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SUMMARY

Most metazoan cells entering mitosis undergo char-
acteristic rounding, which is important for accurate
spindle positioning and chromosome separation.
Rounding is driven by contractile tension generated
by myosin motors in the sub-membranous actin cor-
tex. Recent studies highlight that alongside myosin
activity, cortical actin organization is a key regulator
of cortex tension. Yet, how mitotic actin organization
is controlled remains poorly understood. To address
this, we characterized the F-actin interactome in
spread interphase and round mitotic cells. Using
super-resolution microscopy, we then screened for
regulators of cortex architecture and identified the in-
termediate filament vimentin and the actin-vimentin
linker plectin as unexpected candidates. We found
that vimentin is recruited to the mitotic cortex in a
plectin-dependent manner. We then showed that
cortical vimentin controls actin network organization
and mechanics in mitosis and is required for suc-
cessful cell division in confinement. Together, our
study highlights crucial interactions between cyto-
skeletal networks during cell division.

INTRODUCTION

A precise control of cell shape is central to a wealth of physiolog-

ical processes, including tissue morphogenesis, cell migration,

and cell division. One of the first events of cell division inmost an-

imal cells, both in culture and in vivo, is cellular rounding at

mitosis entry. Mitotic rounding generates the intracellular space

required for accurate spindle assembly andmetaphase plate for-
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mation (reviewed in Lancaster and Baum, 2014). This is of partic-

ular importance for cells dividing in confined environments. In

packed epithelia, mitotic rounding defects lead to abnormal

spindle orientation and division asymmetries (Chanet et al.,

2017; Luxenburg et al., 2011). In cells cultured in 3-dimensional

(3D) confining devices, physically preventing rounding leads to

spindle assembly defects and delayed mitotic progression (Lan-

caster et al., 2013). It is thus essential to understand howmitotic

rounding is controlled.

Multiple studies converge on identifying the reorganization of

cellular actin into a uniform, contractile actomyosin cortex at

the cell surface as a key driver of mitotic rounding (reviewed in

Champion et al., 2017; Clark and Paluch, 2011; Lancaster and

Baum, 2014). Cortical contractility, which increases through

mitosis and peaks in metaphase, creates tension at the cell sur-

face and promotes rounding (Clark and Paluch, 2011). At an up-

stream level, rounding appears to be controlled by the mitotic

master regulator CDK1 and its substrate the RhoA-GEF Ect2

(Gavet and Pines, 2010; Maddox and Burridge, 2003; Matthews

et al., 2012). However, how exactly these pathways effect the

changes in actin organization and cell surface mechanics driving

cell shape change remains unclear.

In Drosophila cells, an increase in membrane-to-cortex

attachment and cortex stiffness via the ezrin-radixin-moesin

(ERM) family protein moesin is essential for rounding (Carreno

et al., 2008; Kunda et al., 2008). However, in mammalian cells,

although ezrin depletion slightly decreases mitotic tension

(Toyoda et al., 2017), ERMs do not appear to be required for

rounding (Machicoane et al., 2014). Instead, for many years, cor-

tex tension in mammalian cells had been thought to be primarily

controlled by the levels and activity of cortical myosin (Mayer

et al., 2010; Ramanathan et al., 2015; Tinevez et al., 2009). How-

ever, recent studies, including a screen for regulators of cortex

tension (Toyoda et al., 2017), have shown that proteins control-

ling actin filament length and actin cross-linkers affect cortical

tension (Chugh et al., 2017; Ding et al., 2017; Logue et al.,
uthors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Determining the Interphase and Mitotic F-Actin Interactomes

(A) Schematic representation of the synchronization procedure and the experimental pipeline. Cells were first arrested in S phase by thymidine treatment.

For synchronization in interphase, thymidine-pre-treated cells were then released and treated with the CDK1 inhibitor RO3306, yielding a population of

cells in G2 phase. For synchronization in metaphase, thymidine-pre-treated cells were submitted to a short treatment with nocodazole, followed by a

mitotic shake off and metaphase arrest with the proteasome inhibitor MG132. The drugs used for synchronization were washed out prior to extract

preparation.

(B) Representative images of HeLa cells after synchronization following the procedure described in (A). Cells were stained with DAPI (red) to visualize DNA and

phalloidin (cyan) to visualize F-actin. Scale bars, 10 mm.

(C) Immunoblot of actin, cyclin B, and phospho-Histone H3 (P-HH3) levels in the different synchronized cell extracts. S, supernatant; P, Pellet.

(legend continued on next page)
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2015; Toyoda et al., 2017). Taken together, it is increasingly clear

that the organization of cortical actin is a key regulator of cortex

tension (reviewed in Koenderink and Paluch, 2018). Yet, a sys-

tematic investigation of how cortex organization in mitosis is

controlled has been missing. As a result, our understanding of

the regulation of mitotic actin architecture remains fragmented

and limited to the role of a handful of selected proteins.

Here, we took an unbiased approach to identify proteins con-

trolling actin cortex organization in mitosis. First, we established

aphalloidin affinitymatrix andmass spectrometry-basedmethod

todetermine theproteins that bindfilamentous actin in interphase

and mitosis. This identified F-actin binding proteins (F-ABPs)

specifically enriched inmetaphase, when cortical tension is high-

est. We then conducted a quantitative small interfering RNA

(siRNA) screen to test theeffect of candidate regulatorsonmitotic

cortex architecture, using thickness, measured by super-resolu-

tionmicroscopy, as a readout. Our screen revealed that the inter-

mediate filament protein vimentin is a key regulator ofmitotic cor-

tex thickness. We then found that in mitosis, vimentin relocalizes

to the actin cortex in a plectin-dependent manner, while mitotic

phosphorylation appears to control vimentin network organiza-

tion. The sub-cortical vimentin layer appears to mechanically

resist the contractility, and possibly the expansion toward the

cytoplasm, of the actomyosin cortex. We then show that the

sub-cortical vimentin network controls cortical tension and is

required for effective rounding and successful division in 3D

confinement. Taken together, our study shows that the organiza-

tion andmechanics of the actin cortex cannot be studied in isola-

tion but must be investigated in the context of the entire cell.

RESULTS

F-Actin Interactome in Interphase and Mitosis
To identify ABPs potentially regulating mitotic cortex organiza-

tion, we compared which proteins bind actin filaments in mitotic

and interphase cells. We developed a pull-down assay to isolate

F-ABPs from cellular extracts (Figure 1A) and compared HeLa

cells synchronized in mitosis (arrested in metaphase), when cells

are rounded with a uniform actin cortex, and in interphase

(arrested in G2 phase), when cells adopt spread shapes with

prominent lamellipodia and stress fibers (Figures 1A and 1B).

We verified that the synchronized cells displayed the expected

actin and microtubule distributions (Figures 1B and S1A). We

also validated synchronization efficiency by checking the levels

of both cyclinB1, a subunit of the cyclin B-CDK1 complex ex-

pressed at high levels from G2 to anaphase onset, and phos-

pho-Histone H3, a marker of mitosis (Figure S1B).

To isolate F-ABPs, we used a phalloidin affinitymatrix for map-

ping F-actin interactomes (Samwer et al., 2013). First, we recov-
(D) Colloidal Coomassie staining of an SDS-PAGE gel of synchronized cell ext

(corresponding to one of the mass spectrometry experiments, MS2). The x mark

Coomassie gel.

(E) Gene Ontology Panther protein classification of the two mass spectrometry d

bound fractions were removed).

(F) Number of proteins enriched in the phalloidin-bead-bound fractions in the tw

cycle (G2, metaphase).

(G) Total number of proteins enriched in the phalloidin-bound fractions and over

See also Figure S1.
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ered soluble fractions containingmaximal amounts of actin. Cells

were lysed in the presence of low doses of the actin depolymeriz-

ing drug Latrunculin A and the supernatant was collected. After

optimization of lysis conditions, our protocol yielded more than

70% of the cellular actin in the supernatant (Figure S1C). We

then applied this lysis protocol to each synchronized cell popula-

tion and recovered cellular extracts with a comparable amount of

actin in each phase (Figure 1C). In order to isolate F-ABPs, we

incubated the solubilized extracts with ATP andMgCl2, to induce

actin re-polymerization, together with custom-made superpara-

magnetic beads conjugated with phalloidin, a toxin that binds

and stabilizes F-actin (Figure 1A).We verified that the post-trans-

lational modifications appeared maintained and that the incuba-

tion did not affect the cell-cycle state of the extracts (Figures S1D

and S2E). We also confirmed by scanning electron microscopy

that our protocol induced actin polymerization in the extracts

(Figure S1F). Control and phalloidin-bead-bound fractions were

then eluted and subjected toSDS-PAGEandCoomassie staining

to assess protein contents (Figures 1D and S1G). As expected,

we observed a strong enrichment of actin in the phalloidin-

bead elution compared to controls (Figures 1D and S1G). The

gels were then trypsin digested and the protein composition of

the elutions was analyzed using liquid chromatography-tandem

mass spectrometry (LC-MS/MS). We performed two indepen-

dent experiments (referred to as MS1 andMS2), which identified

37,221 and 30,502 spectra, respectively (corresponding to 396

and 317 proteins) (Table S1). This list was reduced to 290 and

211 proteins, respectively, after removing contaminants and pro-

teinsmore represented in the control bead elutions (Table S1). As

expected, b-actin was the most abundant protein identified

(with a mean of 1,967 and 1,902 spectra in MS1 and MS2,

respectively). A Gene Ontology analysis revealed that ‘‘cyto-

skeletal proteins’’ and the ‘‘actin family’’ represented the most

enriched molecular classes (Figure 1E). Importantly, the protein

class distributions were similar between replicate experiments,

suggesting that our assay yielded highly reproducible data (Fig-

ure 1E). The number of F-actin binders identifiedwas comparable

between the two phases of the cell cycle in both experiments

(Figure 1F), with �51% of the proteins identified being present

in both phases in at least one of the mass spectrometry experi-

ments (Table S1). Overall, 168 F-actin binders were reproducibly

identified between replicate experiments (Figure 1G).

Changes in F-Actin Interactome between Interphase
and Mitosis
We then explored how the F-actin interactome (thereafter FAI)

changes between interphase and mitosis (Table S1). We

analyzed changes in protein levels in the F-actin-associated

fractions (thereafter FAI abundance), as estimated by total
racts and of the control and phalloidin-bead elutions for mass spectrometry

s an unrelated lane. The asterisk marks the position of the actin band on the

ata sets (contaminants and proteins found more enriched in the control bead-

o mass spectrometry analyses (MS1 and MS2) for different phases of the cell

lap between the two mass spectrometry experiments.
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Figure 2. Changes in F-Actin Interactome between Interphase and Metaphase

(A) Numbers of proteins displaying increased (>2-fold increase), decreased (>2-fold decrease), or unchanged (<2-fold change) amounts, as estimated by the total

spectral count, in the interphase andmetaphase FAIs in the twomass spectrometry experiments. Blue: proteins displaying consistent changes of at least 2-fold in

the two experiments. Green: proteins displaying less than 2-fold change in one or both experiments. Orange: proteins displaying inconsistent changes between

the two experiments.

(B) Graphic representation of the changes in total spectral count, as a readout of protein abundance, between interphase and metaphase for proteins found to

bind F-actin in the two mass spectrometry experiments (MS1, light blue and MS2, dark blue). Each line corresponds to an individual protein. Proteins that

changed by more than 2-fold in one experiment but not the other are not represented.

(C) FAI abundance changes between interphase and metaphase. The graph displays the total spectral count as a function of the ratio of spectral counts

between metaphase and interphase for the 48 proteins that display at least a 2-fold change in abundance in both mass spectrometry experiments (MS1,

light blue and MS2, dark blue). Total spectral counts for each protein were normalized to the spectral count of actin-b (ACTB) and multiplied by the mean

spectral count of ACTB (used as a reference) for each mass spectrometry experiment. When a protein was only present in interphase or metaphase, its

spectral count was set to 1 instead of 0, so that the log of the ratio could be computed; the corresponding proteins fall on the red dashed line in the graph;

all spectral counts are reported in Table 1. The gray shaded region highlights the area with less than a 2-fold change in spectral count between interphase

and metaphase.

See also Figure S2 and Table S1.
spectral counts, between interphase andmetaphase (Figures 2A

and 2B). Importantly, we verified that changes in FAI abundance

did not simply reflect differences in protein levels in the solubi-

lized extracts (Figure S2). For 67% of the factors identified, FAI

abundance changed by less than 2-fold between the two cell cy-

cle phases in one or both experiments (Figure 2A, green), sug-

gesting that actin network composition is relatively similar in

interphase and mitosis. Only six proteins (3.5% of total) dis-

played inconsistent changes, with FAI abundance increasing

between interphase and metaphase in one experiment and

decreasing in the other; these proteins were excluded from

further analysis (Figure 2A, orange). The remaining 48 proteins

reproducibly displayed at least 2-fold changes in FAI abundance

between interphase and mitosis (Figures 2A (blue) and 2C;

Tables 1 and S1).

Consistent with previous observations (Kordowska et al., 2006;

Yamashiro et al., 1990, 1991), Caldesmon 1 (CALD1), a myosin II

activity regulator, was associated with F-actin in interphase but

not in metaphase (Figure 2C and Table 1). As expected, we also

found that Ena/VASP, a key stress fiber regulator, wasmore asso-

ciated with F-actin in extracts from interphase cells, where stress

fibers dominate actin organization (Ciobanasu et al., 2012; Krause

et al., 2002). Our analysis further revealed that myosin heavy
chains IIA (MYH9), IIB (MYH10), IIC (MYH14), and myosin XVIII

(MY18A), aswell as different tropomyosins (TPM2and TPM4), dis-

played a higher FAI abundance in interphase than in metaphase.

Finally, we observed that several subunits of the Arp2/3 complex

(ARC1B, ARPC2, and ARPC5), as well as the intermediate fila-

ment protein vimentin and the actin-vimentin binding factor plec-

tin, were enriched in the FAI of metaphase cells. Overall, our FAI

mass spectrometry analysis uncovered several potential regula-

tors of actin architecture during the cell cycle.

Regulation of Cortical Actin Organization
We then investigated if proteins displaying increased FAI abun-

dance in mitosis (Table 1) affected mitotic actin cortex

architecture. For this, we depleted each identifiedmitotic hit (Fig-

ure 2C and Table 1, excluding two ribosomal proteins) and inves-

tigated the effect on cellular actin organization. Target proteins

were depleted using siRNA pools andmRNA transcript depletion

efficiency was confirmed using qPCR (Figure S3A). We observed

that none of the factors tested individually led to an overall

disruption of the cortex, suggesting that the formation of a

cortical actin network in mitosis is robust to perturbations (Fig-

ure S3B). We then measured cortical thickness, a key readout

of cortical architecture (Chugh et al., 2017) in the different
Developmental Cell 52, 210–222, January 27, 2020 213



Table 1. List of Proteins Displaying at Least 2-Fold Changes in F-

Actin Interactome Abundance between Interphase and

Metaphase

Protein name

Normalized total Spectral Count Mean PAI

MS1 MS2

MS1-MS2G2 Metaphase G2 Metaphase

Enriched in interphase G2 PAI

TPM4 87 0 253 103 515

TPM2 79 0 143 0 335

MYH9 627 99 549 15 259

TBB3 106 0 72 0 178

CALD1 103 1 96 1 163

TBA4A 92 27 52 26 145

TBB6 48 0 35 0 83

PPR18 32 14 29 11 45

MYH10 94 0 95 0 41

SPTB2 125 2 75 23 36

VASP 17 3 10 4 35

ANLN 61 0 25 0 35

RLA0 11 4 6 1 25

MYH14 52 0 48 0 22

ENAH 10 0 9 1 14

SVIL 29 6 18 0 12

EF1G 8 1 2 0 10

NUCL 12 3 2 0 9

IF4A1 5 2 3 0 9

SERA 3 1 6 0 8

DNJA1 4 0 2 1 7

XPO2 8 0 4 0 6

DOCK7 17 1 8 0 5

SYEP 11 1 6 0 5

MY18A 9 0 10 0 4

PRKDC 4 0 3 0 1

Enriched in metaphase M PAI

PLEC 249 1,405 0 638 197

COF1 0 25 5 12 99

GTF2I 15 83 0 68 70

VIME 15 39 8 27 60

ARPC2 1 14 2 18 47

SRC8 5 21 6 34 45

ARPC5 5 10 0 3 39

WDR1 11 26 2 22 36

ARC1B 2 13 0 11 29

HORN 9 115 6 23 24

RL13 1 5 1 3 17

DDX5 7 18 1 4 16

TRI27 0 3 0 9 14

EPIPL 0 118 0 39 14

EF2 0 22 0 5 14

RSSA 2 6 0 3 14

CS021 4 10 0 4 9

Table 1. Continued

Protein name

Normalized total Spectral Count Mean PAI

MS1 MS2

MS1-MS2G2 Metaphase G2 Metaphase

TPX2 0 10 0 6 9

C4BPA 0 7 0 4 8

HNRPU 2 6 0 3 5

AFAP1 1 4 0 4 5

MICA3 1 3 0 5 4

Normalized total spectral count (normalization as in Figure 2C) for pro-

teins enriched in the interphase (top part) and metaphase (bottom part)

FAIs for the two mass spectrometry repeats (MS1 and MS2). The last

column displays the mean protein abundance index (PAI), which is

calculated as the ratio of the spectral count of the protein of interest, aver-

aged between the two mass spectrometry repeats, and of the molecular

weight of the protein. The PAI corrects for differences in the number of

observable peptides due to protein size and is thus an adjusted readout

of protein abundance.
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depletion conditions. As cortical thickness is generally below the

resolution limit of conventional light microscopy (Clark et al.,

2013), we used direct stochastic optical reconstruction micro-

scopy (dSTORM) (Figures 3A and 3B). As dSTORM resolution

is �40 nm when imaging at the cell center, significantly lower

than cortical thickness, we measured the full width at half

maximum (FWHM) of actin profiles across the cortex as a

readout of thickness (Figures 3B, 3C, and S3C). Depletion of

the actin severing protein cofilin (CFL1) led to an increase in

thickness (Figures 3B, 3C, and S3C), consistent with previous

observations (Chugh et al., 2017; Clark et al., 2013). We further

identified several additional regulators of cortex thickness: the

transcription factor GTF2I, the oxydoreductase MICAL3, and

the spindle assembly factor TPX2 (Figures 3B and S3C). Surpris-

ingly, we also found that depletion of the intermediate filament

protein vimentin, and of the F-actin intermediate filament linker

plectin, led to increased cortical thickness, suggesting that inter-

mediate filaments play a role in controlling actin architecture in

mitosis (Figures 3B, 3C, and S3C). To our knowledge, how inter-

mediate filaments affect mitotic actin organization has not been

investigated. Therefore, we focused on vimentin for the rest of

the study.

Vimentin Localizes to the Cell Cortex in Mitosis in a
Plectin-Dependent Manner and Controls Actin Cortex
Organization and Mechanics
We first characterized vimentin localization and dynamics dur-

ing mitosis. Previous studies suggested that vimentin networks

disassemble during mitosis in some cell types but not in others

(Charras et al., 2009; Chou et al., 2003; Duarte et al., 2019). We

thus monitored vimentin during the cell cycle in HeLa cells

(Video S1). We observed that vimentin distribution changed

from a prominent cytoplasmic network in interphase to cyto-

plasmic aggregates and a clear cortical layer in metaphase

(Video S1; Figure 4A). In some cells, the cortical vimentin layer

appeared somewhat patchy (Figures 4A and S4A, left panel).

3D visualization revealed that mitotic vimentin formed a

network of thick cables at the cell periphery, with a faint vimen-

tin meshwork between the cables (Figure S4A). Finally, we
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Figure 3. Regulation of Cortical Actin

Organization

(A) Cortex thickness measurements by super-res-

olutionmicroscopy. Top: STORM image of amitotic

cell stained with phalloidin-Alexa647. Bottom: the

cell was automatically segmented and themean full

width at half maximum (FWHM) of intensity profiles

across the actin cortex was measured as a readout

of actin cortex thickness. Scale bar, 10 mm.

(B) Actin FWHM after depletion of protein candi-

dates. Relative FWHM values for siRNA-depleted

cells (target, black data points) were obtained by

dividing the FWHM of individual depleted cells by

the median of the corresponding non-targeting

control siRNA (NTC, gray datapoints). Individual

data points as well as median and interquartile

range are plotted. NR 3 independent experiments.

Gene names are used, instead of protein names as

in Tables 1, S1 and Figure 2. Depletion levels were

checked by qPCR (Figure S3A). Unpaired Welch’s

t test; p values: ***p < 0.001; **p < 0.01.

(C) Examples of STORM images of the actin cortex

for treatments leading to increased FWHM. Scale

bars: top panel, 10 mm; bottom panel, 2 mm.

See also Figure S3 and Table S2.
explored the relative localization of vimentin and actin using 2-

color dSTORM (Figures 4B and S4B). As also reported in a

recent study in several other cell types (Duarte et al., 2019),

the vimentin layer was located immediately underneath, and

might thus interact with, the actin cortex (Figures 4B and S4B).

We then asked whether plectin, an F-actin-vimentin linker

(Wiche et al., 2015) and a key hit in our screen (Figure 3), contrib-

uted to recruiting vimentin to the F-actin cortex in mitosis. We

observed that plectin formed cytoplasmic networks in interphase

cells and reorganized into a cortical layer in mitosis (Figure S4C).

We then explored how depleting plectin and vimentin affected

their respective localizations (Figures 4C, S4D, and S4E). Interest-

ingly, in plectin-depleted mitotic cells, vimentin did not localize to

the cortex but instead accumulated in cytoplasmic bundles

(Figure 4C). In contrast, vimentin depletion did not affect mitotic

plectin localization (Figure S4E). Thus, plectin appears to be

instrumental in recruiting vimentin to the mitotic cortex.

Finally, we explored how the plectin-dependent formation of a

vimentin sub-cortical layer affects functional properties of the

mitotic actin cortex. The key function of the cortex in mitosis is

the generation of high tension driving mitotic rounding. We

have shown recently that cortical thickness decreases inmitosis,

and this cortex thinning contributes to increasing cortical tension

(Chugh et al., 2017). Therefore, we measured cortical tension in

vimentin- and plectin-depleted cells using atomic force micro-

scopy. Both treatments resulted in a strong decrease in mitotic

cortex tension (Figure 4D), with vimentin depletion bringing cor-

tex tension to levels comparable to the low tensionsmeasured in

rounded interphase cells (Figure S4F) (Chugh et al., 2017). As

cortical tension also strongly depends on myosin II activity, we

verified that vimentin depletion did not significantly affect the

levels of total or phosphorylated myosin regulatory light chain

(Figures S4G and S4H). Together, these results suggest that in

mitotic cells, plectin recruits a vimentin network to the cortex,

which results in thinning of the cortical actin layer and contrib-

utes to increasing cortical tension.
Phosphorylation Controls the Organization of the
Sub-cortical Vimentin Network in Mitosis
We then further explored how the organization of themitotic sub-

cortical vimentin network is regulated. The formation of a sub-

cortical vimentin layer in mitosis is not simply a consequence of

mitotic rounding, as artificially rounding interphase cells did not

lead to recruitment of vimentin to the actin cortex (Figure S5A).

This suggests that vimentin reorganization in mitosis is the result

of a mitosis-specific signal. The mitotic kinases CDK1 and PLK1

were previously shown to phosphorylate vimentin on Ser56 and

Ser83, respectively (Tsujimura et al., 1994; Yamaguchi et al.,

2005; Yasui et al., 2001).We thus asked howmitotic kinase activ-

ity affects vimentin organization and found that bothCDK1 inhibi-

tion using RO-3306 and PLK1 inhibition using BI2536 disrupted

vimentin organization in mitosis, converting the network of

cortical vimentin cables into a more diffuse cortical meshwork

(Figure S5B; Video S2; Video S3). Furthermore, staining with

phospho-specific antibodies showed that vimentin phosphory-

lated on Ser56 and Ser83 localized to the cortex in mitosis, at

levels similar to but not higher than total vimentin (Figure S5C).

Together, these experiments suggest that phosphorylation is un-

likely to target vimentin to the cortex but that it could regulate the

organization of the sub-cortical vimentin network.

To test this, we generated cell lines stably overexpressing

GFP-tagged wild-type vimentin (WT-VIM) or vimentin with single

point mutations that either mimic phosphorylation by CDK1 and

PLK1 (VIM-56E and VIM-83E, respectively) or abolish CDK1

phosphorylation (VIM-56A) (Figure S5D). All three mutants

formed cytoplasmic networks in interphase, suggesting that

the mutant vimentins normally integrate into filaments, but

VIM-56E-GFP and VIM-83E-GFP also often displayed cyto-

plasmic aggregates, indicating that the phosphomimetic

mutations affect vimentin network organization in interphase

(Figure S5E). In mitosis, expression of VIM-WT, -56A, or -83E

did not significantly alter cortical vimentin localization (Fig-

ure 5A). In contrast, expression of VIM-56E reduced the cortical
Developmental Cell 52, 210–222, January 27, 2020 215
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(D) Cortex tension in mitotic (prometaphase) cells measured by atomic forcemicroscopy (top schematic, see STARMethods for details on tension measurement)
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and interquartile range; at least 3 independent experiments. Kruskal-Wallis test.

See also Figure S4.
accumulation of vimentin in mitosis (Figure 5A). Analysis of 3D

stacks indicated that phosphomimetic VIM-56E induced the

collapse of vimentin cables into aggregates (Figure 5B; Video

S4); the aggregates were localized close to the cortex, explaining

the patchy appearance of the vimentin staining in single plane

images (Figure 5A). Finally, the localization of the mutant vimen-
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tins themselves mostly recapitulated the distribution of total vi-

mentin, with the exception of VIM-83E, which displayed a slight

decrease in cortical accumulation compared to total vimentin

(Figures 5A and S5F). Together, these results indicate that vi-

mentin phosphorylation on Ser56, and to a milder degree on

Ser83, controls the organization of the vimentin network in
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mitosis leading to the formation of a bundle-like meshwork, with

excessive phosphorylation resulting in aggregation of vimentin

into localized spots.

The Sub-cortical Vimentin Layer Directly Controls
Cortical Actin Organization
We thenaskedwhether expressionof thephosphomimetic vimen-

tin mutants affected the actin cortex. Interestingly, we found that

actin cortex thickness was increased in cells expressing VIM-

56E and VIM-83E (Figure 5C). Furthremore, cortical tension was

decreased in cells expressing VIM-56E, though not VIM-83E

(Figure 5D), possibly because of the weaker effect of this mutant

on actin organization compared to the VIM-56E mutant (Figures

5A and 5B). These results suggest that the sub-cortical vimentin

layer directly controls the arrangement of the actin cortex in

mitosis.

Because vimentin forms stiff elastic networks, we speculated

the sub-cortical vimentin layer might mechanically counteract

the cortex. To test this hypothesis, we used laser ablation to

locally disrupt the vimentin layer in mitotic cells. We first verified

that with our settings, laser ablation did not disrupt the plasma

membrane (Video S5). Given the proximity of the vimentin and

actin layers, the ablation of the vimentin layer occasionally led to

the disruption of the actin cortex, resulting in bleb formation (Video

S6, lower panel), consistent with previous observations (Tinevez

et al., 2009). When no bleb was observed (indicating that the actin

cortex was not disrupted, Video S6), we found that in cells ex-

pressing VIM-WT, local ablation focused on sub-cortical vimentin

led to local flattening of the cell surface, suggesting a local

contraction of the cortex (18 cells out of 35, Figure 5E; Video

S7). In contrast, cortex flattening was only seldom observed

upon similar laser ablation in cells expressing VIM-56E, where

the levels of vimentin at the cortex are reduced (9 cells out of

31, Figure 5E; VideoS7). Finally, inhibiting actomyosin contractility

with the ROCK inhibitor Y27632 (Tinevez et al., 2009) strongly

decreased occurrences of cortex flattening upon sub-cortical

ablation (Figure S5G). These experiments suggest that disrupting

the sub-cortical vimentin layer locally releases mechanical resis-

tance to cortical forces, leading to a contraction of the overlaying

actomyosin cortex and cell surface flattening. We thus propose

that the sub-cortical vimentin network could contribute to mitotic

cortex thinning by physically resisting the growth of the cortical

actin meshwork toward the cytoplasm.

Vimentin Promotes Mitotic Cell Rounding
Finally, we asked if the changes in cortex organization and ten-

sion upon vimentin depletion had functional consequences on

mitotic rounding. We observed that vimentin-depleted cells

were less round in mitosis than control cells (Figure 6A) and

that the rounding-up process was slower compared to control
(D) Cortex tension in mitotic (prometaphase) cells expressing VIM-WT, VIM-56E, o

WT, n = 60; 56E, n = 29; and 83E, n = 26. Kruskal-Wallis test.

(E) Left: representative time lapses of curvature maps along the cell contour (se

expressing GFP-VIM-WT or GFP-VIM-56E (displayed in insets; yellow circles, ab

expressingGFP-VIM-WT orGFP-VIM-56E. N = 4 independent experiments for VIM

of 52 for VIM-WT and 26 cells out of 57 for VIM-56E), ablation elicited bleb formati

the quantifications, as bleb formation indicated ablation disrupted the actin corte

See also Figure S5.
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cells (Figure 6B; Video S8). This shows that vimentin plays a

role in mitotic rounding, possibly by promoting cortex thinning

and the concomitant cortex tension increase.

Finally, we investigated whether the rounding defects

observed upon vimentin depletion interfered with cell division.

We did not observe any apparent defects for cells dividing in a

dish (Figures 6C, 6D, and S5H; ‘‘no gel’’ conditions). However,

mitotic rounding is particularly crucial for cells dividing in

confinement, where external pressure interferes with spindle as-

sembly and chromosome segregation if rounding is defective

(Lancaster et al., 2013). We thus confined the cells using 5 kPa

polyacrylamide gels mimicking the mechanical environment of

a tissue (Figure 6C). This range of stiffness allowed for normal

rounding and limited mitotic defects in control cells (Figures 6D

and 6E), consistent with previous observations (Lancaster

et al., 2013). Strikingly, confined vimentin-depleted cells dis-

played increased occurrences of chromosome missegregation

and multipolar spindles (Figures 6C–6E). Taken together, our ex-

periments indicate that by affecting actin cortex organization

and mechanics, vimentin is involved in controlling mitotic cell

rounding, essential for division accuracy in 3D confinement.

DISCUSSION

To systematically investigate the regulation of cortical actin or-

ganization in mitosis, we established a method to identify pro-

teins that bind filamentous actin in interphase and mitotic cells.

Of note, in our protocol, F-actin is first depolymerized for extract

preparation and then re-polymerized for recovery of the F-actin

binding fraction on phalloidin-coated beads (Figure 1). As a

result, the organization of actin filaments on the beads is unlikely

to recapitulate actin network organization in the original, spread

or rounded cells. Thus, while our assay recovers proteins present

and able to bind F-actin in the specific cell-cycle phases investi-

gated, differences in F-actin binding due to the actual organiza-

tion of cellular networks might be missed. Importantly, our assay

cannot disentangle differences in actin binding from differences

in protein abundance in the soluble extracts, though comparing

differences in protein levels and FAI abundance for a subset of

proteins did not reveal any clear correlation (Figure 2). Nonethe-

less, our FAI analysis identified a list of F-ABP candidates for the

regulation of mitotic cortex organization (Table 1).

We then performed a quantitative super-resolution screen to

test the effects of the candidate regulators on cortex architec-

ture (Figure 3). Strikingly, we found that the depletion of the in-

termediate filament protein vimentin and the actin-vimentin

linker plectin increase mitotic cortex thickness (Figure 3B).

This was surprising, as some studies had suggested that the vi-

mentin network is disassembled in mitosis (Chou et al., 1989;

Inagaki et al., 1987; Takai et al., 1996). In the cells used in
r VIM-83E. Graph: median with interquartile range; 3 independent experiments.

e STAR Methods for details) during ablation experiments in HeLa cells stably

lation region). Right: quantification of the effects of laser ablation in HeLa cells

-WT (n = 52 cells) andN= 3 for VIM-56E (n = 57 cells). In some cells (15 cells out

on at the site of ablation (Video S7, right panel); these cells were excluded from

x (Tinevez et al., 2009). Scale bars, 5 mm.



A

C

-2min

-2min

0min

0min

2minNEBD

NEBD 2min

8min

8min 20min

20min 30min

30min

siNTC

siVIM

NT

siN
TC

siV
IM

0

10

20

30

40

50

60

R
ou

nd
in

g 
tim

in
g 

(in
 m

in
)

5kPa gelno gel

ns
P

er
ce

nt
ag

e 
(%

)

5kPa gelno gel
siN

TC
siV

IM
siN

TC
siV

IM

D

5kPa gelno gel

x
y

z

0
10
20
30
40
50
60
70
80
90

100
Successful segregation

Chromosomal bridges
Chromosome lagging

Multipolar spindles

x

Multipolar 
spindles

Chromosomal 
bridge

Chromosome 
lagging

Successful
 segregation

E

Metaphase Anaphase
 DNA inverted labelled 

B

R=0.86R=0.952

siNTC siVIM

0.0

0.2

0.4

0.6

0.8

1.0

R
ou

nd
ne

ss

siNTC siVIM

p=0.0278

p<0.0001

Figure 6. Vimentin Is Important for Mitotic Cell Rounding

(A) Representative images of control and vimentin-depleted cells in metaphase and quantification of cell roundness (see STAR Methods); R on the images is the

roundness coefficient of the cell depicted. Scale bars, 10 mm. Graph: mean ± standard deviation (siNTC, n = 21 and siVIM, n = 23; 3 independent experiments).

Non-parametric Mann-Whitney test.

(B) Representative time lapses of mitotic rounding in control and vimentin-depleted HeLa cells stably expressing H2B-mCherry (red) and Lifeact-GFP (cyan).

Scale bars, 20 mm. Right: quantification of rounding timing. Graph: mean ± standard deviation (NT, n = 16; siNTC, n = 22; and siVIM, n = 63. 2 independent

experiments). NT = non-transfected. ANOVA Tukey’s multiple comparison; ns, non-significant.

(C) Representative images of HeLa cells stably expressing H2B-mCherry to mark the chromosomes, and aplasma membrane marker (membrane targeting

domain of LYN tagged with GFP), dividing unconfined or in confinement under a 5 kPa polyacrylamide gel. Scale bars, 10 mm.

(D) Quantification of chromosome segregation defects in control and vimentin-depleted cells during division without confinement (no gel) and in confinement

under 5 kPa gels. Percentages of cells with lagging chromosomes, chromosomal bridges or multipolar spindles were quantified in time lapse movies of cells

stably expressing H2B-mCherry (NR 3 independent experiments; no gel, n = 64 and n = 65 and 5 kPa gel, n = 112 and n = 101 for siNTC and siVIM, respectively).

(E) Representative images of lagging chromosomes, chromosomal bridges, and multipolar spindles in HeLa cells stably expressing H2B-mCherry (inverted

contrast) to mark the chromosomes, dividing in confinement under a 5-kPa polyacrylamide gel. Scale bar, 10 mm.

See also Figure S5H.
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our study, we observed a clear mitotic vimentin layer directly

underneath the actin cortex (Figures 4A and 4B), in agreement

with early observations suggesting a cortical vimentin layer in

mitosis (Celis et al., 1983), and a recent study showing that vi-

mentin and actin interact in mitosis (Duarte et al., 2019). We

further show that the formation of a sub-cortical vimentin layer

in mitosis depends on the vimentin-actin linker plectin (Figures

4C and S4E). Mitosis-specific phosphorylation of plectin has

been shown to reduce its affinity for vimentin, with a large pro-

portion of cellular plectin becoming soluble (Foisner et al.,

1996). Our immunostainings may indicate a large cytoplasmic

pool (Figure S4E), which would imply that plectin-driven recruit-

ment to the cortex in mitosis relies on only a portion of cellular

plectin.

Our screen identified a number of regulators for which knock

down led to actin cortex thickening. In a previous study, we had

shown that the actin cortex becomes thinner in mitosis and that

this thinning is important for increasing cortical tension (Chugh

et al., 2017). Thus, our assay identifies potential regulators of

mitotic cortex mechanics. Consistently, the increase in cortical

thickness upon vimentin and plectin depletion correlated with a

decrease in cortical tension (Figure 4D). Interestingly, a previ-

ous study of vimentin contribution to cell mechanics had shown

that vimentin does not affect cortical stiffness in spread inter-

phase cells (Guo et al., 2013); this suggests that vimentin

cortical localization and function in cortex mechanics could

be specific to mitosis. We further found that impairing the for-

mation of the sub-cortical vimentin layer using phosphomi-

metic vimentin mutants also led to increased cortical thickness

and decreased cortical tension (Figures 5C and 5D). Vimentin

may control mitotic actin biochemically (Hubert et al., 2011).

However, our ablation experiments suggest that the effect of

the sub-cortical vimentin layer on the cortical actin network

could be at least partly mechanical, with the vimentin network

physically resisting the growth of the actin cortex toward the

cytoplasm. It will be interesting to investigate how exactly

vimentin and actin interact, biochemically and mechanically,

at the cortex.

Our study identified vimentin as a key regulator of mitotic

cortex tension. High cortical tension in mitosis is thought to

be instrumental to support a rounded cell shape, generating

space for accurate spindle positioning and chromosome

segregation (Ramkumar and Baum, 2016). This is particularly

important in confinement, when cells must push against sur-

rounding structures in order to round up (Lancaster et al.,

2013). Consistent with this, we observed that vimentin-

depleted cells displayed rounding defects (Figures 6A and

6B) and chromosome segregation defects when placed in

3D confinement (Figures 6C–6E). Interestingly, vimentin over-

expression is a hallmark of various cancers (Heerboth et al.,

2015; Satelli and Li, 2011). Vimentin function in cancer has

so far been associated with epithelial-to-mesenchymal transi-

tions and cell migration (Huber et al., 2015; Leduc and Eti-

enne-Manneville, 2017; Mendez et al., 2010). Our data suggest

that high vimentin levels might also facilitate cell division in

strongly confined and stiff environments, such as those expe-

rienced by proliferating cancer cells (Levental et al., 2009).

Taken together, our unbiased approach reveals a key function

for vimentin in controlling cortex architecture and mechanics in
220 Developmental Cell 52, 210–222, January 27, 2020
mitosis. It is also possible that vimentin contributes to mitotic

rounding by regulating focal adhesions (Burgstaller et al., 2010;

Mendez et al., 2010) or by affecting other mechanical properties

of the actin cortex, such as viscosity or turnover. It will be

exciting to investigate how the mechanical and biochemical

integration of actin networks with intermediate filaments, and

possibly other intracellular structures, controls actin organization

during mitosis and cell morphogenetic events in general.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies and Dyes

mouse anti-cyclin B Santa Cruz Biotechnology Santa Cruz Biotechnology sc-245;

WB 1/1000; RRID:AB_627338

mouse anti-b-actin Santa Cruz Biotechnology Santa Cruz Biotechnology sc-47778;

WB 1/1000; RRID:AB_2714189

mouse anti-GAPDH Abcam Abcam ab8245; WB 1/4000;

RRID:AB_2107448

rabbit phospho-Histone H3 S10 Cell Signaling Tech Cell Signaling Tech 9701; WB 1/1000;

RRID:AB_331535

mouse anti-MRLC pS19 Cell Signaling Tech Cell Signaling Tech 3675; WB 1/1000;

RRID:AB_2250969

rabbit anti-MRLC Cell Signaling Tech Cell Signaling Tech 3672; WB 1/1000;

RRID:AB_10692513

rabbit anti-vimentin Cell Signaling Tech Cell Signaling Tech 3932; WB 1/

1000 – IF 1/100; RRID:AB_2288553

mouse anti-a-tubulin ThermoFisher Scientific ThermoFisher Scientific DM1A;

WB 1/1000; RRID:AB_1954824

rabbit-anti phospho (Ser)-CDK1 substrate Cell Signaling Tech Cell Signaling Tech 9477; WB 1/1000;

RRID:AB_2714143

rat anti-GFP Chromoteck Chromotek; WB 1/1000; RRID:AB_10773374

rabbit anti-VASP Cell Signaling Tech Cell Signaling Tech 3132S; WB 1/1000;

RRID:AB_2213393

rabbit anti-MENA Santa Cruz Biotechnology Santa Cruz Biotechnology sc-135988;

WB 1/1000; RRID:AB_2098633

mouse anti-MYH9 Abnova Abnova; WB 1/1000

mouse anti-caldesmon Abcam Abcam ab183146; WB 1/1000

mouse anti-fascin Santa Cruz Biotechnology Santa Cruz Biotechnology sc-21743;

WB 1/1000; RRID:AB_627580

rabbit anti-filamin Cell Signaling Tech Cell Signaling Tech 4762S; WB 1/1000;

RRID:AB_2106408

rabbit anti-cofilin Cell Signaling Tech Cell Signaling Tech 3318S; WB 1/1000;

RRID:AB_2080595

Rabbit anti Phospho-Vimentin (Ser83) Cell Signaling Tech Cell Signaling Tech #12569;

RRID:AB_2797957

Rabbit anti Phospho-Vimentin (Ser56) Thermo Fisher Scientific Thermo Fisher Scientific

711212; RRID:AB_2633001

Rabbit anti Vimentin conjugated with

Alexa Fluor 647

Cell Signaling Tech Cell Signaling Tech #5741;

RRID:AB_10695459

Goat anti-WDR1 Santa Cruz Biotechnology Santa Cruz Biotechnology sc-160907;

WB 1/500; RRID:AB_2215093

rabbit anti-plectin Thermo Fisher Scientific Thermo Fisher Scientific

#PA556292 IF 1/100; RRID:AB_2645646

mouse anti-a-tubulin Sigma Sigma T5168; IF 1/2000; RRID:AB_477579

Phalloidin conjugated with Alexa Fluor 568 Life Technology Life Technology A12380

Phalloidin conjugated with Alexa Fluor 647 Life Technology Life Technology A22287

DAPI Thermo Fisher Scientific Molecular Probes D1306

Alexa Fluor 680 Thermo Fisher Scientific Life Technology A21058

Alexa Fluor 790 Thermo Fisher Scientific Life Technology A11369

Cell Mask membrane stain Thermo Fisher Scientific Invitrogen C10046

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

RNAi max lipofectamine Thermo Fisher Scientific Thermo Fisher Scientific

13778075

Fugene HD Promega Promega E2311

Thymidine Sigma Sigma T1895

RO3306 Merck Millipore Calbiochem 217699

BI 2536 Santa Cruz Biotechnology Santa Cruz Biotechnology sc-364431

Y27632 Tocris Tocris 1254

Dextran Thermo Fisher Scientific Thermo Fisher Scientific

D22914

Non conjugated Phalloidin Sigma Sigma – P2141

Experimental Models: Cell Lines

HeLa Kyoto cells Research Institute of Molecular

Pathology (Vienna, Austria)

N/A

Hela Kyoto cells - H2B-mCherry Su et al., 2011 N/A

Hela Kyoto cells - H2B-mCherry - GFP-Lifeact This paper N/A

Hela Kyoto cells - GFP-vimentin WT and mutants

cell lines

This paper N/A

Oligonucleotides

SiRNA used in this study This paper Table S2

Primers used in this study This paper Table S2

point mutations in the human vimentin cDNA 50- gc agc

ctc tac gcc tcg GCC ccg ggc ggc gtg tat gcc a -30
This paper N/A

point mutations in the human vimentin cDNA 50- t ggc
ata cac gcc gcc cgg GGC cga ggc gta gag gct gc - 30

This paper N/A

point mutations in the human vimentin cDNA 50- gc agc

ctc tac gcc tcg GAA ccg ggc ggc gtg tat gcc a -30
This paper N/A

point mutations in the human vimentin cDNA 50- t ggc
ata cac gcc gcc cgg TTC cga ggc gta gag gct gc - 30

This paper N/A

point mutations in the human vimentin cDNA 50- g gtg

cgg ctc ctg cag gac GAG gtg gac ttc tcg ctg gcc -30
This paper N/A

point mutations in the human vimentin cDNA 50- ggc
cag cga gaa gtc cac CTC gtc ctg cag gag ccg cac c - 30

This paper N/A

Recombinant DNA

Lifeact-GFP plasmid Matthieu Piel (Institut Curie,

France)

N/A

pIRESpuro3 Flag–AcGFP- vimentin mutant plasmids This paper N/A

Software and Algorithms

Fiji N/A https://imagej.nih.gov/ij/

Matlab Mathworks MathWorks

Prism GraphPad GraphPad

Icy N/A http://icy.bioimageanalysis.org/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ewa

Paluch (ekp25@cam.ac.uk).

All unique/stable reagents generated in this study are available from the Lead Contact without restriction.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture
All cell lines were grown at 37�C with 5% CO2 in DMEM GlutaMAX, 4.5 g/l glucose (Gibco, Invitrogen/ Life Technologies) supple-

mented with 10% fetal bovine serum (Sigma), 1% penicillin-streptomycin (Gibco, Invitrogen/ Life Technologies) and regularly tested

for mycoplasma. HeLa Kyoto cells were obtained from the Research Institute of Molecular Pathology (Vienna, Austria). For the stable

Lifeact cell line, a Lifeact-GFP plasmid kindly provided by Matthieu Piel (Institut Curie) was transfected into HeLa Kyoto cells stably

expressing H2B-mCherry (kindly provided by Kuan-Chung Su (Su et al., 2011)) using FuGENE 6 (Roche) according to the manufac-

turer’s instructions. HeLa Kyoto cells stably expressing H2B-mCherry and GFP-Lifeact were grown in DMEM supplemented with

500 mg/ml G418 (Invitrogen), and 0.35 mg/ml puromycine to maintain selection. For the stable GFP-vimentin cell lines, GFP-vimentin

mutant plasmids were transfected into HeLa Kyoto cells using FuGENE HD (Roche) according to the manufacturer’s instructions.

Hela Kyoto cells stably expressing GFP-Vimentin were grown in DMEM supplemented with 0.35 mg/ml puromycine to maintain

selection. Cell lines have not been authenticated.

METHOD DETAILS

siRNA Transfection
For siRNA transfection, RNAi max lipofectamine (Invitrogen) reverse transfection was performed according to the manufacturer’s in-

structions. Final concentrations of 30 nM siRNA were used for all the experiments. SiRNAs used in this study are listed in Table S2.

Preparation of GFP-Vimentin Mutants
All vimentin mutants (S56A, S56E, S83E) were generated using the QuikChange methodology (Stratagene, La Jolla, CA). The

following oligonucleotides were used to create the different point mutations in the human vimentin cDNA (capital letters indicate

the codon mutated). 56A: Forward: 5’- gc agc ctc tac gcc tcg GCC ccg ggc ggc gtg tat gcc a -3’; Reverse: 5’- t ggc ata cac gcc

gcc cgg GGC cga ggc gta gag gct gc - 3’. 56E: Forward: 5’- gc agc ctc tac gcc tcg GAA ccg ggc ggc gtg tat gcc a -3’; Reverse:

5’- t ggc ata cac gcc gcc cgg TTC cga ggc gta gag gct gc - 3’. 83E: Forward: 5’- g gtg cgg ctc ctg cag gac GAG gtg gac ttc tcg

ctg gcc -3’; Reverse: 5’- ggc cag cga gaa gtc cac CTC gtc ctg cag gag ccg cac c - 3’. The mutated cDNAs were fully sequenced

to confirm the sole presence of intended mutations and inserted into pIRESpuro3 Flag–AcGFP-tagged plasmid.

Cell Synchronization for Mass Spectrometry
To prepare cell extracts from specific phases of the cell cycle, HeLa cells were first synchronized in early S phase with thymidine

(Sigma) at 2 mM for 22 hours. For synchronization in G2 phase, cells were released for 6hrs and treated with CDK1 inhibitor

RO3306 (Calbiochem) at 10 mM for 3 hours. To synchronize cells in metaphase, the cells were released from a single thymidine block

for 6hrs, then treated with nocodazole 50 mg/ml for 4 h, and then with 10 mM of MG132 for 2 h as previously described (Petronczki

et al., 2007). In all cases, cells were washed twice with DMEM between each treatment and wash with PBS before processed for

experiment.

Extracts Preparation
Around 20 millions of cells were first mechanically lysed for 30min by vortexing and pipetting-up-and-down in 300 mL of buffer

containing 10 mM HEPES pH 7.5, 83 mM KCl, 17 mM NaCl and 0.1% Triton X-100 supplemented with proteases and phosphatases

inhibitors: Microcystin, 10 mg/ml of Leupeptin, Pepstatin and 10mM of b-glycerophosphate. To solubilize F-actin network, 200 nM of

LatrunculinA was added to the lysis. After centrifugation at 28 000 rpm with TLA-120.1 rotor (Beckman Coulter) for 20 min, pellets

were resuspended in 300 mL of same lysis buffer without Triton X-100 andmechanically lysed again for 15 min. After a second centri-

fugation, pellets were sonicated, both supernatants were pooled and frozen in liquid nitrogen. Latrunculin A was present throughout

extract preparation, limiting the possibility of actin loss through repolymerization. Lysis conditions were optimized using cells en-

riched in mitosis (overnight nocodazole treatment). Protein concentrations were determined using Bradford protein assay reagent

(Biorad). For western blotting, supernatant and pellets from the preparation were then resuspended in 5X loading buffer

(312.5 mM Tris-HCl pH 6.8, 50% glycerol, 5% SDS, 5% b-mercapto ethanol, 0.25%Bromophenol blue), and boiled for 5 min. Pellets

amounts loaded for immunoblotting were adjusted to be the same amount as the supernatant.

Phalloidin Pull-Down Assay
Extracts were cleared by centrifugation at 30,000 g for 5 min and 700 mg of each extract were used per condition. We verified that no

significant amount of actin was lost from the extract at this step. Pull-down assay was performed using a phalloidin affinity matrix

(phalloidin coupled through a flexible polyethylene glycol linker to superparamagnetic beads) (Samwer et al., 2013). Control and Phal-

loidin matrix were pre-washed 2 times with 10 mM HEPES pH 7.5, 83 mM KCl, 17 mM NaCl and 0.05% Triton-100. Extracts and

beads were incubated for 1 hours at room temperature with 2 mM MgCl2 and 1 mM ATP to induce actin polymerization (Samwer

et al., 2013). Of note, the concentration of phalloidin on the beads was sufficient to effectively induce actin polymerization even

though a small amount of Latrunculin was present in the extract (see section above). After the incubation, beads were washed 2

or 3 times for 2 min with wash buffer (10 mM HEPES pH 7.5, 83 mM KCl, 17 mM NaCl and 0.05% Triton-100) and eluted using
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25 ml of loading buffer (125 mM Tris-HCl pH 6.8, 3% SDS, 50 mM DTT, 1 M sucrose, 0.1% bromophenol blue). Samples were boiled

for 3 min, separated by SDS-PAGE (NuPage Invitrogen) and stained by colloidal Coomassie (Neuhoff et al., 1988; Samwer

et al., 2013).

Mass Spectrometry and Data Analysis
Coomassie-stained gel bands were excised and subjected to in-gel trypsin digestion, as described previously in (Galan et al., 2014).

The resulting peptides were extracted and subjected to capillary LC-MS/MS using a high-resolution Orbitrap Fusion Tribrid (Thermo

Scientific, San Jose, CA). Raw files were searched with MaxQuant (Cox and Mann, 2008) software version 1.3.0.3 and searched

against the Uniprot Human database (http://www.uniprot.org/) release 2016_02 (17-Feb-2016) including the reversed database

with 74508 entries. General false discovery rate (FDR) for peptides was at 1.0% with decoy removal. Searches were performed at

a 25-ppm precursor ion tolerance and 1.0 Da fragment ion tolerance, assuming full tryptic digestion with up to three missed cleav-

ages. Correct peptide identifications were distinguished from incorrect using the target-decoy approach, coupledwith linear discrim-

inant analysis as described previously. Once peptides were filtered to an initial FDR of 1%, peptides were assembled into proteins

and further filtered to a final protein-level FDR of 1%. All proteins of the same family were grouped and isoforms of the same protein

were considered as one. Finally, contaminants (e.g. keratins) and proteins more represented in control beads eluates were removed

(see Table S1). To estimate the abundance of proteins within eluates, we rely on total spectral counts and a modified Protein Abun-

dance Index (PAI) (Biro et al., 2013; Bovellan et al., 2014; Rappsilber et al., 2002). PAI was calculated based on total spectral counts

as follows: PAI = total spectral count/MW, where MW corresponds to the protein molecular weight, which was used to adjust for

differences between proteins in the number of observable peptides. Mass spectrometry data were also analyzed using Gene

ontology enrichment analysis and panther protein classification system (Mi et al., 2017)

Immunoblotting
Protein samples were subjected to SDS-PAGE and transferred onto polyvinylidene difluoride membranes (Millipore). After blocking

with PBS containing 0.1% Tween-20 and 5% milk, membranes were incubated overnight with primary antibodies, washed in PBS

containing 0.1% Tween-20 and then incubated 1 h with HRP-conjugated secondary antibodies (GE Healthcare; 1/5000). After

washes with PBS containing 0.1% Tween-20, immunodectection was performed with Amersham ECL Western Blotting Detection

Reagent and Amersham Hyperfilm (GE Healthcare). Membrane stripping was performed using stripping buffer containing glycine,

0.01%SDS and 0.01% Tween pH 2.2. For fluorescent immunoblotting, nitrocellulose membranes (Thermo Scientific) and secondary

antibodies conjugated to IRDye 800 (LI-COR) or Alexa Fluor 680 and Alexa Fluor 790 (Life Technology) were used. Immunodetection

was performed using anOdyssey infrared imaging system (LI-COR). The following primary antibodies were used:mouse anti-cyclin B

(Santa Cruz Biotechnology sc-245; 1/1000); mouse anti-b-actin (Santa Cruz Biotechnology sc-47778; 1/1000); mouse anti-GAPDH

(Abcam ab8245; 1/4000); phosphoHistone H3 S10 (Cell Signaling Tech 9701; 1/1000); mouse anti-MRLC pS19 (Cell Signaling Tech

3675; 1/1000); rabbit anti-MRLC (Cell Signaling Tech 3672; 1/1000); rabbit anti-vimentin (Cell Signaling Tech 3932; 1/1000); mouse

anti-plectin (Thermo Fisher Scientific PA556292 1/1000); mouse anti-a-tubulin (ThermoFisher Scientific DM1A; 1/1000); rabbit-anti

phospho (Ser) CDK1 substrate (Cell Signaling Tech 9477; 1/1000); rat anti-GFP (Chromotek; 1/1000); rabbit anti-VASP (Cell Signaling

Tech 3132S; 1/1000); rabbit anti-MENA (Santa Cruz Biotechnology sc-135988; 1/1000); mouse anti-MYH9 (Abnova; 1/1000) ; mouse

anti-caldesmon (Abcam ab183146; 1/1000); mouse anti-fascin (Santa Cruz Biotechnology sc-21743; 1/1000), rabbit anti-filamin (Cell

Signaling Tech 4762S; 1/1000), rabbit anti-cofilin (Cell Signaling Tech 3318S; 1/1000) and WDR1 (Santa Cruz Biotechnology

sc-135988; 1/500).

Immunofluorescence
Cells were seeded in labteck chambers (Thermo Scientific) or on coverslips (No 1.5, 170 nm). For CDK1 or PLK1 inhibition experi-

ments, STLC treated cells were treated with DMSO, RO3306 (Calbiochem) at 10 mM for 20 min or BI2536 (Santa Cruz Biotechnology)

at 100 nM for 2 h. Cells were fixed in 4% PFA in PBS containing 0.01 Triton X-100 (PBST) for 15 min at room temperature. After

washes in PBST, cells were permeabilized in PBS 0.2% Triton X-100 for 10 min and incubated with primary antibodies for 1h at

room temperature. After washes in PBST, cells were then incubated with secondary antibodies and/or phalloidin conjugated with

Alexa fluorescent dyes. The following primary antibodies were used: rabbit anti-vimentin (Cell signaling Tech 3932; 1/100); mouse

anti-plectin (Thermo Fisher Scientific #PA556292 1/100); Rabbit anti Phospho-vimentin (Ser83) (Cell Signaling Tech 2569; 1/100);

Rabbit anti Phospho-vimentin (Ser56) (Thermo Fisher Scientific 711212; 1/100); mouse anti-a-tubulin (Sigma T6024; 1/2000); rabbit

anti-vimentin conjugated with Alexa Fluor 647 (Cell Signaling Tech 5741; 1/100). Fluorescent dyes used were Phalloidin conjugated

with Alexa Fluor 488 (Life Technology A12379); Phalloidin conjugated with Alexa Fluor 568 (Life Technology A12380); Phalloidin con-

jugated with Alexa Fluor 647 (Life Technology A22287) and DAPI (Molecular Probes) to stain DNA. Secondary antibodies conjugated

to Alexa Fluor 488 or 568 (Life Technology; 1/500) were used for immunofluorescence microscopy detection. Coverslips were

mounted using Prolong Gold Antifade (Invitrogen). For cortex localization analysis, a single plane in the middle of the cell was

used for the quantification of mean cortex intensity. Cell cortex intensity was calculated using Fiji software as the mean intensity

of 0.4 mm2 circles placed all along the cell cortex, normalized by the mean intensity of the entire cell.

For one-color STORM experiments (measurements of cortical thickness screen), cells were synchronized using thymidine (Sigma)

at 2 mM for 22 h. Then, cells were rinsed twice and fresh media was added for the release for 9 h. For the one-color STORM exper-

iments on GFP-vimentin mutants, cells were pre-treated with STLC for 6h to enrich for mitotic cells. Cells were then permeabilized
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and fixed at the same time in 4% PFA, 0.2% Triton X-100 in Cytoskeleton buffer pH to 7.4 (10 mMMES, 138 mM KCl, 3 mMMgCl2,

2mMEGTA) supplemented with sucrose (Cytoskeleton buffer with sucrose; CBS) for 6min and then 14min in 4%PFA in CBS. After 3

washes in CBS, cells were incubated 20 min with phalloidin conjugated with Alexa-647 (Life Technology A22287). Coverslips were

mounted using Vectashield (Vectorlabs).

For two-color STORM experiments, cells were seeded onto glass-bottom petri dishes (Ibidi) and fixed, permeabilized and washed

as described above for one-color STORM experiments. Cells were then incubated with vimentin antibody conjugated with Alexa 647

(Cell signaling Tech 9856; 1/1000) and phalloidin conjugated with Alexa 568 (Life Technology A12380) for 30 min. For imaging, sam-

ples were kept in STORM buffer (Tris base 50 mM, NaCl 100 mM, MEA 1M, supplemented with Glucose, Catalase and Oxidase).

STORM Imaging, Rendering, and Analysis
One-color STORM imaging: For the thickness screen, raw images were acquired on an N-STORM microscope (Nikon) using a x100

objective (1.49 numerical aperture CFI Apo TIRF). DAPI staining was used to select cells in metaphase. For actin cortex thickness

measurements in cells expressing GFP-vimentin and GFP-vimentin mutant constructs, raw images were acquired on a Zeiss Elyra

microscope in STORM mode using a x100 objective (1.46 numerical aperture alpha Plan-Apochromat). Prometaphase cells were

selected based on DNA appearance in bright field microscopy. Coordinates of single molecules in the raw STORM images were

detected using the Nikon microscope software (thickness screen) or the Zen software (GFP-vimentin mutants). Drift, chromatic ab-

erration correction and super-resolution rendering were performed using a custom-written script in MATLAB (MathWorks).

Two-color STORM: raw images were acquired on a Zeiss Elyra microscope in STORMmode using a x100 (1.46 numerical aperture

alpha Plan-Apochromat) objective. To correct for chromatic aberration and drift during the acquisition, multi-color fluorescent beads

(TetraSpeck 0.1 mm diamater, Invitrogen T7279) were added to the samples. Coordinates of single molecules in raw STORM images

were detected using the open source software ThunderSTORM (Ovesný et al., 2014). Drift, chromatic aberration correction and

super-resolution rendering were done using a custom-written script in MATLAB (MathWorks).

STORM Image Analysis
The cell cortex in each rendered STORM image was detected semi-automatically. First, portions of cell periphery where the cortex is

well defined, i.e., without too many microvilli or aggregation of fiducial beads, were manually selected using a custom-written GUI in

MATLAB. The cortex was then automatically detected by finding the maximum intensity peak of transverse profiles across the cell

contour at every pixel along the regions selected. The segmented cortex was straightened up using a spline and individual intensity

linescans across the cortex were obtained.

In one-color STORM experiments, the full width at half maximum (FWHM) of cortex intensity profiles was used to assess cortical

thickness. For two-color STORM experiments, the intensity peaks for each protein pair (phalloidin in two colors, or phalloidin and

vimentin) were localized and peak-to-peak distance was measured using a custom-written MATLAB script.

Cell Confinement
Confinement experiments were done as previously described (Lancaster et al., 2013) with small alterations. Briefly, polyacrylamide

gels (5 kPa rigidity) were polymerized onto 19 mm glass coverslips and incubated in imaging media at 37�C. Gel-covered coverslips

were then gently positioned on top of the siRNA treated cells seeded on glass bottom petri dishes (Ibidi), and pressure to confine the

cells was exerted using a PDMS column. Time lapse images were taken every 5min with 4 z-stack of 3 mmstepwith a Zeiss Observer

Z1 microscope widefield timelapse microscope equipped with a 12bit Hamamatsu Orca ER camera and a 60X objective.

Live Cell Imaging and Analysis
All cells were imaged in in phenol-red free and CO2-independent medium (Invitrogen) at 37�C. Hela Kyoto cells stably expressing

H2B-mCherry and Lifeact-GFP were imaged using a Nikon TE2000 microscope equipped with a Plan Fluor x60/1.4 DIC H objective

(Nikon), a PerkinElmer ERS Spinning disk system, a Digital CCD C4742-80-12AG camera (Hamamatsu), and controlled by Volocity

6.0.1 software. For vimentin dynamics during the cell cycle, CDK1 inhibitor time lapses, and cell rounding experiments, stacks of

7 z-planes 3 mm apart every 2 min. Cell roundness (4*area/pi*sqr(major axis)) was calculated using Fiji software. Hela Kyoto cells sta-

bly expressing the different GFP-vimentin mutants were imaged with an Olympus FluoView FV1200 Confocal Laser Scanning Micro-

scope using a 60X objective (UPLSAPO60XS) and the FV1200 software. Cortex localization analysis of GFP-vimentin mutants were

done the same way as explained in the Immunofluorescence section.

Laser Ablation Experiments
Ablation experiments were performed on an Olympus FluoView FV1200 Confocal Laser Scanning Microscope using a 60X objective

(UPLSAPO60XS) as previously described (Tinevez et al., 2009). A 405 nm laser (PicoQuant) delivering picosecond pulses with nom-

inal power 3mWwas usedwith themaximal speed setting corresponding to�3 s between time points. Pulses were delivered for�2 s

in a spiralingmovement within a circular regionwith a diameter of�400 nm focused on the sub-cortical vimentin layer. To confirm that

our ablation settings did not result in puncture of the cell membrane, CellMaskTMDeep Red Plasmamembrane stain (Thermo Fisher

Scientific) or 10 KDa non-cell permeable dextran conjugated to Alexa 647 was added to the media prior to the experiment. For the
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ROCK inhibitor experiment, cells were pre-treatedwith 10 mMY27632 for 15min. For vimentin ablation, the laser was focused on sub-

cortical the vimentin layer; areas of bright and low intensities of vimentin were chosen randomly and no difference in cell behavior was

observed between the different areas.

To compute cell curvature (Figure 5E), the cell was segmented by adding a Gaussian filter to the image and then automatically

thresholding with Otsu’s method. Contour points of the cell from the binary image were extracted (�1000 points/cell) and for

each point a circle through that point was fitted. To reduce local noise that highly affects curvature measurements, a circle to

each point was fitted using the 60th point before and after the point. Extracted local curvature (1/radius of the fitted circles) was

then plotted along the cell contour.

AFM Measurements
For cortical tension measurements, cells were transfected with siRNA 48 hours prior to the experiment. Cells were then treated with

STLC 4 h before the first measurement to enrich for mitotic cells. Interphase cells were pre-treated with thymidine for 22h and de-

tached using trypsin before the measurement. Cells were placed in glass bottom dishes (Mattek) in phenol-red free and CO2-inde-

pendent medium (Invitrogen) and incubated with 0.01% CellMaskTM Deep Red Plasma membrane Stain (Thermo Fisher Scientific).

Mitotic and interphase cells were then selected based on DNA appearance in bright field microscopy. Atomic force microscopy

tension measurements were performed using Tipless silicon cantilevers (ARROW-TL1Au-50) with a nominal spring constant of

0.03 N/m, mounted on a JPK CellHesion module (JPK Instruments) on an IX81 inverted confocal microscope (Olympus). Sensitivity

was calibrated by acquiring a force curve on a glass coverslip, and the spring constant was calibrated by the thermal noise fluctuation

method. Constant height mode was selected and a Z-length parameter of 35 mm was used with a setpoint force set at 25 nN. The

measurement was carried out by first lowering the tipless cantilever on the glass in an empty area next to the cell to detect the position

of the substrate. The cantilever was then positioned above the cell and a compression was applied for 250 seconds. During the con-

stant height compression, the force acting on the cantilever was recorded. After initial force relaxation, the resulting force value was

used to extract surface tension.

The calculation of cortex tension is based on (Fischer-Friedrich et al., 2014) and described in (Chugh et al., 2017). Briefly, neglecting

the angle of the cantilever with respect to the dish (�8�) and assuming negligible adhesion between cell, dish and cantilever, the force

balance at the contact point reads:

T =

F

 
r2mid

r2c
� 1

!

2prmid

where rmid is the radius of the maximum cross-sectional area of the selected cell, rc is the radius of the contact area of the cell with

the cantilever and F is the force exerted by the cell on the cantilever. To avoid errors due to direct measurement of rc, the contact

radius was calculated using the following formula (Stewart et al., 2012):

Ac = Amid �
 
p

4

!
h2
cell

where Ac =p rc
2 is the contact area between the cell and the cantilever, Amid is the cell maximumcross-sectional area and hcell is the

cell height.

Scanning Electron Microscopy (SEM)
Synchronized extracts were supplemented with 20 mM soluble phalloidin (Sigma), 2 mM MgCl2 and 1 mM ATP to promote F-actin

polymerization. Themixture (10 ml) was sandwiched between coverslips spacedwith parafilm strips as previously described (Plastino

et al., 2004). Samples were incubated 1 h at room temperature and then fixedwith glutaraldehyde 1%. Preparation for scanning elec-

tron microscopy was performed as previously described in (Bovellan et al., 2014; Chugh et al., 2017). Briefly, after the first fixation

samples were fixed a second time with 0.1% Tannic Acid for 5 min, washed 5 times with water and incubated with 0.1 % uranyl-

acetate for 10 min. After 5 washes with water, samples were then dehydrated with serial ethanol dilutions, dried in a critical point

dryer, coated with a thin layer of approximately 7 nm thick of Gold using a Quorum sputter coater and then viewed and images

recorded using a FEI Quanta 200 FEG ESEM, operated at 5 kV in the high vacuum mode.

RNA Extraction and RT-qPCR
Total RNA from Hela Kyoto cells was extracted using RNeasy Mini Kit (Qiagen) 48h after siRNA transfection. Total RNA was reverse-

transcribed using a cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA, United States of America) following the

manufacturer’s instructions. Gene expression levels of endogenous controls GAPDH and beta-actin (ACTB) were determined using

pre-validated TaqMan Gene Expression Assays (Applied Biosystems). Expression levels of queried and control genes were deter-

mined using assays designed with the Universal Probe Library from Roche. The PCR reactions were carried out on an ABI Real

Time 7900HT cycler and analyzed with SDS 2.2 software. qPCR was carried out with TaqMan Gene Expression Master Mix (Applied

Biosystems), and all samples were tested in duplicate. mRNA levels of queried genes were normalized to the averaged levels of
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GAPDH and ACTB, and relative abundance was calculated by normalizing values from cells treated with control and targeted siRNA

pools by dividing by the control value. All the genes tested and the corresponding primers are listed in Table S2.

QUANTIFICATION AND STATISTICAL ANALYSIS

3D visualization videos were generated using Icy software. dSTORM sata were analyased using Matlab (MathWorks). All the other

image analysis was carried out in Fiji. Graphs and statistical tests were produced in GraphPad Prism. Normally distributed data sets

were analyzed using the unpaired t test, or ANOVA. Non-normal data sets were analyzed using Mann-Whitney or Kruskal-Wallis test.

Details of the statistical tests used, exact value of n, definition error bars on graphs and number of experiments performed are all

detailed in the legends of the figures.

DATA AND CODE AVAILABILITY

Data and custom-written codes developed for data analysis are available upon request from the lead contact.

The software used for STORM rendering and analysis is described in (Truong Quang et al., submitted).
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