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Abstract: Down’s syndrome results from trisomy of chromosome 21, a genetic change which
also confers a probable one hundred percent risk for the development of Alzheimer’s
disease (AD) neuropathology in later life. We aimed to assess the effectiveness of
diffusion-weighted imaging and connectomic modelling for predicting brain amyloid
plaque burden, baseline cognition and longitudinal cognitive change using support
vector regression. Ninety-five participants with Down’s syndrome successfully
completed a full Pittsburgh Compound B (PiB) PET-MR protocol and memory
assessment at two timepoints. Our findings indicate that graph theory metrics of node
degree and strength based on the structural connectome are effective predictors of
global amyloid deposition. We also show that connection density of the structural
network at baseline is a promising predictor of current cognitive performance.
Directionality of effects were mainly significantly reductions in the white matter
connectivity in relation to both PiB  +  status and above average longitudinal cognitive
decline. Taken together, these results demonstrate the integral role of the white matter
during neuropathological progression and the utility of machine learning methodology
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Abstract 
 
Down’s syndrome results from trisomy of chromosome 21, a genetic change which also 
confers a probable one hundred percent risk for the development of Alzheimer’s disease 
(AD) neuropathology (amyloid plaque and neurofibrillary tangle formation) in later life. We 
aimed to assess the effectiveness of diffusion-weighted imaging and connectomic modelling 
for predicting brain amyloid plaque burden, baseline cognition and longitudinal cognitive 
change using support vector regression. Ninety-five participants with Down’s syndrome 
successfully completed a full Pittsburgh Compound B (PiB) PET-MR protocol and memory 
assessment at two timepoints. Our findings indicate that graph theory metrics of node 
degree and strength based on the structural connectome are effective predictors of global 
amyloid deposition. We also show that connection density of the structural network at 
baseline is a promising predictor of current cognitive performance. Directionality of effects 
were mainly significant reductions in the white matter connectivity in relation to both PiB+ 
status and greater rate of cognitive decline. Taken together, these results demonstrate the 
integral role of the white matter during neuropathological progression and the utility of 
machine learning methodology for non-invasively evaluating AD prognosis.   
 
Introduction  
 
The brain is a complex, topological network, disruption and degeneration of which can 
result in profound cognitive and behavioural change. The foundation of structural brain 
connectivity is the white matter, which is comprised of the myelinated axonal projections of 
neurones (Bastin, Munoz Maniega et al. 2010). Inherently, the white matter of the brain 
provides integration and assimilation of complex biological functions dictated by specialised 
grey matter. Moreover, the role of white matter as a spreading mechanism for prion-like 
neurodegenerative proteins has been well-established (Polymenidou and Cleveland 2012, 
Rosen, Fritz et al. 2012, Costanzo and Zurzolo 2013). When organised into a connectomic 
approach, whereby robust reconstructions of white matter tracts are grouped into edge- 
and node-based networks, structural connectivity can be considered as a biological system 
of interconnected cortical and subcortical regions (Smith, Tournier et al. 2015). The 
structural connectome enables a more nuanced approach to mapping white matter than 
summary measures of microstructure diffusion anisotropy, which is a commonly used 
technique but one which may not leverage to the best advantage the full data range from 
diffusion-weighted imaging (Kaestner, Balachandra et al. 2020). Application of network and 
graph theories, which model and extract discrete mathematical characteristics from the 
system, allows for effective dimensionality reduction of information-dense neuroimaging 
data and provides uniformity for successful delineation of pathology (Rubinov and Sporns 
2010). Such modelling of brain data may rely upon a multitude of acquisition types, 
including functional (Chang, Hsu et al. 2020), metabolic (Huang, Hsu et al. 2020), structural 
(Morgan, Seidlitz et al. 2019) and diffusion-weighted networks (Lin, Lin et al. 2019, Kuang, 
Gao et al. 2020).  
 
The white matter is of particular pathological importance in the development, progression 
and seeding of neurotoxic proteins in Alzheimer’s disease (AD) (Bloom 2014, Fornari, 
Schafer et al. 2019). In addition, white matter exhibits increased susceptibility to MRI 
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hyperintensities in tandem with amyloid accumulation (Graff-Radford, Arenaza-Urquijo et 
al. 2019, Moscoso, Rey-Bretal et al. 2020) and genetic predisposition for AD in human 
clinical populations (Lee, Viqar et al. 2016). For this reason, we hypothesised that a white 
matter network-based approach when evaluating brain function may be advantageous in 
the prediction of disease advancement. The study of AD in people with Down’s syndrome 
(DS) across the age of risk for AD offers a unique opportunity to characterise pre-clinical 
pathological developments. This is particularly challenging when studying sporadic AD and 
therefore the early stages of neurodegeneration still remain under-researched. In DS, it is 
likely that 100% of individuals over the age of 40 years will exhibit AD neuropathology of 
amyloid accumulation and neurofibrillary tangle formation, despite AD penetrance over the 
lifespan not being complete for persons with DS (Wiseman, Al-Janabi et al. 2015). This 
predictable development of AD in aging persons with DS is driven by trisomy of 
chromosome 21, which contains multiple genes found to contribute to AD pathogenesis. A 
critical genetic change is the triplication of the amyloid precursor protein (APP) gene located 

on chromosome 21, the cleavage product of which is beta-amyloid (A). This leads to the 

upregulation of misfolded accumulations of A in the brain from as early as adolescence 
(Head, Helman et al. 2018). Indeed, having DS as a result of partial trisomy of chromosome 
21 and no triplication of APP does not result in AD (Prasher, Farrer et al. 1998, Korbel, 
Tirosh-Wagner et al. 2009). As put forward by the amyloid cascade hypothesis amyloid 
deposition in the brain is hypothesised to be an early AD-related change, and a subsequent 
“trigger” for further pathogenic mechanisms, such as hyperphosphorylated tau-mediated 

microtubule disruption (Bloom 2014). Being able to measure this early A accumulation is 
therefore critical to the advancement of clinical research and a key target for potential 
therapeutic modulation.  
 
As the degree of structural connectivity has previously been linked with the prion-like 

propagation of A in sporadic AD (Weickenmeier, Kuhl et al. 2018), the present study aimed 

to examine the relationship between the structural network characteristics, A deposition 
and the outward manifestation of neuropathology, i.e. cognitive decline, in aging people 
with DS. In particular, we aimed to exploratorily assess the predictive power of the 
structural network, hypothesising that, given the integral role of white matter connectivity 

in both A pathogenesis and cognition, alterations in the network may accurately forecast 
the degree of amyloid deposition and deterioration in working memory. The emerging role 
for machine learning in neuroscience has exhibited promising results for characterisation of 
disease state and prediction of continuous pathological outcomes (Zacharaki, Wang et al. 
2009, Kassraian-Fard, Matthis et al. 2016), and we therefore developed and validated the 
performance of supervised support vector regression models in predicting both amyloid 
burden and longitudinal change in memory performance. The aims of this study were to 
demonstrate the utility of the structural network as a non-invasive biomarker for AD 
neuropathology and secondarily; to identify, on an anatomical level, the most statistically 
powerful brain regions for prediction and thereby, identify areas of the white matter most 
susceptible to alteration by AD development. We hypothesised that the white matter 
connectome may be an effective and non-invasive predictor of both cognitive decline and 
amyloid burden in DS. 
 
Methods 
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Participant recruitment 
 
Ninety-five Down’s syndrome participants were recruited and successfully completed both 
an MRI and PiB-PET protocol across four study sites at University of Cambridge (n = 15), 
University of Pittsburgh (n = 34), University of Wisconsin-Madison (n = 38) and Barrow 
Neurological Institute (n = 8). All data was collected between 2017 and 2020. The inclusion 
criteria were as follows: Trisomy 21 confirmed by genotype, age above 25 years, baseline 
‘mental age’ of 3 years or greater on either the Stanford Binet V or Peabody Picture 
Vocabulary Test, a reliable caregiver who was capable of providing correct information 
about the participants clinical symptoms and history, co-operation with protocol 
procedures. Participants were also assessed for potential exclusion criteria, which included: 
significant disease or unstable medical condition that could affect neuropsychological 
testing and contraindication for MRI scanning. All participants gave fully informed consent 
or assent and the study was approved by the appropriate regional ethics committees. 
Clinical diagnosis status for dementia or mild cognitive impairment (MCI) was decided at 
consensus diagnosis meetings at each research visit. The four diagnostic categories used 
were: “No MCI, no dementia”, “MCI”, “Dementia” and “Unable to determine”. At least three 
clinicians experienced in the diagnosis of AD in DS were present at each meeting. They were 
given information about each participant’s physical and mental health history, medications, 
age, IQ and any significant life events. Longitudinal change in the following scores was used 
to determine cognitive and functional decline: WISC Block Design (Wechsler 2003), Beery 
Visual-Motor Integration (Beery K.E. 1989), the NEPSY- Second Edition Word Generation 
Semantic Fluency subtest (Korkman M. 2007), Down Syndrome Mental Status Examination 
(Haxby 1989), The Dementia Questionnaire for People with Learning Disabilities (Evenhuis 
2007), National Task Group Early Detection Screen for Dementia (Esralew 2013), Reiss 
Screen for Maladaptive Behavior (S. 1994). 
 
Neuropsychological testing 
 
The Cued Recall task was completed by 90 Down’s syndrome participants at baseline, with 
76 of these participants also completing the task 16 months after scanning. The Cued Recall 
Test measures episodic memory. The present test was modified from the version developed 
for the typical population (Buschke 1984). Three cards with four pictures per card were 
presented for learning, one card at a time. During the training phase, participants are given 
a unique category cue and were asked to point to and name the relevant picture. After 
naming each picture on the card, the card was removed, and the participants were asked to 
recall the pictures. This was repeated for all three cards, three trials per card. During the 
test phase, the participants were asked to recall all the pictures (Free Recall score). If they 
were not able to name all pictures spontaneously, they are given cues for the remaining 
items (Cued Recall score). Any intrusions were also recorded, and the full procedure was 
repeated three times. The Total Recall score is derived by summing all items recalled during 
Free Recall and Cued Recall and subtracting all intrusions.  
 
Neuroimage acquisition 
 
At the Cambridge site, a 3T GE Signa PET-MR system was used for all neuroimage data 
acquisition. University of Pittsburgh and University of Wisconsin-Madison PET data were 
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acquired on Siemens ECAT HR+ scanners and MRI data were acquired on a 3T SIGNA 750 
(University of Wisconsin-Madison) or a Siemens 3T Magnetom Trio (University of 
Pittsburgh). Barrow Neurological Institute data were acquired using a Discovery 710 PET/CT 
scanner and a Discovery 3T MR750 MRI scanner. For all sites, MRI and PET data were 
acquired at the same study visit for all participants. 
 
Fast spoiled gradient echo (FSPGR) T1-weighted anatomical data was acquired for 61 of the 
participants with 1.05 x 1.05 x 1.2mm3 voxel size. Repetition time (TR) was 7.348 ms, echo 
time (TE) was 3.036 ms, the flip angle was 11 degrees and matrix size was 256 x 556 x 196 
mm. Magnetization prepared rapid gradient echo (MPRAGE) T1-weighted anatomical data 
was acquired for 34 participants with 1.05 x 1.05 x 1.2mm3 voxel size. TR was 2300 ms, TE 
was 2.95 ms and the flip angle was 9 degrees. Matrix size was 176 x 240 x 256 mm.    
 
Diffusion data was acquired for all 95 participants in the axial plane with 48 diffusion 
directions. Field of view (FOV) was 23.2 cm with 2.0 mm slice thickness. Optimized TE was 
minimum and TR was 15707.0 ms with real time field adjustment. Voxel size was 0.9 x 0.9 
mm2, matrix size was 256 x 256 x 80 mm, b value = 1000 and a single b0 scan was acquired. 
Phase encoding was in the anterior-posterior direction.   
 
Structural MRI processing 
 
T1-weighted structural data were pre-processed using the FreeSurfer v6.0 ‘recon-all’ 
pipeline (https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all) , which carried out the 
following steps: intensity correction, transform to MNI template, intensity normalization, 
skull strip, subcortical segmentation, neck remove, subcortical labelling, segmentation 
statistics, a second intensity correction using brain only (after skull strip), white matter 
segmentation, subcortical mass creation, brain surface creation, surface inflation, automatic 
topology fixer, cortical thickness/pial surfaces, cortical ribbon mask, spherical inflation of 
the brain surface, ipsilateral surface registration, contralateral surface registration, 
resampling of the average atlas curvature to subject, cortical parcellation and creation of 
summary table for parcellation statistics. 
 
Diffusion MRI processing 
 
Diffusion-weighted data were denoised using MRTrix3 (Tournier, Smith et al. 2019). Whole 
brain masking was carried out using the co-registered brain mask output from FreeSurfer 
structural image processing. Anatomical parcellated and segmented structural images from 
the T1 pipeline were co-registered to diffusion space (B0 image) using Statistical Parametric 
Mapping software (SPM12) with nearest neighbour interpolation to preserve labels. B1 field 
inhomogeneity correction was applied to the diffusion images using the MRTrix3 command 
‘dwibiascorrect’ (Tournier, Smith et al. 2019), and the fibre orientation distribution images 
(FODs) were created using constrained super-resolved spherical deconvolution (Tournier, 
Calamante et al. 2007, Dell'Acqua and Tournier 2018). The MRTrix command ‘5ttgen’ was 
used to produce a five tissue-type segmentation image that was used for anatomically 
constrained tractography and a segmented mask image was created for use as tractography 
seeding localisation at the grey-white matter interface (Tournier, Smith et al. 2019). The 
FODs were subsequently used as the basis for creation of whole brain tractograms (Tournier 
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J.D. 2010). Five million seeds were used, with default parameters of 0.1mm x voxel size for 
individual step size for probabilistic building of streamlines. FOD amplitude cut-off was 0.05 

and the maximum angle between successive steps was 90 x step size x voxel size. Spherical 
deconvolution informed filtering of the tractograms was then carried out (‘SIFT2’) (Smith, 
Tournier et al. 2015), to remove streamlines unlikely to be relevant to underlying ground 
truth anatomy. MRTrix was used to create a structural connectome based on connection 
density between T1 structural nodes (Tournier, Smith et al. 2019). All processed structural 
data was visually assessed for quality assurance. 
 
Graph theory metrics were extracted from the connectomes using Brain Connectivity 
Toolbox (Rubinov and Sporns 2010). For all 84 regional brain nodes, node degree (number 
of links connected to the node) and node strength (sum of connection density weights 
connected to the node) was calculated. Additionally, global efficiency (average inverse 
shortest path length in the network) was calculated for each participant.  
 
Pittsburgh Compound B (PiB) PET image processing 
 
PiB-PET images were acquired over a range of time that included 50-70 minutes post 
injection. Scans were binned into 5-minute intervals spanning this range and were inspected 
for interframe motion and, if necessary, corrected using PMOD. Motion-corrected frames 
were averaged to produce a single 50-70 minute mean image. T1-weighted MR scans 
(acquisition described in Neuroimage acquisition) were aligned to ACPC orientation and the 
mean single frame PET image aligned using PMOD. The T1 image was used as input to 
FreeSurfer 5.3 which was used to parcellate the images into the standard FreeSurfer regions 
with the following exception: the FreeSurfer striatal region was replaced by the striatal 
region from the Imperial College London Clinical Imaging Centre (CIC) atlas (Tziortzi, Searle 
et al. 2011) which is more detailed in its parcellation. This was accomplished by the warping 
the CIC atlas into internal FreeSurfer space. For each participant, images were visually 
inspected and quality checked to ensure correct alignment. The warped atlas was then 
warped into each subject’s space using the subject transformation generated during the 
processing of each subject. Standardized uptake value ratios (SUVR) were generated for 
each standard region by firstly performing a volume-weighted average of activity 
concentration in the constituent FreeSurfer/CIC regions and secondly normalizing by the 
cerebellar gray-matter activity. 
 

Resolution compensation (partial volume correction, PVC) was performed using the 
Geometric Transfer Matrix (GTM) method (Rousset, Ma et al. 1998). Application of GTM 
requires an estimate of each scanner’s point-spread function. These were obtained by an 
analysis of Hoffman Brain Phantom data that each site supplied as part of site-qualification 
for this study. Regional PiB+ and regional PiB- were defined with GTM SUVR cut-offs as 
described by Zammit et al (2020, 2021) (Zammit, Laymon et al. 2020, Zammit, Tudorascu et 
al. 2021), derived from longitudinal analysis in DS that distinguished early accumulators 
from non-accumulators. As triplication of the APP gene leads to a striatal-dominant pattern 
of amyloid accumulation, the striatum was also used as region of interest for PiB binding; 
the template for amyloid burden and tissue segmentation for DS is described in Lao et al 
(2020) (Lao, Handen et al. 2019). The thresholds were 1.885 for the anterior cingulate, 1.398 
for the striatum, 1.784 for the superior frontal, 1.777 for the orbitofrontal, 1.369 for the 
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insula, 1.57 for the lateral temporal, 1.796 for the parietal, 1.811 for the posterior cingulate, 
1.946 for the precuneus and 1.731 globally. Global SUVR was defined as an average of the 
other regions of interest. An ROI in the cerebellar grey matter drawn in native space was 
used as a reference region (Lao, Handen et al. 2019). Individuals exceeding the cut-off SUVR 
measurement in any of these regions were defined as PiB+. 
 
Rank-based feature selection and support vector machine regression modelling 
 
Structural connectome matrix data (size: 84x84, upper triangle) was vectorised, and 
vectorised data was concatenated. Vectors of graph theory metrics were concatenated, and 
were feature selected separately to connectome data. Rank-based feature selection was 
carried out on ten PiB+ and ten PiB- individuals in the dataset who were then excluded from 

further analysis. For the assessment of global amyloid- as an outcome variable, data was 
grouped into regional PiB+ and regional PiB- participants and student’s two-tailed t-tests 
assuming equal variance were performed on each network feature and graph metric. P 
values were then ranked, and p < 0.01 graph metric features and p < 0.01 structural 
connectome features were preserved for further analysis. For the assessment of cognitive 
performance, longitudinal change (𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 = 𝑀𝑜𝑛𝑡ℎ 16 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑎𝑙𝑙 −
 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑐𝑎𝑙𝑙) in total cued recall was binarized into below mean and above mean 
change. Mean longitudinal cognitive change of the whole sample was -6.7 points on the 
Cued Recall Task total score. Two-tailed t-tests were carried out between ten individuals 
below average cognitive change and ten individuals above average cognitive change and p 
values were ranked. The 20 participants used for feature selection were then excluded from 
subsequent SVM modelling. For the graph metric and structural connectome features, p < 
0.01 were preserved for further analysis.  
 
Linear kernel-based support vector machine (SVM) regression models, fully described by 
Drucker et al, 1997 (Drucker 1997), were trained and evaluated for the selected network 
features, using global PiB SUVR, cognitive performance and longitudinal cognitive change as 
measured by the Cued Recall Task (see section: Neuropsychological testing) as outcomes. 
Models were developed and implemented using the Regression Learner Toolbox in MATLAB 
(R2019b) (https://www.mathworks.com/help/stats/regression-learner-app.html). Model 
evaluation utilized root mean square error (RMSE), R2, mean square error (MSE) and mean 
absolute error (MAE) as performance metrics. These metrics for the trained model may be 
interpreted as follows: RMSE values have the same unit as the response variable, with 
smaller values indicating smaller error (Chai 2014). R2 is the coefficient of determination, 
with a value smaller than 1, it compares the trained model with a model where the 
response is constant, therefore if the trained model performs worse than the constant 
model, R2 will be negative; a positive R2 indicates the model performs more favourably than 
chance (Glantz 1990). MSE is the square of the RMSE, where smaller values are favourable, 
and similarly MAE is the absolute error, which is always positive but less sensitive to outliers 
than the RMSE (Chai 2014).     
 
For model validation, a k-fold cross validation approach was used, which minimizes the 
sampling bias that classically occurs with basic train/test data splitting and produces 
performance metrics based on the mean of partitioned repeated model tests. A standard of 
5-folds was used, where each observation is randomly assigned into five approximately 
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equal groups with the training fold containing 4/5th of the data and the test fold containing 
the remaining 1/5th of the data, which allows for prioritisation of both accuracy and 
computational complexity (Xu and Goodacre 2018). As age is an important and known 
predictor of dementia pathology, age was included in all models and additionally assessed 
as a single predicting metric. All models were performed as a complete-case analysis (i.e. 
participants included had no missing datapoints).  
 
Results 
 
Participant demographics 
 
Participant demographics for the complete sample are summarised in Table 1. Longitudinal 
change in total recall performance was nominally significant (p = 0.04) between the PiB+ and 
PiB- groups, and total recall at baseline was also significantly different between groups (p < 
0.01) indicating, as expected, a more overt cognitive decline was present in the individuals 
with positive PiB scans. Age was also significantly higher in the PiB+ group (p < 0.01). 
Between the PiB+ and PiB- groups, sex was not significantly different (p = 0.14). Consensus 
diagnosis at baseline confirmed three PiB+ DS individuals with MCI, three with dementia and 
one unable to determine. One PiB- participant was diagnosed with MCI and one was unable 
to determine. For the whole sample, age was significantly positively correlated with global 
PiB SUVR (p < 0.001) and negatively associated with total recall longitudinal change (p < 
0.01) (fig.1).  
 
Rank-based feature selection 
 
Out of the full dataset, 1165 out of 7056 features of the structural network were selected by 
rank-based methods to be used in the SVM analysis (puncorr < 0.01) between the PiB+ and PiB- 
groups. For the graph theory metrics, 22 out of 170 features were selected (puncorr < 0.01) 
using the PiB+/- rank method. For the prediction of cognitive change, 22 out of 7056 features 
of the structural network were selected for inclusion in the SVM models, by ranking of p 
values between above mean and below mean longitudinal cognitive change (puncorr < 0.01). 
No features were selected for the cognitive measures from the graph theory metrics, as no 
features exhibited sufficiently significant between group differences (puncorr < 0.01). 
 
Feature-selected network characteristics predictive of amyloid deposition, cognitive 
performance and cognitive decline  
 
Selected features for the structural connectome predictive model for global brain amyloid 
deposition revealed that the features most significantly different in PiB+ DS individuals 
compared to PiB- individuals included widespread limbic (amygdala and hippocampal 
complex), nucleus accumbens, frontal, temporal, occipital and cingulate white matter 
connectivity measures. Notably, the feature selection for the PiB SUVR models using the 
structural network data produced the most extensive number of significantly different 
regions of connectivity. In addition, the selected features of white matter connectivity were 
significantly lower in the PiB+ group compared to the PiB-. By contrast, the structural 
network feature-selected based on cognitive performance produced a lower number of 
significantly differing regions of connectivity, which were mainly focussed to the pallidum, 
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cingulate cortex, putamen and caudate. The majority of the selected features were 
significantly decreased regions of connectivity in the above average cognitive decline group 
compared to the below average cognitive decline group, however a small number of 
features exhibited between hemisphere increases in connection density (fig.2). Similarly, 
the selected graph theory metrics based on PiB+/- significant differences were modest in 
number, with the strength and degree of connectivity at the limbic nodes (amygdala and 
hippocampal complex), the orbitofrontal cortex and nucleus accumbens exhibiting p values 
of less than 0.01. All features showed uniform decreases in node strength and degree of 
connectivity in the above average cognitive decline group (fig.3). 
 
Support vector machine regression model performance 
 
Five-fold cross-validation was performed for each model, thereby protecting against over-
fitting via partitioning of the dataset. All model performance metrics are reported in Table 2. 
Linear regression SVMs carried out on the selected features of the structural network 
predicted amyloid deposition via PiB binding with an RMSE of 0.43 (SUVR) and an R2 value of 
0.15. The selected features of the structural network predicted baseline cognitive 
performance with a RMSE of 8.56 (total score on cued recall) and an R2 value of 0.34, 
indicating that variation in the structural network is accounted for slightly more by cognitive 
performance than by amyloid deposition. The model predicting longitudinal cognitive 
change by the structural network was less effective, likely due to the network as measured 
at baseline being relatively poor at predicting month 16 functional cognition. The MAE for 
these models was 0.27 (PiB SUVR), 5.58 (recall baseline) and 7.10 (recall change), indicating 
with closeness of MAE to RMSE that model error was frequent but small. 
 
The graph theory metrics as predictors of amyloid deposition produced the most effective 
model for PiB SUVR, with a RMSE of 0.40, an R2 of 0.28 and a MAE of 0.26. A low MSE of 
0.16, compared to the structural network predicted PiB SUVR model MSE of 0.19 is 
supportive of good model performance. For the cognitive score predictions, no graph theory 
metrics survived feature selection at the prescribed level of p < 0.01, and therefore no SVM 
models were produced for these measures.  
 
Age-only predictive models for PiB SUVR and recall baseline performed more poorly than 
models that included the feature-selected graph theory and/or structural connectome data, 
based on the RMSE, R2, MSE and MAE values. However, an age-only SVM model showed the 
most predictive power for estimating the longitudinal change in cognition, with an RMSE of 
9.80, an R2 of 0.17 and a MAE of 6.41. As with all predictive models of cognitive 
performance however, relatively high MSE scores indicate a larger margin of error. 
Comparatively, the predictive model of longitudinal cognitive change incorporating the 
structural network features had a slightly higher RMSE and lower R2, which overall indicates 
that diffusion MRI measures acquired at baseline are not as effective as a simple age-only 
prediction for changes that occur 16 months post-scan.     
 
Discussion 
 
This is the first study to date to examine the white matter connectome in DS, and moreover 
is the most highly powered investigation to date into the power of the structural network 
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for predicting PET-measured neuropathological change and cognitive decline in a population 
with a likely 100% risk for AD pathogenesis. Our findings indicate that that support vector 
regression models, using selected features of the structural connectome and graph theory 
metrics of node strength and degree, show promising performance when it comes to the 
prediction of brain amyloid deposition and cognitive performance. Rank-based feature 
selection from graph theory metrics did not however exhibit a favourable predictive ability 
for cognitive indices, suggesting that such network features may not be closely coupled to 
cognitive function. In addition, we highlight the regional importance of structural 
connectivity of a more widespread and extensive nature for amyloid deposition and a more 
limited network for cognitive decline. Interestingly, we also highlight the directional 
character of significant predictors in the models, showing the importance of pathology-
related decline in connectivity and by contrast, minimal cross-hemispheric compensatory 
increases in the network connection density during the developmental processes of AD in 
DS. 
 
The support vector regression models utilising the structural connectome as observed 
variables produced conservative RMSE values and R2 estimations of effect size that 
explained a tolerable portion of variance in cognitive performance and amyloid deposition. 
The successful estimation of PiB binding in the brain by the structural connectome and node 
degree and strength indicates a mechanistic link between white matter connectivity and 
progressive amyloid plaque formation. Recent evidence has shown that in sporadic AD, 

lower levels of CSF A-42, reflecting higher retention in the brain parenchyma, was 
significantly correlated with total volume of white matter hyperintensity (Weaver, Doeven 
et al. 2019). Similarly, in individuals with autosomal dominant AD, white matter 
hyperintensities were significantly more prevalent approximately six years prior to expected 
symptom onset, especially in the parietal and occipital lobes (Lee, Viqar et al. 2016). In 
contrast to tau burden, which has been reported to show no association with hyperintense 
signals in the white matter, white matter hyperintensities have been shown to exhibit a 
topographic pattern of amyloid-association in the frontal and parietal lobes in the non-
demented elderly (Graff-Radford, Arenaza-Urquijo et al. 2019). Using the diffusion tensor 
model Powell et al, showed that in DS, white matter fractional anisotropy, which can be 
interpreted as a measure of microstructural order of the tissue, was reduced in conjunction 
with poorer cognitive performance (Powell, Caban-Holt et al. 2014). Additionally, the 
typically late myelinating pathways of the frontal regions were particularly affected, 
suggesting a role for developmental white matter myelination in subsequent 
neurodegenerative vulnerability (Powell, Caban-Holt et al. 2014, Fenoll, Pujol et al. 2017). 
Positive status for PiB binding has also shown to increase white matter damage in DS. 
Therefore, our findings provide further evidence that it is likely that amyloid accumulation 
may mechanistically exacerbate white matter abnormalities in the already atypical DS brain 
(Neale, Padilla et al. 2018). 
 
Estimation of cognitive performance at baseline using the structural connectome by support 
vector regression yielded a promising model. A prediction error of within 8.56 points of 
change in total score in the cued recall task was achieved, within a data range of 75 points. 
This result suggests that this model would be more effective as a prediction tool for 
individuals with more pronounced cognitive decline. This may be due to a substantial 
degree of variability in network connectivity being attributable to individuals who exhibit 
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increased symptomology. Previous longitudinal findings have highlighted a sharp increase in 

A, a phenomenon known to be detrimental to white matter integrity, that precedes the 
onset of clinical dementia and cognitive decline (Mak, Bickerton et al. 2019). Similarly, 
decreased fractional anisotropy and increased mean diffusivity have recently been 
highlighted as a correlate of poorer episodic memory in aging persons with DS (Bazydlo, 
Zammit et al. 2021). In addition, individuals with subjective cognitive decline without DS 
exhibit significantly lower microstructural order in the white matter in a widespread 
manner, which underscores the importance of white matter functionality in cognition 
(Ohlhauser, Parker et al. 2019). Rate and age of onset of cognitive decline is variable in DS-
AD, despite almost universal prevalence of AD neuropathology in the fourth decade of life 
(Wiseman, Al-Janabi et al. 2015), indicating a complex balance of both potentially protective 
and pathological mechanisms. We show here the integral link with and predictive power of 
the white matter connectome for cognitive function.  
 
The structural network and graph theory metrics, however, were a poor predictor of future 
cognitive performance as quantified by the cued recall task 16 months post-scan, and did 
not perform better than an age-only model. A plausible explanation for this discrepancy is 
that white matter assessment at baseline cannot accurately predict future changes, and 
there is a significant confound of existing (pre-morbid) and variable intellectual disability in 
DS, which cannot be effectively separated from AD-related cognitive decline. Graph theory-
based network characteristics have previously been reported as a useful validation of trans-
neuronal spread of hyperphosphorylated tau in AD, with strongly connected nodes 
exhibiting a higher burden of tauopathy (Cope, Rittman et al. 2018) and large-scale 
functional disconnection has been identified preclinically (Brier, Thomas et al. 2014). Our 
graph data extracted from the structural connectome however, despite showing group 
differences between above / below mean cognitive change, perform poorly in explaining 
variance in the degree of cognitive change. This suggests a limited association.     
 
Our results highlight specific areas of regional significance for the effective prediction of 
both cognitive function at the time of scanning and brain amyloid deposition using the 
structural connectome and graph theory. Widespread limbic, frontal, temporal and occipital 
features of the structural network exhibit lower network connection density in association 
with increased amyloid burden, indicating that these reduced regions of connectivity are 
important for effective correlative prediction. Of the prominent selected features, the 
precentral gyrus is the site of the primary motor cortex (Catani 2019) and the lateral 
occipital cortex is a visual area mainly involved in object perception and recognition (Grill-
Spector, Kourtzi et al. 2001). The isthmus of the cingulate is continuous with the 
parahippocampal gyrus and is thereby highly integrated with the temporal lobe (Zhu, Li et 
al. 2014), and the middle temporal cortex is a region important for the controlled retrieval 
of semantic and non-semantic memory (Davey, Thompson et al. 2016). The established 
significant role of the temporal lobe in AD pathology (Veitch, Weiner et al. 2019) and 
functionality of these regions strongly suggest that the dysconnectivity of the integration 
between motor, perception and memory cortices is pathologically significant. In sporadic 
AD, connectomic DWI analysis similarly revealed significant involvement of the middle 
temporal and motor regions in predicting AD progression using multivariate distance matrix 
regression, which is comparable to the white matter pathways highlighted as significant 
predictors in the present study for DS-AD (Ye, Mori et al. 2019). These common findings are 
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supportive of the white matter network as a promising and robust biomarker for disease 
advancement. Conversely, in addition to network disconnection, we also show a small role 
for apparent compensatory increases in network connectivity in the prediction of cognitive 
function from the structural connectome, whereas for PiB binding the directionality of 
predictive ability is uniformly towards decreased connection density in the network. These 
discrete cross-hemisphere regions of positive association between cognitive function and 
structural connectivity involved the superior frontal and precentral areas. This enhanced 
lateralised network integration of the frontal cortices suggest higher-level compensatory 
processes involving learning and memory functionality. Interestingly, these areas have been 
shown to be somewhat spared in the early DS-AD stages of development in longitudinal 
assessment (Mak, Bickerton et al. 2019) and therefore predictive importance may arise from 
the ability to increase connectivity due to minimal effects of neuropathology. It is known in 
DS that in comparison to sporadic AD, amyloid accumulation begins earlier in life and there 

is a longer period of latency between A neuropathology and overt clinical changes 
(Wiseman, Al-Janabi et al. 2015). Our results indicate that this latency period is potentially 
accompanied by some white matter compensatory plasticity which may maintain cognitive 
ability.  
 
The present study provides evidence of the importance and efficacy of the structural 
network in predicting AD neuropathology and cognitive performance in DS, however, 
several limitations must be taken into account. Firstly, despite the unusually large sample 
size for a DS cohort, support vector techniques benefit from large datasets and therefore 
generalisability may be somewhat limited. Secondly, consensus diagnoses of AD and MCI 
were performed for all individuals of the study, revealing a small section of the sample to 
have either MCI or full AD. These individuals may have added to data heterogeneity, 
although to provide a realistic analysis of aging individuals with DS, they were retained for 
the study. The ability of diffusion-weighted data to accurately capture the white matter 
connectome is also an important methodological factor for consideration. Recent studies 
demonstrate the importance of whole brain connectomic approaches in understanding 
cognition in a range of clinical syndromes (Shen, Finn et al. 2017, Kaestner, Balachandra et 
al. 2020), nevertheless, reproducibility and validity of networks is seldom addressed in the 
literature. Evidence from test-retest reliability investigation of the structural connectome 
shows that seeding from the white matter grey matter boundary (Smith, Tournier et al. 
2012) and using a two-fibre model with probabilistic rather than deterministic tractography, 
as performed in the present study methodology, significantly improves test-retest 
performance (Buchanan, Pernet et al. 2014). Moreover, the white matter connectome has 
been shown to associate with and affect neuronal avalanches as meased by 
magnetoencephalography (MEG), evidencing reliable structure-function coupling 
(Sorrentino, Seguin et al. 2021). Therefore, whilst limitations of diffusion-derived 
connectomes exist, existing studies support their utility and validity as cognitive and 
pathological biomarkers.     
 
As the study data was collected at three sites, there is also a potential of inter-site and inter-
scanner variability, which may have affected the data homogeneity despite study design and 
post-processing sameness. Potential inflammatory contribution to diffusion-weighted image 
changes in DS was also not accounted for, which would be a worthy inclusion for future 
studies. The effects of tau accumulation were also not assessed in the present analysis, and 



 12 

therefore there is the potential for a confounding aspect of the mediating effect of tau on 
neurodegeneration in this DS cohort. As amyloid and tau accumulation exhibit differing 
trajectories in DS-AD, it is possible that noise arising from tau trajectories may have 
influenced model performance, especially given that tau is often more closely related to 
cognitive decline (Zammit, Tudorascu et al. 2021). For PiB+ or PiB- status, a case with any 
region exceeding threshold values was defined as PiB+, and therefore there may have been 
reduced stringency in defining status. However, given that the support vector model was 
based upon continuous SUVR measures, this should not have significantly impacted model 
results. Additionally, the MRI-based analyses for this research were cross-sectional, and 
future longitudinal study will be of significant benefit for examining and fortifying the 
evidence for the role of white matter changes in DS-AD.     
 
In conclusion, we present findings that show the diffusion-weighted structural connectome 
and extracted graph theory measures can be used as an effective and non-invasive modality 
to predict cognitive performance and amyloid burden within the brain. Especially in cases 
where amyloid deposition may be more pronounced, the utilisation of machine learning 
tools and structural network may be a useful tool for predicting neuropathology. Moreover, 

we highlight the directional nature of changes in the white matter in relation to A plaque 
formation and working memory, where network disconnection appears to be significant 
during the development of DS-AD. To build further upon this work, longitudinal assessment 
of the white matter connectome to examine white matter connectivity as a predictor of AD 
as it develops in real-time, along with inclusion of tau accumulation trajectories, would be 
an interesting future direction. Moreover, exploration of machine learning structural 
connectome predictors in amyloid positive-only cohorts may yield further insight into 
prognoses of cognitive decline, via additional reduction of sample heterogeneity and more 
substantial neuropathology.    
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Figure 1. Higher corrected PiB SUVR values (global, as defined by average of regions of 
interest) and worse longitudinal cognitive decline (as measured by the total recall task) are 
significantly associated with increasing age (p < 0.001 and p < 0.01 respectively). 
 
Figure 2. Structural connectome representation of the differences between mean white 
matter connection density for the PiB+ group compared to the PiB- group and the above 
average cognitive decline group compared to the below average cognitive decline group, as 
evidenced by rank-based feature selection. Node-to-node connectivity thresholded at 
50,000 streamlines. Colour bars reference degree of connection density for edges, and node 
colours are random for each structurally defined brain region.  
 
Figure 3. Features selected (p < 0.01) from graph theory metrics based on rank-based 
differences between the PiB+ and PiB- groups. Mean node strength (sum of connection 
density weights connected to the node) and mean node degree of selected features as 
separated by group, exhibiting uniform lower node strength and degree for the PiB+ group 
compared to the PiB- group.  
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Table 1. Participant demographics 

 PiB+ PiB- 

n 35 60 

Age (mean / SD) 46.7 / 8.0 34.4 / 5.2 

Sex (m / f) 24 / 11 32 / 28 

Data acquired for baseline cognition (%) 91.4 96.7 

Data acquired for month 16 cognition (%) 80.0 80.0 

Cued Recall Total baseline (mean / SD) 21.8 / 15.5 30.8 / 6.3 

Longitudinal change in Cued Recall Total (mean / SD) -9.4 / 8.5 -2.7 / 11.6 

Diagnostic consensus MCI  3 1 

Diagnostic consensus dementia 3 0 

Diagnostic consensus unable to determine 1 1 

 
Table 1. Participant demographics for the complete Down’s syndrome sample. 
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Table 2. SVM model performance with the structural network, graph theory network and age as predictive metrics, as measured by root mean 
square error (RMSE), R2, mean square error (MSE) and mean absolute error (MAE). 

Table 2. Linear kernel support vector machine model performance 

Predictors: Structural network 
connectivity 

Predictors: Graph theory network metrics Predictors: Age-only 

Response 
variable 

Global 
PiB 
SUVR 

Recall 
baseline* 

Recall 
change 

Response 
variable 

Global 
PiB 
SUVR* 

Recall 
baseline 

Recall 
change 

Response 
variable 

Global 
PiB 
SUVR 

Recall 
baseline 

Recall 
change* 

RMSE 0.43 8.56 10.42 RMSE 0.40  
No features 

selected 
(p < 0.01) 

RMSE 0.41 10.36 9.80 

R2 0.15 0.34 0.08 R2 0.28 R2 0.28 0.03 0.17 

MSE 0.19 73.42 108.47 MSE 0.16 MSE 0.16 107.34 96.07 

MAE 0.27 5.58 7.10 MAE 0.26 MAE 0.26 6.71 6.41 
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