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Summary

Essays in empirical asset pricing and portfolio construction

Michael William Ashby

The key thread running through this thesis is predictability and how it relates to asset pricing
and portfolio construction.

Chapter 1, co-authored with Oliver Linton, tests for predictablity in asset pricing model
residuals to check model specification. We estimate three consumption-based asset pricing
models and derive ex-ante expected stock market returns from them. For each model, a suite of
tests rejects the null that the model residual, the difference between the ex-ante expected market
return and the actual return, is a martingale difference sequence. The ability of these models to
explain the own-history predictability of the market return is therefore rejected. Further tests
show that lagged returns have too much predictive power over current returns to be consistent
with the state variables which explain the market return being the same as the state variables
which explain the market return in any of the three models.

Chapter 2 focusses on a specific type of predictive information. I examine whether regulator-
required public disclosures of large net short positions can be profitably used to build portfo-
lios. These disclosures do not form the basis of a profitable trading strategy for UK stocks.
Long-short portfolios based on these disclosures typically make a profit, but it is statistically
insignificant. While certain long-only unit initial outlay portfolios can reliably significantly
outperform the market, this outperformance is economically modest: about one percentage
point a year in gross and risk-adjusted terms.

Finally, Chapter 3 considers how best to use predictive information. Using predictive
information unconditionally optimally produces better portfolios than using the predictive
information conditionally optimally. Unconditionally optimal portfolios have higher Sharpe
ratios and certainty equivalents, plus lower turnover, leverage, losses and drawdowns than
conditionally optimal portfolios. Moreover, the unconditionally optimal portfolios tend to
stochastically dominate the conditionally optimal portfolios once transaction costs are accounted
for. However, whether unconditionally optimal portfolios are preferred to minimum variance or
1/N portfolios depends on the asset universe.
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Preface

Chapter 1 contains some material derived from the dissertation I submitted as part of my MPhil
in Economic Research at the University of Cambridge. It draws on my MPhil dissertation only
in the outline of the Bansal-Yaron and Campbell-Cochrane models and the estimation of their
parameters.

Chapter 1 is co-authored with Oliver Linton. Professor Linton provided the theory for the
weighted correlogram test and the bootstrap procedure used in the quantilogram and rescaled
range tests.

Chapters 2 and 3 contain no co-authored work, nor work previously or due to be submitted for
another qualification.
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Chapter 1

Do consumption-based asset pricing
models explain own-history predictability
in stock market returns?

We show that three prominent consumption-based asset pricing models - the Bansal-Yaron,
Campbell-Cochrane and Cecchetti-Lam-Mark models - cannot explain the own-history pre-
dictability properties of stock market returns. We show this by estimating these models with
GMM, deriving ex-ante expected returns from them and then testing whether the difference
between realised and expected returns is a martingale difference sequence, which it is not.
Furthermore, a semi-parametric test suggests that lagged returns have too much predictive
power over current returns to be consistent with the state variables which explain market returns
being the same as the state variables which explain market returns in any of the three models.

This Chapter is co-authored with Oliver Linton. Professor Linton provided the theory for the

weighted correlogram test and the bootstrap procedure used in the quantilogram and rescaled

range tests.

This Chapter contains some material derived from the dissertation I submitted as part of my

MPhil in Economic Research at the University of Cambridge. It draws on my MPhil dissertation

only in the outline of the Bansal-Yaron and Campbell-Cochrane models and the estimation of

their parameters.



2 Own-history predictability in stock returns

1.1 Introduction

Three prominent consumption-based asset pricing models - the Bansal-Yaron, Campbell-
Cochrane and Cecchetti-Lam-Mark models - cannot explain the own-history predictability
structure of the US market return. The Bansal-Yaron and Campbell-Cochrane models are
designed to explain the level of stock market returns, in particular to simultaneously resolve the
equity premium and risk-free rate puzzles. Yet, whether these models can explain the degree of
predictability in stock returns is of interest too, especially if investors want to time or beat the
market. In this sense, the dynamics (second moment) of returns are important separately to their
level (first moment). This is recognised by Cecchetti et al. (1990). The Cecchetti-Lam-Mark
was developed specifically to explain return dynamics, rather than to price assets per se. Since
own-history predictability is the most basic kind of predictability, this is what we consider.

Our tests of whether the three models can explain own-history predictability amount to
testing whether the difference between the model-implied ex-ante expected market return and
the realised market return - the residual - is a martingale difference sequence (MDS). Since the
residuals are not MDS, there is some own-history predictability left over in realised returns not
captured by the models. To construct the expected returns and residuals, we first estimate the
models by GMM. Our testing procedures account for this estimation step.

We base our tests of the null that the residuals are MDS on serial correlation, quantile hits,
the rescaled range and the generalised spectrum (Hong, 1999). The asymptotic distribution of
the serial correlation and generalised spectrum-based tests accounts for the initial estimation
step, while we use a bootstrap procedure to account for the estimation step in the quantile hits
and rescaled range-based tests. We use a battery of tests since tests of the MDS null can suffer
locally low power against certain alternatives (Poterba and Summers, 1988).

Our finding that none of the three models can explain the own-history predictability prop-
erties of the market return is robust to the empirical choices we make. It does not matter
whether we use the optimal GMM weight matrix, or the identity matrix; whether we use
size/book-to-market or industry portfolios to estimate the models; or whether we use quarterly,
instead of annual, data. The only apparent hope comes from estimating the Cecchetti-Lam-
Mark model using size/book-to-market portfolios and the identity GMM weight matrix at
the quarterly frequency. However, using a quarterly sample gives a much larger number of
observations and allows us to consider the robustness of our results over time by splitting the
sample into two equal-length sub-samples. When we do this, we clearly reject the null that the
Cecchetti-Lam-Mark residuals are MDS in both sub-samples.
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In each of the robustness check cases, we consider only models that provide credible
expected returns. Many of the robustness check specifications do not give plausible expected
returns series. There is no point checking the second moment of a model that fits poorly in
terms of the first moment, as one would not use it to price assets anyway. Moreover, the centred
second moment (e.g. serial correlation coefficient) is a function of the first moment.

We also consider a semi-parametric test of whether the state variables of the three models
can explain the own-history predictability properties of returns. Our test is an adaptation of the
Huang and Zhou (2017) test. We test whether the R2 from a predictive regression of returns on
their lagged values exceeds a theoretical upper bound, R̄2. R̄2 depends on the state variables of
the stochastic discount factor (i.e. the state variables which explain stock returns). Unlike the
residual-based tests, this test does not depend on the functional form of the stochastic discount
factor being correctly specified. It requires only that the state variables be correctly specified.

The Bansal-Yaron state variables cannot explain the own-history predictability of returns.
We find find statistically significant excess predictability (excessively high R2 significantly
greater than R̄2) at four out of nine horizons using annual data and six out of nine horizons
using quarterly data. While there is superficially more hope for the Campbell-Cochrane and
Cecchetti-Lam-Mark model state variables, this turns out not to be robust. There is statistically
significant excess predictability at only one of the nine horizons considered for the Campbell-
Cochrane and Cecchetti-Lam-Mark models in our main results using annual data. However,
this good performance does not survive switching to quarterly data. There are many R2 bound
exceedences for the Campbell-Cochrane state variable using quarterly data. There is only one
significant R2 bound violation for the Cecchetti-Lam-Mark state variable over the whole sample
using quarterly data. But, again, there are many violations in each sub-sample when we split
the sample into two equal-length sub-samples, and the ability of the Cecchetti-Lam-Mark state
variable to explain return predictability is not robust over time.

Apart from the question of how well these models explain own-history predictability in
asset returns being interesting in its own right, testing this property leads us naturally to
residual-based testing. This is a standard time-series specification test, although not one that
is commonly used in the context of consumption-based asset pricing models. In this setting,
GMM estimation and an accompanying J-test is more common. The advantage of testing the
residuals, in this case from the market return, is that it allows us to test models which are
estimated in “stages” - i.e. where the estimation is not done in one single GMM implementation.
Both the Campbell-Cochrane and Cecchetti-Lam-Mark models are estimated in stages in this
way.
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The Bansal-Yaron and Campbell-Cochrane models are two of the most prominent models
designed to simultaneously explain the equity premium (Mehra and Prescott, 1985) and risk-
free rate (Weil, 1989) puzzles. Assuming a standard endowment economy with a representative
investor who has constant relative risk aversion (CRRA) preferences, the observed difference
between stock returns and low-risk bond yields requires extremely high levels of risk aversion
to explain. This is the equity premium puzzle. The risk-free rate puzzle compounds the equity
premium puzzle. If CRRA investors are indeed as risk averse as they would need to be to
justify the equity premium, low-risk bond yields are far too low. As a result, researchers such
as Bansal and Yaron (2004) and Campbell and Cochrane (1999) have sought to modify the
standard CRRA set-up in order to account for these puzzles. In terms of explaining the equity
premium and risk-free rate puzzles simultaneously, these models do reasonably well. But they
are yet to be examined in terms of their ability to capture the predictability of stock returns in
any great detail.

Huang and Zhou (2017) is the main study of how well the Bansal-Yaron and Campbell-
Cochrane models explain return predictability. They develop the R2 bound test described above,
but in the context of one-step-ahead predictability of the market return with respect to several
well known predictors (the book-to-market ratio, term spread, CAY , investment-to-capital
ratio, new-orders-to-shipments ratio, output gap and credit expansion).1 Huang and Zhou use
Constantinides and Ghosh’s (2011) inversion of the Bansal-Yaron model which renders the
state variables observable. For the Campbell-Cochrane model, the state variable is unobserved
and Huang and Zhou extract it as per Campbell and Cochrane’s (1999) calibration. They do
not estimate the model first, but condition on the extracted state variable. Huang and Zhou
show that the degree of predictability in the market return is greater than can be explained by
the Bansal-Yaron and Campbell-Cochrane models’ state variables.

Our residual-based approach is potentially more powerful, since it can detect situations
where the asset pricing model suggests too little predictability. In addition, our residual-based
tests have the advantage of accounting explicitly for any initial estimation of the model or its
state variables. While the Bansal-Yaron model can be inverted so that its state variables are a
function of observables, this inversion is not generally possible for other asset pricing models
(e.g. the Campbell-Cochrane model).

There has been little recent work on explaining own-history stock return predictability in
the context of consumption-based asset pricing models. Kandel and Stambaugh (1989) propose
a model with a representative CRRA investor and where consumption growth is lognormally
distributed with time-varying mean and variance. The mean and variance of consumption

1Our adaptation is to adapt the test for q-period-ahead predictability with respect to lagged returns.
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growth follow a nine-state Markov-switching process and exhibit positive serial correlation.
Kandel and Stambaugh’s calibration exercise shows that the model produces the “U” shaped
autocorrelation function observed in stock returns. However, the model is not able to replicate
the observed pattern of small positive autocorrelations at short horizons followed by larger
negative autocorrelations at longer horizons. Kandel and Stambaugh speculate that this is
because their model is overly restrictive. In particular, current news only affects the conditional
distribution of consumption one period in the future. Nonetheless, their model broadly matches
the observed pattern of autocorrelations at horizons greater than 12 months.

Cecchetti et al. (1990) use a similar specification to Kandel and Stambaugh. Cecchetti et al.
use a Markov-switching log endowment level and a more parsimonious two-state specification.
They find that popular measures of serial correlation always lie within a 60% confidence interval
of data simulated from the model. The Cecchetti et al. model has the same problem of not
being able to generate negative autocorrelations at short horizons as the Kandel and Stambaugh
model.

We update the Cecchetti et al. (1990) evidence in two ways. First, we formally estimate
their model. This also allows for the development of asymptotic theory for the hypothesis tests
used. Second, the Cecchetti et al. (1990) model rests on CRRA preferences. As discussed
above, these have been much criticised on an empirical basis, in particular because of the
equity premium and risk-free rate puzzles. We test more recent models that can potentially
accommodate these two puzzles. However, we also include the Cecchetti-Lam-Mark model in
our results as a benchmark, since it is a model explicitly designed to explain serial correlation
in returns.

Other attempts have been made to explain own-history predictability in a risk-based frame-
work. Kim et al. (2001) proxy risk by volatility and use a volatility feedback model (where
an unexpected change in volatility has an immediate impact on stock prices) with volatility
following a two-state Markov-switching process. Risk adjusting returns in this way accounts
for the serial correlation observed in returns. We focus on consumption-based models, which
micro-found their risk factors from the start, rather than more ad hoc risk adjustments.

More recently, Barroso et al. (2017) consider how conditional predictability of the short-run
equity premium varies with economic and risk conditions.2 They model the equity risk premium
as a function of economic state variables. The extent to which these state variables forecast
both the equity risk premium and consumption growth varies with time. When a state variable
predicts consumption growth more strongly, it also contributes more to the equity premium.
This is consistent with the intertemporal CAPM (Barroso et al., 2017). A consumption-based

2There are also non-risk based explanations for return predictability. These are beyond the scope of this paper.
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asset pricing model is capable of explaining short-term conditional predictability, although no
specific specification is tested.

This paper proceeds as follows. Section 1.2 outlines the three asset pricing models tested
and their estimation. Section 1.3 discusses the tests we use and how we modify them to account
for parameter estimation. Section 1.4 briefly describes the data and reports the estimation of
the asset pricing models. Section 1.5 presents our empirical results regarding the predictability
of the model residuals and Section 1.6 our robustness analysis. Section 1.7 concludes.

1.2 The models and their estimation

1.2.1 Bansal-Yaron model

The Bansal and Yaron (2004) model is as follows:

Vt =

(1−δ )C
1− 1

ψ

t +δ

(
Et

[
V 1−γ

t+1

]) 1− 1
ψ

1−γ

 1
1− 1

ψ

(1.1)

xt+1 = ρxxt +ψxσt ε t+1 (1.2)

∆ct+1 = µc + xt +σtηt+1 (1.3)

∆dt+1 = µd +φxt +ϕσtut+1 (1.4)

σ
2
t+1 = σ

2 +ν(σ2
t −σ

2)+σwwt+1 (1.5)

ε t ,ηt ,ut ,wt ∼ NID(0,1),

where Vt is the representative investor’s value function, δ the subjective discount factor, γ >

0 the risk-aversion coefficient, ψ > 0 the elasticity of intertemporal substitution (EIS), Ct

consumption, Dt dividends, Et the expectation conditional on information at time t and lower-
case variables denote logs of upper-case variables.

The model has three key ingredients. First, it has recursive preferences (1.1) à la Epstein
and Zin (1989) and Weil (1989). These allow EIS and risk aversion to differ, unlike standard
CRRA preferences. This is an advantage: risk aversion and intertemporal substitution are
different concepts. EIS reflects the extent to which consumers are willing to smooth certain
consumption through time, while risk aversion relates to the extent to which consumers are
willing to smooth consumption across uncertain states of nature (Cochrane, 2008).

Second, consumption growth (1.3) has a small predictable component (the long-run risk, xt).
Consumption news in the present affects expectations of future consumption growth, increasing
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the impact of current consumption news on long-run consumption and therefore the difference
between present discounted values (PDVs) of dividend streams which drives returns.

Third, there is time-varying economic volatility (1.5) in consumption growth. This reflects
time-varying economic uncertainty and is a further source of investor uncertainty and risk.

In the Bansal and Yaron (2004) calibration, the model justifies the equity premium, risk-free
rate and the volatilities of the market return, risk-free rate and price-dividend ratio.

When Constantinides and Ghosh (2011) estimate the Bansal-Yaron model by GMM, the
results are mixed. Simulating through the model with the estimated parameter values, the model
is able to justify the market return in all specifications considered. The mean risk-free rate can be
a little high, although this too is justified when the model is estimated using the identity weight
matrix. Meanwhile, the J-statistic p-value is less than 0.03 in all specifications considered.
However, the estimated model still generates reasonable market returns in Constantinides and
Ghosh’s simulations and the model may therefore still be of interest from an asset pricing
point-of-view.

To estimate the model, Constantinides and Ghosh (2011) show that the log-linearised
version of the Bansal-Yaron model can be inverted, allowing the unobserved state variables to
be written as a linear combination of observables as follows.

xt = α0 +α1r f ,t +α2zm,t (1.6)

σ
2
t = β0 +β1r f ,t +β2zm,t (1.7)

where α0, . . . ,β2 are functions of Bansal-Yaron model parameters, as detailed in Appendix
A.1.1, and r f ,t the (log) risk-free rate. This allows them to express the Bansal-Yaron Euler
equation for a general asset as

Et

[
exp
{

a1 +a2∆ct+1 +a3

(
r f ,t+1 −

1
κ1

r f ,t

)
+a4

(
zm,t+1 −

1
κ1

zm,t

)
+ rt+1

}]
−1 = 0,

where rt is the log asset return and a1, . . . ,a4,κ1 are functions of the Bansal-Yaron model
parameters, also given in Appendix A.1.1.

In addition, they derive eight unconditional moment restrictions for continuously com-
pounded consumption and dividend growth, which are given in Appendix A.1.2. These moment
conditions are derived from Bansal and Yaron’s (2004) specification of consumption and
dividend growth, the long-run risk and its conditional variance.

The model has 12 parameters to estimate and we use 15 moment conditions to allow for an
overidentification test. Our set of moment conditions comprises an Euler equation for each of
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seven assets (the market index and six size and book-to-market double sorted portfolios, taken
from Kenneth French’s website), and the eight time-series restrictions.

Constantinides and Ghosh (2011) show that

Et rm,t+1 = B0 +B1xt +B2σ
2
t

where rm,t is the market return and B0, . . . ,B2 are non-linear combinations of the 12 model
parameters provided in Appendix A.1.3. This yields a plug-in estimator of Et rm,t+1, which we
use as the ex-ante expected market return.

1.2.2 Campbell-Cochrane model

Campbell and Cochrane’s (1999) model adds a slow-moving external habit to the standard
power utility function. The representative agent’s utility function is

Ut(C) = Et

∞

∑
s=0

δ
s (Ct+s −Ht+s)

1−γ −1
1− γ

,

where δ is the subjective discount factor, γ the utility curvature and Ht the habit level of
consumption. Defining St ≡ (Ct −Ht)/Ct and st ≡ ln(St), the habit evolves according to

st+1 = (1−φ)s̄+φst +λ (st)νt+1, (1.8)

where s̄ is the steady-state s, S̄ = σν

√
γ/(1−φ) and λ (st) is a sensitivity function given by

λ (st) =

(1/S̄)
√

1−2(st − s̄)−1, if st ≤ smax

0, otherwise,
(1.9)

with smax ≡ s̄+ 1
2(1− S̄2). Campbell and Cochrane set φ to be equal to the first-order autocor-

relation coefficient of the log market price-dividend ratio, zm,t .
Consumption and dividends satisfy

∆ct = ḡ+νt

∆dt = ḡ+wt
(1.10)



1.2 The models and their estimation 9

with ∆ being the first difference operator and(
νt

wt

)
∼ NID

((
0
0

)
,

(
σ2

ν σνw

σνw σ2
w

))
, (1.11)

where NID indicates normally and independently and identically distributed through time.
Campbell and Cochrane (1999) calibrate their model to match the annualised unconditional

equity premium using monthly US data. When given actual data, the model replicates the main
movements observed in stock prices. In simulations, the model is able to justify the means
and standard deviations of excess returns and the price-dividend ratio, and the existence of a
short-run and long-run equity premium. Moreover, this is achieved without a risk-free rate
puzzle by construction: the habit is specified such that the risk-free rate remains constant and
the model is calibrated such that the log risk-free rate is equal to its sample mean.3

In Garcia et al.’s (2004) GMM estimation of the Campbell-Cochrane model, the estimated γ

is significantly greater than 0 and the δ significantly less than 1. The J-statistic p-value exceeds
0.2, although this does condition on earlier estimates of time-series parameters in the manner
described below.

We estimate the Campbell-Cochrane model using a GMM procedure similar to Garcia et al.
(2004). The procedure has three steps. First, we estimate the time-series parameters ḡ, σ2

ν and
σ2

w in (1.10) by GMM. Second, we estimate α and φ from the linear regression

zm,t+1 = α +φzm,t + et+1.

Based on these estimates, we generate the series st . We do so by initialising the series at
s0 = s̄ = ln(σν

√
γ/(1−φ)), using the estimates of the relevant time-series moments from

above and assuming an initial γ of 2. This allows the series st to be generated as per (1.8) and
(1.9).

We can then proceed to the third step: estimating the preference parameters δ and γ from
the Euler equation

Et

[
δ

(
St+1

St

Ct+1

Ct

)−γ

(1+Rt)

]
−1 = 0, (1.12)

using an Euler equation for each of our seven assets. We use this new estimate of γ to generate
a new st series, and re-estimate (1.12) based on this new st series. We iterate this procedure

3Campbell and Cochrane (1999) argue this is realistic as the risk-free rate varies relatively little and does not
vary cyclically.
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until the estimates of δ and γ converge. The J-statistic p-values of Garcia et al. (2004) come
from their final iteration of this third step, but do not account for the initial estimation steps.

We obtain Et rm,t+1 from the Campbell-Cochrane model as follows. We use the fact that
1+Rt = (Pt +Dt)/Pt−1, where Pt is the price of the asset and Dt its dividend. Iterating the
Euler equation forwards, we have

Pt =
∞

∑
j=1

δ
j Et

[(
St+ j

St

Ct+ j

Ct

)−γ

Dt+ j

]
(1.13)

when we impose the no-bubble condition

lim
j→∞

δ
j Et

[(
St+ j

St

Ct+ j

Ct

)−γ

Pt+ j

]
= 0.

Therefore,

Et(1+Rt+1) =
Et ∑

∞
j=1 δ j

(
St+1+ j
St+1

Ct+1+ j
Ct+1

)−γ

Dt+1+ j

Et ∑
∞
j=1 δ j

(
St+ j
St

Ct+ j
Ct

)−γ

Dt+ j

. (1.14)

We estimate (1.14) for the market return by simulation. We simulate the series νt+1,νt+2,

νt+3, . . . and wt+1,wt+2,wt+3, . . . according to (1.11). Based on these series, we compute the
series st+1,st+2,st+3, . . ., ct+1,ct+2,ct+3, . . . and dt+1,dt+2,dt+3, . . . conditional on st , ct and dt .
We repeat this procedure 200 times, where each simulated νt+1 and wt+1 series is of length
100. We then compute the expectation on the right-hand side of (1.14) as the mean of the 200
simulated realisations of the fraction inside that expectation.

1.2.3 Cecchetti-Lam-Mark model

Cecchetti et al.’s (1990) model attempts to explain return autocorrelation in a rational frame-
work. The model is an endowment economy where the representative consumer has CRRA
preferences:

Ut(C) = Et

∞

∑
s=0

δ
sC1−γ

t+s −1
1− γ

.

Here, δ denotes the subjective discount factor and γ the coefficient of relative risk aversion.
Taking (log) consumption as the appropriate endowment process,

∆ct+1 = α0 +α1yt + ε t+1 . (1.15)
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yt ∈ {0,1} is a first-order Markov process and ε t ∼ NID(0,σ2). yt = 1 denotes a bad state, so
α1 is restricted to be less than zero.

Cecchetti et al. (1990) find that, using either risk-neutral (γ = 0) or risk-averse (γ = 1.7)
preferences, serial correlation in the observed market return always lies within a 60% confidence
interval of serial correlation in the market return generated by the model. The confidence
intervals come from Monte Carlo distributions of the serial correlation statistics, obtained by
simulating the model. The medians of the Monte Carlo distributions of the serial correlation
statistics obtained using γ = 1.7 are closer to the observed serial correlation than the medians of
the distributions using γ = 0, so Cecchetti et al. prefer the risk-averse specification. Cecchetti
et al. measure serial correlation using variance ratios and Fama and French (1988) regression
coefficients4 using annual US/S&P data over 2-10 year horizons.

There is no guarantee that this model would simultaneously explain the equity premium
and risk-free rate puzzles. Given the CRRA preferences, it probably would not. However, given
the model’s success in explaining market serial correlation, it is a useful benchmark for our
analysis.

We use GMM to estimate δ and γ . The moment conditions comprise an Euler equation for
each of our seven assets of the form

Et

[
δ

(
Ct+1

Ct

)−γ

(1+Rt)

]
−1 = 0. (1.16)

We estimate the Markov switching endowment process by maximum likelihood following
Hamilton (1989). In a slight deviation from Cecchetti et al. (1990), we estimate a Markov-
switching process where the consumption innovation ε t+1 |yt ∼ N(0,σ2

yt
), since this is more

numerically stable.
Et rm,t+1 ≈ Et [ln(1+Rm,t+1)] and Cecchetti et al. (1990) show that

Et [ln(1+Rm,t+1)] = Et

[
ln
(

1+κ(yt+1)

κ(yt)

)
+(α0 +α1yt + ε t+1)

]
(1.17)

where κ(yt) is a non-linear function of model parameters defined in Appendix A.2. Since yt is
a binary variable and the distribution the expectation in (1.17) is straightforward to compute.

4Fama and French (1988) regression coefficients are the slope coefficient from a regression of the q-period
return from t to t +q on the q-period return from t −q to t.
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1.3 Tests

To test whether the asset-pricing models discussed above capture the serial correlation structure
of stock returns, we note that rational expectations imply

rm,t+1 = Et rm,t+1 +ξt+1, (1.18)

where expectations are formed under the model in question and ξt+1 is unforecastable at t. If
the model accurately captures own-history predictability, ξt should be MDS. If not, there is
clearly something in the own-history predictability structure of rt not captured by Et−1 rt .

We denote by θ the parameters in the model in question and define Et rm,t+1 = µt+1(θ),
to make clear the dependence of the expected returns on θ . We estimate (1.18) using plug-in
estimators, µt(θ̂), of Et rt+1. We base our tests on the resulting residual ξt(θ̂) and denote

ξ̄ = T−1
T

∑
t=1

ξt(θ̂), ŝ2 = T−1
T

∑
t=1

(ξt(θ̂)− ξ̄ )2.

We consider tests of linear and non-linear predictability in ξt(θ̂), as well as a rescaled range
test. In each case, we adapt the test to cope with the fact that µt(θ)≡ Et−1 rm,t is estimated and
this estimate, µt(θ̂), is a function of a parameter vector estimated by GMM. It is well known
that this estimation can both affect the limiting distribution of the statistics considered and
induce serial dependence in the estimated residuals not present in the population.

In light of Poterba and Summers’s (1988) argument that tests of the MDS null can have
locally low power against certain alternatives, we use a battery of tests. Different tests have
different power properties against different (local) alternatives. It therefore seems prudent to
cover all bases and consider several tests. This approach bears fruit. Throughout the results,
there are examples where one test fails to reject while all the others reject. It is not the case that
the same test keeps failing to reject.

1.3.1 Linear predictability

A natural place to start with testing whether or not the residuals are MDS is a test based on the
residuals’ autocorrelations. Since the MDS null implies that all autocorrelations are zero, it
makes sense to use a test statistic that incorporates autocorrelations from more than one lag.
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We use a weighted correlogram, of the form

C(q) =
q−1

∑
j=1

(
1− j

q

)
ρ( j), (1.19)

where ρ( j) is the jth order serial correlation coefficient of ξt . C(q) is a weighted sum of
serial correlations. If C(q)> 0, positive autocorrelation predominates at horizon q. C(q)< 0 is
evidence that negative autocorrelation predominates at horizon q. We consider q∈{2,3, . . . ,10}
years.

Within the class of tests based on multiple serial correlation coefficients, we use a test
of the form in (1.19) for two reasons. First, it is a linear transformation of the variance ratio
statistic. The variance ratio V R(q) is the variance of the sum of q residuals divided by q times
the variance of the residuals. That is V R(q) = Var(ξt+1 +ξt+2 + . . .+ξt+q)/qVar(ξt). Since
under the MDS null the residuals ξt and ξt+ j ( j ̸= 0) are uncorrelated, the variance ratio is
equal to one under the null. Cochrane (1988) shows we can write V R(q) = 1+2C(q), hence
the connection between (1.19) and V R(q).

Second, Poterba and Summers (1988) and Lo and MacKinlay (1989) show variance ratio
tests are generally more powerful tests of the martingale difference hypothesis than unit root
and autoregressive tests. We are unable to compute V R(q) directly in a way that accounts
for the estimation of θ̂ , since the Delgado and Velasco (2011) formulae extend only to serial
correlations, not variances. Given that we can only work with serial correlations, there is then
little point multiplying C(q) by two and adding one. In addition, we prefer a test of the form in
(1.19) over a Box-Pierce type test because there is information in the sign of the test regarding
whether positive or negative serial correlation prevails.

In terms of estimating C(q), we cannot simply treat the estimated residuals ξt(θ̂) as if they
are the population residuals ξt(θ). The estimation of θ̂ affects the limiting distribution of ρ̂( j)

under the MDS null (Delgado and Velasco, 2011). We therefore use Delgado and Velasco’s
(2011) transformation of the residual sample serial correlations. We denote the transformed
autocorrelations by ρ̄( j). Delgado and Velasco start by standardising the autocorrelations so
that they have a unit variance. To do this, they define the matrix Am such that

(Am)−1/2
ρ̂

m ∼ N(0, Im),
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with ρ̂m = [ρ̂(1), . . . , ρ̂(m)]. To make the transformation feasible, Delgado and Velasco (2011)
use Lobato et al.’s (2002) estimate of Am

Âm =
1

T ŝ4

[
gm(0)+

ℓ−1

∑
j=1

(
1− j

ℓ

){
gm( j)+gm( j)′

}]

where gm( j) = T−1
∑

T
t=1+ j wm

t wm′
t− j, wm

t = (w1,t , . . . ,wm,t)
′, wk,t =

(
ξ̂t(θ̂)− ξ̄

)(
ξ̂t− j(θ̂)− ξ̄

)
and ℓ is a bandwidth parameter. We use ℓ=

⌈
T 1/3

⌉
.

Delgado and Velasco (2011) rid the estimated serial correlations collected in ρ̂m of their
dependence on θ̂ by projecting them onto the derivatives of ξ̂t(θ̂). First, define

ζ̂
m =

[
ζ̂ (1)′, . . . , ζ̂ (m)′

]′
ζ̂ ( j) =

1
T ŝ2

T

∑
t= j+1

ξ̇t(θ̂)
(

ξ̂t− j(θ̂)− ξ̄

)
+

1
T ŝ2

T

∑
t= j+1

ξ̇t− j(θ̂)
(

ξ̂t(θ̂)− ξ̄

)
ξ̇t(θ) =

∂

∂θ
ξt(θ)

Then, let ξ̃ m =
(
Âm)−1/2

ζ̂ m and ρ̃m =
(
Âm)−1/2

ρ̂m. Finally, let

ρ̄
m( j) =

ρ̌m( j)
šm( j)

ρ̌
m( j) = ρ̃

m( j)− ζ̃ ( j)′
(

m

∑
k= j+1

ζ̃ (k)ζ̃ (k)′
)−1 m

∑
k= j+1

ζ̃ (k)ρ̃m( j)

šm( j)2 = 1+ ζ̃ ( j)′
(

m

∑
k= j+1

ζ̃ (k)ζ̃ (k)′
)−1 m

∑
k= j+1

ζ̃ (k)

Delgado and Velasco (2011) show that

ρ̄
m d→ N(0, Im−d) (1.20)

where d = dim(θ), ρ̄m = (ρ̄(1), . . . , ρ̄(m− d))′ and d→ denotes convergence in distribution.
Notice that the projections sacrifice d degrees of freedom, so that only the first m−d can be
transformed.
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Based on (1.20), we estimate the weighted correlogram in (1.19) by

C̄(q) =
q−1

∑
j=1

(
1− j

q

)
ρ̄

q−1+d( j).

Because of the degrees of freedom sacrificed in the projections, we must estimate q−1+d

autocorrelations in order to transform the first q−1 autocorrelations. It follows from (1.20)
that

C̄(q) d→ N

(
0,

[
q−1

∑
j=1

(
1− j

q

)2
])

under the MDS null.

1.3.2 Non-linear predictability

The weighted correlogram statistic is a function of the sample autocorrelations of ξ̂t = ξt(θ̂)

and therefore does not exploit the full hypothesised MDS structure of ξt = ξt(θ). In particular
it neglects non-linear predictability. We test for non-linear predictability using Linton and
Whang’s (2007) quantilogram, which is based on the correlation of quantile hits. If ξt is MDS,
the probability ξt+k is in the α quantile given ξt is in the α quantile should remain α . The
quantile hits are uncorrelated. The quantilogram is a more general version of Wright’s (2000)
sign tests, which focus on whichever quantile zero is in.

In our test statistic, we weight the quantilogram estimates analogously to the variance ratios.
This gives

Ŵα(q) =
q−1

∑
j=1

(
1− j

q

)
ρ̂α( j), (1.21)

where

ρ̂α( j) =
∑

T− j
t=1 ψα(ξ̂t − µ̂α)ψα(ξ̂t+ j − µ̂α)√

∑
T− j
t=1 ψ2

α(ξ̂t − µ̂α)
√

∑
T− j
t=1 ψ2

α(ξ̂t+ j − µ̂α)

ψα(·) = α −1(·< 0)

µ̂α = argmin
m∈R

T

∑
t=1

(ξ̂t −m)×ψα(ξ̂t −m).

and 1(·) is the indicator function. We evaluate (1.21) over the same q as in the correlograms
and over a range of both extreme and moderate quantiles, namely α ∈ {0.01,0.05,0.1,0.25,
0.5,0.75,0.9,0.95,0.99}.
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We use a wild bootstrap for inference. This allows us to account for the estimation
step involved in constructing ξ̂t . ξ̂t is pre-multiplied by ι∗t at each t, where E(ι∗t ) = 0 and
Var(ι∗t ) = 1. We use Mammen’s (1993) two-point distribution for ι∗t .5 Then, we use the
bootstrapped residuals to extract a pseudo-sample of returns r∗m,t by the relationship

r∗m,t = µt(θ̂)+ ι
∗
t ξ̂t .

We use r∗m,t to generate a new series for the market value and therefore obtain the pseudo-sample
of the log price-dividend ratio, z∗m,t . We then re-estimate the asset pricing model parameters
using the modified data, generating a pseudo-sample of expected returns and thus a (new)
pseudo-sample of residuals.

The empirical distribution of the weighted quantilograms thus obtained is used for inference
and the bootstrap procedure is repeated 200 times.6 Notice that our procedure conditions on
consumption and dividends.

1.3.3 Hong-Lee generalised spectral test

The Hong and Lee (2005) generalised spectral test can detect both linear and non-linear
predictability. We add it to our battery of MDS tests because the known low power problems of
MDS tests (Poterba and Summers, 1988) mean it is useful to have additional tests. The test is
based on the Hong (1999) generalised spectrum, corrected for the estimation of the parameters
of the residual series in a way that yields a test statistic which has a nuisance parameter-free
limiting distribution.

The test statistic is

Ĝ(q) =
∑

q−1
j=1

(
1− j

q

)2
(T − j)

∫ 3
−3 |ς̂

(1,0)
j (0,v)|2dW (v)− D̂(q)√

Ê(q)

5ι∗t is iid through time and has probability mass function

fI(ι
∗
t ) =

{√
5+1

2
√

5
, ι∗t = 1−

√
5

2√
5−1

2
√

5
, ι∗t = 1+

√
5

2

6While 200 repetitions is a fairly low number, we are constrained by computational power in our ability to do
more since the simulations for the Campbell-Cochrane expected returns each involve 200 repetitions themselves
at each point in time in each bootstrap repetition.
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where

D̂(q) =
q−1

∑
j=1

(
1− j

q

)2 1
T − j

T−1

∑
t= j+1

ξ̂
2
t

∫ 3

−3
|π̂t− j(v)|2dW (v)

Ê(q) = 2
T−2

∑
j=1

T−2

∑
k=1

(
1− j

q

)2(
1− k

q

)2 ∫ 3

−3

∫ 3

−3

∣∣∣∣ 1
T −max{ j,k}

×
T

∑
t=max{ j,k}+1

ξ̂
2
t π̂t− j(v)π̂t−k(v′)

∣∣∣∣2dW (v)dW (v′)

W (·) is the standard Normal distribution truncated on the interval [−3,3], π̂(v) = eivξ̂t −
T−1

∑
T
t=1 eivξ̂t , i =

√
−1, and

ς̂
(1,0)
j (0,v) =

∂

∂u
ς̂ j(u,v)|u=0

ς̂ j(u,v) = ϖ̂ j(u,v)− ϖ̂ j(u,0)ϖ̂ j(0,v)

ϖ̂ j(u,v) =
1

T −| j|

T

∑
t=| j|+1

eiuξ̂t+ivξ̂t−| j|.

Under the MDS null and the technical conditions laid out in Hong and Lee (2005, p.p. 509-510),
Hong and Lee show that

Ĝ(q) d→ N(0,1).

1.3.4 Rescaled range

We also consider a rescaled range test. We do so as the rescaled range can be more powerful
than other MDS tests in the presence of long-range dependence (Lo, 1991). The rescaled range
is

Q̂ =
1

ŝ
√

T

[
max

k≤ j≤T

j

∑
t=k

(
ξt(θ̂)− ξ̄

)
− min

k≤ j≤T

j

∑
t=1

(
ξt(θ̂)− ξ̄

)]
.

ŝ2 is a consistent estimator of Var(ξt(θ)). Given the issue of the estimation of θ̂ distorting
the limiting distribution of the statistic, we conduct inference using the same wild bootstrap
procedure as for the quantilogram.
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1.3.5 Maximal predictability

Huang and Zhou (2017) develop a Wald test of whether the predictability of excess market
returns, r̃m,t+1 = rm,t+1 − r f ,t+1, is too large. Predictability is measured with respect to a
forecasting variable, ft . “Too large” is defined as too large to be consistent with M̃t , the
stochastic discount factor (SDF) normalised such that EM̃t+1 = 1, being a function of a given
set of state variables ωt .7 The test is semi-parametric in that the functional form of the SDF
need not be known. The Wald statistic tests whether theoretical upper bound on R2 implied by
the state variables is exceeded by the empirical R2 from the univariate one-step-ahead predictive
regression of r̃t+1 on ft .

It is straightforward to verify that this test applies almost directly to the q-step-ahead
predictive regression

r̃t+q = α +β ft + ε t+q .

In this context, when bounding R2 with SR(rm), the market Sharpe ratio, the bound becomes

R2 ≤ R̄2 = φ
2
ω,r f h2SR2(rm),

where

φ
2
ω,r f = ρ

2
ω,r f

Var[r̃t+q(r̃t −µ f )]

Var(r̃t+q)Var( ft)

ρ
2
ω,r f =

Cov[ωt+q, r̃t+q( ft −µ f )]
′Var−1(ωt+q)Cov[ωt+q, r̃t+q( ft −µ f )]

Var[r̃t+q( ft −µ f )]
,

and µ f = E( ft). h is a parameter chosen by the marginal investor. We follow Cochrane and
Saá-Requejo (2000) in using h = 2. This bound requires ω to have an elliptical distribution,
which it does in all models.8

Huang and Zhou’s (2017) test exploits the asymptotic normality of standard estimators
of the mean and covariance matrix of (rt+q, ft ,rt+q ft ,ω ′

t+q)
′. These means and covariances,

which comprise θSR, are all that is required to calculate the empirical R2 and its bound. We
follow Huang and Zhou and estimate θSR by GMM.

Testing whether R2 exceeds R̄2 is equivalent to a one-sided test of the null f (θSR) ≡
R2 − R̄2 = 0 against the alternative that f (θSR)≡ R2 − R̄2 > 0 (Huang and Zhou, 2017). The

7Our other tests relate to actual, not excess returns.
8The state variables for the Bansal-Yaron and Campbell-Cochrane models are conditionally lognormal, and

the Cecchetti-Lam-Mark state variable has a binomial distribution.
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Wald statistic for this test is

WRA = T f (θ̂SR)

[
d f

dθSR
Var(θ̂SR)

d f
dθSR

]−1

f (θ̂SR)
d→ χ

2(1).

This procedure can then be applied to the predictive regression Fama and French (1988)
use to test for serial correlation in the market return

r̃m,t+q(q) = αq +βqr̃t,m(q)+ ε t+q, (1.22)

albeit, with the regression specified in terms of excess, rather than actual, returns.
For the Campbell-Cochrane and Cecchetti-Lam-Mark models, this test requires us to

condition on our estimated state variables. The state variable for the Campbell-Cochrane model
is st , which we extract as explained in Section 1.2.2. The state variable for the Cecchetti-Lam-
Mark model is yt , which we extract by estimating the Markov-switching model for consumption
and taking yt = 1 if the estimated smoothed probability Pr(yt = 1|Ft+1) ≥ 1

2 , where Ft is
information available at t. The state variables for the Bansal-Yaron model are ∆ct , xt and σ2

t .
Since we extract xt and σ2

t as a linear function of r f ,t and zm,t , we take ∆ct , r f ,t and zm,t to be
the three Bansal-Yaron state variables, so that the results are not dependent on the estimation of
the model.

1.4 Data

Data for our main results are from the US from 1930 to 2016. The time period is annual and,
as is standard in the asset pricing literature, the agent’s decision interval is assumed to be the
time horizon considered. We consider results are robust to using quarterly data and a quarterly
decision interval instead as a robustness check (see Section 1.6.3).

The market index is the value-weighted CRSP index, obtained from WRDS. The risk-free
rate is the US one-month Treasury bill, from Ibbotson Associates via French’s website. The
set of assets used to estimate the asset pricing models also includes the six double-sorted
size/book-to-market portfolios from Ken French’s website. In our robustness checks, we
consider replacing the six double-sorted size/book-to-market portfolios with the five industry
portfolios, also from Ken French’s website, in the estimation of the models (see Section 1.6.2).

Consumption is seasonally adjusted per-capita non-durables and services personal con-
sumption expenditures from the BEA. We deflate nominal data by the BEA’s consumption
deflator. Table 1.1 summarises the data.
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Table 1.1 Data summary statistics

Mean Median Std dev SC(1)

rm 0.063 0.105 0.194 -0.024
r f 0.005 0.008 0.037 0.762
∆c 0.020 0.023 0.022 0.466
∆d 0.017 0.023 0.111 0.192
zm 3.409 3.393 0.455 0.885

Descriptive statistics for our key variables at the annual frequency over the period 1930-2016. rm denotes the log
market return, r f the quarterly log risk-free rate (the rolled over 1 month US T-bill), ∆c log consumption growth,
∆d log dividend growth and zm the log price-dividend ratio.

Table 1.2 Bansal-Yaron model estimates

µc µd φ ϕ ρx ψx σ ν σw δ ψ γ

0.020 0.035 3.499 5.697 1.320 0.810 0.008 0.207 -0.006 0.929 2.310 7.755
(0.002) (0.008) (0.348) (1.702) (0.161) (0.289) (0.002) (0.503) (0.005) (0.000) (0.324) (0.065)
0.000 0.009 0.000 0.000 0.000 0.014 0.000 0.511 0.357 0.000 0.000 0.000
J-stat 121.7 p-value 0.000

Estimates of the Bansal-Yaron model parameters using annual US data 1930-2016. Point estimates are displayed in
the first row, standard errors (in parentheses) in the second and p-values in the third. All p-values are asymptotic.

1.4.1 Model estimation

Our main results relate to when the asset pricing models are estimated at the annual frequency
where the set of assets used to estimate the Euler equations comprises the market return, the
risk-free rate and the size double-sorted size/book-to-market portfolios and we use the optimal
weight matrix in GMM estimation. This is the specification that gives the most reasonable
expected returns series across the board (Section 1.6 gives details of the residuals for other
specifications; because actual returns are the sum of the expected return and the residual, only
models with reasonable residual series will have reasonable expected returns).

Many of the other specifications do not give reasonable expected returns series. We look
only at specifications where the expected returns are plausible. As much as our focus is on the
dynamics of returns, rather than the levels, the first and second moments are related. Serial
correlation (a centred second moment) depends on the first moment. But, even if we only used
uncentred second moments, there is no reason to think that a model that fails to fit the first
moment would fit the second. Even if it did, it would be of little practical relevance for pricing
assets. While we focus on the specification that generally gives the most reasonable expected
returns, our results are robust to considering other specifications giving reasonable expected
returns.
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Table 1.3 Campbell-Cochrane model estimates

ḡ Var(∆c) Var(∆d) Cov(∆c,∆d) α φ δ γ

0.021 4.07×10−4 0.012 0.001 0.424 0.879 0.926 10−7

(0.003) (1.68×10−4) (0.004) (6.93×10−4) (0.173) (0.050) (0.016) (0.322)
0.000 0.015 0.001 0.070 0.017 0.000 0.000 1.000
J-stat 0.068 R2 0.783 J-stat 38.37
p-value 0.795 p-value 3.18×10−7

Estimates of the Campbell-Cochrane model parameters using annual US data 1930-2016. Each panel (set of
columns) refers to a separate estimation. The estimates of δ and γ , and the associated p-values, condition on the
estimates in the first two panels. Point estimates are displayed in the first row, standard errors (in parentheses) in
the second and p-values in the third. All p-values are asymptotic.

Table 1.4 Cecchetti-Lam-Mark model estimates
(a) Consumption model

α0 α1 p q σ2
0 σ2

1

0.023 -0.016 0.956 0.876 0.012 0.040

(b) Preference parameters

δ γ

0.966 2.431
(0.290) (15.38)
0.001 0.874
J-stat 37.18
p-value 6×10−7

Estimates of the Cecchetti-Lam-Mark model parameters, estimated using annual US data 1930-2016. Panel (a)
presents point estimates only. In panel (b), point estimates are displayed in the first row, standard errors (in
parentheses) in the second and p-values in the third. All p-values are asymptotic.

Table 1.2 suggests the Bansal-Yaron model is mis-specified. The J-statistic has a vanishingly
small p-value. Worryingly, the long-run risk is estimated to be non-stationary (ρ̂x > 1), although
this could simply be a function of more general model mis-specification. It is unsurprising that
the resulting expected returns do not form a plausible financial time series. By extension, the
model residuals do not form a plausible financial time series, either, as shown in Table 1.5. It is
nonetheless interesting to test whether the Bansal-Yaron residuals are predictable. Since the
model is so clearly mis-specified, it is worth checking that the residual-based tests do in fact
reject it.

As we see in Table 1.3, there was some difficulty in estimating the Campbell-Cochrane
Euler equations. In order to generate an st series, we constrain the estimate of γ to be no less
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Table 1.5 Properties of ξ̂t

Model Mean Median Std dev SC(1)

Bansal-Yaron -1248 -1248 1.694 0.816
Campbell-Cochrane 0.007 -0.012 0.210 -0.115
Cecchetti-Lam-Mark -0.017 0.014 0.191 -0.080

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and “SC(1)”
first-order serial correlation. The models are estimated and residuals computed using annual US data over the
period 1930-2016.

than 10−7 and this constraint binds. Not imposing this constraint gives γ̂ = −0.078 with a
standard error of 0.753, so the estimates are not very different relative to their standard errors.
The subjective discount factor is significantly less than one. The J-test rejects the model’s
Euler equations. Nonetheless, this is only indicative of how well specified the Euler equations
are. The Euler equation estimation conditions on earlier estimates of time-series parameters (ḡ,
Var(∆c), Var(∆d), Cov(∆c,∆d), α and φ ), yet the over-identification test in the third panel of
Table 1.3 does not account for this estimation. We cannot firmly reject the model on this basis.
Table 1.5 shows that the mean residual is close to zero, just 0.7%. The Campbell-Cochrane
model therefore seems to give reasonable expected returns, despite the issue of the estimation
constraint binding.

Table 1.4 shows that the Cecchetti-Lam-Mark model preference parameter estimates are also
generally reasonable. The subjective discount factor is less than one and the utility curvature
greater than zero. The Euler equations are rejected by the J-test, but this test does not enforce
the Markov-switching structure on consumption growth. Enforcing this structure may still
yield reasonable expected returns. Table 1.5 suggests this is indeed the case. The mean residual
for the Cecchetti-Lam-Mark model is fairly low at around -1.7% a year.

Figure 1.1 shows the autocorrelation functions of the observed market return and the model-
implied ex-ante expected returns. This graph is only indicative. We must be mindful of the
distortions in the model-implied autocorrelation functions induced by parameter estimation. In
the graph, the Bansal-Yaron is a long way from matching the market autocorrelation function.
The Campbell-Cochrane and Cecchetti-Lam-Mark model expected return autocorrelations are
fairly close to the observed market autocorrelations.

To remove the effect of estimation in the autocorrelations of the expected returns, we
can apply the Delgado and Velasco (2011) procedure to them. Note that the Delgado and
Velasco procedure transforms the standardised autocorrelations ρ̃m = (Âm)1/2. It transforms
the autocorrelations divided by their standard errors. So, in order to see the effect of the
transformation, we need to consider the (untransformed) standardised autocorrelations and the
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Fig. 1.1 Market and model autocorrelation functions
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Autocorrelation functions for the market return and the model-implied ex-ante expected returns. Serial correlation
is computed up to lag 10. The models are estimated and expected returns computed over 1930-2016. These
estimates of the model-implied autocorrelation functions are biased due to the estimation of the parameters of the
expected returns and it is therefore difficult to draw many firm conclusions from this figure, which is provided for
illustrative purposes only.
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Fig. 1.2 Market and model standardised autocorrelation functions
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(a) Unadjusted standardised autocorrelation function (ρ̃)
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(b) Adjusted standardised autocorrelation function (ρ̄)
Transformed and untransformed standardised autocorrelation for the model-implied ex-ante expected returns
compared to (untransformed) standardised autocorrelation for the market. Serial correlation is computed up to lag
10. The models are estimated and expected returns computed over 1930-2016.
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transformed standardised autocorrelations. These are shown in panel (a) of Figure 1.2, where
m = 10+d for each model. Panel (b) shows the transformed standardised autocorrelations, ρ̄m.
The market autocorrelation in panel (b) remains ρ̃m, since there is no adjustment needed.

We can see that, both with and without the Delgado and Velasco (2011) adjustment, the
Bansal-Yaron model’s standardised autocorrelations are the furthest from the market’s, which
is not a great surprise given the mis-specification of the model. Oddly, the Campbell-Cochrane
standardised autocorrelations appear to be closer to that of the market before applying the
adjustment. This would imply that the bias in the autocorrelation function of the Campbell-
Cochrane expected returns arising from the estimation of the model parameters was making the
Campbell-Cochrane autocorrelations artificially close to the market’s autocorrelations. The
adjustment does not appear to impact how close the Cecchetti-Lam-Mark autocorrelations are
to the market autocorrelations: they seem to be close in both cases.

1.5 Serial dependence in the model residuals

Our results for the Bansal-Yaron model are in Table 1.6. Unsurprisingly but reassuringly, given
how poorly the model performs in terms of the levels of returns, the quantilogram, Hong-Lee
and rescaled range tests resoundingly reject the null that the residuals are MDS. Not only can
the Bansal-Yaron model not explain mean returns (the first moment), it cannot explain return
dynamics (the second moment) either. Curiously, the correlogram does not reject the MDS null
at any lag.

Moreover, the maximal predictability results suggest that the Bansal-Yaron state variables
do not explain observed predictability, either. Changing the functional form of the SDF would
not enable a model based on the Bansal-Yaron state variables to explain the dynamics of returns.
There are extremely significant exceedences of the R2 bound, R̄2, at four horizons: four, five,
six and seven years.

However, we express some caution regarding these results for two reasons. First, R̄2

is, for the Bansal-Yaron model, almost always either less than zero or greater than one for
the holding periods considered. So either any degree of predictability is consistent with
consumption growth, the long-run risk and time-varying economic volatility being risk factors
in the stochastic discount factor or no predictability is consistent with these risk factors. Second,
the parameters of R2 and R̄2 are jointly estimated using GMM. The R2 does not come directly
from a regression themselves. The methods ought to be equivalent but it is not computationally
possible to satisfy the moment conditions exactly here, despite the system being exactly
identified. Therefore the methods are not equivalent in a finite sample. Because of this, the
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Table 1.6 Bansal-Yaron model results
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) -0.024 -0.041 -0.039 -0.037 0.001 -0.063 -0.100 -0.124 -0.099
(Std Err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)
p-value 0.660 0.606 0.698 0.751 0.996 0.666 0.532 0.468 0.586

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.013 -0.016 -0.02 -0.024 -0.028 -0.032
0.59 0.59 0.59 0.59 0.60 0.61 0.63 0.63 0.63

0.05 0.219 0.33 0.375 0.456 0.557 0.644 0.704 0.745 0.772
0.12 0.16 0.22 0.20 0.20 0.18 0.17 0.17 0.17

0.1 0.247 0.425 0.587 0.782 1.005 1.205 1.374 1.508 1.631
0.01 0.04 0.03 0.03 0.02 0.01 0.01 0.00 0.00

0.25 0.366 0.678 0.945 1.180 1.391 1.590 1.771 1.935 2.079
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.375 0.725 1.043 1.323 1.574 1.801 1.994 2.160 2.293
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 0.354 0.611 0.823 1.033 1.235 1.416 1.574 1.717 1.844
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.9 0.363 0.648 0.887 1.081 1.234 1.345 1.414 1.455 1.477
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.95 0.282 0.402 0.453 0.476 0.485 0.487 0.483 0.476 0.466
0.00 0.00 0.01 0.04 0.04 0.11 0.11 0.11 0.11

0.99 -0.009 -0.018 -0.024 -0.030 -0.036 -0.041 -0.047 -0.052 -0.057
0.06 0.33 0.42 0.42 0.42 0.42 0.42 0.42 0.37

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 85.14 85.15 85.13 85.09 85.03 84.95 84.87 84.78 84.68
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(d) Rescaled range

Q̂ 2.926
p-value 0.00

Panels (a)-(d) report tests of the MDS null for the Bansal-Yaron residuals, over the period 1930-2016. C̄(q)
denotes the estimated transformed weighted correlogram statistic, ∑

q−1
j=1(1− j/q)ρ̄(q). Its standard error and

asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram is given in larger font
for the appropriate (α,q) combination. Its bootstrapped p-value is given underneath in smaller font. Ĝ(q) denotes
the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given beneath. Q̂ denotes the estimated
rescaled range. Its bootstrapped p-value is given beneath.
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Table 1.6 Bansal-Yaron model results
(e) Maximal predictability

q 2 3 4 5 6 7 8 9 10

R2 0.100 0.044 0.462 0.002 0.038 0.043 0.125 0.028 0.000
R̄2 21.68 0.122 -12.29 -59.18 -0.725 -2.738 1993 67.57 1.058

Wald stat - - 42.19 54.06 50.13 5.156 - - -
p-value - - 0.000 0.000 0.000 0.023 - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the Bansal-Yaron
model state variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The Wald statistic and its asymptotic
p-value are reported.

reported R2 for the predictive regression for a given horizon is not the same for the Bansal-Yaron
model as it is for the Campbell-Cochrane and Cecchetti-Lam-Mark models, even though it
should be. These discrepancies highlight the numerical challenges of the GMM estimation
undertaken to compute the tests. However, these numerical issues do not affect the maximal
predictability tests for the Campbell-Cochrane or Cecchetti-Lam-Mark models so may simply
be a further reflection of the mis-specification of the Bansal-Yaron state variables. Overall, the
best available evidence is that the state variables of the Bansal-Yaron model cannot explain the
predictability of market returns.

Our main results regarding the Campbell-Cochrane model are in Table 1.7. We reject the
null that the Campbell-Cochrane residuals are MDS: the correlogram rejects the MDS null at all
lags considered. However, the Hong-Lee test and rescaled range provide no rejections and only
three of the 81 quantilograms reject the MDS null at the 10% level. This shows the benefits of
using a battery of test statistics: the correlogram lacked power against the specific alternative
characterising the Bansal-Yaron residuals but has it against the alternative characterising the
the Campbell-Cochrane residuals.

Turning to our maximal predictability tests, there are three exceedences of the R2 bound,
only one of which is significant. On the basis of annual data, it therefore appears possible that
a model based on the surplus consumption state variable but with a different functional form
of the SDF could explain the dynamics of returns. This conclusion, however, is not robust to
using quarterly data (see Section 1.6.3).

Table 1.8 shows the results for the Cecchetti-Lam-Mark model. The residuals are clearly
not MDS. The correlogram rejects the MDS null from q = 5 onwards and the rescaled range
also rejects the MDS null. Both rejections suggest negative serial dependence: that higher
values are followed by lower ones. Neither the quantilogram nor the Hong-Lee tests provide
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Table 1.7 Campbell-Cochrane model results
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) -0.117 -0.170 -0.196 -0.239 -0.304 -0.341 -0.430 -0.442 -0.452
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)
p-value 0.030 0.035 0.052 0.043 0.022 0.020 0.007 0.010 0.013

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.013 -0.016 -0.020 -0.024 -0.028 0.004
0.02 0.09 0.21 0.25 0.45 0.45 0.51 0.52 0.47

0.05 -0.014 -0.028 -0.043 -0.058 -0.073 -0.042 -0.001 0.029 0.052
0.47 0.83 0.88 0.92 0.97 1.00 0.96 0.98 0.7

0.1 0.017 -0.012 -0.052 -0.070 -0.101 -0.099 -0.092 -0.098 -0.113
0.67 0.81 0.74 0.76 0.82 0.86 0.81 0.82 0.97

0.25 0.026 -0.020 -0.086 -0.140 -0.183 -0.217 -0.234 -0.230 -0.212
0.67 0.56 0.61 0.67 0.76 0.78 0.78 0.76 0.95

0.5 -0.006 -0.080 -0.114 -0.150 -0.179 -0.186 -0.190 -0.201 -0.198
0.80 0.79 0.85 0.85 0.87 0.92 0.92 0.94 0.92

0.75 -0.059 -0.120 -0.132 -0.141 -0.157 -0.150 -0.141 -0.143 -0.142
0.77 0.64 0.76 0.81 0.86 0.87 0.93 0.90 0.98

0.9 -0.064 -0.088 -0.129 -0.137 -0.163 -0.160 -0.173 -0.197 -0.222
0.82 0.89 0.93 0.90 0.90 0.88 0.87 0.86 0.99

0.95 -0.030 0.024 0.038 0.037 0.029 0.015 -0.001 -0.020 -0.040
0.42 0.97 0.98 0.99 0.95 0.88 0.91 0.91 0.85

0.99 -0.009 -0.018 -0.026 -0.035 -0.044 -0.053 -0.062 -0.071 -0.080
0.01 0.23 0.28 0.31 0.35 0.44 0.48 0.53 0.48

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.381 0.386 0.388 0.386 0.383 0.379 0.373 0.365 0.345
p-value 0.703 0.699 0.698 0.699 0.702 0.705 0.709 0.715 0.730

(d) Rescaled range

Q̂ 0.911
p-value 0.28

Panels (a)-(d) report tests of the MDS null for the Campbell-Cochrane residuals, over the period 1930-2016. C̄(q)
denotes the estimated transformed weighted correlogram statistic, ∑

q−1
j=1(1− j/q)ρ̄(q). Its standard error and

asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram is given in larger font
for the appropriate (α,q) combination. Its bootstrapped p-value is given underneath in smaller font. Ĝ(q) denotes
the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given beneath. Q̂ denotes the estimated
rescaled range. Its bootstrapped p-value is given beneath.
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Table 1.7 Campbell-Cochrane model results
(e) Maximal predictability

q 2 3 4 5 6 7 8 9 10

R2 0.057 0.022 0.012 0.000 0.029 0.035 0.039 0.020 0.002
R̄2 0.092 0.000 0.004 0.074 0.079 0.009 0.057 0.085 0.076

Wald stat - 27.35 0.604 - - 2.194 - - -
p-value - 0.000 0.437 - - 0.139 - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the Campbell-
Cochrane model state variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The Wald statistic and its
asymptotic p-value are reported.

any rejections of the MDS null. This serves to further illustrate the power issues of MDS tests
and justify our approach of considering multiple different tests.

Considering the maximal predictability tests, we see only one significant exceedence of the
R2 bound, which is at q = 2. Annual data therefore suggests that an SDF based on the good/bad
state indicator variable but with a different functional form may be able to explain the dynamics
of the market return. Again, though, this conclusion is not robust to using quarterly data (see
Section 1.6.3).

1.6 Robustness

We consider the robustness of our results to (i) using the identity weight matrix in GMM
estimation rather than the optimal weight matrix, (ii) using the five Fama-French industry
portfolios in place of the six Fama-French size/value portfolios when estimating the asset
pricing models and (iii) using quarterly data instead of annual data. Overall, we find that, even
where the models produce reasonable residual and expected returns series, they cannot explain
return dynamics.

In terms of whether the state variables can explain return dynamics, in the sense that the R2

of the predictive regressions does not exceed its theoretical upper bound, the finding that the
Bansal-Yaron state variable cannot explain the own-history predictability of returns is robust
to using quarterly data. The finding that the Campbell-Cochrane state variable may be able
to explain the predictability of returns is not robust to using quarterly data. The finding that
the Cecchetti-Lam-Mark model may be able to explain the predictability of returns survives
switching to quarterly data in the whole sample, but this finding is not robust over time. When
we split the sample period into two equal-length sub-samples, we get many more significant R2

bound exceedences in both sub-samples than in the whole sample.
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Table 1.8 Cecchetti-Lam-Mark model results
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) 0.043 -0.087 -0.201 -0.275 -0.342 -0.361 -0.428 -0.455 -0.526
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)
p-value 0.425 0.278 0.047 0.020 0.010 0.014 0.007 0.008 0.004

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.009 0.018 0.080 0.165 0.262 0.359 0.448 0.526 0.587
0.39 0.77 0.98 0.78 0.74 0.67 0.67 0.66 0.71

0.05 -0.006 -0.017 -0.036 -0.053 -0.070 -0.090 -0.104 -0.116 -0.126
0.72 0.78 0.72 0.66 0.61 0.57 0.57 0.58 0.47

0.1 -0.004 -0.014 -0.030 -0.047 -0.063 -0.084 -0.099 -0.116 -0.132
0.76 0.67 0.62 0.60 0.53 0.51 0.47 0.45 0.39

0.25 0.015 0.004 -0.005 -0.016 -0.026 -0.039 -0.053 -0.072 -0.094
0.86 0.75 0.70 0.67 0.60 0.57 0.53 0.48 0.42

0.5 0.031 0.028 0.032 0.035 0.029 0.016 0.000 -0.021 -0.045
0.99 0.95 0.87 0.85 0.78 0.73 0.72 0.70 0.59

0.75 0.089 0.115 0.147 0.170 0.179 0.178 0.167 0.145 0.120
0.97 0.87 0.87 0.85 0.81 0.77 0.77 0.73 0.66

0.9 0.069 0.081 0.082 0.082 0.076 0.063 0.049 0.030 0.009
0.98 0.92 0.88 0.86 0.86 0.80 0.76 0.73 0.60

0.95 0.009 0.009 -0.004 -0.018 -0.035 -0.055 -0.075 -0.098 -0.119
0.91 0.84 0.75 0.74 0.69 0.67 0.64 0.63 0.49

0.99 -0.009 -0.025 -0.051 -0.100 -0.170 -0.259 -0.367 -0.495 -0.650
0.41 0.45 0.47 0.49 0.52 0.51 0.52 0.53 0.48

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.884 0.897 0.904 0.907 0.907 0.903 0.894 0.882 0.867
p-value 0.377 0.370 0.366 0.364 0.364 0.367 0.371 0.378 0.386

(d) Rescaled range

Q̂ 0.698
p-value 0.02

Panels (a)-(d) report tests of the MDS null for the Cecchetti-Lam-Mark model residuals, estimated over the
period 1930-2016. C̄(q) denotes the estimated transformed weighted correlogram statistic, ∑

q−1
j=1(1− j/q)ρ̄(q).

Its standard error and asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram
is given in larger font for the appropriate (α,q) combination. Its bootstrapped p-value is given underneath in
smaller font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given beneath. Q̂
denotes the estimated rescaled range. Its bootstrapped p-value is given beneath.
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Table 1.8 Cecchetti-Lam-Mark model results
(e) Maximal predictability

q 2 3 4 5 6 7 8 9 10

R2 0.057 0.022 0.012 0.000 0.029 0.035 0.039 0.020 0.002
R̄2 0.006 0.026 0.033 0.160 0.194 0.026 0.050 0.362 0.346

Wald stat 134.1 - - - - 0.189 - - -
p-value 0.000 - - - - 0.664 - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the Cecchetti-
Lam-Mark model state variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The Wald statistic and its
asymptotic p-value are reported.

Table 1.9 Properties of ξ̂t - Identity matrix

Model Mean Median Std dev SC(1)

Bansal-Yaron -13905871 -13905873 31.21 0.762
Campbell-Cochrane -0.204 -0.228 0.206 -0.126
Cecchetti-Lam-Mark -0.038 -0.040 0.191 -0.088

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and “SC(1)”
first-order serial correlation. The models are estimated and residuals computed using annual US data over the
period 1930-2016.

We consider the robustness of the residual-based tests (i.e. the correlogram, quantilogram,
Hong-Lee tests and rescaled range) only in scenarios where the model provides credible
residuals, and therefore credible expected returns. There is no point checking the second
moment of a model that fits poorly in terms of the first moment, as one would not use it to price
assets anyway. Moreover, the centred second moment (e.g. serial correlation coefficient) is a
function of the first moment.

For the robustness of the maximal predictability test, note that the state variables in the
Bansal-Yaron and Cecchetti-Lam-Mark are independent of the asset sets or GMM weighting
matrices used. As such, the maximal predictability results for these models depend only on the
data frequency and sample period. The extraction of the the Campbell-Cochrane state variable
depends on, amongst other things, the estimated utility curvature. Therefore, the (estimated)
state variable does depend on the asset set and GMM weighting matrix. As a result, consider
the robustness of the Campbell-Cochrane maximal predictability tests in each of the scenarios
set out above.
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1.6.1 Identity weight matrix

Table 1.9 shows that estimating the Bansal-Yaron model using the identity weight matrix
produces an even less credible time-series of expected returns that when estimating it with the
optimal weight matrix. The Campbell-Cochrane model’s average residual of -20.4% coupled
with the mean market return of 6.3% implies a mean expected market return of almost 30% a
year under the Campbell-Cochrane model. This is almost five times the actual value. Again,
this is not really a credible time series of expected returns. Only the Cecchetti-Lam-Mark
model gives rise to a credible expected returns series: the mean residual of 3.8% implies a
mean expected market return of 10% a year.

The results of the MDS tests for the Cecchetti-Lam-Mark residuals when the model is
estimated with the identity weight matrix are shown in Table 1.10. They paint a similar picture
to the results with the optimal weight matrix: the correlograms reject the MDS null (at the 5%
level) from q = 5 onwards and the rescaled range rejects the MDS null too. Again, both tests
imply anti-persistence in the residuals, while the quantilogram and Hong-Lee tests do not reject
the null.

Notice that the choice of weight matrix does not affect the extraction of the Bansal-Yaron
or Cecchetti-Lam-Mark state variables, so these maximal predictability results are unchanged.
The GMM estimation for R2 and R̄2 using the extracted Campbell-Cochrane state variable did
not converge, so maximal predictability results are not available. This may be a reflection of
the more general mis-specification of the Campbell-Cochrane model in this case.

1.6.2 Industry portfolios

Table 1.11 shows summary statistics of the residuals where we replace the six Fama-French
size/value portfolios with the five Fama-French industry portfolios in the set of assets used
to estimate the asset pricing models. Only the Campbell-Cochrane model estimated with the
identity weight matrix produces a credible residual, and therefore expected return, series. With
a mean residual of -11.5% and a mean market return of 6.3%, the mean expected market return
is 17.8%. Even this may be stretching the bounds of credibility. But there is little harm in
considering the robustness of the residual-based tests in this scenario in any case.

The Campbell-Cochrane model results when estimating the model using the industry
portfolios and the identity weight matrix are shown in Table 1.12. We resoundingly reject the
null that the residuals are MDS. The correlogram test produces two rejections at the 5% level,
at the two shortest horizons considered. There are 72 rejections of the MDS null out of 81
quantilogram tests. The 99th percentile is the only one where we do not reject the MDS null.
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Table 1.10 Cecchetti-Lam-Mark model results - Identity matrix
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) 0.026 -0.122 -0.190 -0.260 -0.300 -0.311 -0.351 -0.381 -0.390
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)
p-value 0.633 0.129 0.059 0.028 0.025 0.034 0.028 0.026 0.032

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.013 -0.016 -0.020 -0.024 -0.028 0.004
0.40 0.75 0.99 0.83 0.80 0.70 0.70 0.69 0.76

0.05 -0.014 -0.028 -0.043 -0.058 -0.073 -0.042 -0.022 -0.007 0.004
0.74 0.80 0.78 0.70 0.69 0.65 0.61 0.59 0.47

0.1 0.017 0.011 -0.018 -0.003 0.012 0.047 0.060 0.067 0.063
0.68 0.66 0.54 0.55 0.51 0.49 0.46 0.45 0.38

0.25 0.026 -0.053 -0.111 -0.111 -0.136 -0.157 -0.154 -0.146 -0.147
0.74 0.70 0.60 0.54 0.53 0.49 0.47 0.41 0.37

0.5 -0.030 -0.136 -0.162 -0.192 -0.260 -0.301 -0.318 -0.337 -0.350
0.70 0.66 0.60 0.48 0.46 0.44 0.35 0.33 0.25

0.75 -0.059 -0.100 -0.140 -0.134 -0.140 -0.119 -0.126 -0.130 -0.137
0.64 0.62 0.56 0.50 0.46 0.47 0.44 0.39 0.30

0.9 -0.003 0.034 0.084 0.139 0.199 0.227 0.251 0.275 0.310
0.76 0.79 0.65 0.57 0.49 0.44 0.42 0.36 0.26

0.95 -0.030 0.024 0.070 0.137 0.197 0.234 0.258 0.272 0.280
0.79 0.68 0.58 0.56 0.49 0.45 0.40 0.38 0.33

0.99 -0.009 -0.018 -0.024 -0.030 -0.036 -0.041 -0.047 -0.052 -0.057
0.31 0.38 0.40 0.35 0.37 0.39 0.38 0.40 0.34

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.782 0.795 0.801 0.803 0.803 0.800 0.793 0.783 0.770
p-value 0.434 0.427 0.423 0.422 0.422 0.424 0.428 0.434 0.441

(d) Rescaled range

Q̂ 0.694
p-value 0.01

Panels (a)-(d) report tests of the MDS null for the Cecchetti-Lam-Mark model residuals, estimated over the
period 1930-2016. C̄(q) denotes the estimated transformed weighted correlogram statistic, ∑

q−1
j=1(1− j/q)ρ̄(q).

Its standard error and asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram
is given in larger font for the appropriate (α,q) combination. Its bootstrapped p-value is given underneath in
smaller font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given beneath. Q̂
denotes the estimated rescaled range. Its bootstrapped p-value is given beneath.
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Table 1.11 Properties of ξ̂t - Industry portfolios

Model Mean Median Std dev SC(1)

Optimal weight matrix

Bansal-Yaron 0.311 0.299 0.371 0.558
Campbell-Cochrane -0.250 -0.279 0.232 -0.045
Cecchetti-Lam-Mark -0.185 -0.158 0.194 -0.041

Identity weight matrix

Bansal-Yaron 2.140 2.075 0.537 0.652
Campbell-Cochrane -0.115 -0.130 0.257 -0.126
Cecchetti-Lam-Mark -0.242 -0.098 0.376 0.567

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and “SC(1)”
first-order serial correlation. The models are estimated and residuals computed using annual US data over the
period 1930-2016.

While the Hong-Lee test produces no rejections, the rescaled range test also rejects the MDS
null. Whether or not one considers the residuals to be a plausible financial time series, they are
not MDS and the model is again rejected.

Turning to the maximal predictability tests, note again that the Bansal-Yaron and (extracted)
Cecchetti-Lam-Mark state variables are unaffected by the change in the assets set, as well as
the change in weight matrix. The Campbell-Cochrane state variable is, however, affected. The
GMM estimation of R2 and R̄2 does not converge for the Campbell-Cochrane state variable
extracted based on parameter estimates using the optimal weight matrix to estimate the model.
The estimation does converge, though, when the identity weight matrix is used in the Campbell-
Cochrane model estimation.

These maximal predictability results are in Table 1.13. There is more evidence here that the
Campbell-Cochrane state variable is unable to explain the own-history predictability of returns
than in our main results from earlier. There are two significant exceedences of the R2 bound at
the three and six-year horizons.

1.6.3 Quarterly data

Returning to using the six size/value portfolios in the set of assets for estimating the models,
rather the five industry portfolios, we consider the robustness of our results when estimating
the models at the quarterly frequency. Quarterly data is only available from 1947Q1 and our
sample period becomes 1947Q1-2017Q1. In this case, the summary statistics for our data are
altered, as shown in Table 1.14 (note that none of the figures presented in this subsection are
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Table 1.12 Campbell-Cochrane model results - Industry portfolios and identity matrix
(a) Correlogram

q 2 3 4 5 6 7 8 9 10

C̄(q) -0.142 -0.220 0.028 -0.040 0.039 -0.149 0.179 0.303 0.318
(Std err) (0.054) (0.080) (0.101) (0.118) (0.133) (0.147) (0.159) (0.171) (0.182)
p-value 0.009 0.006 0.782 0.733 0.768 0.310 0.261 0.076 0.080

(b) Quantilogram

α ↓/q → 2 3 4 5 6 7 8 9 10

0.01 -0.003 -0.006 -0.009 -0.009 -0.006 -0.003 0.001 0.006 0.010
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 -0.014 -0.028 0.078 0.138 0.176 0.224 0.259 0.285 0.305
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.017 0.011 0.083 0.135 0.155 0.194 0.246 0.278 0.311
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 -0.022 -0.037 -0.027 -0.058 -0.082 -0.069 -0.065 -0.057 -0.064
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.5 -0.065 -0.111 -0.113 -0.158 -0.195 -0.210 -0.207 -0.208 -0.212
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 -0.029 -0.090 -0.121 -0.151 -0.154 -0.133 -0.113 -0.115 -0.116
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.9 -0.034 -0.047 -0.083 -0.099 -0.130 -0.148 -0.160 -0.183 -0.199
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.95 -0.030 -0.059 -0.086 -0.080 -0.083 -0.092 -0.106 -0.121 -0.139
0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 -0.009 -0.018 -0.026 -0.041 -0.059 -0.079 -0.099 -0.121 -0.144
0.62 0.47 0.47 0.47 0.44 0.42 0.42 0.42 0.42

(c) Hong-Lee tests

q 2 3 4 5 6 7 8 9 10

Ĝ(q) 0.491 0.511 0.527 0.539 0.548 0.556 0.562 0.568 0.575
p-value 0.624 0.609 0.598 0.590 0.584 0.579 0.574 0.570 0.566

(d) Rescaled range

Q̂ 0.946
p-value 0.00

Panels (a)-(d) report tests of the MDS null for the Campbell-Cochrane model residuals, estimated over the period
1930-2016. C̄(q) denotes the estimated transformed weighted correlogram statistic, ∑

q−1
j=1(1− j/q)ρ̄(q). Its

standard error and asymptotic p-value are given underneath. In Panel (b), the estimated weighted quantilogram is
given in larger font for the appropriate (α,q) combination. Its bootstrapped p-value is given underneath in smaller
font. Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given beneath. Q̂ denotes
the estimated rescaled range. Its bootstrapped p-value is given beneath.
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Table 1.13 Campbell-Cochrane maximal predictability - Industry portfolios and identity weight
matrix

q 2 3 4 5 6 7 8 9 10

R2 0.057 0.022 0.012 0.000 0.029 0.035 0.039 0.020 0.002
R̄2 0.130 0.000 0.050 0.000 0.007 0.046 0.010 0.028 0.029

Wald stat - 25.34 - - 6.015 - 3.572 - -
p-value - 4.8×10−7 - - 0.014 - 0.059 - -

Tests of the null that the market return is no more predictable than implied by the Campbell-Cochrane model state
variables (i.e. R2 ≤ R̄2), estimated over the period 1930-2016. The Wald statistic and its asymptotic p-value are
reported.

Table 1.14 Quarterly data summary statistics

Mean Median Std dev SC(1)

rm 0.018 0.029 0.081 0.077
r f 0.002 0.003 0.007 0.745
∆c 0.005 0.006 0.005 0.279
∆d 0.007 0.001 0.148 0.584
zm 4.871 4.851 0.426 0.937

Descriptive statistics for our key variables at the quarterly frequency over the period 1947Q1-2017Q1. rm denotes
the log market return, r f the quarterly log risk-free rate (the rolled over 1 month US T-bill), ∆c log consumption
growth, ∆d log dividend growth and zm the log price-dividend ratio.
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Table 1.15 Properties of ξ̂t - Quarterly

Model Mean Median Std dev SC(1)

Optimal weight matrix

Bansal-Yaron -670.6 -670.6 0.361 0.912
Campbell-Cochrane -0.351 -0.341 0.091 0.264
Cecchetti-Lam-Mark -0.389 -0.886 0.726 0.871

Identity weight matrix

Bansal-Yaron -395.9 -395.9 0.118 0.569
Campbell-Cochrane -0.203 -0.186 0.094 0.318
Cecchetti-Lam-Mark -0.008 0.003 0.081 0.074

Summary statistics for the model-implied ex-ante residuals. “Std dev” denotes standard deviation and “SC(1)”
first-order serial correlation. The models are estimated and residuals computed using quarterly US data over the
period 1947Q1-2017Q1.

annualised). In particular, the mean market return is slightly higher, at around 1.8% per quarter
(or 7.2% a year).

We estimate the models using both the optimal and identity weight matrices. Summary
statistics for the residuals are shown in Table 1.15. Note that these are quarterly figures (one
could annualise them by multiplying them by four). As we can see in Table 1.15, only the
Cecchetti-Lam-Mark model estimated with the identity matrix provides a credible residual
series and therefore a credible expected return series, with a mean residual of -0.8% per
quarter. The Bansal-Yaron model certainly does not provide credible residual series: it has
mean quarterly residuals of -67000% per quarter with the optimal weight matrix and -40000%
per quarter with the identity weight matrix! The Campbell-Cochrane model generates mean
residuals of -35% per quarter with the optimal weight matrix and -20% per quarter with the
identity weight matrix.

The MDS results for the Cecchetti-Lam-Mark model estimated at the quarterly frequency
with the identity weight matrix are in Table 1.16. We also include the maximal predictabil-
ity results in Table 1.16, since the Cecchetti-Lam-Mark state variable is affected by the
change of data frequency. Note that q indicates the horizon in quarters. The choice of q =

8,12,16,20,24,28,32,36,40 quarters aligns with the earlier choice of q= 2,3,4,5,6,7,8,9,10
years. There are no rejections of the MDS null for the residuals, which would suggest the
model does explain the dynamics of returns. In addition, the maximal predictability results only
show one significant exceedence of the R2 bound. Note, however, that the R2 bound exceeds
one on three occasions, which may be a symptom of numerical issues in computing the bounds.
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Table 1.16 Cecchetti-Lam-Mark model - quarterly results with identity weight matrix
(a) Correlogram

q 8 12 16 20 24 28 32 36 40

C̄(q) -0.029 -0.095 -0.068 -0.007 -0.017 -0.073 -0.038 -0.040 -0.055
(Std err) (0.089) (0.112) (0.132) (0.149) (0.164) (0.178) (0.191) (0.203) (0.215)
p-value 0.739 0.396 0.607 0.965 0.916 0.682 0.840 0.843 0.796

(b) Quantilogram

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 0.007 0.003 -0.003 -0.008 -0.014 -0.020 -0.025 -0.030 -0.036
0.57 0.78 0.85 0.95 0.78 0.66 0.48 0.39 0.35

0.05 0.044 0.054 0.054 0.049 0.038 0.024 0.013 0.006 0.000
0.37 0.37 0.35 0.37 0.38 0.33 0.30 0.29 0.27

0.1 0.054 0.061 0.059 0.054 0.041 0.023 0.010 0.001 -0.006
0.46 0.40 0.33 0.33 0.36 0.36 0.35 0.35 0.32

0.25 0.043 0.048 0.045 0.043 0.035 0.018 0.003 -0.006 -0.014
0.42 0.41 0.41 0.39 0.36 0.32 0.34 0.36 0.33

0.5 0.008 0.009 0.005 0.001 -0.004 -0.008 -0.014 -0.020 -0.025
0.62 0.56 0.59 0.60 0.51 0.48 0.45 0.41 0.38

0.75 0.033 0.034 0.032 0.026 0.014 -0.003 -0.019 -0.029 -0.036
0.49 0.46 0.41 0.39 0.41 0.43 0.40 0.37 0.30

0.9 0.042 0.041 0.034 0.024 0.009 -0.011 -0.028 -0.041 -0.052
0.43 0.45 0.44 0.46 0.53 0.53 0.55 0.49 0.43

0.95 0.045 0.049 0.044 0.034 0.020 0.004 -0.009 -0.018 -0.027
0.43 0.36 0.38 0.37 0.37 0.39 0.41 0.37 0.33

0.99 0.007 0.007 0.004 0.000 -0.008 -0.018 -0.025 -0.030 -0.035
0.77 0.99 0.90 0.73 0.66 0.62 0.53 0.46 0.39

(c) Hong-Lee tests

q 8 12 16 20 24 28 32 36 40

Ĝ(q) 0.002 -0.211 -0.367 -0.468 -0.542 -0.603 -0.682 -0.731 -0.769
p-value 0.998 0.833 0.714 0.640 0.588 0.547 0.495 0.465 0.442

(d) Rescaled range

Q̂ 1.076
p-value 0.87

Panels (a)-(d) report tests of the MDS null for the Cecchetti-Lam-Mark model residuals when the model is
estimated with the identity matrix, over the period 1947Q1-2017Q1. C̄(q) denotes the estimated transformed
weighted correlogram statistic, ∑

q−1
j=1(1− j/q)ρ̄(q). Its standard error and asymptotic p-value are given underneath.

In panel (b), the estimated weighted quantilogram is given in larger font for the appropriate (α,q) combination.
Its bootstrapped p-value is given underneath in smaller font. Ĝ(q) in panel (c) denotes the Hong-Lee generalised
spectral statistic. Its asymptotic p-value is given beneath. Q̂ in panel (d) denotes the estimated rescaled range. Its
bootstrapped p-value is given beneath.
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Table 1.16 Cecchetti-Lam-Mark model - quarterly results with identity weight matrix
(e) Maximal predictability

q 8 12 16 20 24 28 32 36 40

R2 0.367 0.011 0.105 0.005 0.001 0.099 0.012 0.023 0.072
R̄2 1.298 0.347 0.411 3.858 5.6×10−7 0.499 3.071 3.196 0.861

Wald stat - - - - 10.95 - - - -
p-value - - - - 0.001 - - - -

Panel (e) reports tests of the null that the market return is no more predictable than implied by the Cecchetti-Lam-
Mark model state variables (i.e. R2 ≤ R̄2), estimated over the period 1947Q1-2017Q1. The Wald statistic and its
asymptotic p-value are reported.

The findings that the Cecchetti-Lam-Mark model and its state variable can explain return
dynamics, however, are not themselves robust. Having a larger sample allows us to look at
performance in sub-samples. We divide our sample in two with the break in the middle of
the sample, so that our sub-samples are 1947Q1-1982Q1 and 1982Q2-2017Q1. Dividing the
sample into two in this way ensures a sample size in excess of 120 (i.e. 3×max{q}) in each
sub-sample, which helps ensure the accuracy of the long-horizon serial correlation estimates.

In addition, we can examine robustness to dealing with look-ahead bias in the second sub-
sample. In the above results, the parameters of the ex-ante (t −1) expectations are estimated
over future data, which could induce a finite-sample bias in the test statistics even when the test
statistics are asymptotically valid. Note that these concerns apply only to the correlogram and
Hong-Lee tests. The quantilogram and rescaled range bootstrap procedures explicitly account
for the estimation method and the finite sample. The maximum predictability test conditions
on the parameter estimates in any case. We evaluate the robustness of our correlogram and
Hong-Lee results to using past data only to estimate the parameters of the model residuals. We
compute residuals for the second sub-sample which are formed using parameters estimated
over an expanding window. The expanding window begins at the first observation in the whole
sample (1947Q1) and ends at the (t −1)th observation when computing the t −1 expectations
of returns at t. We compare these results to those obtained for the second sub-sample above to
evaluate the effect of restricting the data sample to past data only.

Looking at the Cecchetti-Lam-Mark residuals estimated with the identity matrix in the
sub-samples in this way, we see that the MDS null is rejected in both sub-samples and when
we account for look-ahead bias. The MDS null is clearly rejected by the quantilograms in the
first sub-sample (Table 1.17a): 37 of the 81 weighted quantilograms are significant at the 10%
level and 25 of those are significant at the 5% level. Untabulated results show that this is the
only test to reject the null in the first sub-sample, re-iterating why it is important to consider
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Table 1.17 Cecchetti-Lam-Mark model quarterly sub-sample results using identity weight
matrix

(a) Quantilogram - sub-sample 1: 1947Q1-1982Q1

α ↓/q → 8 12 16 20 24 28 32 36 40

0.01 0.050 0.076 0.100 0.122 0.142 0.163 0.193 0.337 0.589
0.02 0.02 0.02 0.06 0.07 0.09 0.09 0.65 0.62

0.05 0.092 0.093 0.075 0.076 0.065 0.042 0.010 -0.009 -0.036
0.82 0.97 0.86 0.75 0.62 0.48 0.33 0.24 0.19

0.1 0.008 -0.002 -0.017 0.002 0.004 -0.006 -0.012 -0.007 -0.018
0.52 0.41 0.40 0.49 0.45 0.42 0.35 0.35 0.29

0.25 -0.095 -0.147 -0.181 -0.189 -0.198 -0.212 -0.226 -0.239 -0.244
0.06 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.01

0.5 -0.052 -0.133 -0.191 -0.207 -0.200 -0.203 -0.221 -0.236 -0.232
0.30 0.10 0.07 0.05 0.04 0.04 0.03 0.02 0.02

0.75 0.036 -0.049 -0.111 -0.136 -0.161 -0.195 -0.227 -0.234 -0.225
0.84 0.26 0.10 0.07 0.04 0.03 0.01 0.01 0.01

0.9 0.063 0.060 0.043 0.013 -0.039 -0.095 -0.140 -0.167 -0.186
0.97 0.75 0.59 0.38 0.23 0.16 0.11 0.09 0.08

0.95 0.008 0.011 -0.002 -0.025 -0.066 -0.107 -0.142 -0.166 -0.183
0.57 0.49 0.41 0.33 0.22 0.19 0.17 0.12 0.09

0.99 -0.029 -0.046 -0.059 -0.073 -0.091 -0.108 -0.128 -0.153 -0.184
0.16 0.17 0.17 0.18 0.17 0.07 0.01 0.00 0.00

(b) Hong-Lee tests - sub-sample 2: 1982Q2-2017Q1

q 8 12 16 20 24 28 32 36 40

Ĝ(q) 20.29 19.83 19.52 19.30 19.08 18.78 18.46 18.15 17.87
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(c) Correlogram - sub-sample 2: 1982Q2-2017Q1, accounting for look-ahead bias

q 8 12 16 20 24 28 32 36 40

C̄(q) -3.548 -11.02 -26.13 -35.71 196.3 -39.16 -38.37 -13.32 21.03
(Std err) 0.251 0.318 0.373 0.422 0.465 0.504 0.541 0.575 0.608
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel (a) reports the quantilogram tests of the MDS null for the Cecchetti-Lam-Mark model residuals estimated
with the identity weight matrix, over the first sub-sample 1947Q1-1982Q1. The estimated weighted quantilogram
is given in larger font for the appropriate (α,q) combination. Its bootstrapped p-value is given underneath in
smaller font. Panel (b) gives the Hong-Lee tests for the residuals from the second sub-sample 1982Q2-2017Q1.
Ĝ(q) denotes the Hong-Lee generalised spectral statistic. Its asymptotic p-value is given beneath. Panel (c) reports
the weighted correlogram tests for the second sub-sample where estimation uses the identity weight matrix but
also accounts for possible look-ahead bias. C̄(q) denotes the estimated transformed weighted correlogram statistic,
∑

q−1
j=1(1− j/q)ρ̄(q). Its standard error and asymptotic p-value are given underneath.
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Table 1.17 Cecchetti-Lam-Mark model quarterly sub-sample results using identity weight
matrix

(d) Maximal predictability

q 8 12 16 20 24 28 32 36 40

Sub-sample 1: 1947Q1-1982Q1

R2 0.072 0.072 0.137 0.228 0.106 0.153 0.276 0.630 0.416
R̄2 0.467 0.107 1.658 0.666 0.009 0.044 0.136 14.81 2.064

Wald stat - - - - 494.3 806.1 553.0 - -
p-value - - - - 0.000 0.000 0.000 - -

Sub-sample 2: 1982Q2-2017Q1

R2 0.023 0.156 0.262 0.161 0.071 0.076 0.546 0.792 0.519
R̄2 0.084 0.126 0.002 0.010 0.409 0.009 17.462 2.665 0.204

Wald stat - 0.771 442.1 167.2 - 924.5 - - 13078
p-value - 0.380 0.000 0.000 - 0.000 - - 0.000

Panel (d) reports tests of the null that the market return is no more predictable than implied by the Cecchetti-Lam-
Mark model state variables (i.e. R2 ≤ R̄2) in each of the two sub-samples. The Wald statistic and its asymptotic
p-value are reported.

a battery of test statistics. Looking at the second sub-sample (Table 1.17b), the MDS null is
easily rejected by the Hong-Lee tests. When accounting for look-ahead bias in the estimation
(Table 1.17c), the MDS null remains strongly rejected, this time by the weighted correlograms.

Moreover, there are now three significant exceedences of the R2 bound in each sub-sample,
although not necessarily at the same horizons. The R2 bound is significantly exceeded at q = 28
in both sub-samples, but not the whole sample. The ability of the Cecchetti-Lam-Mark model
state variable to explain the dynamics of returns also appears not to be robust.

We lastly consider the robustness of the Bansal-Yaron and Campbell-Cochrane maximal
predictability results to using quarterly data. Note that the Bansal-Yaron state variables do not
depend on whether we estimate the Bansal-Yaron model using the identity or optimal weight
matrix, but the Campbell-Cochrane state variables do depend on the weight matrix used.

Table 1.18 shows the results of these robustness checks. For the Bansal-Yaron model we
see similar results to when using the annual data: the model’s state variables cannot explain
the own-history predictability of returns. For the Campbell-Cochrane model, things look a
little more hopeful. There are two significant exceedences of the R2 bound using the optimal
weight matrix and three using the identity weight matrix. However, untabulated results show
further rejections at horizons q < 8. Using the optimal weight matrix, the R2 bound is exceeded
for q = 3,4,5 and 6 quarters and these exceedences are significant at the 1% level. Using the
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Table 1.18 Quarterly maximal predictability results
q 8 12 16 20 24 28 32 36 40

Bansal-Yaron model

R2 0.057 0.018 10−8 0.069 0.025 0.012 0.119 0.011 0.159
R̄2 -0.217 -11.357 5.508 -3.740 -0.282 0.303 -10.089 -6.736 6.579

Wald stat 216041 148018 - 267587 416715 - 593143 1307207 -
p-value 0.000 0.000 - 0.000 0.000 - 0.000 0.000 -

Campbell-Cochrane model - optimal weight matrix

R2 0.029 0.041 0.059 1.2×10−4 0.001 0.005 1.4×10−4 0.006 0.082
R̄2 0.003 0.018 0.421 0.039 0.006 0.556 0.352 1.505 0.689

Wald stat 462.1 7.954 - - - - - - -
p-value 0.000 0.005 - - - - - - -

Campbell-Cochrane model - identity weight matrix

R2 -30.42 0.022 0.034 0.445 0.082 0.085 1.5×10−6 0.025 1.000
R̄2 1225 0.622 4.4×10−4 0.300 0.903 7.0×10−5 0.831 0.335 9.772

Wald stat - - 25.26 8.190 - 197.0 - - -
p-value - - 5.0×10−7 0.004 - 0.000 - - -

Tests of the null that the market return is no more predictable than implied by the Bansal-Yaron/Campbell-
Cochrane model state variables (i.e. R2 ≤ R̄2), estimated over the period 1947Q1-2017Q1. The Wald statistic and
its asymptotic p-value are reported.

identity weight matrix, there are exceedences for q = 1 and 6 quarters. Overall, it does not seem
as if the Campbell-Cochrane state variable can explain own-history predictability of returns
when using quarterly data.

We take these maximal predictability results with a little caution, however. Table 1.18
shows that there are numerical difficulties in estimating the R2 and R̄2 parameters. These are
estimated jointly by GMM (no regression is run to obtain R2). As a result, even though the R2

for the predictive regressions should be the same for both models and whether the optimal or
identity weight matrix is used to estimate the model, this is not the case. Moreover, we see
some R2 and R̄2 which are either greater than one or less than zero. These numerical issues may
be a function of the mis-specification of the state variables in terms of being able to explain
own-history predictability of returns. Or they may reflect more general numerical issues.

1.7 Conclusion

We show that three consumption-based asset pricing models - the Bansal-Yaron, Campbell-
Cochrane and Cecchetti-Lam-Mark models - cannot explain the own-history predictability
structure of the US market return. We focus on how well the three models explain stock
return predictability because, from an investor’s point of view, it is a key characteristic of
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returns. It has received relatively little attention in the context of the Bansal-Yaron and
Campbell-Cochrane models, two of the leading models in explaining the equity premium
puzzle. Within predictability, we focus on own-history predictability as it is the most basic
form of predictability.

In order to test whether the three models can explain the own-history predictability prop-
erties of the US market return, we first estimate the models’ parameters by GMM before
computing model implied ex-ante expected returns. If the model can capture the own-history
predictability of the market, the difference between the realised market return and the model
implied ex-ante expected return will be MDS due to rational expectations. We test whether
these residuals are MDS, ensuring that our tests account for the initial estimation step. In this
sense, our tests can be interpreted as a time-series specification test of the models. However,
unlike a J-test, our procedure allows us to test models which are not estimated in single GMM
implementation, such as the Campbell-Cochrane and Cecchetti-Lam-Mark models here.

We find that the Bansal-Yaron, Campbell-Cochrane and Cecchetti-Lam-Mark model residu-
als are not MDS. This finding is robust to the choice of GMM weight matrix, using quarterly
in instead of annual data and using industry instead of size/book-to-market portfolios to es-
timate the models. There appears to be some hope, in that we cannot reject the null that
the Cecchetti-Lam-Mark residuals are MDS using quarterly data, the identity weight matrix
and size/book-to-market portfolios to estimate the model. However, this non-rejection of the
MDS null is not robust over time. When we divide the sample period into two equal-length
sub-samples, we clearly reject the MDS null in both sub-samples.

Moreover, our tests of maximal predictability suggest that returns are more predictable
with respect to their past history than is consistent with the state variables which truly explain
the market return being the state variables of any of the three models considered. While the
annual data suggested that the Campbell-Cochrane and Cecchetti-Lam-Mark state variables
could explain the own-history predictability of the market return, this finding was not robust to
using quarterly data. The Bansal-Yaron state variables were not able to explain the own-history
predictability of returns at either the annual or quarterly horizon.

The failure of the models considered to capture the own-history predictability of stock
returns has several different interpretations. The first is that perhaps some auxiliary assumption
in the models has failed. For example, the assumed joint normality of consumption and dividend
growth in the Campbell-Cochrane model (used to derive expected returns) or the assumed joint
normality of consumption growth, dividend growth, the long-run risk and economic volatility
in the Bansal-Yaron model (used by Constantinides and Ghosh (2011) to invert the model
and derive the moment conditions to estimate it). Note that these normality assumptions are
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used when backing out the state variables for the maximal predictability tests too, so both
the residual-based and maximal predictability tests would be affected in this scenario. In this
interpretation, the models are basically correct, but the auxiliary assumptions need to be relaxed
in future empirical work.

A second interpretation in which the models are basically correct is to say that the models
presented are equilibrium models, but that financial markets are often out of equilibrium.
Therefore, to model market dynamics, it is necessary to consider a framework in which markets
adjust to a (possibly time-varying) equilibrium. Adam et al. (2016) present such a model. They
have an agent with CRRA preferences who knows the risk-adjusted stock price is a random
walk (a result due to Samuelson, 1965) but who observes the risk-adjusted price plus mean-zero
noise. Optimal updating of beliefs under subjective expected utility maximisation produces
a feedback loop: expectations affect prices, as in the classical model, but prices also affect
expectations, due to updating. This feedback imparts serial correlation and excess volatility
upon the returns, even when the estimated prior uncertainty (noise variance) is small. In
general, this model is able to match many facts about asset prices, including the long-horizon
predictability of excess returns with respect to the price-dividend ratio. However, rather like
the standard CRRA model, it cannot account for the equity premium and risk-free rate puzzles.
Nonetheless, it is possible that by applying this framework to, say, the Campbell-Cochrane
model would account for these puzzles.

Finally, it may simply be that the model state variables are mis-specified: that more state
variables need to be considered or some of those considered need to be dropped. Or, given that
the models here are strictly rational models of investor behaviour, it may be that an “outright”
behavioural model (going beyond, say, rational learning) is required.



Chapter 2

Is regulatory short sale data a profitable
predictor of UK stock returns?

Regulator-required public disclosures of net short positions do not provide a profitable in-
vestment signal for UK stocks. While long-short (zero initial outlay) portfolios based on this
signal usually make a profit on average, it is rarely statistically significant in either gross or
risk-adjusted terms. The issue is that the short sides of the portfolios make substantial losses.
This is true even when using information in the trend in disclosures to form portfolios, rather
than using the most recent disclosures, which is a more standard procedure. Unit initial outlay
portfolios based on the disclosures that are allowed to take short positions do not reliably
significantly outperform the market. Certain long-only unit initial outlay portfolios based
on the disclosures do reliably significantly outperform the market. However, this outperfor-
mance is economically modest: about 1 percentage point a year in gross and risk-adjusted terms.

JEL classification: G11, G14
Keywords: short sales, Short Selling Regulation, net short position disclosure, investment
signal, anomaly
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2.1 Introduction

In November 2012, European Union (EU) Regulation 236/2012 brought into force disclosure
requirements that give rise to a freely available database of all large net short positions held in
stocks traded on EU markets. The database is made available to investors with only a short
lag of up to a couple of days. It gives access to daily data on short holdings in specific stocks,
something which has previously only been available for a fee. Conversations with practitioners
indicate that these fees are high and that uptake is subsequently limited. It is therefore of great
practical interest to examine whether the new, freely available information on other investors’
short positions can be used profitably.

I examine this question from the point of view of the UK stock market - the largest and
most liquid in the EU.1 All in all, there appears to be little profit to be gained from using this
information to form portfolios.

First, I look at standard long-short portfolios, of the sort commonly used to study new
potential investment signals. I consider equal-, value- and net short positions-weighted long-
short portfolios with zero initial outlay. These portfolios go long in stocks with a low level
of total (aggregated across investors) declared net short positions and short in stocks with a
high level of total declared net short positions. Since the rules exempt market making and
hedging trades from notifications, the rationale is that short sellers are revealing their private
information. As short sellers are likely to be more sophisticated investors than the average
investor, mimicking their positions could therefore be profitable. This has proved to be the case
in previous studies (e.g. Boehmer et al., 2008; Diether et al., 2009).

While these long-short portfolios are profitable on average, only the equal-weighted port-
folio has a mean gross return significantly different from zero at the (5% level). Its average
risk-adjusted returns are not significant. Scaling positions by volatility to reduce portfolio
volatility does not improve the statistical significance of any profitability. The long sides of
these long-short portfolios tend to make substantial gains, but the short sides tend to make
substantial losses. Going beyond the standard approach of forming portfolios based on the most
recent declarations does not solve this problem. I find similar results using information about
the trend in short positions, which captures signal strength. Rebalancing the portfolios less
frequently to make them less responsive to signal noise does not remedy the lack of long-short
portfolio profitability, either. This is the case even when losses in the less frequently rebalanced
portfolios are controlled with stop-loss rules. Nonetheless, I find that the long sides of the

1My entire sample period is prior to the UK’s exit from the EU.
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standard equal and value-weighted long-short portfolios are highly profitable. Moreover, they
produce significant risk-adjusted returns, as measured against a variety of risk factors.

I therefore construct fully invested (unit initial investment) portfolios based on the net
short position disclosures too. Using portfolios of all stocks as a benchmark shows how much
information is in the short disclosures, above and beyond a strategy that simply buys every
stock listed on the FTSE350. When these fully invested portfolios based on declared net short
positions are allowed to take short positions, they do not generally significantly outperform
portfolios of all stocks. In fact, the value-weighted versions of these fully invested portfolios
underperform the value-weighted portfolio of all stocks. I also look at fully invested portfolios
based on the disclosures which are long-only. Both the equal-weighted long-only portfolio
based on the most recent disclosures and the long-only portfolio weighted by the strength of the
trend in disclosures significantly outperform the comparable portfolios of all stocks. However,
the gain is relatively modest in both cases: one percentage point per year in both gross and
risk-adjusted terms.

This paper relates to a literature that began with studies of US short sale data. Early studies
of whether short sale data could be used profitably in US stock markets were positive. Boehmer
et al. (2008) use proprietary NYSE order data between January 2000 and April 2004 to show
that long-short strategies of the kind I use here can yield a substantial mean return of 3.8%
per month, or an annualised average three-factor alpha of 16%. Given the rarity of recalls and
the relatively low direct costs of shorting most stocks, Boehmer et al. argue their strategies’
profitability would survive accounting for all short selling costs.

Similarly, Diether et al. (2009) study NYSE, AMEX and Nasdaq stocks in 2005 and find
that long-short strategies based on daily short volume are very profitable. They construct their
short sale measures from SEC-required disclosure data.2 While Diether et al. find positive and
significant abnormal returns to short sale activity strategies, these returns are less extreme than
in Boehmer et al. (2008). Moreover, Diether et al. (2009) are more cautious about the impact
of costs. They argue that when one considers the costs of shorting smaller stocks, which are
more heavily represented in the short basket than in the market as a whole, it is quite possible
that costs would annul any long-short strategy profits.

UK studies of strategies based on short sale data have been less optimistic than those in the
US. Au et al. (2009) analyse equal- and value-weighted long-short portfolios which go long in
stocks with low short interest and short in stocks with high short interest. Their short interest
measures are based on subscription-access short sale data for FTSE350 constituents between

2This data was only available for a trial period between January and December 2005. Such disclosures have
subsequently become mandatory again, but the exchanges are permitted to charge for the data. The fees are high.
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September 2003 and September 2006. Only the equal-weighted long-short portfolio makes a
statistically significant average profit. For both the equal- and value-weighted portfolios, the
short side makes a loss on average. Likewise, Andrikopoulos et al. (2012) find that profits
to equal- and value-weighted long-short portfolios formed on short interest are generally
insignificant. Again, the short legs cost these portfolios money. Andrikopoulos et al. use a
broader and longer sample of 1645 UK stocks between August 2004 and February 2012, again
with subscription-access data.

The data made available as a result of the EU short selling regulations have started to be
studied, although not, as far as I am aware, as the basis for an investment strategy. The closest
work to doing this is Jank and Smajlbegovic (2017), who consider all EU stock markets. They
analyse how actual short positions have performed, rather than hypothetical positions taken
based on information about others’ positions. The difference is due to a difference in aims. I
am testing potential investment strategies, Jank and Smajlbegovic test how actual investments
performed. They find that the average short trade is profitable in terms of mean and excess
returns, although the excess returns are not significant and the mean is only significant at
the 5% level on a value-weighted basis. My finding that hypothetical short trades based on
past information about others’ short positions are not profitable is consistent with Jank and
Smajlbegovic. By basing my strategies on past short selling activity, I am considering an
investor who is relatively late to the short selling party. It is natural that this position is less
profitable than that of the average investor already shorting the stock.

The paper proceeds as follows. Section 2.2 explains the short disclosures rules and the
practicalities of making a disclosure. It also sets outlines trends in the dataset and discusses
portfolios how I evaluate portfolios. Section 2.3 deals with the construction and performance of
the long-short (zero initial outlay) portfolios. Section 2.4 does the same for the fully invested
(unit initial outlay) portfolios. Section 2.5 shows that the results described above are robust to
the empirical choices which had to be made throughout the analysis, while Section 2.6 shows
that these results are even robust to pretending that the lag between positions being taken and
the declaration being published does not exist. Section 2.7 concludes.

2.2 Data and portfolio evaluation

2.2.1 Net short position disclosures

As of 1 November 2012, an investor in any EU-listed stock with a sufficiently large net short
position must notify the national regulator. For the UK, this is the Financial Conduct Authority
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(FCA). I work with public notifications, which must be made once the net short position is 0.5%
or greater of the issued share capital of a given company. Further notifications must be made
at each 0.1% increment or decrement and a notification must also be made once the position
drops below 0.5%.3 These notifications are published on the FCA’s website by the close of
business on the day the notification is made. Notifications are made the trading day after the
position crosses the relevant threshold. Therefore the data is made easily available to investors
in a timely manner.

The disclosures ought to be informative about short sellers’ private information and beliefs.
Market making and liquidity providing trades are exempt from the notification rules. Moreover,
net short positions are calculated net of delta-adjusted derivative positions. A short position
created to hedge a derivative position does not count towards the net total. Because market
making, liquidity providing and hedging trades are unrelated to anticipated price changes, they
do not reveal a short seller’s private information.

In addition, synthetic short positions - holdings of derivatives such as options that perfectly
replicate the payoff of a short position - must also be reported, again on a delta-adjusted
basis. Synthetic short trades can attract lower transaction costs than conventional short trades
(Daske et al., 2005). They may therefore be an important source of information about investors’
expectations of price movements.

Note that the rules apply to any investor, no matter where they are domiciled. In fact, Jank
et al. (2016) find that a sizeable proportion of disclosures for EU-listed stocks come from the
US.

Net short position declarations required by the regulations outlined above must be made
by 3.30pm the trading day after the position was established/modified. The FCA publishes
the public notifications by the close of business that same day. A notification triggered by a
trade on day t must be made by 3.30pm on t +1 and that information is published by the FCA
by close of business on t +1. However, since the FCA’s close of business is 6pm and FTSE
trading closes at 4.30pm, it is unclear whether the FCA disclosures will be available to trade on
before the close of trading on t +1, or if investors would have to wait until the market opens on
t +2. I err on the side of caution and assume that investors have to wait until the market opens
at t +2. However, assuming that investors can instead trade at the close of day t +1 makes
little difference to the results (see Section 2.5.1).

Given the truncated nature of the data, it is necessary to make some assumptions to construct
a net short positions measure from the public disclosures. Note that disclosures are made by

3In addition, there are private notifications, which the regulator keeps confidential. These must be made once
the position crosses a threshold of 0.2% of share capital outstanding, and at each 0.1% increment/decrement in the
position.
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investor by stock. I assume that open positions with no new disclosures on a given day are
unchanged. If there is a new declaration of a position of 0.51% of issued share capital on
Monday and no new declaration on Tuesday, I assume the position remains 0.51% on Tuesday.
I also assume that positions that are below the 0.5% reporting threshold are 0%. If Wednesday’s
position falls to 0.49%, then I take the position to be 0% from Wednesday onwards since no
further tracking of the position is possible. This gives a daily position series for each investor
for each stock. To get total declared net short positions, I sum declarations across investors
for each stock on each day. To evaluate the robustness of the results to these assumptions I
consider a measure of net short positions that requires no such assumptions: the number of
distinct declarations of positions greater than 0.5% per stock per day. The results are robust to
such a change (see Section 2.5.2).

2.2.2 Sample and data

My sample is the constituents of the FTSE350 index. These are all large and liquid stocks. I
obtain the return and characteristic data needed to form and evaluate portfolios from Thomson
Eikon. I adjust returns for dividends since short sellers must pay any dividends distributed
to the stock owner, and this allows for the reinvestment of dividends on the long side - a key
source of growth.

Short disclosure data is available for positions taken as of 31 October 20124 and therefore
the first position can be taken as of 2 November 2012, assuming the FCA’s public disclosures
of positions on day t reach traders between market close on t +1 and market open on t +2. The
first return in the back test return series is realised on 1 November 2013, since some portfolio
formation schemes use up to 252 days of net short positions information in their formation.
The last date in my sample is 13 December 2018. The back test return series contain 1295
observations.

2.2.3 Net short position disclosures across the sample

I look at disclosures for stocks in the FTSE350 index. There is a total of 30357 disclosures
(position openings, updates and closures) across the sample period. 101 stocks have no disclo-
sures associated with them. There are 114 disclosures made when the disclosure regulations
initially enter into force.5 Table 2.1 shows summary statistics for the number of daily FTSE350

4Despite the regulation entering into force on 1 November, there are some disclosures for 31 October.
5There are three on 31 October 2012 and 111 on 1 November 2012. None of the 1 November declarations are

updates to the 31 October ones.
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Table 2.1 Summary statistics for the number of public net short position disclosures per day

Mean 18.9
Median 16.0
Standard deviation 13.1
Maximum 68.0
Minimum 0.00

Summary statistics for the number of public net short position disclosures in FTSE350 listed stocks per day over
the sample period (2 November 2012 - 13 December 2018). The first day of the regulations is excluded as the
declaration of existing positions opened before the regulations took effect is likely to distort the summary statistics.
Disclosures include both declarations of positions that have just crossed the 0.5% reporting threshold and updates
to positions which have already been declared as being above the threshold. The standard deviation is computed
using the unbiased estimator.

Table 2.2 Summary statistics for the number of public net short position disclosures per stock

Mean 29.7
Median 19.0
Standard deviation 30.4
Maximum 149
Minimum 0.00

Summary statistics for the number of public net short position disclosures in FTSE350 listed stocks per stock made
over the entire sample period (1 November 2012 - 13 December 2018). Disclosures include both declarations of
positions that have just crossed the 0.5% reporting threshold and updates to positions which have already been
declared as being above the threshold. The standard deviation is computed using the unbiased estimator.

disclosures over time, from the day after the regulation enters force (i.e. from 2 November
2012). This is to prevent the initial rush of declarations of existing positions from distorting
the averages of the number of fresh daily disclosures. We see that there are approximately 19
disclosures per day on average (16 on the median day), although this number ranges between
zero and 68. Figure 2.1 shows a one year rolling average of the daily number of disclosures. It
is clearly increasing over time.

We can also consider the number of public disclosures per stock over the whole sample, as
in Table 2.2. The mean stock has a total of 30 disclosures over the sample, while the median
stock has 19. The maximum number of disclosures is 149.

Table 2.3 shows the size of positions, where these are not aggregated across investors, both
as a percentage of outstanding share capital and in monetary value. The mean publicly disclosed
declared net short position for an individual investor is 0.94% of share capital outstanding,
while the median is 0.71%. The highest net short position for an individual investor is 8.03%
of share capital outstanding. In monetary terms, the mean size of a declaration is £30.5 million
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Fig. 2.1 One year rolling mean of the number of public net short position disclosures per day
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Graph shows the 252 trading day rolling mean of the number of public disclosures of net short positions in
FTSE350 listed stocks from 2 November 2012 until 13 December 2018. The first day of the regulations is
excluded as the declaration of existing positions opened before the regulations took effect is likely to distort the
summary statistics. The date on the horizontal axis represents the end of the rolling window.

and the median is £19.3 million. There is a large range in the monetary value of declared
positions, with (non-zero) declarations ranging between £71,000 and £1.4 billion.6

Figure 2.2 shows the (cross-sectional) mean open (i.e. ≥ 0.5%) net short position size over
time, where size is measured both in terms of the percentage of outstanding share capital and
monetary value. The open short positions have been aggregated across investors. Stocks with
no declared net short positions are included in the cross-sectional averages. There is a clear
upward trend in the total size (aggregated across investors) of declared short positions in the
average stock over time on both measures, albeit with greater volatility in the monetary values,
and potentially some levelling off or even a fall at the end of the sample.

Finally, the mean declared net short position is open (i.e. ≥ 0.5%) for 45 trading days.
Table 2.4 summarises average length of declared net short position duration by stock. The
mean stock has an average net short disclosure duration of 49 days, the median stock 36 days
with the maximum average duration is 529 days.

6Note that the largest position in monetary terms and the largest position in terms of outstanding share capital
are two different positions. The 8.03% position is a position in Melrose Industries PLC held by Guevoura Fund
Ltd and was declared on 19 August 2016. The £1.4 billion position is a position in British American Tobacco PLC
held by Millennium International Management LP and was declared on 24 July 2017. The position amounted to
1.43% of the outstanding share capital.
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Table 2.3 Summary statistics for the size of public net short position disclosures (% outstanding
share capital)

% outstanding
share capital £GBP

Mean 0.94% £30.5 million
Median 0.71% £19.3 million
Standard deviation 0.68% £44.5 million
Maximum 8.03% £1443 million
Minimum 0.00% £0.07 million

Summary statistics for the size (as a percentage of outstanding share capital and in monetary value) of public
net short position disclosures in FTSE350 over the sample period (1 November 2012 - 13 December 2018).
Disclosures for a given stock are not aggregated across investors. Disclosures include both declarations of
positions that have just crossed the 0.5% reporting threshold and updates to positions which have already been
declared as being above the threshold. The standard deviation is computed using the unbiased estimator.

Table 2.4 Cross-sectional summary statistics for the mean duration of public net short positions
(in days)

Mean 49.2
Median 35.8
Standard deviation 49.5
Maximum 529
Minimum 1.00

Cross-sectional (across stocks) summary statistics for the mean duration of public net short position disclosures in
FTSE350 listed stocks over the sample period (1 November 2012 - 13 December 2018). The standard deviation is
computed using the unbiased estimator.
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Fig. 2.2 Cross-sectional mean size of aggregate disclosed net short positions in a given stock
over time
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Graph shows the evolution of the cross-sectional (across stocks) mean size (% outstanding share capital and £GBP
billions) of open disclosed net short positions, aggregated across investors, over the sample period 1 November
2012 - 13 December 2018.
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2.2.4 Portfolio evaluation

I evaluate portfolios based on their mean, Sharpe ratio and alphas from Fama-French type
regressions. The alphas are effectively average risk-adjusted returns, where the risk adjustment
is with respect to the risk factors included in the Fama-French style regressions. The Sharpe
ratios and alphas are calculated with respect to returns in excess of the risk-free rate, where the
risk-free rate is the SONIA overnight rate (data obtained from the Bank of England). I compute
HAC p-values for the mean and the alphas. All return series are daily and I scale the means and
alphas by 252 to approximately annualise them. The p-values are based on the daily returns,
however. I annualise the Sharpe ratios as per Lo (2002), taking 252 trading days to be a year.7

I compute the alphas using three different sets of factors to ensure and evaluate robustness
to the factors used. I obtain all factor data from AQR’s online data library. The first set
of factors is the almost canonical Fama and French (1993) three factors: market, size and
value. I denote the resulting alphas as αFF3. The second set of factors adds momentum to
the Fama-French three factors, as per Carhart (1997). This could be an important factor. If
short sellers correctly anticipate price falls and price falls are persistent, my strategies will
inevitably contain momentum exposure. I denote the alphas from this four factor model αFF4.
The final set of factors adds quality minus junk (Asness et al., 2019) to the four-factor model.
The resulting alphas are termed αQMJ . The quality minus junk factor encompasses profitability,
growth and safety (Asness et al., 2019). It is clear that each of these may be related to shorting
activity. All else equal, investors are likely to be more willing to trade in safe firms. However,
one would expect those with low/negative growth and profitability to be the main candidates
for short trades.

2.3 The failure of long-short portfolios

2.3.1 Portfolios using the most recent declared net short positions

First, I construct standard long-short arbitrage portfolios. This is the standard method of
constructing and testing a possibly profitable investment signal in the literature. Long-short

7The estimated Sharpe ratio for strategy i is given as ŜRi = ri − r f /sd(ri − r f ), where ri − r f is the mean daily
return to strategy i in excess of the risk free rate and sd(·) the sample standard deviation. Lo (2002) then shows
that the q-day Sharpe ratio is given by

ŜRi(q) =
q√

q+2∑
q−1
k=1(q− k)ρ̂i(k)

ŜRi,

where ρ̂i(k) is the kth order autocorrelation coefficient of the excess returns to strategy i.
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portfolios are arbitrage portfolios and involve a zero initial outlay. They take long positions
totalling £1 in a basket of stocks (the “long side” or “long basket”) and short positions totalling
£1 in a different basket of stocks. The returns to the long-short portfolio are therefore the
returns to the long basket less the returns to the short basket.

The broad idea of the strategy in this paper is that short sellers are informed investors who
reveal their private information and beliefs through their net short positions. I therefore assign
stocks in the top quintile of declared net short positions on day t to the short basket on day
t +2 (using day t +2 due to the timing convention in Section 2.2.1). Likewise, I assign stocks
in the bottom quintile of declared net short positions to the long basket. In practice, the 20th
percentile of declared net short positions is always zero, so all stocks with zero declared net
short positions go into the long basket. On a typical day, around 70% of stocks of no declared
short positions. The long basket therefore typically contains far more than 20% of stocks.8

Occasionally, the 80th percentile of declared net short positions is also zero. In this case, I
assign stocks with zero declared net short positions to the long basket and those with non-zero
declared net short positions to the short basket.

I first consider three weighting schemes: equal weighting, value weighting and net short
positions weighting. For the value-weighted portfolios, I weight the short side by one over the
market capitalisation at t +1. The reason for this is that, with short-term momentum in stock
prices, market value weights assign ever increasing weights to losing positions, harming the
portfolio. Empirically, this does turn out to be the case in my sample: a short basket formed
with inverse market capitalisation weights performs better than a short basket with market
capitalisation weights. To see the problem, consider a short position taken on day s. Suppose
the stock rises in price between s and s+1. The short position has lost money, but the rise in
price implies a rise in market value and so an increase in the market value weight. Short-term
price momentum means that the stock price is likely to rise again between s+1 and s+2, thus
the standard value weighting has just assigned a higher weight to a position likely to loose
money. Compared to using standard value weights in the short basket, we see that the median
weight using the inverse value weighting scheme is slightly higher (1.04% versus 0.96%) but
the inverse value weights have a lower standard deviation (1.4% compared to 2.1%).

8There are many more than the target number of stocks in the long basket. The number of stocks in the long
basket could be reduced, e.g. by looking at stocks with the lowest net declared short positions over the period t −k
to t, for some arbitrary k rather than just focussing on positions above the threshold on day t. I do not use this
approach for two reasons. First, because it is not really in the spirit of assigning stocks with the lowest quintile of
short interest to the long basket (the lowest quintile is zero, so all stocks with zero declared short interest should
go to the long basket). Second, such an approach would give a significant degree of freedom to the researcher and
may tempt data mining.
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Table 2.5 Standard long-short portfolio performance

Mean p-value Sharpe αFF3 p-value αFF4 p-value αQMJ p-value

Value-weighted
Long 0.075 0.062 0.797 0.073 0.021 0.069 0.037 0.082 0.017
Short 0.053 0.401 0.377 0.055 0.275 0.065 0.193 0.070 0.184
L-S 0.022 0.491 0.415 0.018 0.519 0.004 0.873 0.012 0.658

Equal-weighted
Long 0.119 0.007 1.170 0.118 0.001 0.114 0.002 0.127 0.001
Short 0.075 0.161 0.679 0.077 0.076 0.084 0.053 0.096 0.035
L-S 0.044 0.042 1.127 0.041 0.046 0.029 0.133 0.031 0.121

Net short position-weighted
Long 0.119 0.007 1.170 0.118 0.001 0.114 0.002 0.127 0.001
Short 0.092 0.121 0.777 0.094 0.059 0.104 0.036 0.113 0.029
L-S 0.027 0.449 0.360 0.024 0.479 0.010 0.772 0.013 0.692

Performance evaluation measures for daily rebalanced declared net short positions portfolios over the sample
period 1 November 2013 - 13 December 2018. Means and alphas are scaled by 252 to make them approximately
annual figures. Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised
Sharpe ratio, allowing for serial correlation, computed as per Lo (2002).

In the equal-weighted portfolios, the long and short sides are the portfolio are both separately
equally weighted. For the net short positions-weighted portfolios, the long side is equal-
weighted, since all stocks in the long basket have zero declared net short positions. The short
side weights are proportional the level of declared net short positions, which are aggregated
across investors for each stock on each day. I normalise the sum of the short basket weights
to be one. Unlike the equal- and value-weighted portfolios, the net short positions-weighted
portfolio uses information in how much the declared net short positions exceed the threshold
by.

In Table 2.5, we see that the long-short (“L-S”) value- and net short positions-weighted
portfolios are profitable on average, but their mean returns are not significantly different from
zero. The picture is similar for their alphas, too. While the long legs of these portfolios make
healthy gross and risk-adjusted returns, the short sides lose a substantial amount of money.

The equal-weighted long-short portfolio makes positive returns that are significantly dif-
ferent from zero on average. However, its risk-adjusted returns (alphas) are not generally
significant. Even taking the significant profit for the equal-weighted long-short portfolio at
face value, the short leg loses 7.5% per year. If we conceive the short leg loss as the cost of
borrowing to invest in the long leg, there are surely cheaper means of financing the investments
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in the long basket. These investments in the long basket return a strong 11.9% per year on
average.

The problem of the short side making substantial losses persists throughout the sample.
Figure 2.3 shows the annualised (scaled by 252) one-year rolling mean daily return to the short
basket of stocks under all three weighting schemes. In all three cases, this return is positive for
the great majority of the sample. Since short sellers profit from stock prices falling, a positive
return to stocks in the short basket means that the short basket is losing the portfolio money. It
is not the case that one or two bad patches are distorting the profitability of the short side.

Neither is it the case that there are any great periods where the long side significantly
outperforms the short side. Figure 2.4 shows the rolling t-statistics for αQMJ , although the
results are essentially the same for αFF3 and αFF4. The rolling window Fama-French alphas
are hardly ever both positive and significantly different from zero at the 5% level for any of the
three long-short portfolios.

The finding that long-short portfolios have empirically positive means and alphas which
are not significantly different from zero may be driven by excessive volatility in the portfolios.
Controlling the volatility in the portfolios may make their profits more stable and reliable, and
so their means and alphas more likely to be significant. Of course, changing the weights may
also reduce, or increase, the means and alphas.

To control portfolio volatility, I divide stock i’s weight in each basket by its volatility. I
then re-normalise the weights to sum to one in each basket again. All else equal, low volatility
stocks get a higher weight and high volatility stocks a lower weight. I follow Elaut and Erdos
(2019) in estimating stock i’s volatility as the square root of its exponentially weighted moving
variance (EWMV), where the EWMV has a 60 day centre of mass.

Untabulated results show that volatility scaling does not really affect the portfolios’ returns.
The average gross and risk-adjusted returns to the long-short portfolios remain positive but
insignificant overall. The mean return to the equal-weighted long-short portfolio remains
positive and significantly different from zero. However, its alphas remain insignificant.

Daily rebalancing is another possible impediment to the long-short portfolios described
above. Daily updating and rebalancing of the portfolios may be excessively frequent. Daily
rebalancing ensures the portfolios rapidly respond to spikes in relative declared net short
positions, but can also induce excessive volatility. Less frequent rebalancing could smooth
these responses out.

To analyse the effect of rebalancing frequency, I form long and short (and therefore long-
short) portfolios of which 1/q of the portfolio is rebalanced each day, where q days is the
rebalancing frequency. This provides a daily time series of over-lapping q-day rebalanced
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Fig. 2.3 Rolling window mean returns to long and short side of standard long-short portfolios
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(c) Net short position-weighted
252 day rolling window mean return for both the long and short sides of the declared net short positions portfolios
with: value weights (“VW”), equal weights (“EW”) and net short positions weights (“SW”). The mean return is
scaled by 252 to make it an approximately annual figure. The date on the horizontal axis shows the rolling window
end. The first rolling window begins on 1 November 2013 and ends on 30 October 2014. The last rolling window
ends on 13 December 2018.
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Fig. 2.4 Rolling window αQMJ t-statistic for standard long-short portfolios
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HAC 252 day rolling window t-statistic on αQMJ for the long-short declared net short positions portfolios with:
value weights (“VW”), equal weights (“EW”) and net short positions weights (“SW”). The date on the horizontal
axis shows the rolling window end. The alphas are scaled by 252 to make them approximately annual figures. The
first rolling window begins on 1 November 2013 and ends on 30 October 2014. The last rolling window ends on
13 December 2018.

portfolio returns. Boehmer et al. (2008) use this approach. I consider monthly (q = 21) and
annual (q = 252) rebalancing.

The results are essentially the same for the equal- and net short positions-weighted portfolios
when rebalancing less frequently. The value-weighted portfolio performs worse with either
monthly or annual rebalancing: its long side profits fall and its short side losses rise.

I also consider adding stop-loss rules to the less frequently rebalanced portfolios. These
rules exit positions after a maximum loss of 1% for a monthly rebalanced portfolio and 10%
for an annually rebalanced portfolio. The stop-loss rules do not prevent the short sides of the
value-, equal- or net short positions-weighted portfolios from continuing to lose a considerable
amount of money. The rules do not, therefore, alter the results very much.

I now consider combinations of the volatility scaling and less frequent rebalancing fixes
described above. Rebalancing volatility scaled portfolios less frequently has little impact on
their returns.

Adding stop-loss rules to monthly and annually rebalanced portfolios does improve the
results, however, as Table 2.6 shows. The equal-weighted long-short portfolio performs the best
in this set-up, with a mean annual return of 7.8%, annualised alphas of 5.8%-7.5% and an annual
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Sharpe ratio of 1.1. While the mean return and three-factor alpha are significantly different from
zero at the 5% level, the four-factor and QMJ alphas are not. Moreover, the t-statistics on the
mean and three-factor alpha are some way from Harvey et al.’s (2016) recommended enhanced
threshold of 3.0.9 The net short position-weighted long-short portfolio provides greater profits
than with daily rebalancing. However, its mean return and alphas are not significantly different
from zero at any conventional level. The value-weighted long-short portfolio now makes lower
losses, thanks to lower losses on the short side.

2.3.2 Portfolios using multiple days’ declarations

In Section 2.3.1, I implement less frequent rebalancing by rebalancing 1/q of the portfolio
every q days. This rebalancing scheme is closely related to a portfolio formed using an average
of the past q days’ net short position declarations.10 Using the average of these declarations
incorporates the persistence of high/low declared net short positions into the portfolio weighting
scheme.

An alternative means of incorporating the persistence of high/low net short position decla-
rations is to consider signals based on net short positions averaged over different time periods.
My approach follows Elaut and Erdos (2019). I compute the mean of declared net short
positions over a set of horizons, H . For each h ∈ H , and remembering that net short position
declarations on trading day t only become available to traders on trading day t +2, we have

SI
h
i,t =

1
h

h−1

∑
j=0

SIi,t− j−2.

I then set Sh
i,t =+1 if SI

h
i,t is less than or equal to the 20th cross-sectional percentile of SI

h
i,t at

time t and Sh
i,t =−1 if SI

h
i,t is greater than or equal to the 80th percentile. Finally, I compute

S̄H
i,t =

1
dim(H ) ∑

h∈H

Sh
i,t . (2.1)

9The enhanced threshold is due to multiple testing concerns: a large amount of research on possible investment
signals is focussed on a small number of underlying datasets. The mean returns and alphas for portfolios based on
new potential signals must therefore exceed a higher t-statistic threshold to be deemed profitable.

10When rebalanced once every q days, the long and short sides of the equal-weighted long-short portfolio have
weights

wb
i,t(q) =

1
q

q−1

∑
s=0

1
Nb

t−s
Qb

i,t−s,

where Nb
t is the number of stocks in basket b at time t and Qb

i,t indicates if stock i is assigned to basket b at time t.
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Table 2.6 Volatility scaled standard long-short portfolios with stop-loss rules
(a) Monthly rebalancing

Mean p-value Sharpe αFF3 p-value αFF4 p-value αQMJ p-value

Value-weighted
Long 0.051 0.140 0.647 0.048 0.078 0.039 0.178 0.050 0.093
Short 0.103 0.085 0.777 0.105 0.036 0.115 0.019 0.122 0.022
L-S -0.053 0.166 -0.722 -0.057 0.093 -0.076 0.016 -0.072 0.034

Equal-weighted
Long 0.106 0.004 1.251 0.104 0.000 0.098 0.002 0.110 0.001
Short 0.028 0.607 0.209 0.029 0.518 0.040 0.359 0.049 0.298
L-S 0.078 0.030 1.009 0.075 0.026 0.058 0.062 0.061 0.062

Net short position-weighted
Long 0.106 0.004 1.251 0.104 0.000 0.098 0.002 0.110 0.001
Short 0.030 0.641 0.199 0.032 0.564 0.046 0.391 0.052 0.359
L-S 0.076 0.154 0.674 0.072 0.142 0.053 0.260 0.058 0.215

(b) Annual rebalancing

Mean p-value Sharpe αFF3 p-value αFF4 p-value αQMJ p-value

Value-weighted
Long 0.047 0.187 0.580 0.045 0.114 0.042 0.160 0.054 0.084
Short 0.113 0.040 0.977 0.114 0.013 0.118 0.010 0.127 0.009
L-S -0.066 0.029 -1.245 -0.068 0.014 -0.076 0.005 -0.072 0.009

Equal-weighted
Long 0.104 0.006 1.225 0.102 0.001 0.098 0.002 0.111 0.001
Short 0.045 0.396 0.382 0.046 0.287 0.052 0.231 0.062 0.171
L-S 0.059 0.032 1.087 0.057 0.020 0.047 0.044 0.048 0.039

Net short position-weighted
Long 0.104 0.006 1.225 0.102 0.001 0.098 0.002 0.111 0.001
Short 0.044 0.455 0.337 0.046 0.367 0.054 0.280 0.064 0.217
L-S 0.060 0.143 0.697 0.057 0.131 0.044 0.229 0.046 0.201

Performance evaluation measures for declared net short positions based portfolios over the sample period 1
November 2013 - 13 December 2018. Means and alphas are scaled by 252 days to make them approximately
annual figures. Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised
Sharpe ratio, allowing for serial correlation, computed as per Lo (2002).



2.3 The failure of long-short portfolios 63

I assign stocks with S̄H
i,t > 0 at time t to the long basket with weights proportional to S̄H

i,t . I
normalise the weights in the long basket to sum to one. Likewise, I assign stocks with S̄H

i,t < 0
at time t to the short basket. Again, the weights are proportional to S̄H

i,t and normalised to sum
to one. I call this the multiple signals approach.

An alternative is to use a regression-based approach, analogous to Han et al. (2016). Here,
in each time period, I run the cross-sectional regression

Ri,t+1 = γ0,t+1 + ∑
h∈H

γh,t+1Sh
i,t +υi,t+1, (2.2)

where υi,t+1 is an error term.11 Letting γ̂t denote the OLS estimates from (2.2), I generate
expected returns R̂i,t+1 as

R̂i,t+1 = γ̃0,t+1 + ∑
h∈H

γ̃h,t+1Sh
i,t

γ̃t+1 =
1
P

P−1

∑
s=0

γ̂t−s.

Note that γ̃t+1 does not contain γ̂t+1. I take an average of past γ̂t as the expectation for γt+1,
given information at t.

I assign stocks to the short and long baskets at time t based on their expected returns R̂i,t+1.
Stocks with expected returns in the top cross-sectional quintile of R̂i,t+1 are assigned to the
long basket. Those with expected returns in the bottom quintile are assigned to the short basket.

I consider three different weighting schemes for the long-short portfolios. First, I consider
value (market capitalisation) weighting within both the long and the short basket, again using
the inverse market capitalisation for the short basket weights. Second, equal weighting within
each basket. And third, using weights proportional to the stock’s expected return. As before, I
normalise the long and the short basket weights separately to sum to one in each case. I term
this method of forming portfolios the regression-based approach.

Table 2.7 shows the results of the following implementations of the multiple signals
and regression-based approaches. These are representative of other implementations (see
Section 2.5.3). For the multiple signals approach, I use H = {1,2,5,10,21,42,63,126,
189,252} days, corresponding to one-day, two-day, one-week, one-month, two-month, three-
month, six-month, nine-month and one-year horizons. For the regression-based approach,
I use H = {1,5,21,63,126,189}. This reduced set of horizons is to reduce problems of
multicollinearity. I set P = 63, so use three months of regressions to compute the coefficients.

11I cannot use SI
h
i,t in place of Sh

i,t in (2.2) due to collinearity issues.
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Table 2.7 Performance of long-short portfolios based on multiple days’ disclosures

Mean p-value Sharpe αFF3 p-value αFF4 p-value αQMJ p-value

Multiple signals approach
Long 0.107 0.008 1.133 0.105 0.001 0.101 0.002 0.113 0.001
Short 0.077 0.151 0.692 0.078 0.068 0.084 0.052 0.096 0.033
L-S 0.030 0.169 0.832 0.027 0.183 0.017 0.382 0.017 0.382

Regression-based approach: Value weights
Long 0.099 0.025 0.957 0.099 0.007 0.098 0.009 0.110 0.004
Short 0.057 0.285 0.516 0.058 0.161 0.057 0.162 0.065 0.129
L-S 0.042 0.172 0.966 0.041 0.192 0.041 0.196 0.045 0.148

Regression-based approach: Equal weights
Long 0.122 0.008 1.110 0.122 0.001 0.121 0.001 0.135 0.001
Short 0.067 0.179 0.660 0.067 0.084 0.065 0.103 0.078 0.058
L-S 0.056 0.017 1.118 0.055 0.015 0.056 0.010 0.057 0.011

Regression-based approach: Expected return weights
Long 0.165 0.052 0.760 0.166 0.027 0.165 0.039 0.171 0.037
Short 0.066 0.342 0.451 0.065 0.264 0.067 0.260 0.076 0.187
L-S 0.099 0.262 0.500 0.101 0.255 0.098 0.276 0.095 0.297

Performance evaluation measures for daily rebalanced declared net short positions portfolios over the sample
period 1 November 2013 - 13 December 2018. Means and alphas are scaled by 252 to make them approximately
annual figures. Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised
Sharpe ratio, allowing for serial correlation, computed as per Lo (2002).

Like many of the portfolios using only the most recent net short position declarations
in Section 2.3.1, the long-short multiple signals portfolio is profitable on average but not
significantly so. The alphas are also positive but insignificant. The long side makes a strong
10.7% a year, with alphas very close to this. These are all very significant at conventional levels.
However, the short side continues to lose the long-short portfolio a considerable amount of
money: 7.7% per year. Untabulated results show this is an issue throughout the sample, similar
to the portfolios in Section 2.3.1.

Turning to the regression-based portfolios, the returns to the expected return-weighted
long-short portfolio have an annualised mean of 9.9%, which is high. Its alphas are similarly
high. However, the p-values on the mean return and alphas are large at around 0.25-0.3. The
problem is that the portfolio is very volatile: its Sharpe ratio is just 0.48, despite its high mean
return. The returns are too volatile for the profit to this strategy to be statistically reliable.

The equal-weighted long-short portfolio produces a positive mean return (5.6% a year) that
is significantly different from zero at the 5% level. Its alphas are of a similar magnitude and
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Table 2.8 Performance of volatility scaled long-short portfolios based on multiple days’ decla-
rations

Mean p-value Sharpe αFF3 p-value αFF4 p-value αQMJ p-value

Multiple signals approach
Long 0.113 0.002 1.376 0.111 0.000 0.106 0.000 0.117 0.000
Short 0.068 0.148 0.691 0.068 0.067 0.071 0.059 0.084 0.030
L-S 0.045 0.003 1.946 0.043 0.003 0.035 0.012 0.033 0.017

Regression-based approach: Value weights
Long 0.081 0.037 0.899 0.080 0.011 0.077 0.019 0.089 0.008
Short 0.059 0.259 0.564 0.058 0.155 0.053 0.192 0.062 0.139
L-S 0.022 0.524 0.398 0.022 0.546 0.024 0.505 0.027 0.455

Regression-based approach: Equal weights
Long 0.108 0.006 1.184 0.107 0.000 0.106 0.001 0.119 0.000
Short 0.062 0.157 0.687 0.062 0.070 0.057 0.109 0.069 0.052
L-S 0.046 0.005 1.617 0.045 0.004 0.049 0.002 0.050 0.001

Regression-based approach: Expected return weights
Long 0.142 0.072 0.707 0.142 0.036 0.140 0.055 0.147 0.046
Short 0.047 0.470 0.317 0.045 0.395 0.046 0.405 0.057 0.269
L-S 0.095 0.202 0.608 0.097 0.195 0.094 0.223 0.090 0.248

Performance evaluation measures for daily rebalanced declared net short positions portfolios over the sample
period 1 November 2013 - 13 December 2018. Means and alphas are scaled by 252 to make them approximately
annual figures. Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised
Sharpe ratio, allowing for serial correlation, computed as per Lo (2002).

also significant at conventional levels. The alphas’ t-statistics do not exceed Harvey et al.’s
(2016) enhanced threshold of 3.0, though. Moreover, the short side of the portfolio makes
considerable losses: 6.7% a year. The short side losses can be seen as the cost of financing
investments in the long side of the portfolio. There must surely be a more cost-effective means
of financing these investments.

The value-weighted regression-based portfolios behave similarly to the expected return-
weighted portfolios. The long-short portfolio makes a positive but statistically insignificant
mean return. Its alphas are positive and insignificant, too. The short side loses 5.7% per year.

To examine whether the lack of significance in the portfolios’ profitability is a result
of excessive portfolio volatility, I volatility scale the multiple signals and regression-based
portfolios as in Section 2.3.1.

Table 2.8 shows that volatility scaling these portfolios does affect the results. The returns
to both the long and the short sides of the long-short multiple signals portfolio improve. As
a result, the long-short portfolio’s mean return improves to be 4.5% per year. Moreover, the
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long-short portfolio’s volatility falls. The portfolio’s mean return is significantly different from
zero at the 5% level and has a t-statistic in excess of 3.0. Its annualised alphas are 3.3%-4.3%
and are all significant at the 5% level. Only the three-factor alpha has a t-statistic greater than
3.0, though. In addition, the short side continues to lose 6.8% per year, leading one to believe
that there would be cheaper ways of financing the investments in the long basket.

Looking at the equal-weighted regression-based portfolios, the returns to the long basket
fall. The losses to the short basket fall too, although by less. The net effect is that the returns to
the long-short portfolio fall. Nonetheless, the long-short portfolio’s volatility falls substantially.
As a result, the mean and all of the alphas are significant at the 1% level, and the four-factor and
QMJ alphas have t-statistics exceeding 3.0. Like with the multiple signals long-short portfolio,
the short side still makes considerable losses: this time of 6.2% a year.

Volatility scaling the value-weighted regression-based portfolios harms long-short per-
formance. Returns to the long basket fall, while losses to the short basket remain broadly
unchanged. Volatility scaling the expected return-weighted regression-based portfolios has
no net effect on the long-short portfolio. The fall in returns to the long basket approximately
offsets the fall in losses to the short basket.

Another option for smoothing portfolio response to signals is to rebalance less frequently. I
implement this in a similar way to in Section 2.3.1, except I consider one-month (q = 21) and
six-month (q = 126) rebalancing. Untabulated results show that rebalancing less frequently has
very little impact on the multiple signals portfolios. This lack of impact is not surprising given
the portfolios are already a function of a smoothed signal. Rebalancing the regression-based
portfolios less frequently hurts their returns substantially by reducing signal exposure. The
returns to the long basket fall and losses to the short side rise. Volatility scaling these less
frequently rebalanced portfolios makes little difference to their performance.

I also consider adding stop-loss rules to the less frequently rebalanced portfolios. These
allow a maximum position loss of 1% for monthly rebalanced portfolios and 5.5% for six-
monthly rebalanced portfolios. The only portfolios to benefit from these rules are the monthly
rebalanced multiple signals portfolios. Table 2.9a shows that the long-short portfolio now
makes an impressive 8.3% a year, which is significantly different from zero at the 5% level.
The annualised alphas range from 6.3-7.5%, although only the three-factor alpha is significant.
The short side loss falls to 2.9% a year, too. Table 2.9b shows that volatility scaling the monthly
rebalanced multiple signals portfolios with stop loss rules improves things even further. The
long-short portfolio now makes 8.8% a year with annualised alphas of 7.2%-8.2%. The mean
and three-factor alpha now have t-statistics greater than 3.0.
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Table 2.9 Multiple signal portfolio performance with monthly rebalancing and stop-loss rules
(a) No volatility scaling

Mean p-value Sharpe αFF3 p-value αFF4 p-value αQMJ p-value

Multiple signals approach
Long 0.112 0.011 1.200 0.115 0.001 0.112 0.001 0.122 0.001
Short 0.029 0.670 0.186 0.040 0.466 0.050 0.364 0.055 0.329
L-S 0.083 0.041 0.998 0.075 0.046 0.063 0.088 0.067 0.071

(b) With volatility scaling

Mean p-value Sharpe αFF3 p-value αFF4 p-value αQMJ p-value

Multiple signals approach
Long 0.117 0.004 1.364 0.120 0.000 0.116 0.001 0.126 0.000
Short 0.029 0.607 0.224 0.038 0.398 0.044 0.324 0.052 0.259
L-S 0.088 0.002 1.400 0.082 0.003 0.072 0.010 0.074 0.009

Performance evaluation measures for declared net short positions portfolios over the sample period 1 November
2013 - 13 December 2018. Means and alphas are scaled by 252 days to make them approximately annual figures.
Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised Sharpe ratio,
allowing for serial correlation, computed as per Lo (2002).

2.4 Fully invested portfolios

I now consider fully invested - unit (£1) initial outlay - portfolios. I allow these portfolios to
take long and short positions, and term them unconstrained fully invested portfolios. The key
advantage to these portfolios over the long-short portfolios already discussed is that the size of
the short side of the portfolio relative to the long side can vary endogenously over time. We
have already seen that the short-only portfolios lose money. If the relative size of the short
basket were fixed, it would simply act as a drain on returns. In order to have a chance of making
money, the proportion of capital allocated to the short basket must be timed.

I consider not only the risk-adjusted returns of the fully invested portfolios, but also how
they compare to equal- and value-weighted portfolios of all stocks. The all stock portfolios
can be thought of as naive portfolios that simply buy a bit of everything. By comparing the
fully invested portfolios to these naive portfolios, I can test how informative, if at all, the net
short position disclosures are. Moreover, portfolios of all stocks are a relevant benchmark for
investors. After all, if a strategy cannot even beat the market, investors are unlikely to find it
attractive.

I also consider long-only fully invested portfolios based on net short position disclosures.
These portfolios are similar to the unconstrained portfolios, except they have a lower bound on
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weights of zero. Given the strong performance of the long sides of the long-short portfolios
considered in Section 2.3, they are likely to perform well. Comparing these to the portfolios of
all stocks will reveal to what extent there is information in the absence of net short position
disclosures. Moreover, comparing these to the unconstrained short disclosure based positions
(which can go long and short), we can evaluate the benefit of allowing the fully invested
portfolios to take short positions.

Since all these comparisons are a question of relative performance, it is important to account
for transaction costs. I assume these to be 10bps each way in what follows.12,13

I consider portfolios formed on both the most recent day’s disclosures, as well as multiple
days’ disclosures. I stick to the timing convention that the disclosures relating to net short
positions taken or adjusted on day t are made public overnight between t +1 and t +2.

For the unconstrained portfolios based on the most recent day’s disclosures, the portfolio
weights wi,t are

wi,t ∝ 1(SIi,t−2 = 0)−1(SIi,t−2 > 0), (2.3)

where 1(·) is the indicator function, SIi,t−2 the total size of declared net short positions open in
stock i at time t −2 across all investors. I normalise wi,t such that ∑i wi,t = 1, where i indexes
all stocks in the FTSE350. A short position is taken in stock i at t when SIi,t−2 > 0, and a long
position is taken when SIi,t−2 = 0. I use a constant threshold of zero for SIi,t−2 to form the
portfolios so that the relative size of the short basket to varies endogenously through time in
a consistent manner. Zero is a natural value for that threshold, as it means that at least one
investor has a large net short position in i at t −2. The long-only version of this portfolio has
weights

wi,t ∝ 1(SIi,t−2 = 0). (2.4)

Again, I normalise these weights to sum to one.
Both (2.3) and (2.4) are equal-weighted in the sense that all long positions in stocks are of

the same size and all short positions in stock are also the same size. The natural comparison
portfolio of all stocks is therefore the equal-weighted portfolio of all stocks. This is the
comparison I use for (2.3) and (2.4), which I term the equal-weighted unconstrained and
equal-weighted long-only portfolios, respectively. In any case, the equal-weighted portfolio of
all stocks transpires to be a tougher comparison portfolio than the value-weighted portfolio of
all stocks.

12I thank Jacopo Capra of Cantab Capital for our discussions of this assumption.
13Since the earlier long-short portfolios do not generally make a significant profit without transaction costs,

they will obviously not make one with transaction costs. So transaction costs are unimportant in Section 2.3.
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I also consider a value-weighted versions of (2.3) and (2.4), with wi,t ∝ [1(SIi,t−2 = 0)−
1(SIi,t−2 > 0)]×market capi,t and wi,t ∝ 1(SIi,t−2 = 0)×market capi,t , respectively. I compare
these value-weighted portfolios to the value-weighted portfolio of all stocks.

The unconstrained fully invested portfolio based on multiple days’ declarations has weights

wi,t ∝ S̄H
i,t ,

with S̄H
i,t defined as in (2.1) and H = {1,2,5,10,21,42,63,126,189,252}. Again, I normalise

the weights to sum to one. These weights also capture the persistence of the net short disclosure
signal, incorporating extra information. It is not clear whether to compare this portfolio to
the equal- or value-weighted portfolio of all stocks. I use equal-weighted, since it is the more
exacting comparison. I term these weights the unconstrained multiple signals weights. In
addition, I consider a long-only portfolio based on multiple days’ declarations with weights

wi,t ∝ 1(S̄H
i,t > 0)× S̄H

i,t .

These weights are the long-only multiple signals weights. Finally, I consider value-weighted
versions of these multiple signals portfolios (weights proportional to S̄H

i,t ×market capi,t and
1(S̄H

i,t > 0)× S̄H
i,t ×market capi,t , respectively), and compare these to the value-weighted

portfolio of all stocks.
To compare the portfolios, I compute gross and risk-adjusted average returns, as well as the

differences between them. I also compute turnover, for an indication of costs, and maximum
drawdown, as an indicator of tail risk. A drawdown is a loss from local peak to local trough.
The maximum drawdown therefore gives the return for the investor who times his entry into
and exit from the portfolio perfectly badly. I further examine tail risk through the 99%, 95%
and 90% expected shortfalls: the expected loss given that returns are in the worst 1%, 5% and
10% of the distribution, respectively. Computing tail risks allows us to make risk comparisons
beyond the Fama-French style factors. I give all losses as positive numbers, so that a higher
number is worse.

2.4.1 Portfolios using the most recent day’s declarations

Table 2.10 shows that, with daily rebalancing, the equal-weighted unconstrained (UC, can take
both long and short positions) and long-only (LO) portfolios perform very well. They both
have mean gross and risk-adjusted returns in the region of 12% per year. However, the turnover
of the unconstrained portfolio is rather high at 7% per day and it has a slightly higher maximum
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Table 2.10 Fully invested portfolios using the most recent day’s declarations - daily rebalancing
(a) Fully invested portfolios

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val Turn MDD

Equal-weighted
UC 0.129 0.006 1.085 0.126 0.001 0.114 0.006 0.126 0.003 0.070 0.160
LO 0.117 0.009 1.151 0.116 0.001 0.112 0.002 0.125 0.001 0.009 0.127
AS 0.108 0.019 1.059 - - - - - - 0.000 0.139

Value-weighted
UC 0.054 0.129 0.665 0.051 0.072 0.042 0.159 0.055 0.072 0.032 0.139
LO 0.072 0.075 0.760 0.070 0.027 0.065 0.048 0.079 0.022 0.013 0.155
AS 0.079 0.068 0.783 0.078 0.023 0.076 0.034 0.089 0.016 0.009 0.167

(b) Differences between portfolios

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val

Equal-weighted
UC-AS 0.022 0.358 0.525 0.019 0.461 0.009 0.713 0.008 0.749
LO-AS 0.010 0.038 1.266 0.009 0.062 0.007 0.160 0.007 0.157
FI-LO 0.012 0.536 0.349 0.010 0.644 0.003 0.903 0.001 0.953

Value-weighted
UC-AS -0.025 0.159 -0.749 -0.027 0.104 -0.034 0.049 -0.034 0.045
LO-AS -0.008 0.191 -0.744 -0.008 0.126 -0.011 0.057 -0.011 0.052
FI-LO -0.018 0.147 -0.744 -0.019 0.097 -0.024 0.047 -0.024 0.043

(c) Expected shortfalls (daily returns)

ES99 ES95 ES90

Equal-weighted
UC 0.029 0.016 0.012
LO 0.028 0.016 0.012
AS 0.030 0.017 0.013

Value-weighted
UC 0.031 0.018 0.014
LO 0.030 0.018 0.014
AS 0.032 0.019 0.014

Performance evaluation measures for fully invested portfolios over the sample period 1 November 2013 - 13
December 2018. Means and alphas are scaled by 252 days to make them approximately annual figures. Mean and
alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised Sharpe ratio, allowing
for serial correlation, computed as per Lo (2002). “Turn” denotes daily turnover and “MDD” maximum drawdown.
Panel (a) shows the mean gross and risk-adjusted returns to the unconstrained (UC), long-only (LO) and all stock
(AS) portfolios in isolation. Alphas are not reported for the all share portfolios since the risk models all contain a
market factor. In panel (b), row “X-Y” shows the difference in returns between X and Y. The Sharpe ratio is the
Sharpe ratio of a portfolio which is £1 long in X and £1 short in Y. Panel (c) shows the expected shortfall at the
99% (ES99), 95% (ES95) and 90% (ES90) level.
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drawdown than the other two portfolios. All three portfolios have near-identical tail risk in
terms of 90%, 95% and 99% expected shortfall, and relatively similar maximum drawdowns.

The unconstrained and long-only mean returns compare favourably with the almost 11%
per year average return to the equal-weighted portfolio of all stocks (AS) in the FTSE350.
Nonetheless, the difference in means is not significant for the unconstrained portfolio. It also
does not survive transaction costs if these are 50bps each way.14,15 While the long-only portfolio
outperforms the all share portfolio significantly in terms of mean returns, the significance does
not survive risk adjustment. The unconstrained portfolio does not significantly outperform the
long-only one. There is no discernible profitability in using the net short position disclosures to
form a fully invested equal-weighted portfolio, or in allowing such a portfolio to go short.

For the value-weighted portfolios, the picture is even gloomier. The unconstrained and
long-only portfolios underperform versus the all share portfolio. Depending on the factor model
used, this underperformance can be statistically significant. Moreover, the long-only portfolio
outperforms the unconstrained one. The expected shortfalls and maximum drawdowns remain
similar between the three portfolios. The net short disclosures do not appear to bring any
profitable information on a value-weighted basis, either.

The high turnover of the equal-weighted unconstrained portfolio highlights that daily
rebalancing may expose the fully invested portfolios to excessive noise. I therefore consider
rebalancing the portfolios monthly and six-monthly, following the scheme in Sections 2.3.1
and 2.3.2. I leave these results untabulated.

Rebalancing at the monthly frequency improves both gross and risk-adjusted returns to
the equal-weighted unconstrained portfolio. Rebalancing less frequently also cuts the equal-
weighted unconstrained portfolio turnover to 2.4% per day and its maximum drawdown
falls, too. The equal-weighted long-only and all share portfolio returns change little. The
unconstrained portfolio’s advantage over the equal-weighted long-only and all share portfolios
in terms of average returns increases. However, this outperformance remains statistically
insignificant. The long-only portfolio continues to significantly outperform the all share
portfolio in terms of gross mean returns but not risk-adjusted returns. Moving to six-monthly
rebalancing, the equal-weighted unconstrained portfolio does significantly outperform the
long-only portfolio, although this significance does not survive 50bps each-way transaction
costs.

For the value-weighted portfolios, the long-only and all share portfolios’ returns fall
somewhat when rebalancing less frequently. The unconstrained portfolio’s returns fall a little.

1450bps each way is a common assumed level of transaction costs in the literature. However, my conversations
with practitioners suggest this is somewhat higher than the level investors typically face.

15I leave results using 50bps each-way transaction costs untabulated throughout in the interests of space.
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The net effect is that all three portfolios produce very similar returns to each-other, both in
gross and risk-adjusted returns.

Adding the stop-loss rules described in Sections 2.3.1 and 2.3.2 to these less frequently
rebalanced portfolios has almost no impact on their gross and risk-adjusted returns.

I also consider volatility scaling the fully invested portfolios, as in Sections 2.3.1 and 2.3.2.
Volatility scaling the daily rebalanced fully invested portfolios reduces all the equal-weighted
returns, while having only a minor impact on the value-weighted returns. The differences
in performance among the equal-weighted portfolios remain roughly the same as in the non-
volatility scaled case. The performance of the value-weighted unconstrained and long-only
portfolios remains poor: they continue to underperform the value-weighted all stock portfolio.

The one time the equal-weighted unconstrained and long-only portfolios do significantly
outperform the equal-weighted all share portfolio is when the portfolios are rebalanced less
frequently (monthly or six-monthly) and are volatility scaled. This statistically significant
outperformance occurs both in terms of gross and risk-adjusted returns. With 50bps each-way
transaction costs, the equal-weighted unconstrained portfolio significantly outperforms the
long-only and all share portfolios only in terms of mean returns, not alphas. Volatility scaling
causes little change to the returns to the less frequently rebalanced value-weighted portfolios.

Combining volatility scaling and stop-loss rules in the less frequently rebalanced portfolios
makes very little difference to the gross and risk-adjusted returns and return differences.

2.4.2 Portfolios using multiple days’ declarations

Table 2.11 shows that the unconstrained multiple signals portfolio insignificantly outperforms
the long-only multiple signals portfolio and the equal-weighted all share portfolio. The long-
only multiple signals portfolio itself outperforms the equal-weighted all share portfolio. How-
ever, the value-weighted all share portfolio insignificantly outperforms both the unconstrained
and long-only multiple signals portfolios.

The tail risks are similar within each comparison set. The long-only and unconstrained
multiple signals portfolios both have similar expected shortfalls. These are also similar to the
equal-weighted all share portfolio’s expected shortfalls. The maximum drawdowns of these
three portfolios are similar, too. Likewise, the value-weighted unconstrained and long-only
multiple signals portfolios have similar expected shortfalls. These are similar to the value-
weighted all share portfolio’s expected shortfalls. And the three value-weighted portfolios also
have similar maximum drawdowns.
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Table 2.11 Fully invested portfolios using multiple days’ declarations - daily rebalancing
(a) Fully invested portfolios

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val Turn MDD

Multiple signals approach
UC 0.123 0.004 1.276 0.118 0.003 0.104 0.010 0.105 0.014 0.102 0.256
LO 0.107 0.008 1.135 0.105 0.001 0.101 0.002 0.112 0.001 0.005 0.119
AS 0.108 0.019 1.059 - - - - - - 0.000 0.139

Value-weighted multiple signals approach
UC 0.052 0.125 0.696 0.049 0.083 0.039 0.191 0.051 0.087 0.031 0.136
LO 0.073 0.069 0.771 0.071 0.026 0.066 0.046 0.079 0.022 0.011 0.155
AS 0.079 0.068 0.783 - - - - - - 0.009 0.167

(b) Differences between portfolios

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val

Multiple signals approach
UC-AS 0.016 0.688 1.035 0.011 0.788 -0.001 0.987 -0.013 0.732
LO-AS -0.001 0.895 -0.085 -0.002 0.772 -0.004 0.555 -0.005 0.449
UC-LO 0.017 0.618 1.874 0.013 0.710 0.004 0.915 -0.007 0.815

Value-weighted multiple signals approach
UC-AS -0.027 0.185 -0.689 -0.030 0.115 -0.037 0.064 -0.038 0.053
LO-AS -0.006 0.296 -0.618 -0.007 0.206 -0.009 0.110 -0.010 0.084
UC-LO -0.021 0.159 -0.690 -0.022 0.097 -0.028 0.058 -0.028 0.050

(c) Expected shortfalls (daily returns)

ES99 ES95 ES90

Multiple signals
UC 0.026 0.014 0.011
LO 0.038 0.021 0.015
AS 0.030 0.017 0.013

VW multiple signals
UC 0.031 0.018 0.014
LO 0.030 0.018 0.015
AS 0.032 0.019 0.014

Performance evaluation measures for fully invested portfolios over the sample period 1 November 2013 - 13
December 2018. Means and alphas are scaled by 252 days to make them approximately annual figures. Mean and
alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised Sharpe ratio, allowing
for serial correlation, computed as per Lo (2002). “Turn” denotes daily turnover and “MDD” maximum drawdown.
Panel (a) shows the mean gross and risk-adjusted returns to the unconstrained (UC), long-only (LO) and all stock
(AS) portfolios in isolation. Alphas are not reported for the all share portfolios since the risk models all contain a
market factor. In panel (b), row “X-Y” shows the difference in returns between X and Y. The Sharpe ratio is the
Sharpe ratio of a portfolio which is £1 long in X and £1 short in Y. Panel (c) shows the expected shortfall at the
99% (ES99), 95% (ES95) and 90% (ES90) level. “VW” stands for “value-weighed”.
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Rebalancing the portfolios less frequently does not see the fully invested portfolios based on
declared net short positions significantly outperform the all share portfolios. Nor does adding
the stop-loss rules. The tail risks remain similar in each comparison set when rebalancing less
frequently, with and without stop-loss rules.

Volatility scaling the daily rebalanced portfolios does, however, improve the performance
of the unconstrained and long-only portfolios relative to the all share portfolios. I show this in
Table 2.12. The unconstrained multiple signals portfolio now outperforms the equal-weighted
all share portfolio significantly in gross terms, although not significantly in risk-adjusted
terms. The difference in mean returns is now 3.2% per year. The long-only multiple signals
portfolio outperforms the all shares portfolio by a more modest 1.2% a year. This difference
is, however, statistically significant for gross and risk-adjusted returns and this significance
survives 50bps each way transaction costs. The unconstrained multiple signals portfolio
continues to outperform the long-only portfolio statistically insignificantly.

For the value-weighted portfolios, the outperformance of the all share portfolio compared
to the other two is reduced. The underperformance of the value-weighted unconstrained
multiple signals portfolio against the long-only portfolio is also reduced. The tail risks in each
comparison group continue to be similar, hence I suppress them.

Untabulated results show that rebalancing the volatility scaled portfolios monthly or six-
monthly produces qualitatively similar outcomes. The unconstrained portfolios benefit most
from less frequent rebalancing, then the long-only portfolios and then the all share portfolios.
Therefore, both the standard and value-weighted unconstrained multiple signals portfolios
perform better relative to their long-only and all share counterparts than with daily rebalancing.
Likewise, the standard and value-weighted long-only multiple signals portfolios now perform
better relative to their all share counterparts. In fact, the value-weighted unconstrained portfolio
marginally outperforms the long-only and all share portfolios with monthly or six-monthly
rebalancing. Similarly, the value-weighted long-only portfolio marginally outperforms the
all share portfolio. Adding stop-loss rules to the less frequently rebalanced volatility scaled
unconstrained and long-only portfolios harms their performance.

2.5 Robustness

The key results - that standard long-short portfolios based on public net short position declara-
tions are not profitable in the UK and using these declarations to form fully invested portfolios
gives no great advantage, either - are robust to the various portfolio formation and data choices
made in the preceding Sections.
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Table 2.12 Fully invested portfolios using multiple days’ declarations - daily rebalancing and
volatility scaling

(a) Fully invested portfolios

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val Turn MDD

Multiple signals approach
UC 0.129 0.000 1.613 0.125 0.000 0.117 0.000 0.124 0.000 0.066 0.090
LO 0.109 0.003 1.321 0.107 0.000 0.103 0.001 0.113 0.000 0.019 0.104
AS 0.097 0.013 1.111 - - - - - - 0.015 0.118

Value-weighted multiple signals approach
UC 0.065 0.061 0.819 0.062 0.030 0.053 0.070 0.063 0.035 0.034 0.126
LO 0.072 0.052 0.846 0.069 0.019 0.064 0.038 0.075 0.017 0.016 0.142
AS 0.076 0.084 0.738 - - - - - - 0.009 0.169

(b) Differences between portfolios

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val

Multiple signals approach
UC-AS 0.032 0.029 1.350 0.030 0.050 0.024 0.118 0.019 0.190
LO-AS 0.012 0.005 1.566 0.012 0.005 0.010 0.015 0.009 0.032
UC-LO 0.020 0.065 1.196 0.018 0.111 0.014 0.229 0.010 0.338

Value-weighted multiple signals approach
UC-AS -0.010 0.528 -0.365 -0.013 0.384 -0.019 0.212 -0.022 0.138
LO-AS -0.004 0.686 -0.202 -0.005 0.523 -0.008 0.361 -0.010 0.261
UC-LO -0.006 0.402 -0.600 -0.007 0.322 -0.011 0.137 -0.012 0.088

Performance evaluation measures for volatility scaled fully invested portfolios over the sample period 1 November
2013 - 13 December 2018. Means and alphas are scaled by 252 days to make them approximately annual figures.
Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio is the annualised Sharpe ratio,
allowing for serial correlation, computed as per Lo (2002). “Turn” denotes daily turnover and “MDD” maximum
drawdown. Panel (a) shows the mean gross and risk-adjusted returns to the unconstrained (UC), long-only (LO)
and all stock (AS) portfolios in isolation. Alphas are not reported for the all share portfolios since the risk models
all contain a market factor. In panel (b), row “X-Y” shows the difference in returns between X and Y. The Sharpe
ratio is the Sharpe ratio of a portfolio which is £1 long in X and £1 short in Y.
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2.5.1 Closing prices

Perhaps the biggest empirical choice made in the earlier sections is to use the t +2 day opening
prices for back-testing, where t is the day the short position was taken/adjusted. The alternative
is to use the t +1 closing price, and assume the FCA information is published and analysed by
traders before the market close. Using t +1 closing prices instead of t +2 opening prices has
relatively little impact on the results.

Table 2.13 shows some improvement for certain value-weighted long-short portfolios when
using t + 1 closing prices. Looking at the daily rebalanced value-weighted portfolio based
on the most recent declarations, the loss on the short side drops to 1.2% per year. The profit
to the long-short portfolio becomes 7%. The Sharpe ratio also improves to 1.1. The mean
return is significantly different from zero at the 5% level. However, the alphas range from 2%
(four-factor model) to 5.4% (three factors) and these are not close to being significant at any
conventional level.

There is a similar improvement for the value-weighted regression-based long-short portfo-
lios. These portfolios are based on multiple days’ declarations. The long basket return increases
to 12.4% per year and the short basket loss falls to 4.1% per year, leaving a net long-short
portfolio profit of 8.3% per year. Unlike the t + 2 opening prices case, this is significantly
different from zero at the 5% level, as are the alphas. Only the QMJ alpha has a t-statistic in
excess of 3.0. However, the short side of the portfolio still loses 4% a year.

The improvements in these value-weighted portfolios’ performance remain with volatility
scaling, although the non-scaled portfolios perform better in terms of means and alphas.
However, the improvements do not survive less frequent rebalancing. Stop-loss rules does
not help the less frequently rebalanced value-weighted portfolios regain their strong daily
rebalanced performance.

For the equal- and net short positions-weighted long-short portfolios, however, everything
remains more or less the same as when using t+2 opening prices. There is a slight deterioration
in long-short performance on average, but it is small. Moreover, there is little change in the
performance of the multiple signals and non-value weighted regression-based portfolios. If
anything, these perform slightly worse overall. This lack of difference to the results in Sections
2.3.1 and 2.3.2 remains with volatility scaling, less frequent rebalancing and stop-loss rules.

The results for the fully invested portfolios are very similar whether I use t + 1 closing
prices or t +2 opening prices.
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Table 2.13 Value-weighted long-short portfolios using t +1 closing prices

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val

Value-weighted portfolio based on most recent day’s declaration
Long 0.082 0.040 0.882 0.068 0.049 0.056 0.131 0.082 0.027
Short 0.012 0.855 0.059 0.014 0.743 0.036 0.417 0.047 0.271
L-S 0.070 0.048 1.110 0.054 0.152 0.020 0.579 0.035 0.361
Value-weighted regression-based portfolio
Long 0.124 0.008 1.176 0.112 0.001 0.110 0.003 0.133 0.000
Short 0.041 0.454 0.359 0.037 0.364 0.041 0.328 0.055 0.187
L-S 0.083 0.009 1.729 0.076 0.004 0.069 0.005 0.078 0.002

Daily rebalanced portfolios over the sample period 1 November 2013 - 13 December 2018. Performance evaluation
measures for declared net short positions portfolios. Means and alphas are scaled by 252 days to make them
approximately annual figures. Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio
is the annualised Sharpe ratio, allowing for serial correlation, computed as per Lo (2002).

2.5.2 Portfolio formation

Short position measure

One way to circumvent many of the assumptions made to turn the net short position disclosures
into a continuous series for each stock is to use the number of distinct investors with net short
positions above the declaration threshold as the short position measure instead. Doing so has
little impact on the results. In some cases the long-short portfolios improve in performance
a little. In other cases they worsen. There are no clear differences overall. Notice that stocks
with zero declared net short positions in aggregate also have zero investors with declared net
short positions. Therefore the fully invested portfolio results are entirely unchanged.

High/low total net short position threshold

Returning to forming portfolios based on aggregate declared net short positions per stock, the
results are robust to the high net short position threshold. I consider using the 70th and 90th
percentiles of declared total net short positions as the cut-off for being placed in the short
basket. The long legs of the portfolios (and therefore the fully invested portfolio results) are
unchanged, since far more than 30% of stocks have zero declared net short positions on any
given day. Generally, the short side losses decrease when using the 90th percentile as the
threshold. However, they remain positive and economically substantial and this improvement
is not uniform across the various portfolio formation methodologies. Likewise, the short side
losses increase slightly when the 70th percentile is the cut-off. Again, these differences are
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economically fairly small. The high net short position threshold does not affect how I form the
fully invested portfolios, and so these results remain unchanged.

Forming portfolios based on changes in declared net short positions

It is possible that there is information in the change in declared net short positions above and
beyond what is encapsulated in the level. The strategies in this paper are rebalanced up to the
daily frequency and changes in declared net short positions may have greater predictive power
over short-run trends. In fact, Boehmer et al. (2008) and Diether et al. (2009) use (scaled)
changes in short interest for their main results. (Au et al., 2009, use the level of short positions
in their UK study.) However, since positions must only be reported once their size crosses
certain thresholds, most daily changes in declared total net short positions are zero. Even the
95th cross sectional percentile of the change in declared total net short positions is zero on 94%
of trading days in my sample, while the 80th and 90th percentiles are always zero. Using daily
changes in total declared net short positions would not be a feasible strategy here.

The weekly change in total declared net short positions suffers a similar issue: its 80th
percentile is always zero and its 90th percentile is zero on 66% of trading days. Even monthly
changes in total declared net short positions suffer an issue of lack of information. The 80th
percentile of this series is zero on 87% of days and the 90th is zero on 36% of days. There
would not be enough days with stocks in the short basket even using the 90th percentile of the
monthly change in total declared net short positions for meaningful back tests.

2.5.3 Sensitivity of multiple signals and regression-based portfolios to set
of horizons

Long-short portfolios

For the multiple signals portfolios, I consider a reduced set of horizons of up to three months
(H = {1,2,5,10,21,42,63} days) and an increased set of horizons of up to two years (H =

{1,2,5,10,21,42,63,126,189,252,378,504} days). The main findings are robust to the hori-
zon choice. The long-short portfolios do not generally make gross or risk-adjusted returns
significantly different from zero. Volatility scaling, rebalancing less frequently and using
stop-loss rules do not change this.

When it comes to the regression-based portfolios, I use an extended set of horizons of
up to nine months (H = {1,5,21,63,126,189,252,378} days) and a shortened set of up to
three months (H = {1,5,21,63} days). The above conclusions are robust to using either the
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reduced or extended set of horizons. In fact, the returns to the daily rebalanced long-short
portfolios are markedly lower for the reduced set of horizons. Otherwise, like in Section 2.3.2,
volatility scaling has little impact on the portfolios, rebalancing less frequently harms portfolio
performance and stop-loss rules do not reverse this.

Fully invested portfolios

For the fully invested portfolios based on multiple days’ declarations, the daily rebalanced
portfolio returns are very similar when using H = {1,2,5,10,21,42,63} days. However,
rebalancing less frequently gives the unconstrained and equal-weighted long-only portfolios
less of a boost, and any advantage to the short disclosure-based portfolios becomes statistically
insignificant. Volatility scaling the portfolio weights gives returns extremely similar to when
volatility scaling the weights based on the baseline H (H = {1,2,5,10,21,42,63,126,189,
252} days).

Extending the set of horizons considered to H = {1,2,5,10,21,42,63,126,189,252,378,
504} days leads to rather high portfolio turnover and more extreme versions of the results
presented for the baseline H . Rebalancing less frequently ameliorates, but does not cure, this
turnover issue. Applying volatility scaling to the weights resolves the problem, and returns
results very similar to those when volatility scaling the weights based on the baseline H .

2.6 Day-t strategies

I have so far focussed on strategies which trade on disclosures either at the market opening
two days after the disclosure is made, or at the close of trading the day after the disclosure is
made. This is because strategies trading earlier than this are not feasible, as the disclosures
are published with a lag (see Section 2.2.1). However, we have seen that feasible long-short
strategies are not profitable, mainly because of heavy losses to the short leg, and feasible fully
invested portfolios do not reliably outperform the market. These findings are very robust. To
investigate whether the publication lag causes this disappointing performance, I now suspend
reality and assume that a disclosure becomes available on the day it was required (i.e. the day
the position in question was taken, or day t in Section 2.2.1’s terminology).

I start with the daily rebalanced long-short portfolios which use a single day’s declarations.
The losses to the short baskets, and subsequent non-profitability of these long-short portfolios,
are not caused by the publication lag. The results are very similar to those using the t + 1
closing prices (see Section 2.5.1). Compared the the baseline t + 2 opening prices case in
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Table 2.14 Value-weighted long-short portfolios using day-t closing prices and day-t declara-
tions

Mean p-val Sharpe αFF3 p-val αFF4 p-val αQMJ p-val

Non-volatility scaled
Long 0.082 0.040 0.880 0.171 0.068 0.049 0.056 0.132 0.082 0.027
Short -0.001 0.986 -0.034 0.953 0.003 0.955 0.034 0.535 0.041 0.449
L-S 0.084 0.119 0.896 0.282 0.065 0.226 0.022 0.656 0.042 0.432
Volatility scaled
Long 0.081 0.038 0.905 0.162 0.065 0.069 0.050 0.183 0.072 0.053
Short -0.006 0.932 -0.071 0.890 -0.007 0.888 0.013 0.796 0.022 0.651
L-S 0.087 0.017 1.291 0.111 0.072 0.102 0.037 0.375 0.050 0.250

Daily rebalanced portfolios over the sample period 1 November 2013 - 13 December 2018. Performance evaluation
measures for declared net short positions portfolios. Means and alphas are scaled by 252 days to make them
approximately annual figures. Mean and alpha p-values are based on daily returns and are HAC. The Sharpe ratio
is the annualised Sharpe ratio, allowing for serial correlation, computed as per Lo (2002).

Section 2.3.1, the returns to the equal- and net short positions-weighted long and short baskets
remain similar. The returns to the value-weighted long basket increase to 8.2% a year, while
the losses to the short basket fall to 1.2%. The average annual return of the value-weighted
long-short portfolio is 7.0% and is significantly different from zero. However, the alphas remain
insignificant. Volatility scaling the portfolios does not enable any of the long baskets to make a
profit, nor does rebalancing the portfolios less frequently. This latter finding is unsurprising,
since the gain to more timely access to information is diluted as the portfolio is rebalanced less
frequently.

Returning to daily rebalancing, Table 2.14 shows that using the 90th percentile of declared
open net short positions as the cut-off for forming the long and short baskets does allow the
value-weighted short basket to make a small profit. This does not happen when using the t +1
closing prices or t + 2 opening prices. At 0.1% per year, however, the profit is minuscule.
Volatility scaling the portfolio increases the profit to 0.6% a year. However, the profits are
not large enough for either the volatility scaled or non-volatility scaled long-short portfolio to
have an alpha significantly different from zero. The volatility scaled long-short portfolio does,
however, have a mean return which is significant. Whether volatility scaled or not, the equal-
and net short positions-weighted short baskets continue to make substantial losses. Rebalancing
the portfolios less than daily sees all the short baskets (including the value-weighted short
basket) make substantial losses, too.

These stubborn losses to the short baskets may seem to suggest that the actual (declared)
net short positions taken were not profitable on average. This is not necessarily the case,
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however, as the strategies discussed here do not perfectly track the declared positions - the
entry (when the position first rises above the 0.5% threshold) and exit (when the position falls
below the threshold) times are not necessarily the same. Thus, the actual positions may be
timed better than the hypothetical positions considered here. Jank and Smajlbegovic (2017) do
track the entry and exit times of the actual positions and find them to be profitable on average.
However, they consider positions taken in all EU-listed stocks rather than positions taken
in only UK-listed stocks. Moreover, the profitability of the actual positions is not typically
significant.

In common with the less frequently rebalanced long-short portfolios using a single day’s
declarations, the short baskets in the long-short strategies based on multiple days’ declarations
continue to make substantial losses. Moreover, the fully invested portfolios - whether equal- or
value-weighted, whether formed using a single day’s declarations or multiple days’ declarations,
whether allowed to take short positions or not - continue to underperform the market. This is
hardly a surprise. Changing the assumed disclosure availability has a relatively small impact on
the composition of the long basket, which makes up the majority the fully invested portfolios
which can take short positions (and, of course, 100% of the long-only portfolios).

2.7 Conclusion

I examine whether public net short position disclosures can be used as the basis for a profitable
investment strategy in the UK. New rules introduced in 2012 mean that all net short positions
above 0.5% of issued share capital must be publicly disclosed, making freely available for
the first time information about large net short positions. There is a clear practical interest in
evaluating the profitability of this new information.

In general, regulatory net short position disclosures do not form the basis of profitable
long-short portfolios, in either gross or risk-adjusted terms. Even where there are statistically
significant average profits to these strategies, the short sides of the portfolios lose a considerable
amount of money. If an investor wants a zero initial outlay portfolio, she would surely be better
off financing the investments in the long side of the portfolio by borrowing, rather than taking
the short positions considered here.

The regulatory net short position disclosures do not form the basis of fully invested (unit
initial outlay) portfolios that substantially outperform comparable portfolios of all stocks, either.
When such fully invested portfolios are allowed to take short positions, they do not, in general,
significantly outperform comparable portfolios of all stocks. Certain long-only portfolios
formed on the basis of the disclosures do tend to significantly outperform comparable portfolios
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of all stocks. However, such outperformance is typically economically modest: around one
percentage point per year.

The practical implications of this research are clear. For the UK at least, the regulatory net
short position disclosures do not seem to form the basis of a profitable short selling signal or a
profitable buy signal. The lack of profitability of the short selling signal is clear from the fact
that the short side of the long-short portfolios loses money in every formulation considered.
For the buying signal, while the long sides of the long-only portfolios do well when considered
in isolation, the long-only portfolios only modestly outperform portfolios of all stocks. There
is little economic gain to buying stocks on the basis of this buy signal, as opposed to simply
buying all stocks.

The short selling signal may not be profitable because, by the time the net short positions
exceed the disclosure threshold, there is already as much short interest in the stock as the
market can profitably handle.That is, the strategy described in this paper is simply too late
to the party. After all, we know from Jank and Smajlbegovic (2017) that the disclosed short
positions are profitable on average and that positions taken earlier perform better overall.

It is also possible that the bull market which coincided with the sample period made it an
unusually difficult time to profit from short positions, making the losses in the short baskets of
the strategies considered potentially anomalous. Of course, this possibility cannot be ruled out
with the data available. However, while the market rose strongly overall over the whole sample
period, on any given day there were typically many individual stocks which did fall in value.
The short baskets could still have made money by identifying these stocks. On the median day,
145 of the 351 stocks in the sample fell in value (152 stocks fell on the mean day). The lower
quartile of the number of stocks to fall in value on a given day was 101, while the number
ranged from 8 to 338. So the short baskets did have the opportunity to make money, had the
signal been more informative as to which stocks were likely to fall in value on a given day.

As for why the buy signal is not too informative, about 70% of stocks have a buy signal on
the average day. It is therefore not necessarily surprising that this portfolio should not perform
much differently to a portfolio of all stocks. The portfolios are rather similar. In any case,
the information generating the buy signal is public and easy to act on - certainly easier to act
on than a short selling signal - and so perhaps any information in the signal has already been
exploited by the time the marginal investor (what I study here) arrives.



Chapter 3

The value of using predictive information
optimally

For mean-variance investors, using predictive information unconditionally optimally produces
better portfolios than using predictive information conditionally optimally. The latter is more
usually done in practice. Empirically, the unconditionally optimal portfolios have higher Sharpe
ratios and certainty equivalents than the conditionally optimal portfolios. They also have lower
turnover, leverage, losses and drawdowns. Moreover, measures of the whole distribution tend
to prefer the unconditionally optimal portfolios, especially once transaction costs are accounted
for. With transaction costs, the unconditionally optimal portfolios often second-order stochasti-
cally dominate the conditionally optimal portfolios. The unconditionally optimal portfolios
are also preferred in terms of Sharpe ratio, certainty equivalent, costs, losses, drawdowns and
stochastic dominance to mean-variance optimal portfolios that do not use predictive information.
However, whether unconditionally optimal portfolios are preferred to minimum variance or
1/N portfolios depends on the asset universe.

JEL classification: G11, G14, G17
Keywords: conditional efficiency, unconditional efficiency, signal, predictive information,
prediction, risk-return trade-off, mean-variance
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3.1 Introduction

A mean-variance optimiser is better off using predictive information unconditionally optimally
than conditionally optimally. Using the information unconditionally optimally produces port-
folios with a better risk-to-reward profile in terms of Sharpe ratios and certainty equivalents.
Moreover, the unconditionally optimal portfolios have lower turnover and leverage and there-
fore lower transaction costs. They also produce lower expected shortfalls (extreme losses) and
drawdowns (runs of losses). In addition, the utopia index - a measure of almost stochastic
dominance (the entire return distribution) - tends to prefer unconditionally optimal portfolios,
too. Especially when transaction costs are considered, the unconditionally optimal portfolios
often second-order stochastically dominate the conditionally optimal ones.

The question of how using predictive information unconditionally, rather than conditionally,
optimally affects portfolio performance is an important one. Most studies that consider the gain
to a mean-variance optimiser of using predictive information consider conditionally optimal
portfolios (e.g. Allen et al., 2019). However, in the plausible scenario where an uninformed
investor, with no access to predictive information, delegates to an informed manager, with access
to predictive information, the investor will assess the manager in terms of the unconditional
mean and variance of the portfolio. Furthermore, in practice, studies such as Allen et al. (2019)
tend to evaluate conditionally optimal portfolios in terms of statistics that are a function of
unconditional moments (e.g. a Sharpe ratio depending on the unconditional mean and variance
of the portfolio’s excess return). Yet, Hansen and Richard (1987) show that the conditionally
optimal portfolio is not necessarily unconditionally optimal. From an unconditional perspective,
the conditionally optimal portfolio may not use predictive information optimally, and the gain
to using the information will be understated.

In addition, similar to Ferson and Siegel (2001) and Abhyankar et al. (2012), I show that
unconditionally optimal weights have a conservative response property. The unconditionally
optimal weights are substantially less sensitive to changes in the predicted returns than the
conditionally optimal weights are over the most likely values of the predicted returns. This
conservative response can reduce turnover and provide a degree of robustness to estimation
error which is useful in practice, beyond considerations of whether the investor is motivated by
the unconditional or conditional moments of their portfolio.

Empirically, I show that the unconditionally optimal portfolios are also much preferred
to the mean-variance optimal portfolios which ignore the conditioning information (the no-
information optimal portfolios). This is in terms of Sharpe ratio, certainty equivalent, utopia
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index, costs, drawdowns and losses. Subject to fees, the investor is always better off delegating
to an informed manager or using predictive information.

How the unconditionally optimal portfolio compares to non-optimal benchmarks depends
on the asset universe. The non-optimal benchmarks I use are the 1/N portfolio, the minimum
conditional variance portfolio and then no-information minimum variance portfolio (i.e. the
minimum unconditional variance portfolio). It is important to compare to these benchmarks as
DeMiguel et al. (2009) show that mean-variance optimal portfolios can be subject to severe
estimation error, meaning non-optimal portfolios can perform better in practice.

In the event, the unconditionally optimal portfolios outperform the non-optimal benchmarks
in universes of size/book-to-market double-sorted portfolios but not universes of industry
portfolios. This outperformance survives transaction costs of 50bps each-way in the smaller
size/book-to-market universe and 10bps each-way in the larger size/book-to-market universe.

The asset means and variances are less dispersed in the industry universes, meaning the
non-optimal allocations are closer to the true optimal allocations (Kirby and Ostdiek, 2012a).
This lack of dispersion could therefore explain why the non-optimal portfolios outperform the
unconditionally optimal portfolio, even with zero costs, in the industry but not size/book-to-
market universes.

In the empirical work, I use four asset universes: six size/book-to-market double-sorted
portfolios and 25 size/book-to-market portfolios, as well as 10 industry portfolios and 30
industry portfolios. The time period is January 1990 to December 2019. My predictive
information is the lagged market return, which I use in a univariate linear model. This predictor
gives the best information coefficient in all universes. I reoptimise and rebalance the portfolios
each month, and use the standard conditional variance estimator, which does not account for
possible conditional heteroscedasticity.

The results are robust to using alternative predictors with positive information coefficients.
These are reversal and one/12-month trend change, which I use in univariate predictive models,
and a machine learning predictor which combines information from 10 variables using an
elastic net-targeted random forest.

I compute the information coefficients in one-step-ahead rolling predictive regressions over
the same sample as I run the portfolio strategies and focus only on cases where the information
coefficient is positive. I do so since the question of the benefits of using predictive information
unconditionally optimally relies on having valid predictive information in the first place. This
approach may introduce look-ahead bias into the comparisons between portfolios using the
predictive information and those not using it. These comparisons effectively condition on the
predictor used having a positive information coefficient in the sample and remain interesting
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for two reasons. First, it is not a given that using a even predictor with a “guaranteed” positive
information coefficient will lead to better portfolio performance if estimating the predictive
model introduces additional estimation error. Second, we see that portfolios using the predictive
information typically struggle to outperform the minimum variance portfolio that does not use
this information. This finding is particularly damning given that the predictor has been chosen
on the basis of in-sample predictive performance. Moreover, the failure of the machine learning
predictor to improve portfolio performance is all the more striking given that the machine
learning predictor was chosen in the basis of in-sample predictive performance.

Reoptimising and rebalancing the portfolios each quarter, rather than each month, improves
Sharpe ratios and certainty equivalents across the board, but leaves the relative preferences for
the portfolios largely unchanged. Since return volatility falls with quarterly rebalancing, the
p-values on the various comparisons tend to fall as well.

Using an asymmetric dynamic conditional correlation model to account for possible condi-
tional heteroscedasticity actually harms portfolio performance, but does not affect the relative
ranking of the portfolios.

The literature regarding the unconditionally optimal use of predictive information dates back
to Hansen and Richard (1987). They show that the portfolio that uses predictive information
unconditionally optimally is different to the portfolio which uses this information conditionally
optimally. The solution to the conditional mean-variance problem is not necessarily the
solution to the unconditional mean-variance problem. Ferson and Siegel (2001) derive the
unconditionally optimal weights explicitly.

Abhyankar et al. (2012) are the first to analyse the benefit of using predictive information
unconditionally optimally, rather than conditionally optimally. They find that using predictive
information unconditionally, rather than conditionally, optimally portfolio improves perfor-
mance both in- and out-of-sample. They compare the maximum Sharpe ratio attainable using
the predictive information unconditionally optimally to that using the information conditionally
optimally. While this provides a convenient measure of the expansion of the mean-variance
frontier, the two maximum Sharpe ratio portfolios may have different mean targets and therefore
aggressiveness. In this sense, the maximum Sharpe ratio approach may not be comparing like
with like, which Kirby and Ostdiek (2012a) show can lead to misleading comparisons. For this
reason, I use portfolios with the same mean target.

Chiang (2015) considers a variation of the Ferson and Siegel (2001) problem. Rather than
considering returns in excess of the risk-free rate, Chiang (2015) considers returns in excess of
a (potentially time-varying) benchmark. This extension is useful since many fund managers’
performance is benchmarked in practice. Like Abhyankar et al. (2012), Chiang (2015) finds
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in- and out-of-sample information ratio gains to using predictive information unconditionally,
rather than conditionally, optimally. The information ratio is the analogue of the Sharpe ratio in
the presence of a benchmark.

I go beyond comparing Sharpe/information ratios by comparing the entire distributions of
returns through the utopia index (Anderson et al., 2019). The utopia index comparisons turn
out to be statistically more powerful than those based on Sharpe ratios in this paper. They are
also more general than considering Sharpe/information ratios, which are specific functions of
means and variances. I also go beyond linear prediction methods by considering very recent
machine learning methods. Ironically, these do not help portfolio performance.

Other work considers the effectiveness of using predictive information unconditionally
optimally. Kirby and Ostdiek (2012b) consider the optimal use of predictive information from
an unconditional perspective as part of a broader framework that accounts for estimation risk,
specification error and transaction costs directly in the (unconditional) optimisation. Kirby
and Ostdiek (2012b) find that portfolios using predictive information optimally in this setting
outperform the 1/N portfolio and the S&P500 index. They do not consider other benchmarks.
Zhou (2008) formulates a new version of the fundamental law of active management that
maximises the unconditional value added, in the spirit of Ferson and Siegel (2001). This new
law performs better in simulations than one based on conditional value-added.

The rest of this paper proceeds as follows. Section 3.2 discusses the portfolios I consider.
Section 3.3 outlines how I compare portfolios. Section 3.4 describes the sample data and
predictors used. Section 3.5 gives the main results and Section 3.6 verifies these are robust.
Section 3.7 concludes.

3.2 Portfolios

3.2.1 Portfolio construction with predictive information

Consider a mean-variance investor. At time t, she chooses the vector of portfolio weights
wt = (w1,t , . . . ,wN,t)

′ which minimises her portfolio variance subject to the mean target µP.
Note that I consider only single-period problems: the t subscript on the weights indicates that
they may depend on predictive information available at time t.

Suppose further that the excess returns (returns in excess of the risk-free rate) Rt =

(R1,t , . . . ,RN,t)
′ are generated by

Rt+1 = µ(St)+ ε t+1, (3.1)
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where µ(St) = E(Rt+1|St) is the time t conditional mean of Rt+1, µ(·) is a function, St is a
vector, matrix, or array of predictors, E(ε t+1 |St) = 0 and Var(ε t+1 |St) = Σε(St). The portfolio
construction results below allow for both homoscedastic and conditionally heteroscedastic ε t+1,
so Var(ε t+1 |St) can depend on St .

So that the allocation to the risk-free asset does not distort my results, I consider an investor
investing only in risky assets. My investor therefore faces the budget constraint that her portfolio
weights must sum to one: ι ′wt = 1, where ι is an N-length vector of ones. I work in terms of
excess returns as the investor allocates only over risky assets.

Ferson and Siegel (2001) Theorem 3 shows that the portfolio weights using the predictive
information St that minimise the unconditional portfolio variance Var(w′

tRt+1) subject to the
unconditional mean target E(w′

tRt+1)≥ µP and the budget constraint ι ′wt = 1 are

wUO
t =

Λ(St)ι

ι ′Λ(St)ι
+

µP −α2

α3

(
Λ(St)−

Λ(St)ιι ′Λ(St)

ι ′Λ(St)ι

)
µ(St). (3.2)

where

α2 = E
(

ι ′Λ(St)µ(St)

ι ′Λ(St)ι

)
α3 = E

[
µ(St)

′
(

Λ(St)−
Λ(St)ιι ′Λ(St)

ι ′Λ(St)ι

)
µ(St)

]
Λ(St) =

[
E(Rt+1R′

t+1|St)
]−1

.

I term these weights the unconditionally optimal (UO) weights.
These UO weights are in contrast the optimal weights for an investor who minimises

the conditional portfolio variance Var(w′
tRt+1|St) subject to the conditional mean target

E(w′
tRt+1|St)≥ µP and the budget constraint ι ′wt = 1. In this case, Kirby and Ostdiek (2012a)

show the optimal weights are

wCO
t =

(
µP −µCMIN,t

µCT P,t −µCMIN,t

)
wCT P

t +

(
1−

µP −µCMIN,t

µCT P,t −µCMIN,t

)
wCMIN

t . (3.3)

I term these weights the conditionally optimal (CO) weights. wCT P
t gives the time t conditional

tangency portfolio (CTP) weights, and wCMIN
t the global minimum conditional variance (CMIN)

weights. The CTP maximises the conditional Sharpe ratio E(w′
tRt |St)/

√
Var(w′

tRt |St) (recall
that Rt denotes excess returns). µCMIN,t = E[(wCMIN

t )′Rt+1|St ] and µCT P,t = E[(wCT P
t )′Rt+1|St ].
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The CMIN and CTP portfolios have weights:

wCT P
t =

Σε(St)
−1µ(St)

ι ′Σε(St)−1µ(St)
wCMIN

t =
Σε(St)

−1ι

ι ′Σε(St)−1ι
. (3.4)

In general, the CO weights differ from the UO weights: the CO weights are not necessarily
UO (Hansen and Richard, 1987). In practice, predictive information is often used conditionally

optimally, rather than unconditionally optimally (e.g. Allen et al., 2019, consider conditionally
optimal strategies using predictive information). Yet there are good reasons to consider the UO
weights.

First, the benefit of using predictive information to form conditionally optimal portfolios is
often assessed using statistics which are functions of unconditional portfolio means and vari-
ances (e.g. in Allen et al., 2019). Since we would expect the unconditionally optimal portfolios
to perform better on unconditional performance measures, such studies likely understate the
usefulness of predictive information.

Second, using predictive information to optimise an objective function which depends on
unconditional moments reflects the situation facing an investment manager with access to
predictive information investing on behalf of an uninformed client, who does not have access
to this information (Ferson and Siegel, 2001). This is a situation of practical interest for fund
managers. It is reasonable to assume that one reason that clients are willing to pay investment
managers’ fees is because the investment manager is better informed. If the client does not have
access to the predictive information, the client will assess the manager in terms of unconditional
performance. Therefore, the manager should use the predictive information unconditionally
optimally.

Finally, the UO weights also have a conservative response property (Abhyankar et al., 2012;
Ferson and Siegel, 2001). This property can provide a useful defence against estimation error
coming from estimating µ(St). If the portfolio weights are very sensitive to even small changes
in the conditional mean, they are also very sensitive to estimation error. A small amount of
estimation error would lead to weights a long way from the true optimum. In addition, the
conservative response property helps to control turnover and therefore transaction costs.

I illustrate the UO portfolio’s conservative response property in Figure 3.1. In this example, I
allocate between the BIG and SMALL portfolios: the large-cap and small-cap sides of the Fama-
French SMB factor, respectively. I predict the returns to the BIG and SMALL portfolios using
the lagged market return as the predictive variable in 120-month rolling window regressions
and assuming homoscedastic ε i,t . I use data from January 1990-December 2019. My mean
target is 0.13% per month, which is the mean of the optimal portfolio for a mean-variance
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Fig. 3.1 Unconditionally and conditionally optimal portfolio weights as a function of the
conditional mean for the BIG portfolio of large stocks
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The black line (−1/x-like shape) shows the conditionally optimal (CO) weight for BIG, while the blue line
(sigmoid-like shape) shows the unconditionally optimal (UO) weight. The CO curve has a vertical asymptote at
the sample mean of SMALL µ̂S = 0.0078. µ̂B = 0.0055 is the sample mean of BIG. The red dotted lines are one
standard deviation of the conditional mean either side of µ̂B.

optimiser without access to predictive information and a risk aversion of 5.1 The sample mean
return to the BIG portfolio is 0.55% per month, marked µ̂B in Figure 3.1.

We can see that the CO portfolio weights respond considerably to small changes in the
conditional mean of BIG around µ̂B, which the conditional mean is centred on. In fact, the CO
response function has a vertical asymptote at µ̂S = 0.78%, which is very close to µ̂B. Around
this asymptote, a small change in the conditional mean of BIG can see BIG go from having
an extreme positive weight to an extreme negative weight, or vice-versa. By contrast, the UO
weights are much less sensitive to changes in the conditional mean of BIG around µ̂B. We see
this over almost all of the range between the red dotted lines, which show one standard deviation
of the BIG conditional mean either side of µ̂B. The UO weights also have no asymptote: the
UO weights are bounded from above by 3.8 and below by -2.7.

1This mean-variance optimiser’s problem is

max
w

{
E(w′Rt)−

5
2

Var(w′Rt)

}
.
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Away from µ̂B, in the region of the more extreme and less likely values of the conditional
mean of BIG, the CO weights do respond a bit more conservatively to changes in the conditional
mean than the UO weights. However, the difference in the strength of response between the
CO and UO weights is smaller than where the UO weights respond more conservatively.
Moreover, the region where the CO weights respond more conservatively corresponds to less
likely realisations of the conditional mean. Therefore, while it is empirically possible that CO
weights overall respond more conservatively to changes in the conditional mean, and so suffer
less from estimation error and have lower turnover, it is unlikely.

3.2.2 No-information benchmark

The UO weights use predictive information to minimise (with respect to w) the unconditional
portfolio variance Var(w′Rt), subject to the unconditional mean target E(w′Rt) ≥ µP and
budget constraint ι ′w = 1. I consider as a benchmark the weights which minimise the same
unconditional portfolio variance, subject to the same unconditional mean target and the same
budget constraint, but which do not use the predictive information. I term these weights the
no-information optimal (NIO) weights.

The NIO weights depend only on the unconditional means E(Rt) = µ and variances
Var(Rt) = Σ of asset returns, and are (Kirby and Ostdiek, 2012a):

wNIO =

(
µP −µNIMIN

µNIT P −µNIMIN

)(
Σ−1µ

ι ′Σ−1µ

)
+

(
1− µP −µNIMIN

µT P −µNIMIN

)(
Σ−1ι

ι ′Σ−1ι

)
.

In practice, I estimate µ and Σ with rolling window estimators and update the estimates of µ

and Σ, and therefore the weights, each period.
NIMIN denotes the no-information global minimum variance portfolio and NITP the no-

information tangency portfolio. µNIMIN = E[(wNIMIN)′Rt ] denotes and µNIT P = E[(wNIT P)′Rt ].
The NITP maximises the unconditional Sharpe ratio E(w′Rt)/

√
Var(w′Rt) and the NIMIN

portfolio is the global minimum unconditional variance portfolio (it minimises Var(w′Rt)). The
NITP and NIMIN portfolios have weights:

wNIT P =
Σ−1µ

ι ′Σ−1µ
wNIMIN =

Σ−1ι

ι ′Σ−1ι
(3.5)

I consider the NIO benchmark since the NIO portfolio represents the optimal portfolio
for an uninformed investor who does not delegate to an informed manager. Therefore, the
difference in performance between the UO and NIO portfolios is the value of delegating to the
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informed manager. More generally, this difference measures the value of having predictive
information versus not having it, while keeping the objective function and constraints the same
in both cases.

3.2.3 Mean target

The UO, CO and NIO portfolios above depend on the mean target µP. I ensure all three
portfolios have the same mean target, in order to control their aggressiveness. Portfolios with
higher mean targets are more aggressive. Kirby and Ostdiek (2012a) show that more aggressive
portfolios are more exposed to estimation error and it is therefore important to compare “like
with like”, in terms of mean targets.

I derive the mean target from the mean-variance utility optimisation problem of an investor
without access to predictive information, so that the mean target is

µP =
ι ′Σ−1µ

γ

(
µ ′Σ−1µ

ι ′Σ−1µ

)
+

(
1− ι ′Σ−1µ

γ

)(
ι ′Σ−1µ

ι ′Σ−1ι

)
.

µP is the mean return to the portfolio that maximises, with respect to w, the certainty equivalent

CEQγ(w) = w′
µ − γ

2
wΣw′ (3.6)

where γ represents the investor’s risk aversion.
I use the problem for an investor without access to predictive information to represent the

situation of an uninformed investor delegating to an informed manager. Here, the investor gives
the manager a target rate of return and the manager’s task is to achieve that return for the lowest
possible risk.

Note that, in this case, neither the UO nor CO portfolios will be utility-optimal for the
investor (uninformed principal) with risk aversion γ . The UO portfolio will, however, give the
lowest unconditional variance given the unconditional mean target. Likewise, the CO portfolio
will yield the lowest conditional variance given the conditional mean target. In this sense, the
UO and CO portfolios are mean-variance optimal.

The non-utility optimality of the UO and CO portfolios comes from the fact that the
usual Lagrangian duality results that mean that the utility maximisation problem has the same
solution as an appropriately constrained variance minimisation problem do not hold when
the information sets underlying the two problems are different. For similar reasons, the NIO
portfolio is utility-optimal for the (uninformed) investor with risk aversion γ studied here.
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That the UO and CO portfolios are not utility-optimal for our uninformed investor infor-
mation is not a concern here. The purpose of giving each portfolio the same mean target is
to ensure comparable aggressiveness. The reason for deriving that mean target from a utility
optimisation problem is to ensure that it is economically grounded.

3.2.4 Other benchmarks

I consider three non-optimal benchmarks for the UO portfolio: the 1/N portfolio, the CMIN
portfolio in (3.4) and the NIMIN portfolio in (3.5). DeMiguel et al. (2009) show that estimation
error can be a severe problem for mean-variance optimal portfolios, leading to non-optimal
allocations, such as a simple 1/N portfolio, outperforming the theoretically optimal allocations
empirically. Minimum variance portfolios can be seen as an aggressive form of shrinkage,
which assumes that all assets in a universe have the same mean. Since DeMiguel et al. (2009)
find that estimation error in the mean is the main issue for mean-variance allocations, using
minimum variance portfolios could provide a challenging benchmark, too.

I also consider CTP and NITP, defined in (3.4) and (3.5) respectively, as mean-variance
optimal benchmarks for the UO portfolio. I consider these portfolios as benchmarks as, without
estimation error, the CTP and NITP maximise the conditional and unconditional Sharpe ratio,
respectively. However, the CTP and NITP tend to have extreme mean targets and so are very
sensitive to estimation error, meaning they do not necessarily have the highest Sharpe ratios in
practice (Kirby and Ostdiek, 2012a).

3.3 Portfolio performance measures

I consider three sets of performance measures: standard mean-variance performance measures,
measures of tail risk and a measure of almost stochastic dominance, which compares the entire
distributions of returns.

The mean-variance performance measures are the Sharpe ratio and the certainty equivalent,
which is calculated as the sample analogue of (3.6). I compute HAC p-values for the differences
between the UO Sharpe ratio and the CO and (no-information and other) benchmark Sharpe
ratios in bivariate comparisons. I also compute HAC p-values for the differences between
the UO certainty equivalent and the CO and benchmark certainty equivalents in bivariate
comparisons. The null in each case is that the difference is zero and the p-values are for
two-tailed tests. My method for computing these p-values is in Appendix B.1.
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Mean-variance measures are most natural in this setting, since the portfolios are designed to
minimise (conditional or unconditional) variance given a (conditional or unconditional) mean
target. The Sharpe ratio has the advantage of being independent of risk aversion and shows
the risk-to-return ratio of the portfolio. For a given mean, a mean-variance investor prefers the
portfolio with a higher Sharpe ratio. The certainty equivalent does depend on risk aversion. It
is a risk-adjusted return. The difference in certainty equivalent returns between two portfolios
can be interpreted as the maximum management fee (as a percentage of assets) that an investor
would pay to switch from one portfolio to the other.

To illustrate the practicalities of the portfolios, I also report their leverage and turnover.
Leverage shows us the percentage of the investor’s assets that must be borrowed to build the
portfolio. In practice, borrowing capacity is finite and portfolios with very high leverage may
be infeasible. Turnover will give an indication of transaction costs. A standard transaction cost
assumption is 50bps each-way, proportional to turnover (e.g. DeMiguel et al., 2009). However,
10bps each-way may be more reasonable, as discussed in Chapter 2.

Beyond mean-variance measures of risk, I also consider tail risk. To do this, I look at the
profit and loss distribution, computing the empirical 99%, 95% and 90% expected shortfalls.
These are the expected losses given that returns are in the worst 1%, 5% and 10% of their
empirical distributions, respectively.

In addition, I consider drawdowns. These measure runs of losses, computed from peak to
trough. I compute the empirical 90%, 95% and 99% percentiles of portfolio drawdowns and
the maximum drawdowns. The maximum drawdown shows the loss suffered by an investor
who times their investment perfectly badly: the worst loss suffered by buying at a peak and
selling at a trough.

It is important to consider tail risk. While mean-variance investing is widely used in practice,
the risk that investors face in practice is fundamentally asymmetric. Once an investor loses
100% of their capital, they can invest no further and therefore cannot benefit from future upturns.
Using variance as a risk measure does not capture this effect since variance is symmetric about
the mean.

Losses represent a form of tail risk. Drawdowns are another and perhaps of even more
practical interest, since they consider runs of losses. In practice, investors do not hold a
portfolio for one period only, but for successive periods. Drawdowns, then, capture the tail
risk associated with timing entry and exit poorly: suffering runs of losses by buying high and
selling low.

I do not confine my examination of non-variance risk to tail risk only. I also consider the
whole return distribution. I compute the utopia index (Anderson et al., 2019), a measure of
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almost stochastic dominance.2 I use the utopia index to compare the UO portfolio to the CO
and benchmark portfolios in bivariate comparisons.3

Portfolio p second-order stochastically dominates (SOSD) q if its second-order integrated
cumulative distribution function (CDF) lies below that of q. If p SOSD q, any risk-averse
investor prefers to invest in p rather than q. Almost stochastic dominance refers to how much
of the domain of the second-order integrated CDF of p is below that of q. This is normalised to
be a percentage in the utopia index, so that the utopia index of p and the utopia index of q sum
to one. Specifically, the utopia index of portfolio p is defined as

Ip = 1−
Ap

T

Ap =
∫

x∈X
(Gp(x)−G (x))dx

T =
∫

x∈X

(
Ḡ (x)−G (x)

)
dx

(3.7)

Gp(x) is the second-order integrated CDF for p, X the range of all possible values of returns,
G (x) the upper envelope of the second-order integrated CDFs for all portfolios being compared
and G (x) the lower envelope. Since it is clear from (3.7) that Ap ≤ T , it is also clear that
0 ≤ Ip ≤ 1. The best case scenario (p SOSD q) has Gp(x) = G (x) for all x ∈ X . Therefore a
higher Ip indicates a better portfolio.

In practice, the utopia index must be computed over empirical integrated CDFs. This makes
it a statistic with a distribution and the empirical utopia index is subject to estimation error. For
inference, I use the sub-sampling procedure described in Anderson et al. (2019) for weakly
dependent data. I use the same tuning parameter values as Anderson et al. (2019).

Using the utopia index allows for more general comparisons than the Sharpe ratio or
certainty equivalent, since SOSD relates to preferences for all risk-averse investors. Moreover,
the utopia index turns out to provide more statistically powerful comparisons than the Sharpe
ratio or certainty equivalent in this paper.

2What I refer to as simply the utopia index, Anderson et al. (2019) term the “second-degree utopia index”. I
use the utopia index only in the context of second-order stochastic dominance, which is what the second-degree
utopia index tests for in Anderson et al. (2019).

3The utopia index can handle comparisons between more than two alternatives, but I focus on bivariate
comparisons. While the set of alternatives makes no difference to portfolio utopia index rankings in the population,
it does in finite samples. In particular, including one portfolio which has a much worse utopia index than all of the
others in the set skews the comparisons and makes it difficult to rank the alternatives which are not clearly awful.
Solving this problem requires iterative deletion of portfolios which typically results in bi- or trivariate comparisons.
In any case, there is a natural portfolio to compare against in all cases in this paper: the UO portfolio.
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3.4 Data

I consider four asset universes. They all come from Kenneth French’s website and are: the
six and 25 value-weighted size/book-to-market double-sorted portfolios, and the 10 and 30
value-weighted industry portfolios. Since I allocate over risky assets only, I work with excess
returns and subtract the risk-free rate (the one-month Treasury bill rate, computed by Ibbotson
Associates and obtained via Kenneth French’s website) from the portfolio returns.

My sample for returns is January 1990-December 2019 (360 months). Since I lag all
predictors by one period, the sample for predictors is December 1989-November 2019. I
consider portfolios that re-optimise and rebalance each month. All statistics (means, Sharpe
ratios, etc.) presented are monthly statistics.

3.4.1 Predictors

I consider a suite of ten predictive variables. Note that the predictive models used to generate
the results in the rest of this paper do not necessarily use all of the predictive variables. Which
variables are used in each case is specified with the relevant results. Following Abhyankar et al.
(2012), I consider the following six economic variables, each with a one-month lag: the return
to the market index (from CRSP), the dividend yield on the market index (computed from
CRSP data), the one-month Treasury bill rate (from Ibbotson Associates, via Kenneth French’s
website), CPI inflation (from FRED), the term spread (10-year Treasury yield minus one-year
Treasury yield, computed using FRED data) and the credit spread (10-year BAA corporate
bond spread minus 10-year Treasury yield, computed using FRED data).4

I also consider four technical predictors, following Neely et al. (2014). These measures
are: reversal (previous month’s return), momentum (previous 12 months’ cumulative return),
one/12-month trend change (MA1,12

i,t ) and three/12-month trend change (MA3,12
i,t ). For asset i,

MAs,12
i,t =

1
s

s

∑
k=1

Ri,t−k −
1
12

12

∑
k=1

Ri,t−k. (3.8)

MAs,12
i,t is the difference between the s-month moving average and the 12 month moving average.

These moving average differences can be interpreted as capturing changes in trends, since the
shorter moving average is “more sensitive to recent price movements” than the longer one
(Neely et al., 2014).

4Due to missing data over the period of the financial crisis in the longer horizon (e.g. 20- or 30-year) FRED
Treasury yield series, it is not possible to use exactly the same credit spread measure as Abhyankar et al. (2012),
nor to compute Abhyankar et al.’s convexity of the term structure measure.
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It is important to consider technical predictors as well as economic predictors. Neely et al.
(2014) show that technical predictors provide an important complement to economic predictors
when it comes to predicting stock returns. Moreover, Neely et al. find that technical indicators
are, in fact, stronger predictors of stock returns than economic predictors.

3.5 Results

I evaluate the effectiveness of unconditionally optimal (UO) portfolio compared to the condi-
tionally (CO) and no-information (NIO) optimal portfolios, the tangency portfolios and the
other benchmarks in an out-of-sample exercise. This removes concerns regarding look-ahead
bias. I estimate the parameters of µ(St) and Σε(St), as well as µ and Σ, using a rolling window
approach. That is, I estimate µ and Σ and the parameters of µ(St) and Σε(St) using data from
t −b to t −1. The results I present below use a window of b = 120, although the results are
robust to using a 60-month look-back period (b = 60) or an expanding window (b = t −1) -
see Section 3.6.2. In all three cases, I reserve the first 120 observations for the initial estimation
window. Therefore, all the returns series for the portfolios run from January 2000 to December
2019 and each returns series is 240 observations in length.

In the main results below, I use a linear, univariate conditional mean function where the
sole predictive variable is the (lagged) market return. I choose this specification since, in each
universe, it has the best information coefficient (correlation between predicted and realised
returns) of all the predictive models I consider. The results below are robust to using other
predictors with a positive information coefficient - see Sections 3.5.3 and 3.6.3. (Details of the
predictive models considered and their information coefficients are in Appendix B.2.)

I compute the information coefficients based on one-step-ahead out-of-sample predictions,
produced using rolling windows of length 120, using the same sample as for the portfolio
returns. This means that the first returns I forecast are in January 2000 (where I estimate
the predictive model using data up to December 1999) and the final returns I forecast are in
December 2019. The reason for computing the information coefficients over the same period
I run the portfolio strategies is that studying the value of using predictive information, and
comparing different methods of using that information, implicitly assumes, and really relies on,
the information being used having predictive power, i.e. a positive information coefficient. As
discussed in Section 3.1, this may introduce a degree of look-ahead bias into the comparisons
between portfolios using the predictive information and those not using it. These comparisons
look at the value of using predictive information compared to not using it conditional on that
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information having predictive power. There is unlikely to be much value in using “predictors”
which do not have predictive power!

I treat ε t as homoscedastic so that Σ̂ε(St)= b−1
∑

b
s=1(Rt+1−s− µ̂(St−s))(Rt+1−s− µ̂(St−s))

′,
where µ̂(St) is the estimated conditional mean of Rt+1 given St . Section 3.5.2 shows that al-
lowing for conditional heteroscedasticity in ε t does not change the key conclusions of the
results.

At each t, I estimate µ and Σ with the standard estimators µ̂ = b−1
∑

b
s=1 Rt−s and Σ̂ =

b−1
∑

b
s=1(Rt−s − µ̂)(Rt−s − µ̂)′, respectively. Note that the estimates of µ and Σ change each

period as new information arrives.
I re-estimate the weights and rebalance each month and use a risk aversion of γ = 5 for the

UO, CO and NIO portfolios. Section 3.5.1 shows moving to quarterly rebalancing does not
change the overall pattern of the results. Section 3.6.1 shows that the results are robust to using
a risk aversion of γ = 1 or γ = 10.

The results I present are calculated in the absence of transaction costs. I do, however,
consider the impact of transactions costs throughout the discussion of the results. I leave the
results calculated with transaction costs untabulated in the interests of space. The transaction
costs I consider are proportional to turnover at both the standard level of 50bps each-way and
also the lower, but potentially more realistic, level of 10bps each-way (see Chapter 2 for a
greater discussion of a realistic level of each-way transaction costs). Where I do not explicitly
mention a cost level, the discussion takes the costs to be zero.

Tables 3.1-3.4 show the portfolio performance across the four universes (six and 25
size/book-to-market portfolios, and 10 and 30 industry portfolios) using the univariate (lagged)
market return predictor. Overall, we clearly see that the UO portfolios have the best Sharpe
ratios and certainty equivalents of all the mean-variance optimal portfolios, including the
tangency portfolios. They also have the lowest turnover and leverage, so will have the lowest
costs. The preference for the UO portfolios over other mean-variance optimal portfolios is
increasing in transaction costs.

In the six size/book-to-market universe, the UO portfolio has a higher Sharpe ratio and
certainty equivalent than both the CO and NIO portfolios, while having lower turnover and
leverage than both of these portfolios, too. None of these differences is significant, even
when 10bps of 50bps each-way transactions costs are accounted for. However, the difference
in Sharpe ratio between UO and NIO without costs is economically meaningful: nearly 10
percentage points. Further, the UO portfolio has less severe extreme losses and drawdowns
than either CO or NIO.
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Table 3.1 Six size/book-to-market portfolios
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.019 0.052 0.370 0.013 0.437 3.257
CO 0.022 0.064 0.348 0.012 0.636 4.659

p-value 0.524 0.820
NIO 0.020 0.074 0.273 0.007 0.941 6.064

p-value 0.176 0.220
1/N 0.007 0.049 0.137 0.001 0.053 0.000

p-value 0.026 0.028
CMIN 0.011 0.037 0.302 0.008 0.190 1.446
p-value 0.369 0.171
NIMIN 0.011 0.037 0.301 0.008 0.190 1.450
p-value 0.366 0.168
CTP 0.002 0.249 0.007 -0.153 4.084 8.952

p-value 0.002 0.287
NITP 0.016 0.057 0.276 0.008 0.621 4.322
p-value 0.161 0.175

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.100 0.075 0.043 0.230 0.149 0.111 0.043
CO 0.118 0.089 0.053 0.303 0.186 0.165 0.101
NIO 0.140 0.107 0.069 0.371 0.243 0.206 0.134
1/N 0.111 0.090 0.058 0.558 0.313 0.260 0.116

CMIN 0.079 0.061 0.037 0.342 0.177 0.115 0.041
NIMIN 0.079 0.061 0.037 0.335 0.171 0.115 0.041

CTP 0.633 0.360 0.166 1.064 1.039 0.984 0.974
NITP 0.113 0.086 0.054 0.307 0.178 0.143 0.072

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.462 0.538 0.000 0.000 0.950
NIO 0.943 0.057 0.083 0.000 0.000
1/N 1.000 0.000 1.000 0.000 0.000

CMIN 0.867 0.133 0.177 0.000 0.077
NIMIN 0.866 0.134 0.171 0.000 0.077

CTP 1.000 0.000 1.000 0.000 0.000
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for
the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the
certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD
the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate
a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the
left-most column.
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Table 3.2 25 size/book-to-market portfolios
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.047 0.128 0.369 0.006 2.920 14.255
CO 0.048 0.142 0.336 -0.003 3.776 17.050

p-value 0.218 0.177
NIO 0.057 0.212 0.267 -0.056 7.239 22.193

p-value 0.112 0.002
1/N 0.007 0.051 0.145 0.001 0.057 0.000

p-value 0.063 0.655
CMIN 0.011 0.037 0.295 0.008 0.337 2.934
p-value 0.491 0.916
NIMIN 0.011 0.037 0.299 0.008 0.328 2.861
p-value 0.517 0.907
CTP 0.109 0.666 0.164 -0.999 4.229 15.891

p-value 0.008 0.310
NITP 0.026 0.076 0.338 0.011 1.168 7.764
p-value 0.611 0.568

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.214 0.165 0.096 0.468 0.413 0.342 0.198
CO 0.265 0.201 0.118 0.640 0.570 0.535 0.338
NIO 0.392 0.302 0.183 0.782 0.714 0.669 0.460
1/N 0.115 0.093 0.060 0.560 0.305 0.249 0.117

CMIN 0.076 0.060 0.038 0.341 0.236 0.137 0.050
NIMIN 0.076 0.060 0.037 0.345 0.230 0.132 0.056

CTP 0.236 0.164 0.090 0.673 0.410 0.229 0.143
NITP 0.128 0.100 0.062 0.268 0.217 0.183 0.118

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.888 0.112 0.425 0.000 0.088
NIO 0.712 0.288 0.028 0.000 0.182
1/N 0.926 0.074 0.387 0.000 0.000

CMIN 0.880 0.120 0.370 0.000 0.061
NIMIN 0.879 0.121 0.370 0.000 0.061

CTP 0.007 0.993 0.000 0.519 0.033
NITP 0.844 0.156 0.320 0.000 0.017

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for
the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the
certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD
the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate
a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the
left-most column.
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Table 3.3 10 industry portfolios
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.007 0.045 0.153 0.002 0.193 1.248
CO 0.006 0.052 0.107 -0.001 0.250 1.687

p-value 0.266 0.162
NIO 0.003 0.067 0.046 -0.008 0.360 2.163

p-value 0.154 0.055
1/N 0.006 0.041 0.140 0.002 0.048 0.000

p-value 0.884 0.943
CMIN 0.007 0.033 0.208 0.004 0.089 0.531
p-value 0.463 0.449
NIMIN 0.007 0.033 0.209 0.004 0.090 0.536
p-value 0.459 0.445
CTP 0.024 0.277 0.087 -0.167 1.294 4.527

p-value 0.547 0.181
NITP 0.004 0.059 0.074 -0.004 0.283 1.492
p-value 0.415 0.352

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.103 0.083 0.051 0.381 0.295 0.220 0.154
CO 0.125 0.099 0.062 0.432 0.374 0.324 0.252
NIO 0.159 0.127 0.084 0.718 0.691 0.660 0.596
1/N 0.093 0.076 0.048 0.496 0.334 0.246 0.118

CMIN 0.076 0.060 0.037 0.326 0.235 0.183 0.072
NIMIN 0.076 0.060 0.037 0.319 0.227 0.177 0.076

CTP 0.434 0.264 0.134 1.568 1.274 1.225 1.187
NITP 0.139 0.104 0.068 0.623 0.572 0.530 0.400

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 1.000 0.000 1.000 0.000 0.000
NIO 1.000 0.000 1.000 0.000 0.000
1/N 0.421 0.579 0.000 0.000 1.000

CMIN 0.000 1.000 0.000 1.000 0.000
NIMIN 0.000 1.000 0.000 1.000 0.000

CTP 0.394 0.606 0.000 0.000 0.724
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for
the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the
certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD
the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate
a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the
left-most column.
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Table 3.4 30 industry portfolios
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.013 0.097 0.131 -0.011 1.030 5.618
CO 0.011 0.111 0.100 -0.020 1.377 6.993

p-value 0.356 0.072
NIO 0.003 0.161 0.019 -0.061 2.654 9.266

p-value 0.122 0.002
1/N 0.007 0.046 0.143 0.001 0.057 0.000

p-value 0.923 0.205
CMIN 0.006 0.034 0.167 0.003 0.168 1.210
p-value 0.761 0.124
NIMIN 0.006 0.034 0.167 0.003 0.168 1.204
p-value 0.765 0.126
CTP -0.039 1.482 -0.026 -5.527 17.315 19.854

p-value 0.173 0.233
NITP -0.066 1.244 -0.053 -3.933 13.999 14.247
p-value 0.078 0.285

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.180 0.151 0.101 0.683 0.645 0.633 0.550
CO 0.216 0.185 0.125 0.841 0.813 0.795 0.749
NIO 0.379 0.293 0.193 0.990 0.987 0.982 0.978
1/N 0.107 0.083 0.052 0.544 0.267 0.211 0.092

CMIN 0.075 0.062 0.039 0.308 0.209 0.167 0.095
NIMIN 0.075 0.063 0.039 0.318 0.209 0.165 0.098

CTP 1.000 1.000 0.706 37.238 15.148 1.893 1.217
NITP 1.000 1.000 0.638 23.598 7.136 0.998 0.928

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 1.000 0.000 0.569 0.000 0.000
NIO 1.000 0.000 1.000 0.000 0.000
1/N 0.336 0.664 0.000 0.000 0.652

CMIN 0.348 0.652 0.000 0.000 0.541
NIMIN 0.348 0.652 0.000 0.000 0.541

CTP 1.000 0.000 1.000 0.000 0.000
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for
the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the
certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD
the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate
a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the
left-most column.
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Considering the whole distribution, it has hard to rank UO and CO. Both estimated utopia
indices are close to 0.5 and not significantly different from each other. We reject the null that
UO stochastically dominates CO and vice-versa. With costs of 50bps, though, UO does appear
to stochastically dominate CO. We do not reject the null that UO stochastically dominates CO,
and UO has a significantly better utopia index.

In addition, there is evidence that UO stochastically dominates NIO, even without costs.
The utopia indices are significantly different from each other with UO having the higher utopia
index. Moreover, we do not (quite) reject the null that UO stochastically dominates NIO at the
5% level. With transaction costs, we do not reject the null that UO stochastically dominates
NIO at any conventional level. The UO portfolio also has a significantly better utopia index
than NIO for all levels of transaction costs.

We clearly prefer the UO portfolio to either of the tangency portfolios. The UO portfolio
has a somewhat better Sharpe ratio and certainty equivalent than either CTP or NITP, along
with lower costs. UO also has lower extreme losses and drawdowns and, even without costs,
clearly second order stochastically dominates both portfolios.

We also clearly prefer UO to 1/N: it has a significantly higher Sharpe ratio and certainty
equivalent, lower losses and drawdowns and stochastically dominates 1/N. We also prefer the
UO portfolio to the minimum variance portfolios in terms of Sharpe ratio, certainty equivalent
and utopia index, albeit insignificantly. These preferences remain even with 50bps each-way
costs. With 50bps each-way costs, however, the UO portfolio’s utopia index is no longer
significantly greater than that of 1/N. Being more defensive, the minimum variance portfolios
do have lower losses and drawdowns, even before costs.

The results for the 25 size/book-to-market universe are fairly similar. The UO portfolio
continues to have the best Sharpe ratio of any portfolio, although not the highest certainty
equivalent. The minimum variance portfolios now have the highest certainty equivalents.

UO continues to be preferred to CO and NIO in terms of Sharpe ratio, certainty equivalent
and extreme losses and drawdowns, while having lower turnover and leverage. Now, though,
the UO portfolio also has a significantly better certainty equivalent than NIO without costs,
and a significantly better Sharpe ratio with 50bps each-way costs. In addition, the estimated
utopia index now favours UO over CO and NIO, although the differences in utopia index are
not significant. With 10bps each-way costs, however, UO has a significantly better utopia index
and stochastically dominates both CO and NIO.

While the UO portfolio has an insignificantly better Sharpe ratio than NITP, it has an
inferior certainty equivalent. Nonetheless, UO has lower costs and the utopia index shows it
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stochastically dominates NITP. NITP does, however, have lower losses and drawdowns than
UO.

Unusually, CTP has a significantly better utopia index than UO, despite having a signifi-
cantly worse Sharpe ratio, even when accounting for the CTP’s much higher transaction costs.
The UO portfolio does, though, have lower drawdowns and similar losses to CTP before costs.

Again, we prefer UO to 1/N and the minimum variance portfolios in terms of Sharpe ratio
and utopia index. These preferences survive 10bps each-way transaction costs, but are reversed
with 50bps each-way costs. Only the without-cost utopia index difference between UO and 1/N

is significant at the 5% level. The 1/N and minimum variance portfolios are more defensive,
so have lower losses and drawdowns.

Shifting to the industry universes, we again find that the UO portfolio is the best mean-
variance portfolio. In both industry universes, it has a better Sharpe ratio, certainty equivalent
and utopia index than CO, NIO, CTP or NITP and lower costs. It also produces lower
extreme losses and drawdowns. While the Sharpe ratio and certainty equivalent differences
are insignificant, the UO portfolio does have a significantly higher utopia index than, and
stochastically dominate, CO, NIO and NITP in both industry universes before costs. The UO
and CTP utopia indices are not significantly different in the 10 industry universe without costs.
However, with 10bps each-way costs, the UO portfolio has a significantly higher utopia index
than and stochastically dominates the CTP.

The big difference between the size/book-to-market and industry universes is that, in the
industry universes, the minimum variance portfolios outperform the UO portfolio in terms of
Sharpe ratio and utopia index without costs, while also having lower turnovers and leverages.
The 1/N and minimum variance portfolios also have lower drawdowns and losses.

Mean-variance optimisation does not perform well in the industry universes. This is in-line
with Kirby and Ostdiek (2012a), who argue that mean-variance optimisation works better in
size/book-to-market universes because there is greater dispersion in the means and variances
of the size/book-to-market portfolios. Therefore, the minimum variance and 1/N allocations
are further from the optimum and more estimation error is required for these non-optimal
allocations to outperform mean-variance optimisation.

3.5.1 Quarterly rebalancing

It is possible that re-optimising and rebalancing each month is unnecessary and simply adding
noise to the portfolios. However, there is a tension between not wanting to add noise to the
portfolios by re-optimising and rebalancing too frequently and wanting to update the weights
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Table 3.5 Six size/book-to-market portfolios - quarterly rebalancing
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.020 0.028 0.701 0.018 0.411 3.052
CO 0.022 0.036 0.617 0.019 0.616 4.388

p-value 0.085 0.277
NIO 0.020 0.043 0.479 0.016 0.945 6.069

p-value 0.007 0.507
1/N 0.007 0.029 0.223 0.004 0.053 0.000

p-value 0.000 0.000
CMIN 0.011 0.021 0.545 0.010 0.189 1.448
p-value 0.135 0.000
NIMIN 0.011 0.021 0.548 0.010 0.189 1.452
p-value 0.138 0.000
CTP 0.002 0.127 0.014 -0.038 18.899 7.962

p-value 0.000 0.107
NITP 0.016 0.031 0.510 0.013 0.621 4.336
p-value 0.017 0.033

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.039 0.029 0.013 0.194 0.107 0.062 0.014
CO 0.047 0.037 0.021 0.219 0.130 0.101 0.044
NIO 0.067 0.051 0.029 0.267 0.195 0.144 0.074
1/N 0.073 0.056 0.032 0.499 0.268 0.223 0.089

CMIN 0.042 0.030 0.016 0.295 0.156 0.097 0.013
NIMIN 0.042 0.030 0.016 0.287 0.151 0.095 0.013

CTP 0.393 0.231 0.105 1.051 1.001 1.001 1.000
NITP 0.054 0.038 0.022 0.188 0.133 0.096 0.037

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.228 0.772 0.000 0.709 0.704
NIO 0.921 0.079 0.067 0.000 0.000
1/N 1.000 0.000 1.000 0.000 0.000

CMIN 1.000 0.000 1.000 0.000 0.028
NIMIN 1.000 0.000 1.000 0.000 0.028

CTP 1.000 0.000 1.000 0.000 0.000
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with quarterly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those
for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise
for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b),
MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b)
indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated
in the left-most column.
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Table 3.6 25 size/book-to-market portfolios - quarterly rebalancing
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.046 0.078 0.595 0.031 2.414 12.078
CO 0.046 0.084 0.549 0.029 3.356 14.905

p-value 0.136 0.278
NIO 0.056 0.129 0.430 0.014 7.451 22.073

p-value 0.015 0.040
1/N 0.007 0.031 0.235 0.005 0.057 0.000

p-value 0.005 0.000
CMIN 0.011 0.021 0.530 0.010 0.335 2.923
p-value 0.573 0.001
NIMIN 0.011 0.021 0.535 0.010 0.326 2.849
p-value 0.610 0.001
CTP 0.109 0.398 0.273 -0.287 5.628 13.245

p-value 0.000 0.066
NITP 0.025 0.046 0.557 0.020 1.159 7.733
p-value 0.546 0.011

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.096 0.070 0.037 0.360 0.314 0.266 0.060
CO 0.130 0.094 0.050 0.512 0.452 0.381 0.191
NIO 0.179 0.147 0.090 0.686 0.619 0.416 0.296
1/N 0.074 0.057 0.033 0.502 0.261 0.203 0.090

CMIN 0.040 0.029 0.016 0.301 0.200 0.110 0.020
NIMIN 0.040 0.030 0.016 0.303 0.195 0.100 0.020

CTP 0.094 0.070 0.038 0.519 0.191 0.165 0.061
NITP 0.064 0.048 0.026 0.203 0.166 0.130 0.053

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.866 0.134 0.413 0.000 0.302
NIO 0.539 0.461 0.000 0.000 0.860
1/N 0.990 0.010 0.453 0.000 0.000

CMIN 0.965 0.035 0.385 0.000 0.000
NIMIN 0.965 0.035 0.385 0.000 0.000

CTP 0.009 0.991 0.000 0.542 0.212
NITP 0.958 0.042 0.358 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with quarterly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those
for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise
for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b),
MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b)
indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated
in the left-most column.
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Table 3.7 10 industry portfolios - quarterly rebalancing
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.007 0.027 0.280 0.006 0.169 1.090
CO 0.006 0.031 0.198 0.004 0.221 1.453

p-value 0.040 0.121
NIO 0.003 0.040 0.075 -0.001 0.356 2.146

p-value 0.007 0.024
1/N 0.006 0.024 0.234 0.004 0.048 0.000

p-value 0.626 0.530
CMIN 0.007 0.019 0.352 0.006 0.088 0.531
p-value 0.326 0.882
NIMIN 0.007 0.020 0.354 0.006 0.089 0.537
p-value 0.314 0.857
CTP 0.023 0.157 0.149 -0.038 2.024 4.036

p-value 0.239 0.021
NITP 0.004 0.035 0.121 0.001 0.298 1.485
p-value 0.125 0.204

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.057 0.045 0.027 0.336 0.257 0.188 0.115
CO 0.069 0.053 0.035 0.370 0.306 0.264 0.188
NIO 0.103 0.082 0.049 0.659 0.632 0.590 0.493
1/N 0.060 0.046 0.026 0.442 0.303 0.221 0.099

CMIN 0.046 0.033 0.019 0.286 0.197 0.150 0.055
NIMIN 0.046 0.033 0.019 0.280 0.191 0.147 0.051

CTP 0.238 0.162 0.082 0.843 0.824 0.811 0.781
NITP 0.093 0.069 0.039 0.505 0.477 0.439 0.338

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 1.000 0.000 1.000 0.000 0.000
NIO 1.000 0.000 1.000 0.000 0.000
1/N 0.866 0.134 0.413 0.000 0.385

CMIN 0.076 0.924 0.000 0.508 0.374
NIMIN 0.065 0.935 0.000 0.503 0.369

CTP 0.302 0.698 0.000 0.436 0.492
NITP 1.000 0.000 1.000 0.000 0.168

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with quarterly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those
for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise
for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b),
MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b)
indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated
in the left-most column.
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Table 3.8 30 industry portfolios - quarterly rebalancing
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.013 0.057 0.229 0.005 0.828 4.690
CO 0.012 0.067 0.171 0.000 1.185 6.079

p-value 0.091 0.049
NIO 0.004 0.097 0.044 -0.019 2.653 9.194

p-value 0.004 0.001
1/N 0.007 0.028 0.239 0.005 0.057 0.000

p-value 0.930 0.970
CMIN 0.006 0.020 0.286 0.005 0.165 1.205
p-value 0.611 0.956
NIMIN 0.006 0.020 0.287 0.005 0.165 1.199
p-value 0.611 0.960
CTP -0.039 0.706 -0.056 -1.286 21.099 17.475

p-value 0.020 0.038
NITP -0.066 0.699 -0.095 -1.288 19.456 13.678
p-value 0.001 0.060

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.102 0.083 0.054 0.633 0.607 0.590 0.478
CO 0.118 0.095 0.069 0.802 0.769 0.753 0.688

NIO3 0.225 0.178 0.115 0.955 0.947 0.943 0.926
1/N 0.068 0.050 0.029 0.485 0.239 0.168 0.071

CMIN 0.040 0.031 0.020 0.282 0.181 0.132 0.076
NIMIN 0.040 0.031 0.020 0.289 0.191 0.137 0.077

CTP 1.000 1.000 0.529 8.838 4.667 0.999 0.999
NITP 1.000 1.000 0.510 37.461 3.697 0.853 0.794

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 1.000 0.000 1.000 0.000 0.000
NIO 1.000 0.000 1.000 0.000 0.000
1/N 0.575 0.425 0.000 0.000 0.855

CMIN 0.575 0.425 0.000 0.000 0.793
NIMIN 0.574 0.426 0.000 0.000 0.799

CTP 1.000 0.000 1.000 0.000 0.045
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with quarterly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as homoscedastic. Risk
aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those
for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise
for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b),
MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b)
indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio indicated
in the left-most column.
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to account for new information. I evaluate this tension by moving to quarterly rebalancing,
following the Boehmer et al. (2008) scheme of rebalancing one-third of the portfolio each
month.

Tables 3.5-3.8 show that rebalancing each quarter is very effective at reducing portfolio
noise. In all four universes, the Sharpe ratios of all portfolios depending on estimated parameters
increase substantially through reduced portfolio variances. Turnover and leverage fall in general,
too. How the UO portfolio ranks in terms of performance is generally unchanged from the
monthly rebalancing case. However, the statistical significance of its advantage over other
portfolios generally improves as the differences become larger and standard errors fall. The
UO portfolios tend to perform better relative to 1/N, CMIN and NIMIN in terms of utopia
indices with quarterly, rather than monthly, rebalancing. Losses and drawdowns generally fall
for all portfolios but little changes in how the portfolios rank.

How the UO portfolio compares to the other portfolios changes little in the six size/book-
to-market portfolio universe. If anything, the preference for the UO portfolio is stronger with
quarterly rebalancing. It now has the lowest extreme drawdowns of any portfolio for all cost
levels, and the lowest expected shortfalls for zero and 10bps each-way costs (the minimum
variance portfolios have lower expected shortfalls with 50bps each-way costs). Moreover, the
UO portfolio has a significantly better certainty equivalent and utopia index than the minimum
variance portfolios with zero and 10bps each-way costs. UO’s certainty equivalent advantage
over CMIN and NIMIN remains significant with 50bps each-way costs, too. In contrast to the
monthly rebalanced case, UO continues to have a significantly higher utopia index than and
stochastically dominate 1/N even with 50bps each-way costs.

A similar pattern emerges in the 25 size/book-to-market universe. The UO portfolio now
has a significantly better Sharpe ratio than the NIO portfolio and 1/N, and significantly better
certainty equivalents than NIO, 1/N, CMIN, NIMIN and NITP. UO also now has a significantly
better utopia index than CMIN and NIMIN. All of these preferences remain significant with
10bps each-way costs, but none is significant with 50bps each-way costs.

Again, in the 10 industry universe, little changes in how the UO portfolio compares to the
others. The minor changes are that the UO portfolio’s Sharpe ratio advantage over the CO
and NIO portfolios is now significant without costs. Likewise, the UO portfolio’s zero-cost
certainty equivalent advantage over NIO and CTP is now significant, too. UO also now has
an insignificantly better utopia index than 1/N for zero and 10bps, but not 50bps, each-way
transaction costs.

Similarly, the changes in the 30 industry universe are very minor. The UO Sharpe ratio
becomes significantly higher than the NIO, CTP and NITP Sharpe ratios. The UO certainty
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equivalent becomes significantly higher than those of CO and CTP and remains significantly
higher than that of NIO. While the utopia index now indicates an insignificant preference for
UO over 1/N, CMIN and NIMIN without costs, that preference reverses with 10bps each-way
costs. 1/N, CMIN and NIMIN all have a significantly higher utopia index than UO with 50bps
each-way costs.

3.5.2 Conditional heteroscedasticity

Reverting to monthly rebalancing, another possible factor holding back the UO portfolio is the
assumption that the error variance in (3.1) is homoscedastic. By not allowing for conditional
heteroscedasticity and not forecasting the variance, I may be depriving the unconditionally
optimal portfolio of useful information and the chance to engage in volatility timing.5 To rectify
this, I assume that ε t follows an asymmetric dynamic conditional correlation model (aDCC),
whose specification is in Appendix B.3, while continuing to use the standard estimator of the
covariance matrix for the no-information portfolios.6

Tables 3.9-3.12 show the aDCC results. Using the aDCC specification is actually unhelpful:
it results in lower Sharpe ratios and certainty equivalents for the portfolios using conditional
means. This may be the result of specification error (the aDCC specification being further from
the “true” ε t variance specification than the homoscedastic specification) or increased estimation
error (the aDCC model requires estimation of more parameters: there are 4N+3+(N−1)N/2
in the aDCC model compared to (N +1)N/2 in a standard covariance matrix). The turnover
and leverage of portfolios using predictive information also increase. Ultimately, though, when
moving from homoscedastic to aDCC ε t , little changes in terms of the relative merits of the
UO portfolio compared to the other mean-variance optimal portfolios.

The main change is in the six size/book-to-market universe. The UO portfolio is now
second-best - behind the CO portfolio - in terms of Sharpe ratio, certainty equivalent and utopia
index. Moreover, the CO portfolio has slightly better extreme drawdowns, although not extreme
losses, for all cost levels. This is broadly true for all cost levels, although with 10bps and 50bps
each-way costs, UO has slightly lower extreme losses and, with 50bps each-way costs, UO
has a marginally higher certainty equivalent. The only change in the 25 size/book-to-market
universe is that the minimum variance portfolios also now have higher certainty equivalents
than the UO portfolio without costs.

5Note that the homoscedastic specification does allow the covariance matrix of ε t to vary over time in practice,
since it is estimated by rolling window.

6Assuming a standard (symmetric) DCC specification for ε t makes little difference to the results. This is not
overly surprising since accounting for asymmetry only requires the estimation of one additional parameter.
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Table 3.9 Six size/book-to-market portfolios - aDCC
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.018 0.054 0.344 0.011 0.511 3.675
CO 0.021 0.059 0.357 0.012 0.642 4.688

p-value 0.769 0.630
NIO 0.020 0.074 0.273 0.007 0.941 6.064

p-value 0.433 0.417
1/N 0.007 0.049 0.137 0.001 0.053 0.000

p-value 0.059 0.062
CMIN 0.008 0.039 0.212 0.004 0.182 1.272
p-value 0.125 0.099
NIMIN 0.011 0.037 0.301 0.008 0.190 1.450
p-value 0.628 0.395
CTP 0.018 1.288 0.014 -4.126 5.616 28.968

p-value 0.014 0.240
NITP 0.016 0.057 0.276 0.008 0.621 4.322
p-value 0.434 0.435

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.103 0.080 0.048 0.343 0.193 0.127 0.057
CO 0.106 0.083 0.051 0.326 0.165 0.119 0.063
NIO 0.140 0.107 0.069 0.371 0.243 0.206 0.134
1/N 0.111 0.090 0.058 0.558 0.313 0.260 0.116

CMIN 0.089 0.069 0.042 0.431 0.295 0.215 0.066
NIMIN 0.079 0.061 0.037 0.335 0.171 0.115 0.041

CTP 1.000 1.000 0.492 52.413 8.483 7.095 1.124
NITP 0.113 0.086 0.054 0.307 0.178 0.143 0.072

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.161 0.839 0.000 0.425 0.287
NIO 0.828 0.172 0.033 0.000 0.000
1/N 0.989 0.011 0.602 0.000 0.022

CMIN 0.888 0.112 0.249 0.000 0.017
NIMIN 0.739 0.261 0.265 0.000 0.320

CTP 1.000 0.000 1.000 0.000 0.000
NITP 0.972 0.028 0.492 0.000 0.017

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as following an aDCC process.
Risk aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a)
are those for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio.
Likewise for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in
panel (b), MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in
panel (b) indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio
indicated in the left-most column.
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Table 3.10 25 size/book-to-market portfolios - aDCC
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.040 0.126 0.320 0.001 3.380 15.843
CO 0.041 0.144 0.283 -0.011 3.846 16.662

p-value 0.323 0.194
NIO 0.057 0.212 0.267 -0.056 7.239 22.193

p-value 0.536 0.016
1/N 0.007 0.051 0.145 0.001 0.057 0.000

p-value 0.144 0.989
CMIN 0.011 0.039 0.280 0.007 0.281 2.454
p-value 0.719 0.585
NIMIN 0.011 0.037 0.299 0.008 0.328 2.861
p-value 0.851 0.557
CTP 0.019 0.149 0.129 -0.036 10.238 10.728

p-value 0.073 0.199
NITP 0.026 0.076 0.338 0.011 1.168 7.764
p-value 0.828 0.309

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.230 0.185 0.112 0.588 0.488 0.458 0.270
CO 0.284 0.217 0.127 0.769 0.644 0.582 0.389
NIO 0.392 0.302 0.183 0.782 0.714 0.669 0.460
1/N 0.115 0.093 0.060 0.560 0.305 0.249 0.117

CMIN 0.085 0.065 0.038 0.360 0.157 0.110 0.054
NIMIN 0.076 0.060 0.037 0.345 0.230 0.132 0.056

CTP 0.347 0.219 0.114 1.006 1.005 1.003 1.002
NITP 0.128 0.100 0.062 0.268 0.217 0.183 0.118

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.980 0.020 0.464 0.000 0.155
NIO 0.473 0.527 0.000 0.000 0.912
1/N 0.821 0.179 0.243 0.000 0.094

CMIN 0.747 0.253 0.144 0.000 0.149
NIMIN 0.741 0.259 0.171 0.000 0.204

CTP 1.000 0.000 0.564 0.000 0.000
NITP 0.598 0.402 0.000 0.000 0.470

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as following an aDCC process.
Risk aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a)
are those for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio.
Likewise for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in
panel (b), MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in
panel (b) indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio
indicated in the left-most column.
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Table 3.11 10 industry portfolios - aDCC
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.006 0.045 0.132 0.001 0.204 1.341
CO 0.004 0.052 0.073 -0.003 0.239 1.672

p-value 0.109 0.053
NIO 0.003 0.067 0.046 -0.008 0.360 2.163

p-value 0.294 0.098
1/N 0.006 0.041 0.140 0.002 0.048 0.000

p-value 0.938 0.870
CMIN 0.007 0.033 0.214 0.004 0.089 0.514
p-value 0.304 0.302
NIMIN 0.007 0.033 0.209 0.004 0.090 0.536
p-value 0.346 0.336
CTP 0.003 0.560 0.006 -0.782 3.327 9.950

p-value 0.318 0.281
NITP 0.004 0.059 0.074 -0.004 0.283 1.492
p-value 0.562 0.441

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.112 0.088 0.055 0.318 0.236 0.199 0.120
CO 0.128 0.105 0.065 0.342 0.301 0.272 0.193
NIO 0.157 0.126 0.083 0.712 0.684 0.651 0.578
1/N 0.093 0.076 0.048 0.495 0.332 0.243 0.117

CMIN 0.077 0.063 0.037 0.264 0.203 0.150 0.087
NIMIN 0.076 0.060 0.037 0.316 0.223 0.172 0.071

CTP 0.910 0.496 0.218 7.580 6.111 5.341 1.361
NITP 0.138 0.103 0.067 0.604 0.551 0.525 0.393

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 1.000 0.000 1.000 0.000 0.000
NIO 1.000 0.000 1.000 0.000 0.000
1/N 0.099 0.901 0.000 0.597 0.503

CMIN 0.000 1.000 0.000 1.000 0.000
NIMIN 0.000 1.000 0.000 1.000 0.000

CTP 1.000 0.000 1.000 0.000 0.000
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as following an aDCC process.
Risk aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a)
are those for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio.
Likewise for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in
panel (b), MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in
panel (b) indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio
indicated in the left-most column.
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Table 3.12 30 industry portfolios - aDCC
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.014 0.096 0.151 -0.009 1.146 6.218
CO 0.014 0.105 0.138 -0.013 1.260 6.635

p-value 0.667 0.244
NIO 0.003 0.161 0.019 -0.061 2.654 9.266

p-value 0.119 0.003
1/N 0.007 0.046 0.143 0.001 0.057 0.000

p-value 0.948 0.316
CMIN 0.009 0.035 0.246 0.006 0.157 1.121
p-value 0.418 0.131
NIMIN 0.006 0.034 0.167 0.003 0.168 1.204
p-value 0.897 0.235
CTP 0.145 1.799 0.081 -7.945 2.137 11.149

p-value 0.455 0.306
NITP -0.066 1.244 -0.053 -3.933 13.999 14.247
p-value 0.058 0.285

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.198 0.158 0.104 0.626 0.565 0.537 0.462
CO 0.208 0.173 0.116 0.769 0.734 0.708 0.641
NIO 0.379 0.293 0.193 0.990 0.987 0.982 0.978
1/N 0.107 0.083 0.052 0.544 0.267 0.211 0.092

CMIN 0.074 0.059 0.038 0.328 0.185 0.117 0.060
NIMIN 0.075 0.063 0.039 0.318 0.209 0.165 0.098

CTP 0.468 0.288 0.147 1.127 1.058 1.048 1.028
NITP 1.000 1.000 0.638 23.598 7.136 0.998 0.928

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.997 0.003 0.707 0.000 0.088
NIO 1.000 0.000 1.000 0.000 0.000
1/N 0.401 0.599 0.000 0.000 0.514

CMIN 0.257 0.743 0.000 0.000 0.000
NIMIN 0.397 0.603 0.000 0.000 0.343

CTP 0.006 0.994 0.000 0.757 0.144
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using the (lagged)
market return in a univariate linear prediction model and treat the prediction error ε t as following an aDCC process.
Risk aversion is γ = 5 in the UO, CO and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a)
are those for the difference between the Sharpe ratio immediately above the p-value and the UO Sharpe ratio.
Likewise for the certainty equivalent with risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in
panel (b), MaxDD the maximum drawdown and DD95% the 95th percentile of the drawdowns. Positive numbers in
panel (b) indicate a loss. In panel (c), UIUO is the unconditionally optimal utopia index, UIn that for the portfolio
indicated in the left-most column.



3.5 Results 115

In the industry universes, the only differences compared to the homoscedastic ε t case are
some minor changes in the p-values of the utopia indices. But the utopia indices’ conclusions
about preference and stochastic dominance broadly remain. The sole exception is in the 30
industry portfolio universe, where the preference for the UO portfolio over the CO portfolio
becomes insignificant at the 5% level (p = 0.088), despite ÛI

UO
= 0.997 and the null that

UIUO = 1 not being rejected at any conventional level.

3.5.3 Machine learning predictor

Returning to treating ε t as conditionally homoscedastic, another possibility is that the portfolios
using predictive information are being held back by using a fairly basic univariate prediction
equation. It transpires that more modern methods do not produce a predictor with a better
information coefficient than the univariate model with the market return. Appendix B.2
provides the full details of the machine learning predictors considered and their information
coefficients. The machine learning predictor giving rise to the highest information coefficients
in all universes is a targeted random forest with an elastic net targeting step. Tables 3.13-3.16
show that using this predictor does not necessarily help the UO portfolio.

In the six book-to-market portfolio universe, the Sharpe ratio and certainty equivalent of the
UO portfolio fall below that of the NIO portfolio. Using the predictive information does not now
lead to better portfolios. The UO portfolio also falls behind CMIN, NIMIN and NITP in terms
of Sharpe ratio and certainty equivalent. NIO and NITP now have insignificantly higher utopia
indices than UO, too. CMIN and NIMIN’s utopia index advantages over UO are now significant.
Since the UO portfolio has lower costs than NIO or NITP, it does have an insignificantly better
Sharpe ratio, certainty equivalent and utopia index than both NIO and NITP with 50bps each-
way transaction costs. The UO portfolio no longer has the lowest expected shortfalls and
extreme drawdowns of all portfolios, although it does still have the lowest expected shortfalls
of all the mean-variance optimal portfolios. With 50bps each-way transaction costs, the UO
portfolio also has the lowest extreme drawdowns of all the mean-variance optimal portfolios.

The 25 size/book-to-market portfolio universe results are much less affected by the change
of predictor. How the UO portfolio ranks compared to the other portfolios remains very similar.
In fact, the UO portfolio now has a significantly higher Sharpe ratio and certainty equivalent
than 1/N with both zero and 10bps, but not 50bps, each-way costs. The UO utopia index is
also significantly higher the CO utopia index. Moreover, the UO portfolio now stochastically
dominates CMIN and NIMIN with zero and 10bps each-way costs. It also has an insignificantly
better utopia index than CMIN and NIMIN with 50bps each-way costs. While NIO and NITP
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Table 3.13 Six size/book-to-market portfolios - targeted random forest
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.009 0.042 0.222 0.005 0.203 1.602
CO 0.010 0.047 0.218 0.005 0.292 2.371

p-value 0.903 0.907
NIO 0.020 0.074 0.273 0.007 0.941 6.064

p-value 0.573 0.779
1/N 0.007 0.049 0.137 0.001 0.053 0.000

p-value 0.227 0.207
CMIN 0.009 0.039 0.228 0.005 0.155 1.143
p-value 0.857 0.897
NIMIN 0.011 0.037 0.301 0.008 0.190 1.450
p-value 0.096 0.123
CTP -0.032 0.718 -0.045 -1.320 4.312 13.723

p-value 0.012 0.443
NITP 0.016 0.057 0.276 0.008 0.621 4.322
p-value 0.469 0.483

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.091 0.074 0.045 0.388 0.220 0.158 0.064
CO 0.104 0.079 0.048 0.288 0.215 0.172 0.085
NIO 0.140 0.107 0.069 0.371 0.243 0.206 0.134
1/N 0.111 0.090 0.058 0.558 0.313 0.260 0.116

CMIN 0.084 0.067 0.042 0.380 0.227 0.163 0.058
NIMIN 0.079 0.061 0.037 0.335 0.171 0.115 0.041

CTP 1.000 0.766 0.351 7.073 5.151 3.623 3.146
NITP 0.113 0.086 0.054 0.307 0.178 0.143 0.072

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.609 0.391 0.000 0.000 0.762
NIO 0.272 0.728 0.000 0.331 0.403
1/N 1.000 0.000 1.000 0.000 0.000

CMIN 0.136 0.864 0.000 0.420 0.044
NIMIN 0.000 1.000 0.000 1.000 0.000

CTP 1.000 0.000 1.000 0.000 0.000
NITP 0.273 0.727 0.000 0.315 0.392

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using an elastic net-
targeted random forest and treat the prediction error ε t as homoscedastic. Risk aversion is γ = 5 in the UO, CO
and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for the difference between the
Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the certainty equivalent with
risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD the maximum drawdown
and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate a loss. In panel (c), UIUO

is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the left-most column.
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Table 3.14 25 size/book-to-market portfolios - targeted random forest
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.019 0.050 0.384 0.013 0.639 5.125
CO 0.019 0.052 0.370 0.012 0.681 5.521

p-value 0.218 0.417
NIO 0.057 0.212 0.267 -0.056 7.239 22.193

p-value 0.266 0.006
1/N 0.007 0.051 0.145 0.001 0.057 0.000

p-value 0.020 0.024
CMIN 0.011 0.035 0.315 0.008 0.290 2.475
p-value 0.322 0.112
NIMIN 0.011 0.037 0.299 0.008 0.328 2.861
p-value 0.240 0.103
CTP 0.338 2.994 0.113 -22.078 79.179 115.786

p-value 0.005 0.328
NITP 0.026 0.076 0.338 0.011 1.168 7.764
p-value 0.588 0.755

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.090 0.069 0.042 0.227 0.120 0.101 0.047
CO 0.093 0.073 0.044 0.220 0.123 0.103 0.050
NIO 0.392 0.302 0.183 0.782 0.714 0.669 0.460
1/N 0.115 0.093 0.060 0.560 0.305 0.249 0.117

CMIN 0.070 0.055 0.034 0.262 0.126 0.092 0.039
NIMIN 0.076 0.060 0.037 0.345 0.230 0.132 0.056

CTP 1.000 0.909 0.455 5.111 2.274 1.753 1.342
NITP 0.128 0.100 0.062 0.268 0.217 0.183 0.118

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 1.000 0.000 0.343 0.000 0.000
NIO 0.285 0.715 0.000 0.298 0.343
1/N 1.000 0.000 1.000 0.000 0.000

CMIN 0.856 0.144 0.193 0.000 0.000
NIMIN 0.903 0.097 0.381 0.000 0.006

CTP 0.017 0.983 0.000 0.635 0.144
NITP 0.257 0.743 0.000 0.420 0.420

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using an elastic net-
targeted random forest and treat the prediction error ε t as homoscedastic. Risk aversion is γ = 5 in the UO, CO
and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for the difference between the
Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the certainty equivalent with
risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD the maximum drawdown
and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate a loss. In panel (c), UIUO

is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the left-most column.
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Table 3.15 10 industry portfolios - targeted random forest
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.007 0.034 0.209 0.004 0.094 0.588
CO 0.007 0.036 0.192 0.004 0.111 0.735

p-value 0.482 0.528
NIO 0.003 0.067 0.046 -0.008 0.360 2.163

p-value 0.085 0.034
1/N 0.006 0.041 0.140 0.002 0.048 0.000

p-value 0.328 0.328
CMIN 0.007 0.032 0.209 0.004 0.082 0.464
p-value 0.984 0.966
NIMIN 0.007 0.033 0.209 0.004 0.090 0.536
p-value 0.996 0.984
CTP 0.022 0.616 0.036 -0.925 4.154 12.297

p-value 0.161 0.130
NITP 0.004 0.059 0.074 -0.004 0.283 1.492
p-value 0.166 0.172

(b) Loss distribution

ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.075 0.062 0.038 0.273 0.182 0.138 0.075
CO 0.080 0.065 0.041 0.244 0.197 0.178 0.083
NIO 0.157 0.126 0.083 0.712 0.684 0.651 0.578
1/N 0.093 0.076 0.048 0.495 0.332 0.243 0.117

CMIN 0.074 0.059 0.036 0.313 0.229 0.178 0.073
NIMIN 0.076 0.060 0.037 0.316 0.223 0.172 0.071

CTP 1.000 0.702 0.335 5.417 0.980 0.925 0.642
NITP 0.138 0.103 0.067 0.604 0.551 0.525 0.393

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 1.000 0.000 1.000 0.000 0.000
NIO 1.000 0.000 1.000 0.000 0.000
1/N 1.000 0.000 1.000 0.000 0.000

CMIN 0.216 0.784 0.000 0.492 0.470
NIMIN 0.237 0.763 0.000 0.613 0.602

CTP 0.858 0.142 0.845 0.000 0.464
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using an elastic net-
targeted random forest and treat the prediction error ε t as homoscedastic. Risk aversion is γ = 5 in the UO, CO
and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for the difference between the
Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the certainty equivalent with
risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD the maximum drawdown
and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate a loss. In panel (c), UIUO

is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the left-most column.
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Table 3.16 30 industry portfolios - targeted random forest
(a) Summary performance statistics

Mean Std. dev Sharpe ratio CEQ5 Turnover Leverage
UO 0.005 0.043 0.120 0.001 0.257 1.931
CO 0.005 0.044 0.121 0.000 0.262 1.984

p-value 0.884 0.957
NIO 0.003 0.161 0.019 -0.061 2.654 9.266

p-value 0.351 0.001
1/N 0.007 0.046 0.143 0.001 0.057 0.000

p-value 0.834 0.875
CMIN 0.006 0.033 0.174 0.003 0.154 1.086
p-value 0.463 0.410
NIMIN 0.006 0.034 0.167 0.003 0.168 1.204
p-value 0.541 0.475
CTP -0.468 6.009 -0.078 -90.736 511.803 60.624

p-value 0.043 0.410
NITP -0.066 1.244 -0.053 -3.933 13.999 14.247
p-value 0.142 0.284

(b) Loss distribution

Sortino ES95% ES90% ES75% MaxDD DD95% DD90% DD75%
UO 0.105 0.082 0.053 0.397 0.300 0.265 0.181
CO 0.106 0.083 0.054 0.398 0.304 0.265 0.179
NIO 0.379 0.293 0.193 0.990 0.987 0.982 0.978
1/N 0.107 0.083 0.052 0.544 0.267 0.211 0.092

CMIN 0.074 0.060 0.038 0.339 0.239 0.188 0.081
NIMIN 0.075 0.063 0.039 0.318 0.209 0.165 0.098

CTP 1.000 1.000 1.000 247.47 5.179 2.513 1.272
NITP 1.000 1.000 0.638 23.598 7.136 0.998 0.928

(c) Stochastic dominance tests

UIUO UIn
p-value

UIUO = 1
p-value

UIUO = 0
p-value

UIUO =UIn

CO 0.763 0.237 0.287 0.000 0.265
NIO 1.000 0.000 1.000 0.000 0.000
1/N 0.158 0.842 0.000 0.547 0.199

CMIN 0.000 1.000 0.000 1.000 0.000
NIMIN 0.000 1.000 0.000 1.000 0.000

CTP 1.000 0.000 1.000 0.000 0.000
NITP 1.000 0.000 1.000 0.000 0.000

Out-of-sample portfolio performance computed over a 120-month rolling window for the unconditionally optimal
(UO), conditionally optimal (CO) and benchmark portfolios (no information optimal [NIO], 1/N, conditional
minimum variance [CMIN], no-information minimum variance [NIMIN], conditional tangency portfolio [CTP]
and unconditional tangency portfolio [NITP]) with monthly rebalancing. I compute µ̂(St) using an elastic net-
targeted random forest and treat the prediction error ε t as homoscedastic. Risk aversion is γ = 5 in the UO, CO
and NIO portfolios. The p-values beneath the Sharpe ratios in panel (a) are those for the difference between the
Sharpe ratio immediately above the p-value and the UO Sharpe ratio. Likewise for the certainty equivalent with
risk aversion 5 (CEQ5). ES95% denotes the 95% expected shortfall in panel (b), MaxDD the maximum drawdown
and DD95% the 95th percentile of the drawdowns. Positive numbers in panel (b) indicate a loss. In panel (c), UIUO

is the unconditionally optimal utopia index, UIn that for the portfolio indicated in the left-most column.
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have insignificantly better utopia indices than the UO portfolio with zero and 10bps costs, this
is reversed with 50bps costs. The UO portfolio actually stochastically dominates the NIO
portfolio with 50bps each-way costs.

The change of predictor changes very little in the 10 industry universe. The UO certainty
equivalent is now significantly higher than the the NIO certainty equivalent. The UO portfolio
stochastically dominates and has a significantly higher utopia index than 1/N for all cost levels
and now has a higher utopia index than CTP.

Slightly more changes in the 30 industry universe, where the UO portfolio’s performance is
worse than with the univariate market predictor. The CO portfolio now has a marginally higher
Sharpe ratio, although the UO portfolio retains a marginally higher certainty equivalent. While
the UO portfolio still has a higher utopia index than CO, this difference is no longer significant
at any cost level. Moreover, the minimum variance portfolios now clearly stochastically
dominate the UO portfolio, even without costs.

3.6 Robustness

The main results are robust to the empirical choices I make regarding risk aversion, look-back
window length for computing the parameters the weights are based on, and the predictor I use.

3.6.1 Risk aversion

The UO, CO and NIO portfolio weights depend on the level of risk aversion. In the above
results, I use γ = 5. Reducing risk aversion to γ = 1 or increasing it to γ = 10 makes little
difference to the overall results. The risk aversion drives the aggressiveness of the UO, CO and
NIO portfolios. In common with Kirby and Ostdiek (2012a), the more aggressive portfolios
(here γ = 1) do not perform as well in terms of risk/return trade-off as less aggressive portfolios
(γ = 5 or 10). This does not much change the ranking of the portfolios in terms of Sharpe
ratio, certainty equivalent or utopia index, but rather the distance between them. As expected,
turnover and leverage are decreasing in γ (increasing in aggression).

In general, whatever γ is, the UO portfolio has the best Sharpe ratio and certainty equivalent,
the lowest turnover and leverage, and the lowest extreme losses and drawdowns of the mean-
variance optimal portfolios. It is also usually preferred by the utopia index. The UO portfolio
does not, however, necessarily outperform the non-optimal benchmarks. In particular, the UO
portfolio does not generally outperform the non-optimal benchmarks in the industry universes.
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3.6.2 Look-back window

Reverting to a risk-aversion of γ = 5, we see that changing the look-back window in the
estimation makes almost no difference to the results. The above results use a 120-month rolling
window. When switching to a shorter rolling window of 60 months, the main difference is
that all portfolios perform worse as they are subject to greater estimation error (except 1/N,
which is unchanged). However, the ranking of the portfolios barely changes. The results are
quantitatively very similar when I move from using a 120-month rolling window to using an
expanding window.

3.6.3 Choice of predictor

I now return to a 120-month rolling window and risk aversion of γ = 5. I continue to restrict
attention to predictors with a positive information coefficient. I therefore consider the reversal
and one/12-month trend change (MA1,12) univariate predictors in the size/book-to-market
universes and the targeted random forest with a LASSO targeting step for the industry universes.
There is almost no difference in how the portfolios rank in terms of Sharpe ratio, certainty
equivalent, utopia index, losses, drawdowns, turnover or leverage in any of these cases.

3.7 Conclusion

Using data for four asset universes (six and 25 size/book-to-market portfolios and 10 and 30
industry portfolios) from January 1990 to December 2019, I show that portfolios using predic-
tive information unconditionally optimally are preferred to portfolios using such information
conditionally optimally. The UO portfolios have higher Sharpe ratios and certainty equivalents,
and score higher on a measure of almost stochastic dominance. This superior performance
is achieved with lower turnover, leverage and tail risk, where tail risk is measured in terms
of expected shortfalls and extreme drawdowns. We also prefer portfolios using predictive
information unconditionally optimally to mean-variance optimal portfolios not using predictive
information (no-information optimal portfolios) on these same metrics. However, one must
note the possible look-ahead bias in these latter comparisons, as the predictors are chosen based
on their predictive performance over the same time period that the portfolio strategies are run.

How well the UO portfolios compare to non-optimal benchmarks (1/N, CMIN and NIMIN)
depends on the asset universe. The UO portfolios outperform the non-optimal benchmarks
in the size/book-to-market universes, but not the industry universes. The fact that the UO
portfolios do not routinely outperform 1/N and NIMIN is all the more concerning when
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one remembers that the predictors used for the UO portfolios are chosen based on in-sample
predictive performance.

These results are robust to the predictive information used, the investor’s risk aversion,
allowing the prediction error to be conditionally heteroscedastic and re-optimising and rebal-
ancing the portfolios quarterly rather than monthly.

There are several implications of these results. When judging portfolio performance on the
basis of measures which are functions of unconditional moments, it is better to use information
unconditionally optimally than conditionally optimally. This is true, for example, for an
empirical study looking at the value of using predictive information in portfolio construction
where the Sharpe ratios depend on unconditional means and variances. It is also true for
an informed manager making investments on behalf of an uninformed client. The client
is better served if the manager uses the information unconditionally optimally. Moreover,
the lower turnover and leverage of the UO portfolios suggest that they have lower costs
and are more practical for investors than CO portfolios. However, the failure of the UO
portfolios to outperform the non-optimal benchmarks in the industry universes suggests better
predictive information or predictive techniques need to be found to truly assert the dominance
of unconditionally optimal mean-variance portfolios.
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Appendices to Chapter 1

A.1 Bansal-Yaron model estimation

A.1.1 Inversion and stochastic discount factor coefficients

Constantinides and Ghosh (2011) show that

xt = α0 +α1r f ,t +α2zm,t

σ
2
t = β0 +β1r f ,t +β2zm,t ,

where

α0 =
A2,mA0, f −A0,mA2, f

A1,mA2, f −A2,mA1, f

α1 =
−A2,m

A1,mA2, f −A2,mA1, f

α2 =
A2, f

A1,mA2, f −A2,mA1, f

β0 =
A0,mA1, f −A1,mA0, f

A1,mA2, f −A2,mA1, f

β1 =
A1,m

A1,mA2, f −A2,mA1, f

β2 =
−A1, f

A1,mA2, f −A2,mA1, f
.



124 Appendices to Chapter 1

The expressions for the A0, . . . ,A2, f coefficients are given by
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In the stochastic discount factor
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(
r f ,t+1 −
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we have:

a1 = θ ln(δ )+(θ −1)[κ0 +(κ1 −1)(A0 +A1α0 +A2β0)]

a2 =− θ

ψ
+(θ −1)

a3 = (θ −1)κ1[A1α1 +A2β1]

a4 = (θ −1)κ1[A1α2 +A2β2].

The linearisation constants κ0 and κ1 derive from applying the Campbell and Shiller (1988)
log-linearisation procedure to the returns to the consumption claim and market portfolio (Bansal
and Yaron, 2004). These constants satisfy

κ1 =
exp{z̄}

1+ exp{z̄}
κ0 = ln(1+ exp{z̄})−κ1z̄,

where zt is the log price/consumption ratio of an asset whose dividend stream is identical
to consumption. Similar expressions are obtained for κ0,m and κ1,m when z is replaced by
zm. These are identified under the assumption that z̄ and z̄m are equal to the unconditional
expectation of zt and zm,t respectively.



126 Appendices to Chapter 1

A.1.2 Time-series moment conditions

The nine time-series moment conditions derived by Constantinides and Ghosh (2011) are:
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A.1.3 Expected return coefficients

The expected market return in the Bansal-Yaron model is

Et rm,t+1 = B0 +B1xt +B2σ
2
t ,

where

B0 = κ0,m +(κ1,m −1)A0,m +µd +κ1,mA2,m(1−ν)σ2 −3κ1,m

B1 = A1,m(κ1,mρx −1)+φ

B2 = A2,m(κ1,mν −1).
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A.2 Cecchetti-Lam-Mark κ(yt)

κ(yt) =

δ̃ (1− δ̃ α̃1(p+q−1))/∆ ,yt = 0

δ̃ α̃1(1− δ̃ (p+q−1))/∆ ,yt = 1,

where

δ̃ = δ exp{α0(1− γ)+(1− γ)2
σ

2
yt
/2}

α̃1 = exp{α1(1− γ)}

∆ = 1− δ̃ (pα̃1 +q)+ δ̃
2
α̃1(p+q−1).
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Appendices to Chapter 3

B.1 HAC p-values for the difference in Sharpe ratios and
certainty equivalents

The following extends the analysis of Lo (2002), which considers the asymptotic distribution of
a single Sharpe ratio. Here, I derive the asymptotic distribution of the difference of two Sharpe
ratios.

Consider the Sharpe ratio for portfolio p: SRp = µp/σp. Suppose we wish to consider
the null that SRp = SRq. This requires the estimation of four parameters, collected in the
vector θ = (µp,σ

2
p ,µq,σ

2
q )

′. Our test statistic is ∆S ≡ SRp−SRq and the null hypothesis is that
∆S = 0. Note that we can write ∆S as a function of θ : ∆S(θ) = µp/σp −µq/σq. I estimate θ

by considering the moment conditions

h(Rt ,θ) =


Rp,t −µp

(Rp,t −µp)
2 −σ2

p

Rq,t −µq

(Rq,t −µq)
2 −σ2

q

 .

Based on these moment conditions, the GMM estimate of θ , θ̂ , is given by the standard
maximum likelihood estimators of each of the four parameters (Lo, 2002). Further, following
Lo (2002) and by Hansen (1982),

√
T (θ̂ −θ0)

a∼ N(0,VGMM)
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where θ0 is the population θ and VGMM =V−1
B VM(V−1

B )T , with

VB ≡ lim
T→∞

E

[
1
T

T

∑
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D
Dθ

h(Rt ,θ0)

]
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E

[
1
T

T

∑
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T

∑
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′

]
.

Since

D
Dθ

h(Rt ,θ0) =


−1 0 0 0

−2(Rp,t −µp) −1 0 0
0 0 −1 0
0 0 −2(Rq,t −µq) −1

 ,
it is clear that VB =−I and VGMM =VM.

I follow Lo (2002) in using the Newey-West estimator for VM

V̂M = V̂M,0 +
m−1

∑
j=1

(
1− j

m

)(
V̂M, j +V̂ ′

M, j
)

V̂M, j =
1
T

T

∑
t= j+1

h(Rt , θ̂)h(Rt− j, θ̂)
′,

and follow Delgado and Velasco (2011) in setting m = 2(T/100)1/3.
From here, it is straightforward to apply the delta method, which, under the null that ∆S = 0,

yields √
T ∆̂

S a∼ N
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∂∆(θ)
∂θ T

)
where

∂∆S(θ)

∂θ
=
(

1
σp
, −1

2
µp
σ3

p
, − 1

σq
, 1

2
µq
σ3

q

)′
.

Similar logic works for the difference in certainty equivalents, ∆C(θ) ≡ CEQp −CEQq,
where CEQp = µp− γ

2σ2
p . In this case, VM is as before, the asymptotic distribution is analogous

to that above and
∂∆C(θ)

∂θ
=
(

1,− γ

2 ,−1, γ

2

)′
.
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B.2 Predictive models

Suppose that St is a T ×N ×K array of predictive information, where K is the number of
predictors. For each asset i = 1, . . . ,N, Si,t = (si

1,t , . . .s
i
K,t)

′. E(Ri,t+1|St) = µi(Si,t).
I first consider a univariate linear function for µi(Si,t):

µi(Si,t) = κ0,i +κ1,isi
k,t

for some k ∈ 1, . . . ,K. In this case, I consider K different sets of conditional mean functions
and see how well using each individual predictor works in turn.

Table B.1 shows the out-of-sample information coefficients for one-step-ahead univariate
predictive regressions computed over 120-month rolling windows, using each variable in turn.
I compute the information coefficients over the same sample as I run the portfolio strategies in
Section 3.5, i.e. the first returns I forecast are in January 2000 (where I estimate the predictive
model using data up to December 1999) and the final returns I forecast are in December 2019.
The (lagged) market return is the only predictor with a positive information coefficient in
all four universes. It also has the highest information coefficient in each universe. Since the
question of how to use predictive information optimally implicitly assumes the information
used has some predictive ability, it makes sense to focus on the results with the market return as
the predictor. The reversal and MA1,12 predictors also have positive information coefficients in
the size/book-to-market universes. Hence the use of these two predictors for robustness checks.

Table B.1 Information coefficients for univariate predictors
6 size/BTM 25 size/BTM 10 industry 30 industry

Market return 0.061 0.068 0.028 0.047
Dividend yield -0.044 -0.043 -0.048 -0.039

One-month Treasury -0.059 -0.056 -0.037 -0.019
Treasury spread -0.087 -0.092 -0.083 -0.052

Credit spread -0.036 -0.052 -0.041 -0.036
CPI inflation -0.039 -0.030 -0.072 -0.033

Reversal 0.022 0.023 -0.042 -0.021
Momentum -0.055 -0.069 -0.056 -0.055

MA1,12 0.027 0.032 -0.061 -0.024
MA3,12 -0.092 -0.082 -0.101 -0.029

Out-of-sample information coefficients for the univariate predictors computed using a 120-month rolling window.
MA1,12 is the difference between the (lagged) one-month and twelve-month moving average.
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The focus on univariate predictors may seem overly simplistic. I turn now to multivariate
methods. I use machine learning methods, in order to reduce the collinearity problems of using
a multivariate regression for prediction, as illustrated so strongly in Welch and Goyal (2008).

B.2.1 Variable selection

Variable selection methods such as the elastic net can improve forecasts of asset returns (Li and
Tsiakas, 2016). In the linear conditional mean model

Ri,t+1 = κ0,i +
K

∑
k=1

κk,isi
k,t + ε i,t , (B.1)

the elastic net estimator κ̃i = (κ̃0,i, . . . , κ̃K,i)
′ solves

min
κi

 T

∑
t=1

(
Ri,t −κ0,i −

K

∑
k=1

κk,isi
k,t

)2

+λL,i

K

∑
k=1

|κk,i|+λR,i

K

∑
k=1

κ
2
k,i

 . (B.2)

This is a penalised least squares estimator, where the penalty comprises a LASSO term
(λL,i ∑k |κk,i|) and a ridge term (λR,i ∑k κ2

k,i). The pure LASSO estimator has λR,i = 0. In this
case, I fix λR,i = 1 in the elastic net estimation. In both the LASSO and elastic net estimation,
λL,i is chosen to minimise in-sample prediction error in 10-fold cross-validation, while K is
chosen to minimise Mallows’s Cp. λL,i is chosen first for a given K and then the Cp computed
for each K, using the optimal λL,i for that K.

The LASSO term helps with variable selection, by forcing estimated coefficients that are
small in magnitude to be zero. By dropping irrelevant variables, LASSO can help reduce
estimation error. However, pure LASSO will not necessarily select two highly correlated
predictors with non-zero population coefficients, even asymptotically. The ridge term helps
with this grouped selection problem.

Variable selection techniques may also reduce specification error. Welch and Goyal (2008)
show that the predictive ability of individual variables over the equity risk premium varies
over time. Using a rolling or expanding window LASSO or elastic net model allows different
predictors to drop in and out of the model at different times, depending on the economic state.

Relaxed methods

The elastic net and LASSO estimators are both biased. This can be resolved by using relaxed
elastic net or LASSO. The relaxed LASSO/elastic net is a two step process. First, LASSO/elastic
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net is run over all predictive variables. Then, a standard multivariate OLS regression is run
over only the variables with non-zero coefficients in the initial LASSO/elastic net step. This
produces an unbiased forecast. Biased predictions may, however, be preferred by an investors
(Kirby and Ostdiek, 2012b). I therefore consider both relaxed and non-relaxed LASSO and
elastic net.

B.2.2 Machine learning

Random forests

By repeatedly partitioning the regression surface, regression trees can provide powerful, non-
parametric prediction. This can help overcome functional form mis-specification. Random
forests randomly grow many deep (with several splits) regression trees and average over them
to reduce variance. Gu et al. (2020) show that random forests can produce substantial gains in
terms of out-of-sample forecasting of stock returns compared to OLS. Here, my random forests
grow 500 trees, where splits are based on variance. Each tree samples the original data with
replacement (to form a sample of the same length as the original sample), has a minimum node
size of five, unlimited maximum depth (subject to the minimum node size of five), and splits
over up to three variables at each node.

Gradient boosting

Gradient boosting is also based on regression trees. However, instead of growing many deep
trees and averaging over them, a series of shallow trees are grown and summed up. Each
new tree is fitted to the gradient of the loss function (which is the residual with a squared loss
function). Each time a new tree is fitted, its aim is to reduce the forecast error. The trees have
to be kept shallow and we must be careful of fitting too many trees for fear of over-fitting.

Gradient boosting too can enjoy good forecast performance. With a Huber loss function Gu
et al. (2020) show that gradient boosting can produce substantial gains in terms of out-of-sample
forecasting of stock returns compared to OLS. Its forecasting performance is similar to random
forests in Gu et al. (2020). Here, each boosted regression grows 100 trees with maximum depth
one, where splits minimise a squared loss function.

B.2.3 Combining variable selection and machine learning

Borup et al. (2020) find that the performance of random forests for forecasting can be improved
by including a variable selection step, similar to relaxed LASSO or elastic net. Borup et al.
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Table B.2 Information coefficients for machine learning predictors
6 size/BTM 25 size/BTM 10 industry 30 industry

Random forest -0.054 -0.043 -0.076 -0.025
Gradient boost -0.066 -0.052 -0.043 0.010

LASSO -0.034 -0.045 -0.040 -0.021
Rel. LASSO -0.035 -0.038 -0.031 -0.015

Targ. rand. forest (LASSO) -0.013 0.014 0.006 0.010
Targ. grad. boost (LASSO) -0.057 -0.037 -0.021 -0.015

Elastic net -0.057 -0.038 -0.031 -0.011
Rel. el. net -0.026 -0.022 -0.026 -0.011

Targ. rand. forest (el. net) 0.016 0.025 0.022 0.005
Targ. grad. boost (el. net) -0.007 -0.014 -0.004 -0.026

Out-of-sample information coefficients for the machine learning predictors computed using a 120-month rolling
window. The variables used are those listed in Table B.1. Targ. rand. forest (LASSO) refers to a targeted random
forest with a LASSO targeting step.

(2020) call this a “targeted random forest”. LASSO or elastic net is run in the first stage and
then, in the second stage, random forest is run over the variables with non-zero coefficients in
the first stage. This selection step can help to remove the weakest predictors and subsequently
improve forecast performance. I therefore consider both targeted random forest and targeted
gradient boosting (gradient boosting with an initial variable selection step).

B.2.4 Information coefficients

The variable selection and machine learning methods do not necessarily give rise to better
information coefficients than the univariate methods. Table B.2 shows the out-of-sample
information coefficients, where the one-step-ahead prediction models are estimated with a
120-month rolling window, again over the same sample as I run the portfolio strategies in
Section 3.5. The set of variables used in each prediction method is as in Table B.1.

The targeted random forest, using the elastic net in its targeting step, is the only prediction
method which produces a positive information coefficient in all four universes. Hence, it is the
machine learning predictor considered in Section 3.5.3.

The LASSO targeted random forest is the only other predictor to have a positive information
coefficient in both industry universes. I therefore consider using it as a robustness check in
Section 3.6.3

No predictor other than the targeted random forest with elastic net targeting step has a
positive information coefficient in both size/book-to-market universes.
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B.3 Conditional heteroscedasticity specification

To account for possible conditional heteroscedasticity in the conditional mean/prediction error
ε t in (3.1), I use an asymmetric dynamic conditional correlation (aDCC) model (Cappiello et al.,
2006). The advantage to using an aDCC model, rather than a standard dynamic conditional
correlation model (DCC), is that the aDCC model allows for correlations between assets to be
different when the prediction error is below its sample mean compared to when it is above. The
aDCC model contains only one additional parameter to estimate compared to the DCC model.

aDCC models the ex-ante variance of ε t as

Var(ε t |Ft−1) = D1/2
t PtD

1/2
t ,

where Pt is the matrix of conditional correlations of ε i,t , Dt is the diagonal matrix of condi-
tional variances of ε i,t and Ft the information available at t. Element i of Dt’s diagonal is
Var(ε i,t |Ft−1). To obtain Var(ε i,t |Ft−1), I specify each time series of errors ε i,t to follow a
GARCH(1,1) process.

I use the rmgarch package of Ghalanos (2019b) to estimate the aDCC model in R. Ghalanos
(2019a) explains that Pt is estimated by the transformation

Pt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2.

Qt evolves over time as

Qt = (1−a−b)Q̄−gQ̄−+azt−1z′t−1 +bQt−1 +gz−t (z
−
t )

′

where zt are the standardised errors with zt = D−1
t ε t , z−t = 1(zt < 0)zt , 1(·) the indicator

function, Q̄ and Q̄− the unconditional variance of zt and z−t respectively and a, b and g scalar
parameters.
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