comprehensive Theoretical Study. Z. Anorg. Allg.
Chem. 1995, 621, 258–286.
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